Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.
Perez, Cristina R; Moye, John K; Pritsos, Chris A
2014-05-08
Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.
Kasabova, Boryana E; Holliday, Trenton W
2015-04-01
A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.
2011-10-01
Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.
Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...
Ku, Bon Ki; Evans, Douglas E.
2015-01-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard’s estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles. PMID:26526560
Ku, Bon Ki; Evans, Douglas E
2012-04-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard's estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.
Estimating the extent of impervious surfaces and turf grass across large regions
Claggett, Peter; Irani, Frederick M.; Thompson, Renee L.
2013-01-01
The ability of researchers to accurately assess the extent of impervious and pervious developed surfaces, e.g., turf grass, using land-cover data derived from Landsat satellite imagery in the Chesapeake Bay watershed is limited due to the resolution of the data and systematic discrepancies between developed land-cover classes, surface mines, forests, and farmlands. Estimates of impervious surface and turf grass area in the Mid-Atlantic, United States that were based on 2006 Landsat-derived land-cover data were substantially lower than estimates based on more authoritative and independent sources. New estimates of impervious surfaces and turf grass area derived using land-cover data combined with ancillary information on roads, housing units, surface mines, and sampled estimates of road width and residential impervious area were up to 57 and 45% higher than estimates based strictly on land-cover data. These new estimates closely approximate estimates derived from authoritative and independent sources in developed counties.
Parallel, stochastic measurement of molecular surface area.
Juba, Derek; Varshney, Amitabh
2008-08-01
Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed for this task, but they are designed for traditional single-processor architectures. The current trend in computer hardware is towards increasingly parallel architectures for which these algorithms are not well suited. We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of surface area immediately and refining this estimate as time goes on. Furthermore, the algorithm generates points on the molecular surface which can be used for point-based rendering. We demonstrate a GPU implementation of our algorithm and show that it compares favorably with several existing molecular surface computation programs, giving fast estimates of the molecular surface area with good accuracy.
Evaluation of a technique for satellite-derived area estimation of forest fires
NASA Technical Reports Server (NTRS)
Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Chung, Charles C.
1992-01-01
The advanced very high resolution radiometer (AVHRR), has been found useful for the location and monitoring of both smoke and fires because of the daily observations, the large geographical coverage of the imagery, the spectral characteristics of the instrument, and the spatial resolution of the instrument. This paper will discuss the application of AVHRR data to assess the geographical extent of burning. Methods have been developed to estimate the surface area of burning by analyzing the surface area effected by fire with AVHRR imagery. Characteristics of the AVHRR instrument, its orbit, field of view, and archived data sets are discussed relative to the unique surface area of each pixel. The errors associated with this surface area estimation technique are determined using AVHRR-derived area estimates of target regions with known sizes. This technique is used to evaluate the area burned during the Yellowstone fires of 1988.
NASA Astrophysics Data System (ADS)
Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.
2015-12-01
CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder dissolution experiment. In the model of the flow-through column experiment, the accessible mineral surface area, computed from the multi-scale image analysis, is evaluated in addition to the traditional surface area estimates.
Hsieh, Po-Fan; Wang, Yu-De; Huang, Chi-Ping; Wu, Hsi-Chin; Yang, Che-Rei; Chen, Guang-Heng; Chang, Chao-Hsiang
2016-07-01
We proposed a mathematical formula to calculate contact surface area between a tumor and renal parenchyma. We examined the applicability of using contact surface area to predict renal function after partial nephrectomy. We performed this retrospective study in patients who underwent partial nephrectomy between January 2012 and December 2014. Based on abdominopelvic computerized tomography or magnetic resonance imaging, we calculated the contact surface area using the formula (2*π*radius*depth) developed by integral calculus. We then evaluated the correlation between contact surface area and perioperative parameters, and compared contact surface area and R.E.N.A.L. (Radius/Exophytic/endophytic/Nearness to collecting system/Anterior/Location) score in predicting a reduction in renal function. Overall 35, 26 and 45 patients underwent partial nephrectomy with open, laparoscopic and robotic approaches, respectively. Mean ± SD contact surface area was 30.7±26.1 cm(2) and median (IQR) R.E.N.A.L. score was 7 (2.25). Spearman correlation analysis showed that contact surface area was significantly associated with estimated blood loss (p=0.04), operative time (p=0.04) and percent change in estimated glomerular filtration rate (p <0.001). On multivariate analysis contact surface area and R.E.N.A.L. score independently affected percent change in estimated glomerular filtration rate (p <0.001 and p=0.03, respectively). On ROC curve analysis contact surface area was a better independent predictor of a greater than 10% change in estimated glomerular filtration rate compared to R.E.N.A.L. score (AUC 0.86 vs 0.69). Using this simple mathematical method, contact surface area was associated with surgical outcomes. Compared to R.E.N.A.L. score, contact surface area was a better predictor of functional change after partial nephrectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens
2010-05-01
People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface area, depth and shape. Depth was measured using a stadia rod or a manual echosounder. For reservoirs in the sub-set, estimated surface area was used as an input into the triangulated irregular network model. With the surface area and depth, measured volume was calculated. Comparisons were made between estimates of surface area from field surveys and estimates of surface area from remote sensing. A linear regression analysis was carried out to establish the relationship between surface area and storage capacities. Within geomorphologically homogenous regions, one may expect a good correlation between the surface area, which may be determined through satellite observations, and the stored volume. Such a relation depends on the general shape of the slopes (convex, through straight, to concave). The power relationships between remotely sensed surface areas (m^2) and storage capacities of reservoirs (m^3) obtained were - Limpopo basin (Lower Mzingwane sub-catchment): Volume = 0.023083 x Area^1.3272 (R2 = 95%); Bandama basin (North of the basin in Ivory Coast): Volume = 0.00405 x Area^1.4953 (R2 = 88.9%); Volta basin (Upper East region of the Volta Basin in Ghana): Volume = 0.00857 × Area^1.43 (R2 = 97.5%); São Francisco basin (Preto river sub-catchment): Volume = 0.2643 x Area^1.1632 (R2 = 92.1%). Remote sensing was found to be a suitable means to detect small reservoirs and accurately measure their surface areas. The general relationship between measured reservoir volumes and their remotely sensed surface areas showed good accuracy for all four basins. Combining such relationships with periodical satellite-based reservoir area measurements may allow hydrologists and planners to have clear picture of water resource system in the Basins, especially in ungauged sub-basins.
Area Estimation of Deep-Sea Surfaces from Oblique Still Images
Souto, Miguel; Afonso, Andreia; Calado, António; Madureira, Pedro; Campos, Aldino
2015-01-01
Estimating the area of seabed surfaces from pictures or videos is an important problem in seafloor surveys. This task is complex to achieve with moving platforms such as submersibles, towed or remotely operated vehicles (ROV), where the recording camera is typically not static and provides an oblique view of the seafloor. A new method for obtaining seabed surface area estimates is presented here, using the classical set up of two laser devices fixed to the ROV frame projecting two parallel lines over the seabed. By combining lengths measured directly from the image containing the laser lines, the area of seabed surfaces is estimated, as well as the camera’s distance to the seabed, pan and tilt angles. The only parameters required are the distance between the parallel laser lines and the camera’s horizontal and vertical angles of view. The method was validated with a controlled in situ experiment using a deep-sea ROV, yielding an area estimate error of 1.5%. Further applications and generalizations of the method are discussed, with emphasis on deep-sea applications. PMID:26177287
NASA Astrophysics Data System (ADS)
Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.
2017-12-01
The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qai, Qiang; Rushton, Gerald; Bhaduri, Budhendra L
The objective of this research is to compute population estimates by age and sex for small areas whose boundaries are different from those for which the population counts were made. In our approach, population surfaces and age-sex proportion surfaces are separately estimated. Age-sex population estimates for small areas and their confidence intervals are then computed using a binomial model with the two surfaces as inputs. The approach was implemented for Iowa using a 90 m resolution population grid (LandScan USA) and U.S. Census 2000 population. Three spatial interpolation methods, the areal weighting (AW) method, the ordinary kriging (OK) method, andmore » a modification of the pycnophylactic method, were used on Census Tract populations to estimate the age-sex proportion surfaces. To verify the model, age-sex population estimates were computed for paired Block Groups that straddled Census Tracts and therefore were spatially misaligned with them. The pycnophylactic method and the OK method were more accurate than the AW method. The approach is general and can be used to estimate subgroup-count types of variables from information in existing administrative areas for custom-defined areas used as the spatial basis of support in other applications.« less
Calculating landscape surface area from digital elevation models
Jeff S. Jenness
2004-01-01
There are many reasons to want to know the true surface area of the landscape, especially in landscape analysis and studies of wildlife habitat. Surface area provides a better estimate of the land area available to an animal than planimetric area, and the ratio of this surface area to planimetric area provides a useful measure of topographic roughness of the landscape...
Sampling theory and automated simulations for vertical sections, applied to human brain.
Cruz-Orive, L M; Gelšvartas, J; Roberts, N
2014-02-01
In recent years, there have been substantial developments in both magnetic resonance imaging techniques and automatic image analysis software. The purpose of this paper is to develop stereological image sampling theory (i.e. unbiased sampling rules) that can be used by image analysts for estimating geometric quantities such as surface area and volume, and to illustrate its implementation. The methods will ideally be applied automatically on segmented, properly sampled 2D images - although convenient manual application is always an option - and they are of wide applicability in many disciplines. In particular, the vertical sections design to estimate surface area is described in detail and applied to estimate the area of the pial surface and of the boundary between cortex and underlying white matter (i.e. subcortical surface area). For completeness, cortical volume and mean cortical thickness are also estimated. The aforementioned surfaces were triangulated in 3D with the aid of FreeSurfer software, which provided accurate surface area measures that served as gold standards. Furthermore, a software was developed to produce digitized trace curves of the triangulated target surfaces automatically from virtual sections. From such traces, a new method (called the 'lambda method') is presented to estimate surface area automatically. In addition, with the new software, intersections could be counted automatically between the relevant surface traces and a cycloid test grid for the classical design. This capability, together with the aforementioned gold standard, enabled us to thoroughly check the performance and the variability of the different estimators by Monte Carlo simulations for studying the human brain. In particular, new methods are offered to split the total error variance into the orientations, sectioning and cycloid components. The latter prediction was hitherto unavailable--one is proposed here and checked by way of simulations on a given set of digitized vertical sections with automatically superimposed cycloid grids of three different sizes. Concrete and detailed recommendations are given to implement the methods. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Hand burns surface area: A rule of thumb.
Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan
2018-08-01
Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.
Estimation of the specific surface area for a porous carrier.
Levstek, Meta; Plazl, Igor; Rouse, Joseph D
2010-03-01
In biofilm systems, treatment performance is primarily dependent upon the available biofilm growth surface area in the reactor. Specific surface area is thus a parameter that allows for making comparisons between different carrier technologies used for wastewater treatment. In this study, we estimated the effective surface area for a spherical, porous polyvinyl alcohol (PVA) gel carrier (Kuraray) that has previously demonstrated effectiveness for retention of autotrophic and heterotrophic biomass. This was accomplished by applying the GPS-X modeling tool (Hydromantis) to a comparative analysis of two moving-bed biofilm reactor (MBBR) systems. One system consisted of a lab-scale reactor that was fed synthetic wastewater under autotrophic conditions where only the nitrification process was studied. The other was a pre-denitrification pilot-scale plant that was fed real, primary-settled wastewater. Calibration of an MBBR process model for both systems indicated an effective specific surface area for PVA gel of 2500 m2/m3, versus a specific surface area of 1000 m2/m3 when only the outer surface of the gel beads is considered. In addition, the maximum specific growth rates for autotrophs and heterotrophs were estimated to be 1.2/day and 6.0/day, respectively.
Estimating 3-dimensional colony surface area of field corals
Colony surface area is a critical descriptor for biological and physical attributes of reef-building (scleractinian, stony) corals. The three-dimensional (3D) size and structure of corals are directly related to many ecosystem values and functions. Most methods to estimate colony...
Human body surface area database and estimation formula.
Yu, Chi-Yuang; Lin, Ching-Hua; Yang, Yi-Hsueh
2010-08-01
This study established human body surface area (BSA) database and estimation formula based on three-dimensional (3D) scanned data. For each gender, 135 subjects were drawn. The sampling was stratified in five stature heights and three body weights according to a previous survey. The 3D body surface shape was measured using an innovated 3D body scanner and a high resolution hand/foot scanner, the total body surface area (BSA) and segmental body surface area (SBSA) were computed based on the summation of every tiny triangular area of triangular meshes of the scanned surface; and the accuracy of BSA measurement is below 1%. The results of BSA and sixteen SBSAs were tabulated in fifteen strata for the Male, the Female and the Total (two genders combined). The %SBSA data was also used to revise new Lund and Browder Charts. The comparison of BSA shows that the BSA of this study is comparable with the Du Bois and Du Bois' but smaller than that of Tikuisis et al. The difference might be attributed to body size difference between the samples. The comparison of SBSA shows that the differences of SBSA between this study and the Lund and Browder Chart range between 0.00% and 2.30%. A new BSA estimation formula, BSA=71.3989 x H(.7437) x W(.4040), was obtained. An accuracy test showed that this formula has smaller estimation error than that of the Du Bois and Du Bois'; and significantly better than other BSA estimation formulae.
USDA-ARS?s Scientific Manuscript database
The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...
Haifler, Miki; Ristau, Benjamin T; Higgins, Andrew M; Smaldone, Marc C; Kutikov, Alexander; Zisman, Amnon; Uzzo, Robert G
2017-09-20
We sought to externally validate a mathematical formula for tumor contact surface area as a predictor of postoperative renal function in patients undergoing partial nephrectomy for renal cell carcinoma. We queried a prospectively maintained kidney cancer database for patients who underwent partial nephrectomy between 2014 and 2016. Contact surface area was calculated using data obtained from preoperative cross-sectional imaging. The correlation between contact surface area and perioperative variables was examined. The correlation between postoperative renal functional outcomes, contact surface area and the R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines and tumor touches main renal artery or vein) nephrometry score was also assessed. A total of 257 patients who underwent partial nephrectomy had sufficient data to enter the study. Median contact surface area was 14.5 cm 2 (IQR 6.2-36) and the median nephrometry score was 9 (IQR 7-10). Spearman correlation analysis showed that contact surface area correlated with estimated blood loss (r s = 0.42, p <0.001), length of stay (r s = 0.18, p = 0.005), and percent and absolute change in the estimated glomerular filtration rate (r s = -0.77 and -0.78, respectively, each p <0.001). On multivariable analysis contact surface area and nephrometry score were independent predictors of the absolute change in the estimated glomerular filtration rate (each p <0.001). ROC curve analysis revealed that contact surface area was a better predictor of a greater than 20% postoperative decline in the estimated glomerular filtration rate compared with the nephrometry score (AUC 0.94 vs 0.80). Contact surface area correlated with the change in postoperative renal function after partial nephrectomy. It can be used in conjunction with the nephrometry score to counsel patients about the risk of renal functional decline after partial nephrectomy. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.
1996-01-01
In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.
WNDCOM: estimating surface winds in mountainous terrain
Bill C. Ryan
1983-01-01
WNDCOM is a mathematical model for estimating surface winds in mountainous terrain. By following the procedures described, the sheltering and diverting effect of terrain, the individual components of the windflow, and the surface wind in remote mountainous areas can be estimated. Components include the contribution from the synoptic scale pressure gradient, the sea...
Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert
2010-09-30
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.
Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert
2010-01-01
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126
Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry
NASA Astrophysics Data System (ADS)
Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.
2018-04-01
Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-01-01
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID:18560580
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-06-18
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.
Determining surface areas of marine alga cells by acid-base titration method.
Wang, X; Ma, Y; Su, Y
1997-09-01
A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.
Using LiDAR to Estimate Surface Erosion Volumes within the Post-storm 2012 Bagley Fire
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Mondry, Z. J.
2014-12-01
The total post-storm 2012 Bagley fire sediment budget of the Squaw Creek watershed in the Shasta-Trinity National Forest was estimated using many methods. A portion of the budget was quantitatively estimated using LiDAR. Simple workflows were designed to estimate the eroded volume's of debris slides, fill failures, gullies, altered channels and streams. LiDAR was also used to estimate depositional volumes. Thorough manual mapping of large erosional features using the ArcGIS 10.1 Geographic Information System was required as these mapped features determined the eroded volume boundaries in 3D space. The 3D pre-erosional surface for each mapped feature was interpolated based on the boundary elevations. A surface difference calculation was run using the estimated pre-erosional surfaces and LiDAR surfaces to determine volume of sediment potentially delivered into the stream system. In addition, cross sections of altered channels and streams were taken using stratified random selection based on channel gradient and stream order respectively. The original pre-storm surfaces of channel features were estimated using the cross sections and erosion depth criteria. Open source software Inkscape was used to estimate cross sectional areas for randomly selected channel features and then averaged for each channel gradient and stream order classes. The average areas were then multiplied by the length of each class to estimate total eroded altered channel and stream volume. Finally, reservoir and in-channel depositional volumes were estimated by mapping channel forms and generating specific reservoir elevation zones associated with depositional events. The in-channel areas and zones within the reservoir were multiplied by estimated and field observed sediment thicknesses to attain a best guess sediment volume. In channel estimates included re-occupying stream channel cross sections established before the fire. Once volumes were calculated, other erosion processes of the Bagley sedimentation study, such as surface soil erosion were combined to estimate the total fire and storm sediment budget for the Squaw Creek watershed. The LiDAR-based measurement workflows can be easily applied to other sediment budget studies using one high resolution LiDAR dataset.
Karbalay-Doust, Saied; Noorafshan, Ali
2012-07-05
Changes in the number and size of oocytes can lead to fertilization problems. The present study aimed to evaluate the number, volume, and surface area of oocytes in healthy as well as nandrolone decanoate-treated (ND) mice using stereological methods. Five control mice received vehicle, and five ND-treated mice received ND. Using the 'isotropic Cavalieri' design', the ovary was sectioned. The volume of the ovary (cortex and medulla) was estimated. The oocytes' volume and surface area were estimated using the invariator. The number of the oocytes was estimated using an optical disector. The volumes of the ovary, cortex, and medulla decreased ~50% in the ND-treated mice. The mean number (coefficient of variation) of preantral, antral, and atretic oocytes in the control ovary were 1,690 (0.29), 2,100 (0.52), and 3,900 (0.2), respectively, which decreased ~54%, ~87%, and ~91%, respectively in the ND-treated animals. The mean volume (coefficient of variation) of the preantral, antral, and atretic oocytes were 86,000 (0.27), 110,000 (0.48), and 27,000 (0.33) μm³, respectively. The mean surface area (coefficient of variation) of the three types of oocytes were 9,000 (0.24), 9,900 (0.28), and 4,700 (0.21) μm², respectively. These parameters remained unchanged in the ND-treated mice. ND induces reduction in the number of oocytes, but not in the volume or the surface area.
Parcellations and Hemispheric Asymmetries of Human Cerebral Cortex Analyzed on Surface-Based Atlases
Glasser, Matthew F.; Dierker, Donna L.; Harwell, John; Coalson, Timothy
2012-01-01
We report on surface-based analyses that enhance our understanding of human cortical organization, including its convolutions and its parcellation into many distinct areas. The surface area of human neocortex averages 973 cm2 per hemisphere, based on cortical midthickness surfaces of 2 cohorts of subjects. We implemented a method to register individual subjects to a hybrid version of the FreeSurfer “fsaverage” atlas whose left and right hemispheres are in precise geographic correspondence. Cortical folding patterns in the resultant population-average “fs_LR” midthickness surfaces are remarkably similar in the left and right hemispheres, even in regions showing significant asymmetry in 3D position. Both hemispheres are equal in average surface area, but hotspots of surface area asymmetry are present in the Sylvian Fissure and elsewhere, together with a broad pattern of asymmetries that are significant though small in magnitude. Multiple cortical parcellation schemes registered to the human atlas provide valuable reference data sets for comparisons with other studies. Identified cortical areas vary in size by more than 2 orders of magnitude. The total number of human neocortical areas is estimated to be ∼150 to 200 areas per hemisphere, which is modestly larger than a recent estimate for the macaque. PMID:22047963
NASA Astrophysics Data System (ADS)
Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun
2018-04-01
Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.
Respiratory and olfactory turbinal size in canid and arctoid carnivorans.
Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail
2012-12-01
Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Respiratory and olfactory turbinal size in canid and arctoid carnivorans
Green, Patrick A; Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail
2012-01-01
Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637
Terrain Measurement with SAR/InSAR
NASA Astrophysics Data System (ADS)
Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang
2016-08-01
Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.
NASA Astrophysics Data System (ADS)
Liu, Jiping; Kang, Xiaochen; Dong, Chun; Xu, Shenghua
2017-12-01
Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O) can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.
Estimating home-range size: when to include a third dimension?
Monterroso, Pedro; Sillero, Neftalí; Rosalino, Luís Miguel; Loureiro, Filipa; Alves, Paulo Célio
2013-01-01
Most studies dealing with home ranges consider the study areas as if they were totally flat, working only in two dimensions, when in reality they are irregular surfaces displayed in three dimensions. By disregarding the third dimension (i.e., topography), the size of home ranges underestimates the surface actually occupied by the animal, potentially leading to misinterpretations of the animals' ecological needs. We explored the influence of considering the third dimension in the estimation of home-range size by modeling the variation between the planimetric and topographic estimates at several spatial scales. Our results revealed that planimetric approaches underestimate home-range size estimations, which range from nearly zero up to 22%. The difference between planimetric and topographic estimates of home-ranges sizes produced highly robust models using the average slope as the sole independent factor. Moreover, our models suggest that planimetric estimates in areas with an average slope of 16.3° (±0.4) or more will incur in errors ≥5%. Alternatively, the altitudinal range can be used as an indicator of the need to include topography in home-range estimates. Our results confirmed that home-range estimates could be significantly biased when topography is disregarded. We suggest that study areas where home-range studies will be performed should firstly be scoped for its altitudinal range, which can serve as an indicator for the need for posterior use of average slope values to model the surface area used and/or available for the studied animals. PMID:23919170
Evapotranspiration: Mass balance measurements compared with flux estimation methods
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...
Eiseman, Julie L; Sciullo, Michael; Wang, Hong; Beumer, Jan H; Horn, Charles C
2017-10-01
Several cancer chemotherapies cause nausea and vomiting, which can be dose-limiting. Musk shrews are used as preclinical models for chemotherapy-induced emesis and for antiemetic effectiveness. Unlike rats and mice, shrews possess a vomiting reflex and demonstrate an emetic profile similar to humans, including acute and delayed phases. As with most animals, dosing of shrews is based on body weight, while translation of such doses to clinically equivalent exposure requires doses based on body surface area. In the current study body surface area in musk shrews was directly assessed to determine the Meeh constant (K m ) conversion factor (female = 9.97, male = 9.10), allowing estimation of body surface area based on body weight. These parameters can be used to determine dosing strategies for shrew studies that model human drug exposures, particularly for investigating the emetic liability of cancer chemotherapeutic agents.
Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.
2016-10-19
OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling. Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.
FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.
Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations
NASA Astrophysics Data System (ADS)
Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.
2016-12-01
Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.
Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain.
Potvin, Olivier; Dieumegarde, Louis; Duchesne, Simon
2017-08-01
Proper normative data of anatomical measurements of cortical regions, allowing to quantify brain abnormalities, are lacking. We developed norms for regional cortical surface areas, thicknesses, and volumes based on cross-sectional MRI scans from 2713 healthy individuals aged 18 to 94 years using 23 samples provided by 21 independent research groups. The segmentation was conducted using FreeSurfer, a widely used and freely available automated segmentation software. Models predicting regional cortical estimates of each hemisphere were produced using age, sex, estimated total intracranial volume (eTIV), scanner manufacturer, magnetic field strength, and interactions as predictors. The explained variance for the left/right cortex was 76%/76% for surface area, 43%/42% for thickness, and 80%/80% for volume. The mean explained variance for all regions was 41% for surface areas, 27% for thicknesses, and 46% for volumes. Age, sex and eTIV predicted most of the explained variance for surface areas and volumes while age was the main predictors for thicknesses. Scanner characteristics generally predicted a limited amount of variance, but this effect was stronger for thicknesses than surface areas and volumes. For new individuals, estimates of their expected surface area, thickness and volume based on their characteristics and the scanner characteristics can be obtained using the derived formulas, as well as Z score effect sizes denoting the extent of the deviation from the normative sample. Models predicting normative values were validated in independent samples of healthy adults, showing satisfactory validation R 2 . Deviations from the normative sample were measured in individuals with mild Alzheimer's disease and schizophrenia and expected patterns of deviations were observed. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Accurate estimation of surface energy fluxes at field scale over large areas has the potential to improve agricultural water management in arid and semiarid watersheds. Remote sensing may be the only viable approach for mapping fluxes over heterogeneous landscapes. The Two-Source Energy Balance mode...
Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L
2017-01-01
Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N2/BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm−1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm−1) and the N2/BET solid surface area (28±2 cm−1). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm−1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm−1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm−1 and 152±8 cm−1, respectively), but much smaller than the N2/BET solid surface area (1387±92 cm−1 and 55224 cm−1, respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard IPTT method. PMID:28959079
Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data
Kato, Soushi; Yamaguchi, Yasushi; Liu, Cheng-Chien; Sun, Chen-Yi
2008-01-01
The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures. PMID:27873856
Detection of surface temperature from LANDSAT-7/ETM+
NASA Astrophysics Data System (ADS)
Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.
Hiroshima Institute of Technology (HIT) in Japan has established LANDSAT-7 Ground Station in cooperated with NASDA for receiving and processing the ETM+ data on March 15t h , 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT- 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of the thermal condition around Hiroshima City and Bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6, and then the estimation of the surface temperature distribution around the test site was examined. In this paper, the authors estimated the surface temperature distribution equivalent to the land cover types around Hiroshima City and Bay area. For the further study, the authors performed the modification of approximate functions for converting the spectral radiance into the surface temperature by the field and satellite observation throughout a year and the development of various monitoring systems for the environmental issues such as the sea surface anomalies and heat island phenomena.
Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.
2000-01-01
Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.
Morphological study on the prediction of the site of surface slides
Hiromasa Hiura
1991-01-01
The annual continual occurrence of surface slides in the basin was estimated by modifying the estimation formula of Yoshimatsu. The Weibull Distribution Function revealed to be usefull for presenting the state and the transition of surface slides in the basin. Three parameters of the Weibull Function are recognized to be the linear function of the area ratio a/A. The...
Olson, Scott A.
2015-01-01
Eighteen high-water marks from Tropical Storm Irene were available along the studied reaches. The discharges in the Tropical Storm Irene HEC–RAS model were adjusted so that the resulting water-surface elevations matched the high-water mark elevations along the study reaches. This allowed for an estimation of the water-surface profile throughout the study area resulting from Tropical Storm Irene. From a comparison of the estimated water-surface profile of Tropical Storm Irene to the water-surface profiles of the 1- and 0.2-percent AEP floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the White River and Tweed River study reaches and exceeded the estimated 0.2-percent AEP flood in 16.7 of the 28.6 study reach miles. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 18.2-centimeter vertical accuracy at the 95-percent confidence level and 1-meter horizontal resolution to delineate the area flooded for each water-surface profile.
OCT-based full crystalline lens shape change during accommodation in vivo.
Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana
2017-02-01
The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic.
OCT-based full crystalline lens shape change during accommodation in vivo
Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana
2017-01-01
The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic. PMID:28270993
Hydraulic fracture modeling and fracture surface area calculations determined from pressure decay analysis and reservoir numerical flow simulation support estimates of created hydraulic fracture surface areas of 24-60 MM sq ft.
Determination of the surface area of smectite in water by ethylene oxide chain adsorption.
Yuang, Paul-Cheng; Shen, Yun-Hwei
2005-05-15
This study investigates the feasibility of using ethylene oxide (EO) chain adsorption to determine the surface area of smectite in water. Experimental results indicate that high-molecular-weight poly(ethylene oxide) (PEO) should be used to provide reasonable estimations for monolayer capacity of PEO on smectite. The surface areas of smectites in water are calculated from the monolayer capacity of PEO adsorbed on smectite by taking the area per EO unit as 8.05 A(2). The method measures the actual surface area of smectite exposed when dispersed in water, which is important to applications of smectite under aqueous conditions.
Sasa, Shuji; Komatsu, Teruhisa
2018-01-01
Sargassum horneri C. Agardh is an important commercial edible seaweed species in east Asia. Benthic beds and floating rafts in coastal areas make excellent habitats for marine organisms to feed, hide, and spawn. Many commercially important fish species such as Japanese anchovy (Engraulis japonicus), yellowtail (Seriola quinqueradiata), and Japanese horse mackerel (Trachurus japonicus) live in seaweed beds. Chinese and Japanese fisherman rely on S. horneri beds as productive fish harvest areas. The Zhejiang government in China set a total allowable catch standard, to preserve the Ma’an Islands ecosystem, which is a marine protected area. In this study we analysed the association between weight and one-sided surface area of S. horneri beds, and calculated the ratio of one-sided surface area to change in wet weight over time. We collected samples from December 2014 to May 2015. Approximately 1 g of S. horneri biomass provided ~15 cm2 of one-sided surface area available to marine organisms. These calculations can be used as a reference regarding potential space to improve total allowable catch standard management in S. horneri beds, through the estimation of space capacity of seaweed beds. PMID:29920534
Resuscitation burn card--a useful tool for burn injury assessment.
Malic, C C; Karoo, R O S; Austin, O; Phipps, A
2007-03-01
It is well recognised that the initial assessment of body surface area affected by a burn is often over estimated in Accident and Emergency Departments. A useful aide-memoir in the acute setting is Wallace's "rule of nines" or using the patients' palmar surface of the hand, which approximates 1% of the total body surface area, as a method of assessment. Unfortunately, as with every system, limitations apply. Factors such as patient size and the interpretation of what is exactly the 'palmar surface' may significantly influence burn size estimations and subsequently fluid resuscitation. Our aim is to develop a simple, quick and easy reproducible method of calculating burn injuries for medical professionals in the acute setting. Worldwide, the dimensions of a credit card are standardized (8.5 cm x 5.3 cm), thus producing a surface area of 45 cm2. We created a resuscitation burn card (RBC) using these exact same proportions, upon which a modified body surface area (BSA) nomogram was printed. Knowing the patient height and weight, we calculated the surface area of the card as percentage of total body surface area (TBSA). On the opposite site of the RBC, a Lund and Browder chart was printed, as well as the Parkland formula and a formula to calculate paediatric burn fluid requirements. The plastic, flexible RBC conformed well to the body contour and was designed for single use. We used the resuscitation burn card in the initial assessment of simulated burns in a Regional Burn Centre and in an Accident and Emergency Department. The information present on the card was found to be clear and straightforward to use. The evaluation of burn extent was found to be more accurately measured than the estimation obtained without the RBC. The resuscitation burn card can be a valuable tool in the hands of less experienced medical professionals for the early assessment and fluid resuscitation of a burn.
NASA Astrophysics Data System (ADS)
Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru
2017-08-01
The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be extended to the water balance study of the whole Heihe River basin.
NASA Astrophysics Data System (ADS)
Scislewski, A.; Zuddas, P.
2010-12-01
Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react with CO2-rich fluids, decreasing the effective reactive surface area. Predictive models of CO2 sequestration under geological conditions should take into account the inhibiting role of surface coating formation. The CO2 rich fluid-rock interactions may also have significant consequences on metal mobilization. Our results indicated that the formation of stable carbonate complexes enhances the solubility of uranium minerals of both albitite and granite, facilitating the U(IV) oxidation, and limiting the extent of uranium adsorption onto particles in oxidized waters. This clearly produces an increase of the uranium mobility with significant consequences for the environment.
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, Z.; Wang, J.; Ishikawa, H.
2011-05-01
Land surface heat fluxes are essential measures of the strengths of land-atmosphere interactions involving energy, heat and water. Correct parameterization of these fluxes in climate models is critical. Despite their importance, state-of-the-art observation techniques cannot provide representative areal averages of these fluxes comparable to the model grid. Alternative methods of estimation are thus required. These alternative approaches use (satellite) observables of the land surface conditions. In this study, the Surface Energy Balance System (SEBS) algorithm was evaluated in a cold and arid environment, using land surface parameters derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Field observations and estimates from SEBS were compared in terms of net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λE) over a heterogeneous land surface. As a case study, this methodology was applied to the experimental area of the Watershed Allied Telemetry Experimental Research (WATER) project, located on the mid-to-upstream sections of the Heihe River in northwest China. ASTER data acquired between 3 May and 4 June 2008, under clear-sky conditions were used to determine the surface fluxes. Ground-based measurements of land surface heat fluxes were compared with values derived from the ASTER data. The results show that the derived surface variables and the land surface heat fluxes furnished by SEBS in different months over the study area are in good agreement with the observed land surface status under the limited cases (some cases looks poor results). So SEBS can be used to estimate turbulent heat fluxes with acceptable accuracy in areas where there is partial vegetation cover in exceptive conditions. It is very important to perform calculations using ground-based observational data for parameterization in SEBS in the future. Nevertheless, the remote-sensing results can provide improved explanations of land surface fluxes over varying land coverage at greater spatial scales.
NASA Astrophysics Data System (ADS)
Zhong, L.; Ma, Y.; Ma, W.; Zou, M.; Hu, Y.
2016-12-01
Actual evapotranspiration (ETa) is an important component of the water cycle in the Tibetan Plateau. It is controlled by many hydrological and meteorological factors. Therefore, it is of great significance to estimate ETa accurately and continuously. It is also drawing much attention of scientific community to understand land surface parameters and land-atmosphere water exchange processes in small watershed-scale areas. Based on in-situ meteorological data in the Nagqu river basin and surrounding regions, the main meteorological factors affecting the evaporation process were quantitatively analyzed and the point-scale ETa estimation models in the study area were successfully built. On the other hand, multi-source satellite data (such as SPOT, MODIS, FY-2C) were used to derive the surface characteristics in the river basin. A time series processing technique was applied to remove cloud cover and reconstruct data series. Then improved land surface albedo, improved downward shortwave radiation flux and reconstructed normalized difference vegetation index (NDVI) were coupled into the topographical enhanced surface energy balance system to estimate ETa. The model-estimated results were compared with those ETa values determined by combinatory method. The results indicated that the model-estimated ETa agreed well with in-situ measurements with correlation coefficient, mean bias error and root mean square error of 0.836, 0.087 and 0.140 mm/h respectively.
NASA Astrophysics Data System (ADS)
Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang
2011-12-01
Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.
Hazard-Specific Vulnerability Mapping for Water Security in a Shale Gas Context
NASA Astrophysics Data System (ADS)
Allen, D. M.; Holding, S.; McKoen, Z.
2015-12-01
Northeast British Columbia (NEBC) is estimated to hold large reserves of unconventional natural gas and has experienced rapid growth in shale gas development activities over recent decades. Shale gas development has the potential to impact the quality and quantity of surface and ground water. Robust policies and sound water management are required to protect water security in relation to the water-energy nexus surrounding shale gas development. In this study, hazard-specific vulnerability mapping was conducted across NEBC to identify areas most vulnerable to water quality and quantity deterioration due to shale gas development. Vulnerability represents the combination of a specific hazard threat and the susceptibility of the water system to that threat. Hazard threats (i.e. potential contamination sources and water abstraction) were mapped spatially across the region. The shallow aquifer susceptibility to contamination was characterised using the DRASTIC aquifer vulnerability approach, while the aquifer susceptibility to abstraction was mapped according to aquifer productivity. Surface water susceptibility to contamination was characterised on a watershed basis to describe the propensity for overland flow (i.e. contaminant transport), while watershed discharge estimates were used to assess surface water susceptibility to water abstractions. The spatial distribution of hazard threats and susceptibility were combined to form hazard-specific vulnerability maps for groundwater quality, groundwater quantity, surface water quality and surface water quantity. The vulnerability maps identify priority areas for further research, monitoring and policy development. Priority areas regarding water quality occur where hazard threat (contamination potential) coincide with high aquifer susceptibility or high overland flow potential. Priority areas regarding water quantity occur where demand is estimated to represent a significant proportion of estimated supply. The identification of priority areas allows for characterization of the vulnerability of water security in the region. This vulnerability mapping approach, using the hazard threat and susceptibility indicators, can be applied to other shale gas areas to assess vulnerability to shale gas activities and support water security.
Estimating pothole wetland connectivity to Pipestem Creek ...
Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, North Dakota, with a watershed dominated by prairie potholes. During a decadal period of wet conditions, Pipestem Creek contained evaporated water that had approximately half the isotopic evaporative enrichment signal found in most evaporated permanent wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from the headwaters with distance downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporation. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 43 to 2653 ha and varying primarily with discharge. The average value (just over 600 ha) was well above the surface area of Pipestem Creek network (245 ha). This estimate of contributing area indicated that Prairie Pothole wetlands were important sources of stream fl
Land Capability Potential Index (LCPI) for the Lower Missouri River Valley
Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.
2007-01-01
The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.
Hand surface area estimation formula using 3D anthropometry.
Hsu, Yao-Wen; Yu, Chi-Yuang
2010-11-01
Hand surface area is an important reference in occupational hygiene and many other applications. This study derives a formula for the palm surface area (PSA) and hand surface area (HSA) based on three-dimensional (3D) scan data. Two-hundred and seventy subjects, 135 males and 135 females, were recruited for this study. The hand was measured using a high-resolution 3D hand scanner. Precision and accuracy of the scanner is within 0.67%. Both the PSA and HSA were computed using the triangular mesh summation method. A comparison between this study and previous textbook values (such as in the U.K. teaching text and Lund and Browder chart discussed in the article) was performed first to show that previous textbooks overestimated the PSA by 12.0% and HSA by 8.7% (for the male, PSA 8.5% and HSA 4.7%, and for the female, PSA 16.2% and HSA 13.4%). Six 1D measurements were then extracted semiautomatically for use as candidate estimators for the PSA and HSA estimation formula. Stepwise regressions on these six 1D measurements and variable dependency test were performed. Results show that a pair of measurements (hand length and hand breadth) were able to account for 96% of the HSA variance and up to 98% of the PSA variance. A test of the gender-specific formula indicated that gender is not a significant factor in either the PSA or HSA estimation.
NASA Astrophysics Data System (ADS)
Annor, Frank; van de Giesen, Nick; Bogaard, Thom; Eilander, Dirk
2013-04-01
Small water reservoirs for water resources management have as important socio-economic advantage that they bring water close to villages and households. This proximity allows for many water uses in addition to irrigation, such as fisheries, household water, building materials (loam, reeds), tourism and recreation, and cattle watering. These positive aspects are offset by the relatively large evaporative losses in comparison to larger reservoirs, although, it is not exactly known how large these losses are. For decision makers, investors and donors, the decision to construct a small reservoir should be multifactored; and based on economic, socio-cultural and environmental factors. For the latter, getting the water balance and the energy budget of small reservoirs right is key for any environmental impact analyses. For Northern Ghana, the relation between volume of a small reservoir and its' surface area has been established in a robust equation as: Volume = 0.00857Area1.4367 with the surface area explaining more than 95% of the variation in water volume of the reservoirs. This allows the use of remote sensing observations for estimating water volume of small reservoirs in northern Ghana. Hydrological analyses of time series of small reservoir areas comprises estimates of evaporation fluxes and cumulative surface runoff curves. Once the reservoirs are full, spillage will occur and volumes and surface areas remain stable at their maximum extents. This implies that the time series of reservoir surface area contains information concerning the on-set of downstream surface runoff. This on-set does not coincide with the on-set of the rainy season but largely depends on the distribution of rainfall events and storage capacity in the subsurface. The main requirement for this analysis is that the reservoir has negligible seepage losses or water influx from the underlying subsurface. In our research, we carried out a time series analysis of surface area extent for about 45 small reservoirs in the Upper East Region of Ghana. Reservoirs without obvious large seepage losses (field survey) were selected. To verify this, stable water isotopic samples are collected from groundwater upstream and downstream from the reservoir. By looking at possible enrichment of downstream groundwater, a good estimate of seepage can be made in addition to estimates on evaporation. We estimated the evaporative losses and compared those with field measurements using eddy correlation measurements. Lastly, we determined the cumulative surface runoff curves for the small reservoirs .We will present this analytical framework for extracting hydrological information from time series of small reservoirs and show the first results for our study region of northern Ghana.
White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.
1996-01-01
Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.; Roberts, J.W.
1990-01-01
Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)
USDA-ARS?s Scientific Manuscript database
Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...
Handbook for inventorying surface fuels and biomass in the Interior West
James K. Brown; Rick D. Oberheu; Cameron M. Johnston
1982-01-01
Presents comprehensive procedures for inventorying weight per unit area of living and dead surface vegetation, to facilitate estimation of biomass and appraisal of fuels. Provides instructions for conducting fieldwork and calculating estimates of downed woody material, forest floor litter and duff, herbaceous vegetation, shrubs, and small conifers. Procedures produce...
USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA
This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...
High-speed scanning: an improved algorithm
NASA Astrophysics Data System (ADS)
Nachimuthu, A.; Hoang, Khoi
1995-10-01
In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.
Powell, Rachel I.; McKean, Sarah E.
2014-01-01
Historically, the water-supply requirements of the Albuquerque metropolitan area of central New Mexico were met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. In response to water-level declines, the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began diverting water from the San Juan-Chama Drinking Water Project in December 2008 to reduce the use of groundwater to meet municipal demand. Modifications in the demand for water and the source of the supply of water for the Albuquerque metropolitan area have resulted in a variable response in the potentiometric surface of the production zone (the interval of the aquifer, from within about 200 feet below the water table to 900 feet or more, in which supply wells generally are screened) of the Santa Fe Group aquifer system. Analysis of the magnitude and spatial distribution of water-level change can help improve the understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies’ efforts to minimize future water-level declines and improve sustainability. The U.S. Geological Survey (USGS), in cooperation with the ABCWUA, has developed an estimate of the 2012 potentiometric surface of the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. This potentiometric surface is the latest in a series of reports depicting the potentiometric surface of the area. This report presents the estimated potentiometric surface during winter (from December to March) of water year 2012 and the estimated changes in potentiometric surface between predevelopment (pre-1961) and water year 2012 for the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. Hydrographs from selected piezometers are included to provide details of historical water-level changes. In general, water-level measurements used for this report were collected in small-diameter observation wells screened over short intervals near the middle of the production zone and were considered to best represent the potentiometric head in the production zone. The water-level measurements were collected by various local and Federal agencies. The water year 2012 potentiometric surface map was created in a geographic information system, and the change in water-level altitude from predevelopment to water year 2012 was calculated. The 2012 potentiometric surface indicates that the general direction of groundwater flow is from the Rio Grande towards clusters of supply wells in the east, north, and west. Water-level changes from predevelopment to 2012 were variable across the Albuquerque metropolitan area. Estimated drawdown from 2008 was spatially variable across the Albuquerque metropolitan area. Hydrographs from piezometers on the east side of the river indicate an increase in the annual highest water-level measurement from 2008 to 2012. Hydrographs from piezometers in the northwest part of the study area indicate either steady decline of the water-level altitude over the period of record or recently variable trends in which water-level altitudes increased for a number of years but have declined since water year 2012.
Radar characteristics of Viking 1 landing sites
Tyler, G.L.; Campbell, D.B.; Downs, G.S.; Green, R.R.; Moore, H.J.
1976-01-01
Radar observations of Mars at centimeter wavelengths in May, June, and July 1976 provided estimates of surface roughness and reflectivity in three potential landing areas for Viking 1. Surface roughness is characterized by the distribution of surface landing slopes or tilts on lateral scales of the order of 1 to 10 meters; measurements of surface reflectivity are indicators of bulk surface density in the uppermost few centimeters. By these measures, the Viking 1 landing site at 47.5??W, 22.4??N is rougher than the martian average, although it may be near the martian average for elevations accessible to Viking, and is estimated to be near the Mars average in reflectivity. The AINW site at the center of Chryse Planitia, 43.5??W, 23.4??N, may be an area of anomalous radar characteristics, indicative of extreme, small-scale roughness, very low surface density, or a combination of these two characteristics. Low signal-to-noise ratio observations of the original Chryse site at 34??W, 19.5??N indicate that that area is at least twice as rough as the Mars average.
A. M. S. Smith; N. A. Drake; M. J. Wooster; A. T. Hudak; Z. A. Holden; C. J. Gibbons
2007-01-01
Accurate production of regional burned area maps are necessary to reduce uncertainty in emission estimates from African savannah fires. Numerous methods have been developed that map burned and unburned surfaces. These methods are typically applied to coarse spatial resolution (1 km) data to produce regional estimates of the area burned, while higher spatial resolution...
Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.
2006-01-01
18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.
Reddy, Michael M.; Schuster, Paul F.; Kendall, Carol; Reddy, Micaela B.
2006-01-01
18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.
A system for 3D representation of burns and calculation of burnt skin area.
Prieto, María Felicidad; Acha, Begoña; Gómez-Cía, Tomás; Fondón, Irene; Serrano, Carmen
2011-11-01
In this paper a computer-based system for burnt surface area estimation (BAI), is presented. First, a 3D model of a patient, adapted to age, weight, gender and constitution is created. On this 3D model, physicians represent both burns as well as burn depth allowing the burnt surface area to be automatically calculated by the system. Each patient models as well as photographs and burn area estimation can be stored. Therefore, these data can be included in the patient's clinical records for further review. Validation of this system was performed. In a first experiment, artificial known sized paper patches were attached to different parts of the body in 37 volunteers. A panel of 5 experts diagnosed the extent of the patches using the Rule of Nines. Besides, our system estimated the area of the "artificial burn". In order to validate the null hypothesis, Student's t-test was applied to collected data. In addition, intraclass correlation coefficient (ICC) was calculated and a value of 0.9918 was obtained, demonstrating that the reliability of the program in calculating the area is of 99%. In a second experiment, the burnt skin areas of 80 patients were calculated using BAI system and the Rule of Nines. A comparison between these two measuring methods was performed via t-Student test and ICC. The hypothesis of null difference between both measures is only true for deep dermal burns and the ICC is significantly different, indicating that the area estimation calculated by applying classical techniques can result in a wrong diagnose of the burnt surface. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.
Rumpf, R Wolfgang; Stewart, William C L; Martinez, Stephen K; Gerrard, Chandra Y; Adolphi, Natalie L; Thakkar, Rajan; Coleman, Alan; Rajab, Adrian; Ray, William C; Fabia, Renata
2018-01-01
Treating burns effectively requires accurately assessing the percentage of the total body surface area (%TBSA) affected by burns. Current methods for estimating %TBSA, such as Lund and Browder (L&B) tables, rely on historic body statistics. An increasingly obese population has been blamed for increasing errors in %TBSA estimates. However, this assumption has not been experimentally validated. We hypothesized that errors in %TBSA estimates using L&B were due to differences in the physical proportions of today's children compared with children in the early 1940s when the chart was developed and that these differences would appear as body mass index (BMI)-associated systematic errors in the L&B values versus actual body surface areas. We measured the TBSA of human pediatric cadavers using computed tomography scans. Subjects ranged from 9 mo to 15 y in age. We chose outliers of the BMI distribution (from the 31st percentile at the low through the 99th percentile at the high). We examined surface area proportions corresponding to L&B regions. Measured regional proportions based on computed tomography scans were in reasonable agreement with L&B, even with subjects in the tails of the BMI range. The largest deviation was 3.4%, significantly less than the error seen in real-world %TBSA estimates. While today's population is more obese than those studied by L&B, their body region proportions scale surprisingly well. The primary error in %TBSA estimation is not due to changing physical proportions of today's children and may instead lie in the application of the L&B table. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.
