21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... article Nitrogen content of copolymer Maximum extractable fractions at specified temperatures and times... Total nonvolatile extractives not to exceed 0.01 mg/in 2 surface area of the food contact article when... not exceed 0.001 mg/in 2 surface area of the food contact article when exposed to distilled water and...
Water resources of the Prairie Island Indian Reservation, Minnesota, 1994-97
Cowdery, Timothy K.
1999-01-01
The only surface-water constituents exceeding U.S. Environmental Protection Agency drinking water standards was coliform or fecal streptococci bacteria, which was exceeded in all samples. Thirteen percent of ground-water samples exceeded the nitrate maximum contaminant level (MCL), but this is probably higher than the percentage of the aquifer exceeding the nitrate MCL because most of the wells sampled were shallow. Surface-water recharge to and ground-water discharge from the surficial aquifer influence the water quality in both the aquifer and the surrounding surface water. However, surface water probably influences ground-water quality more because of the greater amount of surface water flowing through the study area.
Linking land use with pesticides in Dutch surface waters.
Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R
2012-01-01
Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds.
7 CFR 51.3067 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... serious damage: (a) Anthracnose when any spot exceeds the area of a circle one-fourth inch in diameter, or when more than 3 spots each of which exceeds the area of a circle three-sixteenths inch in diameter; (b... avocado which has greenish-yellow colored sunburn aggregating 25 percent of the fruit surface; (g...
7 CFR 51.3067 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... serious damage: (a) Anthracnose when any spot exceeds the area of a circle one-fourth inch in diameter, or when more than 3 spots each of which exceeds the area of a circle three-sixteenths inch in diameter; (b... avocado which has greenish-yellow colored sunburn aggregating 25 percent of the fruit surface; (g...
7 CFR 51.3067 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... serious damage: (a) Anthracnose when any spot exceeds the area of a circle one-fourth inch in diameter, or when more than 3 spots each of which exceeds the area of a circle three-sixteenths inch in diameter; (b... avocado which has greenish-yellow colored sunburn aggregating 25 percent of the fruit surface; (g...
7 CFR 51.3067 - Serious damage.
Code of Federal Regulations, 2014 CFR
2014-01-01
... any one defect, shall be considered as serious damage: (a) Anthracnose when any spot exceeds the area of a circle one-fourth inch in diameter, or when more than 3 spots each of which exceeds the area of... colored sunburn aggregating 25 percent of the fruit surface; (g) Sunscald or sprayburn when not well...
7 CFR 51.3067 - Serious damage.
Code of Federal Regulations, 2013 CFR
2013-01-01
... any one defect, shall be considered as serious damage: (a) Anthracnose when any spot exceeds the area of a circle one-fourth inch in diameter, or when more than 3 spots each of which exceeds the area of... colored sunburn aggregating 25 percent of the fruit surface; (g) Sunscald or sprayburn when not well...
Deviation from Power Law Behavior in Landslide Phenomenon
NASA Astrophysics Data System (ADS)
Li, L.; Lan, H.; Wu, Y.
2013-12-01
Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law behavior in landslide phenomenon. Figure shows that a rollover of landslide size distribution in the small size end is produced as the probability for V/S (the failure volume to failure surface ratio of landslide) exceeding the mechanical threshold applied to the power law distribution of landslide volume.
Selenium in irrigated agricultural areas of the western United States
Nolan, B.T.; Clark, M.L.
1997-01-01
A logistic regression model was developed to predict the likelihood that Se exceeds the USEPA chronic criterion for aquatic life (5 ??g/L) in irrigated agricultural areas of the western USA. Preliminary analysis of explanatory variables used in the model indicated that surface-water Se concentration increased with increasing dissolved solids (DS) concentration and with the presence of Upper Cretaceous, mainly marine sediment. The presence or absence of Cretaceous sediment was the major variable affecting Se concentration in surface-water samples from the National Irrigation Water Quality Program. Median Se concentration was 14 ??g/L in samples from areas underlain by Cretaceous sediments and < 1 ??g/L in samples from areas underlain by non-Cretaceous sediments. Wilcoxon rank sum tests indicated that elevated Se concentrations in samples from areas with Cretaceous sediments, irrigated areas, and from closed lakes and ponds were statistically significant. Spearman correlations indicated that Se was positively correlated with a binary geology variable (0.64) and DS (0.45). Logistic regression models indicated that the concentration of Se in surface water was almost certain to exceed the Environmental Protection Agency aquatic-life chronic criterion of 5 ??g/L when DS was greater than 3000 mg/L in areas with Cretaceous sediments. The 'best' logistic regression model correctly predicted Se exceedances and nonexceedances 84.4% of the time, and model sensitivity was 80.7%. A regional map of Cretaceous sediment showed the location of potential problem areas. The map and logistic regression model are tools that can be used to determine the potential for Se contamination of irrigated agricultural areas in the western USA.
30 CFR 77.403-1 - Mobile equipment; rollover protective structures (ROPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.403-1 Mobile equipment... surface coal mines or the surface work areas of underground coal mines shall be provided with rollover... complying with paragraph (d) (1) (iii) (A) of this section. Stresses shall not exceed the ultimate strength...
30 CFR 77.403-1 - Mobile equipment; rollover protective structures (ROPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.403-1 Mobile equipment... surface coal mines or the surface work areas of underground coal mines shall be provided with rollover... complying with paragraph (d) (1) (iii) (A) of this section. Stresses shall not exceed the ultimate strength...
25 CFR 226.19 - Use of surface of land.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the surface owner commencement money in the amount of $25 per seismic shot hole and commencement money... operations and shall not exceed one and one-half acres in area unless authorized by the Superintendent...
25 CFR 226.19 - Use of surface of land.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the surface owner commencement money in the amount of $25 per seismic shot hole and commencement money... operations and shall not exceed one and one-half acres in area unless authorized by the Superintendent...
25 CFR 226.19 - Use of surface of land.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the surface owner commencement money in the amount of $25 per seismic shot hole and commencement money... operations and shall not exceed one and one-half acres in area unless authorized by the Superintendent...
25 CFR 226.19 - Use of surface of land.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the surface owner commencement money in the amount of $25 per seismic shot hole and commencement money... operations and shall not exceed one and one-half acres in area unless authorized by the Superintendent...
25 CFR 226.19 - Use of surface of land.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the surface owner commencement money in the amount of $25 per seismic shot hole and commencement money... operations and shall not exceed one and one-half acres in area unless authorized by the Superintendent...
Results of the basewide monitoring program at Wright-Patterson Air Force Base, Ohio, 1993-1994
Schalk, C.W.; Cunningham, W.L.
1996-01-01
Geologic and hydrologic data were collected at Wright-Patterson Air Force Base (WPAFB), Ohio, as part of Basewide Monitoring Program (BMP) that began in 1992. The BMP was designed as a long-term project to character ground-water and surface-water quality (including streambed sediments), describe water-quality changes as water enters, flows across, and exits the Base, and investigate the effects of activities at WPAFB on regional water quality. Ground water, surface ware, and streambed sediment were sampled in four rounds between August 1993 and September 1994 to provide the analytical data needed to address the objectives of the BMP. Surface-water-sampling rounds were designed to include most of the seasonal hydrologic conditions encountered in southwestern Ohio, including baseflow conditions and spring runoff. Ground-water-sampling rounds were scheduled for times of recession and recharfe. Ground-water data were used to construct water-table, potentiometric, and vertical gradient maps of the WPAFB area. Water levels have not changed significantly since 1987, but the effects of pumping on and near the Base can have a marked effect on water levels in localized areas. Ground-ware gradients generally were downward throughout Area B (the southwestern third of the Base) and in the eastern third of Areas A and C (the northeastern two-thirds of the Base), and were upward in the vicinity of Mad River. Stream-discharge measurements verified these gradients. Many of the U.S. Environmental Protection Agency maximum contaminant level (MCL) exceedances of inorganic constituents in ground water were associated with water from the bedrock. Exceedances of concentrations of chromium and nickel were found consistently in five wells completed in the glacial aquifer beneath the Base. Five organic compounds [trichloroethylene (TCE), tetrachloroethylene (PCE), vinyl chloride, benzene, and bis(2-ethylhexyl) phthalate] were detected at concentrations that exceeded MCLs; all of the TCE, PCE, and vinyl chloride exceedances were in water from glacial aquifer, whereas the benzene exceedance and most of the bis(2-ethylhexyl) phthalate exceedances were in water from the bedrock. TCE (16 exceedances) and PCE (11 exceedances) most frequently exceeded the MCLs and were detected in the most samples. A decrease in concentrations of inorganic and organic compounds with depth suggest that many constituents detected in ground-water samples are associated partly with human activities, in addition to their natural occurrence. Included in the list of these constituents are nickel, chromium, copper, lead vanadium, zinc, bromide, and nitrate. Many constituents are not found at depths greater than 60 to 80 feet, possibly indicating that human effects on ground-water quality are limited to shallow flow systems. Organic compounds detected in shallow or intermediate-depth wells were aligned mostly with flowpaths that pass through or near identified hazardous-waste sites. Few organic contaminants were detected in surface water. The only organic compound to exceed MCLs for drinking water was bis(2-ethylhexyl) phthalate, but it was detected at concentrations just above the MCL. Inorganic constituents detected at concentration exceeding MCLs include beryllium (twice), lead (once), thallium (once), and gross alpha radiation (once). No polycyclic aromatic (PAHs) were detected in surface-water samples. The highest concentrations of contaminants detected during a storm event were in samples from upgradient locations, indicating that off-Base sources may contribute to surface-water contamination. Inorganic and organic contaminants were found in streambed sediments at WPAFB, primarily in Areas A and C. Trace metals such as lead, mercury, arsenic, and cadmium were detected at 16 locations at concentrations considered 'elevated' according to a ranking scheme for sediments. PAHS were the organic compounds detected most frequently and in highest concentrations organo
14 CFR Appendix B to Part 91 - Authorizations To Exceed Mach 1 (§ 91.817)
Code of Federal Regulations, 2010 CFR
2010-01-01
..., including an environmental analysis of that area meeting the requirements of paragraph (b) of this section... reach the surface outside of the designated test area. (d) An application is denied if the Administrator... number of 1 will not cause a measurable sonic boom overpressure to reach the surface. (b) For a flight...
14 CFR Appendix B to Part 91 - Authorizations To Exceed Mach 1 (§ 91.817)
Code of Federal Regulations, 2011 CFR
2011-01-01
..., including an environmental analysis of that area meeting the requirements of paragraph (b) of this section... reach the surface outside of the designated test area. (d) An application is denied if the Administrator... number of 1 will not cause a measurable sonic boom overpressure to reach the surface. (b) For a flight...
7 CFR 1491.22 - Conservation easement deeds.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., population density, the ratio of open prime other important farmland versus impervious surfaces on the...) Impervious surfaces will not exceed 2 percent of the FRPP easement area, excluding NRCS-approved conservation practices. The State Conservationist may waive the 2 percent impervious surface limitation on a parcel-by...
7 CFR 1491.22 - Conservation easement deeds.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., population density, the ratio of open prime other important farmland versus impervious surfaces on the...) Impervious surfaces will not exceed 2 percent of the FRPP easement area, excluding NRCS-approved conservation practices. The State Conservationist may waive the 2 percent impervious surface limitation on a parcel-by...
Su, Shiming; Bai, Lingyu; Wei, Caibing; Gao, Xiang; Zhang, Tuo; Wang, Yanan; Li, Lianfang; Wang, Jinjin; Wu, Cuixia; Zeng, Xibai
2015-07-01
The investigation of arsenic (As) re-accumulation in an area previously remediated by soil dressing will help in sustainable controlling the risks of As to local ecosystems and should influence management decisions about remediation strategies. In this study, As content in an area remediated by soil dressing and the possible As accumulation risk in agricultural products were investigated. The results indicated that after 7 years of agricultural activities, the average As content (24.6 mg kg(-1)) in surface soil of the investigated area increased by 83.6% compared with that (13.4 mg kg(-1)) in clean soil. Of the surface soil samples (n = 88), 21.6% had As levels that exceeded the limits of the Environmental Quality Standard for Soils of China (GB 15618-1995) and 98.9% of the surface soil samples with As contents exceeding that in clean soil was observed. Soil dressing might be not a remediation method once and for all in some contaminated areas, even though no significant difference in available As content was found between clean (0.18 mg kg(-1)) and surface (0.22 mg kg(-1)) soils. The foreign As in surface soil of the investigated area mainly specifically sorbed with soil colloid or associated with hydrous oxides of Fe and Al, or existed in residual fraction. The upward movement of contaminated soil from the deeper layers and the atmospheric deposition of slag particles might be responsible for the re-accumulation of As in the investigated area. Decreases in soil pH in the investigated soils and the fact that no plant samples had As levels exceeding the limits of the National Food Safety Standards for Contaminants of China (GB 2762-2012) were also observed.
Geohydrologic reconnaissance of drainage wells in Florida; an interim report
Kimrey, Joel O.; Fayard, Larry D.
1982-01-01
Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) Surface-water injection wells, and (2) interaquifer connector wells. Surface-water injection wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mining operations and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed standards values for gross alpha concentrations. (USGS)
Wang, L; Zhang, X M; Deng, L; Tang, J F; Xiao, S F; Deng, H Q; Hu, W Y
2018-06-04
We systematically investigate the collapse of a set of open-cell nanoporous Cu (np-Cu) materials with the same porosity and shape but different specific surface areas, during thermal annealing, by performing large-scale molecular dynamics simulations. Two mechanisms govern the collapse of np-Cu. One is direct surface premelting, facilitating the collapse of np-Cu, when the specific surface area is less than a critical value (∼2.38 nm-1). The other is recrystallization followed by surface premelting, accelerating the sloughing of ligaments and the annihilation of voids, when the critical specific surface area is exceeded. Surface premelting results from surface reconstruction by prompting localized "disordering" and "chaos" on the surface, and the melting temperature reduces linearly with the increase of the specific surface area. Recrystallization is followed by surface premelting as the melting temperature is below the supercooling point, where a liquid is unstable and instantaneously recrystallizes.
Zhang, W F; Tang, S H; Tan, Q; Liu, Y M
2016-08-20
Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.
Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.
2003-01-01
Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to leach trace elements and release asbestos fibers from plumbing materials. Reported concentrations of nitrate, volatile organic compounds, trace elements, and pesticides in samples from the monitored mainstem and tributary streams within the study area generally are below maximum contaminant levels for drinking water or below detection limits. Results of studies in other areas indicate that pesticide concentrations in surface water could be considerably higher during high flows soon after the application of pesticides to crops than during low flows. Fecal coliform bacteria counts in streams vary considerably. Concentrations or counts of these classes of surface-water-quality constituents likely are functions of the intensity and type of upstream development. Results of limited monitoring for radionuclide concentrations reported by the Brick Township Municipal Utilities Authority of the Metedeconk River indicate that radionuclide concentrations or activities do not exceed maximum contaminant levels for drinking water. As a consequence of organic matter in surface water, the formati ultraviolet absorbance in samples from the Metedeconk River and the Toms River exceeded the alternative compliance criteria for source water (2.0 milligrams per liter for total organic carbon and 0.02 absorbance units-liters per milligram-centimeter for specific ultraviolet absorbance) with respect to treatment requirements for preventing elevated concentrations of disinfection by-products in treated water. Water-quality and treatment issues associated with use of ground and surface water for potable supply in the study area are related to human activities and naturally occurring factors. Additional monitoring and analysis of ground and surface water would be needed to determine conclusively the occurrence and distribution of some contaminants and the relative importance of various potential contaminant sources, transport and attenuation mechanisms, and transport pathways.
Risk assessment for adult butterflies exposed to the mosquito control pesticide naled
Bargar, Timothy A.
2012-01-01
A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed.
Adame, José A; Lozano, Antonio; Bolívar, Juan P; De la Morena, Benito A; Contreras, Juan; Godoy, Francisca
2008-01-01
In order to improve our knowledge of the surface ozone in the south of the Iberian Peninsula, annual, monthly, weekly and daily ozone concentrations have been closely monitored in the Seville metropolitan area highlighting those episodes that exceed the European Ozone Directive. A three-year period (2003-2005) and eight ozone stations were used; five of them located in the city's busiest areas and the rest in adjacent zones ( approximately 25km). In addition, the wind regime was also studied in order to understand the main characteristics of the surface atmospheric dynamics. The lowest ozone concentrations 17-33microgm(-3) took place in January while the highest 57-95microgm(-3) occurred in June. The ozone concentration week-weekend differences from May to September indicate that this phenomenon does not affect the ozone stations analysed. Daily cycles show minimum values between 7:00 and 8:00 UTC and maximum at noon, exceeding 90microgm(-3) during summer months. From March to October the ozone concentrations were above the target value for the protection of human health, especially during the summer months, with values up to 30% over the limit. The information threshold has been exceeded at all ozone stations studied but with greater frequency in the stations far from the city centre. In addition, at these latter stations the alert threshold was also exceeded on six occasions. This study in the city of Seville indicates that the high ozone levels are due to local atmospheric effects, mainly since the ozone air masses may undergo recirculation processes. The ozone is transported to the city from the S-SW, having a major impact in the NE areas.
Hydrology of the Lake Deaton and Lake Okahumpka area, Northeast Sumter County, Florida
Simonds, Edward P.; German, E.R.
1980-01-01
The Floridan aquifer in the Lake Deaton and Lake Okahumpka area is 50 to 130 feet below land surface. During the 16-year period 1963-78 lake evaporation exceeded rainfall by 0.4 inches. Drainage from Lake Deaton and its surrounding area goes into Chitty Chatty Creek and on the Hogeye Sink when the altitude of the potentiometric surface of the Floridan aquifer is low. During a higher altitude of the Floridan potentiometric surface, Hogeye Sink may discharge water; this water, along with the normal runoff, goes into Lake Okahumpka. Average lake fluctuation is 1.5 to 2.0 feet per year. Lake Deaton supports a large population of blue-green algae and Lake Okahumpka is choked with aquatic plants. The water quality of the two lakes differ, with Lake Deaton having a sodium chloride water and Lake Okahumpka having a calcium bicarbonate water. Analysis of water and bottom material samples showed that only cadmium and mercury exceeded the Florida Department of Environmental Regulation 's criteria for Class III waters; however, the amounts detected were at or slightly above the limits of the analytical method. (USGS)
Olson, Scott A.
2015-01-01
Eighteen high-water marks from Tropical Storm Irene were available along the studied reaches. The discharges in the Tropical Storm Irene HEC–RAS model were adjusted so that the resulting water-surface elevations matched the high-water mark elevations along the study reaches. This allowed for an estimation of the water-surface profile throughout the study area resulting from Tropical Storm Irene. From a comparison of the estimated water-surface profile of Tropical Storm Irene to the water-surface profiles of the 1- and 0.2-percent AEP floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the White River and Tweed River study reaches and exceeded the estimated 0.2-percent AEP flood in 16.7 of the 28.6 study reach miles. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 18.2-centimeter vertical accuracy at the 95-percent confidence level and 1-meter horizontal resolution to delineate the area flooded for each water-surface profile.
Wagner, Daniel M.
2013-01-01
In the early morning hours of June 11, 2010, substantial flooding occurred at Albert Pike Recreation Area in the Ouachita National Forest of west-central Arkansas, killing 20 campers. The U.S. Forest Service needed information concerning the extent and depth of flood inundation, the water velocity, and flow paths throughout Albert Pike Recreation Area for the flood and for streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The two-dimensional flow model Fst2DH, part of the Federal Highway Administration’s Finite Element Surface-water Modeling System, and the graphical user interface Surface-water Modeling System (SMS) were used to perform a steady-state simulation of the flood in a 1.5-mile reach of the Little Missouri River at Albert Pike Recreation Area. Peak streamflows of the Little Missouri River and tributary Brier Creek served as inputs to the simulation, which was calibrated to the surveyed elevations of high-water marks left by the flood and then used to predict flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The simulated extent of the June 11, 2010, flood matched the observed extent of flooding at Albert Pike Recreation Area. The mean depth of inundation in the camp areas was 8.5 feet in Area D, 7.4 feet in Area C, 3.8 feet in Areas A, B, and the Day Use Area, and 12.5 feet in Lowry’s Camp Albert Pike. The mean water velocity was 7.2 feet per second in Area D, 7.6 feet per second in Area C, 7.2 feet per second in Areas A, B, and the Day Use Area, and 7.6 feet per second in Lowry’s Camp Albert Pike. A sensitivity analysis indicated that varying the streamflow of the Little Missouri River had the greatest effect on simulated water-surface elevation, while varying the streamflow of tributary Brier Creek had the least effect. Simulated water-surface elevations were lower than those modeled by the U.S. Forest Service using the standard-step method, but the comparison between the two was favorable with a mean absolute difference of 0.58 feet in Area C and 0.32 feet in Area D. Results of a HEC-RAS model of the Little Missouri River watershed upstream from the U.S. Geological Survey streamflow-gaging station near Langley showed no difference in mean depth in the areas in common between the models, and a difference in mean velocity of only 0.5 foot per second. Predictions of flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent indicated that the extent of inundation of the June 11, 2010, flood exceeded that of the 1 percent flood, and that for both the 1 and 2 percent floods, all of Areas C and D, and parts of Areas A, B, and the Day Use Area were inundated. Predicted water-surface elevations for the 1 and 2 percent floods were approximately 1 foot lower than those predicted by the U.S. Forest Service using a standard-step model.
Monitoring for PCBs at the Pilot Plant Complex, Aberdeen Proving Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J.F.; O`Neill, H.J.; Cohut, V.J.
1995-07-01
The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents. The Pilot Plant Complex (PPC) at Aberdeen was the site of the development, manufacture, storage, and disposal of a number of chemical warfare agents. The objective of this study was to determine if there is polychlorinated biphenyl (PCB) contamination in the PPC. The results of screening done by Argonne indicate that PCBs in the air of the PPC are well below acceptable levels. The total PCB burden of the surfaces in the PPC appears to be well below the 50-ppMmore » regulatory level. However, the study identified contaminated floor surfaces that exceed the acceptable level of 10 {mu}g/100 cm{sup 2} for a workplace. Areas in Building E5618 exceed 1,000 {mu}g/100 cm{sup 2}, with a high reading of 21,100 {mu}g/100 cm{sup 2} in room C103. Building E5625 has several areas where PCBs exceed 100 {mu}g/cm{sup 2}.« less
Skrobialowski, Stanley C.; Mize, Scott V.; Demcheck, Dennis K.
2004-01-01
The U.S. Geological Survey collected data from 29 wells and 24 surface-water sites in the Mermentau River Basin, 1998-2001, to better understand ground-water and surface-water quality; aquatic invertebrate communities; and habitat conditions, in relation to land use. This study was apart of the National Water-Quality Assessment Program, which was designed to assess water quality as it relates to various land uses. Water-quality data were evaluated with criteria established for the protection of drinking water and aquatic life, and bed-sediment data were compared to aquatic life criteria. Water-quality and ecological data were analyzed statistically in relation to drainage area and agricultural land-use integrity. Concentrations of nutrients and major inorganic ions in ground water and surface water generally were highest in the southeastern part of the study area where soils contain thick loess deposits. Peak concentrations of nutrients in surface water occurred March-may at two sites with high agricultural intensity; the lowest concentrations occurred August-January. The greatest potential for eutrophic conditions in surface water, based on nutrient concentrations, existed March-May, at about the same time or shortly after ricefields were drained. Secondary Maximum Contaminant Levels established by the U.S. Environmental Protection Agency (USEPA) were exceeded for sulfate, chloride, iron, or manganese in samples from 20 wells, and for iron or manganese in samples from all surface-water sites. Fewer pesticides were detected in ground water than in surface water. In 11 of of the 29 wells sampled, at least one pesticide or pesticide degradation product was detected. The most frequently detected pesticides or pesticide degradation products in ground water were the herbicides benzaton and atrazine. Concentrations of 47 pesticides and degradation products were detected in surface water. At least 3 pesticides were detected in all surface-water samples. In 72 percent of the samples at least 5 hydrophilic pesticides were detected, and in more than 70 percent of the samples at least 3 hydrophobic pesticides were detected. Although atrazine concentrations in three samples collected in the spring exceeded 3 micrograms per liter, the USEPA Maximum Contaminant Level of 3 micrograms per liter was not exceeded because it is based on an annual average of quarterly samples. Concentrations larger than 3.0 micrograms per liter were not detected in samples collected during other times of the year. Tebuthiuron was detected at all surface-water sites; the largest concentration (6.33 micrograms per liter) was detected at a site on Bayou des Cannes, and was the only detection that exceeded the criterion (1.6 micrograms per liter) for the protection of aquatic life. Malathion was detected at 16 surface-water sites; the largest concentration (0.113 micrograms per liter) was detected at a site on Bayou Lacassine and was the only detection that exceeded the criterion (0.1 micrograms per liter) for the protection of aquatic life. Concentrations of fipronil exceeded numeric targets for acute total maximum daily loads (2.3 micrograms per liter) at 3 sites and chronic total maximum daily loads (4.6 micrograms per liter) at 14 sites. Maximum pesticide concentrations in surface water usually occurred in the spring at about the same time or shortly after ricefields were drained. Concentrations of DDE in bed sediment at two sites exceeded interim freshwater sediment quality guidelines for the protection of aquatic life. Fipronil sulfide and desulfinylpronil were detected at all 17 sites from which bed-sediment samples were collected, but there are no current (2002) guidelines with which to evaluate the environmental effects of fipronil and degradation products. Two methods were used to group the ecological data-collection sites: (1) Sites were grouped before data collection (according to the study design) using drainage area
Influence of the Hyporheic Zone on Supersaturated Gas Exposure to Incubating Chum Salmon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Geist, David R.; Murray, Katherine J.