2014-12-01
Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area estimates. Ultimately, the effectiveness of advanced surface area characterization to improve mineral dissolution rates will be evaluated by comparison of model results with dissolution rates measured from a flow-through column experiment.
Zhao, Dehua; Xie, Dong; Zhou, Hengjie; Jiang, Hao; An, Shuqing
2012-01-01
Non-destructive estimation using digital cameras is a common approach for estimating leaf area index (LAI) of terrestrial vegetation. However, no attempt has been made so far to develop non-destructive approaches to LAI estimation for aquatic vegetation. Using the submerged plant species Potamogeton malainus, the objective of this study was to determine whether the gap fraction derived from vertical photographs could be used to estimate LAI of aquatic vegetation. Our results suggested that upward-oriented photographs taken from beneath the water surface were more suitable for distinguishing vegetation from other objects than were downward-oriented photographs taken from above the water surface. Exposure settings had a substantial influence on the identification of vegetation in upward-oriented photographs. Automatic exposure performed nearly as well as the optimal trial exposure, making it a good choice for operational convenience. Similar to terrestrial vegetation, our results suggested that photographs taken for the purpose of distinguishing gap fraction in aquatic vegetation should be taken under diffuse light conditions. Significant logarithmic relationships were observed between the vertical gap fraction derived from upward-oriented photographs and plant area index (PAI) and LAI derived from destructive harvesting. The model we developed to depict the relationship between PAI and gap fraction was similar to the modified theoretical Poisson model, with coefficients of 1.82 and 1.90 for our model and the theoretical model, respectively. This suggests that vertical upward-oriented photographs taken from below the water surface are a feasible alternative to destructive harvesting for estimating PAI and LAI for the submerged aquatic plant Potamogeton malainus. PMID:23226557
How well can regional fluxes be derived from smaller-scale estimates?
NASA Technical Reports Server (NTRS)
Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.
1992-01-01
Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.
USDA-ARS?s Scientific Manuscript database
Land surface moisture measurements are central to our understanding of the earth’s water system, and are needed to produce accurate model-based weather/climate predictions. Currently, there exists no in-situ network capable of estimating wide-area soil moisture. In this paper, we explore an alterna...
FOOTPRINT is a simple and user-friendly screening model to estimate the length and surface area of BTEX plumes in ground water produced from a spill of gasoline that contains ethanol. Ethanol has a potential negative impact on the natural biodegradation of BTEX compounds in groun...
USDA-ARS?s Scientific Manuscript database
Micrometeorological methods can direct measure the sensible and latent heat flux in specific sites and provide robust estimates of the evaporative fraction (EF), which is the fraction of available surface energy contained in latent heat. Across a vegetation coverage gradient in urban area, an empir...
Costanza-Robinson, Molly S; Zheng, Zheng; Henry, Eric J; Estabrook, Benjamin D; Littlefield, Malcolm H
2012-10-16
Surfactant miscible-displacement experiments represent a conventional means of estimating air-water interfacial area (A(I)) in unsaturated porous media. However, changes in surface tension during the experiment can potentially induce unsaturated flow, thereby altering interfacial areas and violating several fundamental method assumptions, including that of steady-state flow. In this work, the magnitude of surfactant-induced flow was quantified by monitoring moisture content and perturbations to effluent flow rate during miscible-displacement experiments conducted using a range of surfactant concentrations. For systems initially at 83% moisture saturation (S(W)), decreases of 18-43% S(W) occurred following surfactant introduction, with the magnitude and rate of drainage inversely related to the surface tension of the surfactant solution. Drainage induced by 0.1 mM sodium dodecyl benzene sulfonate, commonly used for A(I) estimation, resulted in effluent flow rate increases of up to 27% above steady-state conditions and is estimated to more than double the interfacial area over the course of the experiment. Depending on the surfactant concentration and the moisture content used to describe the system, A(I) estimates varied more than 3-fold. The magnitude of surfactant-induced flow is considerably larger than previously recognized and casts doubt on the reliability of A(I) estimation by surfactant miscible-displacement.
NASA Astrophysics Data System (ADS)
Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.
2015-08-01
The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.
Yazar, Memet; Sevim, Kamuran Zeynep; Irmak, Fatih; Yazar, Sevgi Kurt; Yeşilada, Ayşin Karasoy; Karşidağğ, Semra Hacikerim; Tatlidede, Hamit Soner
2013-07-01
Ear reconstruction is one of the most challenging procedures in plastic surgery practice. Many studies and techniques have been described in the literature for carving a well-pronounced framework. However, just as important as the cartilage framework is the ample amount of delicate skin coverage of the framework. In this report, we introduce an innovative method of measuring the skin surface area of the auricle from a three-dimensional template created from the healthy ear.The study group consisted of 60 adult Turkish individuals who were randomly selected (30 men and 30 women). The participant ages ranged from 18 to 45 years (mean, 31.5 years), and they had no history of trauma or congenital anomalies. The template is created by dividing the ear into aesthetic subunits and using ImageJ software to estimate the necessary amount of total skin surface area required.Reconstruction of the auricle is a complicated process that requires experience and patience to provide the auricular details. We believe this estimate will shorten the learning curve for residents and surgeons interested in ear reconstruction and will help surgeons obtain adequate skin to drape over the well-sculpted cartilage frameworks by providing a reference list of total ear skin surface area measurements for Turkish men and women.
AuYeung, Willa; Canales, Robert A; Leckie, James O
2008-11-01
Information on the fraction of total hand surface area touching a contaminated object is necessary in accurately estimating contaminant (e.g., pesticides, pathogens) loadings onto the hands during hand-to-object contacts. While several existing physical-stochastic human exposure models require such surface area data to estimate dermal and non-dietary ingestion exposure, there are very limited data sets. This paper provides statistical distributions of fractional surface areas (FSAs) for children's outdoor hand contacts. These distributions were constructed by combining information collected from two distinct studies exploring children's activity patterns and quantifying hand contact surface area. Results show that for outdoor contacts with "All Objects", a range of 0.13-0.27 captured median FSAs, while a range of 0.12-0.24 captured time-weighted FSAs. Overall, an FSA of 0.31 captured 80-100% of FSAs involved in each child's outdoor hand contacts, depending upon the object of interest. These values are much lower than the often conservative assumptions of up to 1 (i.e., the entire hand) that researchers currently make regarding FSAs involved in indoor and outdoor contacts [USEPA, 1997. Standard operating procedures (SOPs) for residential exposure assessments. Contract no. 68-W6-0030. http://www.epa.gov/pesticides/trac/science/trac6a05.pdf].
USDA-ARS?s Scientific Manuscript database
The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...
NASA Astrophysics Data System (ADS)
Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar
2016-10-01
Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.
Bathymetry of Walker Lake, West-Central Nevada
Lopes, Thomas J.; Smith, J. LaRue
2007-01-01
Walker Lake lies within a topographically closed basin in west-central Nevada and is the terminus of the Walker River. Much of the streamflow in the Walker River is diverted for irrigation, which has contributed to a decline in lake-surface altitude of about 150 feet and an increase in dissolved solids from 2,500 to 16,000 milligrams per liter in Walker Lake since 1882. The increase in salinity threatens the fresh-water ecosystem and survival of the Lahontan cutthroat trout, a species listed as threatened under the Endangered Species Act. Accurately determining the bathymetry and relations between lake-surface altitude, surface area, and storage volume are part of a study to improve the water budget for Walker Lake. This report describes the updated bathymetry of Walker Lake, a comparison of results from this study and a study by Rush in 1970, and an estimate of the 1882 lake-surface altitude. Bathymetry was measured using a single-beam echosounder coupled to a differentially-corrected global positioning system. Lake depth was subtracted from the lake-surface altitude to calculate the altitude of the lake bottom. A Lidar (light detection and ranging) survey and high resolution aerial imagery were used to create digital elevation models around Walker Lake. The altitude of the lake bottom and digital elevation models were merged together to create a single map showing land-surface altitude contours delineating areas that are currently or that were submerged by Walker Lake. Surface area and storage volume for lake-surface altitudes of 3,851.5-4,120 feet were calculated with 3-D surface-analysis software. Walker Lake is oval shaped with a north-south trending long axis. On June 28, 2005, the lake-surface altitude was 3,935.6 feet, maximum depth was 86.3 feet, and the surface area was 32,190 acres. The minimum altitude of the lake bottom from discrete point depths is 3,849.3 feet near the center of Walker Lake. The lake bottom is remarkably smooth except for mounds near the shore and river mouth that could be boulders, tree stumps, logs, or other submerged objects. The echosounder detected what appeared to be mounds in the deepest parts of Walker Lake, miles from the shore and river mouth. However, side-scan sonar and divers did not confirm the presence of mounds. Anomalies occur in two northwest trending groups in northern and southern Walker Lake. It is hypothesized that some anomalies indicate spring discharge along faults based on tufa-like rocks that were observed and the northwest trend parallel to and in proximity of mapped faults. Also, evaporation measured from Walker Lake is about 50 percent more than the previous estimate, indicating more water is flowing into the lake from sources other than the Walker River. Additional studies need to be done to determine what the anomalies are and whether they are related to the hydrology of Walker Lake. Most differences in surface area and storage volume between this study and a study by Rush in 1970 were less than 1 percent. The largest differences occur at lake-surface altitudes less than 3,916 feet. In general, relations between lake-surface altitude, surface area, and storage volume from Rush's study and this study are nearly identical throughout most of the range in lake-surface altitude. The lake-surface altitude in 1882 was estimated to be between 4,080 feet and 4,086 feet with a probable altitude of 4,082 feet. This estimate compares well with two previous estimates of 4,083 feet and 4,086 feet. Researchers believe the historic highstand of Walker Lake occurred in 1868 and estimated the highstand was between 4,089 feet and 4,108 feet. By 1882, Mason Valley was predominantly agricultural. The 7-26 feet decline in lake-surface altitude between 1868 and 1882 could partially be due to irrigation diversions during this time.
Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.
2013-01-01
This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.
Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; area 12
Scott, J.C.; Cobb, R.H.
1988-01-01
This report delineates and describes the geohydrology and susceptibility of major aquifers to contamination in Coffee, Dale, Henry, Houston, and Geneva Counties, Alabama. The major aquifers are the Upper Floridan, Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers. Estimated groundwater withdrawals for public water supplies are about 42 million gal/day. Maximum withdrawals for irrigation are 15 to 20 million gal/day. Withdrawals for self-supplied industrial and domestic uses are estimated to be 3 and 2.5 million gal/day, respectively. Long-term withdrawals of water from the Nanafalia-Clayton aquifer have resulted in significant declines in the potentiometric surface in Coffee, Dale, and Houston Counties. Significant declines in the potentiometric surfaces of the other major aquifers are not apparent. Recharge areas for all major aquifers are susceptible to contamination, but the probability of contamination of the Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers is low because the recharge areas are remote from areas of withdrawal. The recharge area for the Floridan aquifer, which consists largely of flat, sandy farmland , coincides with the area of use. This area is highly susceptible to contamination from insecticides and herbicides. (USGS)
Shoemaker, W. Barclay; Sumner, David M.; Castillo, Adrian
2005-01-01
Changes in heat energy stored within a column of wetland surface water can be a considerable component of the surface energy budget, an attribute that is demonstrated by comparing changes in stored heat energy to net radiation at seven sites in the wetland areas of southern Florida, including the Everglades. The magnitude of changes in stored heat energy approached the magnitude of net radiation more often during the winter dry season than during the summer wet season. Furthermore, the magnitude of changes in stored heat energy in wetland surface water generally decreased as surface energy budgets were upscaled temporally. A new method was developed to estimate changes in stored heat energy that overcomes an important data limitation, namely, the limited spatial and temporal availability of water temperature measurements. The new method is instead based on readily available air temperature measurements and relies on the convolution of air temperature changes with a regression‐defined transfer function to estimate changes in water temperature. The convolution‐computed water temperature changes are used with water depths and heat capacity to estimate changes in stored heat energy within the Everglades wetland areas. These results likely can be adapted to other humid subtropical wetlands characterized by open water, saw grass, and rush vegetation type communities.
Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.
1984-01-01
In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.
Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.
1984-01-01
In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.
Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department ofmore » Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.« less
Fazey, Francesca M C; Ryan, Peter G
2016-03-01
Recent estimates suggest that roughly 100 times more plastic litter enters the sea than is found floating at the sea surface, despite the buoyancy and durability of many plastic polymers. Biofouling by marine biota is one possible mechanism responsible for this discrepancy. Microplastics (<5 mm in diameter) are more scarce than larger size classes, which makes sense because fouling is a function of surface area whereas buoyancy is a function of volume; the smaller an object, the greater its relative surface area. We tested whether plastic items with high surface area to volume ratios sank more rapidly by submerging 15 different sizes of polyethylene samples in False Bay, South Africa, for 12 weeks to determine the time required for samples to sink. All samples became sufficiently fouled to sink within the study period, but small samples lost buoyancy much faster than larger ones. There was a direct relationship between sample volume (buoyancy) and the time to attain a 50% probability of sinking, which ranged from 17 to 66 days of exposure. Our results provide the first estimates of the longevity of different sizes of plastic debris at the ocean surface. Further research is required to determine how fouling rates differ on free floating debris in different regions and in different types of marine environments. Such estimates could be used to improve model predictions of the distribution and abundance of floating plastic debris globally. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determining Surface Roughness in Urban Areas Using Lidar Data
NASA Technical Reports Server (NTRS)
Holland, Donald
2009-01-01
An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
NASA Astrophysics Data System (ADS)
Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia
2016-07-01
Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.
The fraction of total hand surface area involved in young children's outdoor hand-to-object contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
AuYeung, Willa; Canales, Robert A.; Leckie, James O.
2008-11-15
Information on the fraction of total hand surface area touching a contaminated object is necessary in accurately estimating contaminant (e.g., pesticides, pathogens) loadings onto the hands during hand-to-object contacts. While several existing physical-stochastic human exposure models require such surface area data to estimate dermal and non-dietary ingestion exposure, there are very limited data sets. This paper provides statistical distributions of fractional surface areas (FSAs) for children's outdoor hand contacts. These distributions were constructed by combining information collected from two distinct studies exploring children's activity patterns and quantifying hand contact surface area. Results show that for outdoor contacts with 'All Objects',more » a range of 0.13-0.27 captured median FSAs, while a range of 0.12-0.24 captured time-weighted FSAs. Overall, an FSA of 0.31 captured 80-100% of FSAs involved in each child's outdoor hand contacts, depending upon the object of interest. These values are much lower than the often conservative assumptions of up to 1 (i.e., the entire hand) that researchers currently make regarding FSAs involved in indoor and outdoor contacts [USEPA, 1997. Standard operating procedures (SOPs) for residential exposure assessments. Contract no. 68-W6-0030. < (http://www.epa.gov/pesticides/trac/science/trac6a05.pdf)>].« less
Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico
Owen-Joyce, Sandra J.
1987-01-01
Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado River valley will eventually be reduced if not stopped completely. Groundwater discharged at springs below Hoover Dam is unused and flows directly to the Colorado River. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Mobasheri, M. R.; Shirazi, H.
2015-12-01
This article aims to increase the accuracy of Ozone data from tropospheric column (TOC) of the OMI and TES satellite instruments. To validate the estimated amount of satellite data, Ozonesonde data is used. The vertical resolution in both instruments in the tropospheric atmosphere decreases so that the degree of freedom signals (DOFS) on the average for TES is reduced to 2 and for OMI is reduced to1. But this decline in accuracy in estimation of tropospheric ozone is more obvious in urban areas so that estimated ozone in both instruments alone in non-urban areas show a high correlation with Ozonesonde. But in urban areas this correlation is significantly reduced, due to the ozone pre-structures and consequently an increase on surface-level ozone in urban areas. In order to improve the accuracy of satellite data, the average tropospheric ozone data from the two instruments were used. The aim is to increase the vertical resolution of ozone profile and the results clearly indicate an increase in correlations, but nevertheless the satellite data have a positive bias towards the earth data. To reduce the bias, with the solar flux and nitrogen dioxide values and surface temperatures are calculated as factors of ozone production on the earth's surface and formation of mathematical equations based on coefficients for each of the mentioned values and multiplication of these coefficients by satellite data and repeated comparison with the values of Ozonesonde, the results showed that bias in urban areas is greatly reduced.
Airport Surface Traffic Control Systems Deployment Analysis
DOT National Transportation Integrated Search
1974-01-01
The report summarizes the findings of an analysis of ASTC (Airport Surface Traffic Control) system requirements and develops estimates of the deployment potential of proposed system alternatives. The tower control problem areas were investigated by a...
NASA Technical Reports Server (NTRS)
Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.
1994-01-01
Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.
Equations for estimating loblolly pine branch and foliage weight and surface area distributions
V. Clark Baldwin; Kelly D. Peterson; Harold E. Burkhatt; Ralph L. Amateis; Phillip M. Dougherty
1996-01-01
Equations to predict foliage weight and surface area, and their vertical and horizontal distributions, within the crowns of unthinned loblolly pine (Pinus tueduL.) trees are presented. A right-truncated Weibull function was used for describing vertical foliage distributions. This function ensures that all of the foliage located between the tree tip and the foliage base...
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-08-09
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-01-01
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932
NASA Astrophysics Data System (ADS)
Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy
Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.
Brooks, J. R.; Mushet, David M.; Vanderhoof, Melanie; Leibowitz, Scott G.; Neff, Brian; Christensen, J. R.; Rosenberry, Donald O.; Rugh, W. D.; Alexander, L.C.
2018-01-01
Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding the reliance of stream flow on inputs from wetlands. We used the isotopic evaporation signal in water and remote sensing to examine wetland‐stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie‐pothole wetlands. Pipestem Creek exhibited an evaporated‐water signal that had approximately half the isotopic‐enrichment signal found in most evaporatively enriched prairie‐pothole wetlands. Groundwater adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment, indicating that enriched surface water did not contribute significantly to groundwater discharging into Pipestem Creek. The estimated surface water area necessary to generate the evaporation signal within Pipestem Creek was highly dynamic, varied primarily with the amount of discharge, and was typically greater than the immediate Pipestem Creek surface water area, indicating that surficial flow from wetlands contributed to stream flow throughout the summer. We propose a dynamic range of spilling thresholds for prairie‐pothole wetlands across the watershed allowing for wetland inputs even during low‐flow periods. Combining Landsat estimates with the isotopic approach allowed determination of potential (Landsat) and actual (isotope) contributing areas in wetland‐dominated systems. This combined approach can give insights into the changes in location and magnitude of surface water and groundwater pathways over time. This approach can be used in other areas where evaporation from wetlands results in a sufficient evaporative isotopic signal.
Surface and vertical temperature data will be obtained from several large lakes With surface areas large enough to be effectively sampled with AVHRR imagery. Yearly and seasonal patterns of surface and whole water column thermal values will be compared to estimates of surface tem...
Advances in water resources monitoring from space
NASA Technical Reports Server (NTRS)
Salomonson, V. V.
1974-01-01
Nimbus-5 observations indicate that over the oceans the total precipitable water in a column of atmosphere can be estimated to within + or - 10%, the liquid water content of clouds can be estimated to within + or - 25%, areas of precipitation can be delineated, and broad estimates of the precipitation rate obtained. ERTS-1 observations permit the measurement of snow covered area to within a few percent of drainage basin area and snowline altitudes can be estimated to within 60 meters. Surface water areas as small as 1 hectare can be inventoried over large regions such as playa lakes region of West Texas and Eastern New Mexico. In addition, changes in land use on water-sheds occurring as a result of forest fires, urban development, clear cutting, or strip mining can be rapidly obtained.
High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images
NASA Technical Reports Server (NTRS)
Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)
2001-01-01
The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.
Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils
Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid
2014-01-01
The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data ...
Haroldson, Mark A.; Schwartz, Charles C.; Thompson, Daniel J.; Bjornlie, Daniel D.; Gunther, Kerry A.; Cain, Steven L.; Tyers, Daniel B.; Frey, Kevin L.; Aber, Bryan C.
2014-01-01
The distribution of the Greater Yellowstone Ecosystem grizzly bear (Ursus arctos) population has expanded into areas unoccupied since the early 20th century. Up-to-date information on the area and extent of this distribution is crucial for federal, state, and tribal wildlife and land managers to make informed decisions regarding grizzly bear management. The most recent estimate of grizzly bear distribution (2004) utilized fixed-kernel density estimators to describe distribution. This method was complex and computationally time consuming and excluded observations of unmarked bears. Our objective was to develop a technique to estimate grizzly bear distribution that would allow for the use of all verified grizzly bear location data, as well as provide the simplicity to be updated more frequently. We placed all verified grizzly bear locations from all sources from 1990 to 2004 and 1990 to 2010 onto a 3-km × 3-km grid and used zonal analysis and ordinary kriging to develop a predicted surface of grizzly bear distribution. We compared the area and extent of the 2004 kriging surface with the previous 2004 effort and evaluated changes in grizzly bear distribution from 2004 to 2010. The 2004 kriging surface was 2.4% smaller than the previous fixed-kernel estimate, but more closely represented the data. Grizzly bear distribution increased 38.3% from 2004 to 2010, with most expansion in the northern and southern regions of the range. This technique can be used to provide a current estimate of grizzly bear distribution for management and conservation applications.
Maurer, Douglas K.; Berger, David L.; Tumbusch, Mary L.; Johnson, Michael J.
2006-01-01
Rapid growth and development in Carson Valley is causing concern over the continued availability of water resources to sustain such growth into the future. A study to address concerns over water resources and to update estimates of water-budget components in Carson Valley was begun in 2003 by the U.S. Geological Survey, in cooperation with Douglas County, Nevada. This report summarizes micrometeorologic, soil-chloride, and streambed-temperature data collected in Carson Valley from April 2003 through November 2004. Using these data, estimates of rates of discharge by evapotranspiration (ET), rates of recharge from precipitation in areas of native vegetation on the eastern and northern sides of the valley, and rates of recharge and discharge from streamflow infiltration and seepage on the valley floor were calculated. These rates can be used to develop updated water budgets for Carson Valley and to evaluate potential effects of land- and water-use changes on the valley's water budget. Data from eight ET stations provided estimates of annual ET during water year 2004, the sixth consecutive year of a drought with average or below average precipitation since 1999. Estimated annual ET from flood-irrigated alfalfa where the water table was from 3 to 6 feet below land surface was 3.1 feet. A similar amount of ET, 3.0 feet, was estimated from flood-irrigated alfalfa where the water table was about 40 feet below land surface. Estimated annual ET from flood-irrigated pasture ranged from 2.8 to 3.2 feet where the water table ranged from 2 to 5 feet below land surface, and was 4.4 feet where the water table was within 2 feet from land surface. Annual ET estimated from nonirrigated pasture was 1.7 feet. Annual ET estimated from native vegetation was 1.9 feet from stands of rabbitbrush and greasewood near the northern end of the valley, and 1.5 feet from stands of native bitterbrush and sagebrush covering alluvial fans along the western side of the valley. Uncertainty in most ET estimates is about 12 percent, but ranged from +30 and +50 percent to -20 and -40 percent for nonirrigated pasture and native bitterbrush and sagebrush. Estimated rates for water year 2004 likely are less than those during years of average, or above average precipitation when the water table would be closer to land surface. Test holes drilled in areas of native vegetation on the northern and eastern sides of Carson Valley had high concentrations of soil chloride at depths ranging from 4 to 18 feet below land surface at six locations on the eastern side of the valley. The high chloride concentrations indicate that modern-day precipitation at the six locations does not percolate deeper than the root zone of native vegetation. Estimates of the time required to accumulate the measured amount of chloride to depths of about 30 feet below land surface at the six test holes ranged from about 3,000 to 12,000 years. Low concentrations of soil chloride in two test holes on the northern end of Carson Valley and in a test hole on the eastern side of Fish Spring Flat indicate that a small amount of recharge from modern-day precipitation is taking place. Estimated annual recharge from precipitation at the two locations was 0.03 and 0.04 foot on the northern end of the valley and 0.02 foot on the eastern side of Fish Spring Flat. Uncertainty in the estimated recharge rates was about ?0.01 foot. Estimates of the time required to accumulate the measured amount of chloride to depths of about 30 feet below land surface at the three test holes ranged from about 100 to 700 years. The two test holes near the northern end of the valley are in gravel and eolian sand deposits and recharge from precipitation may be taking place at similar rates in other areas with gravel and eolian sand deposits. Based on results from other test holes, recharge at the rate estimated for the test hole on the eastern side of Fish Spring Flat is not likely applicable to a large area. Data from 37 site
Templin, William E.; Cherry, Daniel E.
1997-01-01
Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt
2017-01-01
Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.
Soil Moisture Content Estimation using GPR Reflection Travel Time
NASA Astrophysics Data System (ADS)
Lunt, I. A.; Hubbard, S. S.; Rubin, Y.
2003-12-01
Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during four data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennae. GPR reflections were associated with a thin, low permeability clay layer located between 0.8 to 1.3 m below the ground surface that was calibrated with borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 2 percent. We also investigated the estimation of VWC using reflections associated with an advancing water front, and found that estimates of average VWC to the water front could be obtained with similar accuracy. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface or wetting front can be used under natural conditions to obtain estimates of average water content when borehole control is available. The GPR reflection method therefore has potential for monitoring soil water content over large areas and under variable hydrological conditions.
Mapping surface heat fluxes by assimilating GOES land surface temperature and SMAP products
NASA Astrophysics Data System (ADS)
Lu, Y.; Steele-Dunne, S. C.; Van De Giesen, N.
2017-12-01
Surface heat fluxes significantly affect the land-atmosphere interaction, but their modelling is often hindered by the lack of in-situ measurements and the high spatial heterogeneity. Here, we propose a hybrid particle assimilation strategy to estimate surface heat fluxes by assimilating GOES land surface temperature (LST) data and SMAP products into a simple dual-source surface energy balance model, in which the requirement for in-situ data is minimized. The study aims to estimate two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). CHN scales the sum of surface energy fluxes, and EF represents the partitioning between flux components. To bridge the huge resolution gap between GOES and SMAP data, SMAP data are assimilated using a particle filter to update soil moisture which constrains EF, and GOES data are assimilated with an adaptive particle batch smoother to update CHN. The methodology is applied to an area in the US Southern Great Plains with forcing data from NLDAS-2 and the GPM mission. Assessment against in-situ observations suggests that the sensible and latent heat flux estimates are greatly improved at both daytime and 30-min scale after assimilation, particularly for latent heat fluxes. Comparison against an LST-only assimilation case demonstrates that despite the coarse resolution, assimilating SMAP data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the modelling uncertainties are large. Since the methodology is independent on in-situ data, it can be easily applied to other areas.
Determination of surface layer parameters at the edge of a suburban area
NASA Astrophysics Data System (ADS)
Likso, T.; Pandžić, K.
2012-05-01
Vertical wind and air temperature profile related parameters in the surface layer at the edge of suburban area of Zagreb (Croatia) have been considered. For that purpose, adopted Monin-Obukhov similarity theory and a set of observations of wind and air temperature at 2 and 10 m above ground, recorded in 2005, have been used. The root mean square differences (errors) principle has been used as a tool to estimate the effective roughness length as well as standard deviations of wind speed and wind gusts. The results of estimation are effective roughness lengths dependent on eight wind direction sectors unknown before. Gratefully to that achievement, representativeness of wind data at standard 10-m height can be clarified more deeply for an area of at least about 1 km in upwind direction from the observation site. Extrapolation of wind data for lower or higher levels from standard 10-m height are thus properly representative for a wider inhomogeneous suburban area and can be used as such in numerical models, flux and wind energy estimation, civil engineering, air pollution and climatological applications.
In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes
NASA Astrophysics Data System (ADS)
Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl
2010-10-01
In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.
Comparison of MODIS-derived land surface temperature with air temperature measurements
NASA Astrophysics Data System (ADS)
Georgiou, Andreas; Akçit, Nuhcan
2017-09-01
Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.
30 CFR 779.24 - Maps: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., included in or contiguous to the permit area; (b) The boundaries of land within the proposed permit area... boundaries of all areas proposed to be affected over the estimated total life of the proposed surface mining activities, with a description of size, sequence, and timing of the mining of sub-areas for which it is...
30 CFR 779.24 - Maps: General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., included in or contiguous to the permit area; (b) The boundaries of land within the proposed permit area... boundaries of all areas proposed to be affected over the estimated total life of the proposed surface mining activities, with a description of size, sequence, and timing of the mining of sub-areas for which it is...
NASA Astrophysics Data System (ADS)
Vlassova, Lidia; Pérez-Cabello, Fernando
2016-02-01
The study contributes remote sensing data to the discussion about effects of post-fire wood management strategies on forest regeneration. Land surface temperature (LST) and Normalized Differenced Vegetation Index (NDVI), estimated from Landsat-8 images are used as indicators of Pinus halepensis ecosystem recovery after 2008 fire in areas of three post-fire treatments: (1) salvage logging with wood extraction from the site on skidders in suspended position (SL); (2) snag shredding in situ leaving wood debris in place (SS) performed two years after the event; and (3) non-intervention control areas (CL) where all snags were left standing. Six years after the fire NDVI values ∼0.5 estimated from satellite images and field radiometry indicate considerable vegetation recovery due to efficient regeneration traits developed by the dominant plant species. However, two years after management activities in part of the burnt area, the effect of SL and SS on ecosystem recovery is observed in terms of both LST and NDVI. Statistically significant differences are detected between the intervened areas (SL and SS) and control areas of non-intervention (CL); no difference is registered between zones of different intervention types (SL and SS). CL areas are on average 1 °C cooler and 10% greener than those corresponding to either SL or SS, because of the beneficial effects of burnt wood residuals, which favor forest recovery through (i) enhanced nutrient cycling in soils, (ii) avoidance of soil surface disturbance and mechanical damage of seedlings typical to the managed areas, and (iii) ameliorated microclimate. The results of the study show that in fire-resilient ecosystems, such as P. halepensis forests, NDVI is higher and LST is lower in areas with no management intervention, being an indication of more favorable conditions for vegetation regeneration.
An experimental analysis of the real contact area between an electrical contact and a glass plane
NASA Astrophysics Data System (ADS)
Down, Michael; Jiang, Liudi; McBride, John W.
2013-06-01
The exact contact between two rough surfaces is usually estimated using statistical mathematics and surface analysis before and after contact has occurred. To date the majority of real contact and loaded surfaces has been theoretical or by numerical analyses. A method of analysing real contact area under various loads, by utilizing a con-contact laser surface profiler, allows direct measurement of contact area and deformation in terms of contact force and plane displacement between two surfaces. A laser performs a scan through a transparent flat side supported in a fixed position above the base. A test contact, mounted atop a spring and force sensor, and a screw support which moves into contact with the transparent surface. This paper presents the analysis of real contact area of various surfaces under various loads. The surfaces analysed are a pair of Au coated hemispherical contacts, one is a used Au to Au coated multi-walled carbon nanotubes surface, from a MEMS relay application, the other a new contact surface of the same configuration.
Heart sounds as a result of acoustic dipole radiation of heart valves
NASA Astrophysics Data System (ADS)
Kasoev, S. G.
2005-11-01
Heart sounds are associated with impulses of force acting on heart valves at the moment they close under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas, an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spectrum.
Evapotranspiration from areas of native vegetation in west-central Florida
Bidlake, W.R.; Woodham, W.M.; Lopez, M.A.
1993-01-01
A study was made to examine the suitability of three different micrometeorological methods for estimating evapotranspiration from selected areas of native vegetation in west-central Florida and to estimate annual evapotranspiration from those areas. Evapotranspiration was estimated using the energy- balance Bowen ratio and eddy correlation methods. Potential evapotranspiration was computed using the Penman equation. The energy-balance Bowen ratio method was used to estimate diurnal evapotrans- piration at unforested sites and yielded reasonable results; however, measurements indicated that the magnitudes of air temperature and vapor-pressure gradients above the forested sites were too small to obtain reliable evapotranspiration measurements with the energy balance Bowen ratio system. Analysis of the surface energy-balance indicated that sensible and latent heat fluxes computed using standard eddy correlation computation methods did not adequately account for available energy. Eddy correlation data were combined with the equation for the surface energy balance to yield two additional estimates of evapotranspiration. Daily potential evapotranspiration and evapotranspira- tion estimated using the energy-balance Bowen ratio method were not correlated at a unforested, dry prairie site, but they were correlated at a marsh site. Estimates of annual evapotranspiration for sites within the four vegetation types, which were based on energy-balance Bowen ratio and eddy correlation measurements, were 1,010 millimeters for dry prairie sites, 990 millimeters for marsh sites, 1,060 millimeters for pine flatwood sites, and 970 millimeters for a cypress swamp site.
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
NASA Technical Reports Server (NTRS)
Chen, Fei; Yates, David; LeMone, Margaret
2001-01-01
To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papelis, Charalambos; Um, Wooyong; Russel, Charles E.
2003-03-28
The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less
Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data.
Chakraborty, Surya Deb; Kant, Yogesh; Mitra, Debashis
2015-01-15
Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of ±2 °C than MODIS with an error of ±3 °C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 °C & for MODIS data is 3.7 °C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ponds' water balance and runoff of endorheic watersheds in the Sahel
NASA Astrophysics Data System (ADS)
Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe
2015-04-01
The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff proxy derived for the Agoufou pond is used to evaluate results from the KINEROS2 model (KINematic runoff and EROSion). This model is specifically designed to simulate surface runoff in semi-arid watersheds. It describes the processes of runoff, infiltration and erosion by taking into account land cover and soil characteristics. We show that rain intensity, soil hydrological properties (hydraulic conductivity and Manning's roughness coefficient), contributing source area areas and land use-land cover were the major factors to take into account to correctly simulate runoff over the present period (2006-2010). This will help to simulate the past evolution of the Agoufou watershed and better understand the key mechanisms of the Sahelian paradox in non-cultivated Sahel. Finally, we will discuss the application of the SWOT and Sentinel-2 future satellites, which will provide water level and pond's surface, to obtain large-scale estimates of water balance in ungauged Sahelian basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; LaGory, Kirk E.
2016-02-01
Low-velocity channel-margin habitats serve as important nursery habitats for the endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of information on backwater characteristics and the factors that influence inter-annual variability in those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of backwater surface area from aerial and satellite imagery. An approach is neededmore » to bridge the gap between these detailed surveys, which estimate surface area, volume, and depth, and the reach-wide assessment of surface area to enable an assessment of the amount of habitat that meets the minimum depth requirements for suitable habitat.« less
Nanoparticle flotation collectors--the influence of particle softness.
Yang, Songtao; Razavizadeh, Bi Bi Marzieh; Pelton, Robert; Bruin, Gerard
2013-06-12
The ability of polymeric nanoparticles to promote glass bead and pentlandite (Pn, nickel sulfide mineral) attachment to air bubbles in flotation was measured as a function of the nanoparticle glass transition temperature using six types of nanoparticles based on styrene/N-butylacrylate copolymers. Nanoparticle size, surface charge density, and hydrophobicity were approximately constant over the series. The ability of the nanoparticles to promote air bubble attachment and perform as flotation collectors was significantly greater for softer nanoparticles. We propose that softer nanoparticles were more firmly attached to the glass beads or mineral surface because the softer particles had a greater glass/polymer contact areas and thus stronger overall adhesion. The diameters of the contact areas between polymeric nanoparticles and glass surfaces were estimated with the Young-Laplace equation for soft, liquidlike particles, whereas JKR adhesion theory was applied to the harder polystyrene particles. The diameters of the contact areas were estimated to be more than an order of magnitude greater for the soft particles compared to harder polystyrene particles.
NASA Astrophysics Data System (ADS)
Evett, S. R.; Gowda, P. H.; Marek, G. W.; Alfieri, J. G.; Kustas, W. P.; Brauer, D. K.
2014-12-01
Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP) and soil core sampling techniques), and can be biased with respect to ET from the surrounding area. The area represented by flux sensing methods such as eddy covariance (EC) is typically estimated with a flux footprint/source area model. The dimension, position of, and relative contribution of upwind areas within the source area are mainly influenced by sensor height, wind speed, atmospheric stability and wind direction. Footprints for EC sensors positioned several meters above the canopy are often larger than can be economically covered by mass balance methods. Moreover, footprints move with atmospheric conditions and wind direction to cover different field areas over time while mass balance methods are static in space. Thus, EC systems typically sample a much greater field area over time compared with mass balance methods. Spatial variability of surface cover can thus complicate interpretation of flux estimates from EC systems. The most commonly used flux estimation method is EC; and EC estimates of latent heat energy (representing ET) and sensible heat fluxes combined are typically smaller than the available energy from net radiation and soil heat flux (commonly referred to as lack of energy balance closure). Reasons for this are the subject of ongoing research. We compare ET from LYS, NP and EC methods applied to field crops for three years at Bushland, Texas (35° 11' N, 102° 06' W, 1170 m elevation above MSL) to illustrate the potential problems with and comparative advantages of all three methods. In particular, we examine how networks of neutron probe access tubes can be representative of field areas large enough to be equivalent in size to EC footprints, and how the ET data from these methods can address bias and accuracy issues.
NASA Astrophysics Data System (ADS)
Mohamadi, B.; Balz, T.
2018-04-01
Glaciers are retreating in many parts of the world as a result of global warming. Many researchers consider Qinghai-Tibetan Plateau as a reference for climate change by measuring glaciers retreat on the plateau. This retreat resulted in some topographic changes in retreated areas, and in some cases can lead to geohazards as landslides, and rock avalanches, which is known in glacier retreated areas as paraglacial slope failure (PSF). In this study, Geladandong biggest and main glacier mass was selected to estimate surface deformation on its glacier retreated areas and define potential future PSF based on PS-InSAR technique. 56 ascending and 49 descending images were used to fulfill this aim. Geladandong glacier retreated areas were defined based on the maximum extent of the glacier in the little ice age. Results revealed a general uplift in the glacier retreated areas with velocity less than 5mm/year. Obvious surface motion was revealed in seven parts surround glacier retreated areas with high relative velocity reached ±60mm/year in some parts. Four parts were considered as PSF potential motion, and two of them showed potential damage for the main road in the study area in case of rock avalanche into recent glacier lakes that could result in glacier lake outburst flooding heading directly to the road. Finally, further analysis and field investigations are needed to define the main reasons for different types of deformation and estimate future risks of these types of surface motion in the Qinghai-Tibetan Plateau.
Walter, Donald A.
2013-01-01
The discharge of excess nitrogen into Popponesset Bay, an estuarine system on western Cape Cod, has resulted in eutrophication and the loss of eel grass habitat within the estuaries. Septic-system return flow in residential areas within the watershed is the primary source of nitrogen. Total Maximum Daily Loads (TMDLs) for nitrogen have been assigned to the six estuaries that compose the system, and local communities are in the process of implementing the TMDLs by the partial sewering, treatment, and disposal of treated wastewater at wastewater-treatment facilities (WTFs). Loads of waste-derived nitrogen from both current (1997–2001) and future sources can be estimated implicitly from parcel-scale water-use data and recharge areas delineated by a groundwater-flow model. These loads are referred to as “instantaneous” loads because it is assumed that the nitrogen from surface sources is delivered to receptors instantaneously and that there is no traveltime through the aquifer. The use of a solute-transport model to explicitly simulate the transport of mass through the aquifer from sources to receptors can improve implementation of TMDLs by (1) accounting for traveltime through the aquifer, (2) avoiding limitations associated with the estimation of loads from static recharge areas, (3) accounting more accurately for the effect of surface waters on nitrogen loads, and (4) determining the response of waste-derived nitrogen loads to potential wastewater-management actions. The load of nitrogen to Popponesset Bay on western Cape Cod, which was estimated by using current sources as input to a solute-transport model based on a steady-state flow model, is about 50 percent of the instantaneous load after about 7 years of transport (loads to estuary are equal to loads discharged from sources); this estimate is consistent with simulated advective traveltimes in the aquifer, which have a median of 5 years. Model-calculated loads originating from recharge areas reach 80 percent of the instantaneous load within 30 years; this result indicates that loads estimated from recharge areas likely are reasonable for estimating current instantaneous loads. However, recharge areas are assumed to remain static as stresses and hydrologic conditions change in response to wastewater-management actions. Sewering of the Popponesset Bay watershed would not change hydraulic gradients and recharge areas to receptors substantially; however, disposal of wastewater from treatment facilities can change hydraulic gradients and recharge areas to nearby receptors, particularly if the facilities are near the boundary of the recharge area. In these cases, nitrogen loads implicitly estimated by using current recharge areas that do not accurately represent future hydraulic stresses can differ significantly from loads estimated with recharge areas that do represent those stresses. Nitrogen loads to two estuaries in the Popponesset Bay system estimated by using recharge areas delineated for future hydrologic conditions and nitrogen sources were about 3 and 9 times higher than loads estimated by using current recharge areas; for this reason, reliance on static recharge areas can present limitations for effective TMDL implementation by means of a hypothetical, but realistic, wastewater-management action. A solute-transport model explicitly represents nitrogen transport from surface sources and does not rely on the use of recharge areas; because changes in gradients resulting from wastewater-management actions are accounted for in transport simulations, they provide more reliable predictions of future nitrogen loads. Explicitly representing the mass transport of nitrogen can better account for the mechanisms by which nitrogen enters the estuary and improve estimates of the attenuation of nitrogen concentrations in fresh surface waters. Water and associated nitrogen can enter an estuary as either direct groundwater discharge or as surface-water inflow. Two estuaries in the Popponesset Bay watershed receive surface-water inflows: Shoestring Bay receives water from the Santuit River, and the tidal reach of the Mashpee River receives water (and associated nitrogen) from the nontidal reach of the Mashpee River. Much of the water discharging into these streams passes through ponds prior to discharge. The additional attenuation of nitrogen in groundwater that has passed through a pond and discharged into a stream prior to entering an estuary is about 3 kilograms per day. Advective-transport times in the aquifer generally are small—median traveltimes are about 4.5 years—and nitrogen loads at receptors respond quickly to wastewater-management actions. The simulated decreases in nitrogen loads were 50 and 80 percent of the total decreases within 5 and 15 years, respectively, after full sewering of the watershed and within 3 and 10 years, for sequential phases of partial sewering and disposal at WTFs. The results show that solute-transport models can be used to assess the responses of nitrogen loads to wastewater-management actions, and that loads at ecological receptors (receiving waters—ponds, streams or coastal waters—that support ecosystems) will respond within a few years to those actions. The responses vary for individual receptors as functions of hydrologic setting, traveltimes in the aquifer, and the unique set of nitrogen sources representing current and future wastewater-disposal actions within recharge areas. Changes in nitrogen loads from groundwater discharge to individual estuaries range from a decrease of 90 percent to an increase of 80 percent following sequential phases of hypothetical but realistic wastewater-management actions. The ability to explicitly represent the transport of mass through the aquifer allows for the evaluation of complex responses that include the effects of surface waters, traveltimes, and complex changes in sources. Most of the simulated decreases in nitrogen loads to Shoestring Bay and the tidal portion of the Mashpee River, 79 and 69 percent, respectively, were caused by decreases in the nitrogen loads from surface-water inflow.
We used National Land Cover Data 92 (NLCD92), vector impervious surface data, and raster GIS overlay methods to derive impervious surface coefficients per NLCD92 class in portions of the Nfid-Atlantic physiographic region. The methods involve a vector to raster conversion of the ...
Hevesi, Joseph A.; Johnson, Tyler D.
2016-10-17
A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm/yr) accounted for 66 percent of the combined water inflow of 551 mm/yr, including 488 mm/yr from precipitation and 63 mm/yr from urban irrigation. The simulated ET rate varied from a minimum of 0 mm/yr for impervious areas to high values of more than 1,000 mm/yr for many areas, including the south-facing slopes of the San Gabriel Mountains, stream channels underlain by permeable soils and thick root zones, and pervious locations receiving inflows both from urban irrigation and surface water. Runoff was the next largest outflow, averaging 145 mm/yr for the 100-year period, or 26 percent of the combined precipitation and urban-irrigation inflow. Recharge averaged 45 mm/yr, or about 8 percent of the combined inflow from precipitation and urban irrigation.Simulation results indicated that recharge in response to urban irrigation was an important component of spatially distributed recharge, contributing an average of 56 percent of the total recharge to the eight LABWM subdomains containing the Los Angeles groundwater study area. The 100‑year average recharge rate for the eight subdomains was 41 mm/yr, or 8,473 hectare-meters per year (ha-m/yr), with urban irrigation included in the simulation compared to a recharge rate of 18 mm/yr, or 3,741 ha-m/yr, with urban irrigation excluded. In contrast to recharge, the effect of urban irrigation on runoff was slight; runoff was 72,667 ha-m/yr with urban irrigation included compared to 72,618 ha-m/yr with urban irrigation excluded, an increase of only 48 ha-m/yr (about 0.1 percent).Simulation results also indicated that potential recharge from hilly drainages outside of, but bordering and tributary to, the lower-lying area of the Los Angeles groundwater study area, in this study referred to as mountain-front recharge, could provide an important contribution to the total recharge for the groundwater basins. The time-averaged recharge rate was similar to the combined direct and mountain-front recharge components estimated in a previous study and used as input for a calibrated groundwater model. The annual (water year) recharge estimates simulated in this study, however, indicated much greater year-to-year variability, which was dependent on year-to-year variability in the magnitude and distribution of daily precipitation, compared to the previous estimates.
2009-01-01
used ADE FE (SAfemale/ SAmale ), [4] where ADE is the adjusted dermal exposure (mg/lb [AI]), FE is the ßagger exposure, SAfemale is the sur- face...area of an adult woman as estimated by equation 3, and SAmale is the surface area of an adult man as estimated by equation 3. We assumed a triangular
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schorghofer, Norbert; Aharonson, Oded, E-mail: norbert@hawaii.edu
2014-06-20
It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature ismore » below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.« less
ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chao; Wu, Yue; Deng, Li-Cai
2015-07-01
Asteroseismology is one of the most accurate approaches to estimate the surface gravity of a star. However, most of the data from the current spectroscopic surveys do not have asteroseismic measurements, which is very expensive and time consuming. In order to improve the spectroscopic surface gravity estimates for a large amount of survey data with the help of the small subset of the data with seismic measurements, we set up a support vector regression (SVR) model for the estimation of the surface gravity supervised by 1374 Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) giant stars with Kepler seismic surfacemore » gravity. The new approach can reduce the uncertainty of the estimates down to about 0.1 dex, which is better than the LAMOST pipeline by at least a factor of 2, for the spectra with signal-to-noise ratio higher than 20. Compared with the log g estimated from the LAMOST pipeline, the revised log g values provide a significantly improved match to the expected distribution of red clump and red giant branch stars from stellar isochrones. Moreover, even the red bump stars, which extend to only about 0.1 dex in log g, can be discriminated from the new estimated surface gravity. The method is then applied to about 350,000 LAMOST metal-rich giant stars to provide improved surface gravity estimates. In general, the uncertainty of the distance estimate based on the SVR surface gravity can be reduced to about 12% for the LAMOST data.« less
ESTIMATING AND PROJECTING IMPERVIOUS COVER IN THE SOUTHEASTERN UNITED STATES
Urban/suburban land constitutes the fastest growing land use class in the Southeastern United States. Predominant development practices increase impervious surface--areas preventing infiltration of water into the underlying soil. Uncontrolled increase of impervious areas (roads,...
ESTIMATING AND PROJECTING IMPERVIOUS COVER IN THE SOUTHEASTERN UNITED STATES
Urban/suburban land use constitutes the fastest growing land use class in the Southeastern United States. Predominant development practices increase impervious surface--areas preventing infiltration of water into the underlying soil. Uncontrolled increase of impervious areas (ro...
Hevesi, Joseph A.; Flint, Alan L.; Istok, Jonathan D.