2009-12-01
Supersaturated total dissolved gas (TDG) is elevated seasonally in the lower Columbia River, with surface water concentrations approaching 120% saturation of TDG. Chum salmon (Oncorhynchus keta) embryos incubating in nearby spawning areas could be affected if depth-compensated TDG concentrations within the hyporheic zone exceed 103% TDG. The objective of this study was to determine if TDG of the hyporheic zone in two chum salmon spawning areas -- one in a side channel near Ives Island, Washington, and another on the mainstem Columbia River near Multnomah Falls, Oregon -- was affected by the elevated TDG of the surface water. Depth-compensated hyporheicmore » TDG did not exceed 103% at the Multnomah Falls site. However, in the Ives Island area, chum salmon redds were exposed to TDG greater than 103% for more than 600 hours. In response to river depth fluctuations, TDG varied significantly in the Ives Island area, suggesting increased interaction between the hyporheic zone and surface water at that site. We conclude from this study that the interaction between surface water and the hyporheic zone affects the concentration of TDG within the hyporheic zone directly via physical mixing as well as indirectly by altering water chemistry and thus dissolved gas solubility. These interactions are important considerations when estimating TDG exposure within egg pocket environments, facilitating improved exposure estimates, and enabling managers to optimize recovery strategies.« less
Risk assessment for adult butterflies exposed to the mosquito control pesticide naled.
Bargar, Timothy A
2012-04-01
A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed. Copyright © 2012 SETAC.
7 CFR 51.1536 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... or darker discoloration over more than one-fourth of the fruit surface; (c) Growth cracks: (1) When... misshapen; (e) Scab or bacterial spot, when the aggregate area exceeds that of a circle one-half inch in...
7 CFR 51.1536 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... or darker discoloration over more than one-fourth of the fruit surface; (c) Growth cracks: (1) When... misshapen; (e) Scab or bacterial spot, when the aggregate area exceeds that of a circle one-half inch in...
7 CFR 51.1536 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... or darker discoloration over more than one-fourth of the fruit surface; (c) Growth cracks: (1) When... misshapen; (e) Scab or bacterial spot, when the aggregate area exceeds that of a circle one-half inch in...
Location of Bare Soil Surface and Soil Line on the RED-NIR Spectral Plane
NASA Astrophysics Data System (ADS)
Koroleva, P. V.; Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Kulyanitsa, A. L.; Trubnikov, A. V.; Kalinina, N. V.; Simakova, M. S.
2017-12-01
Soil as a separate natural body occupies certain area with its own set of spectral characteristics within the RED-NIR spectral space. This is an ellipse-shaped area, and its semi-major axis is the soil line for a satellite image. The spectral area for a bare soil surface is neighboring to the areas of black carbon, straw, vegetating plants, and missing RED-NIR values. A reliable separation of the bare soil surface within the spectral space is possible with the technology of spectral neighborhood of soil line. The accuracy of this method is 90%. The determination of the bare soil surface using vegetation indices, both relative (NDVI), and perpendicular (PVI), is incorrect; the accuracy of these methods does not exceed 65%, and for most of the survey seasons it may be lower than 50%. The flat part of the "tasseled cap" described as the soil line, is not a synonym for the area of the bare soil surface. The bare soil surface on the RED-NIR plots occupies significantly smaller areas than the area of soil line according to Kauth and Thomas.
Yoshida-Ohuchi, Hiroko; Kanagami, Takashi; Satoh, Yasushi; Hosoda, Masahiro; Naitoh, Yutaka; Kameyama, Mizuki
2016-01-01
Indoor contaminants were investigated from July 2013 to January 2015 within ninety-five residential houses in five evacuation zones, Iitate village, Odaka district, and the towns of Futaba, Okuma, and Tomioka. A dry smear test was applied to the surface of materials and structures in rooms and in the roof-space of houses. We found that 134Cs and 137Cs were the dominant radionuclides in indoor surface contamination, and there was a distance dependence from the Fukushima Daiichi nuclear power plant (FDNPP). For surface contamination in Iitate village (29–49 km from the FDNPP), 24.8% of samples exceeded the detection limit, which is quite a low value, while in Okuma (<3.0 km from the FDNPP), 99.7% of samples exceeded the detection limit and surface contamination levels exceeded 20 Bq/cm2 (the value was corrected to March 2011). In residential houses in Okuma, Futaba, and Tomioka, closer to the FDNPP than those in Odaka district and Iitate village, surface contamination was inversely proportional to the square of the distance between a house and the FDNPP. In the houses closest to the FDNPP, the contribution of surface contamination to the ambient dose equivalent rate was evaluated to be approximately 0.3 μSv/h. PMID:27212076
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Patrick
This Corrective Action Decision Document/Corrective Action Plan provides the rationale and supporting information for the selection and implementation of corrective actions at Corrective Action Unit (CAU) 413, Clean Slate II Plutonium Dispersion (TTR). CAU 413 is located on the Tonopah Test Range and includes one corrective action site, TA-23-02CS. CAU 413 consists of the release of radionuclides to the surface and shallow subsurface from the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. The CSII test was a non-nuclear detonation of a nuclear device located inside a concrete bunker covered with 2 feet of soil. To facilitatemore » site investigation and the evaluation of data quality objectives decisions, the releases at CAU 413 were divided into seven study groups: 1 Undisturbed Areas 2 Disturbed Areas 3 Sedimentation Areas 4 Former Staging Area 5 Buried Debris 6 Potential Source Material 7 Soil Mounds Corrective action investigation (CAI) activities, as set forth in the CAU 413 Corrective Action Investigation Plan, were performed from June 2015 through May 2016. Radionuclides detected in samples collected during the CAI were used to estimate total effective dose using the Construction Worker exposure scenario. Corrective action was required for areas where total effective dose exceeded, or was assumed to exceed, the radiological final action level (FAL) of 25 millirem per year. The results of the CAI and the assumptions made in the data quality objectives resulted in the following conclusions: The FAL is exceeded in surface soil in SG1, Undisturbed Areas; The FAL is assumed to be exceeded in SG5, Buried Debris, where contaminated debris and soil were buried after the CSII test; The FAL is not exceeded at SG2, SG3, SG4, SG6, or SG7. Because the FAL is exceeded at CAU 413, corrective action is required and corrective action alternatives (CAAs) must be evaluated. For CAU 413, three CAAs were evaluated: no further action, clean closure, and closure in place. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of analytical data from the CAI, review of future and current operations at CAU 413, and the detailed and comparative analysis of CAAs, clean closure was selected as the preferred CAA for CAU 413 by the U.S. Air Force, Nevada Division of Environmental Protection, and U.S. Department of Energy at the CAA meeting held on August 24, 2016.« less
Assessment of Soil Environmental Quality in Huangguoshu Waterfalls Scenic Area
NASA Astrophysics Data System (ADS)
Luo, Rongbin; Feng, Kaiyu; Gu, Bo; Xu, Chengcheng
2018-03-01
This paper concentrates on five major heavy metal pollutants as soil environmental quality evaluation factors, respectively Lead (Pb), Cadmium (Cd), Mercury (Hg), Arsenic (As), Chromium (Cr), based on the National Soil Environmental Quality Standards (GB15618 - 1995), we used single factor index evaluation model of soil environmental quality and comprehensive index evaluation model to analyze surface soil environmental quality in the Huangguoshu Waterfalls scenic area. Based on surface soil analysis, our results showed that the individual contamination index, Pb, Hg, As and Cr in the Huangguoshu Waterfalls scenic area met class I according to requirements of National Soil Environmental Quality Standards, which indicated that Pb, Hg, As and Cr were not main heavy metal pollutants in this area, but the individual contamination index of Cd in soil was seriously exceeded National Soil Environmental Quality Standards’ requirement. Soil environmental quality in Shitouzhai, Luoshitan, Langgong Hongyan Power Plant have exceeded the requirement of National Soil Environmental Quality Standards “0.7< Pc≤ 1.0” (Alert Level), these soils had been slightly polluted; the classification of soil environmental quality assessment in Longgong downstream area was above “Alert Level”, it indicated that soil in this area was not polluted. Above all, relevant measures for soil remediation are put forward.
Nutrients in ground water and surface water of the United States; an analysis of data through 1992
Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.
1995-01-01
Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc
Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas
2003-01-01
In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life. Data collected by the NIWQP studies indicated that, in surface water, filtered and unfiltered samples had nearly the same concentrations of arsenic, boron, molybdenum, and selenium for concentrations greater than about 10 micrograms per liter. Therefore, in this concentration range, filtered concentrations can be directly compared to biological-effect levels developed for unfiltered samples. In the range of 1 to 10 micrograms per liter there may be a tendency for unfiltered arsenic concentrations to be greater than filtered concentrations. For selenium, however, the data suggest differences from equality in that range result from analytical imprecision and not a general tendency for unfiltered concentrations to be greater than filtered concentrations. This relation may not be true in lentic, nutrient-rich waters because in such settings algae can bioaccumulate large amounts of selenium and other trace elements. Selenium was the trace element in surface water that most commonly exceeded chronic criteria for the protection of freshwater aquatic life; more than 40 percent of the selenium concentrations in surface-water samples exceeded the U.S. Environmental Protection Agency (USEPA) aquatic-life chronic criterion (5 micrograms per liter). In 12 of the 26 areas at least 25 percent of the surface water-samples had selenium concentrations that either equaled or exceeded the chronic criterion (5 micrograms per liter). More than 28 percent of boron concentrations and almost 17 percent of the molybdenum concentrations exceeded the aquatic life criteria established by the State of California (550 and 19 micrograms per liter, respectively). In ground water, more than 22 percent of the arsenic concentrations and more than 35 percent of the selenium concentrations exceeded the MCL (10 and 50 micrograms per liter, respectively). Few samples of uranium in surface water exceeded a criterion for the protection of aquatic life (300 micrograms per liter), but 44 percent
Storm water contamination and its effect on the quality of urban surface waters.
Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata
2014-10-01
We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.
Wipe-rinse technique for quantitating microbial contamination on large surfaces.
Kirschner, L E; Puleo, J R
1979-01-01
The evaluation of an improved wipe-rinse technique for the bioassay of large areas was undertaken due to inherent inadequacies in the cotton swab-rinse technique to which assay of spacecraft is currently restricted. Four types of contamination control cloths were initially tested. A polyester-bonded cloth (PBC) was selected for further evaluation because of its superior efficiency and handling characteristics. Results from comparative tests with PBC and cotton swabs on simulated spacecraft surfaces indicated a significantly higher recovery efficiency for the PBC than for the cotton (90.4 versus 75.2%). Of the sampling areas sites studied, PBC was found to be most effective on surface areas not exceeding 0.74 m2 (8.0 feet 2). PMID:394682
Wipe-rinse technique for quantitating microbial contamination on large surfaces
NASA Technical Reports Server (NTRS)
Kirschner, L. E.; Puleo, J. R.
1979-01-01
The evaluation of an improved wipe-rinse technique for the bioassay of large areas was undertaken due to inherent inadequacies in the cotton swab-rinse technique to which assay of spacecraft is currently restricted. Four types of contamination control cloths were initially tested. A polyester-bonded cloth (PBC) was selected for further evaluation because of its superior efficiency and handling characteristics. Results from comparative tests with PBC and cotton swabs on simulated spacecraft surfaces indicated a significantly higher recovery efficiency for the PBC than for the cotton (90.4 versus 75.2%). Of the sampling area sites studied, PBC was found to be most effective on surface areas not exceeding 0.74 sq m (8.0 sq ft).
Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.
Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi
2017-09-04
About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2 g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
7 CFR 51.2340 - Classification of defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flesh extends more than 1/16 inch (1.6 mm) in depth When surface of fruit is indented and discoloration of the flesh extends deeper than 1/8 inch (3.2 mm), or causing slight discoloration exceeding the area of a circle 3/8 inch (9.5 mm) in diameter, or lesser bruises aggregating an area of a circle 3/8...
7 CFR 51.2340 - Classification of defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flesh extends more than 1/16 inch (1.6 mm) in depth When surface of fruit is indented and discoloration of the flesh extends deeper than 1/8 inch (3.2 mm), or causing slight discoloration exceeding the area of a circle 3/8 inch (9.5 mm) in diameter, or lesser bruises aggregating an area of a circle 3/8...
7 CFR 51.2340 - Classification of defects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flesh extends more than 1/16 inch (1.6 mm) in depth When surface of fruit is indented and discoloration of the flesh extends deeper than 1/8 inch (3.2 mm), or causing slight discoloration exceeding the area of a circle 3/8 inch (9.5 mm) in diameter, or lesser bruises aggregating an area of a circle 3/8...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Krauss
2011-08-01
CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process:more » (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks and counterweights (PSM) have been removed, and the COCs of arsenic and PCBs in soil have been removed; (4) No further corrective action at CAS 25-08-02, as the COC of arsenic in soil has been removed, and the lead-acid batteries have been removed; (5) No further corrective action at CAS 25-23-21, as the COCs of Cs-137 and PCBs in soil have been removed, and the cast-iron pipes have been removed and disposed of; (6) No further corrective action at CAS 25-25-19, as the lead bricks (PSM) been removed; (7) A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 561; and (8) Corrective Action Unit 561 should be moved from Appendix III to Appendix IV of the FFACO.« less
Estimating the Limits of Infiltration in the Urban Appalachian Plateau
NASA Astrophysics Data System (ADS)
Lavin, S. M.; Bain, D.; Hopkins, K. G.; Pfeil-McCullough, E. K.; Copeland, E.
2014-12-01
Green infrastructure in urbanized areas commonly uses infiltration systems, such as rain gardens, swales and trenches, to convey surface runoff from impervious surfaces into surrounding soils. However, precipitation inputs can exceed soil infiltration rates, creating a limit to infiltration-based storm water management, particularly in urban areas covered by impervious surfaces. Given the limited availability and varied quality of soil infiltration rate data, we synthesized information from national databases, available field test data, and applicable literature to characterize soil infiltration rate distributions, focusing on Allegheny County, Pennsylvania as a case study. A range of impervious cover conditions was defined by sampling available GIS data (e.g., LiDAR and street edge lines) with analysis windows placed randomly across urbanization gradients. Changes in effective precipitation caused by impervious cover were calculated across these gradients and compared to infiltration rate distributions to identify thresholds in impervious coverage where these limits are exceeded. Many studies have demonstrated the effects of urbanization on infiltration, but the identification of these thresholds will clarify interactions between impervious cover and soil infiltration. These methods can help identify sections of urban areas that require augmentation of infiltration-based systems with additional infrastructural strategies, especially as green infrastructure moves beyond low impact development towards more frequent application during infilling of existing urban systems.
Central Facilities Area Sewage Lagoon Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giesbrecht, Alan
2015-03-01
The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose ofmore » this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.« less
NASA Astrophysics Data System (ADS)
Langford, A. O.; Senff, C. J.; Alvarez, R. J.; Brioude, J.; Cooper, O. R.; Holloway, J. S.; Lin, M. Y.; Marchbanks, R. D.; Pierce, R. B.; Sandberg, S. P.; Weickmann, A. M.; Williams, E. J.
2015-05-01
The 2013 Las Vegas Ozone Study (LVOS) was conducted in the late spring and early summer of 2013 to assess the seasonal contribution of stratosphere-to-troposphere transport (STT) and long-range transport to surface ozone in Clark County, Nevada and determine if these processes directly contribute to exceedances of the National Ambient Air Quality Standard (NAAQS) in this area. Secondary goals included the characterization of local ozone production, regional transport from the Los Angeles Basin, and impacts from wildfires. The LVOS measurement campaign took place at a former U.S. Air Force radar station ∼45 km northwest of Las Vegas on Angel Peak (∼2.7 km above mean sea level, asl) in the Spring Mountains. The study consisted of two extended periods (May 19-June 4 and June 22-28, 2013) with near daily 5-min averaged lidar measurements of ozone and backscatter profiles from the surface to ∼2.5 km above ground level (∼5.2 km asl), and continuous in situ measurements (May 20-June 28) of O3, CO, (1-min) and meteorological parameters (5-min) at the surface. These activities were guided by forecasts and analyses from the FLEXPART (FLEXible PARTticle) dispersion model and the Real Time Air Quality Modeling System (RAQMS), and the NOAA Geophysical Research Laboratory (NOAA GFDL) AM3 chemistry-climate model. In this paper, we describe the LVOS measurements and present an overview of the results. The combined measurements and model analyses show that STT directly contributed to each of the three O3 exceedances that occurred in Clark County during LVOS, with contributions to 8-h surface concentrations in excess of 30 ppbv on each of these days. The analyses show that long-range transport from Asia made smaller contributions (<10 ppbv) to surface O3 during two of those exceedances. The contribution of regional wildfires to surface O3 during the three LVOS exceedance events was found to be negligible, but wildfires were found to be a major factor during exceedance events that occurred before and after the LVOS campaign. Our analyses also shows that ozone exceedances would have occurred on more than 50% of the days during the six-week LVOS campaign if the 8-h ozone NAAQS had been 65 ppbv instead of 75 ppbv.
Shelton, Jennifer L.
2005-01-01
Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the recently developed urban areas. Five arsenic sample concentrations exceeded the U.S. Environmental Protection Agency (USEPA) primary maximum contaminant level (MCL) of 10 milligrams per liter adopted in 2001. Measurements that exceeded USEPA or California Department of Health Services recommended secondary maximum contaminant levels include manganese, iron, chloride, total dissolved solids, and specific conductance. These exceedances are probably a result of natural processes. Variations in stable isotope ratios of hydrogen (2H/1H) and oxygen (18O/16O) may indicate different sources or a mixing of recharge waters to the urban ground water. These variations also may indicate recharge directly from surface water in one well adjacent to the Sacramento River. Tritium concentrations indicate that most shallow ground water has been recharged since the mid-1950s, and tritium/helium-3 age dates suggest that recharge has occurred in the last 2 to 30 years in some areas. In areas where water table depths exceed 20 meters and wells are deeper, ground-water recharge may have occurred prior to 1950, but low concentrations of pesticides and VOCs detected in these deeper wells indicate a mixing of younger and older waters. Overall, the recently urbanized areas can be divided into two groups. One group contains wells where few VOCs and pesticides were detected, nitrate mostly was not detected, and National and State maximum contaminant levels, including the USEPA MCL for arsenic, were exceeded; these wells are adjacent to rivers and generally are characterized by younger water, shallow (1 to 4 meters) water table, chemically reducing conditions, finer grained sediments, and higher organics in the soils. In contrast, the other group contains wells where more VOCs, pesticides, and elevated nitrate concentrations were detected; these wells are farther from rivers and are generally characterized by a mixture of young and old waters, intermediate to deep (7 to 35 meters) wate
Risch, Martin R.; Ulberg, Amanda L.; Robinson, Bret A.
2007-01-01
Concentrations of constituents detected in these samples were compared with regulatory standards (the Indiana Surface-Water-Quality Standards and Indiana Ground-Water-Quality Standards) and guidance criteria from the Indiana Department of Environmental Management's Risk Integrated System of Closures for contaminated soil and ground water. Standards or criteria were exceeded by 17 constituent concentrations in 11 environmental samples from 5 of the 7 geographic study areas. Standards or criteria were exceeded for 10 constituents: ammonia, arsenic, benzo(a)pyrene, beryllium, chloride, chloroform, copper, lead, sulfate, and zinc.
NASA Astrophysics Data System (ADS)
Sicard, Pierre; Anav, Alessandro; De Marco, Alessandra; Paoletti, Elena
2017-10-01
The impact of ground-level ozone (O3) on vegetation is largely under-investigated at the global scale despite large areas worldwide that are exposed to high surface O3 levels. To explore future potential impacts of O3 on vegetation, we compared historical and projected surface O3 concentrations simulated by six global atmospheric chemistry transport models on the basis of three representative concentration pathways emission scenarios (i.e. RCP2.6, 4.5, 8.5). To assess changes in the potential surface O3 threat to vegetation at the global scale, we used the AOT40 metric. Results point out a significant exceedance of AOT40 in comparison with the recommendations of UNECE for the protection of vegetation. In fact, many areas of the Northern Hemisphere show that AOT40-based critical levels will be exceeded by a factor of at least 10 under RCP8.5. Changes in surface O3 by 2100 worldwide range from about +4-5 ppb in the RCP8.5 scenario to reductions of about 2-10 ppb in the most optimistic scenario, RCP2.6. The risk of O3 injury for vegetation, through the potential O3 impact on photosynthetic assimilation, decreased by 61 and 47 % under RCP2.6 and RCP4.5, respectively, and increased by 70 % under RCP8.5. Key biodiversity areas in southern and northern Asia, central Africa and North America were identified as being at risk from high O3 concentrations.
Excess stormwater runoff can cause serious pollution, habitat degradation and flooding in cities where growth in impervious surface area (such as pavement, buildings, etc.) has created a situation where stormwater runoff routinely exceeds the normal capacity of natural and constr...
40 CFR 440.14 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (2) In the event that the annual precipitation falling on the treatment facility and the drainage area contributing surface runoff to the treatment facility exceeds the annual evaporation, a volume of water equal to the difference between annual precipitation falling on the treatment facility and the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2010 CFR
2010-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... following specific meanings: (a) Area means the vertical projection of the pile upon the earth's surface. (b...) Dewatered means to remove the water from recently produced tailings by mechanical or evaporative methods such that the water content of the tailings does not exceed 30 percent by weight. (d) Existing...
NASA Astrophysics Data System (ADS)
Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai
2013-05-01
A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c
Multi-scale landscape factors influencing stream water quality in the state of Oregon.
Nash, Maliha S; Heggem, Daniel T; Ebert, Donald; Wade, Timothy G; Hall, Robert K
2009-09-01
Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle may affect surface water quality directly by depositing nutrients and bacteria, and indirectly by damaging stream banks or removing vegetation cover, which may lead to increased sediment loads. This study used the State of Oregon surface water data to determine the likelihood of animal pathogen presence using enterococci and analyzed the spatial distribution and relationship of biotic (enterococci) and abiotic (nitrogen and phosphorous) surface water constituents to landscape metrics and others (e.g. human use, percent riparian cover, natural covers, grazing, etc.). We used a grazing potential index (GPI) based on proximity to water, land ownership and forage availability. Mean and variability of GPI, forage availability, stream density and length, and landscape metrics were related to enterococci and many forms of nitrogen and phosphorous in standard and logistic regression models. The GPI did not have a significant role in the models, but forage related variables had significant contribution. Urban land use within stream reach was the main driving factor when exceeding the threshold (> or =35 cfu/100 ml), agriculture was the driving force in elevating enterococci in sites where enterococci concentration was <35 cfu/100 ml. Landscape metrics related to amount of agriculture, wetlands and urban all contributed to increasing nutrients in surface water but at different scales. The probability of having sites with concentrations of enterococci above the threshold was much lower in areas of natural land cover and much higher in areas with higher urban land use within 60 m of stream. A 1% increase in natural land cover was associated with a 12% decrease in the predicted odds of having a site exceeding the threshold. Opposite to natural land cover, a one unit change in each of manmade barren and urban land use led to an increase of the likelihood of exceeding the threshold by 73%, and 11%, respectively. Change in urban land use had a higher influence on the likelihood of a site exceeding the threshold than that of natural land cover.
Nutrients in the Nation's Waters--Too Much of a Good Thing?
Mueller, David K.; Helsel, Dennis R.
1996-01-01
Historical data on nutrients (nitrogen and phosphorus) from about 12,000 ground-water and more than 22,000 stream samples have been compiled and related to possible sources. This existing information was collected by many agencies for a variety of purposes. Therefore, though it can be used to determine where concentrations differ, the exact percentages should not be taken as those for the Nation as a whole. Major findings include: (1) nutrient concentrations in water generally are related to land use in the area overlying ground-water aquifers or upstream from surface-water locations, (2) regional differences are related to differences in soil-drainage properties and agricultural practices, (3) nitrate concentrations in about 12 percent of domestic-supply wells in agricultural areas exceeded the U.S. Environmental Protection Agency's drinking-water standard (10 mg/L), and (4) nitrate concentrations in surface water rarely exceed the drinking-water standard. This information has helped identify locations across the Nation where ground water and streams are most likely to be vulnerable to nutrient contamination. Programs to manage and protect water resources can therefore be targeted to the most critical areas, providing the greatest protection for the least cost.
333 E. Ontario, Nov. 2011, Lindsay Light Radiological Survey
No count rates were observed at any time that exceeded the USEPA’s threshold limit of 18,728 cpm for the 2”x2” 44-10 Sodium Iodide (NaI)probe. Based on the findings of the surface scan, no areas of elevated thorium concentrationswere identified.
40 CFR 440.44 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... December 3, 1982. (2) In the event that the annual precipitation falling on the treatment facility and the drainage area contributing surface runoff to the treatment facility exceeds the annual evaporation, a volume of water equal to the difference between annual precipitation falling on the treatment facility...
Risch, Martin R.
2004-01-01
A base-wide assessment of surface-water quality at the U.S. Army Atterbury Reserve Forces Training Area near Edinburgh, Indiana, examined short-term and long-term quality of surface water flowing into, across, and out of a 33,760-acre study area. The 30-day geometric-mean concentrations of fecal-indicator bacteria (Escherichia coli) in water samples from all 16 monitoring sites on streams in the study area were greater than the Indiana recreational water-quality standard. None of the bacteria concentrations in samples from four lakes exceeded the standard. Half the samples with bacteria concentrations greater than the single-sample standard contained chemical tracers potentially associated with human sewage. Increased turbidity of water samples was related statistically to increased bacteria concentration. Lead concentrations ranging from 0.5 to 2.0 micrograms per liter were detected in water samples at seven monitoring sites. Lead in one sample collected during high-streamflow conditions was greater than the calculated Indiana water-quality standard. With the exception of Escherichia coli and lead, 211 of 213 chemical constituents analyzed in water samples did not exceed Indiana water-quality standards. Out of 131 constituents analyzed in streambed-sediment and fish-tissue samples from three sites in the Common Impact Area for weapons training, the largest concentrations overall were detected for copper, lead, manganese, strontium, and zinc. Fish-community integrity, based on diversity and pollution tolerance, was rated poor at one of those three sites. Compared with State criteria, the fish-community data indicated 8 of 10 stream reaches in the study area could be categorized as "fully supporting" aquatic-life uses.
Ramos-Gines, Orlando
1994-01-01
A water-resources investigation was conducted during 1989 in the Rio Lapa mountain basins in southern Puerto Rico, to define the hydrology, water quality, and to describe alternatives for additional water- resources supply. The total water budget for both surface- and ground-water resources in the study area was estimated to be 7,530 acre-feet per year for 1989. The water budget for the ground-water system, from which water needs are supplied in the study area, was estimated to be 2,760 acre-feet per year for 1989. Concentration of dissolved solids and fecal bacteria increased during the dry season as both streamflow and ground-water levels decreased. Water samples collected at two stream sites exceeded the recommended U.S. Environmental Protection Agency fecal bacteria concentration for natural water of 2,000 colonies per 100 milliliters during June to November 1989. Water samples obtained from a well in the Rio Lapa Valley exceeded the secondary drinking-water standard for dissolved solids of 500 milligrams per liter during four dry months. In addition, fecal bacteria concentrations at this water-supply well exceeded the primary fecal- bacteria drinking-water standard of 1 colony per 100 milliliter during June to October 1989. Existing water resources can probably be developed to meet additional demands of 110 acre-feet per year pro- jected for 1995. Storage of the surface-water runoff during the wet season and its gradual release to the study area could offset ground-water declines during the dry season. Ground-water withdrawals can be increased by the construction and use of low- capacity wells to reduce the amount of water lowing out of the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papelis, Charalambos; Um, Wooyong; Russel, Charles E.
2003-03-28
The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less
Can Ni phosphides become viable hydroprocessing catalysts?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soled, S.; Miseo, S.; Baumgartner, J.
2015-05-15
We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventionalmore » supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).« less
Anderholm, Scott K.
2002-01-01
As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th
Floods in Central Texas, September 7-14, 2010
Winters, Karl E.
2012-01-01
Severe flooding occurred near the Austin metropolitan area in central Texas September 7–14, 2010, because of heavy rainfall associated with Tropical Storm Hermine. The U.S. Geological Survey, in cooperation with the Upper Brushy Creek Water Control and Improvement District, determined rainfall amounts and annual exceedance probabilities for rainfall resulting in flooding in Bell, Williamson, and Travis counties in central Texas during September 2010. We documented peak streamflows and the annual exceedance probabilities for peak streamflows recorded at several streamflow-gaging stations in the study area. The 24-hour rainfall total exceeded 12 inches at some locations, with one report of 14.57 inches at Lake Georgetown. Rainfall probabilities were estimated using previously published depth-duration frequency maps for Texas. At 4 sites in Williamson County, the 24-hour rainfall had an annual exceedance probability of 0.002. Streamflow measurement data and flood-peak data from U.S. Geological Survey surface-water monitoring stations (streamflow and reservoir gaging stations) are presented, along with a comparison of September 2010 flood peaks to previous known maximums in the periods of record. Annual exceedance probabilities for peak streamflow were computed for 20 streamflow-gaging stations based on an analysis of streamflow-gaging station records. The annual exceedance probability was 0.03 for the September 2010 peak streamflow at the Geological Survey's streamflow-gaging stations 08104700 North Fork San Gabriel River near Georgetown, Texas, and 08154700 Bull Creek at Loop 360 near Austin, Texas. The annual exceedance probability was 0.02 for the peak streamflow for Geological Survey's streamflow-gaging station 08104500 Little River near Little River, Texas. The lack of similarity in the annual exceedance probabilities computed for precipitation and streamflow might be attributed to the small areal extent of the heaviest rainfall over these and the other gaged watersheds.
An assessment of butyltins and metals in sediment cores from the St. Thomas East End Reserves, USVI.
Hartwell, S Ian; Apeti, Dennis A; Mason, Andrew L; Pait, Anthony S
2016-11-01
Tributyltin (TBT) concentrations near a marina complex in Benner Bay on St. Thomas, US Virgin Islands, were elevated relative to other areas in a larger study of the southeastern shore of the island. At the request of the USVI Coastal Zone Management Program, sediment cores and surface sediment samples were collected to better define the extent and history of TBT deposition in the vicinity of Benner Bay. The sediment cores were sectioned into 2-cm intervals and dated with 210 Pb and 137 Cs. The core sections and the surface samples were analyzed for butyltins and 16 elements. Deposition rates varied from 0.07-5.0 mm/year, and were highest in the marina complex. Core ages ranged from 54 to 200 years. The bottoms of the cores contained shell hash, but the top layers all consisted of much finer material. Surface concentrations of TBT exceeded 2000 ng Sn/g (dry weight) at two locations. At a depth of 8 cm TBT exceeded 8800 ng Sn/g in the marina complex sediment. Based on the ratio of tributyltin to total butyltins, it appears that the marina sediments are the source of contamination of the surrounding area. There is evidence that vessels from neighboring islands may also be a source of fresh TBT. Copper concentrations increase over time up to the present. Gradients of virtually all metals and metalloids extended away from the marina complex. NOAA sediment quality guidelines were exceeded for As, Pb, Cu, Zn, and Hg.
Hatch, George L.; Brummond, William A.; Barrus, Donald M.
1986-01-01
A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.
Olson, Scott A.; Bent, Gardner C.
2013-01-01
The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, determined annual exceedance probabilities for peak discharges occurring during the 2011 water year (October 1 to September 30) at streamgages in Vermont and selected streamgages in New Hampshire, western Massachusetts, and northeastern New York. This report presents the 2011 water year peak discharges at 145 streamgages in the study area and provides the results of the analyses of the 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent annual exceedance probability discharges at 135 of the 145 streamgages. The annual exceedance probabilities for the 2011 water year peak discharges also are presented. Snowmelt and near record rainfall led to flooding across northern Vermont on April 27 and 28, 2011. At three streamgages with more than 10 years of record, the April rain event resulted in the peak discharge of record. At seven streamgages, the peak discharge resulting from this event had an annual exceedance probability less than or equal to 1 percent. In early May 2011, new peak stage records were set at two Lake Champlain gages with more than 100 years of record. At the Lake Champlain at Burlington, Vermont, gage, the water surface reached 102.79 feet (ft) (North American Vertical Datum of 1988 (NAVD 88)) on May 6, 2011, and at the Richelieu River (Lake Champlain) at Rouses Point, New York, gage, the water surface reached 102.75 ft NAVD 88. Record-breaking rainfall in late May produced additional flooding across northern Vermont on May 26 and 27, 2011. Four streamgages in northwestern Vermont recorded peak-of-record discharges as a result of this flooding. At three streamgages, the peak discharges from this event had an annual exceedance probability less than or equal to 1 percent. From August 28 to 29, 2011, Tropical Storm Irene delivered rainfall totals ranging from about 3 to more than 10 inches, which resulted in extensive flooding and new period-of-record peak discharges at 37 streamgages in the study area. The peak discharges as a result of Tropical Storm Irene had an annual exceedance probability of less than or equal to 1 percent at 36 streamgages. At 11 of these 36 streamgages, the annual exceedance probability of the peak discharges was less than or equal to 0.2 percent.
How Much Global Burned Area Can Be Forecast on Seasonal Time Scales Using Sea Surface Temperatures?
NASA Technical Reports Server (NTRS)
Chen, Yang; Morton, Douglas C.; Andela, Niels; Giglio, Louis; Randerson, James T.
2016-01-01
Large-scale sea surface temperature (SST) patterns influence the interannual variability of burned area in many regions by means of climate controls on fuel continuity, amount, and moisture content. Some of the variability in burned area is predictable on seasonal timescales because fuel characteristics respond to the cumulative effects of climate prior to the onset of the fire season. Here we systematically evaluated the degree to which annual burned area from the Global Fire Emissions Database version 4 with small fires (GFED4s) can be predicted using SSTs from 14 different ocean regions. We found that about 48 of global burned area can be forecast with a correlation coefficient that is significant at a p < 0.01 level using a single ocean climate index (OCI) 3 or more months prior to the month of peak burning. Continental regions where burned area had a higher degree of predictability included equatorial Asia, where 92% of the burned area exceeded the correlation threshold, and Central America, where 86% of the burned area exceeded this threshold. Pacific Ocean indices describing the El Nino-Southern Oscillation were more important than indices from other ocean basins, accounting for about 1/3 of the total predictable global burned area. A model that combined two indices from different oceans considerably improved model performance, suggesting that fires in many regions respond to forcing from more than one ocean basin. Using OCI-burned area relationships and a clustering algorithm, we identified 12 hotspot regions in which fires had a consistent response to SST patterns. Annual burned area in these regions can be predicted with moderate confidence levels, suggesting operational forecasts may be possible with the aim of improving ecosystem management.
Delineating riparian zones for entire river networks using geomorphological criteria
NASA Astrophysics Data System (ADS)
Fernández, D.; Barquín, J.; Álvarez-Cabria, M.; Peñas, F. J.
2012-03-01
Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC), while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance). As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment). Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score) and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that best match with the 50-yr flood. Results have shown that the BFDAC approach obtains an adjustment slightly better than that of path distance. However, BFDAC requires bankfull depth regional regressions along the considered river network. Results have also confirmed that unconstrained valleys require lower threshold values than constrained valleys when deriving surfaces using geomorphological criteria. Moreover, this study provides: (i) guidance on the selection of the proper geomorphological criterion and associated threshold values, and (ii) an easy calibration framework to evaluate the adjustment with respect to hydrologically-meaningful surfaces.
Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L
2014-01-01
BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.
Geohydrologic reconnaissance of drainage wells in Florida
Kimrey, J.O.; Fayard, L.D.
1984-01-01
Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed standards values for gross alpha concentrations. (USGS)
24 CFR 3280.707 - Heat producing appliances.
Code of Federal Regulations, 2014 CFR
2014-04-01
... have a flue loss of not more than 25 percent, and a thermal efficiency of not less than that specified... efficiency. (1) All automatic electric storage water heaters installed in manufactured homes shall have a standby loss not exceeding 43 watts/meter2 (4 watts/ft2) of tank surface area. The method of test for...
29 CFR 1917.111 - Maintenance and load limits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintained. (b) Maximum safe load limits, in pounds per square foot (kilograms per square meter), of floors elevated above ground level, and pier structures over the water shall be conspicuously posted in all cargo areas. (c) Maximum safe load limits shall not be exceeded. (d) All walking and working surfaces in the...
46 CFR 148.300 - Radioactive materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300 Radioactive... surface, when averaged over an area of 300 cm2, does not exceed the following levels: (1) 4.0 Bq/cm2 (10−4...
Code of Federal Regulations, 2010 CFR
2010-07-01
... in the preamble published on December 3, 1982. (2) In the event that the annual precipitation falling on the treatment facility and the drainage area contributing surface runoff to the treatment facility exceeds the annual evaporation, a volume of water equal to the difference between annual precipitation...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (2) In the event that the annual precipitation falling on the treatment facility and the drainage area contributing surface runoff to the treatment facility exceeds the annual evaporation, a volume of water equal to the difference between annual precipitation falling on the treatment facility and the...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (2) In the event that the annual precipitation falling on the treatment facility and the drainage area contributing surface runoff to the treatment facility exceeds the annual evaporation, a volume of water equivalent to the difference between annual precipitation falling on the treatment facility and...
Floating substrate process: Large-area silicon sheet task low-cost solar array project
NASA Technical Reports Server (NTRS)
Garfinkel, M.; Hall, R. N.
1978-01-01
Supercooling of silicon-tin alloy melts was studied. Values as high as 78 C at 1100 C and 39 C at 1200 C were observed, corresponding to supersaturation parameter values 0.025 and 0.053 at 1050 C and 1150 C, respectively. The interaction of tin with silane gas streams was investigated over the temperature range 1000 to 1200 C. Single-pass conversion efficiencies exceeding 30% were obtained. The growth habit of spontaneously-nucleated surface growth was determined to be consistent with dendritic and web growth from singly-twinned triangular nucleii. Surface growth of interlocking silicon crystals, thin enough to follow the surface of the liquid and with growth velocity as high as 5 mm/min, was obtained. Large area single-crystal growth along the melt surface was not achieved. Small single-crystal surface growth was obtained which did not propagate beyond a few millimeters.
Impact of Middle vs. Inferior Total Turbinectomy on Nasal Aerodynamics
Dayal, Anupriya; Rhee, John S.; Garcia, Guilherme J. M.
2016-01-01
Objectives This computational study aims to: (1) Use virtual surgery to theoretically investigate the maximum possible change in nasal aerodynamics after turbinate surgery; (2) Quantify the relative contributions of the middle and inferior turbinates to nasal resistance and air conditioning; (3) Quantify to what extent total turbinectomy impairs the nasal air conditioning capacity. Study Design Virtual surgery and computational fluid dynamics (CFD). Setting Academic tertiary medical center. Subjects and Methods Ten patients with inferior turbinate hypertrophy were studied. Three-dimensional models of their nasal anatomies were built based on pre-surgery computed tomography scans. Virtual surgery was applied to create models representing either total inferior turbinectomy (TIT) or total middle turbinectomy (TMT). Airflow, heat transfer, and humidity transport were simulated at a 15 L/min steady-state inhalation rate. The surface area stimulated by mucosal cooling was defined as the area where heat fluxes exceed 50 W/cm2. Results In both virtual total turbinectomy models, nasal resistance decreased and airflow increased. However, the surface area where heat fluxes exceed 50 W/cm2 either decreased (TIT) or did not change significantly (TMT), suggesting that total turbinectomy may reduce the stimulation of cold receptors by inspired air. Nasal heating and humidification efficiencies decreased significantly after both TIT and TMT. All changes were greater in the TIT models than in the TMT models. Conclusion TIT yields greater increases in nasal airflow, but also impairs the nasal air conditioning capacity to a greater extent than TMT. Radical resection of the turbinates may decrease the surface area stimulated by mucosal cooling. PMID:27165673
Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics.
Dayal, Anupriya; Rhee, John S; Garcia, Guilherme J M
2016-09-01
This computational study aims to (1) use virtual surgery to theoretically investigate the maximum possible change in nasal aerodynamics after turbinate surgery, (2) quantify the relative contributions of the middle and inferior turbinates to nasal resistance and air conditioning, and (3) quantify to what extent total turbinectomy impairs the nasal air-conditioning capacity. Virtual surgery and computational fluid dynamics. Academic tertiary medical center. Ten patients with inferior turbinate hypertrophy were studied. Three-dimensional models of their nasal anatomies were built according to presurgery computed tomography scans. Virtual surgery was applied to create models representing either total inferior turbinectomy (TIT) or total middle turbinectomy (TMT). Airflow, heat transfer, and humidity transport were simulated at a steady-state inhalation rate of 15 L/min. The surface area stimulated by mucosal cooling was defined as the area where heat fluxes exceed 50 W/m(2). In both virtual total turbinectomy models, nasal resistance decreased and airflow increased. However, the surface area where heat fluxes exceed 50 W/m(2) either decreased (TIT) or did not change significantly (TMT), suggesting that total turbinectomy may reduce the stimulation of cold receptors by inspired air. Nasal heating and humidification efficiencies decreased significantly after both TIT and TMT. All changes were greater in the TIT models than in the TMT models. TIT yields greater increases in nasal airflow but also impairs the nasal air-conditioning capacity to a greater extent than TMT. Radical resection of the turbinates may decrease the surface area stimulated by mucosal cooling. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai
2013-06-07
A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m(2) g(-1) shows an extremely high energy density, i.e., 118 W h kg(-1) at a power density of 100 W kg(-1). This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.
The contribution of neighbouring countries to pesticide levels in Dutch surface waters.
Van 'T Zelfde, M; Tamis, W L M; Vijver, M G; De Snoo, G R
2011-01-01
Compared with other European countries, Dutch consumption of pesticides is high, particularly in agriculture, with many of the compounds found in surface waters in high concentrations and various standards being exceeded. Surface water quality is routinely monitored and the data obtained are published in the Dutch Pesticides Atlas. One important mechanism for reducing pesticide levels in surface waters is authorisation policy, which proceeds on the assumption that the pollution concerned has taken place in the Netherlands. The country straddles the delta of several major European rivers, however, and as river basins do not respect national borders some of the water quality problems will derive from neighbouring countries. Against this background the general question addressed in this article is the following: To what extent do countries neighbouring on the Netherlands contribute to pesticide pollution of Dutch surface waters? To answer this question, data from the Pesticides Atlas for the period 2005-2009 were used. Border zones with Belgium and Germany were defined and the data for these zones compared with Dutch data. In the analyses, due allowance was also made for authorised and non-authorised compounds and for differences between flowing and stagnant waters. Monitoring efforts in the border zones and in the Netherlands were also characterised, showing that efforts in the former are similar to those in the rest of the country. In the border zone with Belgium the relative number of non-authorised pesticides exceeding the standards is clearly higher than in the rest of the Netherlands. These exceedances are observed mainly in flowing waters. In contrast, there is no difference in the relative number of standard-exceeding measurements between the border zones and the rest of the Netherlands. In the boundary zones the array of standard-exceeding compounds clearly deviates from that in the rest of the Netherlands, with compounds authorised in the neighbouring countries but not in the Netherlands, such as flufenacet, featuring prominently. The share of the neighbouring countries in the total number of exceedances in the Netherlands is roughly proportional to the relative area of the border zones. Although there is a certain influx of pesticides from across national borders, the magnitude of the problem appears to be limited.
Belluck, D A; Benjamin, S L; Baveye, P; Sampson, J; Johnson, B
2003-01-01
A critical review finds government agencies allow, permit, license, or ignore arsenic releases to surface soils. Release rates are controlled or evaluated using risk-based soil contaminant numerical limits employing standardized risk algorithms, chemical-specific and default input values. United States arsenic residential soil limits, approximately 0.4- approximately 40 ppm, generally correspond to a one-in-one-million to a one-in-ten-thousand incremental cancer risk range via ingestion of or direct contact with contaminated residential soils. Background arsenic surface soil levels often exceed applicable limits. Arsenic releases to surface soils (via, e.g., air emissions, waste recycling, soil amendments, direct pesticide application, and chromated copper arsenic (CCA)-treated wood) can result in greatly elevated arsenic levels, sometimes one to two orders of magnitude greater than applicable numerical limits. CCA-treated wood, a heavily used infrastructure material at residences and public spaces, can release sufficient arsenic to result in surface soil concentrations that exceed numerical limits by one or two orders of magnitude. Although significant exceedence of arsenic surface soil numerical limits would normally result in regulatory actions at industrial or hazardous waste sites, no such pattern is seen at residential and public spaces. Given the current risk assessment paradigm, measured or expected elevated surface soil arsenic levels at residential and public spaces suggest that a regulatory health crisis of sizeable magnitude is imminent. In contrast, available literature and a survey of government agencies conducted for this paper finds no verified cases of human morbidity or mortality resulting from exposure to elevated levels of arsenic in surface soils. This concomitance of an emerging regulatory health crisis in the absence of a medical crisis is arguably partly attributable to inadequate government and private party attention to the issue.
Schmidt, Heather C. Ross; Mehl, Heidi E.; Pope, Larry M.
2007-01-01
This report describes surface- and ground-water-quality data collected on the Prairie Band Potawatomi Reservation in northeastern Kansas from November 2003 through August 2006 (hereinafter referred to as the 'current study period'). Data from this study period are compared to results from June 1996 through August 2003, which are published in previous reports as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Surface and ground water are valuable resources to the Prairie Band Potawatomi Nation as tribal members currently (2007) use area streams to fulfill subsistence hunting and fishing needs and because ground water potentially could support expanding commercial enterprise and development. Surface-water-quality samples collected from November 2003 through August 2006 were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, fecal-indicator bacteria, suspended-sediment concentration, and total suspended solids. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal-indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in all three samples from one monitoring well located near a construction and demolition landfill on the reservation, and in one sample from another well in the Soldier Creek drainage basin. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Fifty-six percent of the 55 surface-water samples collected during the current study period and analyzed for total phosphorus exceeded the goal of 0.1 mg/L (milligram per liter) established by the U.S. Environmental Protection Agency (USEPA) to limit cultural eutrophication in flowing water. Concentrations of dissolved solids frequently exceeded the USEPA Secondary Drinking-Water Regulation (SDWR) of 500 mg/L in samples from two sites. Concentrations of sodium exceeded the Drinking-Water Advisory of 20 mg/L set by USEPA in almost 50 percent of the surface-water samples. All four samples analyzed for atrazine concentrations showed some concentration of the pesticide, but none exceeded the Maximum Contaminant Level (MCL) established for drinking water by USEPA of 3.0 ?g/L (micrograms per liter) as an annual average. A triazine herbicide screen was used on 55 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. In 41 percent of surface-water samples, densities of Escherichia coli (E. coli) bacteria exceeded the primary contact, single-sample maximum in public-access bodies of water (1,198 colonies per 100 milliliters of water for samples collected between April 1 and October 31) set by the Kansas Department of Health and Environment (KDHE). Nitrite plus nitrate concentrations in all three water samples from 1 of 10 monitoring wells exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in all three samples from one well exceeded the proposed MCL of 10 ?g/L established by USEPA for drinking water. Boron also exceeded the drinking-water advisory in three samples from one well, and iron concentrations were higher than the SDWR in water from four wells. There was some detection of pesticides in ground-water samples from three of the wells, and one detection of the volatile organic compound diethyl ether in one well. Concentrations of dissolved solids exceeded the SDWR in 20 percent of ground-water samples collected during the current study period, and concentration
Metzger, Loren F.; Fio, John L.
1997-01-01
The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.
7 CFR 51.2340 - Classification of defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... or discoloration of the flesh extends more than 1/16 inch (1.6 mm) in depth When surface of fruit is indented and discoloration of the flesh extends deeper than 1/8 inch (3.2 mm), or causing slight discoloration exceeding the area of a circle 3/8 inch (9.5 mm) in diameter, or lesser bruises aggregating an...
7 CFR 51.2340 - Classification of defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... or discoloration of the flesh extends more than 1/16 inch (1.6 mm) in depth When surface of fruit is indented and discoloration of the flesh extends deeper than 1/8 inch (3.2 mm), or causing slight discoloration exceeding the area of a circle 3/8 inch (9.5 mm) in diameter, or lesser bruises aggregating an...
Hopkins, Candice B.; Bartolino, James R.
2013-01-01
Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this pattern and show a wide distribution of concentrations in the unconfined aquifer, indicating possible anthropogenic influence. Time-series plots of historical water-quality data indicated that nitrate does not seem to be increasing or decreasing in groundwater over time; however, time-series plots of chloride concentrations indicate that chloride may be increasing in some wells. The small amount of temporal variability in nitrate concentrations indicates a lack of major temporal changes to groundwater inputs.
NASA Astrophysics Data System (ADS)
Evtyugina, Z. A.; Guseva, N. V.; Kopylova, J. G.; A, Vorobeva D.
2016-03-01
The study of the current chemical composition of natural waters in the eastern and western parts of the Imandra Lake catchment was performed using ion chromatography, potentiometry and inductively coupled plasma mass spectrometry. It was found that the content of trace elements in the surface water is considerably higher than that in the groundwater. The nickel and copper concentrations exceed the background levels over 19 and 2 times respectively in groundwater, and 175 and 61 times in the surface waters. These data show that the Severonikel influences negatively air and surface water.
Impacts of vehicles on natural terrain at seven sites in the San Francisco Bay area
Wilshire, H.G.; Nakata, J.K.; Shipley, S.; Prestegaard, K.
1978-01-01
The impacts of off-road vehicles on vegetation and soil were investigated at seven representative sites in the San Francisco Bay area. Plant cover of grass and chaparral (with shrubs to 4 m tall) have been stripped by the two- and four-wheel vehicles in use. Impacts on loamy soils include increased surface strength (as much as 275 bars), increased bulk density (averaging 18%) to depths of 90 cm or more, reduction of soil moisture by an average 43% to 30 cm depths, greatly reduced infiltration, extension of the diurnal temperature range by as much as 12??C, and reduction of organic carbon by an average 33% in exposed soils. Very sandy soils respond similarly to vehicular use except that moisture is increased and surface strength of beach sand is decreased. These physical and chemical impacts reduce the land's capability of restoring its vegetative cover, which in turn adversely affects animal populations. Both the loss of plant cover and the physical changes caused by vehicles promote erosion. Measured soil and substrate losses from vehicular use zones range from 7 to 1180 kg/m2. The estimated erosion rate of the Chabot Park site exceeds the rate of erosion considered a serious problem by a factor 30, it exceeds United States Soil Conservation Service tolerance values by a factor of 46, and it exceeds average San Francisco Bay area erosion rates by a factor of 17. The resulting soil losses are effectively permanent. Neither the increased sediment yield nor the increased runoff is accomodated on the sites of use, and both are causing adverse effects to neighboring properties. ?? 1978 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Kotsakis, A.; Choi, Y.; Souri, A.; Jeon, W.; Flynn, J. H., III
2017-12-01
From the years 2000 to 2014, Dallas-Fort Worth (DFW) has seen a decrease in ozone exceedances due to decreased emissions of ozone precursors. In this study, a wind pattern analysis was done to gain a better understanding of the meteorological patterns that have historically contributed to ozone exceedances over the DFW area. Long-term trends in ozone and the seasonal distribution of ozone exceedances were analyzed using surface monitoring data. Using a clustering algorithm called self-organizing maps, characteristic regional wind patterns from 2000-2014 were determined. For each of the wind pattern clusters, the frequency over the last 15 years and average ozone from monitors across DFW was analyzed. Finally, model simulations were performed to determine if pollution transported out of Houston affected incoming background ozone into DFW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, W.H.; Mullins, W.H.
1990-01-01
The report presents results of a reconnaissance investigation to determine whether potentially toxic concentrations of selected trace elements or organochlorine compounds associated with irrigation drainage exist in surface and ground water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds in the American Falls Reservoir area. American Falls Reservoir was selected for investigation in part because several previous investigations of fish in the reservoir indicated that mercury and cadmium concentrations exceeded human health standards and periodic botulism-related die-offs of waterbirds have been known to occur. Also, rocks south and southeast of the reservoir contain naturally occurring selenium concentrations many timesmore » greater than those in the continental crust. Samples of water, bottom sediment, aquatic plants, benthic invertebrates, fish, and waterbirds were collected from nine sites in the American Falls Reservoir area. The samples were analyzed for selected inorganic and organic constituents to determine whether concentrations exceeded known standards or criteria.« less
The unintended energy impacts of increased nitrate contamination from biofuels production.
Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E
2010-01-01
Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.
Water-quality reconnaissance of the north Dade County solid-waste facility, Florida
McKenzie, D.J.
1982-01-01
A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)
Hydrogeology for land-use planning: the Peters Creek area, Municipality of Anchorage, Alaska
Brunett, Jilann O.; Lee, Michael
1983-01-01
Wells currently provide all water supplies in the area. Most wells obtain enough water for individual household needs from unconsolidated, principally glacial and glacioalluvial deposits. In some places, however, wells must be drilled into the underlying bedrock to obtain adequate supplies. It may be possible to develop small community supplies--for individual trailer courts or subdivisions--in areas where yields of 20 gallons per minute or greater are reported for private, domestic wells. Peters Creek is a potential source of surface-water supply, but it would have to be treated to remove glacial silt during summer months. The chemical quality of both ground water and surface water in the area in generally acceptable for most uses. Foundation and excavation conditions, the potential for water pollution from onsite disposal of wastewater through septic tank systems, and the suitability of specific areas for certain types of development may be affected by the following factors: wetlands and areas of shallow ground water underlie about 30 percent of the study area; landslope exceeds 20 percent in about a third of the area; areas of fine-grained, low-permeability sediments are present locally; bedrock is within 25 feet of the land surface in about a third of the area. (USGS)
Metal contamination in environmental media in residential areas around Romanian mining sites.