1992-01-01
Values of average annual precipitation (AAP) may be important for hydrologic characterization of a potential high-level nuclear-waste repository site at Yucca Mountain, Nevada. Reliable measurements of AAP are sparse in the vicinity of Yucca Mountain, and estimates of AAP were needed for an isohyetal mapping over a 2600-square-mile watershed containing Yucca Mountain. Estimates were obtained with a multivariate geostatistical model developed using AAP and elevation data from a network of 42 precipitation stations in southern Nevada and southeastern California. An additional 1531 elevations were obtained to improve estimation accuracy. Isohyets representing estimates obtained using univariate geostatistics (kriging) defined a smooth and continuous surface. Isohyets representing estimates obtained using multivariate geostatistics (cokriging) defined an irregular surface that more accurately represented expected local orographic influences on AAP. Cokriging results included a maximum estimate within the study area of 335 mm at an elevation of 7400 ft, an average estimate of 157 mm for the study area, and an average estimate of 172 mm at eight locations in the vicinity of the potential repository site. Kriging estimates tended to be lower in comparison because the increased AAP expected for remote mountainous topography was not adequately represented by the available sample. Regression results between cokriging estimates and elevation were similar to regression results between measured AAP and elevation. The position of the cokriging 250-mm isohyet relative to the boundaries of pinyon pine and juniper woodlands provided indirect evidence of improved estimation accuracy because the cokriging result agreed well with investigations by others concerning the relationship between elevation, vegetation, and climate in the Great Basin. Calculated estimation variances were also mapped and compared to evaluate improvements in estimation accuracy. Cokriging estimation variances were reduced by an average of 54% relative to kriging variances within the study area. Cokriging reduced estimation variances at the potential repository site by 55% relative to kriging. The usefulness of an existing network of stations for measuring AAP within the study area was evaluated using cokriging variances, and twenty additional stations were located for the purpose of improving the accuracy of future isohyetal mappings. Using the expanded network of stations, the maximum cokriging estimation variance within the study area was reduced by 78% relative to the existing network, and the average estimation variance was reduced by 52%.
NASA Astrophysics Data System (ADS)
Wurl, D.; Grainger, R. G.; McDonald, A. J.; Deshler, T.
2010-05-01
Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally differ from the correct bimodal values, the associated surface area (A) and volume densities (V) are, nevertheless, fairly accurately retrieved, except at values larger than 1.0 μm2 cm-3 (A) and 0.05 μm3 cm-3 (V), where they tend to underestimate the true bimodal values. Due to the limited information content in the SAGE II spectral extinction measurements this kind of forward model error cannot be avoided here. Nevertheless, the retrieved uncertainties are a good estimate of the true errors in the retrieved integrated properties, except where the surface area density exceeds the 1.0 μm2 cm-3 threshold. When applied to near-global SAGE II satellite extinction measured in 1999 the retrieved OE surface area and volume densities are observed to be larger by, respectively, 20-50% and 10-40% compared to those estimates obtained by the SAGE~II operational retrieval algorithm. An examination of the OE algorithm biases with in situ data indicates that the new OE aerosol property estimates tend to be more realistic than previous estimates obtained from remotely sensed data through other retrieval techniques. Based on the results of this study we therefore suggest that the new Optimal Estimation retrieval algorithm is able to contribute to an advancement in aerosol research by considerably improving current estimates of aerosol properties in the lower stratosphere under low aerosol loading conditions.
Likelihood parameter estimation for calibrating a soil moisture using radar backscatter
USDA-ARS?s Scientific Manuscript database
Assimilating soil moisture information contained in synthetic aperture radar imagery into land surface model predictions can be done using a calibration, or parameter estimation, approach. The presence of speckle, however, necessitates aggregating backscatter measurements over large land areas in or...
Local energy flux estimates for unstable conditions using variance data in semiarid rangelands
Kustas, William P.; Blanford, J.H.; Stannard, D.I.; Daughtry, C.S.T.; Nichols, W.D.; Weltz, M.A.
1994-01-01
A network of meteorological stations was installed during the Monsoon '90 field campaign in the Walnut Gulch experimental watershed. The study area has a fairly complex surface. The vegetation cover is heterogeneous and sparse, and the terrain is mildly hilly, but dissected by ephemeral channels. Besides measurement of some of the standard weather data such as wind speed, air temperature, and solar radiation, these sites also contained instruments for estimating the local surface energy balance. The approach utilized measurements of net radiation (Rn), soil heat flux (G) and Monin-Obukhov similarity theory applied to first- and second-order turbulent statistics of wind speed and temperature for determining the sensible heat flux (H). The latent heat flux (LE) was solved as a residual in the surface energy balance equation, namely, LE = −(Rn + G + H). This procedure (VAR-RESID) for estimating the energy fluxes satisfied monetary constraints and the requirement for low maintenance and continued operation through the harsh environmental conditions experienced in semiarid regions. Comparison of energy fluxes using this approach with more traditional eddy correlation techniques showed differences were within 20% under unstable conditions. Similar variability in flux estimates over the study area was present in the eddy correlation data. Hence, estimates of H and LE using the VAR-RESID approach under unstable conditions were considered satisfactory. Also, with second-order statistics of vertical velocity collected at several sites, the local momentum roughness length was estimated. This is an important parameter used in modeling the turbulent transfer of momentum and sensible heat fluxes across the surface-atmosphere interface.
Global Occurrence and Emission of Rotaviruses to Surface Waters
Kiulia, Nicholas M.; Hofstra, Nynke; Vermeulen, Lucie C.; Obara, Maureen A.; Medema, Gertjan; Rose, Joan B.
2015-01-01
Group A rotaviruses (RV) are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model) to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management. PMID:25984911
Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE.
Zaretskaya, Natalia; Fischl, Bruce; Reuter, Martin; Renvall, Ville; Polimeni, Jonathan R
2018-01-15
Recent advances in MR technology have enabled increased spatial resolution for routine functional and anatomical imaging, which has created demand for software tools that are able to process these data. The availability of high-resolution data also raises the question of whether higher resolution leads to substantial gains in accuracy of quantitative morphometric neuroimaging procedures, in particular the cortical surface reconstruction and cortical thickness estimation. In this study we adapted the FreeSurfer cortical surface reconstruction pipeline to process structural data at native submillimeter resolution. We then quantified the differences in surface placement between meshes generated from (0.75 mm) 3 isotropic resolution data acquired in 39 volunteers and the same data downsampled to the conventional 1 mm 3 voxel size. We find that when processed at native resolution, cortex is estimated to be thinner in most areas, but thicker around the Cingulate and the Calcarine sulci as well as in the posterior bank of the Central sulcus. Thickness differences are driven by two kinds of effects. First, the gray-white surface is found closer to the white matter, especially in cortical areas with high myelin content, and thus low contrast, such as the Calcarine and the Central sulci, causing local increases in thickness estimates. Second, the gray-CSF surface is placed more interiorly, especially in the deep sulci, contributing to local decreases in thickness estimates. We suggest that both effects are due to reduced partial volume effects at higher spatial resolution. Submillimeter voxel sizes can therefore provide improved accuracy for measuring cortical thickness. Copyright © 2017 Elsevier Inc. All rights reserved.
Soil moisture content estimation using ground-penetrating radar reflection data
NASA Astrophysics Data System (ADS)
Lunt, I. A.; Hubbard, S. S.; Rubin, Y.
2005-06-01
Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during three data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennas. GPR reflections were associated with a thin, low permeability clay layer located 0.8-1.3 m below the ground surface that was identified from borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at the borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 0.018 m 3 m -3. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface could be used under natural conditions to obtain estimates of average water content when borehole control is available and the reflection strength is sufficient. The GPR reflection method therefore, has potential for monitoring soil water content over large areas and under variable hydrological conditions.
Complete identification and eventual prevention of urban water quality problems pose significant monitoring, "smart growth" and water quality management challenges. Uncontrolled increase of impervious surface area (roads, buildings, and parking lots) causes detrimental hydrologi...
NASA Astrophysics Data System (ADS)
Gong, L.
2013-12-01
Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.
Estimating regional evapotranspiration from remotely sensed data by surface energy balance models
NASA Technical Reports Server (NTRS)
Asrar, Ghassem; Kanemasu, Edward; Myneni, R. B.; Lapitan, R. L.; Harris, T. R.; Killeen, J. M.; Cooper, D. I.; Hwang, C.
1987-01-01
Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model.
Risk assessment for adult butterflies exposed to the mosquito control pesticide naled
Bargar, Timothy A.
2012-01-01
A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed.
Jones, J.W.; Jarnagin, T.
2009-01-01
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, H.
2017-12-01
The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.
NASA Astrophysics Data System (ADS)
Kusaka, Takashi; Miyazaki, Go
2014-10-01
When monitoring target areas covered with vegetation from a satellite, it is very useful to estimate the vegetation index using the surface anisotropic reflectance, which is dependent on both solar and viewing geometries, from satellite data. In this study, the algorithm for estimating optical properties of atmospheric aerosols such as the optical thickness (τ), the refractive index (Nr), the mixing ratio of small particles in the bimodal log-normal distribution function (C) and the bidirectional reflectance (R) from only the radiance and polarization at the 865nm channel received by the PARASOL/POLDER is described. Parameters of the bimodal log-normal distribution function: mean radius, r1, standard deviation, σ1, of fine aerosols, and r2, σ2 of coarse aerosols were fixed, and these values were estimated from monthly averaged size distribution at AERONET sites managed by NASA near the target area. Moreover, it is assumed that the contribution of the surface reflectance with directional anisotropy to the polarized radiance received by the satellite is small because it is shown from our ground-based polarization measurements of light ray reflected by the grassland that degrees of polarization of the reflected light by the grassland are very low values at the 865nm channel. First aerosol properties were estimated from only the polarized radiance and then the bidirectional reflectance given by the Ross-Li BRDF model was estimated from only the total radiance at target areas in PARASOL/POLDER data over the Japanese islands taken on April 28, 2012 and April 25, 2010. The estimated optical thickness of aerosols was checked with those given in AERONET sites and the estimated parameters of BRDF were compared with those of vegetation measured from the radio-controlled helicopter. Consequently, it is shown that the algorithm described in the present study provides reasonable values for aerosol properties and surface bidirectional reflectance.
Estimation of groundwater and nutrient fluxes to the Neuse River estuary, North Carolina
Spruill, T.B.; Bratton, J.F.
2008-01-01
A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86??108 to 4.33??108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy's Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s-1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3-9 m3 s-1) and Darcy's Law (about 9 m3 s-1). A groundwater flux of 9 m 3 s-1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills.
Subpixel urban impervious surface mapping: the impact of input Landsat images
NASA Astrophysics Data System (ADS)
Deng, Chengbin; Li, Chaojun; Zhu, Zhe; Lin, Weiying; Xi, Li
2017-11-01
Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a challenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions, seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their impacts, however, have not been well studied and documented. In this research, we performed direct and comprehensive examinations to explore the impacts of these factors on subpixel estimation when using an effective machine learning technique (Random Forest) and provided solutions to alleviate these influences. Four conclusions can be drawn based on the repeatable experiments in three study areas under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates). First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA) reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery provided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid continental area is somewhat better than the other regions. Finally, improvements can be achieved by using multi-season imagery, but the increments become less obvious when including more than two seasons. The strategy and results of this research could improve and accommodate regional/national subpixel land cover mapping using Landsat images for large-scale environmental studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannikov, Mikhail, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Oborin, Vladimir, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Naimark, Oleg, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru
Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue andmore » gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.« less
A surface fuel classification for estimating fire effects
Duncan C. Lutes; Robert E. Keane; John F. Caratti
2009-01-01
We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...
Danskin, Wesley R.; McPherson, Kelly R.; Woolfenden, Linda R.
2006-01-01
The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to investigators and water managers in other areas, this report provides an expanded description of constrained optimization techniques and how to use them to better understand the local hydrogeology and to evaluate inter-related water-management problems. In this report, the hydrology of the San Bernardino area, defined as the Bunker Hill and Lytle Creek basins, is described and quantified for calendar years 1945-98. The major components of the surface-water system are identified, and a routing diagram of flow through these components is provided. Annual surface-water inflow and outflow for the area are tabulated using gaged measurements and estimated values derived from linear-regression equations. Average inflow for the 54-year period (1945-98) was 146,452 acre-feet per year; average outflow was 67,931 acre-feet per year. The probability of exceedance for annual surface-water inflow is calculated using a Log Pearson Type III analysis. Cumulative surface-water inflow and outflow and ground-water-level measurements indicate that the relation between the surface-water system and the ground-water system changed in about 1951, in about 1979, and again in about 1992. Higher ground-water levels prior to 1951 and between 1979 and 1992 induced ground-water discharge to Warm Creek. This discharge was quantified using streamflow measurements and can be estimated for other time periods using ground-water levels from a monitoring well (1S/4W-3Q1) and a logarithmic-regression equation. Annual wastewater discharge from the area is tabulated for the major sewage and power-plant facilities. More...
Estimating pothole wetland connectivity to Pipestem Creek ...
Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. During a wetter-than-normal decade, Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched pothole wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from upstream towards downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 35 to 2380 ha of open water contributing to streamflow over time, and varied primarily with the amount of discharge. The median value (417 ha) was well above the surface area of the Pipestem Creek network (245 ha), and only two periods
Rapid Estimation of Building Damage by Conventional Weapons
2014-09-01
impulse applied to reflect surface 17 iso = impulse of incident wave t0 = wave duration Lw = wavelength of incident wave ta = arrival time...floor area = 3 x 100 x 90 = 27000 ft2 Tributary area support per column = 27000 /30 = 900 ft2 Therefore, the tributary area supported by a column is
NASA Astrophysics Data System (ADS)
Pal, Siddharth; Basak, Aniruddha; Das, Swagatam
In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.
Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Mathew; Wilson, Mollye C; Rudolph, Todd
2007-02-01
Polyester-rayon blend wipes were evaluated for efficiency of extraction and recovery of powdered Bacillus atrophaeus spores from stainless steel and painted wallboard surfaces. Method limits of detection were also estimated for both surfaces. The observed mean efficiency of polyester-rayon blend wipe recovery from stainless steel was 0.35 with a standard deviation of +/-0.12, and for painted wallboard it was 0.29 with a standard deviation of +/-0.15. Evaluation of a sonication extraction method for the polyester-rayon blend wipes produced a mean extraction efficiency of 0.93 with a standard deviation of +/-0.09. Wipe recovery quantitative limits of detection were estimated at 90 CFU per unit of stainless steel sample area and 105 CFU per unit of painted wallboard sample area. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling following the release of a biological agent such as Bacillus anthracis.
Evapotranspiration and remote sensing
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Gurney, R.
1982-01-01
There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration.
Near-station terrain corrections for gravity data by a surface-integral technique
Gettings, M.E.
1982-01-01
A new method of computing gravity terrain corrections by use of a digitizer and digital computer can result in substantial savings in the time and manual labor required to perform such corrections by conventional manual ring-chart techniques. The method is typically applied to estimate terrain effects for topography near the station, for example within 3 km of the station, although it has been used successfully to a radius of 15 km to estimate corrections in areas where topographic mapping is poor. Points (about 20) that define topographic maxima, minima, and changes in the slope gradient are picked on the topographic map, within the desired radius of correction about the station. Particular attention must be paid to the area immediately surrounding the station to ensure a good topographic representation. The horizontal and vertical coordinates of these points are entered into the computer, usually by means of a digitizer. The computer then fits a multiquadric surface to the input points to form an analytic representation of the surface. By means of the divergence theorem, the gravity effect of an interior closed solid can be expressed as a surface integral, and the terrain correction is calculated by numerical evaluation of the integral over the surfaces of a cylinder, The vertical sides of which are at the correction radius about the station, the flat bottom surface at the topographic minimum, and the upper surface given by the multiquadric equation. The method has been tested with favorable results against models for which an exact result is available and against manually computed field-station locations in areas of rugged topography. By increasing the number of points defining the topographic surface, any desired degree of accuracy can be obtained. The method is more objective than manual ring-chart techniques because no average compartment elevations need be estimated ?
DeMeo, Guy A.; Smith, J. LaRue; Damar, Nancy A.; Darnell, Jon
2008-01-01
Rapid population growth in southern Nevada has increased the demand for additional water supplies from rural areas of northern Clark and southern Lincoln counties to meet projected water-supply needs. Springs and rivers in these undeveloped areas sustain fragile riparian habitat and may be susceptible to ground-water withdrawals. Most natural ground-water and surface-water discharge from these basins occurs by evapotranspiration (ET) along narrow riparian corridors that encompassed about 45,000 acres or about 1 percent of the study area. This report presents estimates of ground- and surface-water discharge from ET across 3.5 million acres in 12 hydrographic areas of the Colorado Regional Ground-Water Flow System. Ground-and surface-water discharge from ET were determined by identifying areas of ground- and surface-water ET, delineating areas of similar vegetation and soil conditions (ET units), and computing ET rates for each of these ET units. Eight ET units were identified using spectral-reflectance characteristics determined from 2003 satellite imagery, high-resolution aerial photography, and land classification cover. These ET units are dense meadowland vegetation (200 acres), dense woodland vegetation (7,200 acres), moderate woodland vegetation (6,100 acres), dense shrubland vegetation (5,800 acres), moderate shrubland vegetation (22,600 acres), agricultural fields (3,100 acres), non-phreatophytic areas (3,400,000 acres), and open water (300 acres). ET from diffuse ground-water and channelized surface-water is expressed as ETgs and is equal to the difference between total annual ET and precipitation. Total annual ET rates were calculated by the Bowen ratio and eddy covariance methods using micrometeorological data collected from four sites and estimated at 3.9 ft at a dense woodland site (February 2003 to March 2005), 3.6 ft at a moderate woodland site (July 2003 to October 2006), 2.8 ft at a dense shrubland site (June 2005 to October 2006), and 1.5 ft at a moderate shrubland site (April 2006 to October 2006). Annual ETgs rates were 3.4 ft for dense woodland vegetation, 3.2 ft for moderate woodland vegetation, 2.2 ft for dense shrubland vegetation, and 1.0 ft for moderate shrubland vegetation. Published annual rates of ETgs were used for the other ET units found in the study area. These rates were 3.4 ft for dense meadowland vegetation, 5.2 ft for agricultural fields, and 4.9 ft for open water. For the non-phreatophytic ET unit, ETgs was assumed to be zero. Estimated ground- and surface-water discharge from ET was calculated by multiplying the ETgs by the ET-unit acreage and equaled 24,480 acre-ft for dense woodland vegetation, 19,520 acre-ft for moderate woodland vegetation, 12,760 acre-ft for dense shrubland vegetation, 22,600 acre-ft for moderate shrubland vegetation, 680 acre-ft for dense meadowland vegetation, 16,120 acre-ft for agricultural fields, 1,440 acre-ft for open water, and 0 acre-ft for the non-phreatophytic ET unit. Estimated ground-water and surface-water discharge from ET from each hydrographic area was calculated by summing the total annual ETgs rate for ET units found within each hydrographic area and equaled 1,952 acre-ft for the Black Mountains Area, 6,080 acre-ft for California Wash, 4,090 acre-ft for the Muddy River Springs Area, 11,510 acre-ft for Lower Moapa Valley, 51,960 acre-ft for the Virgin River Valley, 16,168 acre-ft for Lower Meadow Valley Wash, 5,840 acre-ft for Clover Valley, and 0 acre-ft for Coyote Spring Valley, Kane Springs Valley, Tule Desert, Hidden Valley (North), and Garnet Valley. The annual discharge from ETgs for the study area totals about 98,000 acre-ft.
NASA Astrophysics Data System (ADS)
Choi, J.; Ryu, J.
2011-12-01
Temporal variations of suspended sediment concentration (SSC) in coastal water are the key to understanding the pattern of sediment movement within coastal area, in particular, such as in the west coast of the Korean Peninsula which is influenced by semi-diurnal tides. Remote sensing techniques can effectively monitor the distribution and dynamic changes in seawater properties across wide areas. Thus, SSC on the sea surface has been investigated using various types of satellite-based sensors. An advantage of Geostationary Ocean Color Imager (GOCI), the world's first geostationary ocean color observation satellite, over other ocean color satellite images is that it can obtain data every hour during the day and makes it possible to monitor the ocean in real time. In this study, hourly variations in turbidity on the coastal waters were estimated quantitatively using GOCI. Thirty three water samples were obtained on the coastal water surface in southern Gyeonggi Bay, located on the west coast of Korea. Water samples were filtered using 25-mm glass fiber filters (GF/F) for the estimation of SSC. The radiometric characteristics of the surface water, such as the total water-leaving radiance (LwT, W/m2/nm/sr), the sky radiance (Lsky, W/m2/nm/sr) and the downwelling irradiance, were also measured at each sampling location. In situ optical properties of the surface water were converted into remote sensing reflectance (Rrs) and then were used to develop an algorithm to generate SSC images in the study area. GOCI images acquired on the same day as the samples acquisition were used to generate the map of turbidity and to estimate the difference in SSC displayed in each image. The estimation of the time-series variation in SSC in a coastal, shallow-water area affected by tides was successfully achieved using GOCI data that had been acquired at hourly intervals during the daytime.
NASA Astrophysics Data System (ADS)
Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara
2017-10-01
The quantitative estimation of changes in terrain surfaces caused by water erosion can be carried out from precise descriptions of surfaces given by means of digital elevation models (DEMs). Some stages of water erosion research efforts are conducted in the laboratory using rainfall simulators and soil boxes with areas less than 1 m2. Under these conditions, erosive processes can lead to very small surface variations and high precision DEMs are needed to account for differences measured in millimetres. In this paper, we used a photogrammetric Structure from Motion (SfM) technique to build DEMs of a 0.5 m2 soil box to monitor several simulated rainfall episodes in the laboratory. The technique of DEM of difference (DoD) was then applied using GIS tools to compute estimates of volumetric changes between each pair of rainfall episodes. The aim was to classify the soil surface into three classes: erosion areas, deposition areas, and unchanged or neutral areas, and quantify the volume of soil that was eroded and deposited. We used a thresholding criterion of changes based on the estimated error of the difference of DEMs, which in turn was obtained from the root mean square error of the individual DEMs. Experimental tests showed that the choice of different threshold values in the DoD can lead to volume differences as large as 60% when compared to the direct volumetric difference. It turns out that the choice of that threshold was a key point in this method. In parallel to photogrammetric work, we collected sediments from each rain episode and obtained a series of corresponding measured sediment yields. The comparison between computed and measured sediment yields was significantly correlated, especially when considering the accumulated value of the five simulations. The computed sediment yield was 13% greater than the measured sediment yield. The procedure presented in this paper proved to be suitable for the determination of sediment yields in rainfall-driven soil erosion experiments conducted in the laboratory.
NASA Astrophysics Data System (ADS)
Vuignier, Jean-Marie; Penna, Ivanna; Jaboyedoff, Michel; Sudmeier-Rieux, Karen
2015-04-01
Natural and human-induced erosive processes shape landscape by transferring masses from the mountain to downstream areas. They also impact population both located in the source areas of sediments as well as urban areas settle on the depositional area. Mountain areas in Bolivia present high surface dynamics and high rates of rural migrations, causing e.g. a significant increase of population in Cochabamba city in the last 20 years. This work aims to estimate the sediment production on the Jatún Mayu (Pankuruma) watershed in Cochabamba department taking into account the different origins of sediments. The population of this region is predominantly rural and quechua speaking. The region of study consists in a mountain area situated in the Andes with altitudes ranging from 2500 to 4600m. Field work on July 2014 and high resolution satellite image interpretation (2004 & 2009) allowed us to map and measure landslides and gullies. Almost a hundred of landslides are recorded mostly around the river channel in the middle and the lower part of the valley and provide a moving surface estimated at 3,15km2. Most of the gullies are situated in the upper part of the valley where the vegetation is less abundant on low-sloping agricultural lands. Photogrammetric reconstructions using camera and drone were the main method used to characterise some strategic points along the river in order to get dimensions of landslides, gullies, as well as the riverbed roughness, as the final goal was to model the flooding prone area at the mouth of the watershed, were migrants have been settling for the last years. A total of 9 points of interests along the river bed were surveyed and for each of them a square surface equal to 25m2 was analysed. Approximately 250 pictures by area were needed to estimate roughness along the channel. A flood model has been performed, by using the Riverflo-2D software, to produce a susceptibility map of the downstream region.
D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,
1996-01-01
The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.
Korichi, Smain; Bensmaili, Aicha
2009-09-30
This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2)-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.
Reported here are results of the statistical design and analysis work conducted during Calendar Year 1974 for the Nevada Applied Ecology Group (NAEG) at plutonium study sites on the Nevada Test Site (NTS) and the Tonopah Test Range (TTR). Estimates of $sup 239-240$Pu inventory in surface soil (0 to 5-cm depth) are given for each of the NAEG intensive study sites, together with activity maps based on FIDLER surveys showing the field areas to which these estimates apply. There is evidence of a preliminary nature to suggest that the plutonium present in surface soil may be covered by a thinmore » (less than 2.5 cm) layer of soil whose alpha activity is considerably less than that directly below. Computer-drawn $sup 239-240$Pu concentration contours and three-dimensional surfaces in soil and vegetation are given for Area 13 and GMX as a first attempt at estimating the geographical distribution of $sup 239-240$Pu at these sites. (CH)« less
NASA Astrophysics Data System (ADS)
Chen, C.; Box, J. E.; Hock, R. M.; Cogley, J. G.
2011-12-01
Current estimates of global Mountain Glacier and Ice Caps (MG&IC) mass changes are subject to large uncertainties due to incomplete inventories and uncertainties in land surface classification. This presentation features mitigative efforts through the creation of a MODIS dependent land ice classification system and its application for glacier inventory. Estimates of total area of mountain glaciers [IPCC, 2007] and ice caps (including those in Greenland and Antarctica) vary 15%, that is, 680 - 785 10e3 sq. km. To date only an estimated 40% of glaciers (by area) is inventoried in the World Glacier Inventory (WGI) and made available through the World Glacier Monitoring System (WGMS) and the National Snow and Ice Data Center [NSIDC, 1999]. Cogley [2009] recently compiled a more complete version of WGI, called WGI-XF, containing records for just over 131,000 glaciers, covering approximately half of the estimated global MG&IC area. The glaciers isolated from the conterminous Antarctic and Greenland ice sheets remain incompletely inventoried in WGI-XF but have been estimated to contribute 35% to the MG&IC sea-level equivalent during 1961-2004 [Hock et al., 2009]. Together with Arctic Canada and Alaska these regions alone make up almost 90% of the area that is missing in the global WGI-XF inventory. Global mass balance projections tend to exclude ice masses in Greenland and Antarctica due to the paucity of data with respect to basic inventory base data such as area, number of glaciers or size distributions. We address the need for an accurate Greenland and Antarctic peninsula land surface classification with a novel glacier surface classification and inventory based on NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data gridded at 250 m pixel resolution. The presentation includes a sensitivity analysis for surface mass balance as it depends on the land surface classification. Works Cited +Cogley, J. G. (2009), A more complete version of the World Glacier Inventory, Ann. Glaciol. 50(53). +Hock, R., M. de Woul, V. Radi and M. Dyurgerov, 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501, doi:10.1029/2008GL037020. +IPCC, Climate Change 2007 The Physical Science Basis, 2007. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.) Cambridge University Press, Cambridge, UK.
Estimation of Regional Net CO2 Exchange over the Southern Great Plains
NASA Astrophysics Data System (ADS)
Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.
2004-12-01
Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.
Estimated impact of global population growth on future wilderness extent
NASA Astrophysics Data System (ADS)
Dumont, E.
2012-06-01
Wilderness areas in the world are threatened by the environmental impacts of the growing global human population. This study estimates the impact of birth rate on the future surface area of biodiverse wilderness and on the proportion of this area without major extinctions. The following four drivers are considered: human population growth (1), agricultural efficiency (2), groundwater drawdown by irrigation (3), and non-agricultural space used by humans (buildings, gardens, roads, etc.) (4). This study indicates that the surface area of biodiverse unmanaged land will reduce with about 5.4% between 2012 and 2050. Further, it indicates that the biodiverse land without major extinctions will reduce with about 10.5%. These percentages are based on a commonly used population trajectory which assumes that birth rates across the globe will reduce in a similar way as has occurred in the past in many developed countries. Future birth rate is however very uncertain. Plausible future birth rates lower than the expected rates lead to much smaller reductions in surface area of biodiverse unmanaged land (0.7% as opposed to 5.4%), and a reduction in the biodiverse land without major extinctions of about 5.6% (as opposed to 10.5%). This indicates that birth rate is an important factor influencing the quality and quantity of wilderness remaining in the future.
Veronika Leitold; Michael Keller; Douglas C Morton; Bruce D Cook; Yosio E Shimabukuro
2015-01-01
Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas...
Mark J. Ducey; Jeffrey H. Gove; Harry T. Valentine
2008-01-01
Perpendicular distance sampling (PDS) is a fast probability-proportional-to-size method for inventory of downed wood. However, previous development of PDS had limited the method to estimating only one variable (such as volume per hectare, or surface area per hectare) at a time. Here, we develop a general design-unbiased estimator for PDS. We then show how that...
Winner, M.D.; Lyke, William L.; Brockman, Allen R.
1989-01-01
Water level measurements were made in four wells open to the lower Cape Fear aquifer at the end of 1986 to determine the configuration of its potentiometric surface over an area of approximately 4,100 sq mi. Because of the scarcity of data, five earlier measurements were also used to help estimate the position of the potentiometric contours. These were one-time measurements in temporary observation wells. A broad cone of depression has formed in the area between Kinston and New Bern where the potentiometric surface is below sea level and seems likely related to large groundwater withdrawals from the aquifers overlying the lower Cape Fear in that area.
Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data
NASA Astrophysics Data System (ADS)
Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.
2016-08-01
Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.
A simple method for estimating the size of nuclei on fractal surfaces
NASA Astrophysics Data System (ADS)
Zeng, Qiang
2017-10-01
Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.
García, Mónica; Villagarcía, Luis; Contreras, Sergio; Domingo, Francisco; Puigdefábregas, Juan
2007-01-01
Three operative models with minimum input data requirements for estimating the partition of available surface energy into sensible and latent heat flux using ASTER data have been evaluated in a semiarid area in SE Spain. The non-evaporative fraction (NEF) is proposed as an indicator of the surface water deficit. The best results were achieved with NEF estimated using the “Simplified relationship” for unstable conditions (NEFSeguin) and with the S-SEBI (Simplified Surface Energy Balance Index) model corrected for atmospheric conditions (NEFS-SEBIt,) which both produced equivalent results. However, results with a third model, NEFCarlson, that estimates the exchange coefficient for sensible heat transfer from NDVI, were unrealistic for sites with scarce vegetation cover. These results are very promising for an operative monitoring of the surface water deficit, as validation with field data shows reasonable errors, within those reported in the literature (RMSE were 0.18 and 0.11 for the NEF, and 29.12 Wm-2 and 25.97 Wm-2 for sensible heat flux, with the Seguin and S-SEBIt models, respectively).
Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT
2016-01-01
Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194
Collins, D.S.; Nichols, T.C.
1987-01-01
A knowledge of past overburden thickness is useful for designing underground structures such as waste repositories. This study attempts to determine if a correlation can be made between a geologic estimate and two types of geotechnical calculations of past overburden thickness. In the Pierre-Hayes area, Late Cretaceous Pierre Shales is the only bedrock present, but clasts of the Miocene Ogallala Formation were found in the Pleistocene deposits, suggesting that rocks of the Ogallala Formation once covered this area. Based on the geologic estimate, the Ogallala surface was 1100 ft higher than the present surface. Of the two types of geotechnical data acquired for the Hayes site, the laboratory overconsolidation ratios indicate a past overburden thickness value of 2300 ft, whereas the in situ pressuremeter overconsolidation ratios indicate 1318 ft. We, therefore, believe that in situ determination is a better indicator of past overburden that the laboratory results. However, why the two test results differ to this degree is unknown at present.-from Authors
Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat
NASA Technical Reports Server (NTRS)
Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.
1992-01-01
Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.
Modeling of microclimatic characteristics of highland area
NASA Astrophysics Data System (ADS)
Sitdikova, Iuliia; Rusin, Igor
2013-04-01
Microclimatic characteristics of highlands may vary considerably over distances of a few meters depending on slope and aspect. There is a problem of estimation of components of surface energy balance based on observation of single stations for description of microclimate highlands. The aim of this paper is to develop a method that would restore microclimatic characteristics of terrain, based on observations of the single station, by physical extrapolation. The input parameters to obtain the microclimatic characteristics are as follows: air temperature, relative humidity, and wind speed on two vertical levels, air pressure, surface temperature, direct and diffused solar radiation and surface albedo. The recent version of the Meteorological Radiation Model (MRM) has been used to calculate a solar radiation over the area and to estimate an influence of cloudiness amounts. The height, slope and aspect were accounted at each point with using a digital elevation model. Have been supposed that air temperature and specific humidity vary with altitude only. Net radiation was calculated at all points of the area. Supposed that the difference between the surface temperature and the air temperature is a linear function of net radiation. The empirical coefficient, which depends on wind speed with adjustment of given area. Latent and sensible fluxes are calculated by using the modified Bowen ratio, which varies on the area. Method was tested on field research in Krasnodar region (RF). The meteorological observations were made every three hour on actinometric and gradient sites. The editional gradient site with different orientation of the slope was organized from 400 meters of the main site. Topographic survey of area was made 1x1,3 km in size for a digital elevation model constructing. At all points of the area of radiation and heat balance were calculated. The results of researches are the maps of surface temperature, net radiation, latent and sensible fluxes. The calculations showed that the average value of components of heat balance by area differ significantly from the data observed on meteorological station.
Estimating NOx emissions and surface concentrations at high spatial resolution using OMI
NASA Astrophysics Data System (ADS)
Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.
2017-12-01
In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.
García-Roger, Eduardo Moisés; Franch, Belen; Carmona, María José; Serra, Manuel
2017-01-01
Fluctuations in environmental parameters are increasingly being recognized as essential features of any habitat. The quantification of whether environmental fluctuations are prevalently predictable or unpredictable is remarkably relevant to understanding the evolutionary responses of organisms. However, when characterizing the relevant features of natural habitats, ecologists typically face two problems: (1) gathering long-term data and (2) handling the hard-won data. This paper takes advantage of the free access to long-term recordings of remote sensing data (27 years, Landsat TM/ETM+) to assess a set of environmental models for estimating environmental predictability. The case study included 20 Mediterranean saline ponds and lakes, and the focal variable was the water-surface area. This study first aimed to produce a method for accurately estimating the water-surface area from satellite images. Saline ponds can develop salt-crusted areas that make it difficult to distinguish between soil and water. This challenge was addressed using a novel pipeline that combines band ratio water indices and the short near-infrared band as a salt filter. The study then extracted the predictable and unpredictable components of variation in the water-surface area. Two different approaches, each showing variations in the parameters, were used to obtain the stochastic variation around a regular pattern with the objective of dissecting the effect of assumptions on predictability estimations. The first approach, which is based on Colwell’s predictability metrics, transforms the focal variable into a nominal one. The resulting discrete categories define the relevant variations in the water-surface area. In the second approach, we introduced General Additive Model (GAM) fitting as a new metric for quantifying predictability. Both approaches produced a wide range of predictability for the studied ponds. Some model assumptions–which are considered very different a priori–had minor effects, whereas others produced predictability estimations that showed some degree of divergence. We hypothesize that these diverging estimations of predictability reflect the effect of fluctuations on different types of organisms. The fluctuation analysis described in this manuscript is applicable to a wide variety of systems, including both aquatic and non-aquatic systems, and will be valuable for quantifying and characterizing predictability, which is essential within the expected global increase in the unpredictability of environmental fluctuations. We advocate that a priori information for organisms of interest should be used to select the most suitable metrics for estimating predictability, and we provide some guidelines for this approach. PMID:29121667
Relations among passive electrical properties of lumbar alpha-motoneurones of the cat.
Gustafsson, B; Pinter, M J
1984-01-01
The relations among passive membrane properties have been examined in cat motoneurones utilizing exclusively electrophysiological techniques. A significant relation was found to exist between the input resistance and the membrane time constant. The estimated electrotonic length showed no evident tendency to vary with input resistance but did show a tendency to decrease with increasing time constant. Detailed analysis of this trend suggests, however, that a variation in dendritic geometry is likely to exist among cat motoneurones, such that the dendritic trees of motoneurones projecting to fast-twitch muscle units are relatively more expansive than those of motoneurones projecting to slow-twitch units. Utilizing an expression derived from the Rall neurone model, the total capacitance of the equivalent cylinder corresponding to a motoneurone has been estimated. With the assumption of a constant and uniform specific capacitance of 1 mu F/cm2, the resulting values have been used as estimates of cell surface area. These estimates agree well with morphologically obtained measurements from cat motoneurones reported by others. Both membrane time constant (and thus likely specific membrane resistivity) and electrotonic length showed little tendency to vary with surface area. However, after-hyperpolarization (a.h.p.) duration showed some tendency to vary such that cells with brief a.h.p. duration were, on average, larger than those with longer a.h.p. durations. Apart from motoneurones with the lowest values, axonal conduction velocity was only weakly related to variations in estimated surface area. Input resistance and membrane time constant were found to vary systematically with the a.h.p. duration. Analysis suggested that the major part of the increase in input resistance with a.h.p. duration was related to an increase in membrane resistivity and a variation in dendritic geometry rather than to differences in surface area among the motoneurones. The possible effects of imperfect electrode seals have been considered. According to an analysis of a passive membrane model, soma leaks caused by impalement injury will result in underestimates of input resistance and time constant and over-estimates of electrotonic length and total capacitance. Assuming a non-injured resting potential of -80 mV, a comparison of membrane potentials predicted by various relative leaks (leak conductance/input conductance) with those actually observed suggests that the magnitude of these errors in the present material will not unduly affect the presented results.+4 PMID:6520792
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Irikura, K.
2013-12-01
A probability of surface rupture is important to configure the seismic source, such as area sources or fault models, for a seismic hazard evaluation. In Japan, Takemura (1998) estimated the probability based on the historical earthquake data. Kagawa et al. (2004) evaluated the probability based on a numerical simulation of surface displacements. The estimated probability indicates a sigmoid curve and increases between Mj (the local magnitude defined and calculated by Japan Meteorological Agency) =6.5 and Mj=7.0. The probability of surface rupture is also used in a probabilistic fault displacement analysis (PFDHA). The probability is determined from the collected earthquake catalog, which were classified into two categories: with surface rupture or without surface rupture. The logistic regression is performed for the classified earthquake data. Youngs et al. (2003), Ross and Moss (2011) and Petersen et al. (2011) indicate the logistic curves of the probability of surface rupture by normal, reverse and strike-slip faults, respectively. Takao et al. (2013) shows the logistic curve derived from only Japanese earthquake data. The Japanese probability curve shows the sharply increasing in narrow magnitude range by comparison with other curves. In this study, we estimated the probability of surface rupture applying the logistic analysis to the surface displacement derived from a surface displacement calculation. A source fault was defined in according to the procedure of Kagawa et al. (2004), which determined a seismic moment from a magnitude and estimated the area size of the asperity and the amount of slip. Strike slip and reverse faults were considered as source faults. We applied Wang et al. (2003) for calculations. The surface displacements with defined source faults were calculated by varying the depth of the fault. A threshold value as 5cm of surface displacement was used to evaluate whether a surface rupture reach or do not reach to the surface. We carried out the logistic regression analysis to the calculated displacements, which were classified by the above threshold. The estimated probability curve indicated the similar trend to the result of Takao et al. (2013). The probability of revere faults is larger than that of strike slip faults. On the other hand, PFDHA results show different trends. The probability of reverse faults at higher magnitude is lower than that of strike slip and normal faults. Ross and Moss (2011) suggested that the sediment and/or rock over the fault compress and not reach the displacement to the surface enough. The numerical theory applied in this study cannot deal with a complex initial situation such as topography.
Interpolations of groundwater table elevation in dissected uplands.
Chung, Jae-won; Rogers, J David
2012-01-01
The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman; Susskind, Joel
1999-01-01
This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.
Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.
1984-01-01
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578
Yim, Sunghoon; Jeon, Seokhee; Choi, Seungmoon
2016-01-01
In this paper, we present an extended data-driven haptic rendering method capable of reproducing force responses during pushing and sliding interaction on a large surface area. The main part of the approach is a novel input variable set for the training of an interpolation model, which incorporates the position of a proxy - an imaginary contact point on the undeformed surface. This allows us to estimate friction in both sliding and sticking states in a unified framework. Estimating the proxy position is done in real-time based on simulation using a sliding yield surface - a surface defining a border between the sliding and sticking regions in the external force space. During modeling, the sliding yield surface is first identified via an automated palpation procedure. Then, through manual palpation on a target surface, input data and resultant force data are acquired. The data are used to build a radial basis interpolation model. During rendering, this input-output mapping interpolation model is used to estimate force responses in real-time in accordance with the interaction input. Physical performance evaluation demonstrates that our approach achieves reasonably high estimation accuracy. A user study also shows plausible perceptual realism under diverse and extensive exploration.
Legland, David; Guillon, Fabienne; Kiêu, Kiên; Bouchet, Brigitte; Devaux, Marie-Françoise
2010-01-01
Background and Aims The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or to a specific genotype, or to describe the cellular structure heterogeneity within the fruit. Methods An integrated method is presented to describe the cellular structure of the whole fruit from partial three-dimensional (3D) observations, involving the following steps: (1) fruit sampling, (2) 3D image acquisition and processing and (3) measurement and estimation of relevant 3D morphological parameters. This method was applied to characterize DR12 mutant and wild-type tomatoes (Solanum lycopersicum). Key Results The cellular structure was described using the total volume of the pericarp, the surface area of the cell walls and the ratio of cell-wall surface area to pericarp volume, referred to as the cell-wall surface density. The heterogeneity of cellular structure within the fruit was investigated by estimating variations in the cell-wall surface density with distance to the epidermis. Conclusions The DR12 mutant presents a greater pericarp volume and an increase of cell-wall surface density under the epidermis. PMID:19952012
Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes
Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.
2013-01-01
Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.
Influence of the Hyporheic Zone on Supersaturated Gas Exposure to Incubating Chum Salmon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Geist, David R.; Murray, Katherine J.
2009-12-01
Supersaturated total dissolved gas (TDG) is elevated seasonally in the lower Columbia River, with surface water concentrations approaching 120% saturation of TDG. Chum salmon (Oncorhynchus keta) embryos incubating in nearby spawning areas could be affected if depth-compensated TDG concentrations within the hyporheic zone exceed 103% TDG. The objective of this study was to determine if TDG of the hyporheic zone in two chum salmon spawning areas -- one in a side channel near Ives Island, Washington, and another on the mainstem Columbia River near Multnomah Falls, Oregon -- was affected by the elevated TDG of the surface water. Depth-compensated hyporheicmore » TDG did not exceed 103% at the Multnomah Falls site. However, in the Ives Island area, chum salmon redds were exposed to TDG greater than 103% for more than 600 hours. In response to river depth fluctuations, TDG varied significantly in the Ives Island area, suggesting increased interaction between the hyporheic zone and surface water at that site. We conclude from this study that the interaction between surface water and the hyporheic zone affects the concentration of TDG within the hyporheic zone directly via physical mixing as well as indirectly by altering water chemistry and thus dissolved gas solubility. These interactions are important considerations when estimating TDG exposure within egg pocket environments, facilitating improved exposure estimates, and enabling managers to optimize recovery strategies.« less
Harrison, Neil
2016-08-16
Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Neil
Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less
An Improved MUSIC Model for Gibbsite Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.
2004-06-01
Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area wasmore » available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.« less
NASA Astrophysics Data System (ADS)
Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf
2016-09-01
Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.
NASA Technical Reports Server (NTRS)
Joiner, T. J.; Copeland, C. W., Jr.; Russell, D. D.; Evans, F. E., Jr.; Sapp, C. D.; Boone, P. A.
1978-01-01
Methods by which estimates of the remaining reserves of strippable coal in Alabama could be made were developed. Information acquired from NASA's Earth Resources Office was used to analyze and map existing surface mines in a four-quadrangle area in west central Alabama. Using this information and traditional methods for mapping coal reserves, an estimate of remaining strippable reserves was derived. Techniques for the computer analysis of remotely sensed data and other types of available coal data were developed to produce an estimate of strippable coal reserves for a second four-quadrangle area. Both areas lie in the Warrior coal field, the most prolific and active of Alabama's coal fields. They were chosen because of the amount and type of coal mining in the area, their location relative to urban areas, and the amount and availability of base data necessary for this type of study.
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, B.; Wang, J.; Ishikawa, H.
2009-06-01
Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.
Bonetto, Rita Dominga; Ladaga, Juan Luis; Ponz, Ezequiel
2006-04-01
Scanning electron microscopy (SEM) is widely used in surface studies and continuous efforts are carried out in the search of estimators of different surface characteristics. By using the variogram, we developed two of these estimators that were used to characterize the surface roughness from the SEM image texture. One of the estimators is related to the crossover between fractal region at low scale and the periodic region at high scale, whereas the other estimator characterizes the periodic region. In this work, a full study of these estimators and the fractal dimension in two dimensions (2D) and three dimensions (3D) was carried out for emery papers. We show that the obtained fractal dimension with only one image is good enough to characterize the roughness surface because its behavior is similar to those obtained with 3D height data. We show also that the estimator that indicates the crossover is related to the minimum cell size in 2D and to the average particle size in 3D. The other estimator has different values for the three studied emery papers in 2D but it does not have a clear meaning, and these values are similar for those studied samples in 3D. Nevertheless, it indicates the formation tendency of compound cells. The fractal dimension values from the variogram and from an area versus step log-log graph were studied with 3D data. Both methods yield different values corresponding to different information from the samples.
Jat, Prahlad; Serre, Marc L
2016-12-01
Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R 2 by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meissner, C.R. Jr.; Windolph, J.F. Jr.; Mory, P.C.
1981-01-01
The Cranberry Wilderness Study Area comprises 14,702 ha in the Monongahela National Forest, Webster and Pocahontas Counties, east-central West Virginia. The area is in the Yew Mountains of the Appalachian Plateaus and is at the eastern edge of the central Appalachian coal fields. Cranberry Glades, a peatland of botanical interest, lies at the southern end of the study area. All surface rights in the area are held by the US Forest Service; nearly 90% of the mineral rights are privately owned or subordinate to the surface rights. Bituminous coal of coking quality is the most economically important mineral resource inmore » the Cranberry Wilderness Study Area. Estimated resources in beds 35 cm thick or more are about 100 million metric tons in nine coal beds. Most measured-indicated coal, 70 cm thick or more (reserve base), is in a 7-km-wide east-west trending belt extending across the center of the study area. The estimated reserve base is 34,179 thousand metric tons. Estimated reserves in seven of the coal beds total 16,830 thousand metric tons and are recoverable by underground mining methods. Other mineral resources, all of which have a low potential for development in the study area, include peat, shale, and clay suitable for building brick and lightweight aggregate, sandstone for low-quality glass sand, and sandstone suitable for construction material. Evidence derived from drilling indicates little possibility for oil and gas in the study area. No evidence of economic metallic deposits was found during this investigation.« less
NASA Astrophysics Data System (ADS)
Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick
2017-12-01
Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.
Lu, Z.; Streets, D. G.; de Foy, B.; ...