Neamtiu, Iulia A; Al-Abed, Souhail R; McKernan, John L; Baciu, Calin L; Gurzau, Eugen S; Pogacean, Anca O; Bessler, Scott M
2017-03-01
Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in the SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg (2 mg/kg), and the alert thresholds in case of Pb (50 mg/kg) and Cd (3 mg/kg)]. Average metal concentrations in drinking water did not exceed the maximum contaminant level (MCL) imposed by the Romanian legislation, but high metal concentrations were found in surface water from Rosia creek, downstream from the former mining area.
Spokane Valley-Rathdrum Prairie aquifer, Washington and Idaho
Drost, B.W.; Seitz, Harold R.
1977-01-01
The Spokane Valley-Rathdrum Prairie aquifer is composed of unconsolidated Quaternary glaciofluvial deposits underlying an area of about 350 square miles. Transmissivities in the aquifer range from about 0.13 million to 11 million feet squared per day and ground-water velocities exceed 60 feet per day in some areas. The water-table gradient ranges from about 2 feet per mile to more than 60 feet per mile, and during a year the water table fluctuates on the order of 5 to 10 feet. For most of the aquifer the water table is between 40 and 400 feet below land surface. The aquifer is recharged and discharged at an average rate of about 1,320 cubic feet per second. Water is presently (1976) pumped from the aquifer at an average rate of about 239 cubic feet per second for domestic, industrial, and agricultural uses. Most of this is discharged to the Spokane River, lost to evapotranspiration, or applied to the land surface with little or no change in quality. However, about 34 cubic feet per second becomes waste water generated by domestic and industrial activities and is returned to the aquifer by percolation from cesspools and drain fields. The quality of water in the aquifer is generally good. Less than one-half of 1 percent of the 3,300 analyses available exceeded the maximum contaminant levels specified in the National Interim Primary (or Proposed Secondary) Drinking Water Regulations (U.S. Environmental Protection Agency, 1975) for constituents which may be hazardous to health. Of the 6,300 analyses for constituents considered detrimental to the esthetic quality of water, about 1.4 percent have yielded values which exceeded the recommended levels. Alternative water sources for the area supplied by the aquifer are the Spokane and Little Spokane Rivers, lakes adjacent to the aquifer, and other aquifers. All of these potential sources are less desirable than the Spokane Valley-Rathdrum Prairie aquifer because of insufficient supplies, poor water quality, and (or) remoteness from the areas of need.
Evaluation of Environmental Risk Due to Metro System Construction in Jinan, China
Wang, Guo-Fu; Lyu, Hai-Min; Lu, Lin-Hai; Li, Gang; Arulrajah, Arul
2017-01-01
Jinan is a famous spring city in China. Construction of underground metro system may block groundwater seepage, inducing the depletion risk of springs. This paper presents an assessment of the risk due to metro line construction to groundwater in Jinan City using Analytic Hierarchy Process (AHP) and Geographic International System (GIS). Based on the characteristics of hydrogeology and engineering geology, the assessment model is established from the perspectives of surface index and underground index. The assessment results show that the high and very high risk levels of surface index exceed 98% in the north region; and high and very high risk levels of underground index exceed 56% in urban center and southern region. The assessment result also shows that about 14% of the urban area belongs to very high risk level; regions of high risk are 20% in urban area, 9% in Changqing County and 43% in Pingyin County. In the high risk region, metro lines R1 to R3, which are under construction, and metro lines L1 to L5, which are planned, have very high and high risk. Therefore, risk control measures are proposed to protect the groundwater seepage path to spring. PMID:28946709
Evaluation of Environmental Risk Due to Metro System Construction in Jinan, China.
Wang, Guo-Fu; Lyu, Hai-Min; Shen, Jack Shuilong; Lu, Lin-Hai; Li, Gang; Arulrajah, Arul
2017-09-25
Jinan is a famous spring city in China. Construction of underground metro system may block groundwater seepage, inducing the depletion risk of springs. This paper presents an assessment of the risk due to metro line construction to groundwater in Jinan City using Analytic Hierarchy Process (AHP) and Geographic International System (GIS). Based on the characteristics of hydrogeology and engineering geology, the assessment model is established from the perspectives of surface index and underground index. The assessment results show that the high and very high risk levels of surface index exceed 98% in the north region; and high and very high risk levels of underground index exceed 56% in urban center and southern region. The assessment result also shows that about 14% of the urban area belongs to very high risk level; regions of high risk are 20% in urban area, 9% in Changqing County and 43% in Pingyin County. In the high risk region, metro lines R1 to R3, which are under construction, and metro lines L1 to L5, which are planned, have very high and high risk. Therefore, risk control measures are proposed to protect the groundwater seepage path to spring.
Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.
2017-01-01
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744
Assessment of historical surface-water quality data in southwestern Colorado, 1990-2005
Miller, Lisa D.; Schaffrath, Keelin R.; Linard, Joshua I.
2013-01-01
The spatial and temporal distribution of selected physical and chemical surface-water-quality characteristics were analyzed at stream sites throughout the Dolores and San Juan River Basins in southwestern Colorado using historical data collected from 1990 through 2005 by various local, State, Tribal, and Federal agencies. Overall, streams throughout the study area were well oxygenated. Values of pH generally were near neutral to slightly alkaline throughout most of the study area with the exception of the upper Animas River Basin near Silverton where acidic conditions existed at some sites because of hydrothermal alteration and(or) historical mining. The highest concentrations of dissolved aluminum, total recoverable iron, dissolved lead, and dissolved zinc were measured at sites located in the upper Animas River Basin. Thirty-two sites throughout the study area had at least one measured concentration of total mercury that exceeded the State chronic aquatic-life criterion of 0.01 μg/L. Concentrations of dissolved selenium at some sites exceeded the State chronic water-quality standard of 4.6 μg/L. Total ammonia, nitrate, nitrite, and total phosphorus concentrations generally were low throughout the study area. Overall, results from the trend analyses indicated improvement in water-quality conditions as a result of operation of the Paradox Valley Unit in the Dolores River Basin and irrigation and water-delivery system improvements made in the McElmo Creek Basin (Lower San Juan River Basin) and Mancos River Valley (Upper San Juan River Basin).
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.
2015-05-01
In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the simulated results, the proposed approach was found to simulate floodings closer to the survey records than other approaches because the physical rainfall-runoff phenomena in urban environment were better reflected.
Advanced High Temperature Structural Seals
NASA Astrophysics Data System (ADS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-10-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Sneed, Michelle; Ikehara, Marti E.; Galloway, D.L.; Amelung, Falk
2001-01-01
Land subsidence associated with ground-water-level declines has been recognized as a potential problem in Coachella Valley, California. Since the early 1920s, ground water has been a major source of agricultural, municipal, and domestic supply in the valley, resulting in water-level declines as large as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the lower Coachella Valley began, resulting in a reduction in ground-water pumping and a recovery of water levels from the 1950s through the 1970s. Since the late 1970s, the demand for water in the valley has exceeded the deliveries of imported surface water, again resulting in increased pumping and ground-water-level declines. The magnitude and temporal occurrence of land subsidence in the lower Coachella Valley are not well known; data are sparse and accuracy varies. Also, the area is tectonically active and has subsided during the past several million years, which further complicates interpretations of the data. Land-surface-elevation data have been collected by many agencies using various methods and different geographic scales; because of this, the -150 millimeters (-0.5 foot) of subsidence determined for the southern parts of the valley for 1930-96 may have a possible error of plus or minus (?)90 millimeters (?0.3 foot). The location, extent, and magnitude of vertical land-surface changes from 1996 to 1998 were determined using Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) methods. GPS measurements for 14 monuments in the lower Coachella Valley indicate that the vertical land-surface changes from 1996 to 1998 ranged from -13 to -67 millimeters ? 40 millimeters (-0.04 to -0.22 foot ?0.13 foot). Changes at seven of the monuments exceeded the measurement error of ?40 millimeters (?0.13 foot), which indicates that small amounts of land subsidence occurred at these monuments between 1996 and 1998. Some of the water levels measured in wells near several of these monuments during 1996-98 were the lowest water levels in the recorded histories of the wells. The possible relation between the stresses caused by historically low water levels and the measured vertical changes in land surface suggests that the preconsolidation stress of the aquifer system may have been exceeded during this period and that subsidence may be permanent. Comparisons of several paired monuments and wells indicated that the relation between short-term ground-water-level changes and vertical changes in land surface in the lower Coachella Valley is not clearly defined. Results of InSAR measurements made between 1996 and 1998 indicate that vertical changes in land surface, ranging from about -20 to -70 millimeters ? 5-10 millimeters (-0.07 to -0.23 foot ? 0.02-0.03 foot), occurred in three areas of the Coachella Valley--near Palm Desert, Indian Wells, and Lake Cahuilla. The areas of subsidence near Palm Desert and Indian Wells coincide with areas of substantial ground-water production during 1996-98. The Coachella Valley Water District reported that they had no ground-water production wells in the Lake Cahuilla area but that there may be private production wells in the area. Production from these wells or possibly tectonic activity may be contributing to or causing the subsidence. The geodetic network used for the GPS measurements described in this report covers the area from the Salton Sea on the south to just northwest of Indio. The maps processed using InSAR overlap the part of the geodetic network west of Coachella and north of Lake Cahuilla, and include the Palm Desert area. Both methods of measuring vertical land-surface changes, GPS and InSAR, were used to characterize vertical land-surface changes from the Palm Desert area to the Salton Sea. Because InSAR produces more spatially detailed data over large areas, it generally was useful where vertical land-surface changes were previously unrecognized, such as the
Distribution and abundance of larval fish in the nearshore waters of western Lake Huron
O'Gorman, Robert
1983-01-01
Ichthyoplankton was collected at 17 nearshore (bottom depth ≥5 m but ≤10 m) sites in western Lake Huron during 1973–75 with a 0.5-m net of 351-micron mesh towed at 99 m/min. Larvae of rainbow smelt (Osmerus mordax) dominated late spring and early summer catches and larvae of alewives (Alosa pseudoharengus) the midsummer catches. Larval yellow perch (Perca flavescens) were caught in early summer but were rarely the dominant species. The time of spawning and hatching, and thus occurrence of larvae, differed between areas but was less variable for alewives than for yellow perch. The appearance of larvae in Saginaw Bay was followed successively by their appearance in southern, central, and northern Lake Huron. Rainbow smelt were most abundant in northern Lake Huron and yellow perch and alewives in inner Saginaw Bay. Densities of either rainbow smelt or alewives occasionally exceeded 1/m3, whereas those of yellow perch never exceeded 0.1/m3. Abundance of alewives was usually highest 1 to 3 m beneath the surface and that of rainbow smelt 2 to at least 6 m beneath the surface. Important nursery areas of rainbow smelt were in bays and off irregular coastlines and those of yellow perch were in bays. All nearshore waters seemed equally important as nursery areas of alewives.
Potentially harmful elements released by volcanic ashes: Examples from the Mediterranean area
NASA Astrophysics Data System (ADS)
Cangemi, Marianna; Speziale, Sergio; Madonia, Paolo; D'Alessandro, Walter; Andronico, Daniele; Bellomo, Sergio; Brusca, Lorenzo; Kyriakopoulos, Konstantinos
2017-05-01
We have performed leaching experiments on the fine (< 2 mm) particulate sampled in seven active and quiescent volcanic systems in the Mediterranean area. We reacted the particulate both in pure water and in a synthetic gastric solution. The amount of As, Mn, Pb, Ba, U and Ni leached by pure water exceeded the MAC limits for drinking water in all the materials under investigation. We defined a tolerable ash intake index (TAI) to evaluate the impact of ash ingestion, and we find that 0.2 g and 12 g of ingested fine ash from Vesuvius and Vulcano are enough to exceed the safety limits for Pb and As. Six grams of fine ashes from Stromboli are sufficient to overstep the safety limits for As. Based on our mineralogical characterisation of the particulate, we expect that the submillimetric ash fraction, with a higher surface/volume ratio, releases a greater relative amount of trace metals, which are concentrated in the thin surface layer produced by the reaction of the pristine volcanic particles with coexisting volcanic gases. This means that our measurements represent lower bounds to the actual amount of metal released in aqueous solutions by the volcanic ashes from the locations under investigation. Our results place the first constraints on the mobilisation of toxic elements from volcanic ash, which are necessary to assess the associated potential health risk of volcanic areas.
Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties
NASA Astrophysics Data System (ADS)
Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.
2014-02-01
Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.
Examination of Spectral Transformations on Spectral Mixture Analysis
NASA Astrophysics Data System (ADS)
Deng, Y.; Wu, C.
2018-04-01
While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.
Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air
NASA Astrophysics Data System (ADS)
Ivasyshyn, Andrij; Ostash, Orest; Prikhna, Tatiana; Podhurska, Viktoriya; Basyuk, Tatiana
2016-08-01
The oxidation behavior of Ti3AlC2-based materials had been investigated at 600 °C in static air for 1000 h. It was shown that the intense increase of weight gain per unit surface area for sintered material with porosity of 22 % attributed to oxidation of the outer surface of the specimen and surfaces of pores in the bulk material. The oxidation kinetics of the hot-pressed Ti3AlC2-based material with 1 % porosity remarkably increased for the first 15 h and then slowly decreased. The weight gain per unit surface area for this material was 1.0 mg/cm2 after exposition for 1000 h. The intense initial oxidation of Ti3AlC2-based materials can be eliminated by pre-oxidation treatment at 1200 °C in air for 2 h. As a result, the weight gain per unit surface area for the pre-oxidized material did not exceed 0.11 mg/cm2 after 1000 h of exposition at 600 °C in air. It was demonstrated that the oxidation resistance of Ti3AlC2-based materials can be significantly improved by niobium addition.
Atmospheric Impacts of Emissions from Oil and Gas Development in the Uintah Basin, Utah, USA
NASA Astrophysics Data System (ADS)
Helmig, D.; Boylan, P. J.; Hueber, J.; Van Dam, B. A.; Mauldin, L.; Parrish, D. D.
2012-12-01
In the Uintah Basin in northeast Utah, USA, surface ozone levels during winter months have approached and on occasion exceeded the US National Ambient Air Quality Standard (NAAQS). Emissions from the extensive oil and gas exploration in this region are suspected to be the cause of these ozone episodes; however emission rates and photochemical processes are uncertain. During February 2012 continuous surface measurements and vertical profiling from a tethered balloon platform at the Horsepool site yielded high resolution boundary layer profile data on ozone and ozone precursor compounds, i.e. nitrogen oxides and volatile organic compounds as well as methane. Findings from this study were: 1. Surface ozone during the study period, which had no snow cover, did not exceed the NAAQS. 2. Nitrogen oxides varied from 1-50 ppbv pointing towards significant emission sources, likely from oil and gas operations. 3. Methane concentrations were elevated, reaching up to ~10 times its Northern Hemisphere (NH) atmospheric background. 3. Light non-methane hydrocarbons (NMHC) constituted the main fraction of volatile organic compounds. NMHC concentrations were highly elevated, exceeding levels seen in urban areas. 4. Ozone, methane, NOx and VOC showed distinct diurnal cycles, with large concentration increases seen at night, except for ozone, which showed the opposite behavior. 5. During nighttime concentrations of NOx, NMHC, and methane built up near the surface to levels that were much higher than their daytime concentrations. 6. Comparing NMHC to methane concentrations indicates a mass flux ratio of ~30% for total VOC/methane emissions for the Uintah Basin.
Agricultural chemicals in near-surface aquifers in the mid-continental United States, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolpin, D.W.; Burkart, M.R.
The occurrence and distribution of selected herbicides, atrazine metabolites, and nitrate were determined for unconsolidated and bedrock aquifers within 50 feet of land surface (near-surface) in the corn and soybean producing region of the mid-continental US. At least one herbicide or atrazine metabolite was detected (reporting limit, 0.05 micrograms per liter) in 24 percent of 579 water samples collected during the spring and summer of 1991. No herbicide exceeded maximum contaminant levels or health advisories. Most frequently detected was desethylatrazine (18.1 percent) followed by atrazine (17.4 percent), deisopropylatrazine (5.7 percent) and prometon (5.0 percent). Metolachlor, alachlor, metribuzin, simazine, and cyanazinemore » were found in fewer than 3 percent of the samples. Excess nitrate (more than 3.0 mg/L) was found in 29 percent of the samples; 6 percent exceeded 10 mg/L. Few herbicide detections or excess nitrate concentrations occurred in the eastern part of the study region even though this area had an intense use of herbicides and nitrogen-fertilizer. The source of prometon, the second most frequently detected herbicide, may be associated with nonagricultural land use such as golf courses and residential areas. Significant seasonal differences between the spring and summer sampling periods were found in herbicide detections, but not in excess nitrate. The frequency of herbicide detections and excess nitrate were greater in near-surface unconsolidated aquifers than found in near-surface bedrock aquifers. Depth to the top of the aquifer was inversely related to the frequency of both herbicide detection and excess nitrate. The proximity of sampling sites to streams affected the frequency of herbicide detection.« less
Poppenga, Sandra K.; Worstell, Bruce B.
2015-01-01
Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as part of a coastal inundation. A visual analysis indicated that developed, medium intensity and palustrine forested wetland land cover types would be impacted for those locations. This article demonstrates that hydrologic connectivity is an important factor to consider when inundating a lidar elevation surface. This information is needed for inundation monitoring and management in sensitive coastal regions.
NASA Astrophysics Data System (ADS)
Hu, Yanbing; Sun, Shan; Song, Xiukai; Ma, Jianxin; Ru, Shaoguo
2015-04-01
The distribution of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in the surface seawater and sediment of Jincheng Bay mariculture area were investigated in the present study. The concentration of total HCHs and DDTs ranged from 2.98 to 14.87 ng L-1 and were < 0.032 ng L-1, respectively, in surface seawater, and ranged from 5.52 to 9.43 and from 4.11 to 6.72 ng g-1, respectively, in surface sediment. It was deduced from the composition profile of HCH isomers and DDT congeners that HCH residues derived from a mixture of technical-grade HCH and lindane whereas the DDT residues derived from technical-grade DDT and dicofol. Moreover, both HCH and DDT residues may mainly originate from historical inputs. The hazard quotient of α-HCH, β-HCH, γ-HCH and δ-HCH to marine species was 0.030, 0.157, 3.008 and 0.008, respectively. It was estimated that the overall probability of adverse biological effect from HCHs was less than 5%, indicating that its risk to seawater column species was low. The threshold effect concentration exceeding frequency of γ-HCH, p, p'-DDD, p, p'-DDE and p, p'-DDT in sediment ranged from 8.3% to 100%, and the relative concentration of the HCH and DDT mixture exceeded their probable effect level in sediment. These findings indicated that the risk to marine benthos was high and potentially detrimental to the safety of aquatic products, e.g., sea cucumber and benthic shellfish.
Lima, Isabel; Marshall, Wayne E
2005-01-01
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.
NASA Astrophysics Data System (ADS)
Patterson, V. M.; Bormann, K.; Deems, J. S.; Painter, T. H.
2017-12-01
The NASA SnowEx campaign conducted in 2016 and 2017 provides a rich source of high-resolution Lidar data from JPL's Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) combined with extensive in-situ measurements in two key areas in Colorado: Grand Mesa and Senator Beck. While the uncertainty in the 50m snow depth retrievals from NASA's ASO been estimated at 1-2cm in non-vegetated exposed areas (Painter et al., 2016), the impact of forest cover and point-cloud density on ASO snow lidar depth retrievals is relatively unknown. Dense forest canopies are known to reduce lidar penetration and ground strikes thus affecting the elevation surface retrieved from in the forest. Using high-resolution lidar point cloud data from the ASO SnowEx campaigns (26pt/m2) we applied a series of data decimations (up to 90% point reduction) to the point cloud data to quantify the relationship between vegetation, ground point density, resulting snow-off and snow-on surface elevations and finally snow depth. We observed non-linear reductions in lidar ground point density in forested areas that were strongly correlated to structural forest cover metrics. Previously, the impacts of these data decimations on a small study area in Grand Mesa showed a sharp increase in under-canopy surface elevation errors of -0.18m when ground point densities were reduced to 1.5pt/m2. In this study, we expanded the evaluation to the more topographically challenging Senator Beck basin, have conducted analysis along a vegetation gradient and are considering snow the impacts of snow depth rather than snow-off surface elevation. Preliminary analysis suggest that snow depth retrievals inferred from airborne lidar elevation differentials may systematically underestimate snow depth in forests where canopy density exceeds 1.75 and where tree heights exceed 5m. These results provide a basis from which to identify areas that may suffer from vegetation-induced biases in surface elevation models and snow depths derived from airborne lidar data, and help quantify expected spatial distributions of errors in the snow depth that can be used to improve the accuracy of ASO basin-scale depth and water equivalent products.
Surface activity of lipid extract surfactant in relation to film area compression and collapse.
Schürch, S; Schürch, D; Curstedt, T; Robertson, B
1994-08-01
The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.
Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.
2010-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.
Miller, Wesley L.
1992-01-01
The northern Midlands area in Palm Beach County is an area of expected residential growth, but its flat topography, poor drainage, and near-surface marl layers retard rainfall infiltration and cause frequent flooding. Public water supplies and sewer services are not planned for the area, thus, residents must rely on domestic wells and septic tanks. The water table in the northern Midlands area is seldom more than 5 feet below land surface, and regional ground-water flows are east, southwest, and south from the north-central part of the area where ground-water levels are highest. Ground-water quality in the western part of the area and in the Loxahatchee Slough is greatly influenced by residual seawater emplaced during the Pleistocene Epoch. Chloride and dissolved-solids concentrations of ground water in the surficial aquifer system in these areas often exceed secondary drinking-water standards. Residual seawater has been more effectively flushed from the more permeable sediments elsewhere in the eastern and southwestern parts of the study area. Test at three septic-tank sites showed traces of effluent in ground water (38-92 feet from the septic tank outlets) and that near-surface marl layers greatly impede the downward migration of the effluent in the surficial aquifer system throughout the northern midlands.
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Chen, Liang; Wang, Weiping; Li, Tuanjie; Zu, Tingting
2017-04-01
We analyzed heavy metal concentrations in a number of surface sediments and cores from the Qiongzhou Strait and surrounding marine areas. The areas of high concentrations are primarily outside the eastern mouth of the Qiongzhou Strait and on the west side of the Leizhou Peninsula, whereas the areas of low concentrations are located primarily in the eastern Qiongzhou Strait. The maximum Cd, Pb and Zn concentrations in the samples collected in our study do not exceed the official standards for marine sediments, whereas the concentrations of Cr and Cu slightly exceed the standards. Correlations exist between the concentrations of Cu, Pb, Zn, Cr and Cd, and the concentrations of these metals are positively correlated with the mean particle size (φ value), indicating that the finer sediments have adsorbed greater amounts of heavy metal elements than the coarser sediments. An evaluation of the potential environmental risks demonstrates that certain indices of heavy metal pollution and environmental risks are relatively low and may be assigned low risk levels, thereby indicating that, in terms of heavy metals, the marine sedimentary environment in this region is only mildly impacted. Our analysis of the contaminant origins shows that the heavy metals in this region primarily originate in the Pearl River Estuary and that a small amount of them is derived from local runoff. The elevated heavy metal concentrations from the upper sections of the cores started 130 years ago, which indicats that heavy metals in the surface sediments are primarily due to human activities associated with industrialization.
Kendrick, Katherine J.; Camille Partin,; Graham, Robert C.
2016-01-01
Rock surface erosion by wildfire is significant and widespread but has not been quantified in southern California or for chaparral ecosystems. Quantifying the surface erosion of bedrock outcrops and boulders is critical for determination of age using cosmogenic radionuclide techniques, as even modest surface erosion removes the accumulation of the cosmogenic radionuclides and causes significant underestimate of age. This study documents the effects on three large granitic boulders following the Esperanza Fire of 2006 in southern California. Spalled rock fragments were quantified by measuring the removed rock volume from each measured boulder. Between 7% and 55% of the total surface area of the boulders spalled in this single fire. The volume of spalled material, when normalized across the entire surface area, represents a mean surface lowering of 0.7–12.3 mm. Spalled material was thicker on the flanks of the boulders, and the height of the fire effects significantly exceeded the height of the vegetation prior to the wildfire. Surface erosion of boulders and bedrock outcrops as a result of wildfire spalling results in fresh surfaces that appear unaffected by chemical weathering. Such surfaces may be preferentially selected by researchers for cosmogenic surface dating because of their fresh appearance, leading to an underestimate of age.
Melorheostosis with bilateral involvement in a black African patient.
Biaou, Olivier; Avimadje, Martin; Guira, Oumar; Adjagba, Alex; Zannou, Marcel; Hauzeur, Jean-Philippe
2004-01-01
Melorheostosis is a rare chronic bone disease of unknown etiology that often affects a single limb. Onset usually occurs in childhood or early adolescence. A flowing wax appearance along the surface of the bone and multiple areas of bone sclerosis produce a typical radiographic picture. We describe the first case reported in a black African, in whom an exceedingly rare feature was a bilateral distribution of the lesions.
Climate change threatens the world's marine protected areas
NASA Astrophysics Data System (ADS)
Bruno, John F.; Bates, Amanda E.; Cacciapaglia, Chris; Pike, Elizabeth P.; Amstrup, Steven C.; van Hooidonk, Ruben; Henson, Stephanie A.; Aronson, Richard B.
2018-06-01
Marine protected areas (MPAs) are a primary management tool for mitigating threats to marine biodiversity1,2. MPAs and the species they protect, however, are increasingly being impacted by climate change. Here we show that, despite local protections, the warming associated with continued business-as-usual emissions (RCP8.5)3 will likely result in further habitat and species losses throughout low-latitude and tropical MPAs4,5. With continued business-as-usual emissions, mean sea-surface temperatures within MPAs are projected to increase 0.035 °C per year and warm an additional 2.8 °C by 2100. Under these conditions, the time of emergence (the year when sea-surface temperature and oxygen concentration exceed natural variability) is mid-century in 42% of 309 no-take marine reserves. Moreover, projected warming rates and the existing `community thermal safety margin' (the inherent buffer against warming based on the thermal sensitivity of constituent species) both vary among ecoregions and with latitude. The community thermal safety margin will be exceeded by 2050 in the tropics and by 2150 for many higher latitude MPAs. Importantly, the spatial distribution of emergence is stressor-specific. Hence, rearranging MPAs to minimize exposure to one stressor could well increase exposure to another. Continued business-as-usual emissions will likely disrupt many marine ecosystems, reducing the benefits of MPAs.
Comparison of pesticides in eight U.S. urban streams
Hoffman, R.S.; Capel, P.D.; Larson, S.J.
2000-01-01
Little is known of the occurrence of pesticides in urban streams compared to streams draining agricultural areas. Water samples from eight urban streams from across the United States were analyzed for 75 pesticides and seven transformation products. For six of the eight urban streams, paired agricultural streams were used for comparisons. The herbicides detected most frequently in the urban streams were prometon, simazine, atrazine, tebuthiuron, and metolachlor, and the insecticides detected most frequently were diazinon, carbaryl, chlorpyrifos, and malathion. In contrast to similar-sized agricultural streams, total insecticide concentrations commonly exceeded total herbicide concentrations in these urban streams. In general, the temporal concentration patterns in the urban streams were consistent with the characteristics of the local growing season. The insecticides carbaryl and diazinon exceeded criteria for the protection of aquatic life in many of the urban streams in the spring and summer. When the country as a whole is considered, the estimated mass of herbicides contributed by urban areas to streams is dwarfed by the estimated contribution from agricultural areas, but for insecticides, contributions from urban and agricultural areas may be similar. The results of this study suggest that urban areas should not be overlooked when assessing sources and monitoring the occurrence of pesticides in surface waters.
Malkoc, S; Yazici, B
2017-02-01
A total of 50 surface industrial area soil in Eskisehir, Turkey were collected and the concentrations of As, Cr, Cd, Co, Cu, Ni, Pb, Zn, Fe and Mg, at 11.34, 95.8, 1.37, 15.28, 33.06, 143.65, 14.34, 78.79 mg/kg, 188.80% and 78.70%, respectively. The EF values for As, Cu, Pb and Zn at a number of sampling sites were found to be the highest among metals. Igeo-index results show that the study area is moderately polluted with respect to As, Cd, Ni. According to guideline values of Turkey Environmental Quality Standard for Soils, there is no problem for Pb, but the Cd values are fairly high. However, Cr, Cu, Ni and Zn values mostly exceed the limits. Cluster analyses suggested that soil the contaminator values are homogenous in those sub classes. The prevention and remediation of the heavy metal soil pollution should focus on these high-risk areas in the future.
Acidification of lake water due to drought
NASA Astrophysics Data System (ADS)
Mosley, L. M.; Zammit, B.; Jolley, A. M.; Barnett, L.
2014-04-01
Droughts are predicted to increase in many river systems due to increased demand on water resources and climate variability. A severe drought in the Murray-Darling Basin of Australia from 2007 to 2009 resulted in unprecedented declines in water levels in the Lower Lakes (Ramsar-listed ecosystem of international importance) at the end of the river system. The receding water exposed large areas (>200 km2) of sediments on the lake margins. The pyrite (FeS2) in these sediments oxidised and generated high concentrations of acidity. Upon rewetting of the exposed sediments, by rainfall or lake refill, surface water acidification (pH 2-3) occurred in several locations (total area of 21.7 km2). High concentrations of dissolved metals (Al, As, Co, Cr, Cu, Fe, Mn, Ni, Zn), which greatly exceeded aquatic ecosystem protection guidelines, were mobilised in the acidic conditions. In many areas neutralisation of the surface water acidity occurred naturally during lake refill, but aerial limestone dosing was required in two areas to assist in restoring alkalinity. However acidity persists in the submerged lake sediment and groundwater several years after surface water neutralisation. The surface water acidification proved costly to manage and improved water management in the Murray-Darling Basin is required to prevent similar events occurring in the future.
Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne
2008-01-01
The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of aluminum, cadmium, chromium, nickel, selenium, and zinc exceeded the Texas Surface Water Quality Standards criteria for aquatic life-use protection or human health. The only trace elements detected in the water samples at concentrations exceeding the Texas Surface Water Quality Standards criterion for human health (fish consumption use) was lead at one site and mercury at 10 of 12 sites. Relatively high mercury concentrations distributed throughout the area might indicate sources of mercury in addition to abandoned mining areas. Streambed-sediment samples were collected from 12 sites and analyzed for 44 major and trace elements. In general, the trace elements detected in streambed-sediment samples were low in concentration, interpreted as consistent with background concentrations. Concentrations at two sites, however, were elevated compared to Texas Commission on Environmental Quality criteria. Concentrations of antimony, arsenic, cadmium, lead, silver, and zinc in the sample from San Carlos Creek downstream from La Esperanza (San Carlos) Mine exceeded the Texas Commission on Environmental Quality screening levels for sediment. The sample from Rough Run Draw, downstream from the Study Butte Mine, also showed elevated concentrations of arsenic, cadmium, and lead, but these concentrations were much lower than those in the San Carlos Creek sample and did not exceed screening levels. Elevated concentrations of multiple trace elements in streambed-sediment samples from San Carlos Creek and Rough Run Draw indicate that San Carlos Creek, and probably Rough Run Draw, have been adversely affected by mining activities. Fourteen mine-tailing samples from 11 mines were analyzed for 25 major and trace elements. All trace elements except selenium and thallium were detected in one or more samples. The highest lead concentrations were detected in tailings samples from the Boquillas, Puerto Rico, La Esperanza (San Carlos), and Tres Marias Mines, as might be expected because the tailings ar
Water and bed-sediment quality in the vicinity of Berlin Lake, Ohio, 2001
Darner, Robert A.
2002-01-01
Berlin Lake, in northeast Ohio, was created by the U.S. Army Corps of Engineers in 1943 and is used primarily for flood control for the upper reaches of the Mahoning River. The area surrounding and under the lake has been tapped for oil and natural gas production. One of the by-products of oil and gas production is concentrated salt water or brine, which might have an effect on the chemical quality of area potable-water sources. This report presents the results of a U.S. Geological Survey baseline study to collect current (2001) water and sediment-quality data and to characterize water quality in the Berlin Lake watershed. Chloride-to-bromide ratios were used to detect the presence of brine in water samples and to indicate possible adverse effects on water quality. Analyses of ground-water samples from domestic wells in the area indicate a source of chloride and bromide, but defining the source would require more data collection. Analyses of specific conductance and dissolved solids indicate that 78 percent (14 of 18) of the ground-water samples exceeded the Secondary Maximum Contaminant Level for dissolved solids in public water supplies of 500 milligrams per liter (mg/L), compared to 6 percent of samples exceeding 500 mg/L in two nearby studies. Surface water was analyzed twice, once each during low-flow and surface runoff conditions. A comparison of the 2001 data to historical chloride concentrations, accounting for seasonal changes, does not indicate an increase in chloride loads for surface water in the area of Berlin Lake. Polycyclic aromatic hydrocarbons were found in bed-sediment samples collected from the mouths of major tributaries to Berlin Lake. Polycyclic aromatic hydrocarbons are produced during the incomplete combustion of organic carbon materials such as wood and fossil fuels, and they are components of petroleum products.
Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.
2014-01-01
Groundwater pumping has increased substantially over the past 40–50 years; this increase resulted in declining water levels at depth and decreased base flows over much of the study area. The effects of pumping are mitigated somewhat by the increase of surface-water irrigation, especially in the shallow Overburden unit, and commingling wells in some areas. During dry to average years, groundwater pumping causes a net loss of groundwater in storage and current condition (2000–2007) groundwater pumping exceeds recharge in all but the wettest of years.
Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson
2014-05-14
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air.
Ivasyshyn, Andrij; Ostash, Orest; Prikhna, Tatiana; Podhurska, Viktoriya; Basyuk, Tatiana
2016-12-01
The oxidation behavior of Ti3AlC2-based materials had been investigated at 600 °C in static air for 1000 h. It was shown that the intense increase of weight gain per unit surface area for sintered material with porosity of 22 % attributed to oxidation of the outer surface of the specimen and surfaces of pores in the bulk material. The oxidation kinetics of the hot-pressed Ti3AlC2-based material with 1 % porosity remarkably increased for the first 15 h and then slowly decreased. The weight gain per unit surface area for this material was 1.0 mg/cm(2) after exposition for 1000 h. The intense initial oxidation of Ti3AlC2-based materials can be eliminated by pre-oxidation treatment at 1200 °C in air for 2 h. As a result, the weight gain per unit surface area for the pre-oxidized material did not exceed 0.11 mg/cm(2) after 1000 h of exposition at 600 °C in air. It was demonstrated that the oxidation resistance of Ti3AlC2-based materials can be significantly improved by niobium addition.
Frick, Elizabeth A.; Gregory, M. Brian; Calhoun, Daniel L.; Hopkins, Evelyn H.
2002-01-01
Cumberland Island is the southernmost and largest barrier island along the coast of Georgia. The island contains about 2,500 acres of freshwater wetlands that are located in a variety of physical settings, have a wide range of hydroperiods, and are influenced to varying degrees by surface and ground water, rainwater, and seawater. In 1999-2000, the U.S. Geological Survey, in cooperation with the National Park Service, conducted a water-quality study of Cumberland Island National Seashore to document and interpret the quality of a representative subset of surface- and ground-water resources for management of the seashore's natural resources. As part of this study, historical ground-water, surface-water, and ecological studies conducted on Cumberland Island also were summarized. Surface-water samples from six wetland areas located in the upland area of Cumberland Island were collected quarterly from April 1999 to March 2000 and analyzed for major ions, nutrients, trace elements, and field water-quality constituents including specific conductance, pH, temperature, dissolved oxygen, alkalinity, tannin and lignin, and turbidity. In addition, water temperature and specific conductance were recorded continuously from two wetland areas located near the mean high-tide mark on the Atlantic Ocean beaches from April 1999 to July 2000. Fish and invertebrate communities from six wetlands were sampled during April and December 1999. The microbial quality of the near-shore Atlantic Ocean was assessed in seawater samples collected for 5 consecutive days in April 1999 at five beaches near campgrounds where most recreational water contact occurs. Ground-water samples were collected from the Upper Floridan aquifer in April 1999 and from the surficial aquifer in April 2000 at 11 permanent wells and 4 temporary wells (drive points), and were analyzed for major ions, nutrients, trace elements, and field water-quality constituents (conductivity, pH, temperature, dissolved oxygen, and alkalinity). Fecal-coliform bacteria concentrations were measured, but not detected, in samples collected from two domestic water-supply wells. During the 12-month period from April 1999 to March 2000 when water-quality and aquatic-community samples were collected, rainfall was 12.93 inches below the 30-year average rainfall. Constituent concentrations were highly variable among the different wetlands during the study period. Rainfall and tidal surges associated with tropical storms and hurricanes substantially influenced water quantity and quality, particularly in wetland areas directly influenced by tidal surges. Although surface waters on Cumberland Island are not used as sources of drinking water, exceedances of U.S. Environmental Protection Agency primary and secondary standards for drinking water were noted for comparative purposes. A nitrate concentration of 12 milligrams per liter in one sample from Whitney outflow was the only exceedance of a maximum contaminant level. Secondary standards were exceeded in 26 surface-water samples for the following constituents: pH (10 exceedances), chloride (8), sulfate (5), total dissolved solids (4), iron (2), fluoride (1), and manganese (1). The total-dissolved-solids concentrations and the relative abundance of major ions in surface-water samples collected from wetlands on Cumberland Island provide some insight into potential sources of water and influences on water quality. Major-ion chemistries of water samples from Whitney Lake, Willow Pond, and South End Pond 3 were sodium-chloride dominated, indicating direct influence from rainwater, salt aerosol, or inundation of marine waters. The remaining wetlands sampled had low total-dissolved-solids concentrations and mixed major-ion chemistries--North Cut Pond 2A was magnesium-sodium-chloride-sulfate dominated and Lake Retta and the two beach outflows were sodium-calcium-bicarbonate-chloride dominated. The higher percent calcium and bicarbonate in some wetlands sugg
A rapid and repeatable method to deposit bioaerosols on material surfaces.
Calfee, M Worth; Lee, Sang Don; Ryan, Shawn P
2013-03-01
A simple method for repeatably inoculating surfaces with a precise quantity of aerosolized spores was developed. Laboratory studies were conducted to evaluate the variability of the method within and between experiments, the spatial distribution of spore deposition, the applicability of the method to complex surface types, and the relationship between material surface roughness and spore recoveries. Surface concentrations, as estimated by recoveries from wetted-wipe sampling, were between 5×10(3) and 1.5×10(4)CFUcm(-2) across the entire area (930cm(2)) inoculated. Between-test variability (Cv) in spore recoveries was 40%, 81%, 66%, and 20% for stainless steel, concrete, wood, and drywall, respectively. Within-test variability was lower, and did not exceed 33%, 47%, 52%, and 20% for these materials. The data demonstrate that this method is repeatable, is effective at depositing spores across a target surface area, and can be used to dose complex materials such as concrete, wood, and drywall. In addition, the data demonstrate that surface sampling recoveries vary by material type, and this variability can partially be explained by the material surface roughness index. This deposition method was developed for use in biological agent detection, sampling, and decontamination studies, however, is potentially beneficial to any scientific discipline that investigates surfaces containing aerosol-borne particles. Published by Elsevier B.V.
Relationship between surface and free tropospheric ozone in the Western U.S.
Jaffe, Dan
2011-01-15
Ozone is an important air pollutant that affects lung function. In the U.S., the EPA has reduced the allowable O(3) concentrations several times over the last few decades. This puts greater emphasis on understanding the interannual variability and the contributions to surface O(3) from all sources. We have examined O(3) data from 11 rural CASTNET sites in the western US for the period 1995-2009. The 11 surface sites show a similar seasonal cycle and generally a good correlation in the deseasonalized monthly means, indicating that there are large scale influences on O(3) that operate across the entire western US. These sites also show a good correlation between site elevation and annual mean O(3), indicating a significant contribution from the free troposphere. We examined the number of exceedance days for each site, defined as a day when the Maximum Daily 8-h Average (MDA8) exceeds a threshold value. Over this time period, more than half of these sites exceeded an MDA8 threshold of 70 ppbv at least 4 times per year, and all sites exceeded a threshold value of 65 ppbv at least 4 times per year. The transition to lower threshold values increases substantially the number of exceedance days, especially during spring, reflecting the fact that background O(3) peaks during spring. We next examined the correlation between surface O(3) and free tropospheric O(3) in the same region, as measured by routine balloon launches from Boulder, CO. Using ozone measured by the balloon sensor in the range of 3-6 km above sea level we find statistically significant correlations between surface and free tropospheric O(3) in spring and summer months using both monthly means, daily MDA8 values, and the number of surface exceedance days. We suggest that during spring this correlation reflects variations in the flux of O(3) transport from the free troposphere to the surface. In summer, free tropospheric and surface concentrations of O(3) and the number of exceedance days are all significantly correlated with emissions from biomass burning in the western US. This indicates that wildfires significantly increase the number of exceedance days across the western U.S.
Mapping Critical Loads of Atmospheric Nitrogen Deposition in the Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Nanus, L.; Clow, D. W.; Stephens, V. C.; Saros, J. E.
2010-12-01
Atmospheric nitrogen (N) deposition can adversely affect sensitive aquatic ecosystems at high-elevations in the western United States. Critical loads are the amount of deposition of a given pollutant that an ecosystem can receive below which ecological effects are thought not to occur. GIS-based landscape models were used to create maps for high-elevation areas across the Rocky Mountain region showing current atmospheric deposition rates of nitrogen (N), critical loads of N, and exceedances of critical loads of N. Atmospheric N deposition maps for the region were developed at 400 meter resolution using gridded precipitation data and spatially interpolated chemical concentrations in rain and snow. Critical loads maps were developed based on chemical thresholds corresponding to observed ecological effects, and estimated ecosystem sensitivities calculated from basin characteristics. Diatom species assemblages were used as an indicator of ecosystem health to establish critical loads of N. Chemical thresholds (concentrations) were identified for surface waters by using a combination of in-situ growth experiments and observed spatial patterns in surface-water chemistry and diatom species assemblages across an N deposition gradient. Ecosystem sensitivity was estimated using a multiple-linear regression approach in which observed surface water nitrate concentrations at 530 sites were regressed against estimates of inorganic N deposition and basin characteristics (topography, soil type and amount, bedrock geology, vegetation type) to develop predictive models of surface water chemistry. Modeling results indicated that the significant explanatory variables included percent slope, soil permeability, and vegetation type (including barren land, shrub, and grassland) and were used to predict high-elevation surface water nitrate concentrations across the Rocky Mountains. Chemical threshold concentrations were substituted into an inverted form of the model equations and applied to estimate critical loads for each stream reach within a basin, from which critical loads maps were created. Atmospheric N deposition maps were overlaid on the critical loads maps to identify areas in the Rocky Mountain region where critical loads are being exceeded, or where they may do so in the future. This approach may be transferable to other high-elevation areas of the United States and the world.
Harlow, G.E.; Bell, C.F.
1996-01-01
Lithologic and geophysical logs of boreholes at 29 sites show that the hydrogeologic framework of the Mainside of the Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, consists of un-consolidated sedimentary deposits of gravel, sand, silt, and clay. The upper 220 feet of these sediments are divided into five hydrogeologic units, including the (1) Columbia (water-table) aquifer, (2) upper confining unit, (3) upper confined aquifer, (4) Nanjemoy-Marlboro confining unit, and (5) Aquia aquifer. The Columbia aquifer in the study area is a local system that is not affected by regional pumping. Ground-water recharge occurs at topographic highs in the northern part of the Mainside, and ground-water discharge occurs at topographic lows associated with adjacent surface-water bodies. Regionally, the direction of ground-water flow in the upper confined and Aquia aquifers is toward the southwest and southeast, respectively. A downward hydraulic gradient exists between the aquifers in the shallow system, and stresses on the Aquia aquifer are indicated by heads that range between 2 and 12 feet below sea level. The ratio of median horizontal hydraulic conductivity of the Columbia aquifer to median vertical hydraulic con-ductivity of the upper confining unit, however, is approximately 2,600:1; therefore, under natural- flow conditions, most water in the Columbia aquifer probably discharges to adjacent surface- water bodies. The composition and distribution of major ions vary in the Columbia aquifer. In general, water samples from wells located along the inland perimeter roads of the study area have chloride or a combination of chloride and sulfate as the dominant anions, and water samples from wells located in the interior of the study area have bicarbonate or a combination of bicarbonate and sulfate as the dominant anions. Sodium and calcium were the dominant cations in most samples. Dissolved solids and four inorganic constituents are present in water from the Columbia aquifer at concentrations that exceed the secondary maximum contaminant levels (SMCL's) for drinking water established by the U.S. Environmental Protection Agency. Concentration of dissolved solids exceed the SMCL of 500 milligrams per liter in 3 of 29 samples from the Columbia aquifer. An elevated concentration of sodium is present in one water sample, and elevated concentrations of chloride are present in two water samples. Concentrations of dissolved iron and manga-nese exceed the SMCL in 10 and 17 of 29 water samples, respectively, and are the most extensive water-quality problem with regard to inorganic constituents in the Columbia aquifer.
Dosage of salicylates for children with juvenile rheumatoid arthritis. A preliminary report.
Mäkelä, A L; Tryänä, T; Haapasaari, J
1975-01-01
The daily dosage of salicylates is traditionally very high for patients with juvenile rheumatoid arthritis. In order to achieve the optimal therapeutic effect, serum salicylate levels are kept at 30-35 mg/100 ml (2175-2540 mumol/l). The recommended daily dosage in the textbooks is about 100 mg/kg of body weight, and the reported dosage/m2 of body surface area has been 3.2 g/m2/day. These dosages are, however, too high in clinical routine. In the present investigation, 19 children were treated with salicylates for 15 days with daily check-ups of the serum salicylate levels. Seven of these children had symptoms of salicylate intoxication which corresponded closely to the serum salicylate levels. If the daily dosage of salicylates exceeds 3 g/m2 of body surface area, intoxication can be expected.
NASA Astrophysics Data System (ADS)
Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.
2009-12-01
Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.
NASA Technical Reports Server (NTRS)
Forgsberg, K.
1979-01-01
The primary insulation system used to protect the space shuttle orbiter on reentry is an externally attached, rigidized, fibrous silica which has been machined into tiles. The tiles constitute the temperature reusable surface insulation system and are used on over 70 percent of the vehicle exterior surface where peak temperatures range from 400 to 1260 C. Cargon-carbon leading edges are used in areas where peak temperatures exceed 1650 C and a felt flexible insulation is used in regions below 400 C. Approximately 32,000 tiles are used in the HRST system and because of vehicle configuration, aerodynamic requirements, and weight considerations no two tiles are alike. Fabrication and quality control procedures are described.
NASA Astrophysics Data System (ADS)
Nozdrina, O.; Zykov, I.; Melnikov, A.; Tsipilev, V.; Turanov, S.
2018-03-01
This paper describes the results of an investigation of the effect of small hardening spots (about 1 mm) created on the surface of a sample by laser complex with solid-state laser. The melted area of the steel sample is not exceed 5%. Steel microhardness change in the region subjected to laser treatment is studied. Also there is a graph of the deformation of samples dependence on the tension. As a result, the yield plateau and plastic properties changes were detected. The flow line was tracked in the series of speckle photographs. As a result we can see how mm surface inhomogeneity can influence on the deformation and strength properties of steel.
Robertson, Dale M.; Saad, David A.; Heisey, Dennis M.
2006-01-01
In-stream suspended sediment and siltation and downstream sedimentation are common problems in surface waters throughout the United States. The most effective way to improve surface waters impaired by sediments is to reduce the contributions from human activities rather than try to reduce loadings from natural sources. Total suspended sediment/solids (TSS) concentration data were obtained from 964 streams in the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River Basins from 1951 to 2002. These data were used to estimate median concentrations, loads, yields, and volumetrically (flow) weighted (VW) concentrations where streamflow data were available. SPAtial Regression-Tree Analysis (SPARTA) was applied to land-use-adjusted (residualized) TSS data and environmental-characteristic data to determine the natural factors that best described the distribution of median and VW TSS concentrations and yields and to delineate zones with similar natural factors affecting TSS, enabling reference or natural concentrations and yields to be estimated. Soil properties (clay and organic-matter content, erodibility, and permeability), basin slope, and land use (percentage of agriculture) were the factors most strongly related to the distribution of median and VW TSS concentrations. TSS yields were most strongly related to amount of precipitation and the resulting runoff, and secondarily to the factors related to high TSS concentrations. Reference median TSS concentrations ranged from 5 to 26 milligrams per liter (mg/L), reference median annual VW TSS concentrations ranged from 10 to 168 mg/L, and reference TSS yields ranged from about 980 to 90,000 kilograms per square kilometer per year. Independent streams (streams with no overlapping drainage areas) with TSS data were ranked by how much their water quality exceeded reference concentrations and yields. Most streams exceeding reference conditions were in the central part of the study area, where agricultural activities are the most intensive; however, other sites exceeding reference conditions were identified outside of this area. Whether concentrations or yields should be considered in guiding rehabilitation efforts depends on whether in-stream or downstream effects are more important. Although this study attempted to obtain all available water-quality data for the study area, any actual prioritization of sites for remediation would need to rely on more extensive data collection or numerical models that can accurately simulate the effects of various human activities in a range of environmental settings.
Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.
2011-01-01
Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.
Yager, Tracy J.B.; Smith, David B.; Crock, James G.
2004-01-01
The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations in soil slightly exceed the U.S. Environmental Protection Agency toxicity-derived ecological soil-screening levels for avian wildlife. Plutonium concentration in the soil was near zero. Wheat-grain data were insufficient to determine any measurable effects from biosolids. Comparison with similar data from other parts of North America where biosolids were not applied indicates similar concentrations. However, the Deer Trail study area had higher nickel concentrations in wheat from both the biosolids-applied fields and the control fields. Plutonium content of the wheat was near zero. Ground-water levels generally declined at most wells during 1999 through 2003. Ground-water quality did not correlate with ground-water levels. Vertical ground-water gradients during 1999 through 2003 indicate that bedrock ground-water resources downgradient from the biosolids-applied areas are not likely to be contaminated by biosolids applications unless the gradients change as a result of pumping. Ground-water quality throughout the study area varied over time at each site and from site to site at the same time, but plutonium concentrations in the ground water always were near zero. Inorganic concentrations at well D6 were relatively high compared to other ground-water sites studied. Ground-water pH and concentrations of fluoride, nitrite, aluminum, arsenic, barium, chromium, cobalt, copper, lead, mercury, nickel, silver, zinc, and plutonium in the ground water of the study area met Colorado standards. Concentrations of chloride, sulfate, nitrate, boron, iron, manganese, and selenium exceeded Colorado ground-water standards at one or more wells. Nitrate concentrations at well D6 significantly (alpha = 0.05) exceeded the Colorado regulatory standard. Concentrations of arsenic, cadmium, chromium, lead, mercury, nickel, and zinc in ground water had no significant (alpha = 0.05) upward trends. During 1999-2003, concentrations of nitrate, copper, molybdenum, and selenium
NASA Astrophysics Data System (ADS)
Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian
1998-05-01
We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.
Molecular dynamics simulation of shock induced ejection on fused silica surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Rui; Xiang, Meizhen; Jiang, Shengli
2014-05-21
Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less
Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003
Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.
2005-01-01
The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7 μg/L, with a median value of 9.6 μg/L. Factors affecting arsenic concentration in the carbonate-rock aquifer in addition to geothermal heating are its natural occurrence in the aquifer material and time of travel along the flow path.Most of the chemical analyses, especially for VOCs and nutrients, indicate little, if any, effect of overlying land-use patterns on ground-water quality. The water quality in recharge areas for the aquifer where human activities are more intense may be affected by urban and/or agricultural land uses as evidenced by pesticide detections. The proximity of the carbonate-rock aquifer at these sites to the land surface and the potential for local recharge to occur through the fractured rock likely results in the occurrence of these and other land-surface related contaminants in the ground water. Water from sites sampled near outcrops of carbonate-rock aquifer likely has a much shorter residence time resulting in a potential for detection of anthropogenic or land-surface related compounds. Sites located in discharge areas of the flow systems or wells that are completed at a great depth below the land surface generally show no effects of land-use activities on water quality. Flow times within the carbonate-rock aquifer, away from recharge areas, are on the order of thousands of years, so any contaminants introduced at the land surface that will not degrade along the flow path have not reached the sampled sites in these areas.