2015-05-28
Satellite remote sensing of tropospheric nitrogen dioxide (NO 2) can provide valuable information for estimating surface nitrogen oxides (NO x) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO 2 distributions, we estimate three-year moving-average emissions of summertime NO x from 35 US urban areas directly from NO 2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NO x emissions from each urban area by applying the EMGmore » method to OMI data with wind speeds greater than 3–5 m s -1. Meanwhile, we find that OMI NO 2 observations under weak-wind conditions (i.e., < 3 m s -1) are qualitatively better correlated with the surface NO x source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO 2 burdens of urban areas and compare with NO x emission estimates. The EMG results show that OMI-derived NO x emissions are highly correlated ( R > 0.93) with weak-wind OMI NO 2 burdens as well as bottom-up NO x emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO 2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO 2 chemical lifetimes. In general, isolated urban areas with NO x emission intensities greater than ~ 2 Mg h -1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NO x emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NO x emissions, the sum of weak-wind OMI NO 2 columns, the total weak-wind OMI NO 2 burdens, and the averaged NO 2 concentrations, respectively, reflecting the success of NO x control programs for both mobile sources and power plants. The decrease rates of these NO x-related quantities are found to be faster (i.e., -6.8 to -9.3% yr -1) before 2010 and slower (i.e., -3.4 to -4.9% yr -1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NO x emissions, the weak-wind OMI NO 2 burdens, and ground-based NO 2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones ( R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NO x emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.; Streets, D. G.; de Foy, B.
Satellite remote sensing of tropospheric nitrogen dioxide (NO 2) can provide valuable information for estimating surface nitrogen oxides (NO x) emissions. Using an exponentially modified Gaussian (EMG) method and taking into account the effect of wind on observed NO 2 distributions, we estimate 3-year moving-average emissions of summertime NO x from 35 US (United States) urban areas directly from NO 2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NO x emissions from each urban area by applyingmore » the EMG method to OMI data with wind speeds greater than 3–5 m s -1. Meanwhile, we find that OMI NO 2 observations under weak-wind conditions (i.e., < 3 m s −1) are qualitatively better correlated to the surface NO x source strength in comparison to all-wind OMI maps; therefore, we use them to calculate the satellite-observed NO 2 burdens of urban areas and compare with NO x emission estimates. The EMG results show that OMI-derived NO x emissions are highly correlated ( R > 0.93) with weak-wind OMI NO 2 burdens as well as with bottom-up NO x emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous EMG-obtained effective NO 2 lifetimes (~ 3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO 2 chemical lifetimes. In general, isolated urban areas with NO x emission intensities greater than ~ 2 Mg h -1 produce statistically significant weak-wind signals in 3-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NO x emissions over all selected US urban areas decreased by 49 %, consistent with reductions of 43, 47, 49, and 44 % in the total bottom-up NO x emissions, the sum of weak-wind OMI NO 2 columns, the total weak-wind OMI NO 2 burdens, and the averaged NO 2 concentrations, respectively, reflecting the success of NO x control programs for both mobile sources and power plants. The decrease rates of these NO x-related quantities are found to be faster (i.e., -6.8 to -9.3 % yr −1) before 2010 and slower (i.e., -3.4 to -4.9 % yr −1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NO x emissions, the weak-wind OMI NO 2 burdens, and ground-based NO 2 measurements, and high correlations are found for all urban areas (median R= 0.8), particularly large ones ( R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NO x emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.; Streets, D. G.; de Foy, B.
Satellite remote sensing of tropospheric nitrogen dioxide (NO 2) can provide valuable information for estimating surface nitrogen oxides (NO x) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO 2 distributions, we estimate three-year moving-average emissions of summertime NO x from 35 US urban areas directly from NO 2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NO x emissions from each urban area by applying the EMGmore » method to OMI data with wind speeds greater than 3–5 m s -1. Meanwhile, we find that OMI NO 2 observations under weak-wind conditions (i.e., < 3 m s -1) are qualitatively better correlated with the surface NO x source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO 2 burdens of urban areas and compare with NO x emission estimates. The EMG results show that OMI-derived NO x emissions are highly correlated ( R > 0.93) with weak-wind OMI NO 2 burdens as well as bottom-up NO x emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO 2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO 2 chemical lifetimes. In general, isolated urban areas with NO x emission intensities greater than ~ 2 Mg h -1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NO x emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NO x emissions, the sum of weak-wind OMI NO 2 columns, the total weak-wind OMI NO 2 burdens, and the averaged NO 2 concentrations, respectively, reflecting the success of NO x control programs for both mobile sources and power plants. The decrease rates of these NO x-related quantities are found to be faster (i.e., -6.8 to -9.3% yr -1) before 2010 and slower (i.e., -3.4 to -4.9% yr -1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NO x emissions, the weak-wind OMI NO 2 burdens, and ground-based NO 2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones ( R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NO x emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less
Monitoring Reservoir Storage in South Asia from Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Zhang, S.; Gao, H.; Naz, B.
2013-12-01
Realtime reservoir storage information is essential for accurate flood monitoring and prediction in South Asia, where the fatality rate (by area) due to floods is among the highest in the world. However, South Asia is dominated by international river basins where communications among neighboring countries about reservoir storage and management are extremely limited. In this study, we use a suite of NASA satellite observations to achieve high quality estimation of reservoir storage and storage variations at near realtime in South Asia. The monitoring approach employs vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 250 m MOD13Q1 product and the surface elevation data from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat). This approach contains four steps: 1) identifying the reservoirs with ICESat GLAS overpasses and extracting the elevation data for these locations; 2) using the K-means method for water classification from MODIS andapplying a novel post-classification algorithm to enhance water area estimation accuracy; 3) deriving the relationship between the MODIS water surface area and the ICESat elevation; and 4) estimating the storage of reservoirs over time based on the elevation-area relationship and the MODIS water area time series. For evaluation purposes, we compared the satellite-based reservoir storage with gauge observations for 16 reservoirs in South Asia. The storage estimates were highly correlated with observations (R = 0.92 to 0.98), with values for the normalized root mean square error (NRMSE) ranging from 8.7% to 25.2%. Using this approach, storage and storage variations were estimated for 16 South Asia reservoirs from 2000 to 2012.
Fluctuating snow line altitudes in the Hunza basin (Karakoram) using Landsat OLI imagery
NASA Astrophysics Data System (ADS)
Racoviteanu, Adina; Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Armstrong, Richard
2016-04-01
Snowline altitudes (SLAs) on glacier surfaces are needed for separating snow and ice as input for melt models. When measured at the end of the ablation season, SLAs are used for inferring stable-state glacier equilibrium line altitudes (ELAs). Direct measurements of snowlines are rarely possible particularly in remote, high altitude glacierized terrain, but remote sensing data can be used to separate these snow and ice surfaces. Snow lines are commonly visible on optical satellite images acquired at the end of the ablation season if the images are contrasted enough, and are manually digitized on screen using various satellite band combinations for visual interpretation, which is a time-consuming, subjective process. Here we use Landsat OLI imagery at 30 m resolution to estimate glacier SLAs for a subset of the Hunza basin in the Upper Indus in the Karakoram. Clean glacier ice surfaces are delineated using a standardized semi-automated band ratio algorithm with image segmentation. Within the glacier surface, snow and ice are separated using supervised classification schemes based on regions of interest, and glacier SLAs are extracted on the basis of these areas. SLAs are compared with estimates from a new automated method that relies on fractional snow covered area rather than on band ratio algorithms for delineating clean glacier ice surfaces, and on grain size (instead of supervised classification) for separating snow from glacier ice on the glacier surface. The two methods produce comparable snow/ice outputs. The fSCA-derived glacierized areas are slightly larger than the band ratio estimates. Some of the additional area is the result of better detection in shadows from spectral mixture analysis (true positive) while the rest is shallow water, which is spectrally similar to snow/ice (false positive). On the glacier surface, a thresholding the snow grain size image (grain size > 500μm) results in similar glacier ice areas derived from the supervised classification, but there is noise (snow) on edges of dirty ice/ moraines at the glacier termini and around rock outcrops on the glacier surface. Neither of the two methods distinguishes the debris-covered ice, so these were mapped separately using a combination of topographic indices (slope, terrain curvature), along with remote sensing surface temperature and texture data. Using average elevation of snow and ice areas, we calculate an ELA of 5260 m for 2013. We construct yearly time series of the ELAs around the centerlines of selected glaciers in the Hunza for the period 2000 - 2014 using Landsat imagery. We explore spatial trends in glacier ELAs within the region, as well as relationships between ELA and topographic characteristics extracted on a glacier-by-glacier basis from a digital elevation model.
Andrews, William J.; Becker, Carol J.; Ryter, Derek W.; Smith, S. Jerrod
2016-01-19
Numerical groundwater-flow models were created to characterize flow systems in aquifers underlying this study area and areas of particular interest within the study area. Those models were used to estimate sustainable groundwater yields from parts of the North Canadian River alluvial aquifer, characterize groundwater/surface-water interactions, and estimate the effects of a 10-year simulated drought on streamflows and water levels in alluvial and bedrock aquifers. Pumping of wells at the Iron Horse Industrial Park was estimated to cause negligible infiltration of water from the adjoining North Canadian River. A 10-year simulated drought of 50 percent of normal recharge was tested for the period 1990–2000. For this period, the total amount of groundwater in storage was estimated to decrease by 8.6 percent in the North Canadian River alluvial aquifer and approximately 0.2 percent in the Central Oklahoma aquifer, and groundwater flow to streams was estimated to decrease by 28–37 percent. This volume of groundwater loss showed that the Central Oklahoma aquifer is a bedrock aquifer that has relatively low rates of recharge from the land surface. The simulated drought decreased simulated streamflow, composed of base flow, in the North Canadian River at Shawnee, Okla., which did not recover to predrought conditions until the relatively wet year of 2007 after the simulated drought period.
Quantifying object and material surface areas in residences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.
2005-01-05
The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented formore » measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.« less
Empirical Allometric Models to Estimate Total Needle Biomass For Loblolly Pine
Hector M. de los Santos-Posadas; Bruce E. Borders
2002-01-01
Empirical geometric models based on the cone surface formula were adapted and used to estimate total dry needle biomass (TNB) and live branch basal area (LBBA). The results suggest that the empirical geometric equations produced good fit and stable parameters while estimating TNB and LBBA. The data used include trees form a spacing study of 12 years old and a set of...
Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation
NASA Astrophysics Data System (ADS)
Xu, Ru; Zhang, Hongsheng; Wang, Ting; Lin, Hui
2017-05-01
Impervious surface is an important environmental and socio-economic indicator for numerous urban studies. While a large number of researches have been conducted to estimate the area and distribution of impervious surface from satellite data, the accuracy for impervious surface estimation (ISE) is insufficient due to high diversity of urban land cover types. This study evaluated the use of panchromatic (PAN) data in very high resolution satellite image for improving the accuracy of ISE by various pan-sharpening approaches, with a further comprehensive analysis of its scale effects. Three benchmark pan-sharpening approaches, Gram-Schmidt (GS), PANSHARP and principal component analysis (PCA) were applied to WorldView-2 in three spots of Hong Kong. The on-screen digitization were carried out based on Google Map and the results were viewed as referenced impervious surfaces. The referenced impervious surfaces and the ISE results were then re-scaled to various spatial resolutions to obtain the percentage of impervious surfaces. The correlation coefficient (CC) and root mean square error (RMSE) were adopted as the quantitative indicator to assess the accuracy. The accuracy differences between three research areas were further illustrated by the average local variance (ALV) which was used for landscape pattern analysis. The experimental results suggested that 1) three research regions have various landscape patterns; 2) ISE accuracy extracted from pan-sharpened data was better than ISE from original multispectral (MS) data; and 3) this improvement has a noticeable scale effects with various resolutions. The improvement was reduced slightly as the resolution became coarser.
Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.
Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji
2016-09-01
It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.
A Probabilistic Analysis of Surface Water Flood Risk in London.
Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris
2018-06-01
Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.
Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area
NASA Astrophysics Data System (ADS)
Bechle, Matthew J.; Millet, Dylan B.; Marshall, Julian D.
2013-04-01
Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI) can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient monitoring stations. OMI, aboard NASA's Aura satellite, provides daily afternoon (˜13:30 local time) measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI measurements include more data gaps than the ground monitors (60% versus 5% of available data, respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation between OMI columns and corrected in situ measurements is strong (r = 0.93 for annual average data), indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor. Satellite-based surface estimates employing scaling factors from an urban model provide a reliable measure (annual mean bias: -13%; seasonal mean bias: <1% [spring] to -22% [fall]) of fine-scale surface NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level NO2 exposure for a large urban area.
Loch-Wilkinson, Anna; Beath, Kenneth J; Knight, Robert John William; Wessels, William Louis Fick; Magnusson, Mark; Papadopoulos, Tim; Connell, Tony; Lofts, Julian; Locke, Michelle; Hopper, Ingrid; Cooter, Rodney; Vickery, Karen; Joshi, Preeti Avinash; Prince, H Miles; Deva, Anand K
2017-10-01
The association between breast implants and breast implant-associated anaplastic large cell lymphoma (ALCL) has been confirmed. Implant-related risk has been difficult to estimate to date due to incomplete datasets. All cases in Australia and New Zealand were identified and analyzed. Textured implants reported in this group were subjected to surface area analysis. Sales data from three leading breast implant manufacturers (i.e., Mentor, Allergan, and Silimed) dating back to 1999 were secured to estimate implant-specific risk. Fifty-five cases of breast implant-associated ALCL were diagnosed in Australia and New Zealand between 2007 and 2016. The mean age of patients was 47.1 years and the mean time of implant exposure was 7.46 years. There were four deaths in the series related to mass and/or metastatic presentation. All patients were exposed to textured implants. Surface area analysis confirmed that higher surface area was associated with 64 of the 75 implants used (85.3 percent). Biocell salt loss textured (Allergan, Inamed, and McGhan) implants accounted for 58.7 percent of the implants used in this series. Comparative analysis showed the risk of developing breast implant-associated ALCL to be 14.11 times higher with Biocell textured implants and 10.84 higher with polyurethane (Silimed) textured implants compared with Siltex textured implants. This study has calculated implant-specific risk of breast implant-associated ALCL. Higher-surface-area textured implants have been shown to significantly increase the risk of breast implant-associated ALCL in Australia and New Zealand. The authors present a unifying hypothesis to explain these observations.
Risk assessment for adult butterflies exposed to the mosquito control pesticide naled.
Bargar, Timothy A
2012-04-01
A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed. Copyright © 2012 SETAC.
Estimation of surface water storage in the Congo Basin
NASA Astrophysics Data System (ADS)
O'Loughlin, F.; Neal, J. C.; Schumann, G.; Beighley, E.; Bates, P. D.
2015-12-01
For many large river basins, especially in Africa, the lack of access to in-situ measurements, and the large areas involved, make modelling of water storage and runoff difficult. However, remote sensing datasets are useful alternative sources of information, which overcome these issues. In this study, we focus on the Congo Basin and, in particular, the cuvette central. Despite being the second largest river basin on earth and containing a large percentage of the world's tropical wetlands and forest, little is known about this basin's hydrology. Combining discharge estimates from in-situ measurements and outputs from a hydrological model, we build the first large-scale hydrodynamic model for this region to estimate the volume of water stored in the corresponding floodplains and to investigate how important these floodplains are to the behaviour of the overall system. This hydrodynamic model covers an area over 1.6 million square kilometres and 13 thousand kilometres of rivers and is calibrated to water surface heights at 33 virtual gauging stations obtained from ESA's Envisat satellite. Our results show that the use of different sources of discharge estimations and calibration via Envisat observations can produce accurate water levels and downstream discharges. Our model produced un-biased (bias =-0.08 m), sub-metre Root Mean Square Error (RMSE =0.862 m) with a Nash-Sutcliffe efficiency greater than 80% (NSE =0.81). The spatial-temporal variations in our simulated inundated areas are consistent with the pattern obtained from satellites. Overall, we find a high correlation coefficient (R =0.88) between our modelled inundated areas and those estimated from satellites.
Vegetation associated with different walking track types in the Kosciuszko alpine area, Australia.
Hill, Wendy; Pickering, Catherine Marina
2006-01-01
Tourism infrastructure such as walking tracks can have negative effects on vegetation including in mountain regions. In the alpine area around continental Australia's highest mountain, Mt Kosciuszko (2228 m), there is a range of walking tracks (paved, gravel and raised steel mesh surfaces) in addition to an extensive network of informal/non-hardened tracks. Vegetation characteristics were compared between track types on/under tracks, on the track verge, and in the adjacent native vegetation. For a raised steel mesh walkway there was no difference in vegetation under the walkway, on the verge, and 3m away. In contrast, for a non-hardened track there was 35% bare ground on the track surface but no other detectable impacts. Gravel and paved tracks had distinct verges largely comprising bare ground and exotic species. For non-hardened tracks there was an estimated 270 m2 of disturbance per km of track. For wide gravel tracks the combined area of bare ground, exotic plants and gravel was estimated as 4290 m2 per km, while for narrow gravel tracks it was estimated as 2940 m2 per km. For paved tracks there was around 2680 m2 per km of damage. In contrast, there was no detectable effect of raised steel mesh walkway on vegetation highlighting some of the benefits of this surface over other track types.
Fifty-year flood-inundation maps for Comayagua, Hondura
Kresch, David L.; Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Comayagua that would be inundated by 50-year floods on Rio Humuya and Rio Majada. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Comayagua as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Humuya and Rio Majada at Comayagua were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Humuya at Comayagua, 1,400 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The reasonableness of the regression discharge was evaluated by comparing it with drainage-area-adjusted 50-year-flood discharges estimated for three long-term Rio Humuya stream-gaging stations. The drainage-area-adjusted 50-year-flood discharges estimated from the gage records ranged from 946 to 1,365 cubic meters per second. Because the regression equation discharge agrees closely with the high end of the range of discharges estimated from the gaging-station records, it was used for the hydraulic modeling to ensure that the resulting 50-year-flood water-surface elevations would not be underestimated. The 50-year-flood discharge for Rio Majada at Comayagua (230 cubic meters per second) was estimated using the regression equation because there are no long-term gaging-stations on this river from which to estimate the discharge.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the initial mixing distance, is estimated by: Cp=25(Wi)/(T0.7 Q) where Cp is the peak concentration... equation: Tp=9.25×106 Wi/(QCp) where Tp is the time estimate, in hours, and Wi, Cp, and Q are defined above... downstream location, past the initial mixing distance, is estimated by: Cp=C(q)/(Q+ where Cp and Q are...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the initial mixing distance, is estimated by: Cp=25(Wi)/(T0.7 Q) where Cp is the peak concentration... equation: Tp=9.25×106 Wi/(QCp) where Tp is the time estimate, in hours, and Wi, Cp, and Q are defined above... downstream location, past the initial mixing distance, is estimated by: Cp=C(q)/(Q+ where Cp and Q are...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the initial mixing distance, is estimated by: Cp=25(Wi)/(T0.7 Q) where Cp is the peak concentration... equation: Tp=9.25×106 Wi/(QCp) where Tp is the time estimate, in hours, and Wi, Cp, and Q are defined above... downstream location, past the initial mixing distance, is estimated by: Cp=C(q)/(Q+ where Cp and Q are...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the initial mixing distance, is estimated by: Cp=25(Wi)/(T0.7 Q) where Cp is the peak concentration... equation: Tp=9.25×106 Wi/(QCp) where Tp is the time estimate, in hours, and Wi, Cp, and Q are defined above... downstream location, past the initial mixing distance, is estimated by: Cp=C(q)/(Q+ where Cp and Q are...
Code of Federal Regulations, 2014 CFR
2014-10-01
... the initial mixing distance, is estimated by: Cp=25(Wi)/(T0.7 Q) where Cp is the peak concentration... equation: Tp=9.25×106 Wi/(QCp) where Tp is the time estimate, in hours, and Wi, Cp, and Q are defined above... downstream location, past the initial mixing distance, is estimated by: Cp=C(q)/(Q+ where Cp and Q are...
USDA-ARS?s Scientific Manuscript database
Estimation of soil moisture has received considerable attention in the areas of hydrology, agriculture, meteorology and environmental studies because of its role in the partitioning water and energy at the land surface. In this study, the Ensemble Kalman Filter (EnKF), a popular data assimilation te...
USDA-ARS?s Scientific Manuscript database
Estimation of soil moisture has received considerable attention in the areas of hydrology, agriculture, meteorology and environmental studies because of its role in the partitioning water and energy at the land surface. In this study, the USDA, Agricultural Research Service, Root Zone Water Quality ...
NASA Technical Reports Server (NTRS)
Bolten, John; Crow, Wade
2012-01-01
The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.
A rapid solvent accessible surface area estimator for coarse grained molecular simulations.
Wei, Shuai; Brooks, Charles L; Frank, Aaron T
2017-06-05
The rapid and accurate calculation of solvent accessible surface area (SASA) is extremely useful in the energetic analysis of biomolecules. For example, SASA models can be used to estimate the transfer free energy associated with biophysical processes, and when combined with coarse-grained simulations, can be particularly useful for accounting for solvation effects within the framework of implicit solvent models. In such cases, a fast and accurate, residue-wise SASA predictor is highly desirable. Here, we develop a predictive model that estimates SASAs based on Cα-only protein structures. Through an extensive comparison between this method and a comparable method, POPS-R, we demonstrate that our new method, Protein-C α Solvent Accessibilities or PCASA, shows better performance, especially for unfolded conformations of proteins. We anticipate that this model will be quite useful in the efficient inclusion of SASA-based solvent free energy estimations in coarse-grained protein folding simulations. PCASA is made freely available to the academic community at https://github.com/atfrank/PCASA. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zeweldi, D. A.; Gebremichael, M.; Summis, T.; Wang, J.; Miller, D.
2008-12-01
The large source of uncertainty in satellite-based evapotranspiration algorithm results from the estimation of sensible heat flux H. Traditionally eddy covariance sensors, and recently large-aperture scintillometers, have been used as ground truth to evaluate satellite-based H estimates. The two methods rely on different physical measurement principles, and represent different foot print sizes. In New Mexico, we conducted a field campaign during summer 2008 to compare H estimates obtained from the eddy covariance and scintillometer methods. During this field campaign, we installed sonic anemometers; one propeller eddy covariance (OPEC) equipped with net radiometer and soil heat flux sensors; large aperture scintillometer (LAS); and weather station consisting of wind speed, direction and radiation sensors over three different experimental areas consisting of different roughness conditions (desert, irrigated area and lake). Our results show the similarities and differences in H estimates obtained from these various methods over the different land surface conditions. Further, our results show that the H estimates obtained from the LAS agree with those obtained from the eddy covariance method when high frequency thermocouple temperature, instead of the typical weather station temperature measurements, is used in the LAS analysis.
Comparing population size estimators for plethodontid salamanders
Bailey, L.L.; Simons, T.R.; Pollock, K.H.
2004-01-01
Despite concern over amphibian declines, few studies estimate absolute abundances because of logistic and economic constraints and previously poor estimator performance. Two estimation approaches recommended for amphibian studies are mark-recapture and depletion (or removal) sampling. We compared abundance estimation via various mark-recapture and depletion methods, using data from a three-year study of terrestrial salamanders in Great Smoky Mountains National Park. Our results indicate that short-term closed-population, robust design, and depletion methods estimate surface population of salamanders (i.e., those near the surface and available for capture during a given sampling occasion). In longer duration studies, temporary emigration violates assumptions of both open- and closed-population mark-recapture estimation models. However, if the temporary emigration is completely random, these models should yield unbiased estimates of the total population (superpopulation) of salamanders in the sampled area. We recommend using Pollock's robust design in mark-recapture studies because of its flexibility to incorporate variation in capture probabilities and to estimate temporary emigration probabilities.
Estimating watershed level nonagricultural pesticide use from golf courses using geospatial methods
Fox, G.A.; Thelin, G.P.; Sabbagh, G.J.; Fuchs, J.W.; Kelly, I.D.
2008-01-01
Limited information exists on pesticide use for nonagricultural purposes, making it difficult to estimate pesticide loadings from nonagricultural sources to surface water and to conduct environmental risk assessments. A method was developed to estimate the amount of pesticide use on recreational turf grasses, specifically golf course turf grasses, for watersheds located throughout the conterminous United States (U.S.). The approach estimates pesticide use: (1) based on the area of recreational turf grasses (used as a surrogate for turf associated with golf courses) within the watershed, which was derived from maps of land cover, and (2) from data on the location and average treatable area of golf courses. The area of golf course turf grasses determined from these two methods was used to calculate the percentage of each watershed planted in golf course turf grass (percent crop area, or PCA). Turf-grass PCAs derived from the two methods were used with recommended application rates provided on pesticide labels to estimate total pesticide use on recreational turf within 1,606 watersheds associated with surface-water sources of drinking water. These pesticide use estimates made from label rates and PCAs were compared to use estimates from industry sales data on the amount of each pesticide sold for use within the watershed. The PCAs derived from the land-cover data had an average value of 0.4% of a watershed with minimum of 0.01% and a maximum of 9.8%, whereas the PCA values that are based on the number of golf courses in a watershed had an average of 0.3% of a watershed with a minimum of <0.01% and a maximum of 14.2%. Both the land-cover method and the number of golf courses method produced similar PCA distributions, suggesting that either technique may be used to provide a PCA estimate for recreational turf. The average and maximum PCAs generally correlated to watershed size, with the highest PCAs estimated for small watersheds. Using watershed specific PCAs, combined with label rates, resulted in greater than two orders of magnitude over-estimation of the pesticide use compared to estimates from sales data. ?? 2008 American Water Resources Association.
Qian, Xueya; Jiang, Yanmin; Liu, Lei; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu
2016-11-01
The objective of this study is to estimate changes in the surface area of the ectocervix (CA) in women during pregnancy and compare this to postpartum and non-pregnant states. CA was evaluated in 210 normal nulliparous women divided into groups from early to late gestation, 40 postpartum women, and 25 non-pregnant women. CA in cm(2) was estimated from analysis of images taken with an endoscope of the cervical face and an mm scale. An mm scale was also used to determine fornix length and fornix area computed. The face, fornix, and total areas of the CA of non-pregnant and postpartum groups are significantly smaller (p < 0.001) than these areas in groups during pregnancy. Generally, the CA of the face, fornix, and total area are also less in early pregnancy compared with late gestation (p < 0.01 to <0.001). Total CA correlates with gestational age (r = 0.196, p < 0.004). (1) During pregnancy, CA slowly and progressively increases to >75% area compared with CA of non-pregnant patients and then reverts back to low CA postpartum. (2) Increases in CA during pregnancy occur in both the face and fornix areas. (3) Increases in CA reflect enlargement in cervical volume and remodeling during pregnancy.
Cheah, A K W; Kangkorn, T; Tan, E H; Loo, M L; Chong, S J
2018-01-01
Accurate total body surface area burned (TBSAB) estimation is a crucial aspect of early burn management. It helps guide resuscitation and is essential in the calculation of fluid requirements. Conventional methods of estimation can often lead to large discrepancies in burn percentage estimation. We aim to compare a new method of TBSAB estimation using a three-dimensional smart-phone application named 3D Burn Resuscitation (3D Burn) against conventional methods of estimation-Rule of Palm, Rule of Nines and the Lund and Browder chart. Three volunteer subjects were moulaged with simulated burn injuries of 25%, 30% and 35% total body surface area (TBSA), respectively. Various healthcare workers were invited to use both the 3D Burn application as well as the conventional methods stated above to estimate the volunteer subjects' burn percentages. Collective relative estimations across the groups showed that when used, the Rule of Palm, Rule of Nines and the Lund and Browder chart all over-estimated burns area by an average of 10.6%, 19.7%, and 8.3% TBSA, respectively, while the 3D Burn application under-estimated burns by an average of 1.9%. There was a statistically significant difference between the 3D Burn application estimations versus all three other modalities ( p < 0.05). Time of using the application was found to be significantly longer than traditional methods of estimation. The 3D Burn application, although slower, allowed more accurate TBSAB measurements when compared to conventional methods. The validation study has shown that the 3D Burn application is useful in improving the accuracy of TBSAB measurement. Further studies are warranted, and there are plans to repeat the above study in a different centre overseas as part of a multi-centre study, with a view of progressing to a prospective study that compares the accuracy of the 3D Burn application against conventional methods on actual burn patients.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard
1994-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
Ross, Matthew R V; McGlynn, Brian L; Bernhardt, Emily S
2016-02-16
Land use impacts are commonly quantified and compared using 2D maps, limiting the scale of their reported impacts to surface area estimates. Yet, nearly all land use involves disturbances below the land surface. Incorporating this third dimension into our estimates of land use impact is especially important when examining the impacts of mining. Mountaintop mining is the most common form of coal mining in the Central Appalachian ecoregion. Previous estimates suggest that active, reclaimed, or abandoned mountaintop mines cover ∼7% of Central Appalachia. While this is double the areal extent of development in the ecoregion (estimated to occupy <3% of the land area), the impacts are far more extensive than areal estimates alone can convey as the impacts of mines extend 10s to 100s of meters below the current land surface. Here, we provide the first estimates for the total volumetric and topographic disturbance associated with mining in an 11 500 km(2) region of southern West Virginia. We find that the cutting of ridges and filling of valleys has lowered the median slope of mined landscapes in the region by nearly 10 degrees while increasing their average elevation by 3 m as a result of expansive valley filling. We estimate that in southern West Virginia, more than 6.4km(3) of bedrock has been broken apart and deposited into 1544 headwater valley fills. We used NPDES monitoring datatsets available for 91 of these valley fills to explore whether fill characteristics could explain variation in the pH or selenium concentrations reported for streams draining these fills. We found that the volume of overburden in individual valley fills correlates with stream pH and selenium concentration, and suggest that a three-dimensional assessment of mountaintop mining impacts is necessary to predict both the severity and the longevity of the resulting environmental impacts.
Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.
2015-01-01
This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.
Analysis and Modeling of Boundary Layer Separation Method (BLSM).
Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid
2010-09-01
Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.
Sumner, D.M.
2001-01-01
Daily values of evapotranspiration from a watershed in Volusia County, Florida, were estimated for a 2-year period (January 1998 through December 1999) by using an energy-budget variant of the eddy correlation method and a Priestley-Taylor model. The watershed consisted primarily of pine flatwood uplands interspersed within cypress wetlands. A drought-induced fire in spring 1998 burned about 40 percent of the watershed, most of which was subsequently logged. The model reproduced the 449 measured values of evapotranspiration reasonably well (r2=0.90) over a wide range of seasonal and surface-cover conditions. Annual evapotranspiration from the watershed was estimated to be 916 millimeters (36 inches) for 1998 and 1,070 millimeters (42 inches) for 1999. Evapotranspiration declined from near potential rates in the wet conditions of January 1998 to less than 50 percent of potential evapotranspiration after the fire and at the peak of the drought in June 1998. After the drought ended in early July 1998 and water levels returned to near land-surface, evapotranspiration increased sharply; however, the evapotranspiration rate was only about 60 percent of the potential rate in the burned areas, compared to about 90 percent of the potential rate in the unburned areas. This discrepancy can be explained as a result of fire damage to vegetation. Beginning in spring 1999, evapotranspiration from burned areas increased sharply relative to unburned areas, sometimes exceeding unburned evapotranspiration by almost 100 percent. Possible explanations for the dramatic increase in evapotranspiration from burned areas could include phenological changes associated with maturation or seasonality of plants that emerged after the fire or successional changes in composition of plant community within burned areas. Variations in daily evapotranspiration are primarily the result of variations in surface cover, net radiation, photosynthetically active radiation, air temperature, and water-table depth. A water budget for the watershed supports the validity of the daily measurements and estimates of evapotranspiration. A water budget constructed using independent estimates of average rates of rainfall, runoff, and deep leakage, as well as evapotranspiration, was consistent within 3.8 percent. An alternative water budget constructed using evapotrans-piration estimated by the standard eddy correlation method was consistent only within 9.1 percent. This result indicates that the standard eddy correlation method is not as accurate as the energy-budget variant.
The estimation of quantitative parameters of oligonucleotides immobilization on mica surface
NASA Astrophysics Data System (ADS)
Sharipov, T. I.; Bakhtizin, R. Z.
2017-05-01
Immobilization of nucleic acids on the surface of various materials is increasingly being used in research and some practical applications. Currently, the DNA chip technology is rapidly developing. The basis of the immobilization process can be both physical adsorption and chemisorption. A useful way to control the immobilization of nucleic acids on a surface is to use atomic force microscopy. It allows you to investigate the topography of the surface by its direct imaging with high resolution. Usually, to fix the DNA on the surface of mica are used cations which mediate the interaction between the mica surface and the DNA molecules. In our work we have developed a method for estimation of quantitative parameter of immobilization of oligonucleotides is their degree of aggregation depending on the fixation conditions on the surface of mica. The results on study of aggregation of oligonucleotides immobilized on mica surface will be presented. The single oligonucleotides molecules have been imaged clearly, whereas their surface areas have been calculated and calibration curve has been plotted.
Geodetic estimates of fault slip rates in the San Francisco Bay area
Savage, J.C.; Svarc, J.L.; Prescott, W.H.
1999-01-01
Bourne et al. [1998] have suggested that the interseismic velocity profile at the surface across a transform plate boundary is a replica of the secular velocity profile at depth in the plastosphere. On the other hand, in the viscoelastic coupling model the shape of the interseismic surface velocity profile is a consequence of plastosphere relaxation following the previous rupture of the faults that make up the plate boundary and is not directly related to the secular flow in the plastosphere. The two models appear to be incompatible. If the plate boundary is composed of several subparallel faults and the interseismic surface velocity profile across the boundary known, each model predicts the secular slip rates on the faults which make up the boundary. As suggested by Bourne et al., the models can then be tested by comparing the predicted secular slip rates to those estimated from long-term offsets inferred from geology. Here we apply that test to the secular slip rates predicted for the principal faults (San Andreas, San Gregorio, Hayward, Calaveras, Rodgers Creek, Green Valley and Greenville faults) in the San Andreas fault system in the San Francisco Bay area. The estimates from the two models generally agree with one another and to a lesser extent with the geologic estimate. Because the viscoelastic coupling model has been equally successful in estimating secular slip rates on the various fault strands at a diffuse plate boundary, the success of the model of Bourne et al. [1998] in doing the same thing should not be taken as proof that the interseismic velocity profile across the plate boundary at the surface is a replica of the velocity profile at depth in the plastosphere.
Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, L. Shea
2001-02-28
Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four majormore » land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.« less
Remote Sensing of Evapotranspiration and Carbon Uptake at Harvard Forest
NASA Technical Reports Server (NTRS)
Min, Qilong; Lin, Bing
2005-01-01
A land surface vegetation index, defined as the difference of microwave land surface emissivity at 19 and 37 GHz, was calculated for a heavily forested area in north central Massachusetts. The microwave emissivity difference vegetation index (EDVI) was estimated from satellite SSM/I measurements at the defined wavelengths and used to estimate land surface turbulent fluxes. Narrowband visible and infrared measurements and broadband solar radiation observations were used in the EDVI retrievals and turbulent flux estimations. The EDVI values represent physical properties of crown vegetation such as vegetation water content of crown canopies. The collocated land surface turbulent and radiative fluxes were empirically linked together by the EDVI values. The EDVI values are statistically sensitive to evapotranspiration fractions (EF) with a correlation coefficient (R) greater than 0.79 under all-sky conditions. For clear skies, EDVI estimates exhibit a stronger relationship with EF than normalized difference vegetation index (NDVI). Furthermore, the products of EDVI and input energy (solar and photosynthetically-active radiation) are statistically significantly correlated to evapotranspiration (R=0.95) and CO2 uptake flux (R=0.74), respectively.
Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong
2017-01-01
The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450
Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong
2017-03-14
The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.
Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.
1994-01-01
A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to be underlain by similar deposits. Delineation of the zones was based on depositional history of the area and the distri- bution of sediments shown on a surficial geologic map. Water levels in wells were measured twice in 1990: during late winter when ground-water with- drawals were the least and water levels the highest, and again in late summer, when ground- water withdrawals were the greatest and water levels the lowest. These water levels were used to construct potentiometric-contour maps and subsequently to determine the variability of the slope in the potentiometric surface in the area. Values for the three properties, derived from the described sources of information, were used to produce a map showing the general distribution of average linear velocity of ground water moving through the principal aquifer of the study area. Velocity derived ranged from 0.06 to 144 feet per day with a median of about 3 feet per day. Values were slightly faster for late summer 1990 than for late winter 1990, mainly because increased with- drawal of water during the summer created slightly steeper hydraulic-head gradients between the recharge area near the mountain front and the well fields farther to the west. The fastest average linear-velocity values were located at the mouth of Little Cottonwood Canyon and south of Dry Creek near the mountain front, where the hydraulic con- ductivity was estimated to be the largest because the drillers described the sediments to be pre- dominantly clean and coarse grained. Both of these areas also had steep slopes in the potentiometric surface. Other areas where average linear velocity was fast included small areas near pumping wells where the slope in the potentiometric surface was locally steepened. No apparent relation between average linear velocity and porosity could be seen in the mapped distributions of these two properties. Calculation of travel time along a flow line to a well in the southwestern part of the study area during the sum
Reevaluation of mid-Pliocene North Atlantic sea surface temperatures
Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.
2008-01-01
Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.
NASA Astrophysics Data System (ADS)
Lee, J. H.
2015-12-01
Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.
The volume and mean depth of Earth's lakes
NASA Astrophysics Data System (ADS)
Cael, B. B.; Heathcote, A. J.; Seekell, D. A.
2017-01-01
Global lake volume estimates are scarce, highly variable, and poorly documented. We developed a rigorous method for estimating global lake depth and volume based on the Hurst coefficient of Earth's surface, which provides a mechanistic connection between lake area and volume. Volume-area scaling based on the Hurst coefficient is accurate and consistent when applied to lake data sets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3). This volume is in the range of historical estimates (166,000-280,000 km3), but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62-151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles.
Prediction of the area affected by earthquake-induced landsliding based on seismological parameters
NASA Astrophysics Data System (ADS)
Marc, Odin; Meunier, Patrick; Hovius, Niels
2017-07-01
We present an analytical, seismologically consistent expression for the surface area of the region within which most landslides triggered by an earthquake are located (landslide distribution area). This expression is based on scaling laws relating seismic moment, source depth, and focal mechanism with ground shaking and fault rupture length and assumes a globally constant threshold of acceleration for onset of systematic mass wasting. The seismological assumptions are identical to those recently used to propose a seismologically consistent expression for the total volume and area of landslides triggered by an earthquake. To test the accuracy of the model we gathered geophysical information and estimates of the landslide distribution area for 83 earthquakes. To reduce uncertainties and inconsistencies in the estimation of the landslide distribution area, we propose an objective definition based on the shortest distance from the seismic wave emission line containing 95 % of the total landslide area. Without any empirical calibration the model explains 56 % of the variance in our dataset, and predicts 35 to 49 out of 83 cases within a factor of 2, depending on how we account for uncertainties on the seismic source depth. For most cases with comprehensive landslide inventories we show that our prediction compares well with the smallest region around the fault containing 95 % of the total landslide area. Aspects ignored by the model that could explain the residuals include local variations of the threshold of acceleration and processes modulating the surface ground shaking, such as the distribution of seismic energy release on the fault plane, the dynamic stress drop, and rupture directivity. Nevertheless, its simplicity and first-order accuracy suggest that the model can yield plausible and useful estimates of the landslide distribution area in near-real time, with earthquake parameters issued by standard detection routines.
NASA Astrophysics Data System (ADS)
Timmermans, J.; van der Tol, C.; Verhoef, A.; Wang, L.; van Helvoirt, M.; Verhoef, W.; Su, Z.
2009-11-01
An earth observation based evapotranspiration (ET) product is essential to achieving the GEWEX CEOP science objectives and to achieve the GEOSS water resources societal benefit areas. Conventional techniques that employ point measurements to estimate the components of the energy balance are only representative for local scales and cannot be extended to large areas because of the heterogeneity of the land surface and the dynamic nature of heat transfer processes.The objective of this research is to quantify the uncertainties of evapotranspiration estimates by the Surface Energy Balance System (SEBS) algorithm through validation against the detailed Soil Canopy Observation, Photochemistry and Energy fluxes process (SCOPE) model with site optimized parameters. This SCOPE model takes both radiative processes and biochemical processes into account; it combines the SAIL radiative transfer model with the energy balance at leaf level to simulate the interaction between surface and atmosphere. In this paper the validation results are presented for a semi long term dataset in Reading on 2002.The comparison between the two models showed a high correlation over the complete growth of maize capturing the daily variation to good extent. The absolute values of the SEBS model are however much lower compared to those of the SCOPE model. This is due to the fact the SEBS model uses a surface resistance parameterization that is unable to account of high vegetation. An update of the SEBS model will resolve this problem.
Effects of sample size on KERNEL home range estimates
Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.
1999-01-01
Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.
Development of partial rock veneers by root throw in a subalpine setting
Osterkamp, W.R.; Toy, T.J.; Lenart, M.T.
2006-01-01
Rock veneers stabilize hillslope surfaces, occur especially in areas of immature soil, and form through a variety of process sets that includes root throw. Near Westcliffe, Colorado, USA, data were collected from a 20 ?? 500 m transect on the east slope of the Sangre de Cristo Mountains. Ages of pit/mound complexes with rock fragments exposed at the surface by root throw ranged from recent (freshly toppled tree) to unknown (complete tree decay). Calculations based on dimensions of the pit/mound complexes, estimated time of free topppling, sizes of exposed rock fragments, and percentage rock covers at pit/mound complexes, as well as within the transect area, indicate that recent rates of root throw have resulted in only partial rock veneering since late Pleistocene deglaciation. Weathering of rock fragments prevent development of an extensive rock veneer and causes a balance, achieved within an estimated 700 years, between the rates of rock-fragment exposure by root throw and clast disintegration by chemical reduction. The estimated rate of rock-fragment reduction accounts for part of the fluvial sediment yields observed for forested subalpine areas of western North America. Copyright ?? 2005 John Wiley & Sons, Ltd.
Brown, Gary S.; Betty, Rita G.; Brockmann, John E.; Lucero, Daniel A.; Souza, Caroline A.; Walsh, Kathryn S.; Boucher, Raymond M.; Tezak, Mathew; Wilson, Mollye C.; Rudolph, Todd
2007-01-01
Polyester-rayon blend wipes were evaluated for efficiency of extraction and recovery of powdered Bacillus atrophaeus spores from stainless steel and painted wallboard surfaces. Method limits of detection were also estimated for both surfaces. The observed mean efficiency of polyester-rayon blend wipe recovery from stainless steel was 0.35 with a standard deviation of ±0.12, and for painted wallboard it was 0.29 with a standard deviation of ±0.15. Evaluation of a sonication extraction method for the polyester-rayon blend wipes produced a mean extraction efficiency of 0.93 with a standard deviation of ±0.09. Wipe recovery quantitative limits of detection were estimated at 90 CFU per unit of stainless steel sample area and 105 CFU per unit of painted wallboard sample area. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling following the release of a biological agent such as Bacillus anthracis. PMID:17122390
43 CFR 3482.1 - Exploration and resource recovery and protection plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; earth- or debris-disposal areas; existing bodies of surface water; and topographic and drainage features... to, mining sequence, production rate, estimated recovery factors, stripping ratios, highwall limits...
Highly sensitive quartz crystal microbalance based biosensor using Au dendrite structure
NASA Astrophysics Data System (ADS)
Asai, Naoto; Terasawa, Hideaki; Shimizu, Tomohiro; Shingubara, Shoso; Ito, Takeshi
2018-02-01
A Au dendrite structure was obtained by only electroplating under a suitable potential. A blanch like nanostructure was formed along the crystal orientation. In this study, we attempted to fabricate a Au dendrite structure on the electrode of a quartz crystal by electroplating to increase the specific surface area. We estimated the effective surface area by cyclic voltammetry (CV) and monitored the frequency shift induced by antigen-antibody interaction by the quartz crystal microbalance (QCM) method. The dendrite structure with the largest surface area was formed under -0.95 V for 5 min. In the measurement of the antigen-antibody interaction, the frequency shifts of 40, 80, and 110 Hz were obtained with the dendrite structured QCM chips formed at the above potential for 1, 1.5, and 2.0 min, respectively. The sensitivity was improved compared with that QCM chip having a flat surface electrode.
NASA Technical Reports Server (NTRS)
Haralick, R. M.
1982-01-01
The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.
Detection of surface temperature from LANDSAT-7/ETM+
NASA Astrophysics Data System (ADS)
Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.
2003-12-01
Hiroshima Institute of Technology (HIT) in Japan has established a LANDSAT-7 Ground Station in cooperation with NASDA for receiving and processing the ETM+ data on March 15 th, 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of temperatures around Hiroshima city and bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6 (10.40-12.50μm), and then the estimation of the surface temperature distribution around the test site was examined.In this study, the authors estimated the surface temperature distribution equivalent to the land cover categories around the test site for establishing a guideline of surface temperature detection by LANDSAT7/ETM+ data. As the result of comparison of the truth data and the estimated surface temperature, the correlation coefficients of the approximate function referred to the truth data are from 0.9821 to 0.9994, and the differences are observed from +0.7 to -1.5°C in summer, from +0.4 to -0.9 *C in autumn, from -1.6 to -3.4°C in winter and from +0.5 to -0.5C in spring season respectively. It is clearly found that the estimation of surface temperature based on the approximate functions for converting the spectral radiance into the surface temperature referred to the truth data is improved over the directly estimated surface temperature obtained from satellite data. Finally, the successive seasonal change of surface temperature distribution pattern of the test site is precisely detected with the temperature legend of 0 to 80'C derived from LANDSAT-7/ETM+ band 6 image data for the thermal environment monitoring. 2003 COSPAR. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mege, D.
1999-03-01
Field data and length/displacement scaling laws applied to the Yakima fold belt on the Columbia Plateau are used to demonstrate a method for estimating surface shortening of wrinkle ridge areas. Application to martian wrinkle ridges is given in another abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Situ, S.; Guenther, Alex B.; Wang, X. J.
In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions onmore » surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.« less
NASA Technical Reports Server (NTRS)
Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
The advective transport of atmospheric water vapor and its role in global hydrology and the water balance of continental regions are discussed and explored. The data set consists of ten years of global wind and humidity observations interpolated onto a regular grid by objective analysis. Atmospheric water vapor fluxes across the boundaries of selected continental regions are displayed graphically. The water vapor flux data are used to investigate the sources of continental precipitation. The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from surrounding areas external to the region; and (2) evaporation and transpiration from the land surface recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. In a separate, but related, study estimates of ocean to land water vapor transport are used to parameterize an existing simple climate model, containing both land and ocean surfaces, that is intended to mimic the dynamics of continental climates.
Teeple, Andrew; Vrabel, Joseph; Kress, Wade H.; Cannia, James C.