Scheuhammer, A M; Lord, S I; Wayland, M; Burgess, N M; Champoux, L; Elliott, J E
2016-03-01
We investigated mercury (Hg) concentrations in small fish (mainly yellow perch, Perca flavescens; ∼60% of fish collected) and in blood of common loons (Gavia immer) that prey upon them during the breeding season on lakes in 4 large, widely separated study areas in Canada (>13 lakes per study area; total number of lakes = 93). Although surface sediments from lakes near a base metal smelter in Flin Flon, Manitoba had the highest Hg concentrations, perch and other small fish and blood of common loon chicks sampled from these same lakes had low Hg concentrations similar to those from uncontaminated reference lakes. Multiple regression modeling with AIC analysis indicated that lake pH was by far the most important single factor influencing perch Hg concentrations in lakes across the four study areas (R(2) = 0.29). The best model was a three-variable model (pH + alkalinity + sediment Se; Wi = 0.61, R(2) = 0.85). A single-variable model (fish Hg) best explained among-lake variability in loon chick blood Hg (Wi = 0.17; R(2) = 0.53). From a toxicological risk perspective, all lakes posing a potential Hg health risk for perch and possibly other small pelagic fish species (where mean fish muscle Hg concentrations exceeded 2.4 μg/g dry wt.), and for breeding common loons (where mean fish muscle Hg concentrations exceeded 0.8 μg/g dry wt., and loon chick blood Hg exceeded 1.4 μg/g dry wt.) had pH < 6.7 and were located in eastern Canada. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Surface hardening of 30CrMnSiA steel using continuous electron beam
NASA Astrophysics Data System (ADS)
Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng
2017-11-01
30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.
Facile synthesis of high surface area molybdenum nitride and carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Aaron; Serov, Alexey; Artyushkova, Kateryna
2015-08-15
The synthesis of high surface area γ-Mo{sub 2}N and α-Mo{sub 2}C is reported (116 and 120 m{sup 2}/g) without the temperature programmed reduction of MoO{sub 3}. γ-Mo{sub 2}N was prepared in an NH{sub 3}-free synthesis using forming gas (7 at% H{sub 2}, N{sub 2}-balance) as the reactive atmosphere. Three precursors were studied ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O, (NH{sub 4}){sub 2} Mg(MoO{sub 4}){sub 2}, and MgMoO{sub 4}) along with the sacrificial support method (SSM) as a means of reducing the particle size of Mo{sub 2}N and Mo{sub 2}C. In situ X-ray diffraction (XRD) studies were carried out to identify reactionmore » intermediates, the temperature at which various intermediates form, and the average domain size of the Mo{sub 2}N products. Materials were synthesized in bulk and further characterized by XRD, HRTEM, XPS, and BET. - Highlights: • Facile synthesis of γ-Mo2N and α-Mo2C with surface area exceeding 100 m{sup 2}/g. • Sacrificial support method was used to achieve these high surface areas. • Materials can serve as catalysts or supports in (electro)chemical processes.« less
High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls
Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; ...
2015-05-15
The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 x compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid,more » exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Finally, Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.« less
Hydrology of an abandoned coal-mining area near McCurtain, Haskell County, Oklahoma
Slack, L.J.
1983-01-01
Water quality was investigated from October 1980 to May 1983 in an area of abandoned coal mines in Haskell county, Oklahoma. Bedrock in the area is shale, siltstone, sandstone, and the McAlester (Stigler) and Hartshorne coals of the McAlester Formation and Hartshorne Sandstone of Pennsylvanian age. The two coal beds, upper and lower Hartshorne, associated with the Hartshorne Sandstone converge or are separated by a few feet or less of bony coal or shale in the McCurtain area. Many small faults cut the Hartshorne coal in all the McCurtain-area mines. The main avenues of water entry to and movement through the bedrock are the exposed bedding-plane openings between layers of sandstone, partings between laminae of shale, fractures and joints developed during folding and faulting laminae of shale, fractures and joints developed during folding and faulting of the brittle rocks, and openings caused by surface mining--the overburden being shattered and broken to form spoil. Water-table conditions exist in bedrock and spoil in the area. Mine pond water is in direct hydraulic connections with water in the spoil piles and the underlying Hartshorne Sandstone. Sulfate is the best indicator of the presence of coal-mine drainage in both surface and ground water in the Oklahoma coal field. Median sulfate concentrations for four sites on Mule Creek ranged from 26 to 260 milligrams per liter. Median sulfate concentrations increased with increased drainage from unreclaimed mined areas. The median sulfate concentration in Mule Creek where it drains the reclaimed area is less than one-third of that at the next site downstream where the stream begins to drain abandoned (unreclaimed) mine lands. Water from Mule Creek predominantly is a sodium sulfate type. Maximum and median values for specific conductance and concentrations of calcium, magnesium, sodium, sulfate, chloride, dissolved solids, and alkalinity increase as Mule Creek flows downstream and drains increasing areas of abandoned (unreclaimed) mining lands. Constituent concentrations in Mule Creek, except those for dissolved solids, iron, manganese, and sulfate, generally do not exceed drinking-water limits. Reclamation likely would result in decreased concentrations of dissolved solids, calcium, magnesium, sodium, sulfate, and alkalinity in Mule Creek in the vicinity of the reclaimed area. Ground water in the area is moderately hard to very hard alkaline water with a median pH of 7.2 to 7.6. It predominately is a sodium sulfate type and, except for dissolved solids, iron manganese, and sulfate, constituent concentrations generally do not exceed drinking-water limits. Ground-water quality would likely be unchanged by reclamation. The quality of water in the two mine ponds is quite similar to that of the shallow ground water in the area. Constituents in water from both ponds generally do not exceed drinking-water limits and the water quality is unlikely to be changed by reclamation in the area.
Nearly extremal apparent horizons in simulations of merging black holes
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Scheel, Mark A.; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilágyi, Béla; Chu, Tony; Demos, Nicholas; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Afshari, Nousha
2015-03-01
The spin angular momentum S of an isolated Kerr black hole is bounded by the surface area A of its apparent horizon: 8π S≤slant A, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses M and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to S/{{M}2}=0.994. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality 8π S\\lt A is satisfied in all cases but is very close to equality on the common apparent horizon at the instant it first appears. We also evaluate the Booth-Fairhurst extremality, whose value for a given apparent horizon depends on the scaling of the horizon’s null normal vectors. In particular, we introduce a gauge-invariant lower bound on the extremality by computing the smallest value that Booth and Fairhurst’s extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al (2008 Phys. Rev. D 78 084017), we construct quasiequilibrium binary-black hole initial data with ‘overspun’ marginally trapped surfaces with 8π S\\gt A. We show that the overspun surfaces are indeed superextremal: our lower bound on their Booth-Fairhurst extremality exceeds unity. However, we confirm that these superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with 8π S\\lt A. The extremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole.
30 CFR 250.515 - Blowout prevention equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... foreseeable conditions and circumstances, including subfreezing conditions. The working pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the annular preventer, the...
Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway
Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.
2009-01-01
Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.
Fallon, James D.; Yaeger, Christine S.
2009-01-01
Mille Lacs Lake and its tributaries, located in east-central Minnesota, are important resources to the public. In addition, many wetlands and lakes that feed Mille Lacs Lake are of high resource quality and vulnerable to degradation. Construction of a new four-lane expansion of U.S. Highway 169 has been planned along the western part of the drainage area of Mille Lacs Lake in Crow Wing County. Concerns exist that the proposed highway could affect the resource quality of surface waters tributary to Mille Lacs Lake. Baseline water- and bed-sediment quality characteristics of surface waters tributary to Mille Lacs Lake were needed prior to the proposed highway construction. The U.S. Geological Survey, in cooperation with the Minnesota Department of Transportation, characterized the water- and bed-sediment quality at selected locations that the proposed route intersects from October 2003 to October 2006. Locations included Seguchie Creek upstream and downstream from the proposed route and three wetlands draining to Mille Lacs Lake. The mean streamflow of Seguchie Creek increased between the two sites: flow at the downstream streamflow-gaging station of 0.22 cubic meter per second was 5.6 percent greater than the mean streamflow at the upstream streamflow-gaging station of 0.21 cubic meter per second. Because of the large amount of storage immediately upstream from both gaging stations, increases in flow were gradual even during intense precipitation. The ranges of most constituent concentrations in water were nearly identical between the two sampling sites on Seguchie Creek. No concentrations exceeded applicable water-quality standards set by the State of Minnesota. Dissolved-oxygen concentrations at the downstream gaging station were less than the daily minimum standard of 4.0 milligrams per liter for 6 of 26 measurements. Constituent loads in Seguchie Creek were greater at the downstream site than the upstream site for all measured, including dissolved chloride (1.7 percent), ammonia plus organic nitrogen (13 percent), total phosphorus (62 percent), and suspended sediment (11 percent) during the study. All constituents had seasonal peaks in spring and fall. The large loads during the fall resulted from unusually large precipitation and streamflow patterns. This caused the two greatest streamflow peaks at both sites to occur during October (2004 and 2005). In Seguchie Creek, bed-sediment concentrations of five metals and trace elements (arsenic, cadmium, chromium, lead, and zinc) exceeded the Interim Sediment Quality Guidelines (ISQG) set by the Canadian Council of Ministers of the Environment. Bed-sediment samples from the upstream site had more exceedances of ISQGs for metals and trace elements than did samples from the downstream site (seven and two exceedances, respectively). Bed-sediment samples from the downstream site had more exceedances of ISQGs (20 exceedances) for semivolatile organic compounds than did samples from the upstream site (8 exceedances), indicating different sources for organic compounds than for metals and trace elements. Concentrations of 11 semivolatile organic compounds exceeded ISQGs: ancenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. In bed-sediment samples collected from three wetlands, concentrations of all six metals exceeded ISQGs: arsenic, cadmium, chromium, copper, lead, and zinc. Concentrations of three semivolatile organic compounds exceeded ISQGs: flouranthene, phenanthrene, and pyrene. Results indicate that areas appearing relatively undisturbed and of high resource value can have degraded quality from previous unknown land use.
Prediction of static friction coefficient in rough contacts based on the junction growth theory
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2017-08-01
The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.
Li, Xinyu; Li, Zhonggen; Lin, Che-Jen; Bi, Xiangyang; Liu, Jinling; Feng, Xinbin; Zhang, Hua; Chen, Ji; Wu, Tingting
2018-06-04
Smelting of nonferrous metals is an important source of heavy metals in surface soil. The crops/vegetables grown on contaminated soil potentially impose adverse effects on human health. In this study, the contamination level of five heavy metals (Hg, Pb, Zn, Cd and Cu) in ten types of vegetables grown nearby a large scale Pb/Zn smelter in Hunan Province, China and the health risk associated with their consumption are assessed. Based on the data obtained from 52 samples, we find that Pb and Cd contributed to the greatest health risk and leafy vegetables tend to be more contaminated than non-leafy vegetables. Within 4 km radius of the smelter, over 75% of vegetable samples exceeded the national food standard for Pb; over 47% exceeded the Cd standard; and 7% exceeded the Hg standard. Heavy metal concentrations in vegetables measured within the 4 km radius are on average three times more elevated compared to those found at the control area 15 km away. Heavy metals in vegetables have dual sources of root absorption from soil and leaf adsorption from atmosphere. Health risk in terms of the hazard index (HI) at contaminated areas are 3.66 and 3.14 for adults and children, respectively, suggesting adverse health effects would occur. HI for both groups are mainly contributed by Pb (48%) and Cd (40%). Fortunately, vegetable samples collected at the control area are considered safe to consume. Copyright © 2018 Elsevier Inc. All rights reserved.
Wirojanagud, Wanpen; Srisatit, Thares
2014-01-01
Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest. PMID:25110751
Influence of polluted SY River on child growth and sex hormones.
Tang, Chun Yu; Li, An Qi; Guan, Yong Bo; Li, Yan; Cheng, Xue Min; Li, Ping; Li, Shi Qun; Luo, Yi Xin; Huang, Qi; Chen, Hong Yang; Cui, Liu Xin
2012-06-01
To investigate the influence of the polluted SY River on children's growth and sex hormones, and provide scientific data for assessment of the polluted status of the SY River. The study areas were selected randomly from the SY River Basin. Lead (Pb), mercury (Hg), arsenic (As), phthalates (DEP, DBP, DMP, DEHP), and bisphenol A (BPA) were measured both in the river water and in the drinking water. School children were selected by cluster sampling (n=154). Physical development indexes (height, weight, bust-circumference, and skinfold thickness) and sex hormones [testosterone (T) and estradiol (E2)] were measured for all the children. The contents of Pb and Hg exceeded Class V standards of surface water quality in each section of the river and other indicators exceeded Class III. Compared to the control area, the concentrations of Pb, Hg, As, BPA, DEP, and DBP in the drinking water were significantly higher than in the polluted area (P<0.05). Children from the control area had significantly lower E2 and T than children from the polluted area (P<0.05). Among anthropometric results, only skinfold thickness had statistically significant difference between the two groups (P<0.05), while the other indexes showed no significant differences between the two groups (P>0.05). The drinking water has been polluted by the SY River and affected serum sex hormone levels of children living in the polluted area. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland
Tenbus, Frederick J.; Blomquist, Joel D.
1995-01-01
Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.
Methods and equations for estimating peak streamflow per square mile in Virginia’s urban basins
Austin, Samuel H.
2014-01-01
Models are presented that describe Virginia urban area annual peak streamflow per square mile based on basin percent urban area and basin drainage area. Equations are provided to estimate Virginia urban peak flow per square mile of basin drainage area in each of the following annual exceedance probability categories: 0.995, 0.99, 0.95, 0.9, 0.8, 0.67, 0.5, 0.43, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 1.005, 1.01, 1.05, 1.11, 1.25, 1.49, 2.0, 2.3, 5, 10, 25, 50, 100, 200, and 500 years, respectively). Equations apply to Virginia drainage basins ranging in size from no less than 1.2 mi2 to no more than 2,400 mi2 containing at least 10 percent urban area, and not more than 96 percent urban area. A total of 115 Virginia drainage basins were analyzed. Actual-by-predicted plots and leverage plots for response variables and explanatory variables in each peak-flow annual exceedance probability category indicate robust model fits and significant explanatory power. Equations for 8 of 15 urban peak-flow response surface models yield R-square values greater than 0.8. Relations identified in statistical models, describing significant increases in urban peak stream discharges as basin urban area increases, affirm empirical relations reported in past studies of change in stream discharge, lag times, and physical streamflow processes, most notably those detailed for urban areas in northern Virginia.
Danskin, Wesley R.; McPherson, Kelly R.; Woolfenden, Linda R.
2006-01-01
The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to investigators and water managers in other areas, this report provides an expanded description of constrained optimization techniques and how to use them to better understand the local hydrogeology and to evaluate inter-related water-management problems. In this report, the hydrology of the San Bernardino area, defined as the Bunker Hill and Lytle Creek basins, is described and quantified for calendar years 1945-98. The major components of the surface-water system are identified, and a routing diagram of flow through these components is provided. Annual surface-water inflow and outflow for the area are tabulated using gaged measurements and estimated values derived from linear-regression equations. Average inflow for the 54-year period (1945-98) was 146,452 acre-feet per year; average outflow was 67,931 acre-feet per year. The probability of exceedance for annual surface-water inflow is calculated using a Log Pearson Type III analysis. Cumulative surface-water inflow and outflow and ground-water-level measurements indicate that the relation between the surface-water system and the ground-water system changed in about 1951, in about 1979, and again in about 1992. Higher ground-water levels prior to 1951 and between 1979 and 1992 induced ground-water discharge to Warm Creek. This discharge was quantified using streamflow measurements and can be estimated for other time periods using ground-water levels from a monitoring well (1S/4W-3Q1) and a logarithmic-regression equation. Annual wastewater discharge from the area is tabulated for the major sewage and power-plant facilities. More...
Thomas, Judith C.; Moore, Jennifer L.; Schaffrath, Keelin R.; Dupree, Jean A.; Williams, Cory A.; Leib, Kenneth J.
2013-01-01
The U.S. Geological Survey, in cooperation with Federal, State, county, and industry partners, developed a Web-accessible common data repository to provide access to historical and current (as of August 2009) water-quality information (available on the Internet at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml). Surface-water-quality data from public and private sources were compiled for the period 1931 to 2009 and loaded into the common data repository for the Piceance Basin. A subset of surface-water-quality data for 1959 to 2009 from the repository were compiled, reviewed, and checked for quality assurance for this report. This report contains data summaries, comparisons to water-quality standards, trend analyses, a generalized spatial analysis, and a data-gap analysis for select water-quality properties and constituents. Summary statistics and a comparison to standards were provided for 347 sites for 33 constituents including field properties, nutrients, major ions, trace elements, suspended sediment, Escherichia coli, and BTEX (benzene, toluene, ethylbenzene, and xylene). When sufficient data were available, trends over time were analyzed and loads were calculated for those sites where there were also continuous streamflow data. The majority of sites had information on field properties. Water temperature data was available for 316 sites where data were collected between 1959 and 2009. The only trend that was detected in temperature was an upward trend at the Gunnison River near Grand Junction, Colorado. There were 326 values out of a total of 32,006 values in the study area that exceeded the aquatic-life standard for daily maximum water temperature. For the entire study area, 196 sites had dissolved-oxygen data collected between 1970 and 2009, and median dissolved-oxygen concentrations ranged from 6.8 to11.2 milligrams per liter (mg/L). There were 185 concentrations that exceeded the dissolved oxygen aquatic-life standard out of a total of 11,248 values. The pH data were available for 276 sites, and median pH values ranged from 7.5 to 9.0. There were 241 values that exceeded the high pH standard and 13 values that were less than the low pH standard of the 16,790 values in the study area. Nutrients within the study area were not well represented in each basin and were often not being sampled currently. For the entire study area, 62 sites had nitrate data collected between 1958 and 2009, and median nitrate concentrations ranged from less than detection to 3.72 mg/L as nitrogen. The maximum contaminant level for domestic water supply for nitrate is 10 mg/L and was exceeded once in 3,736 samples. Total phosphorus was collected at 113 sites between 1974 and 2009, and median total phosphorus concentrations ranged from less than detection to 5.04 mg/L. The U.S. Environmental Protection Agency recommendation for phosphorus is less than 0.1 mg/L, and 1,469 of 4,842 samples exceeded this recommended standard. An upward trend in both nitrate and total phosphorus was detected in the White River above Coal Creek near Meeker, Colo. Standards for major ions exist only for chloride and sulfate. For the entire study area, 118 sites had both chloride and sulfate concentration data collected between 1958 and 2009. Median chloride concentrations ranged from 0.085 mg/L to 280 mg/L. Median sulfate concentrations ranged from 4.57 mg/L to 15,000 mg/L. Both chloride and sulfate domestic water-supply standards are 250 mg/L. There were 120 chloride concentrations and 1,111 sulfate concentration samples that exceeded these standards. A downward trend in dissolved solids was detected at the Colorado River near the Colorado-Utah state border and could be a result of salinity control work near Grand Junction, Colo. Trace elements were relatively well represented both temporally and spatially in the study area though the number of trace element samples per site was not typically enough to compute trends or loads except for selenium. There were 127 sites that had dissolved iron concentration data collected between 1961 and 2009, and median iron concentrations ranged from less than detection to 1,100 micrograms per liter (µg/L). The 30-day drinking-water standard for iron is 300 µg/L, and 203 samples exceeded the standard. Selenium was the best represented trace element with selenium concentration data collected at 197 sites between 1973 and 2009, and median selenium concentrations range from less than detection to 181 µg/L. The chronic standard of 4.6 µg/L for selenium concentrations was exceeded in 899 samples, and the acute aquatic-life standard of 18.4 µg/ for selenium was exceeded in 629 samples. High concentrations of selenium are of concern in the Lower Gunnison River Basin because of the combination of geologic formations and land use. There were significant downward trends in selenium at both main-stem sites on the Gunnison River at Delta, Colo., and the Gunnison River near Grand Junction, Colo. High selenium concentrations correlate with high salinity concentrations; thus, when salinity control efforts are conducted in selenium-rich areas in the Lower Gunnison River Basin, both salinity and selenium have the potential to decrease. Spatial, temporal, and analytical data gaps were identified in the study area. The spatial coverage of sampling sites could be expanded in the White River Basin by adding more tributary sites. No water-quality data exist for tributary streams in the area north of Rangely, Colo., where extensive energy development has occurred in a complex geologic setting. Douglas Creek has a drainage area of 425 square miles and has limited historic water-quality and water-quantity data. Limited data were available for field properties, major ions, nutrients, and trace elements on the main stem of the Colorado River between Glenwood Springs and Cameo, Colo. Nutrient data were minimally collected upstream from Colorado River at the Colorado-Utah state border and on the Gunnison River (major tributary in the reach). Approximately 30 percent of the samples for total phosphorus in the Lower Gunnison River Basin exceeded the recommended standard, yet there were insufficient data to do trends analysis in the Lower Gunnison River Basin except at the Gunnison near Grand Junction site. There is limited trace element data except for selenium in the Lower Gunnison River Basin. Additional sampling is necessary to understand the occurrence, concentrations, and loads of these constituents.
Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin
2012-09-01
The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.
30 CFR 250.516 - Blowout prevention equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...
30 CFR 250.516 - Blowout prevention equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...
30 CFR 250.616 - Blowout prevention equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
30 CFR 250.616 - Blowout prevention equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
30 CFR 250.615 - Blowout prevention equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
30 CFR 250.515 - Blowout prevention equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)
2000-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.
Characterization and performance of high power iron(VI) ferrate batteries
NASA Astrophysics Data System (ADS)
Walz, Kenneth A.; Suyama, Amy N.; Suyama, Wendy E.; Sene, Jeosadaque J.; Zeltner, Walter A.; Armacanqui, Edgar M.; Roszkowski, Andrew J.; Anderson, Marc A.
In this paper we report on the high power discharge performance and impedance characteristics of potassium ferrate (K 2FeO 4) and barium ferrate (BaFeO 4) cathodes in zinc alkaline dry cells. The results show that if ferrate materials can be packaged to maximize the cathode surface area, they may offer superior performance over electrolytic manganese dioxide at operating voltages exceeding 1.6 V and currents as high as 100 mA/g of active material.
Hamilton, P.A.; Denver, J.M.; Phillips, P.J.; Shedlock, R.J.
1993-01-01
Agricultural applications of inorganic fertilizers and manure have changed the natural chemical com- position of water in the surficial aquifer through- out the Delmarva Peninsula. Nitrate, derived from nitrification of ammonia in inorganic fertilizers and manure, is the dominant anion in agricultural areas. Concentrations of nitrate in 185 water samples collected in agricultural areas ranged from 0.4 to 48 mg/L as nitrogen, with a median concen- tration of 8.2 mg/L as nitrogen. Nitrate concen- trations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water of 10 mg/L as nitrogen in about 33% of the 185 water samples. Groundwater affected by agricultural activities contains significantly higher concentrations of dissolved constituents than does natural groundwater. Concentrations of calcium and magnesium are higher because of liming of soils, and concentrations of potassium and chloride are higher because of applications of potash, a supple- ment to the nitrogen-based fertilizers. Alkalinity concentrations commonly are decreased because the bicarbonate ion is consumed in buffering reactions with acid that is produced during nitrification. Effects of agricultural activities on groundwater quality are not limited to the near-surface parts of the aquifer underlying farm fields. Elevated concentrations are common in aerobic water at or near the base of the aquifer, 80 to 100 ft below land surface. The median concentration of nitrate in water beneath agricultural areas collected from 24 wells deeper than 80 ft below land surface was 8.5 mg/L as nitrogen, and concentrations in 9 of these water samples exceeded the maximum contaminant level. Regional variations in concentrations of nitrate and other agriculture related constituents in the surficial aquifer in the Delmarva Peninsula depend on a number of factors that include geomorphology, geology, soils, land use, and groundwater-flow patterns. (USGS)
Code of Federal Regulations, 2011 CFR
2011-07-01
... AREAS FOR AIR QUALITY PLANNING PURPOSES Identification of Mandatory Class I Federal Areas Where...) exceeding 5,000 acres, and national parks (NP) exceeding 6,000 acres, in existence on August 7, 1977...
Sorenson, S.K.; Cascos, P.V.; Glass, R.L.
1984-01-01
A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)
NASA Technical Reports Server (NTRS)
Goldberg, Daniel L.; Loughner, Christopher P.; Tzortziou, Maria; Stehr, Jeffrey W.; Pickering, Kenneth E.; Marufu, Lackson T.; Dickerson, Russell R.
2013-01-01
Air quality models, such as the Community Multiscale Air Quality (CMAQ) model, indicate decidedly higher ozone near the surface of large interior water bodies, such as the Great Lakes and Chesapeake Bay. In order to test the validity of the model output, we performed surface measurements of ozone (O3) and total reactive nitrogen (NOy) on the 26-m Delaware II NOAA Small Research Vessel experimental (SRVx), deployed in the Chesapeake Bay for 10 daytime cruises in July 2011 as part of NASA's GEO-CAPE CBODAQ oceanographic field campaign in conjunction with NASA's DISCOVER-AQ air quality field campaign. During this 10-day period, the EPA O3 regulatory standard of 75 ppbv averaged over an 8-h period was exceeded four times over water while ground stations in the area only exceeded the standard at most twice. This suggests that on days when the Baltimore/Washington region is in compliance with the EPA standard, air quality over the Chesapeake Bay might exceed the EPA standard. Ozone observations over the bay during the afternoon were consistently 10-20% higher than the closest upwind ground sites during the 10-day campaign; this pattern persisted during good and poor air quality days. A lower boundary layer, reduced cloud cover, slower dry deposition rates, and other lesser mechanisms, contribute to the local maximum of ozone over the Chesapeake Bay. Observations from this campaign were compared to a CMAQ simulation at 1.33 km resolution. The model is able to predict the regional maximum of ozone over the Chesapeake Bay accurately, but NOy concentrations are significantly overestimated. Explanations for the overestimation of NOy in the model simulations are also explored
Gray, James L.; Kanagy, Leslie K.; Furlong, Edward T.; Kanagy, Chris J.; McCoy, Jeff W.; Mason, Andrew; Lauenstein, Gunnar
2014-01-01
Between April 22 and July 15, 2010, approximately 4.9 million barrels of oil were released into the Gulf of Mexico from the Deepwater Horizon oil well. Approximately 16% of the oil was chemically dispersed, at the surface and at 1500 m depth, using Corexit 9527 and Corexit 9500, which contain dioctyl sodium sulfosuccinate (DOSS) as a major surfactant component. This was the largest documented release of oil in history at substantial depth, and the first time large quantities of dispersant (0.77 million gallons of approximately 1.9 million gallons total) were applied to a subsurface oil plume. During two cruises in late May and early June, water samples were collected at the surface and at depth for DOSS analysis. Real-time fluorimetry data was used to infer the presence of oil components to select appropriate sampling depths. Samples were stored frozen and in the dark for approximately 6 months prior to analysis by liquid chromatography/tandem mass spectrometry with isotope-dilution quantification. The blank-limited method detection limit (0.25 μg L−1) was substantially less than the U.S. Environmental Protection Agency’s (USEPA) aquatic life benchmark of 40 μg L−1. Concentrations of DOSS exceeding 200 μg L−1 were observed in one surface sample near the well site; in subsurface samples DOSS did not exceed 40 μg L−1. Although DOSS was present at high concentration in the immediate vicinity of the well where it was being continuously applied, a combination of biodegradation, photolysis, and dilution likely reduced persistence at concentrations exceeding the USEPA aquatic life benchmark beyond this immediate area.
NASA Astrophysics Data System (ADS)
Goldberg, Daniel L.; Loughner, Christopher P.; Tzortziou, Maria; Stehr, Jeffrey W.; Pickering, Kenneth E.; Marufu, Lackson T.; Dickerson, Russell R.
2014-02-01
Air quality models, such as the Community Multiscale Air Quality (CMAQ) model, indicate decidedly higher ozone near the surface of large interior water bodies, such as the Great Lakes and Chesapeake Bay. In order to test the validity of the model output, we performed surface measurements of ozone (O3) and total reactive nitrogen (NOy) on the 26-m Delaware II NOAA Small Research Vessel experimental (SRVx), deployed in the Chesapeake Bay for 10 daytime cruises in July 2011 as part of NASA's GEO-CAPE CBODAQ oceanographic field campaign in conjunction with NASA's DISCOVER-AQ air quality field campaign. During this 10-day period, the EPA O3 regulatory standard of 75 ppbv averaged over an 8-h period was exceeded four times over water while ground stations in the area only exceeded the standard at most twice. This suggests that on days when the Baltimore/Washington region is in compliance with the EPA standard, air quality over the Chesapeake Bay might exceed the EPA standard. Ozone observations over the bay during the afternoon were consistently 10-20% higher than the closest upwind ground sites during the 10-day campaign; this pattern persisted during good and poor air quality days. A lower boundary layer, reduced cloud cover, slower dry deposition rates, and other lesser mechanisms, contribute to the local maximum of ozone over the Chesapeake Bay. Observations from this campaign were compared to a CMAQ simulation at 1.33 km resolution. The model is able to predict the regional maximum of ozone over the Chesapeake Bay accurately, but NOy concentrations are significantly overestimated. Explanations for the overestimation of NOy in the model simulations are also explored.
[Microbial air monitoring in operating theatre: active and passive samplings].
Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L
2004-01-01
Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.
Saturn's Titan: Searching for Surface Change
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Kamp, L.; Matson, D. L.; Boryta, M. D.; Leader, F.; Baines, K. H.; Lopes, R.; Smythe, W. D.; Jauman, R.; Sotin, C.; Clark, R. N.; Cruikshank, D. P.; Drosart, P.; Hapke, B. W.; Buratti, B. J.; Brown, R. H.; Sicardy, B.; Lunine, J. I.; Combes, M.; Belucci, G.; Biebring, J.; Capaccioni, M.; Cerroni, P.; Corodini, A.; Formisano, V.; Filacchione, G.; Langevin, Y.; McCord, T.; Mennella, V.; Nicholson, P.
2007-12-01
The VIMS instrument on the Cassini spacecraft observes the surface of Titan through spectral 'windows' in its atmosphere where methane, the principal absorbing gas is transmitting. We previously have used VIMS to document changes in spectral reflectance and that have occurred on Titan's surface during Cassini's orbital tour at (latitude 26S, longitude 78W), (AGU spring meeting 2007). Having removed the possibility that the observed changes are either an atmospheric phenomenon or are the result of viewing angle (phase) effects, we conclude that physical changes in the chemistry or structure of the surface must be occurring. The size of the region suggests it may exceed the size of the largest active volcanic areas in the solar system. We now have explored additional sections of Titan's surface and have developed new techniques for locating surface changes over time. While some additional candidate areas for surface activity are suggested, confirmation is possible with the support of additional instruments on the Cassini Orbiter, particularly the radar instrument. The principal difficulty in implementing a coordinated program of observations with both instruments is due to the radar instrument's higher spatial resolution but small footprint on the surface relative to VIMS. In addition, the two instruments can not be used simultaneously on the same pass. Overlapping coverage will only be available after repeated flybys during Cassini's extended mission. This work done at JPL/CALTECH under contract with NASA
An operational system of fire danger rating over Mediterranean Europe
NASA Astrophysics Data System (ADS)
Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.
2017-04-01
A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing information about fire meteorological danger for Portugal for a wide range of users.
Flood Map for the Winooski River in Waterbury, Vermont, 2014
Olson, Scott A.
2015-01-01
High-water marks from Tropical Storm Irene were available for seven locations along the study reach. The highwater marks were used to estimate water-surface profiles and discharges resulting from Tropical Storm Irene throughout the study reach. From a comparison of the estimated water-surface profile for Tropical Storm Irene with the water-surface profiles for the 1- and 0.2-percent annual exceedance probability (AEP) floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the Winooski River study reach but did not exceed the estimated 0.2-percent AEP flood at any location within the study reach.
The role of global cloud climatologies in validating numerical models
NASA Technical Reports Server (NTRS)
HARSHVARDHAN
1991-01-01
The net upward longwave surface radiation is exceedingly difficult to measure from space. A hybrid method using General Circulation Model (GCM) simulations and satellite data from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP) was used to produce global maps of this quantity over oceanic areas. An advantage of this technique is that no independent knowledge or assumptions regarding cloud cover for a particular month are required. The only information required is a relationship between the cloud radiation forcing (CRF) at the top of the atmosphere and that at the surface, which is obtained from the GCM simulation. A flow diagram of the technique and results are given.
NASA Astrophysics Data System (ADS)
Lvova, N. A.; Blank, V. D.; Gogolinskiy, K. V.; Kulibaba, V. F.
2007-04-01
Specifisities of deformation on nanoscale of hard brittle materials with the hardness exceeding 10 GP by means of scanning probe microscope - nanohardness tester "NanoScan" are investigated. It is found, that pile-up is forming at scratching of sample surface with use of diamond indenter. Heigh of this pile-up depends on hardness and elastic modulus of the material. Definition of the contact area without taking into account height of pile-up leads to an overestimation of hardness values. At scratching of silicon carbide surface a transition from plastic flow to fracture is found out. The results received allowed to estimate fracture toughness KIC for silicon carbide.
Shi, Jiachun; Yu, Xiulin; Zhang, Mingkui; Lu, Shenggao; Wu, Weihong; Wu, Jianjun; Xu, Jianming
2011-01-01
Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
30 CFR 250.1706 - What are the requirements for blowout prevention equipment?
Code of Federal Regulations, 2014 CFR
2014-07-01
... circumstances, including subfreezing conditions. The working pressure rating of the BOP system and system components must exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the annular preventer, you must submit with Form BSEE-0124...
30 CFR 250.1706 - What are the requirements for blowout prevention equipment?
Code of Federal Regulations, 2013 CFR
2013-07-01
... circumstances, including subfreezing conditions. The working pressure rating of the BOP system and system components must exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the annular preventer, you must submit with Form BSEE-0124...
NASA Astrophysics Data System (ADS)
Pietrzak, D.; Mandryk, O.; Wątor, K.; Kmiecik, E.; Zelmanowych, A.
2018-02-01
The article presents the results of the research carried out in order to assess the possibility of using surface water of the Bystrytsya-Nadvirnyans'ka River in Cherniiv (western Ukraine), for the public supply of water intended for human consumption. For this purpose an existing database that contains the results of analyses of surface water samples collected in 1999, 2002, 2005, 2008, 2011 and 2014 was used. Each year, from 8 to 13 samples were collected from the Bystrytsya-Nadvirnyans'ka River in Cherniiv. Physicochemical analyses of the samples taken included the determination of pH value, temperature, TDS, alkalinity, hardness, dissolved oxygen, BOD5, COD, suspended solids and ions: Ca2+, Mg2+, Na+, K+, Fe2+, NH4+, Cu2+, Cl-, SO42-, PO43-, HCO3-, NO2-, NO3-. These chemical analyses were verified by calculation of errors based on the ionic balance. The results of the analyses were referred to the polish applicable requirements for surface water used for public supply of water intended for human consumption and to the regulation regarding the classification of the surface water status and environmental quality standards for priority substances. The results indicate that water of the Bystrytsya-Nadvirnyans'ka River in the area of Cherniiv was out of the class in the years 1999 and 2002 due to exceeding the limit values for category A3 for Cu2+. On the basis of incomplete assessment of the status of the Bystrytsya-Nadvirnyans'ka River water (due to the tests limitation to the physical and chemical components) determined that the water has a bad status because it exceeded the limits for class II for Cl-, SO42-, NO3- and TDS. In the samples collected in 1999 and 2002 it is also observed exceeding the maximum limit concentrations for Cu2+.
Siemion, Jason; Lawrence, Gregory B.; Murdoch, Peter S.
2013-01-01
Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the northeastern USA but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in a 4144-km2 area of the Catskill region of New York, where acidic deposition levels are among the highest in the East.More than 40% of 95 streams sampled in the southern Catskill Mountains were determined to be acidified and had inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota. More than 80% likely exceeded this threshold during the highest flows, but less than 10% of more than 100 streams sampled were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50% to 80% at 200 sites across the region, but median base saturation in the upper 10 cm of the B horizon was less than 20% across the region and was only 2% in the southern area. Aluminum is likely to be interfering with root uptake of calcium in the mineral horizon in approximately half the sampled watersheds. Stream chemistry was highly variable over the Catskill region and, therefore, did not always reflect the calcium depletion of the B horizon that our sampling suggested was nearly ubiquitous throughout the region. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Salice, Christopher J; Anderson, Todd A; Anderson, Richard H; Olson, Adric D
2018-04-25
Per- and polyfluoroalkyl substances (PFASs) continue to receive significant attention with particular concern for PFASs such as perfluorooctane sulfonate (PFOS) which was a constituent of Aqueous Film-Forming Foam used widely as a fire suppressant for aircraft since the 1970 s. We were interested in the potential for risk to ecological receptors inhabiting Cooper Bayou which is adjacent to two former fire-training areas (FTAs) at Barksdale Air Force Base, LA. Previous research showed higher PFOS concentrations in surface water and biota from Cooper Bayou compared to reference sites. To estimate risk, we compared surface water concentrations from multiple sites within Cooper Bayou to several PFOS chronic toxicity benchmarks for freshwater aquatic organisms (∼0.4-5.1 µg PFOS/L), and showed probility of exceedances from 0.04 to 0.5 suggesting a potential for adverse effects in the most contaminated habitats. A tissue residue assessment similarly showed some exceedance of benchmarks but with with a lower probability (max = 0.17). Both FTAs have been inactive for more than a decade so exposures (and, thus, risks) are expected to decline. Several uncertainties limit confidence in our risk estimates and include, highly dynamic surface water concentrations and limited chronic toxicity data for relevant species. Also, we have little data concerning organisms higher in the food chain which may receive higher lifetime exposures given the potential for PFOS to bioaccumulate and the longevity of many of these organisms. Overall, this study suggests PFOS can occur at concentrations that may cause adverse effects to ecological receptors although additional, focused research is needed to reduce uncertainties. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Land cover controls on depression-focused recharge: an example from southern Ontario
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Greenwood, W. J.
2015-12-01
The Oak Ridges Moraine (ORM) is a critical hydrogeologic feature in southern Ontario. Although previous research has highlighted the implications of spatially-focused recharge in closed topographic depressions for regional groundwater resources, such depression-focused recharge (DFR) has not been empirically demonstrated on the ORM. Permeable surficial sands and gravels mantling much of the ORM imply that water fluxes will largely be vertical recharge rather than lateral downslope transfer into depressions. Nevertheless, lateral fluxes may occur in winter and spring, when concrete frost development encourages surface runoff of rainfall and snowmelt. The potential for DFR was examined under forest and agricultural land cover with similar soils and surficial geology. Soil water contents, soil temperatures and ground frost thickness were measured at the crest and base of closed depressions in two agricultural fields and two forest stands on permeable ORM outcrops. Recharge from late-fall to the end of spring snowmelt was estimated via 1-d water balances and surface-applied bromide tracing. Both forest and agricultural sites experienced soil freezing; however, greater soil water contents prior to freeze-up at the latter led to concrete soil frost development. This resulted in lateral movement of snowmelt and rainfall into topographic depressions and surface ponding, which did not occur in forest depressions. Water balance recharge exceeded estimates from the bromide tracer approach at all locations; nevertheless, both methods indicated DRF exceeded recharge at the depression crest in agricultural areas with little difference in forest areas. Water balance estimates suggest winter-spring DFR (1300 - 2000 mm) is 3-5× recharge on level agricultural sites. Differences in the potential for DFR between agricultural and forest land covers have important implications for the spatial variability of recharge fluxes and the quality of recharging water on the ORM.
Lopez, M.A.; Giovannelli, R.F.
1984-01-01
Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above their method detection levels, but those that were detected were above the nondetection level. The same six locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. No metals that exceeded the Regional Screening Levels for Industrial Soils as classified by the U.S. Environmental Protection Agency were detected at any of the six Old Incinerator Area locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina. Because South Carolina is adjacent to Georgia and the soils in the coastal plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The only metal detected above the ambient background levels for South Carolina was barium. A surface-water sample collected from a tributary west and north of the Old Incinerator Area was analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). The only volatile organic and (or) semivolatile organic compound that was detected above the laboratory reporting level was toluene. The compounds 4-isopropyl-1-methylbenzene and isophorone were detected above the nondetection level but below the laboratory reporting level and were estimated. These compounds were detected at levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency National Primary Drinking Water Standard. Iron was the only inorganic compound detected in the surface-water sample that exceeded the maximum contaminant level set by the U.S. Environmental Protection Agency National Secondary Drinking Water Standard. No other inorganic compounds exceeded the maximum contaminant levels for the U.S. Environmental Protection Agency National Primary Drinking Water Standard, National Secondary Drinking Water Standard, or the Georgia In-Stream Water Quality Standard.
Climate change impacts on projections of excess mortality at ...
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f
Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.
2017-08-14
A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.
Abbott, Marvin M.; Tortorelli, R.L.; Becker, M.F.; Trombley, T.J.
2003-01-01
This report is an overview of water resources in and near the Wichita and Affiliated Tribes treaty lands in western Oklahoma. The tribal treaty lands are about 1,140 square miles and are bordered by the Canadian River on the north, the Washita River on the south, 98? west longitude on the east, and 98? 40' west longitude on the west. Seventy percent of the study area lies within the Washita River drainage basin and 30 percent of the area lies within the Canadian River drainage basin. March through June are months of greatest average streamflow, with 49 to 57 percent of the annual streamflow occurring in these four months. November through February, July, and August have the least average streamflow with only 26 to 36 percent of the annual streamflow occurring in these six months. Two streamflow-gaging stations, Canadian River at Bridgeport and Cobb Creek near Fort Cobb, indicated peak streamflows generally decrease with regulation. Two other streamflow-gaging stations, Washita River at Carnegie and Washita River at Anadarko, indicated a decrease in peak streamflows after regulation at less than the 100-year recurrence and an increase in peak streamflows greater than the 100-year recurrence. Canadian River at Bridgeport and Washita River at Carnegie had estimated annual low flows that generally increased with regulation. Cobb Creek near Fort Cobb had a decrease of estimated annual low flows after regulation. There are greater than 900 ground-water wells in the tribal treaty lands. Eighty percent of the wells are in Caddo County.The major aquifers in the study area are the Rush Springs Aquifer and portions of the Canadian River and Washita River valley alluvial aquifers. The Rush Springs Aquifer is used extensively for irrigation as well as industrial and municipal purposes, especially near population centers.The Canadian River and Washita River valley alluvial aquifers are not used extensively in the study area. Well yields from the Rush Springs Aquifer ranged from 11 to greater than 850 gallons per minute. The Rush Springs Aquifer is recharged by the infiltration of precipitation. The estimated recharge is about 1.80 inches per year evenly distributed over the outcrop of the aquifer in the study area. Principal factors affecting the water quality in the study area include geology, agricultural practices,and oil and gas production. Calcium, magnesium, sulfate, and bicarbonate are the dominant dissolved constituents in water in the study area. Interquartile dissolved-solids concentrations in surface-water samples in the study area generally were greater than interquartile concentrations in ground-water samples. Median dissolved-solids concentrations for ground-water samples from Canadian River, Ionine Creek, Spring Creek,and Washita River Basins, which ranged from 535 to 1,195 milligrams per liter,exceeded the U.S. Environmental Protection Agency Secondary Drinking Water Standard of 500 milligrams per liter. Interquartile sulfate concentrations in surface-water samples in the study area generally were greater than interquartile concentrations in ground-water samples. Median sulfate concentrations from ground-water samples in the Canadian River, IonineCreek,and Spring Creek Basins, which ranged from 385 to 570 milligrams per liter, exceeded the U.S. Environmental Protection Agency Secondary Drinking Water Standard of 250 milligrams per liter. Nitrite plus nitrate as nitrogen concentrations in surface-water samples in the study area generally were less than concentrations in ground-water samples. The median nitrite plus nitrate as nitrogen concentration in ground water was 9.8 milligrams per liter, suggesting almost one-half the ground-water samples exceeded the U.S. Environmental Protection Agency Primary Drinking Water Standard (10 milligrams per liter). An estimated 100 million gallons of water per day were withdrawn from surface and ground water for all uses in
Mass, surface area and number metrics in diesel occupational exposure assessment.
Ramachandran, Gurumurthy; Paulsen, Dwane; Watts, Winthrop; Kittelson, David
2005-07-01
While diesel aerosol exposure assessment has traditionally been based on the mass concentration metric, recent studies have suggested that particle number and surface area concentrations may be more health-relevant. In this study, we evaluated the exposures of three occupational groups-bus drivers, parking garage attendants, and bus mechanics-using the mass concentration of elemental carbon (EC) as well as surface area and number concentrations. These occupational groups are exposed to mixtures of diesel and gasoline exhaust on a regular basis in various ratios. The three groups had significantly different exposures to workshift TWA EC with the highest levels observed in the bus garage mechanics and the lowest levels in the parking ramp booth attendants. In terms of surface area, parking ramp attendants had significantly greater exposures than bus garage mechanics, who in turn had significantly greater exposures than bus drivers. In terms of number concentrations, the exposures of garage mechanics exceeded those of ramp booth attendants by a factor of 5-6. Depending on the exposure metric chosen, the three occupational groups had quite different exposure rankings. This illustrates the importance of the choice of exposure metric in epidemiological studies. If these three occupational groups were part of an epidemiological study, depending on the metric used, they may or may not be part of the same similarly exposed group (SEG). The exposure rankings (e.g., low, medium, or high) of the three groups also changes with the metric used. If the incorrect metric is used, significant misclassification errors may occur.
BOREAS AFM-08 ECMWF Hourly Surface and Upper Air Data for the SSA and NSA
NASA Technical Reports Server (NTRS)
Viterbo, Pedro; Betts, Alan; Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-8 team focused on modeling efforts to improve the understanding of the diurnal evolution of the convective boundary layer over the boreal forest. This data set contains hourly data from the European Center for for Medium-Range Weather Forecasts (ECMWF) operational model from below the surface to the top of the atmosphere, including the model fluxes at the surface. Spatially, the data cover a pair of the points that enclose the rawinsonde sites at Candle Lake, Saskatchewan, in the Southern Study Area (SSA) and Thompson, Manitoba, in the Northern Study Area (NSA). Temporally, the data include the two time periods of 13 May 1994 to 30 Sept 1994 and 01 Mar 1996 to 31 Mar 1997. The data are stored in tabular ASCII files. The number of records in the upper air data files may exceed 20,000, causing a problem for some software packages. The ECMWF hourly surface and upper air data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Surface subsidence and collapse in relation to extraction of salt and other soluble evaporites
Ege, John R.
1979-01-01
Extraction of soluble minerals, whether by natural or man-induced processes, can result in localized land-surface subsidence and more rarely sinkhole formation. One process cited by many investigators is that uncontrolled dissolving of salt or other soluble evaporites can create or enlarge underground cavities, thereby increasing the span of the unsupported roof to the strength limit of the overlying rocks. Downwarping results when spans are exceeded, or collapse of the undermined roof leads to upward sloping or chimneying of the overburden rocks. If underground space is available for rock debris to collect, the void can migrate to the surface with the end result being surface subsidence or collapse. In North America natural solution subsidence and collapse features in rocks ranging in age from Silurian to the present are found in evaporite terranes in the Great Plains from Saskatchewan in the north to Texas and New Mexico in the south, in the Great Lakes area, and in the southeastern States. Man-induced subsidence and collapse in evaporites are generally associated with conventional or solution mining, oilfield operations, and reservoir and dam construction, and can be especially hazardous in populated or built-up areas.
Sullivan, Daniel J.; Stinson, Troy W.; Crawford, J. Kent; Schmidt, Arthur R.; Colman, John A.
1998-01-01
The distribution of pesticides and other synthetic organic compounds in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin was examined from 1987 through 1990 as part of the pilot National Water-Quality Assesssment Program conducted by the U.S. Geological Survey. Historical data for water and sediment collected from 1975 through 1986 were similar to data collected from 1987 through 1990. Some compounds were detected in concentrations that exceed U.S. Environmental Protection Agency water-quality criteria. Results from pesticide sampling at four stations in 1988 and 1989 identified several agricultural pesticides that were detected more frequently and at higher concentrations in urban areas than in agricultural areas. Results from herbicide sampling at 17 stations in the Kankakee and Iroquois River Basins in 1990 indicated that atrazine concentrations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water during runoff periods. Results from sampling for volatile and semivolatile organic compounds in water indicate that, with one exception, all stations at which more than one compound was detected were within 2 miles downstream from the nearest point source. Detections at two stations in the Chicago urban area accounted for 37 percent of the total number of detections. Concentrations of tetrachloroethylene, trichloroethylene, and 1,2-dichlorethane from stations in the Des Plaines River Basin exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water in one and two samples from the two stations in the Chicago area. Phenols and pentachlorophenols were detected most frequently in the Des Plaines River Basin where point-source discharges were common. Phenol concentrations were significantly different among the Des Plaines, Kankakee, and Fox River Basins. Phenols and pentachlorophenols never exceeded the general use and secondary contact standards. Results from a 1989 synoptic survey of semivolatile organic compounds in sediment indicate that these compounds were detected most frequently at sites in the Chicago urban area. Of the 17 stations at which 10 or more compounds were detected, 14 were located in the Des Plaines River subbasin, and 1 was on the Illinois River mainstem. As was the case with organic compounds in water, each of these sites was located within 2 miles downstream from point sources. Biota samples were collected and analyzed for organochlorines and polynuclear aromatic hydrocarbons in 1989 and 1990. The most commonly detected compound in both years was p,p'-DDE. National Academy of Science recommendations for chlordane and dieldrin for protection of predators were exceeded in 19 and 10 samples, respectively, when the 1989 and 1990 data were combined. In the nine fish-fillet samples collected in 1989, concentrations exceeded U.S. Environmental Protection Agency fish-tissue criteria in nine fillets for p,p'-DDE and five fillets for dieldrin.
Ice-Shelf Melting Around Antarctica
NASA Astrophysics Data System (ADS)
Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.
2013-07-01
We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.
Elliott, Sarah M.; VanderMeulen, David
2017-01-01
Anthropogenic chemicals and their potential for adverse biological effects raise concern for aquatic ecosystem health in protected areas. During 2013–15, surface waters of four Midwestern United States national parks were sampled and analyzed for wastewater indicators, pharmaceuticals, personal care products, and pesticides. More chemicals and higher concentrations were detected at the two parks with greater urban influences (Mississippi National River and Recreation Area and Indiana Dunes National Lakeshore) than at the two more remote parks (Apostle Islands National Lakeshore and Isle Royale National Park). Atrazine (10–15 ng/L) and N,N-diethyl-meta-toluamide (16–120 ng/L) were the only chemicals detected in inland lakes of a remote island national park (Isle Royale National Park). Bisphenol A and organophosphate flame retardants were commonly detected at the other sampled parks. Gabapentin and simazine had the highest observed concentrations (> 1000 ng/L) in three and two samples, respectively. At the two parks with urban influences, metolachlor and simazine concentrations were similar to those reported for other major urban rivers in the United States. Environmental concentrations of detected chemicals were often orders of magnitude less than standards or reference values with three exceptions: (1) hydrochlorothiazide exceeded a human health-based screening value in seven samples, (2) estrone exceeded a predicted critical environmental concentration for fish pharmacological effects in one sample, and (3) simazine was approaching the 4000 ng/L Maximum Contaminant Level in one sample even though this concentration is not expected to reflect peak pesticide use. Although few environmental concentrations were approaching or exceeded standards or reference values, concentrations were often in ranges reported to elicit effects in aquatic biota. Data from this study will assist in establishing a baseline for chemicals of concern in Midwestern national parks and highlight the need to better understand the sources, pathways, and potential adverse effects to aquatic systems in national parks.