2009-01-01
In 2005, the State of Nebraska adopted new legislation that in part requires local Natural Resources Districts to include the effect of groundwater use on surface-water systems in their groundwater management plan. In response the U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, did a study during 2006-07 to investigate the surface-water and groundwater interaction within a 79,800-square-kilometer area in north-central Nebraska. To determine how streambed materials affect surface-water and groundwater interaction, surface geophysical and lithologic data were integrated at four sites to characterize the hydrogeologic conditions within the study area. Frequency-domain electromagnetic and waterborne direct- current resistivity profiles were collected to map the near-surface hydrogeologic conditions along sections of Ainsworth Canal near Ainsworth, Nebraska; Mirdan and Geranium Canals near Ord, Nebraska; North Loup River near Ord, Nebraska; and Middle Loup River near Thedford, Nebraska. Lithologic data were collected from test holes at each site to aid interpretation of the geophysical data. Geostatistical analysis incorporating the spatial variability of resistivity was used to account for the effect of lithologic heterogeneity on effective hydraulic permeability. The geostatistical analysis and lithologic data descriptions were used to make an interpretation of the hydrogeologic system and derive estimates of surface-water/groundwater interaction potential within the canals and streambeds. The estimated interaction potential at the Ainsworth Canal site and the Mirdan and Geranium Canal site is generally low to moderately low. The sediment textures at nearby test holes typically were silt and clay and fine-to-medium sand. The apparent resistivity values for these sites ranged from 2 to 120 ohm-meters. The vertical and horizontal variability of the apparent resistivity data were consistently low. Low resistive variability indicates little lithologic heterogeneity for either canal site. The surface-water/groundwater interaction-potential estimates are in agreement with the narrow frequency distribution of resistivity, low apparent resistivities, low spatial heterogeneity, and test-hole grain-size ranges. The estimated surface-water/groundwater interaction potential at the North Loup and Middle Loup River sites is moderate to moderately high. The sediment textures at nearby test holes were predominantly fine, medium, and coarse sand with some silt and silty to sandy clay. The apparent resistivity values for these sites ranged from 34 to 1,338 ohm-meters. The vertical variability of the resistivity data was moderately high. The horizontal variability at these sites is low to moderately low. The higher resistive variability at these sites indicates generally greater lithologic heterogeneity than at either the Ainsworth Canal site or the Mirdan and Geranium Canal site. The surface-water/groundwater interaction-potential estimates are in agreement with the generally moderate to high apparent resistivity, the greater spatial heterogeneity, and the variable lithologic texture. A higher interaction potential as compared to the canal sites is expected because of the higher subsurface resistivity and greater lithologic heterogeneity.
Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica
NASA Technical Reports Server (NTRS)
Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.
2013-01-01
Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.
Infrastructure stability surveillance with high resolution InSAR
NASA Astrophysics Data System (ADS)
Balz, Timo; Düring, Ralf
2017-02-01
The construction of new infrastructure in largely unknown and difficult environments, as it is necessary for the construction of the New Silk Road, can lead to a decreased stability along the construction site, leading to an increase in landslide risk and deformation caused by surface motion. This generally requires a thorough pre-analysis and consecutive surveillance of the deformation patterns to ensure the stability and safety of the infrastructure projects. Interferometric SAR (InSAR) and the derived techniques of multi-baseline InSAR are very powerful tools for a large area observation of surface deformation patterns. With InSAR and deriver techniques, the topographic height and the surface motion can be estimated for large areas, making it an ideal tool for supporting the planning, construction, and safety surveillance of new infrastructure elements in remote areas.
Monitoring Earth's reservoir and lake dynamics from space
NASA Astrophysics Data System (ADS)
Donchyts, G.; Eilander, D.; Schellekens, J.; Winsemius, H.; Gorelick, N.; Erickson, T.; Van De Giesen, N.
2016-12-01
Reservoirs and lakes constitute about 90% of the Earth's fresh surface water. They play a major role in the water cycle and are critical for the ever increasing demands of the world's growing population. Water from reservoirs is used for agricultural, industrial, domestic, and other purposes. Current digital databases of lakes and reservoirs are scarce, mainly providing only descriptive and static properties of the reservoirs. The Global Reservoir and Dam (GRanD) database contains almost 7000 entries while OpenStreetMap counts more than 500 000 entries tagged as a reservoir. In the last decade several research efforts already focused on accurate estimates of surface water dynamics, mainly using satellite altimetry, However, currently they are limited only to less than 1000 (mostly large) water bodies. Our approach is based on three main components. Firstly, a novel method, allowing automated and accurate estimation of surface area from (partially) cloud-free optical multispectral or radar satellite imagery. The algorithm uses satellite imagery measured by Landsat, Sentinel and MODIS missions. Secondly, a database to store reservoir static and dynamic parameters. Thirdly, a web-based tool, built on top of Google Earth Engine infrastructure. The tool allows estimation of surface area for lakes and reservoirs at planetary-scale at high spatial and temporal resolution. A prototype version of the method, database, and tool will be presented as well as validation using in-situ measurements.
NASA Astrophysics Data System (ADS)
Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun
2012-09-01
Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.
Electron-emission-induced cooling of boundary region in fusion devices
NASA Astrophysics Data System (ADS)
Mishra, Sanjay K.; Avinash, K.; Kaw, Predhiman; Kaw
2014-12-01
In this brief communication we have explored whether the electron emission from the boundary region surfaces (or from additional fine structured dust particles/droplets of some benign material put purposely in the area surrounding the surfaces) can act as an efficient cooling mechanism for boundary region surfaces/dust electrons and hence the lattice. In order to estimate the contribution of this cooling process a simple kinetic model based on charge flux balance and associated energetics has been established. Along with some additional sophistication like suitable choice of material and modification in the work function via surface coating, the estimates show that it is possible to keep the temperature of the plate/particles well within the critical limit, i.e. melting/sublimation point for the desired regime of incident heat flux.
Critique of Sikkink and Keane's comparison of surface fuel sampling techniques
Clinton S. Wright; Roger D. Ottmar; Robert E. Vihnanek
2010-01-01
The 2008 paper of Sikkink and Keane compared several methods to estimate surface fuel loading in western Montana: two widely used inventory techniques (planar intersect and fixed-area plot) and three methods that employ photographs as visual guides (photo load, photoload macroplot and photo series). We feel, however, that their study design was inadequate to evaluate...
USDA-ARS?s Scientific Manuscript database
Irrigation is a widely used water management practice that is often poorly parameterized in land surface and climate models. Previous studies have addressed this issue via use of irrigation area, applied water inventory data, or soil moisture content. These approaches have a variety of drawbacks i...
Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea
NASA Astrophysics Data System (ADS)
Kurniawan, Reski; Suriamihardja, D. A.; Hamzah Assegaf, Alimuddin
2018-03-01
Upwelling phenomenon is crucial to be forecasted, mainly concerning the information of potential fishery areas. Utilization of calibrated model for recorded upwelling such as INDESO gives benefit for historical result up to the present time. The aim of this study is to estimate areas and seasons of upwelling occurrences in the Flores Sea using data assimilation of satellite and modeling result. This study uses sea surface temperature, chlorophyll-a data from level 3 of MODIS image and sea surface height from satellite Jason-2 monthly for three years (2014-2016) and INDESO model data for sea surface temperature, sea surface height, and chlorophyll-a daily for three years (2014-2016). The upwelling is indicated by declining of sea surface temperature, sea surface height and increasing of chlorophyll-a. Verification is conducted by comparing the model result with recorded MODIS satellite image. The result shows that the area of southern Makassar Strait having occurrences of upwelling phenomenon every year starting in June, extended to July and August. The strongest upwelling occurred in 2015 covering more or less the area of 23,000 km2. The relation of monthly data of satellite has significantly correlated with daily data of INDESO model
Bradley, D. Nathan
2012-01-01
The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data, develops a plan-view plot, water-surface profile, cross-section plots, and develops the SAC input file. The SAC GUI also develops HEC-2 files that can be imported into HEC–RAS.
NASA Astrophysics Data System (ADS)
Cheng, Song; Zhang, Libo; Zhang, Shengzhou; Xia, Hongying; Peng, Jinhui
2018-01-01
The spent phenolic resin is as raw material for preparing high surface area activated carbon (HSAAC) by microwave-assisted KOH activation. The effects of microwave power, activation duration and impregnation ratio (IR) on the iodine adsorption capability and yield of HSAAC were investigated. The surface characteristics of HSAAC were characterized by nitrogen adsorption isotherms, FTIR, SEM and TEM. The operating variables were optimized utilizing the response surface methodology (RSM) and were identified to be microwave power of 700 W, activation duration of 15 min and IR of 4, corresponding to a yield of 51.25 % and an iodine number of 2,384 mg/g. The pore structure parameters of the HSAAC, i. e., Brunauer-Emmett-Teller (BET) surface area, total pore volume, and average pore diameter were estimated to be 4,269 m2/g, 2.396 ml/g and 2.25 nm, respectively, under optimum conditions. The findings strongly support the feasibility of microwave-assisted KOH activation for preparation of HSAAC from spent phenolic resin.
NASA Astrophysics Data System (ADS)
Torresani, Loris; Prosdocimi, Massimo; Masin, Roberta; Penasa, Mauro; Tarolli, Paolo
2017-04-01
Grassland and pasturelands cover a vast portion of the Earth surface and are vital for biodiversity richness, environmental protection and feed resources for livestock. Overgrazing is considered one of the major causes of soil degradation worldwide, mainly in pasturelands grazed by domestic animals. Therefore, an in-depth investigation to better quantify the effects of overgrazing in terms of soil loss is needed. At this regard, this work aims to estimate the volume of eroded materials caused by mismanagement of grazing areas in the whole Autonomous Province of Trento (Northern Italy). To achieve this goal, the first step dealt with the analysis of the entire provincial area by means of freely available aerial images, which allowed the identification and accurate mapping of every eroded area caused by grazing animals. The terrestrial digital photogrammetric technique, namely Structure from Motion (SfM), was then applied to obtain high-resolution Digital Surface Models (DSMs) of two representative eroded areas. By having the pre-event surface conditions, DSMs of difference, namely DoDs, was computed to estimate the erosion volume and the average depth of erosion for both areas. The average depths obtained from the DoDs were compared and validated by measures taken in the field. A large amount of depth measures from different sites were then collected to obtain a reference value for the whole province. This value was used as reference depth for calculating the eroded volume in the whole province. In the final stage, the Connectivity Index (CI) was adopted to analyse the existing connection between the eroded areas and the channel network. This work highlighted that SfM can be a solid low-cost technique for the low-cost and fast quantification of eroded soil due to grazing. It can also be used as a strategic instrument for improving the grazing management system at large scales, with the goal of reducing the risk of pastureland degradation.
Aquatic adaptations in the nose of carnivorans: evidence from the turbinates
Van Valkenburgh, Blaire; Curtis, Abigail; Samuels, Joshua X; Bird, Deborah; Fulkerson, Brian; Meachen-Samuels, Julie; Slater, Graham J
2011-01-01
Inside the mammalian nose lies a labyrinth of bony plates covered in epithelium collectively known as turbinates. Respiratory turbinates lie anteriorly and aid in heat and water conservation, while more posterior olfactory turbinates function in olfaction. Previous observations on a few carnivorans revealed that aquatic species have relatively large, complex respiratory turbinates and greatly reduced olfactory turbinates compared with terrestrial species. Body heat is lost more quickly in water than air and increased respiratory surface area likely evolved to minimize heat loss. At the same time, olfactory surface area probably diminished due to a decreased reliance on olfaction when foraging under water. To explore how widespread these adaptations are, we documented scaling of respiratory and olfactory turbinate surface area with body size in a variety of terrestrial, freshwater, and marine carnivorans, including pinnipeds, mustelids, ursids, and procyonids. Surface areas were estimated from high-resolution CT scans of dry skulls, a novel approach that enabled a greater sampling of taxa than is practical with fresh heads. Total turbinate, respiratory, and olfactory surface areas correlate well with body size (r2 ≥ 0.7), and are relatively smaller in larger species. Relative to body mass or skull length, aquatic species have significantly less olfactory surface area than terrestrial species. Furthermore, the ratio of olfactory to respiratory surface area is associated with habitat. Using phylogenetic comparative methods, we found strong support for convergence on 1 : 3 proportions in aquatic taxa and near the inverse in terrestrial taxa, indicating that aquatic mustelids and pinnipeds independently acquired similar proportions of olfactory to respiratory turbinates. Constraints on turbinate surface area in the nasal chamber may result in a trade-off between respiratory and olfactory function in aquatic mammals. PMID:21198587
NASA Astrophysics Data System (ADS)
Wodajo, Bikila Teklu
Every year, coastal disasters such as hurricanes and floods claim hundreds of lives and severely damage homes, businesses, and lifeline infrastructure. This research was motivated by the 2005 Hurricane Katrina disaster, which devastated the Mississippi and Louisiana Gulf Coast. The primary objective was to develop a geospatial decision-support system for extracting built-up surfaces and estimating disaster impacts using spaceborne remote sensing satellite imagery. Pre-Katrina 1-m Ikonos imagery of a 5km x 10km area of Gulfport, Mississippi, was used as source data to develop the built-up area and natural surfaces or BANS classification methodology. Autocorrelation of 0.6 or higher values related to spectral reflectance values of groundtruth pixels were used to select spectral bands and establish the BANS decision criteria of unique ranges of reflectance values. Surface classification results using GeoMedia Pro geospatial analysis for Gulfport sample areas, based on BANS criteria and manually drawn polygons, were within +/-7% of the groundtruth. The difference between the BANS results and the groundtruth was statistically not significant. BANS is a significant improvement over other supervised classification methods, which showed only 50% correctly classified pixels. The storm debris and erosion estimation or SDE methodology was developed from analysis of pre- and post-Katrina surface classification results of Gulfport samples. The SDE severity level criteria considered hurricane and flood damages and vulnerability of inhabited built-environment. A linear regression model, with +0.93 Pearson R-value, was developed for predicting SDE as a function of pre-disaster percent built-up area. SDE predictions for Gulfport sample areas, used for validation, were within +/-4% of calculated values. The damage cost model considered maintenance, rehabilitation and reconstruction costs related to infrastructure damage and community impacts of Hurricane Katrina. The developed models were implemented for a study area along I-10 considering the predominantly flood-induced damages in New Orleans. The BANS methodology was calibrated for 0.6-m QuickBird2 multispectral imagery of Karachi Port area in Pakistan. The results were accurate within +/-6% of the groundtruth. Due to its computational simplicity, the unit hydrograph method is recommended for geospatial visualization of surface runoff in the built-environment using BANS surface classification maps and elevations data. Key words. geospatial analysis, satellite imagery, built-environment, hurricane, disaster impacts, runoff.
Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping
NASA Astrophysics Data System (ADS)
Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.
2017-12-01
Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.
Global Land Carbon Uptake from Trait Distributions
NASA Astrophysics Data System (ADS)
Butler, E. E.; Datta, A.; Flores-Moreno, H.; Fazayeli, F.; Chen, M.; Wythers, K. R.; Banerjee, A.; Atkin, O. K.; Kattge, J.; Reich, P. B.
2016-12-01
Historically, functional diversity in land surface models has been represented through a range of plant functional types (PFTs), each of which has a single value for all of its functional traits. Here we expand the diversity of the land surface by using a distribution of trait values for each PFT. The data for these trait distributions is from a sub-set of the global database of plant traits, TRY, and this analysis uses three leaf traits: mass based nitrogen and phosphorus content and specific leaf area, which influence both photosynthesis and respiration. The data are extrapolated into continuous surfaces through two methodologies. The first, a categorical method, classifies the species observed in TRY into satellite estimates of their plant functional type abundances - analogous to how traits are currently assigned to PFTs in land surface models. Second, a Bayesian spatial method which additionally estimates how the distribution of a trait changes in accord with both climate and soil covariates. These two methods produce distinct patterns of diversity which are incorporated into a land surface model to estimate how the range of trait values affects the global land carbon budget.
Permittivity estimation over Mars by using SHARAD data: the Cerberus Palus area
NASA Astrophysics Data System (ADS)
Alberti, Giovanni; Castaldo, Luigi; Orosei, Roberto; Frigeri, Alessandro; Cirillo, Giuseppe
2012-09-01
Cerberus Palus is a thoroughly studied region of Mars, characterized by evident platy textures that were interpreted either as evidence for a frozen sea close to Mars' equator or as being resultant of lava, mud or ice-flows coming from Cerberus Fossae through Athabasca Valles. Radargrams provided by radar sounder SHARAD clearly show the presence of subsurface layers in the area. By exploiting the great amount of available data, authors have performed an accurate quantitative analysis aimed to estimate electromagnetic properties of surface and subsurface layers, in terms of permittivity and attenuation. To this aim, a simplified electromagnetic approach has been used, but taking into account effects of scattering due to surface roughness, for avoiding overestimated results. This has been done by using theory of electromagnetic scattering from fractal surfaces and by estimating needed parameters from topographic data provided by MOLA. Three distinct geologic formations have been analyzed, namely a part of Zephyria Planum, the Cerberus plains and the bedrock beneath the plains. The retrieved electromagnetic parameters have been also modeled as a mixture of volcanic rocks with either ice or air. The Zephyria Planum material was found to be significantly porous [50-60%] with an attenuation more likely compatible with empty pores. Ambiguous results were obtained for the plains material, being the resulting porosity high in both the cases of empty [40-50%] and of ice-filled [80%] pores. The obtained results do not allow for evidence of a frozen sea on Cerberus Palus area.
Mapping Critical Loads of Atmospheric Nitrogen Deposition in the Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Nanus, L.; Clow, D. W.; Stephens, V. C.; Saros, J. E.
2010-12-01
Atmospheric nitrogen (N) deposition can adversely affect sensitive aquatic ecosystems at high-elevations in the western United States. Critical loads are the amount of deposition of a given pollutant that an ecosystem can receive below which ecological effects are thought not to occur. GIS-based landscape models were used to create maps for high-elevation areas across the Rocky Mountain region showing current atmospheric deposition rates of nitrogen (N), critical loads of N, and exceedances of critical loads of N. Atmospheric N deposition maps for the region were developed at 400 meter resolution using gridded precipitation data and spatially interpolated chemical concentrations in rain and snow. Critical loads maps were developed based on chemical thresholds corresponding to observed ecological effects, and estimated ecosystem sensitivities calculated from basin characteristics. Diatom species assemblages were used as an indicator of ecosystem health to establish critical loads of N. Chemical thresholds (concentrations) were identified for surface waters by using a combination of in-situ growth experiments and observed spatial patterns in surface-water chemistry and diatom species assemblages across an N deposition gradient. Ecosystem sensitivity was estimated using a multiple-linear regression approach in which observed surface water nitrate concentrations at 530 sites were regressed against estimates of inorganic N deposition and basin characteristics (topography, soil type and amount, bedrock geology, vegetation type) to develop predictive models of surface water chemistry. Modeling results indicated that the significant explanatory variables included percent slope, soil permeability, and vegetation type (including barren land, shrub, and grassland) and were used to predict high-elevation surface water nitrate concentrations across the Rocky Mountains. Chemical threshold concentrations were substituted into an inverted form of the model equations and applied to estimate critical loads for each stream reach within a basin, from which critical loads maps were created. Atmospheric N deposition maps were overlaid on the critical loads maps to identify areas in the Rocky Mountain region where critical loads are being exceeded, or where they may do so in the future. This approach may be transferable to other high-elevation areas of the United States and the world.
Flood-hazard mapping in Honduras in response to Hurricane Mitch
Mastin, M.C.
2002-01-01
The devastation in Honduras due to flooding from Hurricane Mitch in 1998 prompted the U.S. Agency for International Development, through the U.S. Geological Survey, to develop a country-wide systematic approach of flood-hazard mapping and a demonstration of the method at selected sites as part of a reconstruction effort. The design discharge chosen for flood-hazard mapping was the flood with an average return interval of 50 years, and this selection was based on discussions with the U.S. Agency for International Development and the Honduran Public Works and Transportation Ministry. A regression equation for estimating the 50-year flood discharge using drainage area and annual precipitation as the explanatory variables was developed, based on data from 34 long-term gaging sites. This equation, which has a standard error of prediction of 71.3 percent, was used in a geographic information system to estimate the 50-year flood discharge at any location for any river in the country. The flood-hazard mapping method was demonstrated at 15 selected municipalities. High-resolution digital-elevation models of the floodplain were obtained using an airborne laser-terrain mapping system. Field verification of the digital elevation models showed that the digital-elevation models had mean absolute errors ranging from -0.57 to 0.14 meter in the vertical dimension. From these models, water-surface elevation cross sections were obtained and used in a numerical, one-dimensional, steady-flow stepbackwater model to estimate water-surface profiles corresponding to the 50-year flood discharge. From these water-surface profiles, maps of area and depth of inundation were created at the 13 of the 15 selected municipalities. At La Lima only, the area and depth of inundation of the channel capacity in the city was mapped. At Santa Rose de Aguan, no numerical model was created. The 50-year flood and the maps of area and depth of inundation are based on the estimated 50-year storm tide.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.
2011-01-01
Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.
Dogandžić, Tamara; Braun, David R.; McPherron, Shannon P.
2015-01-01
Blank size and form represent one of the main sources of variation in lithic assemblages. They reflect economic properties of blanks and factors such as efficiency and use life. These properties require reliable measures of size, namely edge length and surface area. These measures, however, are not easily captured with calipers. Most attempts to quantify these features employ estimates; however, the efficacy of these estimations for measuring critical features such as blank surface area and edge length has never been properly evaluated. In addition, these parameters are even more difficult to acquire for retouched implements as their original size and hence indication of their previous utility have been lost. It has been suggested, in controlled experimental conditions, that two platform variables, platform thickness and exterior platform angle, are crucial in determining blank size and shape meaning that knappers can control the interaction between size and efficiency by selecting specific core angles and controlling where fracture is initiated. The robustness of these models has rarely been tested and confirmed in context other than controlled experiments. In this paper, we evaluate which currently employed caliper measurement methods result in the highest accuracy of size estimations of blanks, and we evaluate how platform variables can be used to indirectly infer aspects of size on retouched artifacts. Furthermore, we investigate measures of different platform management strategies that control the shape and size of artifacts. To investigate these questions, we created an experimental lithic assemblage, we digitized images to calculate 2D surface area and edge length, which are used as a point of comparison for the caliper measurements and additional analyses. The analysis of aspects of size determinations and the utility of blanks contributes to our understanding of the technological strategies of prehistoric knappers and what economic decisions they made during process of blank production. PMID:26332773
NASA Astrophysics Data System (ADS)
Resurreccion, Augustus C.; Moldrup, Per; Tuller, Markus; Ferré, T. P. A.; Kawamoto, Ken; Komatsu, Toshiko; de Jonge, Lis Wollesen
2011-06-01
Accurate description of the soil water retention curve (SWRC) at low water contents is important for simulating water dynamics and biochemical vadose zone processes in arid environments. Soil water retention data corresponding to matric potentials of less than -10 MPa, where adsorptive forces dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were classified into four groups on the basis of the Dexter number (n = CL/OC), and the Tuller-Or (TO) general scaling model describing water film thickness at a given matric potential (<-10 MPa) was evaluated. The SA estimated from the dry end of the SWRC (SA_SWRC) was in good agreement with the SA measured with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about -800 MPa). The semi-log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from -10 to -800 MPa and yielded high correlations with CL and SA. It is therefore recommended to apply the empirical CSRN model for predicting the dry part of the water retention curve (-10 to -800 MPa) from measured soil texture or surface area. Further research should aim to modify the more physically based TO model to obtain better descriptions of the SWRC in the very dry range (-300 to -800 MPa).
NASA Astrophysics Data System (ADS)
Anagnostopoulou, C.; Tolika, K.; Vafiadis, M.
2010-09-01
According to the IPCC latest report (IPCC, 2007) many semi-arid and arid areas, as the Mediterranean basin, are particularly exposed to the impacts of climate change and may suffer a decrease of water resources in the future. By the middle of the 21st century it is estimated that the annual average river runoff and water availability will decrease over these dry regions at mid-latitudes. So, it is of great importance the study of the future changes in the hydrological cycle, due to the increasing freshwater demands. The main scope of the present study is to estimate the future changes of the surface runoff in the Aravissos area (central Macedonia - Greece) due to the enhanced greenhouse effect until the end of the 21st century. The selection of Aravissos was based to the fact that the water needs of the second largest in population city in Greece (Thessaloniki) are covered mainly by the selected catchments area. Daily precipitation, temperature, relative humidity, wind speed and sunlight duration data derived from updated regional climate models, are used for selected grid points covering the domain of study. The main two climatological parameters (precipitation -temperature) are on a first step evaluated in comparison to re-analysis data (E-Obs -Ensembles project) for the same grid points. On a second step, utilizing several different evapotranspiration methods we calculated the surface runoff for two different time periods: the first in the middle and the second at the end of the 21st century. The first results of the study showed that the surface runoff depends on the methodology used for the calculation of the evapotranspiration but also from the regional model. Acknowledgements: This study has been supported by the CC-WaterS project (Contract number SEE/A/022/2.1/X)
Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data
NASA Astrophysics Data System (ADS)
Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang
2017-10-01
Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.
NASA Technical Reports Server (NTRS)
Conel, James E.; Hoover, Gordon; Nolin, Anne; Alley, Ron; Margolis, Jack
1992-01-01
Empirical relationships between variables are ways of securing estimates of quantities difficult to measure by remote sensing methods. The use of empirical functions was explored between: (1) atmospheric column moisture abundance W (gm H2O/cm(sup 2) and surface absolute water vapor density rho(q-bar) (gm H2O/cm(sup 3), with rho density of moist air (gm/cm(sup 3), q-bar specific humidity (gm H2O/gm moist air), and (2) column abundance and surface moisture flux E (gm H2O/(cm(sup 2)sec)) to infer regional evapotranspiration from Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) water vapor mapping data. AVIRIS provides, via analysis of atmospheric water absorption features, estimates of column moisture abundance at very high mapping rate (at approximately 100 km(sup 2)/40 sec) over large areas at 20 m ground resolution.
NASA Astrophysics Data System (ADS)
Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj
2018-04-01
The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.
Xian, George; Homer, Collin G.
2010-01-01
A prototype method was developed to update the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 to a nominal date of 2006. NLCD 2001 is widely used as a baseline for national land cover and impervious cover conditions. To enable the updating of this database in an optimal manner, methods are designed to be accomplished by individual Landsat scene. Using conservative change thresholds based on land cover classes, areas of change and no-change were segregated from change vectors calculated from normalized Landsat scenes from 2001 and 2006. By sampling from NLCD 2001 impervious surface in unchanged areas, impervious surface predictions were estimated for changed areas within an urban extent defined by a companion land cover classification. Methods were developed and tested for national application across six study sites containing a variety of urban impervious surface. Results show the vast majority of impervious surface change associated with urban development was captured, with overall RMSE from 6.86 to 13.12% for these areas. Changes of urban development density were also evaluated by characterizing the categories of change by percentile for impervious surface. This prototype method provides a relatively low cost, flexible approach to generate updated impervious surface using NLCD 2001 as the baseline.
The influence of surface type on the absorbed radiation by a human under hot, dry conditions
NASA Astrophysics Data System (ADS)
Hardin, A. W.; Vanos, J. K.
2018-01-01
Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.
3D shape reconstruction of specular surfaces by using phase measuring deflectometry
NASA Astrophysics Data System (ADS)
Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan
2016-10-01
The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.
Estimating the usage of allograft in the treatment of major burns.
Horner, C W M; Atkins, J; Simpson, L; Philp, B; Shelley, O; Dziewulski, P
2011-06-01
To assess the amount of allograft used in the past treatment of major burns and calculate a figure to guide estimation of the quantity of allograft required to treat future patients and aid resource planning. A retrospective observational study. Records of 143 patients treated with major burns at a regional centre, from January 2004 to November 2008 were accessed with biometric data and quantity of allograft used being recorded. This data was used to calculate an allograft index (cm² allograft used/burn surface area (cm²)) (AI) for each patient. 112 of the 143 patients had complete sets of data, of the 112, 89 patients survived the initial stay in hospital. For all data average AI=1.077 ± 0.090. AI varied according to burn % area with burns < 40% requiring 0.490 cm² allo/cm²burn, increasing in a logarithmic fashion (R²=0.995) for burn areas > 40%. The ability to estimate deceased donor skin requirements based on % body surface area affected is important in the care planning for patients with major burns. Our findings of 0.5 cm² allograft/cm² burn for injuries less than 40% TBSA, increasing to 1.82 cm² allograft/cm² burn for injuries up to 80% TBSA can be used for planning purposes for individual services and for burn disaster planning. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.
Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Dai, Yu-Tung
2011-12-30
The aims of the present study were set out to measure size distributions and estimate workers' exposure concentrations of oil mist nanoparticles in three selected workplaces of the forming, threading, and heat treating areas in a fastener manufacturing plant by using a modified electrical aerosol detector (MEAD). The results were further compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS) for the validation purpose. Results show that oil mist nanoparticles in the three selected process areas were formed mainly through the evaporation and condensation processes. The measured size distributions of nanoparticles were consistently in the form of uni-modal. The estimated fraction of nanoparticles deposited on the alveolar (AV) region was consistently much higher than that on the head airway (HD) and tracheobronchial (TB) regions in both number and surface area concentration bases. However, a significant difference was found in the estimated fraction of nanoparticles deposited on each individual region while different exposure metrics were used. Comparable results were found between results obtained from both NSAM and MEAD. After normalization, no significant difference can be found between the results obtained from SMPS and MEAD. It is concluded that the obtained MEAD results are suitable for assessing oil mist nanoparticle exposures. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of Major Dike-Impounded Ground-Water Reservoirs, Island of Oahu
Takasaki, Kiyoshi J.; Mink, John Francis
1985-01-01
Ground-water reservoirs impounded by volcanic dikes receive a substantial part of the total recharge to ground water on the island of Oahu because they generally underlie the rainiest areas. These reservoirs accumulate the infiltration from rainfall, store it temporarily, and steadily leak it to abutting basal reservoirs or to streams cutting into them. The dike reservoirs have high hydraulic heads and are mostly isolated from saline water. The most important and productive of the dike-impounded reservoirs are in an area of about 135 square miles in the main fissure zone of the Koolau volcano where the top of the dike-impounded water reaches an altitude of at least 1,000 feet. Water is impounded and stored both above and below sea level. The water stored above sea level in the 135 square mile area has been roughly estimated at 560 billion gallons. In comparison, the water stored above sea level in reservoirs underlying a dike-intruded area of about 53 square miles in the Waianae Range has been roughly estimated at 100 billion gallons. Storage below sea level is indeterminable, owing to uncertainties about the ability of the rock to store water as dike density increases and porosity decreases. Tunnels, by breaching dike controls, have reduced the water stored above sea level by at least 50 billion gallons in the Koolau Range and by 5 1/2 billion gallons in the Waianae Range, only a small part of the total water stored. Total leakage from storage in the Koolau Range has been estimated at about 280 Mgal/d (million gallons per day). This estimated leakage from the dike-impounded reservoirs makes up a significant part of the ground-water yield of the Koolau Range, which has been estimated to range from 450 to 580 Mgal/d. The largest unused surface leakage is in the Kaneohe, Kahana, and Punaluu areas, and the largest unused underflow occurs in the Waialee, Hauula-Laie, Punaluu, and Kahana areas. The unused underflow leakage is small in areas near and east of Waialae, but it is an important supply because of the great need for augmenting water supplies there. Total leakage from storage in the Waianae Range has not been estimated because underflow is difficult to determine. Much of the surface leakage, about 4 Mgal/d in the upper parts of Waianae, Makaha, and Lualualei Valleys, has been diverted by tunnels. Hence, supplies available, other than surface leakage, cannot be estimated from the discharge end of the hydrologic cycle. Infiltration in the Waianae Range to dike-intruded reservoirs in the upper part of the valleys on the west (leeward) side has been estimated at about 20 Mgal/d, and on the east (windward) side, at about 10 Mgal/d. The available supply has been estimated at about 15 Mgal/d from the infiltration on the leeward side, of which about 4 Mgal/d is now being developed. No estimate has been made for the available supply on the windward side. Dike-intruded reservoirs at shallow depths west (lee side) of the crest are in upper Makaha, Waianae, and Lualualei Valleys. They are at moderate depths in upper Haleanu and in lower Kaukonahua Gulches on the east (windward) side. Flow hydraulics in dike tunnels is also discussed.
NASA Astrophysics Data System (ADS)
Hondula, K. L.; Palmer, M.
2017-12-01
One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems (<1000 m2). We present data linking measurements of hydrologic regime and methane gas fluxes in Delmarva bay wetlands to explore how water level, wetland storage capacity, and water residence time influence the magnitude, source area, and fate of wetland methane emissions. We measured air-water and soil-air gas fluxes using transects of chamber measurements spanning from wetland center to upland, in order to quantify the areal extent of the methane emissions source area throughout seasonal changes in surface water inundation (water level 0 to > 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.
NASA Astrophysics Data System (ADS)
Wang, B.; Xu, Y. J.
2016-02-01
A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.
NASA Astrophysics Data System (ADS)
Sati, Ankur Prabhat; Mohan, Manju
2017-10-01
An estimated 50% of the global population lives in the urban areas, and this percentage is projected to reach around 69% by the year 2050 (World Urbanization Prospects 2009). There is a considerable growth of urban and built-up area during the recent decades over National Capital Region (NCR) of India (17-fold increase in the urban extent). The proposed study estimates the land use land cover changes particularly changes to urban class from other land use types such as croplands, shrubland, open areas, and water bodies and quantify these changes for a span of about five decades. Further, the impact of these land use/land cover changes is examined on spatial and temporal variations of meteorological parameters using the Weather Research and Forecast (WRF) Model. The urbanized areas appear to be one of the regions with highest changes in the values of the fluxes and temperatures where during daytime, the surface sensible heat flux values show a noticeable increase of 60-70 W m-2 which commensurate with increase in urbanization. Similarly, the nighttime LST and T2m show an increase of 3-5 and 2-3 K, respectively. The diurnal temperature range (DTR) of LST and surface temperature also shows a decrease of about 5 and 2-3 K, respectively, with increasing urbanization. Significant decrease in the magnitude of surface winds and relative humidity is also observed over the areas converted to urban form over a period of half a century. The impacts shown here have serious implications on human health, energy consumption, ventilation, and atmospheric pollution.
Recharge Data Package for Hanford Single-Shell Tank Waste Management Areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayer, Michael J.; Keller, Jason M.
2007-09-24
Pacific Northwest National Laboratory (PNNL) assists CH2M HILL Hanford Group, Inc., in its preparation of the Resource Conservation and Recovery Act (RCRA) Facility Investigation report. One of the PNNL tasks is to use existing information to estimate recharge rates for past and current conditions as well as future scenarios involving cleanup and closure of tank farms. The existing information includes recharge-relevant data collected during activities associated with a host of projects, including those of RCRA, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the CH2M HILL Tank Farm Vadose Zone Project, and the PNNL Remediation and Closure Science Project.more » As new information is published, the report contents can be updated. The objective of this data package was to use published data to provide recharge estimates for the scenarios being considered in the RCRA Facility Investigation. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). The recharge estimates supplement the estimates provided by PNNL researchers in 2006 for the Hanford Site using additional field measurements and model analysis using weather data through 2006.« less
Gleason, Robert A.; Tangen, Brian A.; Laubhan, Murray K.; Kermes, Kevin E.; Euliss, Ned H.
2007-01-01
Executive Summary Concern over flooding along rivers in the Prairie Pothole Region has stimulated interest in developing spatially distributed hydrologic models to simulate the effects of wetland water storage on peak river flows. Such models require spatial data on the storage volume and interception area of existing and restorable wetlands in the watershed of interest. In most cases, information on these model inputs is lacking because resolution of existing topographic maps is inadequate to estimate volume and areas of existing and restorable wetlands. Consequently, most studies have relied on wetland area to volume or interception area relationships to estimate wetland basin storage characteristics by using available surface area data obtained as a product from remotely sensed data (e.g., National Wetlands Inventory). Though application of areal input data to estimate volume and interception areas is widely used, a drawback is that there is little information available to provide guidance regarding the application, limitations, and biases associated with such approaches. Another limitation of previous modeling efforts is that water stored by wetlands within a watershed is treated as a simple lump storage component that is filled prior to routing overflow to a pour point or gaging station. This approach does not account for dynamic wetland processes that influence water stored in prairie wetlands. Further, most models have not considered the influence of human-induced hydrologic changes, such as land use, that greatly influence quantity of surface water inputs and, ultimately, the rate that a wetland basin fills and spills. The goals of this study were to (1) develop and improve methodologies for estimating and spatially depicting wetland storage volumes and interceptions areas and (2) develop models and approaches for estimating/simulating the water storage capacity of potentially restorable and existing wetlands under various restoration, land use, and climatic scenarios. To address these goals, we developed models and approaches to spatially represent storage volumes and interception areas of existing and potentially restorable wetlands in the upper Mustinka subbasin within Grant County, Minn. We then developed and applied a model to simulate wetland water storage increases that would result from restoring 25 and 50 percent of the farmed and drained wetlands in the upper Mustinka subbasin. The model simulations were performed during the growing season (May-October) for relatively wet (1993; 0.79 m of precipitation) and dry (1987; 0.40 m of precipitation) years. Results from the simulations indicated that the 25 percent restoration scenario would increase water storage by 21-24 percent and that a 50 percent scenario would increase storage by 34-38 percent. Additionally, we estimated that wetlands in the subbasin have potential to store 11.57-20.98 percent of the total precipitation that fell over the entire subbasin area (52,758 ha). Our simulation results indicated that there is considerable potential to enhance water storage in the subbasin; however, evaluation and calibration of the model is necessary before simulation results can be applied to management and planning decisions. In this report we present guidance for the development and application of models (e.g., surface area-volume predictive models, hydrology simulation model) to simulate wetland water storage to provide a basis from which to understand and predict the effects of natural or human-induced hydrologic alterations. In developing these approaches, we tried to use simple and widely available input data to simulate wetland hydrology and predict wetland water storage for a specific precipitation event or a series of events. Further, the hydrology simulation model accounted for land use and soil type, which influence surface water inputs to wetlands. Although information presented in this report is specific to the Mustinka subbasin, the approaches
Microwave soil moisture estimation in humid and semiarid watersheds
NASA Technical Reports Server (NTRS)
O'Neill, P. E.; Jackson, T. J.; Chauhan, N. S.; Seyfried, M. S.
1993-01-01
Land surface hydrologic-atmospheric interactions in humid and semi-arid watersheds were investigated. Active and passive microwave sensors were used to estimate the spatial and temporal distribution of soil moisture at the catchment scale in four areas. Results are presented and discussed. The eventual use of this information in the analysis and prediction of associated hydrologic processes is examined.
Estimation of external dose by car-borne survey in Kerala, India.
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Uspensky, Sergey
2014-05-01
At present physical-mathematical modeling processes of water and heat exchange between vegetation covered land surfaces and atmosphere is the most appropriate method to describe peculiarities of water and heat regime formation for large territories. The developed model of such processes (Land Surface Model, LSM) is intended for calculation evaporation, transpiration by vegetation, soil water content and other water and heat regime characteristics, as well as distributions of the soil temperature and humidity in depth utilizing remote sensing data from satellites on land surface and meteorological conditions. The model parameters and input variables are the soil and vegetation characteristics and the meteorological characteristics, correspondingly. Their values have been determined from ground-based observations or satellite-based measurements by radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/Meteosat-9, -10. The case study has been carried out for the part of the agricultural Central Black Earth region with coordinates 49.5 deg. - 54 deg. N, 31 deg. - 43 deg. E and a total area of 227,300 km2 located in the steppe-forest zone of the European Russia for years 2009-2012 vegetation seasons. From AVHRR data there have been derived the estimates of three types of land surface temperature (LST): land surface skin temperature Tsg, air-foliage temperature Ta and efficient radiation temperature Ts.eff, emissivity E, normalized vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, cloudiness and precipitation. From MODIS data the estimates of LST Tls, E, NDVI and LAI have been obtained. The SEVIRI data have been used to build the estimates of Tls, Ta, E, LAI and precipitation. Previously developed method and technology of above AVHRR-derived estimates have been improved and adapted to the study area. To check the reliability of the Ts.eff and Ta estimations for named seasons the error statistics of their definitions has been analyzed through comparison with data of observations at agricultural meteorological stations of the study region. The mentioned MODIS-based remote sensing products for the same vegetation seasons have been built using data downloaded from the website LP DAAC (NASA). Reliability of the MODIS-derived Tls estimates have been confirmed by results of comparison with similar estimates from synchronous AVHRR, SEVIRI and ground-based data. To retrieve Tls and E from SEVIRI data at daylight and nighttime there have been developed the method and technology of thematic processing these data in IR channels NN 9, 10 (10.8 and 12.0 nm) at three successive times under cloud-free conditions without using exact values of E. This technology has been also adapted to the study area. Analysis of reliability of Tls estimation have been carried out through comparing with synchronous SEVIRI-derived Tls estimates obtained at Land Surface Analysis Satellite Applications Facility (LSA SAF, Lisbon, Portugal) and MODIS-derived Tls estimates. When the first comparison daily - or monthly-averaged values of RMS deviation have not been exceeded 2 deg. C for various dates and months during years 2009-2012 vegetation seasons. RMS deviation of Tls(SEVIRI) from Tls(MODIS) has been in the range of 1.0-3.0 deg. C. The method and technology have been also developed and tested to define Ta values from SEVIRI data at daylight and nighttime. This method is based on using satellite-derived estimates of Tls and regression relationship between Tls and ground-measured values of Ta. Comparison of satellite-based Ta estimates with data of synchronous standard term ground-based observations at the network of meteorological stations of the study area for summer periods of 2009-2012 has given RMS deviation values in the range of 1.8-3.0 deg. C. Formed archive of satellite products has been also supplemented with array of LAI estimates retrieved from SEVIRI data at LSA SAF for the study area and growing seasons 2011-2012. The possibility is shown to use the developed Multi Threshold Method (MTM) for generating the AVHRR- and SEVIRI-based estimates of daily and monthly precipitation amounts for the region of interest The MTM provides the cloud detection and identification of cloud types, estimation of the maximum liquid water content and cloud layer water content, allocation of precipitation zones and determination of instantaneous maximum of precipitation intensities in the pixel range around the clock throughout the year independently of the land surface type. In developing procedures of utilizing satellite estimates of precipitation during the vegetation season in the model there have been built up algorithms and programs of transition from estimating the rainfall intensity to assessment of their daily values. The comparison of the daily, monthly and seasonal AVHRR- and SEVIRI-derived precipitation sums with similar values retrieved from network ground-based observations using weighting interpolation procedure have been carried out. Agreement of all three evaluations is satisfactory. To assimilate remote sensing products into the model the special techniques have been developed including: 1) replacement of ground-measured model parameters LAI and B by their satellite-derived estimates. The possibility of such replacement has been confirmed through various comparisons of: a) LAI behavior for ground- and satellite-derived values; b) modeled values of Ts and Tf , satellite-based estimates of Ts.eff, Tls and Ta and ground-based measurements of LST; c) modeled and measured values of soil water content W and evapotranspiration Ev; 2) utilization of satellite-derived values of LSTs Ts.eff, Tls and Ta, and estimates of precipitation as the input model variables instead of the respective ground-measured temperatures and rainfall when assessing the accuracy of soil water content, evapotranspiration and soil temperature calculations; 3) accounting for the spatial variability of satellite-based LAI, B, LST and precipitation estimates by entering their area-distributed values into the model. For years 2009-2012 vegetation seasons there have been calculated the characteristics of the water and heat regimes of the region under investigation utilizing satellite estimates of vegetation characteristics, LST and precipitation in the model. The calculation results have shown that the discrepancies of evapotranspiration and soil water content values are within acceptable limits.
NASA Astrophysics Data System (ADS)
McClellan, M. D.; Job, M. J.; Comas, X.
2016-12-01
Peatlands play a critical role in the carbon (C) cycle by sequestering and storing a large fraction of the global soil C pool; and by producing and releasing significant amounts of greenhouse gasses (CO2, CH4) into the atmosphere. While most studies exploring these attributes have traditionally focused on boreal and subarctic biomes, wetlands in temperate and tropical climates (such as the Florida Everglades) have been understudied despite accounting for more than 20% of the global peatland C stock. We used a combination of indirect non-invasive geophysical methods (ground penetrating radar, GPR), aerial imagery, and direct measurements (gas traps) to estimate the contribution of subtropical isolated wetlands to the total C pool of the pine flatwoods landscape at the Disney Wilderness Preserve (DWP, Poinciana, FL). Measurements were collected within two types of isolated wetlands at the preserve, emergent and forested. Geophysical surveys were collected weekly to 1) define total peat thickness (i.e. from the surface to the mineral soil interface) and 2) estimate changes within the internal gas regime. Direct measurements of gas fluxes using gas traps and time-lapse cameras were used to estimate gas emissions (i.e. CH4 and CO2). Aerial photographs were used to estimate surface area for each isolated wetland and develop a relationship between surface area and total wetland C production that is then applied to every isolated wetland in the preserve to estimate the total wetland C contribution. This work seeks to provide evidence that isolated wetlands within the central Florida landscape are key contributors of C to the atmosphere.
NASA Astrophysics Data System (ADS)
Shields, C. A.; Tague, C.
2010-12-01
With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (<5m) spatial arrangement of impervious surfaces affects water available to vegetation, which in turn can significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff and degraded downstream water quality). We explore the relative roles of TIA and EIA on water availability and plant productivity in a semi-arid urban environment through a series of modeling exercises. The Regional HydroEcological Simulation System (RHESSys) is used to model a range of impervious surface and vegetation scenarios on a test hillslope in the Mission Creek catchment in Santa Barbara CA. Results indicate that reduced EIA can indeed act to mitigate the impact of TIA on water available to plants. We then implement a modification to the RHESSys model that incorporates patch scale estimates of EIA into simulations of the entire Mission Creek catchment, allowing us to quantify likely catchment-scale impacts of altering EIA.
Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.
2008-01-01
INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.
Welch, Alan H.; Bright, Daniel J.
2007-01-01
Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.
Is There Ecological Information in Optical Polarization Data?
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2015-01-01
Optical linear polarization? In remote sensing it's due to specular reflection. The first surface that incident light encounters - a smooth water surface or the waxy first surface of a leaf's cuticle, if it's even somewhat smooth (i.e. shiny) - will specularly reflect and linearly polarize the incident light. We provide three examples of the types of ecological information contained in remotely sensed optical linear polarization measurements. Remove the surface reflection to better see the interior. The linearly polarized light reflected by leaf surfaces contains no information about cellular pigments, metabolites, or water contained in the leaf interiors of a plant canopy, because it never enters the leaf interior to interact with them. Thus, for purposes of remotely sensing the leaf interiors of a plant canopy, the linearly polarized light should be subtracted from the total reflected light, because including it would add noise to the measurement. In particular 'minus specular' vegetation indices should allow improved monitoring of a plant canopy's physiological processes. Estimate plant development stage and yield. Wheat and sorghum grain heads, following emergence, rapidly extend upward and very quickly tower over nearby leaves, partially blocking our view of the sunlight reflected by those leaf surfaces. The resulting decrease in the amount of surface reflected and polarized sunlight, if monitored over time, potentially allows per-field estimates of the dates of the heading and flowering development stages to be interleaved with weather data in models, which is key to better estimating per-field grain yield. Similar polarization changes may occur in other grasses, such as oats, barley, corn and rice, each a crop so widely grown that it potentially affects climate at the regional scale. Wetlands Mapping. The sunlight specularly reflected by surface waters is blindingly bright, spectrally flat and polarized - all of which telegraphs that the ground area is inundated. Inundated soils exchange methane with the atmosphere; non-inundated soils, carbon dioxide. Aquatic plants growing through the water surface pipe the soil-produced methane via the stomata to the atmosphere, enhancing exchanges rates by factors of 10-20 compared to ebullition (bubbling) or diffusion through the water column to the atmosphere. Thus, mapping wetland areas into three community types - inundated areas with emergent vegetation, open water and uplands - provides potentially key information to water, carbon and energy budgets at landscape to global scales.
Nano- to Formation-Scale Estimates of Mineral-Specific Reactive Surface Area
NASA Astrophysics Data System (ADS)
Cole, D. R.; Swift, A.; Sheets, J.; Anovitz, L. M.
2017-12-01
Predictions of changes in fluid composition, coupled with the evolution of the solid matrix, include the generation and testing of reactive transport models. However, translating a heterogeneous natural system into physical and chemical model parameters, including the critical but poorly-constrained metric of fluid-accessible surface area, continues to challenge Earth scientists. Studies of carbon storage capacity, permeability, rock strain due to mineral dissolution and precipitation, or the prediction of rock evolution through diagenesis and weathering each consider macroscale outcomes of processes that often are critically impacted by rock surface geometry at the nanoscale. The approach taken here is to consider the whole vertical extent of a saline reservoir and then to address two questions. First, what is the accessible surface area for each major mineral, and for all adjacent pore sizes from <2 nm on up, within each major lithofacies in that formation? Second, with the formation thus divided into units of analysis, parameterized, and placed into geologic context, what constraints can be placed on reactive surface area as a function of mineral composition? A complex sandstone covering a substantial fraction of the quartz-K-feldspar-illite ternary is selected and mineral-specific surface area quantified using neutron scattering, nitrogen and mercury porosimetry, multi-signal high-resolution mineral mapping, and other techniques. For neutron scattering, scale-specific pore geometries enable more accurate translation of volume into surface area. By applying this workflow to all end-member lithologies of this reservoir formation, equations and maps of surface area as a function of position on a quartz-feldspar-clay ternary plot are developed for each major mineral. Results from this work therefore advance our ability to parameterize models not just for the particular formation studied, but for similar geologic units as well.
Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E
NASA Astrophysics Data System (ADS)
Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.
2007-12-01
Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
Surface water change as a significant contributor to global evapotranspiration change
NASA Astrophysics Data System (ADS)
Zhan, S.; Song, C.
2017-12-01
Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in global ET trend studies and should also be included in global water budget studies.
Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.
2016-01-01
Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the normal range. This finding implies that the simplified parameterization of the SSEBop model did not significantly affect the accuracy of the ET estimate while increasing the ease of model setup for operational applications. The sensitivity analysis indicated that the SSEBop model is most sensitive to input variables, land surface temperature (LST) and reference ET (ETo); and parameters, differential temperature (dT), and maximum ET scalar (Kmax), particularly during the non-growing season and in dry areas. In summary, the uncertainty assessment verifies that the SSEBop model is a reliable and robust method for large-area ET estimation. The SSEBop model estimates can be further improved by reducing errors in two input variables (ETo and LST) and two key parameters (Kmax and dT).
Drenth, Benjamin J.
2013-01-01
Airborne gravity gradient (AGG) data are rapidly becoming standard components of geophysical mapping programs, due to their advantages in cost, access, and resolution advantages over measurements of the gravity field on the ground. Unlike conventional techniques that measure the gravity field, AGG methods measure derivatives of the gravity field. This means that effects of terrain and near-surface geology are amplified in AGG data, and that proper terrain corrections are critically important for AGG data processing. However, terrain corrections require reasonable estimates of density for the rocks and sediments that make up the terrain. A recommended philosophical approach is to use the terrain and surface geology, with their strong expression in AGG data, to the interpreter’s advantage. An example of such an approach is presented here for an area with very difficult ground access and little ground gravity data. Nettleton-style profiling is used with AGG data to estimate the densities of the sand dunefield and adjacent Precambrian rocks from the area of Great Sand Dunes National Park in southern Colorado. Processing of the AGG data using the density estimate for the dunefield allows buried structures, including a hypothesized buried basement bench, to be mapped beneath the sand dunes.
Global carbon dioxide emissions from inland waters
Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter
2013-01-01
Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8 petagrams of carbon (Pg C) per year from streams and rivers and 0.32 Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.
Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.
2011-01-01
The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of groundwater flow is from the Rio Grande towards clusters of production wells in the east, north, and west. Water-level changes from predevelopment to 2008 are variable across the area. Hydrographs from piezometers on the east side of the river generally indicate a trend of decline in the annual highest water level through most of the period of record. Hydrographs from piezometers in the valley near the river and on the west side of the river indicate spatial variability in water-level trends.
High Temporal Resolution Permafrost Monitoring Using a Multiple Stack Insar Technique
NASA Astrophysics Data System (ADS)
Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J.
2015-04-01
The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.
Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.
2012-01-01
Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream direction of flow and (2) land-surface elevation data. These map products from the pilot study will aid the NRCS and its partners with the onsite inundation-zone verification in agricultural land for a potential restoration and will assist in determining at what elevation to plant hardwood trees for increased survivability on ground above frequently flooded terraces.
Practical issues for using solar-reflective materials to mitigate urban heat islands
NASA Astrophysics Data System (ADS)
Bretz, Sarah; Akbari, Hashem; Rosenfeld, Arthur
Solar-reflective or high-albedo, alternatives to traditionally absorptive urban surfaces such as rooftops and roadways can reduce cooling energy use and improve urban air quality at almost no cost. This paper presents information to support programs that mitigate urban heat islands with solar-reflective surfaces: estimates of the achievable increase in albedo for a variety of surfaces, issues related to the selection of materials and costs and benefits of using them. As an example, we present data for Sacramento, California. In Sacramento, we estimate that 20% of the 96 square mile area is dark roofing and 10% is dark pavement. Based on the change in albedo that is achievable for these surfaces, the overall albedo of Sacramento could be increased by 18%, a change that would produce significant energy savings and increase comfort within the city. Roofing market data indicate which roofing materials should be targeted for incentive programs. In 1995, asphalt shingle was used for over 65% of residential roofing area in the U.S. and 6% of commercial. Built-up roofing was used for about 5% of residential roofing and about 30% of commercial roofing. Single-ply membranes covered about 9% of the residential roofing area and over 30% of the commercial area. White, solar-reflective alternatives are presently available for these roofing materials but a low- first-cost, solar-reflective alternative to asphalt shingles is needed to capture the sloped-roof market. Since incoming solar radiation has a large non-visible component, solar-reflective materials can also be produced in a variety of colors.
NASA Astrophysics Data System (ADS)
Yunardi, Y.; Munawar, Edi; Rinaldi, Wahyu; Razali, Asbar; Iskandar, Elwina; Fairweather, M.
2018-02-01
Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, growth and destruction of the soot are affected by the temperature. This paper reported the study on the influences of turbulence closure and surface growth models on the prediction of soot levels in turbulent flames. The results demonstrated that a substantial distinction was observed in terms of temperature predictions derived using the k-ɛ and the Reynolds stress models, for the two ethylene flames studied here amongst the four types of surface growth rate model investigated, the assumption of the soot surface growth rate proportional to the particle number density, but independent on the surface area of soot particles, f ( A s ) = ρ N s , yields in closest agreement with the radial data. Without any adjustment to the constants in the surface growth term, other approaches where the surface growth directly proportional to the surface area and square root of surface area, f ( A s ) = A s and f ( A s ) = √ A s , result in an under- prediction of soot volume fraction. These results suggest that predictions of soot volume fraction are sensitive to the modelling of surface growth.
Automated quantification of surface water inundation in wetlands using optical satellite imagery
DeVries, Ben; Huang, Chengquan; Lang, Megan W.; Jones, John W.; Huang, Wenli; Creed, Irena F.; Carroll, Mark L.
2017-01-01
We present a fully automated and scalable algorithm for quantifying surface water inundation in wetlands. Requiring no external training data, our algorithm estimates sub-pixel water fraction (SWF) over large areas and long time periods using Landsat data. We tested our SWF algorithm over three wetland sites across North America, including the Prairie Pothole Region, the Delmarva Peninsula and the Everglades, representing a gradient of inundation and vegetation conditions. We estimated SWF at 30-m resolution with accuracies ranging from a normalized root-mean-square-error of 0.11 to 0.19 when compared with various high-resolution ground and airborne datasets. SWF estimates were more sensitive to subtle inundated features compared to previously published surface water datasets, accurately depicting water bodies, large heterogeneously inundated surfaces, narrow water courses and canopy-covered water features. Despite this enhanced sensitivity, several sources of errors affected SWF estimates, including emergent or floating vegetation and forest canopies, shadows from topographic features, urban structures and unmasked clouds. The automated algorithm described in this article allows for the production of high temporal resolution wetland inundation data products to support a broad range of applications.
NASA Astrophysics Data System (ADS)
Berlanga, Juan M.; Harbaugh, John W.
The Tabasco region contains a number of major oilfields, including some of the emerging "giant" oil fields which have received extensive publicity. Fields in the Tabasco region are associated with large geologic structures which are detected readily by seismic surveys. The structures seem to be associated with deepseated movement of salt, and they are complexly faulted. Some structures have as much as 1000 milliseconds relief of seismic lines. A study, interpreting the structure of the area, used initially only a fraction of the total seismic lines That part of Tabasco region that has been studied was surveyed with a close-spaced rectilinear network of seismic lines. A, interpreting the structure of the area, used initially only a fraction of the total seismic data available. The purpose was to compare "predictions" of reflection time based on widely spaced seismic lines, with "results" obtained along more closely spaced lines. This process of comparison simulates the sequence of events in which a reconnaissance network of seismic lines is used to guide a succession of progressively more closely spaced lines. A square gridwork was established with lines spaced at 10 km intervals, and using machine contour maps, compared the results with those obtained with seismic grids employing spacings of 5 and 2.5 km respectively. The comparisons of predictions based on widely spaced lines with observations along closely spaced lines provide information by which an error function can be established. The error at any point can be defined as the difference between the predicted value for that point, and the subsequently observed value at that point. Residuals obtained by fitting third-degree polynomial trend surfaces were used for comparison. The root mean square of the error measurement, (expressed in seconds or milliseconds reflection time) was found to increase more or less linearly with distance from the nearest seismic point. Oil-occurrence probabilities were established on the basis of frequency distributions of trend-surface residuals obtained by fitting and subtracting polynomial trend surfaces from the machine-contoured reflection time maps. We found that there is a strong preferential relationship between the occurrence of petroleum (i.e. its presence versus absence) and particular ranges of trend-surface residual values. An estimate of the probability of oil occurring at any particular geographic point can be calculated on the basis of the estimated trend-surface residual value. This estimate, however, must be tempered by the probable error in the estimate of the residual value provided by the error function. The result, we believe, is a simple but effective procedure for estimating exploration outcome probabilities where seismic data provide the principal form of information in advance of drilling. Implicit in this approach is the comparison between a maturely explored area, for which both seismic and production data are available, and which serves as a statistical "training area", with the "target" area which is undergoing exploration and for which probability forecasts are to be calculated.
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Mo, G.
2006-12-01
Carbon balance estimation at the landscape/regional scale is a challenge because of the heterogeneity of the land surface and the nonlinearity inherent in ecophysiological processes. Two methodologies, a simple atmospheric boundary-layer budgeting method and an integrated modeling method, were explored and compared in this study. Studies of the atmospheric boundary-layer (ABL) budget of CO2 have the potential to provide information on carbon balance of the land surface on a regional scale. Indeed, the surface area of integration by the ABL moving through a tower in one day was estimated to be ~104 km2. Two novel methodologies to retrieve the landscape/regional carbon balance information captured by the CO2 concentration measurements are explored and compared in this study: boundary-layer budgeting and remote sensing-based footprint integration. We investigated four boreal continental sites in this study. Boundary-layer budgeting: By assuming the horizontal advection is negligible, the regional surface net flux (representative of an upwind area ~105 km2) can be calculated as, Fc=(Cm-CFT)ù+dC/dt*zi, where ù is the mean vertical velocity, zi is the mean ABL height, and and are the biweekly mean mixing ratio of CO2 in the ABL and the free troposphere, respectively. ù is from the NCEP (National Centers for Environmental Prediction) reanalysis data, while zi was simulated by an one-dimensional ABL model. The CO2 flux in the upwind area of the tower was also estimated based on ecosystem modeling using remote sensing measurements. Remote sensing-based footprint integration: The total regional flux captured by the sensor on a tower (mixing ratio) is the weighted sum of the upwind footprint source areas (Ømega), Fc= Σ FiWi, where Fi and Wi are the CO2 flux and its weighting factor for each pixel, respectively. Fiis calculated using an ecosystem model (BEPS: Boreal Ecosystem Productivity Simulator). Wiis comparative contribution factor of footprint function for each pixel within the whole footprint area as, Wi= fi/Σ fi, while the footprint function fi (the pixel i with x,y coordinates; x and y are along and the cross daily mean wind direction, respectively) is computed using a concentration footprint model as, fi(x,y,zm-z0)=Dy(x,y)Dz(x,zm)/U(x) Where Dy and Dz are the crosswind and vertical concentration distribution function, respectively and U(x) is the effective speed of plume advection. They are dependant on standard surface-layer scaling parameters and based on an analytical solution of Eulerian theory. Methodology comparison: The regional fluxes estimated using these two methods matched well. These regional net CO2 flux estimates were also comparable to local-scale measurements by eddy covariance techniques. The calculated upwind regional CO2 flux shows considerable seasonal and inter-annual variations. Annual regional flux was sensitive to air temperature in boreal regions and the temperature-sensitivities were region dependent. Larger fluxes are found in the warmer growing seasons and warmer years in the boreal forest regions.
Gridding Cloud and Irradiance to Quantify Variability at the ARM Southern Great Plains Site
NASA Astrophysics Data System (ADS)
Riihimaki, L.; Long, C. N.; Gaustad, K.
2017-12-01
Ground-based radiometers provide the most accurate measurements of surface irradiance. However, geometry differences between surface point measurements and large area climate model grid boxes or satellite-based footprints can cause systematic differences in surface irradiance comparisons. In this work, irradiance measurements from a network of ground stations around Kansas and Oklahoma at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains facility are examined. Upwelling and downwelling broadband shortwave and longwave radiometer measurements are available at each site as well as surface meteorological measurements. In addition to the measured irradiances, clear sky irradiance and cloud fraction estimates are analyzed using well established methods based on empirical fits to measured clear sky irradiances. Measurements are interpolated onto a 0.25 degree latitude and longitude grid using a Gaussian weight scheme in order to provide a more accurate statistical comparison between ground measurements and a larger area such as that used in climate models, plane parallel radiative transfer calculations, and other statistical and climatological research. Validation of the gridded product will be shown, as well as analysis that quantifies the impact of site location, cloud type, and other factors on the resulting surface irradiance estimates. The results of this work are being incorporated into the Surface Cloud Grid operational data product produced by ARM, and will be made publicly available for use by others.
River runoff estimates based on remotely sensed surface velocities
NASA Astrophysics Data System (ADS)
Grünler, Steffen; Stammer, Detlef; Romeiser, Roland
2010-05-01
One promising technique for river runoff estimates from space is the retrieval of surface currents on the basis of synthetic aperture radar along-track interferometry (ATI). The German satellite TerraSAR-X, which was launched in June 2007, will permit ATI measurements in an experimental mode. Based on numerical simulations, we present findings of a research project in which the potential of satellite measurements of various parameters with different temporal and spatial sampling characteristics is evaluated. A sampling strategy for river runoff estimates is developed. We address the achievable accuracy and limitations of such estimates for different local flow conditions at selected test site. High-resolution three-dimensional current fields in the Elbe river (Germany) from a numerical model are used as reference data set and input for simulations of a variety of possible measuring and data interpretation strategies to be evaluated. Addressing the problem of aliasing we removed tidal signals from the sampling data. Discharge estimates on the basis of measured surface current fields and river widths from TerraSAR-X are successfully simulated. The differences of the resulted net discharge estimate are between 30-55% for a required continuously observation period of one year. We discuss the applicability of the measuring strategies to a number of major rivers. Further we show results of runoff estimates by the retrieval of surface current fields by real TerraSAR-X ATI data (AS mode) for the Elbe river study area.
A Multiple Resource Inventory of Delaware Using an Airborne Profiling Laser
NASA Technical Reports Server (NTRS)
Nelson, Ross; Short, Austin; Valenti, Michael A.; Keller, Cherry; Smith, David E. (Technical Monitor)
2002-01-01
An airborne profiling laser is used to monitor multiple resources related to landscape structure, both natural and man-made, across regions encompassing hundreds of thousands of hectares. A small, lightweight, inexpensive airborne profiling laser is used to inventory Delaware forests, to estimate impervious surface area statewide, and to locate potentially Suitable Delmarva Fox Squirrel (Scrotum niger cinereus) habitat. Merchantable volume estimates are within 14% of US Forest Service estimates at the county level and within 4% statewide. Total above-ground dry biomass estimates are within 19% of USES estimates at the county level and within 16% statewide. Mature forest stands suitable for reintroduction of the Delmarva Fox Squirrel, an endangered species historically endemic to the eastern shores of Delaware, Maryland, and Virginia, are identified and mapped along the laser transacts. Intersection lengths with various types of impervious surface (roofs, concrete/asphalt) and open water are tallied to estimate percent and areal coverage statewide, by stratum and county. Laser estimates of open water are within 7% of photointerpreted GIS estimates at the county level and within 3% of the GIS at the state level.
Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M
2016-08-01
Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.
Regional estimation of base recharge to ground water using water balance and a base-flow index.
Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F
2003-01-01
Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.
Extraction of near-surface properties for a lossy layered medium using the propagator matrix
Mehta, K.; Snieder, R.; Graizer, V.
2007-01-01
Near-surface properties play an important role in advancing earthquake hazard assessment. Other areas where near-surface properties are crucial include civil engineering and detection and delineation of potable groundwater. From an exploration point of view, near-surface properties are needed for wavefield separation and correcting for the local near-receiver structure. It has been shown that these properties can be estimated for a lossless homogeneous medium using the propagator matrix. To estimate the near-surface properties, we apply deconvolution to passive borehole recordings of waves excited by an earthquake. Deconvolution of these incoherent waveforms recorded by the sensors at different depths in the borehole with the recording at the surface results in waves that propagate upwards and downwards along the array. These waves, obtained by deconvolution, can be used to estimate the P- and S-wave velocities near the surface. As opposed to waves obtained by cross-correlation that represent filtered version of the sum of causal and acausal Green's function between the two receivers, the waves obtained by deconvolution represent the elements of the propagator matrix. Finally, we show analytically the extension of the propagator matrix analysis to a lossy layered medium for a special case of normal incidence. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466
Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin
2017-10-13
Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.
NASA Technical Reports Server (NTRS)
Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil
2011-01-01
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmessih, A.N.; Rabas, T.J.; Panchal, C.B.
1997-06-01
Estimates of the surface-area and vapor-release reductions are obtained when commercially available enhanced tubes (spirally ribbed) replace plain tubes in a reflux unit condensing pure organic vapors with different concentrations of a noncondensable gas. This investigation was undertaken because there are no existing data and/or prediction methods that are applicable for these shell-and-tube condensers commonly used in the process industries. To obtain these estimates, existing design methods published in the open literature were used. The major findings are that (1) surface-area reductions can almost approach the single-phase heat transfer enhancement level, and (2) vapor-release reductions can approach a factor ofmore » four. The important implication is that enhanced tubes appear to be very cost effective for addressing the recovery of volatile organic vapors (VOCs), and for a vast number of different reflux-condenser applications.« less
Evaluation of the wave measurement in a stormy sea by the Along-Track interferometry SAR
NASA Astrophysics Data System (ADS)
Kojima, S.
2015-12-01
NICT developed the along-track interferometry SAR (AT-InSAR) system to detect the running cars and ships and measure sea surface velocity in 2011. The preliminary experiments for the running truck and ship were performed and it confirmed that the system performance was satisfactory to its specifications. In addition, a method to estimate the wave height from the sea surface velocity measured by the AT-InSAR was developed. The preliminary wave height observation was performed in a calm sea, and it was confirmed that the wave height could be estimated from the measured sea surface velocity. The purpose of this study is to check the capability of the ocean waves observation in a stormy sea by the AT-InSAR. Therefore, the ocean wave observation was performed under the low atmospheric pressure. The observation area is the sea surface at 10 km off the coast of Kushiro, south-east to Hokaido, JAPAN on the 4th of March 2015. The wind speed was 8〜10m/s during the observation, and the significant wave height and period were 1.5m and 6.0s. The observation was performed in 2 directions and the accuracy of the estimation results were checked. The significant wave height and period measured by the AT-InSAR agreed with it measured by the wave gage located close to this observation area. In addition, it was confirmed that there were no irregular wave heights in the distribution of the estimated wave height. As a result, it became clear that the AT-InSAR could observe the wave height in a stormy sea.
Bathymetric contour maps of lakes surveyed in Iowa in 2004
Linhart, S. Mike; Lund, Kris D.
2006-01-01
Bathymetric data were collected using a boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volume estimates ranged from 83,924,000 cubic feet (1,930 acre-feet) at Lake Darling to 5,967,000 cubic feet (140 acre-feet) at Upper Gar Lake. Surface area estimates ranged from 10,660,000 square feet (240 acres) at Lake Darling to 1,557,000 square feet (36 acres) at Upper Gar Lake.
Bathymetric contour maps for lakes surveyed in Iowa in 2003
Linhart, S. Mike; Lund, Kris D.
2006-01-01
Bathymetric data were collected using boat-mounted, differential global positioning system (GPS) equipment, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system (GIS) for mapping and calculation of area and volume. Lake volume estimates ranged from 590,501,000 cubic feet (13,600 acre-feet) at Lake Macbride to 17,831,000 cubic feet (410 acre-feet) at Lake Meyer. Surface area estimates ranged from 38,118,000 square feet (875 acres) at Lake Macbride to 1,373,000 square feet (32 acres) at Lake Meyer.
Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry
Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...
2017-05-26
Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less
Stress distribution and topography of Tellus Regio, Venus
NASA Technical Reports Server (NTRS)
Williams, David R.; Greeley, Ronald
1989-01-01
The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.
Exposure to particle number, surface area and PM concentrations in pizzerias
NASA Astrophysics Data System (ADS)
Buonanno, G.; Morawska, L.; Stabile, L.; Viola, A.
2010-10-01
The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM 1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM 1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM 1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect to the diameter of the semicircular oven door, and particular attention must also be paid to hood efficiency.
Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier
2015-03-01
Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.
Hewett, P
1995-02-01
The particle size distributions and bulk fume densities for mild steel and stainless steel welding fumes generated using two welding processes (shielded metal arc welding [SMAW] and gas metal arc welding [GMAW]) were used in mathematical models to estimate regional pulmonary deposition (the fraction of each fume expected to deposit in each region of the pulmonary system) and regional pulmonary exposure (the fraction of each fume expected to penetrate to each pulmonary region and would be collected by a particle size-selective sampling device). Total lung deposition for GMAW fumes was estimated at 60% greater than that of SMAW fumes. Considering both the potential for deposition and the fume specific surface areas, it is likely that for equal exposure concentrations GMAW fumes deliver nearly three times the particle surface area to the lungs as SMAW fumes. This leads to the hypothesis that exposure to GMAW fumes constitutes a greater pulmonary hazard than equal exposure to SMAW fumes. The implications of this hypothesis regarding the design of future health studies of welders is discussed.
Estimation of continental precipitation recycling
NASA Technical Reports Server (NTRS)
Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, P. S.
1993-01-01
The total amount of water that precipitates on large continental regions is supplied by two mechanisms: 1) advection from the surrounding areas external to the region and 2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases.
Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob
2015-01-01
Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852
Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob
2015-01-01
Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.
Relating saturation capacity to charge density in strong cation exchangers.
Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo
2017-07-21
In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Projection of Summer Climate on Tokyo Metropolitan Area using Pseudo Global Warming Method
NASA Astrophysics Data System (ADS)
Adachi, S. A.; Kimura, F.; Kusaka, H.; Hara, M.
2010-12-01
Recent surface air temperature observations in most of urban areas show the remarkable increasing trend affected by the global warming and the heat island effects. There are many populous areas in Japan. In such areas, the effects of land-use change and urbanization on the local climate are not negligible (Fujibe, 2010). The heat stress for citizen there is concerned to swell moreover in the future. Therefore, spatially detailed climate projection is required for making adaptation and mitigation plans. This study focuses on the Tokyo metropolitan area (TMA) in summer and aims to estimate the local climate change over the TMA in 2070s using a regional climate model. The Regional Atmospheric Modeling System (RAMS) was used for downscaling. A single layer urban canopy model (Kusaka et al., 2001) is built into RAMS as a parameterization expressing the features of urban surface. We performed two experiments for estimating present and future climate. In the present climate simulation, the initial and boundary conditions for RAMS are provided from the JRA-25/JCDAS. On the other hand, the Pseudo Global Warming (PGW) method (Sato et al., 2007) is applied to estimate the future climate, instead of the conventional dynamical downscaling method. The PGW method is expected to reduce the model biases in the future projection estimated by Atmosphere-Ocean General Circulation Models (AOGCM). The boundary conditions used in the PGW method is given by the PGW data, which are obtained by adding the climate monthly difference between 1990s and 2070s estimated by AOGCMs to the 6-hourly reanalysis data. In addition, the uncertainty in the regional climate projection depending on the AOGCM projections is estimated from additional downscaling experiments using the different PGW data obtained from five AOGCMs. Acknowledgment: This work was supported by the Global Environment Research Fund (S-5-3) of the Ministry of the Environment, Japan. References: 1. Fujibe, F., Int. J. Climatol., doi:10.1002/joc.2142 (2010). 2. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, Bound.-Layer Meteor., 101, 329-358 (2001). 3. Sato, T., F. Kimura, and A. Kitoh, J. Hydrology, 144-154 (2007).
Xian, George Z.; Homer, Collin G.
2009-01-01
The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales.
Capel, P.D.; Zhang, H.
2000-01-01
In assessing the occurrence, behavior, and effects of agricultural chemicals in surface water, the scales of study (i.e., watershed, county, state, and regional areas) are usually much larger than the scale of agricultural fields, where much of the understanding of processes has been developed. Field-scale areas are characterized by relatively homogeneous conditions. The combination of process-based simulation models and geographic information system technology can be used to help extend our understanding of field processes to water-quality concerns at larger scales. To demonstrate this, the model "Groundwater Loading Effects of Agricultural Management Systems" was used to estimate the potential loss of two pesticides (atrazine and permethrin) in runoff to surface water in Fillmore County in southeastern Minnesota. The county was divided into field-scale areas on the basis of a 100 m by 100 m grid, and the influences of soil type and surface topography on the potential losses of the two pesticides in runoff was evaluated for each individual grid cell. The results could be used for guidance for agricultural management and regulatory decisions, for planning environmental monitoring programs, and as an educational tool for the public.
NASA Astrophysics Data System (ADS)
Brezina, Tadej; Graser, Anita; Leth, Ulrich
2017-04-01
Space, and in particular public space for movement and leisure, is a valuable and scarce resource, especially in today's growing urban centres. The distribution and absolute amount of urban space—especially the provision of sufficient pedestrian areas, such as sidewalks—is considered crucial for shaping living and mobility options as well as transport choices. Ubiquitous urban data collection and today's IT capabilities offer new possibilities for providing a relation-preserving overview and for keeping track of infrastructure changes. This paper presents three novel methods for estimating representative sidewalk widths and applies them to the official Viennese streetscape surface database. The first two methods use individual pedestrian area polygons and their geometrical representations of minimum circumscribing and maximum inscribing circles to derive a representative width of these individual surfaces. The third method utilizes aggregated pedestrian areas within the buffered street axis and results in a representative width for the corresponding road axis segment. Results are displayed as city-wide means in a 500 by 500 m grid and spatial autocorrelation based on Moran's I is studied. We also compare the results between methods as well as to previous research, existing databases and guideline requirements on sidewalk widths. Finally, we discuss possible applications of these methods for monitoring and regression analysis and suggest future methodological improvements for increased accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity.more » Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.« less
Belchansky, Gennady I.; Douglas, David C.; Mordvintsev, Ilia N.; Platonov, Nikita G.
2004-01-01
Accurate calculation of the time of melt onset, freeze onset, and melt duration over Arctic sea-ice area is crucial for climate and global change studies because it affects accuracy of surface energy balance estimates. This comparative study evaluates several methods used to estimate sea-ice melt and freeze onset dates: (1) the melt onset database derived from SSM/I passive microwave brightness temperatures (Tbs) using Drobot and Anderson's [J. Geophys. Res. 106 (2001) 24033] Advanced Horizontal Range Algorithm (AHRA) and distributed by the National Snow and Ice Data Center (NSIDC); (2) the International Arctic Buoy Program/Polar Exchange at the Sea (IABP/POLES) surface air temperatures (SATs); (3) an elaborated version of the AHRA that uses IABP/POLES to avoid anomalous results (Passive Microwave and Surface Temperature Analysis [PMSTA]); (4) another elaborated version of the AHRA that uses Tb variance to avoid anomalous results (Mean Differences and Standard Deviation Analysis [MDSDA]); (5) Smith's [J. Geophys. Res. 103 (1998) 27753] vertically polarized Tb algorithm for estimating melt onset in multiyear (MY) ice (SSM/I 19V–37V); and (6) analyses of concurrent backscattering cross section (σ°) and brightness temperature (Tb) from OKEAN-01 satellite series. Melt onset and freeze onset maps were created and compared to understand how the estimates vary between different satellite instruments and methods over different Arctic sea-ice regions. Comparisons were made to evaluate relative sensitivities among the methods to slight adjustments of the Tbcalibration coefficients and algorithm threshold values. Compared to the PMSTA method, the AHRA method tended to estimate significantly earlier melt dates, likely caused by the AHRA's susceptibility to prematurely identify melt onset conditions. In contrast, the IABP/POLES surface air temperature data tended to estimate later melt and earlier freeze in all but perennial ice. The MDSDA method was least sensitive to small adjustments of the SMMR–SSM/I inter-satellite calibration coefficients. Differences among methods varied by latitude. Freeze onset dates among methods were most disparate in southern latitudes, and tended to converge northward. Surface air temperatures (IABP/POLES) indicated freeze onset well before the MDSDA method, especially in southern peripheral seas, while PMSTA freeze estimates were generally intermediate. Surface air temperature data estimated latest melt onset dates in southern latitudes, but earliest melt onset in northern latitudes. The PMSTA estimated earliest melt onset dates in southern regions, and converged with the MDSDA northward. Because sea-ice melt and freeze are dynamical transitional processes, differences among these methods are associated with differing sensitivities to changing stages of environmental and physical development. These studies contribute to the growing body of documentation about the levels of disparity obtained when Arctic seasonal transition parameters are estimated using various types of microwave data and algorithms.
2013-09-01
model and the BRDF in the SRP model are not consistent with each other, then the resulting estimated albedo-areas and mass are inaccurate and biased...This work studies the use of physically consistent BRDF -SRP models for mass estimation. Simulation studies are used to provide an indication of the...benefits of using these new models . An unscented Kalman filter approach that includes BRDF and mass parameters in the state vector is used. The
NASA Astrophysics Data System (ADS)
Ma, H.
2016-12-01
Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave radiation (modeled by MODTRAN). These seven parameters were validated over several representative sites with different biome type, and compared with MODIS and GLASS product. Results showed that this unified inversion algorithm can retrieve temporally complete and physical consistent land surface parameters with high accuracy.
NASA Astrophysics Data System (ADS)
Modrick, Theresa M.; Georgakakos, Konstantine P.
2014-09-01
This study develops and intercompares regional relationships for bankfull channel width, hydraulic depth, and cross-sectional area for southern California mountain streams based on several data sources: surveyed streams, US Geological Survey stream survey reports, and existing literature. Although considerable uncertainty exists in estimating bankfull conditions, the relationships developed from the varying data sources show significant agreement. For small watersheds with drainage area ranging from 15 to ~ 2000 km2, the estimates of bankfull top width ranged from 7.2 to 44.5 m and hydraulic depth estimates ranged from 0.35 to 1.15 m. The utility of the developed bankfull geometry regional curves is demonstrated for southern California catchments through (a) the computation of the bankfull discharge and (b) the estimation of the surface runoff response necessary to produce bankfull conditions in the streams at the outlet of these catchments. For selected locations with instantaneous flow records, the occurrence frequency of events exceeding bankfull flow was examined for the available 10-15 year span of observational records. Bankfull discharge estimates for all small watersheds in the region ranged from 1.3 to 74 m3/s, while the range at the selected gauged stream locations was from 2.6 to 16.4 m3/s. Stream locations along the Transverse Mountains of southern California showed an average occurrence frequency of less than 1 year, whereas along the Peninsular Mountains the average return period tended to be greater than 1 year. The application of the regional curves to the estimation of the surface runoff response necessary to produce bankfull conditions at the channel outlets of small catchments may be used as an index for conditions of minor flooding with saturated soils. This surface runoff response index ranges from 2.0 to 5.5 mm for a 3-hour rainfall duration for southern California watersheds greater than 15 km2 in area. Differences between the values for the Peninsular and Transverse Mountain Ranges are linked to geological, climatic, and geomorphologic differences. The developed regional geometry relationships are suitable for use in various hydrologic modeling applications, including distributed modeling with high resolution pertinent to flash flood forecasting.
NASA Astrophysics Data System (ADS)
Corona, R.; Montaldo, N.
2017-12-01
Mediterranean ecosystems are typically heterogeneous, with contrasting plant functional types (PFT, woody vegetation and grass) that compete for water use. Due to the complexity of these ecosystems there is still uncertainty on the estimate of the evapotranspiration (ET). Micrometerological measurements (e.g. eddy covariance method based, EC ) are widely used for ET estimate, but in heterogeneous systems one of the main assumption (surface homogeneity) is not preserved and the method may become less robust. In this sense, the coupled use of sap flow sensors for tree transpiration estimate, surface temperature sensors, remote sensing information for land surface characterization allow to estimate the ET components and the energy balances of the three main land surface components (woody vegetation, grass and bare soil), overtaking the EC method uncertainties. The experimental site of Orroli, in Sardinia (Italy), is a typical Mediterranean heterogeneous ecosystem, monitored from the University of Cagliari since 2003. With the intent to perform an intensive field campaign for the ET estimation, we verified the potentiality of coupling eddy covariance (EC) method, infrared sensors and thermal dissipation methods (i.e. sap flow technique) for tree transpiration estimate. As a first step 3 commercial sap flux sensors were installed in a wild olive clump where the skin temperature of one tree in the clump was monitored with an infrared transducer. Then, other 54 handmade sensors were installed in 14 clumps in the EC footprint. Measurements of diameter were recorded in all the clumps and the sapwood depth was derived from measurements in several trees. The field ET estimation from the 4 commercial sensors was obtained assuming 4 different relationship between the monitored sap flux and the diameter of the species in the footprint. Instead for the 54 handmade sensors a scaling procedure was applied based on the allometric relationships between sapwood area, diameter and canopy cover area within the EC footprint. Furthermore, the hydrologic relationships between soil moisture content and ET of woody vegetation has been computed from sap flux measurements. The ET components are well estimated, highlighting the strong water resistance of wild olive, which survive in drastic dry conditions, in contrast with grass species.
Investigating scintillometer source areas
NASA Astrophysics Data System (ADS)
Perelet, A. O.; Ward, H. C.; Pardyjak, E.
2017-12-01
Scintillometry is an indirect ground-based method for measuring line-averaged surface heat and moisture fluxes on length scales of 0.5 - 10 km. These length scales are relevant to urban and other complex areas where setting up traditional instrumentation like eddy covariance is logistically difficult. In order to take full advantage of scintillometry, a better understanding of the flux source area is needed. The source area for a scintillometer is typically calculated as a convolution of point sources along the path. A weighting function is then applied along the path to compensate for a total signal contribution that is biased towards the center of the beam path, and decreasing near the beam ends. While this method of calculating the source area provides an estimate of the contribution of the total flux along the beam, there are still questions regarding the physical meaning of the weighted source area. These questions are addressed using data from an idealized experiment near the Salt Lake City International Airport in northern Utah, U.S.A. The site is a flat agricultural area consisting of two different land uses. This simple heterogeneity in the land use facilitates hypothesis testing related to source areas. Measurements were made with a two wavelength scintillometer system spanning 740 m along with three standard open-path infrared gas analyzer-based eddy-covariance stations along the beam path. This configuration allows for direct observations of fluxes along the beam and comparisons to the scintillometer average. The scintillometer system employed measures the refractive index structure parameter of air for two wavelengths of electromagnetic radiation, 880 μm and 1.86 cm to simultaneously estimate path-averaged heat and moisture fluxes, respectively. Meteorological structure parameters (CT2, Cq2, and CTq) as well as surface fluxes are compared for various amounts of source area overlap between eddy covariance and scintillometry. Additionally, surface properties from LANDSAT 7 & 8 are used to help understand source area composition for different times throughout the experiment.
Front gardens to car parks: changes in garden permeability and effects on flood regulation.
Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D
2014-07-01
This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.
Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R
2013-04-01
After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the treatment plant is estimated. For Cs-137 radiation levels in the plant are low since wash-off of cesium from surfaces is an ineffective process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bias Correction of MODIS AOD using DragonNET to obtain improved estimation of PM2.5
NASA Astrophysics Data System (ADS)
Gross, B.; Malakar, N. K.; Atia, A.; Moshary, F.; Ahmed, S. A.; Oo, M. M.
2014-12-01
MODIS AOD retreivals using the Dark Target algorithm is strongly affected by the underlying surface reflection properties. In particular, the operational algorithms make use of surface parameterizations trained on global datasets and therefore do not account properly for urban surface differences. This parameterization continues to show an underestimation of the surface reflection which results in a general over-biasing in AOD retrievals. Recent results using the Dragon-Network datasets as well as high resolution retrievals in the NYC area illustrate that this is even more significant at the newest C006 3 km retrievals. In the past, we used AERONET observation in the City College to obtain bias-corrected AOD, but the homogeneity assumptions using only one site for the region is clearly an issue. On the other hand, DragonNET observations provide ample opportunities to obtain better tuning the surface corrections while also providing better statistical validation. In this study we present a neural network method to obtain bias correction of the MODIS AOD using multiple factors including surface reflectivity at 2130nm, sun-view geometrical factors and land-class information. These corrected AOD's are then used together with additional WRF meteorological factors to improve estimates of PM2.5. Efforts to explore the portability to other urban areas will be discussed. In addition, annual surface ratio maps will be developed illustrating that among the land classes, the urban pixels constitute the largest deviations from the operational model.
Dietsch, Benjamin J.; Wilson, Richard C.; Strauch, Kellan R.
2008-01-01
Repeated flooding of Omaha Creek has caused damage in the Village of Homer. Long-term degradation and bridge scouring have changed substantially the channel characteristics of Omaha Creek. Flood-plain managers, planners, homeowners, and others rely on maps to identify areas at risk of being inundated. To identify areas at risk for inundation by a flood having a 1-percent annual probability, maps were created using topographic data and water-surface elevations resulting from hydrologic and hydraulic analyses. The hydrologic analysis for the Omaha Creek study area was performed using historical peak flows obtained from the U.S. Geological Survey streamflow gage (station number 06601000). Flood frequency and magnitude were estimated using the PEAKFQ Log-Pearson Type III analysis software. The U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System, version 3.1.3, software was used to simulate the water-surface elevation for flood events. The calibrated model was used to compute streamflow-gage stages and inundation elevations for the discharges corresponding to floods of selected probabilities. Results of the hydrologic and hydraulic analyses indicated that flood inundation elevations are substantially lower than from a previous study.
NASA Astrophysics Data System (ADS)
Song, L.; Liu, S.; Kustas, W. P.; Nieto, H.
2017-12-01
Operational estimation of spatio-temporal continuously daily evapotranspiration (ET), and the components evaporation (E) and transpiration (T), at watershed scale is very useful for developing a sustainable water resource strategy in semi-arid and arid areas. In this study, multi-year all-weather daily ET, E and T were estimated using MODIS-based (Dual Temperature Difference) DTD model under different land covers in Heihe watershed, China. The remotely sensed ET was validated using ground measurements from large aperture scintillometer systems, with a source area of several kilometers, under grassland, cropland and riparian shrub-forest. The results showed that the remotely sensed ET produced mean absolute percent deviation (MAPD) errors of about 30% during the growing season for all-weather conditions, but the model performed better under clear sky conditions. However, uncertainty in interpolated MODIS land surface temperature input data under cloudy conditions to the DTD model, and the representativeness of LAS measurements for the heterogeneous land surfaces contribute to the discrepancies between the modeled and ground measured surface heat fluxes, especially for the more humid grassland and heterogeneous shrub-forest sites.
Frequency response of electrochemical cells
NASA Technical Reports Server (NTRS)
Thomas, Daniel L.
1989-01-01
Impedance concepts can be applied to the analysis of battery electrodes, yielding information about the structure of the electrode and the processes occurring in the electrode. Structural parameters such as the specific area (surface area per gram of electrode) can be estimated. Electrode variables such as surface overpotential, ohmic losses, and diffusion limitations may be studied. Nickel and cadmium electrodes were studied by measuring the ac impedance as a function of frequency, and the specific areas that were determined were well within the range of specific areas determined from BET measurements. Impedance spectra were measured for the nickel and cadmium electrodes, and for a 20 A-hr NiCd battery as functions of the state of charge. More work is needed to determine the feasibility of using frequency response as a nondestructive testing technique for batteries.
NASA Technical Reports Server (NTRS)
York, P.; Labell, R. W.
1980-01-01
An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.
Aerodynamic method for obtaining the soil water retention curve
NASA Astrophysics Data System (ADS)
Alekseev, V. V.; Maksimov, I. I.
2013-07-01
A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.
Evaluation of surface water resources from machine-processing of ERTS multispectral data
NASA Technical Reports Server (NTRS)
Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.; Mitchell, R. A.; Cook, J. P.
1976-01-01
The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations.
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.
1999-01-01
To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
Photogrammetric registration of dental plaque accumulation in vivo.
Bergström, J
1981-01-01
Using the labial surface of upper anterior laterals for determination, the accumulation of plaque was assessed by means of a stereo-photogrammetric method. The stereoimages were subjected to photogrammetric evaluation, the part of the surface area covered by plaque being given in per cent of the total surface area of the tooth. Plaque extension and plaque topography was studied in young adults with healthy periodontia during a 20 day period of no oral hygiene. At the end of the experimental period, on an average 75 per cent of the surface area was covered by plaque, corresponding to an extension rate of 3.75 per cent per day. The correlation between plaque values obtained by photogrammetry and various estimates obtained from clinical scoring ranged between r = 0.66 and r = 0.78. It is concluded that the method introduced is a sensitive means of determining small amounts of plaque and should prove useful for in vivo investigation of plaque growth and plaque suppression, where measurements of high quality is of importance.
Estimated land-surface subsidence in Harris County, Texas, 1915-17 to 2001
Kasmarek, Mark C.; Gabrysch, Robert K.; Johnson, Michaela R.
2009-01-01
Land-surface subsidence, or land subsidence, in Harris County, Texas, which encompasses much of the Houston area, has been occurring for decades. Land subsidence has increased the frequency and extent of flooding, damaged buildings and transportation infrastructure, and caused adverse environmental effects. The primary cause of land subsidence in the Houston area is withdrawal of groundwater, although extraction of oil and gas also has contributed. Throughout most of the 20th century, groundwater was the primary source of municipal, agricultural, and industrial water supply for Harris County. Currently (2009) a transition to surface water as the primary source of supply, guided by a groundwater regulatory plan developed by the Harris-Galveston Subsidence District (2001), is in effect. The aquifers in Harris County contain an abundant amount of potable groundwater, but they also contain layers of clay. Groundwater withdrawals caused compaction of the clay layers, which in turn resulted in the widespread, substantial land-surface subsidence that has occurred in the Houston area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, Leanna Shea
2001-10-30
Urban fabric data are needed in order to estimate the impactof light-colored surfaces (roofs and pavements) and urban vegetation(trees, grass, shrubs) on the meteorology and air quality of a city, andto design effective implementation programs. In this report, we discussthe result of a semi-automatic Monte-Carlo statistical approach used todevelop data on surface-type distribution and city-fabric makeup(percentage of various surface-types) using aerial colororthophotography. The digital aerial photographs for metropolitan Chicagocovered a total of about 36 km2 (14 mi2). At 0.3m resolution, there wereapproximately 3.9 x 108 pixels of data. Four major land-use types wereexamined: commercial, industrial, residential, andtransportation/communication. On average, formore » the areas studied, atground level vegetation covers about 29 percent of the area (ranging 4 80percent); roofs cover about 25 percent (ranging 8 41 percent), and pavedsurfaces about 33 percent (ranging 12 59 percent). For the most part,trees shade streets, parking lots, grass, and side-walks. In commercialareas, paved surfaces cover 50 60 percent of the area. In residentialareas, on average, paved surfaces cover about 27percent of the area.Land-use/land-cover (LULC) data from the United States Geological Surveywas used to extrapolate these results from neighborhood scales tometropolitan Chicago. In an area of roughly 2500 km2, defining most ofmetropolitan Chicago, over 53 percent is residential. The total roof areais about 680 km2, and the total paved surfaces (roads, parking areas,sidewalks) are about 880 km2. The total vegetated area is about 680km2.« less
Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.
2000-01-01
Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As a result, the wind erosion potential determined using the generalised soil map Was about 26% greater than the erosion potential estimated by using the detailed soil map in Terry County. This study demonstrates the feasibility of scaling up from fields to regions to estimate wind erosion potential by coupling a field-scale wind erosion model with GIS and identifies possible sources of error with this approach.
Structural and heat-flow implications of infrared anomalies at Mt. Hood, Oregon
Friedman, Jules D.; Frank, David
1977-01-01
Surface thermal features occur in an area of 9700 m2 at Mt. Hood, on the basis of an aerial line-scan survey made April 26, 1973. The distribution of the thermal areas below the summit of Mt. Hood, shown on planimetrically corrected maps at 1:12,000, suggests structural control by a fracture system and brecciated zone peripheral to a hornblende-dacite plug dome (Crater Rock), and by a concentric fracture system that may have been associated with development of the present crater. The extent and inferred temperature of the thermal areas permits a preliminary estimate of a heat discharge of 10 megawatts, by analogy with similar fumarole and thermal fields of Mt. Baker, Washington. This figure includes a heat loss of 4 megawatts (MW) via conduction, diffusion, evaporation, and radiation to the atmosphere, and a somewhat less certain loss of 6MW via fumarolic mass transfer of vapor and advective heat loss from runoff and ice melt. The first part of the estimate is based on two-point models for differential radiant exitance and differential flux via conduction, diffusion, evaporation, and radiation from heat balance of the ground surface. Alternate methods for estimating volcanogenic geothermal flux that assume a quasi-steady state heat flow also yield estimates in the 5-11 MW range. Heat loss equivalent to cooling of the dacite plug dome is judged to be insufficient to account for the heat flux at the fumarole fields.
Vijayakumar, Nandita; Allen, Nicholas B; Youssef, George; Dennison, Meg; Yücel, Murat; Simmons, Julian G; Whittle, Sarah
2016-06-01
What we know about cortical development during adolescence largely stems from analyses of cross-sectional or cohort-sequential samples, with few studies investigating brain development using a longitudinal design. Further, cortical volume is a product of two evolutionarily and genetically distinct features of the cortex - thickness and surface area, and few studies have investigated development of these three characteristics within the same sample. The current study examined maturation of cortical thickness, surface area and volume during adolescence, as well as sex differences in development, using a mixed longitudinal design. 192 MRI scans were obtained from 90 healthy (i.e., free from lifetime psychopathology) adolescents (11-20 years) at three time points (with different MRI scanners used at time 1 compared to 2 and 3). Developmental trajectories were estimated using linear mixed models. Non-linear increases were present across most of the cortex for surface area. In comparison, thickness and volume were both characterised by a combination of non-linear decreasing and increasing trajectories. While sex differences in volume and surface area were observed across time, no differences in thickness were identified. Furthermore, few regions exhibited sex differences in the cortical development. Our findings clearly illustrate that volume is a product of surface area and thickness, with each exhibiting differential patterns of development during adolescence, particularly in regions known to contribute to the development of social-cognition and behavioral regulation. These findings suggest that thickness and surface area may be driven by different underlying mechanisms, with each measure potentially providing independent information about brain development. Hum Brain Mapp 37:2027-2038, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Park, Daeryong; Roesner, Larry A
2013-09-01
The performance of stormwater best management practices (BMPs) is affected by BMP geometric and hydrologic factors. The objective of this study was to investigate the effect of BMP surface area and inflow on BMP performance using the k-C* model with uncertainty analysis. Observed total suspended solids (TSS) from detention basins and retention ponds data sets in the International Stormwater BMP Database were used to build and evaluate the model. Detention basins are regarded as dry ponds because they do not always have water, whereas retention ponds have a permanent pool and are considered wet ponds. In this study, Latin hypercube sampling (LHS) was applied to consider uncertainty in both influent event mean concentration (EMC), C(in), and the areal removal constant, k. The latter was estimated from the hydraulic loading rate, q, through use of a power function relationship. Results show that effluent EMC, C(out), decreased as inflow decreased and as BMP surface area increased in both detention basins and retention ponds. However, the change in C(out), depending on inflow and BMP surface area for detention basins, differed from the change in C(out) for retention ponds. Specifically, C(in) was more dominantly associated with the performance of the k-C* model of detention basins than were BMP surface area and inflow. For retention ponds, however, results suggest that BMP surface area and inflow both influenced changes in C(out) as well as C(in). These results suggest that sensitive factors in the performance of the k-C* model are limited to C(in) for detention basins, whereas BMP surface area, inflow, and C(in) are important for retention ponds.
Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas
NASA Astrophysics Data System (ADS)
Hao, D.; Wen, J.; Xiao, Q.
2017-12-01
Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.
D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.
1996-01-01
The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.
Assessment of pollutant mean concentrations in the Yangtze estuary based on MSN theory.
Ren, Jing; Gao, Bing-Bo; Fan, Hai-Mei; Zhang, Zhi-Hong; Zhang, Yao; Wang, Jin-Feng
2016-12-15
Reliable assessment of water quality is a critical issue for estuaries. Nutrient concentrations show significant spatial distinctions between areas under the influence of fresh-sea water interaction and anthropogenic effects. For this situation, given the limitations of general mean estimation approaches, a new method for surfaces with non-homogeneity (MSN) was applied to obtain optimized linear unbiased estimations of the mean nutrient concentrations in the study area in the Yangtze estuary from 2011 to 2013. Other mean estimation methods, including block Kriging (BK), simple random sampling (SS) and stratified sampling (ST) inference, were applied simultaneously for comparison. Their performance was evaluated by estimation error. The results show that MSN had the highest accuracy, while SS had the highest estimation error. ST and BK were intermediate in terms of their performance. Thus, MSN is an appropriate method that can be adopted to reduce the uncertainty of mean pollutant estimation in estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Henriksson, Linda; Karvonen, Juha; Salminen-Vaparanta, Niina; Railo, Henry; Vanni, Simo
2012-01-01
The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies. PMID:22590626
Weber, Stephanie A; Insaf, Tabassum Z; Hall, Eric S; Talbot, Thomas O; Huff, Amy K
2016-11-01
An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM 2.5 ) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM 2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM 2.5 in areas with and without air quality monitors by combining PM 2.5 concentrations measured by monitors, PM 2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM 2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM 2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition to data from PM 2.5 monitors and predictions from CMAQ. The second objective was to determine if inclusion of AOD surfaces in HBM model algorithms results in PM 2.5 air pollutant concentration surfaces which more accurately predict hospital admittance and emergency room visits for MI, asthma, and HF. This study focuses on the New York City, NY metropolitan and surrounding areas during the 2004-2006 time period, in order to compare the health outcome impacts with those from previous studies and focus on any benefits derived from the changes in the HBM model surfaces. Consistent with previous studies, the results show high PM 2.5 exposure is associated with increased risk of asthma, myocardial infarction and heart failure. The estimates derived from concentration surfaces that incorporate AOD had a similar model fit and estimate of risk as compared to those derived from combining monitor and CMAQ data alone. Thus, this study demonstrates that estimates of PM 2.5 concentrations from satellite data can be used to supplement PM 2.5 monitor data in the estimates of risk associated with three common health outcomes. Results from this study were inconclusive regarding the potential benefits derived from adding AOD data to the HBM, as the addition of the satellite data did not significantly increase model performance. However, this study was limited to one metropolitan area over a short two-year time period. The use of next-generation, high temporal and spatial resolution satellite AOD data from geostationary and polar-orbiting satellites is expected to improve predictions in epidemiological studies in areas with fewer pollutant monitors or over wider geographic areas. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Surges of outlet glaciers from the Drangajökull ice cap, northwest Iceland
NASA Astrophysics Data System (ADS)
Brynjólfsson, Skafti; Schomacker, Anders; Korsgaard, Niels J.; Ingólfsson, Ólafur
2016-09-01
Surface elevation and volume changes of the Drangajökull surge-type glaciers, Reykjarfjarðarjökull and Leirufjarðarjökull, were studied by comparing digital elevation models that pre-date and post-date their most recent surges. Annual glacier-frontal measurements were used to estimate average ice velocities during the last surge of the glaciers. The observations show a distinct ice discharge, most of which was from the upper reservoir areas, down to the receiving areas during the surges. The surface draw-down in the reservoir areas was usually 10-30 m during the surges, while the thickening of the receiving areas was significantly more variable, on the order of 10-120 m. Despite a negative geodetic net mass balance derived from the digital elevation models, the reservoir areas have been gaining mass since the surge terminations. This surface thickening along with considerable ablation of the receiving areas will most likely return the glacier surface profiles to the pre-surge stage. Our results indicate that (a) greatest surface thinning in the upper reservoir areas of Drangajökull rather than proximal to the equilibrium line during Vatnajökull surges and (b) development of Drangajökull surges that resembles Svalbard surge-type glaciers rather than Vatnajökull surge-type glaciers. The contrasting surge characteristics could be explained by differences in glacier geometry, topography and substratum of the Drangajökull and Vatnajökull surge-type glaciers.
NASA Astrophysics Data System (ADS)
Lindley, S. J.; Walsh, T.
There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area. In view of the uncertainties with classical techniques research is ongoing to develop alternative methods which should in time help improve the suite of tools available to air quality managers.
Buckwalter, T.F.; Squillace, P.J.
1995-01-01
Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.
Remote sensing of potential lunar resources. I - Near-side compositional properties
NASA Technical Reports Server (NTRS)
Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.
1991-01-01
Using telescopic CCD multispectral images of the lunar near side and the results of 330-870 nm spectroscopy of selected regions, the compositional differences relevant to the locations of potential lunar resources (such as ilmenite, FeTiO3, and solar-wind-implanted He-3 and H) are estimated. The 400/560 nm CCD ratio images were converted to weight percent TiO2, and the values were used to construct a new TiO2 abundance map which can be used to estimate the areas potentially rich in ilmenite. A 950/560 nm CCD ratio mosaic of the full moon provides estimates of relative surface maturity. Since high He-3 concentrations correlate with mature ilmenite-rich soils, a combination of relative surface maturity maps and the TiO2 abundance maps can be used to estimate distributions of He-3 (and possibly H) on local scales.
Improving the accuracy of burn-surface estimation.
Nichter, L S; Williams, J; Bryant, C A; Edlich, R F
1985-09-01
A user-friendly computer-assisted method of calculating total body surface area burned (TBSAB) has been developed. This method is more accurate, faster, and subject to less error than conventional methods. For comparison, the ability of 30 physicians to estimate TBSAB was tested. Parameters studied included the effect of prior burn care experience, the influence of burn size, the ability to accurately sketch the size of burns on standard burn charts, and the ability to estimate percent TBSAB from the sketches. Despite the ability for physicians of all levels of training to accurately sketch TBSAB, significant burn size over-estimation (p less than 0.01) and large interrater variability of potential consequence was noted. Direct benefits of a computerized system are many. These include the need for minimal user experience and the ability for wound-trend analysis, permanent record storage, calculation of fluid and caloric requirements, hemodynamic parameters, and the ability to compare meaningfully the different treatment protocols.
Radiation fluxes at the FIFE site
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Zara, Pedro; Vining, Roel; Hays, Cynthia J.; Mesarch, Mark A.
1993-01-01
The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Our last report (Walter-Shea et al., 1992b) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on measured reflectance values and estimates of surface albedo; (2) using remotely-measured surface temperatures as a means of estimating sensible heat flux from the Konza Prairie; (3) extracting canopy temperatures from remotely-measured composite surface temperatures; (4) modeling the measured composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance measurements.
Radiation fluxes at the FIFE site. Final report, 1 January 1991-31 July 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter-Shea, E.A.; Blad, B.L.; Zara, P.
1993-01-01
The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used tomore » quantify surface processes. Our last report (Walter-Shea et al.) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on measured reflectance values and estimates of surface albedo; (2) using remotely-measured surface temperatures as a means of estimating sensible heat flux from the Konza Prairie; (3) extracting canopy temperatures from remotely-measured composite surface temperatures; (4) modeling the measured composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance measurements.« less
CHARACTERIZING CORAL CONDITION USING ESTIMATES OF THREE-DIMENSIONAL COLONY SURFACE AREA
Coral reefs provide shoreline protection, biological diversity, fishery harvets, and tourism, all values that stem from the physically-complex coral infrastructure. Stony corals (scleractinianss) construct and maintain the reef through deposition of calcium carbonate. Therefore...
33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. B Appendix B to... source of reinfestation; extent of infestation including estimated surface area, depth or density; nature...
33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. B Appendix B to... source of reinfestation; extent of infestation including estimated surface area, depth or density; nature...
NASA Technical Reports Server (NTRS)
Steffen, Konrad; Key, Jeff; Maslanik, Jim; Haefliger, Marcel; Fowler, Chuck
1992-01-01
Satellite data for the estimation of radiative and turbulent heat fluxes is becoming an increasingly important tool in large-scale studies of climate. One parameter needed in the estimation of these fluxes is surface temperature. To our knowledge, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic, an area where the first effects of a changing climate are expected to be seen. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol profiles, the microphysical properties of polar clouds, and the spectral characteristics of the wide variety of surface types found there. We have developed a means to correct for the atmospheric attenuation of satellite-measured clear sky brightness temperatures used in the retrieval of ice surface temperature from the split-window thermal channels of the advanced very high resolution radiometer (AVHRR) sensors on-board three of the NOAA series satellites. These corrections are specified for three different 'seasons' and as a function of satellite viewing angle, and are expected to be applicable to the perennial ice pack in the central Arctic Basin.
Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data
NASA Astrophysics Data System (ADS)
Abdolghafoorian, A.; Farhadi, L.
2017-12-01
Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. In addition, the feasibility of extending this algorithm to use remote sensing observations that have low temporal resolution is examined by assimilating the limited number of land surface moisture and temperature observations.
NASA Astrophysics Data System (ADS)
Ibraheem, Ismael M.; Elawadi, Eslam A.; El-Qady, Gad M.
2018-03-01
The Wadi El Natrun area in Egypt is located west of the Nile Delta on both sides of the Cairo-Alexandria desert road, between 30°00‧ and 30°40‧N latitude, and 29°40‧ and 30°40‧E longitude. The name refers to the NW-SE trending depression located in the area and containing lakes that produce natron salt. In spite of the area is promising for oil and gas exploration as well as agricultural projects, Geophysical studies carried out in the area is limited to the regional seismic surveys accomplished by oil companies. This study presents the interpretation of the airborne magnetic data to map the structure architecture and depth to the basement of the study area. This interpretation was facilitated by applying different data enhancement and processing techniques. These techniques included filters (regional-residual separation), derivatives and depth estimation using spectral analysis and Euler deconvolution. The results were refined using 2-D forward modeling along three profiles. Based on the depth estimation techniques, the estimated depth to the basement surface, ranges from 2.25 km to 5.43 km while results of the two-dimensional forward modeling show that the depth of the basement surface ranges from 2.2 km to 4.8 km. The dominant tectonic trends in the study area at deep levels are NW (Suez Trend), NNW, NE, and ENE (Syrian Arc System trend). The older ENE trend, which dominates the northwestern desert is overprinted in the study area by relatively recent NW and NE trends, whereas the tectonic trends at shallow levels are NW, ENE, NNE (Aqaba Trend), and NE. The predominant structure trend for both deep and shallow structures is the NW trend. The results of this study can be used to better understand deep-seated basement structures and to support decisions with regard to the development of agriculture, industrial areas, as well as oil and gas exploration in northern Egypt.
Estimates of amounts of soil removal for clean-up of transuranics at NAEG offsite safety-shot sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinnison, R.R.; Gilbert, R.O.
Rough estimates are given for the amount of soil removal necessary to decontaminate five representative safety-shot areas. In order to decontaminate to levels of less than 160 pCi /sup 239/Pu per gram of surface soil, it is estimated that over one-half million tons of soil would have to be removed from the five areas. This is a preliminary estimate based on summary data and concentration contour maps readily available in NAEG publications. More accurate estimates could be obtained by applying Kriging techniques to available soil data if the need arises. The inclusion of /sup 241/Am and /sup 238/Pu activities domore » not significantly increase the soil tonnage estimates obtained for /sup 239/ /sup 240/Pu because of their relatively small contributions to total transuranic activity. The magnitude of the errors inherent in our use of summary data to obtain rough estimates also suggests that a revision of the tonnage estimates for /sup 239/ /sup 240/Pu to include /sup 241/Am and /sup 238/Pu is not warranted.« less
Estimating the volume and age of water stored in global lakes using a geo-statistical approach
Messager, Mathis Loïc; Lehner, Bernhard; Grill, Günther; Nedeva, Irena; Schmitt, Oliver
2016-01-01
Lakes are key components of biogeochemical and ecological processes, thus knowledge about their distribution, volume and residence time is crucial in understanding their properties and interactions within the Earth system. However, global information is scarce and inconsistent across spatial scales and regions. Here we develop a geo-statistical model to estimate the volume of global lakes with a surface area of at least 10 ha based on the surrounding terrain information. Our spatially resolved database shows 1.42 million individual polygons of natural lakes with a total surface area of 2.67 × 106 km2 (1.8% of global land area), a total shoreline length of 7.2 × 106 km (about four times longer than the world's ocean coastline) and a total volume of 181.9 × 103 km3 (0.8% of total global non-frozen terrestrial water stocks). We also compute mean and median hydraulic residence times for all lakes to be 1,834 days and 456 days, respectively. PMID:27976671
Project 57 Air Monitoring Report: January 1 through December 31, 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A; Nikolich, George; Shadel, Craig
2017-01-01
On April 24, 1957, the Atomic Energy Commission (AEC, now the Department of Energy [DOE]) conducted the Project 57 safety experiment in western Emigrant Valley north east of the Nevada National Security Site (NNSS, formerly the Nevada Test Site) on lands withdrawn by the Department of Defense (DOD) for the Nevada Test and Training Range (NTTR). The test was undertaken to develop (1) a means of estimating plutonium distribution resulting from a non-nuclear detonation; (2) biomedical evaluation techniques for use in plutonium-laden environments; (3) methods of surface decontamination; and (4) instruments and field procedures for prompt estimation of alpha contaminationmore » (Shreve, 1958). Although the test did not result in the fission of nuclear materials, it did disseminate plutonium across the land surface. Following the experiment, the AEC fenced the contaminated area and returned control of the surrounding land to the DOD. Various radiological surveys were performed in the area and in 2007, the DOE expanded the demarked Contamination Area by posting signs 200 to 400 feet (60 to 120 meters) outside of the original fence.« less
Project 57 Air Monitoring Report: January 1 through December 31, 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizell, Steve A.; Nikolich, George; Shadel, Craig
On April 24, 1957, the Atomic Energy Commission (AEC, now the Department of Energy [DOE]) conducted the Project 57 safety experiment in western Emigrant Valley northeast of the Nevada National Security Site (NNSS, formerly the Nevada Test Site) on lands withdrawn by the Department of Defense (DOD) for the Nevada Test and Training Range (NTTR). The test was undertaken to develop (1) a means of estimating plutonium distribution resulting from a non-nuclear detonation; (2) biomedical evaluation techniques for use in plutonium-laden environments; (3) methods of surface decontamination; and (4) instruments and field procedures for prompt estimation of alpha contamination (Shreve,more » 1958). Although the test did not result in the fission of nuclear materials, it did disseminate plutonium across the land surface. Following the experiment, the AEC fenced the contaminated area and returned control of the surrounding land to the DOD. Various radiological surveys were performed in the area and in 2007, the DOE expanded the demarked Contamination Area (CA) by posting signs 200 to 400 ft (60 to 120 m) outside of the original fence.« less
Sakata, Masahiro; Marumoto, Kohji
2004-04-01
Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.
The Effect of Furnishing on Perceived Spatial Dimensions and Spaciousness of Interior Space
von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko
2014-01-01
Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room. PMID:25409456
The effect of furnishing on perceived spatial dimensions and spaciousness of interior space.
von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko
2014-01-01
Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room.
Simple formula for the surface area of the body and a simple model for anthropometry.
Reading, Bruce D; Freeman, Brian
2005-03-01
The body surface area (BSA) of any adult, when derived from the arithmetic mean of the different values calculated from four independent accepted formulae, can be expressed accurately in Systeme International d'Unites (SI) units by the simple equation BSA = 1/6(WH)0.5, where W is body weight in kg, H is body height in m, and BSA is in m2. This formula, which is derived in part by modeling the body as a simple solid of revolution or a prolate spheroid (i.e., a stretched ellipsoid of revolution) gives students, teachers, and clinicians a simple rule for the rapid estimation of surface area using rational units. The formula was tested independently for human subjects by using it to predict body volume and then comparing this prediction against the actual volume measured by Archimedes' principle. Copyright 2005 Wiley-Liss, Inc.
Harkins, Joe R.; Green, Mark E.
1981-01-01
Drainage areas for about 1,600 surface-water sites on streams and lakes in Florida are contained in this report. The sites are generally either U.S. Geological Survey gaging stations or the mouths of gaged streas. Each site is identified by latitude and longitude, by the general stream type, and by the U.S. Geological Survey 7.5-minute topographic map on which it can be located. The gaging stations are furhter identified by a downstream order number, a county code, and a nearby city or town. In addition to drainage areas, the surface areas of lakes are shown for the elevation given on the topographic map. These data were retrieved from the Surface Water Index developed and maintained by the Hydrologic Surveillance section of the Florida District Office, U.S. Geological Survey. (USGS)
Remote sensing of ephemeral water bodies in western Niger
Verdin, J.P.
1996-01-01
Research was undertaken to evaluate the feasibility of monitoring the small ephemeral water bodies of the Sahel with the 1.1 km resolution data of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Twenty-one lakes of western Niger with good ground observation records were selected for examination. Thematic Mapper images from 1988 were first analysed to determine surface areas and temperature differences between water and adjacent land. Six AVHRR scenes from the 1988-89 dry season were then studied. It was found that a lake can be monitored until its surface area drops below 10 ha, in most cases. Furthermore, with prior knowledge of the location and shape of a water body, its surface area can be estimated from AVHRR band 5 data to within about 10 ha. These results are explained by the sharp temperature contrast between water and land, on the order of 13?? C.
NASA Astrophysics Data System (ADS)
Aditiya, A.; Aoki, Y.; Anugrah, R. D.
2018-04-01
Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.
Spatial correlation of shear-wave velocity within San Francisco Bay Sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2006-01-01
Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.
New Theory for Tsunami Propagation and Estimation of Tsunami Source Parameters
NASA Astrophysics Data System (ADS)
Mindlin, I. M.
2007-12-01
In numerical studies based on the shallow water equations for tsunami propagation, vertical accelerations and velocities within the sea water are neglected, so a tsunami is usually supposed to be produced by an initial free surface displacement in the initially still sea. In the present work, new theory for tsunami propagation across the deep sea is discussed, that accounts for the vertical accelerations and velocities. The theory is based on the solutions for the water surface displacement obtained in [Mindlin I.M. Integrodifferential equations in dynamics of a heavy layered liquid. Moscow: Nauka*Fizmatlit, 1996 (Russian)]. The solutions are valid when horizontal dimensions of the initially disturbed area in the sea surface are much larger than the vertical displacement of the surface, which applies to the earthquake tsunamis. It is shown that any tsunami is a combination of specific basic waves found analytically (not superposition: the waves are nonlinear), and consequently, the tsunami source (i.e., the initially disturbed body of water) can be described by the numerable set of the parameters involved in the combination. Thus the problem of theoretical reconstruction of a tsunami source is reduced to the problem of estimation of the parameters. The tsunami source can be modelled approximately with the use of a finite number of the parameters. Two-parametric model is discussed thoroughly. A method is developed for estimation of the model's parameters using the arrival times of the tsunami at certain locations, the maximum wave-heights obtained from tide gauge records at the locations, and the distances between the earthquake's epicentre and each of the locations. In order to evaluate the practical use of the theory, four tsunamis of different magnitude occurred in Japan are considered. For each of the tsunamis, the tsunami energy (E below), the duration of the tsunami source formation T, the maximum water elevation in the wave originating area H, mean radius of the area R, and the average magnitude of the sea surface displacement at the margin of the wave originating area h are estimated using tide gauges records. The results are compared (and, in the author's opinion, are in line) with the estimates known in the literature. Compared to the methods employed in the literature, there is no need to use bathymetry (and, consequently, refraction diagrams) for the estimations. The present paper follows closely earlier works [Mindlin I.M., 1996; Mindlin I.M. J. Appl. Math. Phys. (ZAMP), 2004, vol.55, pp. 781-799] and adds to their theoretical results. Example. The Hiuganada earthquake of 1968, April, 1, 9h 42m JST. A tsunami of moderate size arrived at the coast of the south-western part of Shikoku and the eastern part of Kyushu, Japan. Tsunami parameters listed above are estimated with the theory being discussed for two models of tsunami generation: (a) by initial free surface displacement (the case for numerical studies): E=1.91· 1012J, R=22km, h=17.2cm; and (b) by a sudden change in the velocity field of initially still water: E=8.78· 1012J, R=20.4km, h=9.2cm. These values are in line with known estimates [Soloviev S.L., Go Ch.N. Catalogue of tsunami in the West of Pacific Ocean. Moscow, 1974]: E=1.3· 1013J (attributed to Hatori), E=(1.4 - 2.2)· 1012J (attributed to Aida), R=21.2km, h=20cm [Hatory T., Bull. Earthq. Res. Inst., Tokyo Univ., 1969, vol. 47, pp. 55-63]. Also, estimates are obtained for the values that could not be found based on shallow water wave theory: (a) H=3.43m and (b) H=1.38m, T=16.4sec.
Application of the Gillette model for windblown dust at Owens Lake, CA
NASA Astrophysics Data System (ADS)
Ono, Duane
Windblown dust can have significant impacts on local air pollution levels, and in cases such as dust from Africa or Asia, can have global impacts on our environment. Models to estimate particulate matter emissions from windblown dust are generally based on the local wind speed, the threshold wind speed to initiate erosion, and the soil texture of a given surface. However, precipitation, soil crusting, and soil disturbance can dramatically change the threshold wind speed and erosion potential of a surface, making modeling difficult. A low-cost sampling and analysis method was developed to account for these surface changes in a wind erosion model. Windblown dust emissions measured as PM 10 (particulate matter less than a nominal 10 μm aerodynamic diameter) have been found to be generally proportional to sand flux (also known as saltation flux). In this study, a model was used to estimate sand flux using the relationship Q=AρG/g, where Q is horizontal sand flux, A is a surface erosion potential factor, ρ is air density, g is the gravitational constant, and G=∫ u*(u*2-u*t2)dt, where u* is friction velocity and u is the threshold friction velocity of the surface. The variable A in the model was derived by comparing the measured sand flux for a given period and area to G for the same period. Sand flux was monitored at Owens Lake, CA using low-cost Cox Sand Catchers (CSCs) for monthly measurements, and more expensive electronic sensors (Sensits) to measure hourly flux rates and u. Monitors were spaced 1 km apart at 114 sites, covering one clay and three sand-dominated soil areas. Good model results relied primarily on the erosion potential A, which could be determined from CSC measurements and wind speed data. Annual values for A were found to range from 1.3 to 3.5 in the three sand areas. The value of A was an order of magnitude lower (0.2) in the less erodible clay area. Previous studies showed similar values for A of 0.7 and 2.9 for a sandy site at Owens Lake, and 1.1 for a site in the Chihuahuan desert in New Mexico. The model performed well using annual values for A and better with monthly values, with R2 ranging from 0.74 to 0.87 for hourly sand flux rates in the four study areas. Monthly changes in A accounted for temporal surface changes, such as precipitation and surface crusting in the model predictions. This study demonstrated that low-cost periodic sand flux sampling using CSCs can provide a practical method to determine values for A in a simple wind erosion model, and that this model can provide good hourly and monthly estimates of sand flux rates in windblown dust areas.
McCullough, Deborah G; Siegert, Nathan W
2007-10-01
Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), a phloem-feeding pest native to Asia, was identified in June 2002 as the cause of widespread ash (Fraxinus spp.), mortality in southeastern Michigan and Windsor, Ontario, Canada. Localized populations of A. planipennis have since been found across lower Michigan and in areas of Ohio, Indiana, Illinois, Maryland, and Ontario. Officials working to contain A. planipennis and managers of forestlands near A. planipennis infestations must be able to compare alternative strategies to allocate limited funds efficiently and effectively. Empirical data from a total of 148 green ash, Fraxinus pennsylvanica Marsh., and white ash, Fraxinus americana L., trees were used to develop models to estimate surface area of the trunk and branches by using tree diameter at breast height (dbh). Data collected from 71 additional F. pennsylvanica and F. americana trees killed by A. planipennis showed that on average, 88.9 +/- 4.6 beetles developed and emerged per m2 of surface area. Models were applied to ash inventory data collected at two outlier sites to estimate potential production of A. planipennis beetles at each site. Large trees of merchantable size (dbh > or = 26 cm) accounted for roughly 6% of all ash trees at the two sites, but they could have contributed 55-65% of the total A. planipennis production at both sites. In contrast, 75- 80% of the ash trees at the outlier sites were < or =13 cm dbh, but these small trees could have contributed only < or =12% of the potential A. planipennis production at both sites. Our results, in combination with inventory data, can be used by regulatory officials and resource managers to estimate potential A. planipennis production and to compare options for reducing A. planipennis density and slowing the rate of spread for any area of interest.
Remote sensing of floe size distribution and surface topography
NASA Technical Reports Server (NTRS)
Rothrock, D. A.; Thorndike, A. S.
1984-01-01
Floe size can be measured by several properties p- for instance, area or mean caliper diameter. Two definitions of floe size distribution seem particularly useful. F(p), the fraction of area covered by floes no smaller than p; and N(p), the number of floes per unit area no smaller than p. Several summertime distributions measured are a graph, their slopes range from -1.7 to -2.5. The variance of an estimate is also calculated.
Universal GFR determination based on two time points during plasma iohexol disappearance.
Ng, Derek K S; Schwartz, George J; Jacobson, Lisa P; Palella, Frank J; Margolick, Joseph B; Warady, Bradley A; Furth, Susan L; Muñoz, Alvaro
2011-08-01
An optimal measurement of glomerular filtration rate (GFR) should minimize the number of blood draws, and reduce procedural invasiveness and the burden to study personnel and cost, without sacrificing accuracy. Equations have been proposed to calculate GFR from the slow compartment separately for adults and children. To develop a universal equation, we used 1347 GFR measurements from two diverse groups consisting of 527 men in the Multicenter AIDS Cohort Study and 514 children in the Chronic Kidney Disease in Children cohort. Both studies used nearly identical two-compartment (fast and slow) protocols to measure GFR. To estimate the fast component from markers of body size and of the slow component, we used standard linear regression methods with the log-transformed fast area as the dependent variable. The fast area could be accurately estimated from body surface area by a simple parameter (6.4/body surface area) with no residual dependence on the slow area or other markers of body size. Our equation measures only the slow iohexol plasma disappearance curve with as few as two time points and was normalized to 1.73 m2 body surface area. It is of the form: GFR=slowGFR/[1+0.12(slowGFR/100)]. In a random sample utilizing a third of the patients for validation, there was excellent agreement between the calculated and measured GFR with low root mean square errors being 4.6 and 1.5 ml/min per 1.73 m2 for adults and children, respectively. Thus, our proposed simple equation, developed in a combined patient group with a broad range of GFRs, may be applied universally and is independent of the injected amount of iohexol.
Zhang, W F; Tang, S H; Tan, Q; Liu, Y M
2016-08-20
Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.
NASA Astrophysics Data System (ADS)
Calvin, Mark; Punjabi, Alkesh
1996-11-01
We use the method of quasi-magnetic surfaces to calculate the correlation between the field line and particle diffusion coefficients. The magnetic topology of a tokamak is perturbed by a spectrum of neighboring resonant resistive modes. The Hamiltonian equations of motion for the field line are integrated numerically. Poincare plots of the quasi-magnetic surfaces are generated initially and after the field line has traversed a considerable distance. From the areas of the quasi-magnetic surfaces and the field line distance, we estimate the field line diffusion coefficient. We start plasma particles on the initial quasi-surface, and calculate the particle diffusion coefficient from our Monte Carlo method (Punjabi A., Boozer A., Lam M., Kim H. and Burke K., J. Plasma Phys.), 44, 405 (1990). We then estimate the correlation between the particle and field diffusion as the strength of the resistive modes is varied.
NASA Astrophysics Data System (ADS)
Bateni, S. M.; Xu, T.
2015-12-01
Accurate estimation of water and heat fluxes is required for irrigation scheduling, weather prediction, and water resources planning and management. A weak-constraint variational data assimilation (WC-VDA) scheme is developed to estimate water and heat fluxes by assimilating sequences of land surface temperature (LST) observations. The commonly used strong-constraint VDA systems adversely affect the accuracy of water and heat flux estimates as they assume the model is perfect. The WC-VDA approach accounts for structural and model errors and generates more accurate results via adding a model error term into the surface energy balance equation. The two key unknown parameters of the WC-VDA system (i.e., CHN, the bulk heat transfer coefficient and EF, evaporative fraction) and the model error term are optimized by minimizing the cost function. The WC-VDA model was tested at two sites with contrasting hydrological and vegetative conditions: the Daman site (a wet site located in an oasis area and covered by seeded corn) and the Huazhaizi site (a dry site located in a desert area and covered by sparse grass) in middle stream of Heihe river basin, northwest China. Compared to the strong-constraint VDA system, the WC-VDA method generates more accurate estimates of water and energy fluxes over the desert and oasis sites with dry and wet conditions.
NASA Astrophysics Data System (ADS)
Park, Ji Young; Raynor, Peter C.; Maynard, Andrew D.; Eberly, Lynn E.; Ramachandran, Gurumurthy
Recent research has suggested that the adverse health effects caused by nanoparticles are associated with their surface area (SA) concentrations. In this study, SA was estimated in two ways using number and mass concentrations and compared with SA (SA meas) measured using a diffusion charger (DC). Aerosol measurements were made twice: once starting in October 2002 and again starting in December 2002 in Mysore, India in residences that used kerosene or liquefied petroleum gas (LPG) for cooking. Mass, number, and SA concentrations and size distributions by number were measured in each residence. The first estimation method (SA PSD) used the size distribution by number to estimate SA. The second method (SA INV) used a simple inversion scheme that incorporated number and mass concentrations while assuming a lognormal size distribution with a known geometrical standard deviation. SA PSD was, on average, 2.4 times greater (range = 1.6-3.4) than SA meas while SA INV was, on average, 6.0 times greater (range = 4.6-7.7) than SA meas. The logarithms of SA PSD and SA INV were found to be statistically significant predictors of the logarithm of SA meas. The study showed that particle number and mass concentration measurements can be used to estimate SA with a correction factor that ranges between 2 and 6.
Constraining uncertainties in water supply reliability in a tropical data scarce basin
NASA Astrophysics Data System (ADS)
Kaune, Alexander; Werner, Micha; Rodriguez, Erasmo; de Fraiture, Charlotte
2015-04-01
Assessing the water supply reliability in river basins is essential for adequate planning and development of irrigated agriculture and urban water systems. In many cases hydrological models are applied to determine the surface water availability in river basins. However, surface water availability and variability is often not appropriately quantified due to epistemic uncertainties, leading to water supply insecurity. The objective of this research is to determine the water supply reliability in order to support planning and development of irrigated agriculture in a tropical, data scarce environment. The approach proposed uses a simple hydrological model, but explicitly includes model parameter uncertainty. A transboundary river basin in the tropical region of Colombia and Venezuela with an approximately area of 2100 km² was selected as a case study. The Budyko hydrological framework was extended to consider climatological input variability and model parameter uncertainty, and through this the surface water reliability to satisfy the irrigation and urban demand was estimated. This provides a spatial estimate of the water supply reliability across the basin. For the middle basin the reliability was found to be less than 30% for most of the months when the water is extracted from an upstream source. Conversely, the monthly water supply reliability was high (r>98%) in the lower basin irrigation areas when water was withdrawn from a source located further downstream. Including model parameter uncertainty provides a complete estimate of the water supply reliability, but that estimate is influenced by the uncertainty in the model. Reducing the uncertainty in the model through improved data and perhaps improved model structure will improve the estimate of the water supply reliability allowing better planning of irrigated agriculture and dependable water allocation decisions.
Goldberg, Harry; Klaff, Justin; Spjut, Aaron; Milner, Stephen
2014-01-01
The aim of this study was to compare the ease and accuracy of measuring the surface area of a severe burn through the use of a mobile software application (BurnMed) to the traditional method of assessment, the Lund and Browder chart. BurnMed calculates the surface area of a burn by enabling the user to first manipulate a three-dimensional model on a mobile device and then by touching the model at the locations representing the patient's injury. The surface area of the burn is calculated in real time. Using a cohort of 18 first-year medical students with no experience in burn care, the surface area of a simulated burn on a mannequin was made using BurnMed and compared to estimates derived from the Lund and Browder chart. At the completion of this study, students were asked to complete a questionnaire designed to assess the ease of use of BurnMed. Users were able to easily and accurately measure the surface area of a simulated burn using the BurnMed application. In addition, there was less variability in surface area measurements with the application compared to the results obtained using the Lund and Browder chart. Users also reported that BurnMed was easier to use than the Lund and Browder chart. A software application, BurnMed, has been developed for a mobile device that easily and accurately determines the surface area of a burn. This system uses a three-dimensional model that can be rotated, enlarged, and transposed by the health care provider to easily determine the extent of a burn. Results show that the variability of measurements using BurnMed is lower than the measurements obtained using the Lund and Browder chart. BurnMed is available at no charge in the Apple™ Store.
Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach
NASA Astrophysics Data System (ADS)
Abdolghafoorian, A.; Farhadi, L.
2016-12-01
Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.
Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S
2013-01-01
[1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442
Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.
2009-01-01
With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water transmission. Seven sites with differing geologic contexts were selected following review of the capacitively coupled resistivity data collected in 2004. A reevaluation of these sites using the mean, minimum-unadjusted, and minimum-adjusted methods was performed to compare the different approaches for estimating leakage potential. Five of the seven sites contained underlying confining units, for which the minimum-unadjusted and minimum-adjusted methods accounted for the confining-unit effect. Estimates of overall leakage potential were lower for the minimum-unadjusted and minimum-adjusted methods than those estimated by the mean method. For most sites, the local heterogeneity adjustment procedure of the minimum-adjusted method resulted in slightly larger overall leakage-potential estimates. In contrast to the mean method, the two minimum-based methods allowed the least permeable areas to control the overall vertical permeability of the subsurface. The minimum-adjusted method refined leakage-potential estimation by additionally including local lithologic heterogeneity effects.
Algorithm of regional surface evaporation using remote sensing: A case study of Haihe basin, China
NASA Astrophysics Data System (ADS)
Xiong, Jun; Wu, Bingfang; Yan, Nana; Hu, Minggang
2007-11-01
Evapotranspiration (ET, or latent heat flux) is the most essential and uncertain factor in water resource management. Remote sensing is a promising tool for estimation of spatial distribution of ET at regional scale with limited ground observations. We developed an algorithm for estimating regional evapotranspiration from MODIS 1b data and ancillary meteorological data. The algorithm is an integration of Penman-Monteith equation and SEBS (Surface Energy Balance System) model. The former is a combination of the energy balance theory and the mass transfer method to compute the evaporation from cropped surfaces from standard climatological records of sunshine, temperature, humidity and wind speed by introducing resistance factors, and the latter determines the spatio-temporal variability of regional evaporative condition. First, we characterized key land surface parameters on satellite over passing days, including fractional vegetation cover (fc), roughness height for momentum (z0m), net radiation (Rn) and soil heat flux (G0); Second, SEBS was applied to partition the sensible heat (H) from latent heat (LE) in combination with Planetary Boundary Layer (PBL) information from seven meteorological stations. A parameterization of surface roughness was applied at mountainous area considering topographic influence; third, we chose available surface resistance (RS) as the temporal-scaling factor. With bulk surface resistance is properly defined, P-M methods is valid for both soil and vegetation canopy. We validated ET from this algorithm with limited actual observations of ET including 2 eddy covariance system dataset and 1 lysimeter sites. Water balance equation is used as a trend-analysis tool to show the consistency between rainfall and ET on four drainage area. As a result, the prototype products showed different accuracy and applicability on different underlying and time scale, which demonstrates the potential of this approach for estimating ET from 1-km to regional spatial scale in North China Plain.
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.
NASA Astrophysics Data System (ADS)
Rowley, David
2017-04-01
On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of flooding can be defined as the height and corresponding cumulative area of the solid surface of the Earth at which the integral of area as a function of elevation, from the maximum depth upwards, equals the volume of ocean water filling it with respect to cumulative paleo-hypsometry. Present height of the paleo-shoreline is the height on the GIA-corrected cumulative hypsometry at an area equal to the areal extent of flooding. Paleogeographic estimates of global extent of ocean flooding from the Middle Jurassic to end Eocene, when combined with conservation of mean elevation and ocean water volume allow an explicit estimate of the paleo-height and present height of the paleo-shoreline. The best-fitting estimate of present height of the paleo-shoreline, equivalent to a long-term "eustatic" sea level curve, implies very modest (25±22m) changes in long-term sea level above the ice-free sea level height of +40m. These, in turn, imply quite limited changes in mean depth of the oceanic crust (15±11m), and mean age of the oceanic lithosphere ( 62.1±2.4 my) since the Middle Jurassic.
Eckstein, F; Siedek, V; Glaser, C; Al-Ali, D; Englmeier, K; Reiser, M; Graichen, H
2004-01-01
Objective: To study the correlation between ankle and knee cartilage morphology to test the hypothesis that knee joint cartilage loss in gonarthritis can be estimated retrospectively using quantitative MRI analysis of the knee and ankle and established regression equations; and to test the hypothesis that sex differences in joint surface area are larger in the knee than the ankle, which may explain the greater incidence of knee osteoarthritis in elderly women than in elderly men. Methods: Sagittal MR images (3D FLASH WE) of the knee and hind foot were acquired in 29 healthy subjects (14 women, 15 men; mean (SD) age, 25 (3) years), with no signs joint disease. Cartilage volume, thickness, and joint surface area were determined in the knee, ankle, and subtalar joint. Results: Knee cartilage volumes and joint surface areas showed only moderate correlations with those of the ankle and subtalar joint (r = 0.33 to 0.81). The correlations of cartilage thickness between the two joints were weaker still (r = –0.05 to 0.53). Sex differences in cartilage morphology at the knee and the ankle were similar, with surface areas being –17.5% to –23.5% lower in women than in men. Conclusions: Only moderate correlations in cartilage morphology of healthy subjects were found between knee and ankle. It is therefore impractical to estimate knee joint cartilage loss a posteriori in cross sectional studies by measuring the hind foot and then applying a scaling factor. Sex differences in cartilage morphology do not explain differences in osteoarthritis incidence between men and women in the knee and ankle. PMID:15479900
A Framework for Analyzing the Whole Body Surface Area from a Single View
Doretto, Gianfranco; Adjeroh, Donald
2017-01-01
We present a virtual reality (VR) framework for the analysis of whole human body surface area. Usual methods for determining the whole body surface area (WBSA) are based on well known formulae, characterized by large errors when the subject is obese, or belongs to certain subgroups. For these situations, we believe that a computer vision approach can overcome these problems and provide a better estimate of this important body indicator. Unfortunately, using machine learning techniques to design a computer vision system able to provide a new body indicator that goes beyond the use of only body weight and height, entails a long and expensive data acquisition process. A more viable solution is to use a dataset composed of virtual subjects. Generating a virtual dataset allowed us to build a population with different characteristics (obese, underweight, age, gender). However, synthetic data might differ from a real scenario, typical of the physician’s clinic. For this reason we develop a new virtual environment to facilitate the analysis of human subjects in 3D. This framework can simulate the acquisition process of a real camera, making it easy to analyze and to create training data for machine learning algorithms. With this virtual environment, we can easily simulate the real setup of a clinic, where a subject is standing in front of a camera, or may assume a different pose with respect to the camera. We use this newly designated environment to analyze the whole body surface area (WBSA). In particular, we show that we can obtain accurate WBSA estimations with just one view, virtually enabling the possibility to use inexpensive depth sensors (e.g., the Kinect) for large scale quantification of the WBSA from a single view 3D map. PMID:28045895
Estimating Vertical Stress on Soil Subjected to Vehicular Loading
2009-02-01
specified surface area of the tire . The silt and sand samples were both estimated to be 23.7-in. thick over a base of much harder soil. The pressures...study in which highway tread tires were used as opposed to the all-terrain tread currently on the vehicle. If the pressure pads are functioning...Vertical force versus time (front right CIV tire )....................................................................... 14 Tables Table 1. Testing
Canopy reflectance modelling of semiarid vegetation
NASA Technical Reports Server (NTRS)
Franklin, Janet
1994-01-01
Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.
Thermographic Data Analyses for Karst Watersheds
NASA Technical Reports Server (NTRS)
Campbell, C. Warren; McCaleb, Rebecca C. (Technical Monitor)
2001-01-01
Aerial thermography is an emerging technology unsurpassed for locating groundwater discharges. Thermography can be used to locate submerged discharges that are extremely difficult to find by other means. In two large projects, thermography was used to identify almost every significant spring at sites underlain by karst aquifers. This technology effectively converts Brown's Type 5 topology to types 1 or 2 (all discharges known), which has a significant impact on dye tracing. At a north Alabama site, springs located by thermography quadrupled the known groundwater discharge in and around the site. For submerged discharges, thermographic temperatures can be measured down the center of the groundwater plume that rises to the surface in the winter. Using the Cornell Mixing (CORMIX) model, flow rate for one submerged spring was estimated. Once identified, estimates of spring recharge area were desired. The size of the area of recharge was estimated by hydrograph separation of flow data from nearby, unregulated surface streams. Monthly recharge estimates were also made and used to show that in north Alabama the mean annual recharge/discharge occurs during May and December. Spring flow measurements for the same county of north Alabama were averaged to obtain mean flows. Then measurements for May only, were averaged. The two averages usually agreed to within 20 percent. This provides evidence that hydrograph separation determinations of recharge are valid.
The physical basis of glacier volume-area scaling
Bahr, D.B.; Meier, M.F.; Peckham, S.D.
1997-01-01
Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.
Consequences of land-cover misclassification in models of impervious surface
McMahon, G.
2007-01-01
Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.
Surface and downhole shear wave seismic methods for thick soil site investigations
Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.
2002-01-01
Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William
2017-04-01
Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.
Estimating restorable wetland water storage at landscape scales
Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., the volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many...
Complete identification and eventual prevention of urban/suburban water quality problems pose significant monitoring challenges. Uncontrolled growth of impervious surfaces (roads, buildings and parking) causes detrimental hydrologic changes, stream channel erosion, habitat degra...
ESTIMATING AND PROJECTING IMPERVIOUS COVER IN THE SOUTHEASTERN UNITED STATES
Urban/suburban land use is the most rapidly growing land use class. Along with increased development inevitably comes increased impervious surface--areas preventing infiltration of water into the underlying soil. The extensive hydrological alteration of watersheds associated wi...
The determination of total burn surface area: How much difference?
Giretzlehner, M; Dirnberger, J; Owen, R; Haller, H L; Lumenta, D B; Kamolz, L-P
2013-09-01
Burn depth and burn size are crucial determinants for assessing patients suffering from burns. Therefore, a correct evaluation of these factors is optimal for adapting the appropriate treatment in modern burn care. Burn surface assessment is subject to considerable differences among clinicians. This work investigated the accuracy among experts based on conventional surface estimation methods (e.g. "Rule of Palm", "Rule of Nines" or "Lund-Browder Chart"). The estimation results were compared to a computer-based evaluation method. Survey data was collected during one national and one international burn conference. The poll confirmed deviations of burn depth/size estimates of up to 62% in relation to the mean value of all participants. In comparison to the computer-based method, overestimation of up to 161% was found. We suggest introducing improved methods for burn depth/size assessment in clinical routine in order to efficiently allocate and distribute the available resources for practicing burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Underground storage of imported water in the San Gorgonio Pass area, southern California
Bloyd, Richard M.
1971-01-01
The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.
On Feature Extraction from Large Scale Linear LiDAR Data
NASA Astrophysics Data System (ADS)
Acharjee, Partha Pratim
Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are presented. Significant power demand is located in urban areas, where, theoretically, a large amount of building surface area is also available for solar panel installation. Therefore, property owners and power generation companies can benefit from a citywide solar potential map, which can provide available estimated annual solar energy at a given location. An efficient solar potential measurement is a prerequisite for an effective solar energy system in an urban area. In addition, the solar potential calculation from rooftops and building facades could open up a wide variety of options for solar panel installations. However, complex urban scenes make it hard to estimate the solar potential, partly because of shadows cast by the buildings. LiDAR-based 3D city models could possibly be the right technology for solar potential mapping. Although, most of the current LiDAR-based local solar potential assessment algorithms mainly address rooftop potential calculation, whereas building facades can contribute a significant amount of viable surface area for solar panel installation. In this paper, we introduce a new algorithm to calculate solar potential of both rooftop and building facades. Solar potential received by the rooftops and facades over the year are also investigated in the test area.
NASA Astrophysics Data System (ADS)
Permata, Anggi; Juniansah, Anwar; Nurcahyati, Eka; Dimas Afrizal, Mousafi; Adnan Shafry Untoro, Muhammad; Arifatha, Na'ima; Ramadhani Yudha Adiwijaya, Raden; Farda, Nur Mohammad
2016-11-01
Landslide is an unpredictable natural disaster which commonly happens in highslope area. Aerial photography in small format is one of acquisition method that can reach and obtain high resolution spatial data faster than other methods, and provide data such as orthomosaic and Digital Surface Model (DSM). The study area contained landslide area in Clapar, Madukara District of Banjarnegara. Aerial photographs of landslide area provided advantage in objects visibility. Object's characters such as shape, size, and texture were clearly seen, therefore GEOBIA (Geography Object Based Image Analysis) was compatible as method for classifying land cover in study area. Dissimilar with PPA (PerPixel Analyst) method that used spectral information as base object detection, GEOBIA could use spatial elements as classification basis to establish a land cover map with better accuracy. GEOBIA method used classification hierarchy to divide post disaster land cover into three main objects: vegetation, landslide/soil, and building. Those three were required to obtain more detailed information that can be used in estimating loss caused by landslide and establishing land cover map in landslide area. Estimating loss in landslide area related to damage in Salak (Salacca zalacca) plantations. This estimation towards quantity of Salak tree that were drifted away by landslide was calculated in assumption that every tree damaged by landslide had same age and production class with other tree that weren't damaged. Loss calculation was done by approximating quantity of damaged trees in landslide area with data of trees around area that were acquired from GEOBIA classification method.
NASA Astrophysics Data System (ADS)
Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio
2017-06-01
Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.
Zientek, Michael L.; Bliss, James D.; Broughton, David W.; Christie, Michael; Denning, Paul; Hayes, Timothy S.; Hitzman, Murray W.; Horton, John D.; Frost-Killian, Susan; Jack, Douglas J.; Master, Sharad; Parks, Heather L.; Taylor, Cliff D.; Wilson, Anna B.; Wintzer, Niki E.; Woodhead, Jon
2014-01-01
This study estimates the location, quality, and quantity of undiscovered copper in stratabound deposits within the Neoproterozoic Roan Group of the Katanga Basin in the Democratic Republic of the Congo and Zambia. The study area encompasses the Central African Copperbelt, the greatest sediment-hosted copper-cobalt province in the world, containing 152 million metric tons of copper in greater than 80 deposits. This study (1) delineates permissive areas (tracts) where undiscovered sediment-hosted stratabound copper deposits may occur within 2 kilometers of the surface, (2) provides a database of known sediment-hosted stratabound copper deposits and prospects, (3) estimates numbers of undiscovered deposits within these permissive tracts at several levels of confidence, and (4) provides probabilistic estimates of amounts of copper and mineralized rock that could be contained in undiscovered deposits within each tract. The assessment, conducted in January 2010 using a three-part form of mineral resource assessment, indicates that a substantial amount of undiscovered copper resources might occur in sediment-hosted stratabound copper deposits within the Roan Group in the Katanga Basin. Monte Carlo simulation results that combine grade and tonnage models with estimates of undiscovered deposits indicate that the mean estimate of undiscovered copper in the study area is 168 million metric tons, which is slightly greater than the known resources at 152 million metric tons. Furthermore, significant value can be expected from associated metals, particularly cobalt. Tracts in the Democratic Republic of the Congo (DRC) have potential to contain near-surface, undiscovered deposits. Monte Carlo simulation results indicate a mean value of 37 million metric tons of undiscovered copper may be present in significant prospects.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander
2017-04-01
The model of water and heat exchange between vegetation covered territory and atmosphere (LSM, Land Surface Model) for vegetation season has been developed to calculate soil water content, evapotranspiration, infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat balances components as well as soil surface and vegetation cover temperatures and depth distributions of moisture and temperature. The LSM is suited for utilizing satellite-derived estimates of precipitation, land surface temperature and vegetation characteristics and soil surface humidity for each pixel. Vegetation and meteorological characteristics being the model parameters and input variables, correspondingly, have been estimated by ground observations and thematic processing measurement data of scanning radiometers AVHRR/NOAA, SEVIRI/Meteosat-9, -10 (MSG-2, -3) and MSU-MR/Meteor-M № 2. Values of soil surface humidity has been calculated from remote sensing data of scatterometers ASCAT/MetOp-A, -B. The case study has been carried out for the territory of part of the agricultural Central Black Earth Region of European Russia with area of 227300 km2 located in the forest-steppe zone for years 2012-2015 vegetation seasons. The main objectives of the study have been: - to built estimates of precipitation, land surface temperatures (LST) and vegetation characteristics from MSU-MR measurement data using the refined technologies (including algorithms and programs) of thematic processing satellite information matured on AVHRR and SEVIRI data. All technologies have been adapted to the area of interest; - to investigate the possibility of utilizing satellite-derived estimates of values above in the LSM including verification of obtained estimates and development of procedure of their inputting into the model. From the AVHRR data there have been built the estimates of precipitation, three types of LST: land skin temperature Tsg, air temperature at a level of vegetation cover (taken for vegetation temperature) Ta and efficient radiation temperature Ts.eff, as well as land surface emissivity E, normalized difference vegetation index NDVI, vegetation cover fraction B, and leaf area index LAI. The SEVIRI-based retrievals have included precipitation, LST Tls and Ta, E at daylight and nighttime, LAI (daily), and B. From the MSU-MR data there have been retrieved values of all the same characteristics as from the AVHRR data. The MSU-MR-based daily and monthly sums of precipitation have been calculated using the developed earlier and modified Multi Threshold Method (MTM) intended for the cloud detection and identification of its types around the clock as well as allocation of precipitation zones and determination of instantaneous maximum rainfall intensities for each pixel at that the transition from assessing rainfall intensity to estimating their daily values is a key element of the MTM. Measurement data from 3 IR MSU-MR channels (3.8, 11 i 12 μm) as well as their differences have been used in the MTM as predictors. Controlling the correctness of the MSU-MR-derived rainfall estimates has been carried out when comparing with analogous AVHRR- and SEVIRI-based retrievals and with precipitation amounts measured at the agricultural meteorological station of the study region. Probability of rainfall zones determination from the MSU-MR data, to match against the actual ones, has been 75-85% as well as for the AVHRR and SEVIRI data. The time behaviors of satellite-derived and ground-measured daily and monthly precipitation sums for vegetation season and yeaŗ correspondingly, have been in good agreement with each other although the first ones have been smoother than the latter. Discrepancies have existed for a number of local maxima for which satellite-derived precipitation estimates have been less than ground-measured values. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. Some spatial displacement of the satellite-determined rainfall maxima and minima regarding to ground-based data can be explained by the discrepancy between the cloud location on satellite images and in reality at high angles of the satellite sightings and considerable altitudes of the cloud tops. Reliability of MSU-MR-derived rainfall estimates at each time step obtained using the MTM has been verified by comparing their values determined from the MSU-MR, AVHRR and SEVIRI measurements and distributed over the study area with similar estimates obtained by interpolation of ground observation data. The MSU-MR-derived estimates of temperatures Tsg, Ts.eff, and Ta have been obtained using computational algorithm developed on the base of the MTM and matured on AVHRR and SEVIRI data for the region under investigation. Since the apparatus MSU-MR is similar to radiometer AVHRR, the developed methods of satellite estimating Tsg, Ts.eff, and Ta from AVHRR data could be easily transferred to the MSU-MR data. Comparison of the ground-measured and MSU-MR-, AVHRR- and SEVIRI-derived LSTs has shown that the differences between all the estimates for the vast majority of observation terms have not exceed the RMSE of these quantities built from the AVHRR data. The similar conclusion has been also made from the results of building the time behavior of the MSU-MR-derived value of LAI for vegetation season. Satellite-based estimates of precipitation, LST, LAI and B have been utilized in the model with the help of specially developed procedures of replacing these values determined from observations at agricultural meteorological stations by their satellite-derived values taking into account spatial heterogeneity of their fields. Adequacy of such replacement has been confirmed by the results of comparing modeled and ground-measured values of soil moisture content W and evapotranspiration Ev. Discrepancies between the modeled and ground-measured values of W and Ev have been in the range of 10-15 and 20-25 %, correspondingly. It may be considered as acceptable result. Resulted products of the model calculations using satellite data have been spatial fields of W, Ev, vertical sensible and latent heat fluxes and other water and heat regime characteristics for the region of interest over the year 2012-2015 vegetation seasons. Thus, there has been shown the possibility of utilizing MSU-MR/Meteor-M №2 data jointly with those of other satellites in the LSM to calculate characteristics of water and heat regimes for the area under consideration. Besides the first trial estimations of the soil surface moisture from ASCAT scatterometers data for the study region have been obtained for the years 2014-2015 vegetation seasons, their comparison has been performed with the results of modeling for several agricultural meteorological stations of the region that has been carried out utilizing ground-based and satellite data, specific requirements for the obtained information have been formulated. To date, estimates of surface moisture built from ASCAT data can be used for the selection of the model soil parameter values and the initial soil moisture conditions for the vegetation season.
Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi
2016-03-01
The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.
Eller, Kirstin T; Katz, Brian G
2017-07-01
Nitrogen (N) from anthropogenic sources has contaminated groundwater used as drinking water in addition to impairing water quality and ecosystem health of karst springs. The Nitrogen Source Inventory and Loading Tool (NSILT) was developed as an ArcGIS and spreadsheet-based approach that provides spatial estimates of current nitrogen (N) inputs to the land surface and loads to groundwater from nonpoint and point sources within the groundwater contributing area. The NSILT involves a three-step approach where local and regional land use practices and N sources are evaluated to: (1) estimate N input to the land surface, (2) quantify subsurface environmental attenuation, and (3) assess regional recharge to the aquifer. NSILT was used to assess nitrogen loading to groundwater in two karst spring areas in west-central Florida: Rainbow Springs (RS) and Kings Bay (KB). The karstic Upper Floridan aquifer (UFA) is the source of water discharging to the springs in both areas. In the KB study area (predominantly urban land use), septic systems and urban fertilizers contribute 48% and 22%, respectively, of the estimated total annual N load to groundwater 294,400 kg-N/yr. In contrast for the RS study area (predominantly agricultural land use), livestock operations and crop fertilizers contribute 50% and 13%, respectively, of the estimated N load to groundwater. Using overall groundwater N loading rates for the KB and RS study areas, 4.4 and 3.3 kg N/ha, respectively, and spatial recharge rates, the calculated groundwater nitrate-N concentration (2.1 mg/L) agreed closely with the median nitrate-N concentration (1.7 mg/L) from groundwater samples in agricultural land use areas in the RS study area for the period 2010-2014. NSILT results provide critical information for prioritizing and designing restoration efforts for water-quality impaired springs and spring runs affected by multiple sources of nitrogen loading to groundwater. The calculated groundwater N concentration for the KB study area (1.45 mg/L) was approximately three times higher than the median N concentration (0.45 mg/L) for wells located in urban land use areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Straub, David E.; Ebner, Andrew D.
2011-01-01
The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.
Deposition velocities and impact of physical properties on ozone removal for building materials
NASA Astrophysics Data System (ADS)
Lin, Chi-Chi; Hsu, Shu-Chen
2015-01-01
This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.
Organic Carbon and Nitrogen Storages of Soils Overlying Yedoma Deposits in the Lena River Delta
NASA Astrophysics Data System (ADS)
Zubrzycki, Sebastian; Kutzbach, Lars; Desiatkin, Aleksei; Pfeiffer, Eva-Maria
2016-04-01
The Lena River Delta (LRD) is located in northeast Siberia and extends over a soil covered area of around 21,500 km2. LRD likely stores more than half of the entire soil organic carbon (SOC) mass stored in deltas affected by permafrost. LRD consists of several geomorphic units. Recent studies showed that the spatially dominating Holocene units of the LRD (61 % of the area) store around 240 Tg of SOC and 12 Tg of nitrogen (N) within the first meter of ground. These units are a river terrace dominated by wet sedge polygons and the active floodplains. About 50 % of these reported storages are located in the perennially frozen ground below 50 cm depth and are excluded from intense biogeochemical exchange with the atmosphere today. However, these storages are likely to be mineralised in near future due to the projected temperature increases in this region. A substantial part of the LRD (1,712 km2) belongs to the so-called Yedoma Region, which formed during the Late Pleistocene. This oldest unit of the LRD is characterised by extensive plains incised by thermo-erosional valleys and large thermokarst depressions. Such depressions are called Alases and cover around 20 % of the area. Yedoma deposits in the LDR are known to store high amounts of SOC. However, within the LRD no detailed spatial studies on SOC and N in the soils overlying Yedoma and thermokarst depressions were carried out so far. We present here our "investigation in progress" on soils in these landscape units of the LRD. Our first estimates, based on 69 pedons sampled in 2008, show that the mean SOC stocks for the upper 30 cm of soils on both units were estimated at 13.0 kg m2 ± 4.8 kg m2 on the Yedoma surfaces and at 13.1 kg m2 ± 3.8 kg m2 in the Alases. The stocks of N were estimated at 0.69 kg m2 ± 0.25 kg m2and at 0.70 kg m2 ± 0.18 kg m2 on the Yedoma surfaces and in the Alases, respectively. The estimated SOC and N pools for the depth of 30 cm within the investigated part of the LRD add to 20.9 Tg and 1.1 Tg, respectively. The Yedoma surfaces (1,313 km2) store 17.1 ± 6.3 Tg SOC and 0.9 ± 0.3 Tg N, whereas the Alases (287 km2) store 3.8 ± 1.1 Tg SOC and 0.2 ± 0.05 Tg N within the investigated depth of 30 cm. Further analyses of the soil core material collected in 2013 will provide SOC and N pool estimates for a depth of 100 cm including both, the seasonally active layer and the perennially frozen ground. With continuing advanced analyses of an available digital elevation model, slopes will be designated with their extents and inclinations since the planar extents of slopes derived from satellite imagery do not correspond to the actual slope soil surface area, which is vital for spatial SOC and N storage calculations as well as trace gas release estimates. The actual soil surface area of slopes will be calculated prior to result extrapolations.
Organic Carbon Deposits of Soils Overlying the Ice Complex in the Lena River Delta
NASA Astrophysics Data System (ADS)
Zubrzycki, Sebastian; Pfeiffer, Eva-Maria; Kutzbach, Lars; Desiatkin, Aleksei
2017-04-01
The Lena River Delta (LRD) is located in northeast Siberia and extends over a soil covered area of around 21,500 km2. LRD likely stores more than half of the entire soil organic carbon (SOC) mass stored in deltas affected by permafrost. LRD consists of several geomorphic units. Recent studies showed that the spatially dominating Holocene units of the LRD (61 % of the area) store around 240 Tg of SOC and 12 Tg of nitrogen (N) within the first meter of ground. These units are a river terrace dominated by wet sedge polygons and the active floodplains. About 50 % of these reported storages are located in the perennially frozen ground below 50 cm depth and are excluded from intense biogeochemical exchange with the atmosphere today. However, these storages are likely to be mineralized in near future due to the projected temperature increases in this region. A substantial part of the LRD (1,712 km2) belongs to the so-called Ice Complex (Yedoma) Region, which formed during the Late Pleistocene. This oldest unit of the LRD is characterized by extensive plains incised by thermo-erosional valleys and large thermokarst depressions. Such depressions are called Alases and cover around 20 % of the area. Ice Complex deposits in the LDR are known to store high amounts of SOC. However, within the LRD no detailed spatial studies on SOC and N in the soils overlying Ice Complex and thermokarst depressions were carried out so far. We present here our "investigation in progress" on soils in these landscape units of the LRD. Our first estimates, based on 69 pedons sampled in 2008, show that the mean SOC stocks for the upper 30 cm of soils on both units were estimated at 13.0 kg m2 ± 4.8 kg m2 on the Ice Complex surfaces and at 13.1 kg m2 ± 3.8 kg m2 in the Alases. The stocks of N were estimated at 0.69 kg m2 ± 0.25 kg m2 and at 0.70 kg m2 ± 0.18 kg m2 on the Ice Complex surfaces and in the Alases, respectively. The estimated SOC and N pools for the depth of 30 cm within the investigated part of the LRD add to 20.9 Tg and 1.1 Tg, respectively. The Ice Complex surfaces (1,313 km2) store 17.1 ± 6.3 Tg SOC and 0.9 ± 0.3 Tg N, whereas the Alases (287 km2) store 3.8 ± 1.1 Tg SOC and 0.2 ± 0.05 Tg N within the investigated depth of 30 cm. Further analyses of the soil core material collected in 2015 will provide SOC and N pool estimates for a depth of 100 cm including both, the seasonally active layer and the perennially frozen ground. With continuing advanced analyses of an available digital elevation model, slopes will be designated with their extents and inclinations since the planar extents of slopes derived from satellite imagery do not correspond to the actual slope soil surface area, which is vital for spatial SOC and N storage calculations as well as trace gas release estimates. The actual soil surface area of slopes will be calculated prior to result extrapolations.
Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.
Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek
2014-01-01
Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.
Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media
NASA Astrophysics Data System (ADS)
Berryman, James G.
1998-02-01
An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.
Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.
1998-02-01
An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less
Gómez-Gualdrón, Diego A; Moghadam, Peyman Z; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q
2016-01-13
Metal-organic frameworks (MOFs) can exhibit exceptionally high surface areas, which are experimentally estimated by applying the BET theory to measured nitrogen isotherms. The Brunauer, Emmett, and Teller (BET)-estimated nitrogen monolayer loading is thus converted to a "BET area," but the meaning of MOF BET areas remains under debate. Recent emphasis has been placed on the usage of four so-called "BET consistency criteria." Using these criteria and simulated nitrogen isotherms for perfect crystals, we calculated BET areas for graphene and 25 MOFs having different pore-size distributions. BET areas were compared with their corresponding geometrically calculated, nitrogen-accessible surface areas (NASAs). Analysis of simulation snapshots elucidated the contributions of "pore-filling" and "monolayer-formation" to the nitrogen adsorption loadings in different MOF pores, revealing the origin of inaccuracies in BET-calculated monolayer loadings, which largely explain discrepancies between BET areas and NASAs. We also find that even if all consistency criteria are satisfied, the BET calculation can significantly overestimate the true monolayer loading, especially in MOFs combining mesopores (d ≥ 20 Å) and large micropores (d = 10-20 Å), due to the overlap of pore-filling and monolayer-formation regimes of these two kinds of pores. While it is not always possible to satisfy all consistency criteria, it is critical to minimize the deviation from these criteria during BET range selection to consistently compare BET areas of different MOFs and for comparing simulated and experimental BET areas of a given MOF. To accurately assess the quality of a MOF sample, it is best to compare experimental BET areas with simulated BET areas rather than with calculated NASAs.
Mapping tide-water glacier dynamics in east Greenland using landsat data
Dwyer, John L.
1995-01-01
Landsat multispectral scanner and thematic mapper images were co-registered For the Kangerdlugssuaq Fjord region in East Greenland and were used to map glacier drainage-basin areas, changes in the positions of tide-water glacier termini and to estimate surface velocities of the larger tide-water glaciers. Statistics were compiled to document distance and area changes to glacier termini. The methodologies developed in this study are broadly applicable to the investigation of tide-water glaciers in other areas. The number of images available for consecutive years and the accuracy with which images are co-registered are key factors that influence the degree to which regional glacier dynamics can be characterized using remotely sensed data.Three domains of glacier state were interpreted: net increase in terminus area in the southern part of the study area, net loss of terminus area for glaciers in upper Kangerdlugssuaq Fjord and a slight loss of glacier terminus area northward from Ryberg Fjord. Local increases in the concentrations of drifting icebergs in the fjords coincide with the observed extension of glacier termini positions Ice-surface velocity estimates were derived for several glaciers using automated image cross-correlation techniques The velocity determined for Kangerdlugssuaq Gletscher is approximately 5.0 km a−1 and that for Kong Christian IV Gletscher is 0.9 km a−1. The continuous presence of icebergs and brash ice in front of these glaciers indicates sustained rates of ice-front calving.
GGFC Special Bureau for Loading: current status and plans
NASA Astrophysics Data System (ADS)
van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.
The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.
Apipunyasopon, Lukkana; Srisatit, Somyot; Phaisangittisakul, Nakorn
2013-09-06
The purpose of the study was to investigate the use of the equivalent square formula for determining the surface dose from a rectangular photon beam. A 6 MV therapeutic photon beam delivered from a Varian Clinac 23EX medical linear accelerator was modeled using the EGS4nrc Monte Carlo simulation package. It was then used to calculate the dose in the build-up region from both square and rectangular fields. The field patterns were defined by various settings of the X- and Y-collimator jaw ranging from 5 to 20 cm. Dose measurements were performed using a thermoluminescence dosimeter and a Markus parallel-plate ionization chamber on the four square fields (5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2). The surface dose was acquired by extrapolating the build-up doses to the surface. An equivalent square for a rectangular field was determined using the area-to-perimeter formula, and the surface dose of the equivalent square was estimated using the square-field data. The surface dose of square field increased linearly from approximately 10% to 28% as the side of the square field increased from 5 to 20 cm. The influence of collimator exchange on the surface dose was found to be not significant. The difference in the percentage surface dose of the rectangular field compared to that of the relevant equivalent square was insignificant and can be clinically neglected. The use of the area-to-perimeter formula for an equivalent square field can provide a clinically acceptable surface dose estimation for a rectangular field from a 6 MV therapy photon beam.
Surface-water/ground-water interaction along reaches of the Snake River and Henrys Fork, Idaho
Hortness, Jon E.; Vidmar, Peter
2005-01-01
Declining water levels in the eastern Snake River Plain aquifer and decreases in spring discharges from the aquifer to the Snake River have spurred studies to improve understanding of the surface-water/ground-water interaction on the plain. This study was done to estimate streamflow gains and losses along specific reaches of the Snake River and Henrys Fork and to compare changes in gain and loss estimates to changes in ground-water levels over time. Data collected during this study will be used to enhance the conceptual model of the hydrologic system and to refine computer models of ground-water flow and surface-water/ground-water interactions. Estimates of streamflow gains and losses along specific subreaches of the Snake River and Henrys Fork, based on the results of five seepage studies completed during 2001?02, varied greatly across the study area, ranging from a loss estimate of 606 ft3/s in a subreach of the upper Snake River near Heise to a gain estimate of 3,450 ft3/s in a subreach of the Snake River that includes Thousand Springs. Some variations over time also were apparent in specific subreaches. Surface spring flow accounted for much of the inflow to subreaches having large gain estimates. Several subreaches alternately gained and lost streamflow during the study. Changes in estimates of streamflow gains and losses along some of the subreaches were compared with changes in water levels, measured at three different times during 2001?02, in adjacent wells. In some instances, a strong relation between changes in estimates of gains or losses and changes in ground-water levels was apparent.
NASA Astrophysics Data System (ADS)
Castellví, F.; Snyder, R. L.
2009-09-01
SummaryHigh-frequency temperature data were recorded at one height and they were used in Surface Renewal (SR) analysis to estimate sensible heat flux during the full growing season of two rice fields located north-northeast of Colusa, CA (in the Sacramento Valley). One of the fields was seeded into a flooded paddy and the other was drill seeded before flooding. To minimize fetch requirements, the measurement height was selected to be close to the maximum expected canopy height. The roughness sub-layer depth was estimated to discriminate if the temperature data came from the inertial or roughness sub-layer. The equation to estimate the roughness sub-layer depth was derived by combining simple mixing-length theory, mixing-layer analogy, equations to account for stable atmospheric surface layer conditions, and semi-empirical canopy-architecture relationships. The potential for SR analysis as a method that operates in the full surface boundary layer was tested using data collected over growing vegetation at a site influenced by regional advection of sensible heat flux. The inputs used to estimate the sensible heat fluxes included air temperature sampled at 10 Hz, the mean and variance of the horizontal wind speed, the canopy height, and the plant area index for a given intermediate height of the canopy. Regardless of the stability conditions and measurement height above the canopy, sensible heat flux estimates using SR analysis gave results that were similar to those measured with the eddy covariance method. Under unstable cases, it was shown that the performance was sensitive to estimation of the roughness sub-layer depth. However, an expression was provided to select the crucial scale required for its estimation.
NASA Astrophysics Data System (ADS)
Teng, W. L.; Shannon, H. D.
2013-12-01
The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attachés, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly affect crop yields, WAOB has often, as part of its operational process, used historical time series of surface-based precipitation observations to visually identify growing seasons with similar (analog) weather patterns as, and help estimate crop yields for, the current growing season. As part of a larger effort to improve WAOB estimates by integrating NASA remote sensing observations and research results into WAOB's decision-making environment, a more rigorous, statistical method for identifying analog years was developed. This method, termed the analog index (AI), is based on the Nash-Sutcliffe model efficiency coefficient. The AI was computed for five study areas and six growing seasons of data analyzed (2003-2007 as potential analog years and 2008 as the target year). Previously reported results compared the performance of AI for time series derived from surface-based observations vs. satellite-retrieved precipitation data. Those results showed that, for all five areas, crop yield estimates derived from satellite-retrieved precipitation data are closer to measured yields than are estimates derived from surface-based precipitation observations. Subsequent work has compared the relative performance of AI for time series derived from satellite-retrieved surface soil moisture data and from root zone soil moisture derived from the assimilation of surface soil moisture data into a land surface model. These results, which also showed the potential benefits of satellite data for analog year analyses, will be presented.
Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Leanna Shea; Akbari, Hashem; Taha, Haider
2003-01-15
In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52more » km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.« less
NASA Astrophysics Data System (ADS)
Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.
2016-09-01
The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.
Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro
2013-01-01
Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ∼20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater. PMID:24040074
Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro
2013-01-01
Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ~20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T
2012-01-01
Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contentsmore » were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.« less
Genetic particle filter application to land surface temperature downscaling
NASA Astrophysics Data System (ADS)
Mechri, Rihab; Ottlé, Catherine; Pannekoucke, Olivier; Kallel, Abdelaziz
2014-03-01
Thermal infrared data are widely used for surface flux estimation giving the possibility to assess water and energy budgets through land surface temperature (LST). Many applications require both high spatial resolution (HSR) and high temporal resolution (HTR), which are not presently available from space. It is therefore necessary to develop methodologies to use the coarse spatial/high temporal resolutions LST remote-sensing products for a better monitoring of fluxes at appropriate scales. For that purpose, a data assimilation method was developed to downscale LST based on particle filtering. The basic tenet of our approach is to constrain LST dynamics simulated at both HSR and HTR, through the optimization of aggregated temperatures at the coarse observation scale. Thus, a genetic particle filter (GPF) data assimilation scheme was implemented and applied to a land surface model which simulates prior subpixel temperatures. First, the GPF downscaling scheme was tested on pseudoobservations generated in the framework of the study area landscape (Crau-Camargue, France) and climate for the year 2006. The GPF performances were evaluated against observation errors and temporal sampling. Results show that GPF outperforms prior model estimations. Finally, the GPF method was applied on Spinning Enhanced Visible and InfraRed Imager time series and evaluated against HSR data provided by an Advanced Spaceborne Thermal Emission and Reflection Radiometer image acquired on 26 July 2006. The temperatures of seven land cover classes present in the study area were estimated with root-mean-square errors less than 2.4 K which is a very promising result for downscaling LST satellite products.
Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Matthew W.
2014-05-16
The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetratingmore » radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water elevated 30 degrees C above the formation water was circulated between two wells pairs. One well pair had been identified in hydraulic and tracer testing as well connected and the other poorly connected. Temperature rise was measured in the adjacent rock matrix using coiled fiber optic cable interrogated for temperature using a DTS. This experimental design produced over 4000 temperature measurements every hour. We found that heat transfer between the fracture and the rock matrix was highly impacted by the character of the flow field. The strongly connected wells which had demonstrated flow channelization produced heat rise in a much more limited area than the more poorly connected wells. In addition, the heat increase followed the natural permeability of the fracture rather than the induced flow field. The primary findings of this work are (1) even in a single relatively planar fracture, the flow field can be highly heterogeneous and exhibit flow channeling, (2) channeling results from a combination of fracture permeability structure and the induced flow field, and (3) flow channeling leads to reduced heat transfer. Multi-ionic tracers effectively estimate relative surface area but an estimate of ion-exchange coefficients are necessary to provide an absolute measure of specific surface area. Periodic hydraulic tests also proved a relative indicator of connectivity but cannot prove an absolute measure of specific surface area.« less
Sanocki, Christopher A.; Langer, Susan K.; Menard, Jason C.
2008-01-01
This report depicts potentiometric surfaces and groundwater- level changes in three aquifers that underlie the seven-county Twin Cities Metropolitan Area. Approximately 350 groundwater levels were measured in wells from the three aquifers-the Prairie du Chien-Jordan, the Franconia-Ironton-Galesville, and the Mount Simon-Hinckley aquifers-in March and August of 2008. The report presents maps, associated data tables, and 22 geographic information system datasets. The maps presented in this report show the potentiometric surfaces in March and August of 2008 for all three aquifers, groundwater-level changes from March to August 2008 for each aquifer, and revised potentiometric-surface contours for the winter of 1988-89 for the Prairie du Chien-Jordan and the Mount Simon-Hinckley aquifers, and the estimated long-term (winter of 1988-89 to March 2008) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers. This report documents the methods used to construct the maps and provides a context for the period of the measurements. Although withdrawal demand is increasing in the Twin Cities Metropolitan area, particularly in the Prairie du Chien-Jordan aquifer, year-to-year changes in withdrawals can be substantial, and the relation between potentiometric surfaces in the major aquifers and year-to-year withdrawals is not well established. The estimated long-term (19-year) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers have not been large based on data and maps produced during this study, despite the large seasonal fluctuations shown by the March and August 2008 synoptic measurements.
Consistency of Estimated Global Water Cycle Variations Over the Satellite Era
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Bosilovich, M. G.; Roberts, J. B.; Reichle, R. H.; Adler, R.; Ricciardulli, L.; Berg, W.; Huffman, G. J.
2013-01-01
Motivated by the question of whether recent indications of decadal climate variability and a possible "climate shift" may have affected the global water balance, we examine evaporation minus precipitation (E-P) variability integrated over the global oceans and global land from three points of view-remotely sensed retrievals / objective analyses over the oceans, reanalysis vertically-integrated moisture convergence (MFC) over land, and land surface models forced with observations-based precipitation, radiation and near-surface meteorology. Because monthly variations in area-averaged atmospheric moisture storage are small and the global integral of moisture convergence must approach zero, area-integrated E-P over ocean should essentially equal precipitation minus evapotranspiration (P-ET) over land (after adjusting for ocean and land areas). Our analysis reveals considerable uncertainty in the decadal variations of ocean evaporation when integrated to global scales. This is due to differences among datasets in 10m wind speed and near-surface atmospheric specific humidity (2m qa) used in bulk aerodynamic retrievals. Precipitation variations, all relying substantially on passive microwave retrievals over ocean, still have uncertainties in decadal variability, but not to the degree present with ocean evaporation estimates. Reanalysis MFC and P-ET over land from several observationally forced diagnostic and land surface models agree best on interannual variations. However, upward MFC (i.e. P-ET) reanalysis trends are likely related in part to observing system changes affecting atmospheric assimilation models. While some evidence for a low-frequency E-P maximum near 2000 is found, consistent with a recent apparent pause in sea-surface temperature (SST) rise, uncertainties in the datasets used here remain significant. Prospects for further reducing uncertainties are discussed. The results are interpreted in the context of recent climate variability (Pacific Decadal Oscillation, Atlantic Meridional Overturning), and efforts to distinguish these modes from longer-term trends.
Seismic Velocity Assessment In The Kachchh Region, India, From Multiple Waveform Functionals
NASA Astrophysics Data System (ADS)
Ghosh, R.; Sen, M. K.; Mandal, P.; Pulliam, J.; Agrawal, M.
2014-12-01
The primary goal of this study is to estimate well constrained crust and upper mantle seismic velocity structure in the Kachchh region of Gujarat, India - an area of active interest for earthquake monitoring purposes. Several models based on 'stand-alone' surface wave dispersion and receiver function modeling exist in this area. Here we jointly model the receiver function, surface wave dispersion and, S and shear-coupled PL wavetrains using broadband seismograms of deep (150-700 km), moderate to-large magnitude (5.5-6.8) earthquakes recorded teleseismically at semi-permanent seismograph stations in the Kachchh region, Gujarat, India. While surface wave dispersion and receiver function modeling is computationally fast, full waveform modeling makes use of reflectivity synthetic seismograms. An objective function that measures misfit between all three data is minimized using a very fast simulated annealing (VFSA) approach. Surface wave and receiver function data help reduce the model search space which is explored extensively for detailed waveform fitting. Our estimated crustal and lithospheric thicknesses in this region vary from 32 to 41 km and 70 to 80 km, respectively, while crustal P and S velocities from surface to Moho discontinuity vary from 4.7 to 7.0 km/s and 2.7 to 4.1 km/s, respectively. Our modeling clearly reveals a zone of crustal as well as an asthenospheric upwarping underlying the Kachchh rift zone relative to the surrounding unrifted area. We believe that this feature plays a key role in the seismogenesis of lower crustal earthquakes occurring in the region through the emanation of volatile CO2 into the hypocentral zones liberating from the crystallization of carbonatite melts in the asthenosphere. Such a crust-mantle structure might be related to the plume-lithosphere interaction during the Deccan/Reunion plume episode (~65 Ma).
NASA Astrophysics Data System (ADS)
Cael, B. B.
How much water do lakes on Earth hold? Global lake volume estimates are scarce, highly variable, and poorly documented. We develop a mechanistic null model for estimating global lake mean depth and volume based on a statistical topographic approach to Earth's surface. The volume-area scaling prediction is accurate and consistent within and across lake datasets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3) . This volume is in the range of historical estimates (166,000-280,000 km3) , but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62 - 151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles. We also evaluate the size (area) distribution of lakes on Earth compared to expectations from percolation theory. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 2388357.
NASA Astrophysics Data System (ADS)
Lin, Y. K.; Ke, M. C.; Ke, S. S.
2016-12-01
An active fault is commonly considered to be active if they have moved one or more times in the last 10,000 years and likely to have another earthquake sometime in the future. The relationship between the fault reactivation and the surface deformation after the Chi-Chi earthquake (M=7.2) in 1999 has been concerned up to now. According to the investigations of well-known disastrous earthquakes in recent years, indicated that surface deformation is controlled by the 3D fault geometric shape. Because the surface deformation may cause dangerous damage to critical infrastructures, buildings, roads, power, water and gas lines etc. Therefore it's very important to make pre-disaster risk assessment via the 3D active fault model to decrease serious economic losses, people injuries and deaths caused by large earthquake. The approaches to build up the 3D active fault model can be categorized as (1) field investigation (2) digitized profile data and (3) build the 3D modeling. In this research, we tracked the location of the fault scarp in the field first, then combined the seismic profiles (had been balanced) and historical earthquake data to build the underground fault plane model by using SKUA-GOCAD program. Finally compared the results come from trishear model (written by Richard W. Allmendinger, 2012) and PFC-3D program (Itasca) and got the calculated range of the deformation area. By analysis of the surface deformation area made from Hsin-Chu Fault, we concluded the result the damage zone is approaching 68 286m, the magnitude is 6.43, the offset is 0.6m. base on that to estimate the population casualties, building damage by the M=6.43 earthquake in Hsin-Chu area, Taiwan. In the future, in order to be applied accurately on earthquake disaster prevention, we need to consider further the groundwater effect and the soil structure interaction inducing by faulting.
NASA Astrophysics Data System (ADS)
Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten
2018-03-01
The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.
Hopkins, Kristina G.; Bain, Daniel J.
2018-01-01
Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.
Thermal Desorption Analysis of Effective Specific Soil Surface Area
NASA Astrophysics Data System (ADS)
Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.
2017-12-01
A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.
Recreational fishing in surface mine lakes - a case study in St. Clair County, Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannz, R.H.
1985-12-09
Recent mining legislation mandates the reclamation of surface-mined areas to the pre-mining contour, eliminating the potential of many new lakes. However, many pre-law mine lakes have considerable recreational value benefiting the surrounding regions. During 1983, 5296 anglers participated in Peabody Coal Company's Coal Company's recreational fishing program in St. Clair County, Illinois. A random sample of participants were mailed a questionnaire designed to identify user/area characteristics economic implications, and sport fishing resources of the program lakes. Sample data indicated 62,760 angling days spent on 600 acres of program waters during 1983. The single most sought after fish was the largemore » mouth bass. Expenditures by 1983 program users were estimated at $753,120 or $1255 per acre of surface water. Opportunity cost calculations indicated that recreational fishing was an equal or better trade-off to the regional economy when compared to income that could have been produced from rowcrop agriculture. Reclamation techniques designed for fish and wildlife purposes and leaving such areas should be encouraged. Returning surface-mined areas to the pre-mining contour and use is not necessarily the most cost effective or desirable method of reclamation. 14 references, 4 tables.« less
BMP COST ANALYSIS FOR SOURCE WATER PROTECTION
Cost equations are developed to estimate capital, and operations and maintenance (O&M) costs for commonly used best management practices (BMPs). Total BMP volume and/or surface area is used to predict these costs. Engineering News Record (ENR) construction cost index was used t...
NASA Technical Reports Server (NTRS)
Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.;
2012-01-01
Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.
Methane Emissions from the Inland Waters of Alaska
NASA Astrophysics Data System (ADS)
Striegl, R. G.; Butman, D. E.; Stackpoole, S. M.; Dornblaser, M.
2017-12-01
Inland waters at high latitudes generally emit methane (CH4) continuously to the atmosphere during the open water season and build-up CH4 under ice during winter that is released over a short period following ice melt. Landscape position, stream and river size, water source, and turbulence created by water flow largely control CH4 emissions from streams and rivers. Organic carbon sources for CH4 production in lakes vary widely among lakes and landscapes and include hydrologic inputs from terrestrial sources, releases from permafrost thaw (thermokarst), and autochthonous inputs from aquatic macrophytes and algae. Lake emissions are therefore controlled by the balance between within-lake CH4 production and consumption, surface turbulence at the water-air interface, and CH4 ebullition. This creates a complex range of conditions that are difficult to characterize, where dissolved CH4 concentrations may vary by up to 4 orders of magnitude among lakes and/or within a single lake over an annual seasonal cycle. Moreover, large inputs of organic matter from permafrost thaw or other sources commonly result in high rates of bubble production and ebullition from some lakes, while other lakes have negligible ebullition. We quantified water surface areas and estimated CH4 emission rates for lakes, streams and rivers for the six major hydrologic regions of Alaska and determined that they collectively emit about 0.124 Tg C per year as CH4 to the atmosphere. Lake emissions comprise about 75% of the total. When adjusted for total land surface area in Alaska, our lake emission estimate is substantially smaller than previous global estimates for inland waters north of 50 degrees North latitude. We attribute this to incorporation of results that cover a broad range of lake conditions in interior Alaska and to new data from lakes in southwest Alaska that have very low CH4 concentration but very large surface area.
Estimating time and spatial distribution of snow water equivalent in the Hakusan area
NASA Astrophysics Data System (ADS)
Tanaka, K.; Matsui, Y.; Touge, Y.
2015-12-01
In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate hydrological model, satellite based precipitation product, GCM output, etc.
Are rapid population estimates accurate? A field trial of two different assessment methods.
Grais, Rebecca F; Coulombier, Denis; Ampuero, Julia; Lucas, Marcelino E S; Barretto, Avertino T; Jacquier, Guy; Diaz, Francisco; Balandine, Serge; Mahoudeau, Claude; Brown, Vincent
2006-09-01
Emergencies resulting in large-scale displacement often lead to populations resettling in areas where basic health services and sanitation are unavailable. To plan relief-related activities quickly, rapid population size estimates are needed. The currently recommended Quadrat method estimates total population by extrapolating the average population size living in square blocks of known area to the total site surface. An alternative approach, the T-Square, provides a population estimate based on analysis of the spatial distribution of housing units taken throughout a site. We field tested both methods and validated the results against a census in Esturro Bairro, Beira, Mozambique. Compared to the census (population: 9,479), the T-Square yielded a better population estimate (9,523) than the Quadrat method (7,681; 95% confidence interval: 6,160-9,201), but was more difficult for field survey teams to implement. Although applicable only to similar sites, several general conclusions can be drawn for emergency planning.
Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.
2018-01-01
This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt at large spatial coverage from remote sensing and LSM data series, and provide an innovative framework for future improvements.
Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.
The global limits and population at risk of soil-transmitted helminth infections in 2010
2012-01-01
Background Understanding the global limits of transmission of soil-transmitted helminth (STH) species is essential for quantifying the population at-risk and the burden of disease. This paper aims to define these limits on the basis of environmental and socioeconomic factors, and additionally seeks to investigate the effects of urbanisation and economic development on STH transmission, and estimate numbers at-risk of infection with Ascaris lumbricoides, Trichuris trichiura and hookworm in 2010. Methods A total of 4,840 geo-referenced estimates of infection prevalence were abstracted from the Global Atlas of Helminth Infection and related to a range of environmental factors to delineate the biological limits of transmission. The relationship between STH transmission and urbanisation and economic development was investigated using high resolution population surfaces and country-level socioeconomic indicators, respectively. Based on the identified limits, the global population at risk of STH transmission in 2010 was estimated. Results High and low land surface temperature and extremely arid environments were found to limit STH transmission, with differential limits identified for each species. There was evidence that the prevalence of A. lumbricoides and of T. trichiura infection was statistically greater in peri-urban areas compared to urban and rural areas, whilst the prevalence of hookworm was highest in rural areas. At national levels, no clear socioeconomic correlates of transmission were identified, with the exception that little or no infection was observed for countries with a per capita gross domestic product greater than US$ 20,000. Globally in 2010, an estimated 5.3 billion people, including 1.0 billion school-aged children, lived in areas stable for transmission of at least one STH species, with 69% of these individuals living in Asia. A further 143 million (31.1 million school-aged children) lived in areas of unstable transmission for at least one STH species. Conclusions These limits provide the most contemporary, plausible representation of the extent of STH risk globally, and provide an essential basis for estimating the global disease burden due to STH infection. PMID:22537799
Fifty-year flood-inundation maps for La Lima, Honduras
Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Lima that would be inundated by Rio Chamelecon with a discharge of 500 cubic meters per second, the approximate capacity of the river channel through the city of La Lima. The 50-year flood (2,400 cubic meters per second), the original design flow to be mapped, would inundate the entire area surveyed for this municipality. Because water-surface elevations of the 50-year flood could not be mapped properly without substantially expanding the area of the survey, the available data were used instead to estimate the channel capacity of Rio Chamelecon in La Lima by trial-and-error runs of different flows in a numerical model and to estimate the increase in height of levees needed to contain flows of 1,000 and 2,400 cubic meters per second. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Lima as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for various discharges on Rio Chamelecon at La Lima were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at three bridges. Top-of-levee or top-of-channel-bank elevations and locations at the cross sections were critical to estimating the channel capacity of Rio Chamelecon. These elevations and locations are provided along with the water-surface elevations for the 500-cubic-meter-per-second flow of Rio Chamelecon. Also, water-surface elevations of the 1,000 and 2,400 cubic-meter-per-second flows are provided, assuming that the existing levees are raised to contained the flows.
The production of premixed flame surface area in turbulent shear flow
NASA Technical Reports Server (NTRS)
Trouve, A.
1993-01-01
In the present work, we use three-dimensional Direct Numerical Simulation (DNS) of premixed flames in turbulent shear flow to characterize the effect of a mean shear motion on flame surface production. The shear is uniform in the unburnt gas, and simulations are performed for different values of the mean shear rate, S. The data base is then used to estimate and compare the different terms appearing in the Sigma-equation as a function of S. The analysis gives in particular the relative weights f the turbulent flow and mean flow components, a(sub T) and A(sub T), of the flame surface production term. This comparison indicates whether the dominant effects of a mean flow velocity gradient on flame surface area are implicit and scale with the modified turbulent flow parameters, kappa and epsilon, or explicit and scale directly with the rate of deformation.
NASA Astrophysics Data System (ADS)
Pan, Feifei; Wang, Cheng; Xi, Xiaohuan
2016-09-01
Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning's coefficient with the water level from the channel bed lowest elevation to the bank-full level. The constructed SDR curve with the vertical variation of the Manning's coefficient reduced the RMSE in the estimated river discharges to 83.9 m3/s. These results indicate that the method developed and tested in this study is effective and robust, and has the potential for improving our ability of remote sensing of river discharge and providing data for water resources management, global water cycle study, and flood forecasting and prevention.
Why do rough surfaces appear glossy?
Qi, Lin; Chantler, Mike J; Siebert, J Paul; Dong, Junyu
2014-05-01
The majority of work on the perception of gloss has been performed using smooth surfaces (e.g., spheres). Previous studies that have employed more complex surfaces reported that increasing mesoscale roughness increases perceived gloss [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010), Curr. Biol.22, 1909 (2012)]. We show that the use of realistic rendering conditions is important and that, in contrast to [Psychol. Sci.19, 196 (2008), J. Vis.10(9), 13 (2010)], after a certain point increasing roughness further actually reduces glossiness. We investigate five image statistics of estimated highlights and show that for our stimuli, one in particular, which we term "percentage of highlight area," is highly correlated with perceived gloss. We investigate a simple model that explains the unimodal, nonmonotonic relationship between mesoscale roughness and percentage highlight area.
Increasing Wastage of the Bering and Malaspina Glacier Systems, Alaska-Yukon, 1972 to 2006
NASA Astrophysics Data System (ADS)
Muskett, R. R.; Lingle, C. S.; Sauber, J. M.; Tangborn, W. V.; Rabus, B. T.; Echelmeyer, K. A.
2007-12-01
Ice dynamics are integral to the net mass balances of the huge Bagley-Bering and Seward-Malaspina Glacier systems of south-central Alaska. Quasi-periodic surging of the main trunks and some large tributaries of these exceptionally active glacier systems are important contributors to their increasing volume losses in the present rapidly-warming climate, because surges rapidly transport ice from higher elevations, where it is "safe," to lower elevations where it subject to increased ablation. New estimates of mass losses from the Bering and Malaspina Glacier systems during 1972-2006 were derived from analysis of (i) digital elevation models (DEMs) synthesized from airborne and spaceborne interferometric synthetic aperture radar (InSAR); (ii) small-aircraft laser altimetry; and (iii) spaceborne laser altimetry acquired by ICESat. Adjustments for estimated seasonal snow accumulation were applied to datasets acquired at times subsequent to late summer. Adjustments for systematic DEM biases were also applied. The area-average lowering rate on the main-trunk of the Bering Glacier system from 1972 to 1995 was 0.9 ± 0.1 m/yr. The major 1993 to '95 surge moved ice rapidly from the surge reservoir into the piedmont lobe where rapid surface melting was facilitated by the heavily crevassed surface. The lowering rate accelerated to 3.0 ± 0.1 m/yr during 1995 to 2000, then moderated to 1.4 ± 0.1 m/yr during 2000 to 2003. On the Malaspina Glacier system, the area-average rate of surface lowering was 1.4 ± 0.1 m/yr during 1972 to 1999. It then increased by 30% to 1.8 ± 0.1 m/yr during 1999 to 2002. Near-concurrent surges of Agassiz Glacier (a west piedmont lobe tributary), lower Seward Glacier (main source for the central Seward lobe), and Marvine Glacier (a detached former tributary of the eastern piedmont lobe) were observed during this 3-year time span of increased surface lowering. Recent ICESat-derived elevation changes from 2003 to 2006 indicate increasing wastage on the Malaspina piedmont lobe. By contrast, its main accumulation area, upper Seward Glacier, which was drawn down by the 1999-2002 surge, is showing recovery with increasing surface elevations. Concurrently, elevations on Bagley Ice Valley are also increasing in preparation, evidently, for the next surge of the Bering Glacier system. For both of these large glacier systems we estimate a combined volume loss of 254.0 ± 16.5 km3 (water equivalent) over an area of 7734 km2 during 1972 to 2003, representing over 80% and 70% of the areas of the Bering and Malaspina Glacier systems, respectively. This is equivalent to a mean surface lowering of 31 to 35 meters. These glaciers are making an increasing contribution to globally-rising sea-level.
NASA Astrophysics Data System (ADS)
Park, Jungmin; Choi, Yong-Sang
2018-04-01
Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.
Moran, Edward H.; Solin, Gary L.
2006-01-01
The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'
Classification of simple vegetation types using POLSAR image data
NASA Technical Reports Server (NTRS)
Freeman, A.
1993-01-01
Mapping basic vegetation or land cover types is a fairly common problem in remote sensing. Knowledge of the land cover type is a key input to algorithms which estimate geophysical parameters, such as soil moisture, surface roughness, leaf area index or biomass from remotely sensed data. In an earlier paper, an algorithm for fitting a simple three-component scattering model to POLSAR data was presented. The algorithm yielded estimates for surface scatter, double-bounce scatter and volume scatter for each pixel in a POLSAR image data set. In this paper, we show how the relative levels of each of the three components can be used as inputs to simple classifier for vegetation type. Vegetation classes include no vegetation cover (e.g. bare soil or desert), low vegetation cover (e.g. grassland), moderate vegetation cover (e.g. fully developed crops), forest and urban areas. Implementation of the approach requires estimates for the three components from all three frequencies available using the NASA/JPL AIRSAR, i.e. C-, L- and P-bands. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.