Elliott, Sarah M; VanderMeulen, David D
2017-02-01
Anthropogenic chemicals and their potential for adverse biological effects raise concern for aquatic ecosystem health in protected areas. During 2013-15, surface waters of four Midwestern United States national parks were sampled and analyzed for wastewater indicators, pharmaceuticals, personal care products, and pesticides. More chemicals and higher concentrations were detected at the two parks with greater urban influences (Mississippi National River and Recreation Area and Indiana Dunes National Lakeshore) than at the two more remote parks (Apostle Islands National Lakeshore and Isle Royale National Park). Atrazine (10-15ng/L) and N,N-diethyl-meta-toluamide (16-120ng/L) were the only chemicals detected in inland lakes of a remote island national park (Isle Royale National Park). Bisphenol A and organophosphate flame retardants were commonly detected at the other sampled parks. Gabapentin and simazine had the highest observed concentrations (>1000ng/L) in three and two samples, respectively. At the two parks with urban influences, metolachlor and simazine concentrations were similar to those reported for other major urban rivers in the United States. Environmental concentrations of detected chemicals were often orders of magnitude less than standards or reference values with three exceptions: (1) hydrochlorothiazide exceeded a human health-based screening value in seven samples, (2) estrone exceeded a predicted critical environmental concentration for fish pharmacological effects in one sample, and (3) simazine was approaching the 4000ng/L Maximum Contaminant Level in one sample even though this concentration is not expected to reflect peak pesticide use. Although few environmental concentrations were approaching or exceeded standards or reference values, concentrations were often in ranges reported to elicit effects in aquatic biota. Data from this study will assist in establishing a baseline for chemicals of concern in Midwestern national parks and highlight the need to better understand the sources, pathways, and potential adverse effects to aquatic systems in national parks. Copyright © 2016. Published by Elsevier B.V.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Arresting relaxation in Pickering Emulsions
NASA Astrophysics Data System (ADS)
Atherton, Tim; Burke, Chris
2015-03-01
Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.
Electron spectroscopy of the diamond surface
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1981-01-01
The diamond surface is studied by ionization loss spectroscopy and Auger electron spectroscopy. For surfaces heated to temperatures not exceeding 900 C, the band gap was found to be devoid of empty states in the absence of electron beam effects. The incident electron beam generates empty states in the band gap and loss of structure in the valence band for these surfaces. A cross section of 1.4 x 10 to the -19th sq cm was obtained for this effect. For surfaces heated to temperatures exceeding 900 C the spectra were identical to those from surfaces modified by the electron beam. The diamond surface undergoes a thermal conversion in its electronic structure at about 900 C.
Klein, Terry L.; Cannon, Michael R.; Fey, David L.
2004-01-01
Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and zinc typically are adsorbed to the surface coatings of streambed-sediment grains. Mine waste and mill tailings contain high concentrations of arsenic, cadmium, copper, lead, and zinc in a quartz-rich matrix. Most of the waste sites that were sampled had low acid-generating capacity, although one site (fine-grained mill tailings from the Nellie Grant mine deposited in the upper part of lower Frohner Meadows) had extremely high acid-generating potential because of abundant fine-grained pyrite. Two distinct sites were identified as metal sources based on streambed-sediment samples, cores in the meadow substrate, and mine and mill-tailings samples. The Frohner mine and mill site contribute material rich in arsenic and lead; similar material from the Nellie Grant mine and mill site is rich in cadmium and zinc.
Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State
Peters, N.E.; Driscoll, C.T.
1987-01-01
Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.
NASA Astrophysics Data System (ADS)
Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Burrell, K. H.
2008-11-01
Long-wavelength turbulence (kρi< 1) is locally suppressed simultaneously with a rapid but transient increase in local poloidal flow shear at the appearance of low-order rational qmin surfaces in negative central shear discharges. At these events, reductions in energy transport are observed and Internal Transport Barriers (ITBs) may form. Application of off-axis ECH slows the q-profile evolution and increases ρqmin, both of which enhance turbulence measurements using a new high-sensitivity large-area (8x,8) 2D BES array. The measured transient turbulence suppression is localized to the low-order rational surface (qmin= 2, 5/2, 3, etc.). Measured poloidal flow shear transiently exceeds the turbulence decorrelation rate, which is consistent with shear suppression. The localized suppression zone propagates radially outward, nearly coincident with the low-order surface.
Global Assessment of Bisphenol A in the Environment
Corrales, Jone; Kristofco, Lauren A.; Steele, W. Baylor; Yates, Brian S.; Breed, Christopher S.; Williams, E. Spencer
2015-01-01
Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs. PMID:26674671
Dynamics of surface temperatures at the Crimean peninsula territory
NASA Astrophysics Data System (ADS)
Danova, T. E.; Nikiforova, M. P.
2017-11-01
The analysis of the surface temperaturesvariability (monthly mean) over the period 1969-2014 by frequency of exceeding the climatic norm (1961-1990) is presented. An increaseof such situations in 3.5 times over entire Crimean peninsula territoryis revealed. "Strong exceeding" (from 2.0σ to 2.5σ) is characterized by an increase in the number of cases from 6% to 15% and "very strong exceeding" (> 2.5σ) - from 0% to 18%. The value of coefficients in the "very strong exceeding" reaches 5.9σ. The pronounced effect of surface air temperature growing indicates an increase in threats which creates thermal stress on human health. The main categories are vulnerable elderly people, as well as the people do not acclimate to an unfamiliar thermal environment (in this category in most of the representatives of the tourist flow). While maintaining the observed trends, extreme heat periods will be a serious threat to the health of persons that has "epidemical" potential in the European region.
Digital holographic interferometry for characterizing deformable mirrors in aero-optics
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme
2016-08-01
Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.
Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin
2018-04-01
A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this correlation was significant between total dissolved nitrogen (TDN), TN, total dissolved phosphorus (TDP), and TP. The six heavy metals (Cu, Ni, Pb, Zn, Mn, and Cr) in surface runoff of different ecological restoration areas were strongly related to each other, and were significantly related to the TSS.
Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity
Nelson, R.M.; Kamp, L.W.; Matson, D.L.; Irwin, P.G.J.; Baines, K.H.; Boryta, M.D.; Leader, F.E.; Jaumann, R.; Smythe, W.D.; Sotin, Christophe; Clark, R.N.; Cruikshank, D.P.; Drossart, P.; Pearl, J.C.; Hapke, B.W.; Lunine, J.; Combes, M.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Filacchione, G.; Langevin, R.Y.; McCord, T.B.; Mennella, V.; Nicholson, P.D.; Sicardy, B.
2009-01-01
Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March–April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH3 frost over a water ice substrate. NH3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).
A passive means for cancellation of structurally radiated tones.
Zapfe, Jeffrey A; Ungar, Eric E
2003-01-01
The concept of cancellation of constant-frequency sound radiated from a vibrating surface by means of an attached mechanical oscillator is discussed. It is observed that the mass of a mechanical oscillator whose spring is attached to the vibrating surface will vibrate at comparatively large amplitudes and out of phase with that surface, provided that the surface vibrates at a frequency that is slightly higher than the oscillator's natural frequency. From this observation it is concluded that an oscillator's mass with a relatively small surface area can produce a volume velocity that is equal and opposite to that of the vibrating surface, resulting in cancellation of the sound radiated from the surface. Practical considerations in the design of such an oscillator are discussed, and the canceling performance from oscillators consisting of edge-supported circular disks is analyzed. An experimental canceling oscillator consisting of an edge-supported disk is described, and measurements made with this disk attached to a piston are shown to be in good agreement with analytical predictions. A tonal noise reduction exceeding 20 dB was demonstrated experimentally.
Central Facilities Area Sewage Lagoon Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Mark R.
2013-12-01
The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreasedmore » in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.« less
Reconnaissance investigation of brine in the eastern Rub al Khali, Kingdom of Saudi Arabia
Smith, C.L.
1981-01-01
Al Uruq al Mu'taridah-Umm as Samim area is located in a large topographic depression in the eastern Rub al Khali desert where playas several thousand square kilometers in area are exposedo A crust of eolian sand cemented with gypsum and halite has formed on many playa surfaces. Anhydrite nodules are common in the sampled area, where the depth to ground water generally exceeds 172 Cmo The chemistry of the three ground-water samples collected near the water well Ramallah-1 (lat 22?10'20'' N., long 54?20'37'' E.) is similar to that of sabkhah-related brines on the coast of the United Arab Emirates. Although there is no indication of economic quantities of evaporite minerals in the sampled area, the extent of the depression and its unique geologic environment recommend it for resource-evaluation studies.
Surface truth measurements of optical properties of the waters in the northern Gulf of California
NASA Technical Reports Server (NTRS)
Austin, R. W.
1972-01-01
Gemini and Apollo flight photographs of the southwestern United States and northwestern Mexico, and especially of the Colorado River delta and the northwestern Gulf of California, are considered. The clearly discernible water coloration in the imagery led to the suggestion that remote sensing techniques may be usefully applied in such areas to determine bathymetric information. Measurements of the optical properties of the water in this region obtained in March 1971 showed that generally low transmissivities prevailed and at no station did the beam transmittance for the total water column exceed 2.5 x 10 to the -8th power. It was concluded that any correlation between water depth and spectral radiance at the surface must result from secondarily related phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity.more » Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.« less
NASA Astrophysics Data System (ADS)
Engeman, Richard M.; Meyer, Joseph S.; Allen, John B.
2017-01-01
Feral swine are globally known as one of the most destructive invasive vertebrates, damaging native habitats, native plants and animals, agriculture, infrastructure, spreading diseases. There has been little quantification on their disturbance to archaeological sites across a broad landscape. Over 6 years we inspected 293 significant archaeological sites for swine disturbance across a vast area. We found a 42% prevalence of swine disturbance among all sites, with prevalence not distinguishable among prehistoric sites, historic sites, and sites with both components. The areas of disturbance mapped within three historic homestead sites showed 5-26% of total site surface area rooted. Disturbance was not evident upon re-inspection of one of these sites after 18 months, indicating how evidence of disturbance can be obscured in this environment. Thus, our observed 42% prevalence of disturbance should be considered a minimum for disturbance occurring through time. Artifacts depths were <10 cm of the surface at 85% of the sites and <20 cm of the surface for 90% of the sites. Feral swine rooting commonly exceeds 20 cm in depth, especially in soft sandy substrates typical of Florida, making the great majority of the studied sites highly vulnerable to artifact damage or displacement.
Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2).
Majano, Gerardo; Pérez-Ramírez, Javier
2013-02-20
Copper(II) hydroxide is converted directly to HKUST-1 (Cu(3) (btc)(2) ) after only 5 min at room-temperature in aqueous ethanolic solution without the need of additional solvents. Scale up to the kilogram scale does not influence porous properties yielding pure-phase product with a remarkable total surface area exceeding 1700 m(2) g(-1) featuring aggregates of nanometer-sized crystals (<600 nm) and extremely high space-time yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.
2016-05-02
The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructuredmore » silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.« less
46 CFR 116.427 - Fire load of accommodation and service spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (7.5 pounds) of combustibles per square meter (square foot) of deck area. (b) When required under... calculations must not exceed 15.0 kg (3 pounds) of combustibles per square meter (square foot) of deck area... not exceed 37.5 kg (7.5 pounds) of combustibles per square meter (square foot) of deck area. [CGD 85...
46 CFR 116.427 - Fire load of accommodation and service spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (7.5 pounds) of combustibles per square meter (square foot) of deck area. (b) When required under... calculations must not exceed 15.0 kg (3 pounds) of combustibles per square meter (square foot) of deck area... not exceed 37.5 kg (7.5 pounds) of combustibles per square meter (square foot) of deck area. [CGD 85...
46 CFR 116.427 - Fire load of accommodation and service spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (7.5 pounds) of combustibles per square meter (square foot) of deck area. (b) When required under... calculations must not exceed 15.0 kg (3 pounds) of combustibles per square meter (square foot) of deck area... not exceed 37.5 kg (7.5 pounds) of combustibles per square meter (square foot) of deck area. [CGD 85...
46 CFR 116.427 - Fire load of accommodation and service spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (7.5 pounds) of combustibles per square meter (square foot) of deck area. (b) When required under... calculations must not exceed 15.0 kg (3 pounds) of combustibles per square meter (square foot) of deck area... not exceed 37.5 kg (7.5 pounds) of combustibles per square meter (square foot) of deck area. [CGD 85...
46 CFR 116.427 - Fire load of accommodation and service spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (7.5 pounds) of combustibles per square meter (square foot) of deck area. (b) When required under... calculations must not exceed 15.0 kg (3 pounds) of combustibles per square meter (square foot) of deck area... not exceed 37.5 kg (7.5 pounds) of combustibles per square meter (square foot) of deck area. [CGD 85...
Land subsidence, groundwater levels, and geology in the Coachella Valley, California, 1993-2010
Sneed, Michelle; Brandt, Justin T.; Solt, Mike
2014-01-01
Land subsidence associated with groundwater-level declines has been investigated by the U.S. Geological Survey in the Coachella Valley, California, since 1996. Groundwater has been a major source of agricultural, municipal, and domestic supply in the valley since the early 1920s. Pumping of groundwater resulted in water-level declines as much as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the southern Coachella Valley began, resulting in a reduction in groundwater pumping and a recovery of water levels during the 1950s through the 1970s. Since the late 1970s, demand for water in the valley has exceeded deliveries of imported surface water, resulting in increased pumping and associated groundwater-level declines and, consequently, an increase in the potential for land subsidence caused by aquifer-system compaction. Global Positioning System (GPS) surveying and Interferometric Synthetic Aperture Radar (InSAR) methods were used to determine the location, extent, and magnitude of the vertical land-surface changes in the southern Coachella Valley during 1993–2010. The GPS measurements taken at 11 geodetic monuments in 1996 and in 2010 in the southern Coachella Valley indicated that the elevation of the land surface changed –136 to –23 millimeters (mm) ±54 mm (–0.45 to –0.08 feet (ft) ±0.18 ft) during the 14-year period. Changes at 6 of the 11 monuments exceeded the maximum expected uncertainty of ±54 mm (±0.18 ft) at the 95-percent confidence level, indicating that subsidence occurred at these monuments between June 1996 and August 2010. GPS measurements taken at 17 geodetic monuments in 2005 and 2010 indicated that the elevation of the land surface changed –256 to +16 mm ±28 mm (–0.84 to +0.05 ft ±0.09 ft) during the 5-year period. Changes at 5 of the 17 monuments exceeded the maximum expected uncertainty of ±28 mm (±0.09 ft) at the 95-percent confidence level, indicating that subsidence occurred at these monuments between August 2005 and August 2010. At each of these five monuments, subsidence rates were about the same between 2005 and 2010 as between 2000 and 2005. InSAR measurements taken between June 27, 1995, and September 19, 2010, indicated that the land surface subsided from about 220 to 600 mm (0.72 to 1.97 ft) in three areas of the Coachella Valley: near Palm Desert, Indian Wells, and La Quinta. In Palm Desert, the average subsidence rates increased from about 39 millimeters per year (mm/yr), or 0.13 foot per year (ft/yr), during 1995–2000 to about 45 mm/yr (0.15 ft/yr) during 2003–10. In Indian Wells, average subsidence rates for two subsidence maxima were fairly steady at about 34 and 26 mm/yr (0.11 and 0.09 ft/yr) during both periods; for the third maxima, average subsidence rates increased from about 14 to 19 mm/yr (0.05 to 0.06 ft/yr) from the first to the second period. In La Quinta, average subsidence rates for five selected locations ranged from about 17 to 37 mm/yr (0.06 to 0.12 ft/yr) during 1995–2000; three of the locations had similar rates during 2003–mid-2009, while the other two locations had increased subsidence rates. Decreased subsidence rates were calculated throughout the La Quinta subsidence area during mid-2009–10, however, and uplift was observed during 2010 near the southern extent of this area. Water-level measurements taken at wells near the subsiding monuments and in the three subsiding areas shown by InSAR generally indicated that the water levels fluctuated seasonally and declined annually from the early 1990s, or earlier, to 2010; some water levels in 2010 were at the lowest levels in their recorded histories. An exception to annually declining water levels in and near subsiding areas was observed beginning in mid-2009 in the La Quinta subsidence area, where recovering water levels coincided with increased recharge operations at the Thomas E. Levy Recharge Facility; decreased pumpage also could cause groundwater levels to recover. Subsidence concomitant with declining water levels and land-surface uplift concomitant with recovering water levels indicate that aquifer-system compaction could be causing subsidence. If the stresses imposed by the historically lowest water levels exceeded the preconsolidation stress, the aquifer-system compaction and associated land subsidence could be permanent.
Williams, Shannon D.; Aycock, Robert A.
2001-01-01
Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample from one well at a concentration of 1.2 micrograms per liter (?g/L). Acetone was detected in a sample from another well at a concentration of 10 ?g/L. Acetone also was detected in a duplicate sample from the same well at an estimated concentration of 7.2 ?g/L, which is less than the reporting limit for acetone. The only contaminant of concern detected was tetrachloroethylene. Tetrachloroethylene was detected in only one sample, and this detection was at an estimated concentration below the reporting limit. None of the VOC concentrations exceeded drinking water maximum contaminant levels for public water systems.
NASA Astrophysics Data System (ADS)
Kotthaus, S.; Grimmond, S.
2013-12-01
Global urbanisation brings increasingly dense and complex urban structures. To manage cities sustainably and smartly, currently and into the future under changing climates, urban climate research needs to advance in areas such as Central Business Districts (CBD) where human interactions with the environment are particularly concentrated. Measurement and modelling approaches may be pushed to their limits in dense urban settings, but if urban climate research is to contribute to the challenges of real cities those limits have to be addressed. The climate of cities is strongly governed by surface-atmosphere exchanges of energy, moisture and momentum. Observations of the relevant fluxes provide important information for improvement and evaluation of modelling approaches. Due to the CBD's heterogeneity, a very careful analysis of observations is required to understand the relevant processes. Current approaches used to interpret observations and set them in a wider context may need to be adapted for use in these more complex areas. Here, we present long-term observations of the radiation balance components and turbulent fluxes of latent heat, sensible heat and momentum in the city centre of London. This is one of the first measurement studies in a CBD covering multiple years with analysis at temporal scales from days to seasons. Data gathered at two sites in close vicinity, but with different measurement heights, are analysed to investigate the influence of source area characteristics on long-term radiation and turbulent fluxes. Challenges of source area modelling and the critical aspect of siting in such a complex environment are considered. Outgoing long- and short-wave radiation are impacted by the anisotropic nature of the urban surface and the high reflectance materials increasingly being used as building materials. Results highlight the need to consider the source area of radiometers in terms of diffuse and direct irradiance. Sensible heat fluxes (QH) are positive all year round, even at night. QH systematically exceeds input from net all-wave radiation (Q*), probably sustained by a both storage and anthropogenic heat fluxes (QF). Model estimates suggest QF can exceed the Q* nearly all year round. The positive QH inhibits stable conditions, but the stability classification is determined predominantly by the pattern of friction velocity over the rough urban surface. Turbulent latent heat flux variations are controlled (beyond the available energy) by rainfall due to the small vegetation cover. The Bowen ratio is mostly larger than one. Analysis of the eddy covariance footprint surface controls for the different land cover types by flow patterns for measurements at the two heights suggests the spatial variations of the sensible heat flux observed are partly related to changes in surface roughness, even at the local scale. Where the source areas are most homogeneous, flow conditions are vertically consistent - even if initial morphometric parameters suggested the measurements may be below the blending height. Turbulence statistics and momentum flux patterns prove useful for the interpretation of turbulent heat exchanges observed.
Beckwith, Michael A.
2003-01-01
Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.
Flash floods of August 10, 2009, in the Villages of Gowanda and Silver Creek, New York
Szabo, Carolyn O.; Coon, William F.; Niziol, Thomas A.
2011-01-01
Late during the night of August 9, 2009, two storm systems intersected over western New York and produced torrential rain that caused severe flash flooding during the early morning hours of August 10 in parts of Cattaraugus, Chautauqua, and Erie Counties. Nearly 6 inches of rain fell in 1.5 hours as recorded by a National Weather Service weather observer in Perrysburg, which lies between Gowanda and Silver Creek-the communities that suffered the most damage. This storm intensity had an annual exceedance probability of less than 0.2 percent (recurrence interval greater than 500 years). Although flooding along Cattaraugus Creek occurred elsewhere, Cattaraugus Creek was responsible for very little flooding in Gowanda. Rather the small tributaries, Thatcher Brook and Grannis Brook, caused the flooding in Gowanda, as did Silver Creek and Walnut Creek in the Village of Silver Creek. Damages from the flooding were widespread. Numerous road culverts were washed out, and more than one-quarter of the roads in Cattaraugus County were damaged. Many people were evacuated or rescued in Gowanda and Silver Creek, and two deaths occurred during the flood in Gowanda. The water supplies of both communities were compromised by damages to village reservoirs and water-transmission infrastructures. Water and mud damage to residential and commercial properties was extensive. The tri-county area was declared a Federal disaster area and more than $45 million in Federal disaster assistance was distributed to more than 1,500 individuals and an estimated 1,100 public projects. The combined total estimate of damages from the flash floods was greater than $90 million. Over 240 high-water marks were surveyed by the U.S. Geological Survey; a subset of these marks was used to create flood-water-surface profiles for four streams and to delineate the areal extent of flooding in Gowanda and Silver Creek. Flood elevations exceeded previously defined 0.2-percent annual exceedance probability (500-year recurrence interval) elevations by 2 to 4 feet in Gowanda and as much as 6 to 8 feet in Silver Creek. Most of the high-water marks were used in indirect hydraulic computations to estimate peak flows for four streams. The peak flows in Grannis Brook and Thatcher Brook were computed, using the slope-area method, to be 1,400 and 7,600 cubic feet per second, respectively, and peak flow in Silver Creek was computed, using the width-contraction method, to be 19,500 cubic feet per second. The annual exceedance probabilities for flows in these and other basins with small drainage areas that fell almost entirely within the area of heaviest precipitation were less than 0.2 percent (or recurrence intervals greater than 500 years). The peak flow in Cattaraugus Creek at Gowanda was computed, using the slope-area method, to be 33,200 cubic feet per second with an annual exceedance probability of 2.2 percent (recurrence interval of 45 years).
Sediment studies in the Assabet River, central Massachusetts, 2003
Zimmerman, Marc J.; Sorenson, Jason R.
2005-01-01
From its headwaters in Westborough, Massachusetts, to its confluence with the Sudbury River, the 53-kilometer-long Assabet River passes through a series of small towns and mixed land-use areas. Along the way, wastewater-treatment plants release nutrient-rich effluents that contribute to the eutrophic state of this waterway. This condition is most obvious where the river is impounded by a series of dams that have sequestered large amounts of sediment and support rooted and floating macrophytes and epiphytic algae. The water in parts of these impoundments may also have low concentrations of dissolved oxygen, another symptom of eutrophication. All of the impoundments had relatively shallow maximum water depths, which ranged from approximately 2.4 to 3.4 meters, and all had extensive shallow areas. Sediment volumes estimated for the six impoundments ranged from approximately 380 cubic meters in the Aluminum City impoundment to 580,000 cubic meters in the Ben Smith impoundment. The other impoundments had sediment volumes of 120,000 cubic meters (Powdermill), 67,000 cubic meters (Gleasondale), 55,000 cubic meters (Hudson), and 42,000 cubic meters (Allen Street). The principal objective of this study was the determination of sediment volume, extent, and chemistry, in particular, the characterization of toxic inorganic and organic chemicals in the sediments. To determine the bulk-sediment chemical-constituent concentrations, more than one hundred sediment cores were collected in pairs from the six impoundments. One core from each pair was sampled for inorganic constituents and the other for organic constituents. Most of the cores analyzed for inorganics were sectioned to provide information on the vertical distribution of analytes; a subset of the cores analyzed for organics was also sectioned. Approximately 200 samples were analyzed for inorganic constituents and 100 for organics; more than 10 percent were quality-control replicate or blank samples. Maximum bulk-sediment phosphorus concentrations in surface samples from the impoundments increased along a downstream gradient, with the exception of samples from the last impoundment, where the concentrations decreased. In addition, the highest phosphorus concentrations were generally in the surface samples; this finding may prove helpful if surface dredging is selected as a means to control phosphorus release from sediments. There is no known relation, however, between bulk-sediment concentration of phosphorus and the concentrations of phosphorus available to biota. Potentially toxic metals, including arsenic, cadmium, chromium, copper, nickel, lead, and zinc were frequently measured at concentrations that exceeded U.S. Environmental Protection Agency sediment-quality guidelines for the protection of aquatic life and that occasionally exceeded Massachusetts Department of Environmental Protection guidelines governing landfill disposal (reuse). Due to the effects of matrix interference and sample dilution on laboratory analyses, neither pesticides nor volatile organic compounds were detected at any sites. However, samples collected in other studies from nearby streams indicated the possibility that pesticides might have been detected in the impoundments if not for these analytical problems. Although polychlorinated biphenyl concentrations, as individual Aroclors, generally exceeded published U.S. Environmental Protection Agency guideline concentrations for potential effects on aquatic life, the U.S. Environmental Protection Agency guideline concentrations for human contact or the Massachusetts guidelines for landfill reuse were rarely exceeded. Concentrations of polycyclic aromatic hydrocarbons, both individually and total, frequently were greater than guideline concentrations. Concentrations of total extractable petroleum hydrocarbons did not exceed Massachusetts guideline concentrations in any samples. When the sediment analytes from surface samples are considered togethe
Meteorological Analysis of Icing Conditions Encountered in Low-Altitude Stratiform Clouds
NASA Technical Reports Server (NTRS)
Kline, D. B.; Walker, J. A.
1951-01-01
Liquid-water content, droplet size, and temperature data measured during 22 flights in predominatly stratiform clouds through the 1948-49 and the 1949-50 winters are presented. Several icing encounters were of greater severity than those previously measured over the same geographical area, but were within the limits of similar measurements obtained over different terrain within the United States. An analysis of meteorological conditions existing during the 74 flights conducted for four winters indicated an inverse relation of liquid-water concentration to maximum horizontal extent of icing clouds. Data on the vertical extent of supercooled clouds are also presented. Icing conditions were most likely to occur in the southwest and northwest quadrants of a cyclone area, and least likely to occur in the southeast and northeast quadrants where convergent air flow and lifting over the associated warm frontal surface usually cause precipitation. Additional data indicated that, icing conditions were usually encountered in nonprecipitating clouds existing at subfreezing temperatures and were unlikely over areas where most weather observing stations reported the existence of precipitation. Measurements of liquid-water content obtained during 12 flights near the time and location of radiosonde observations were compared with theoretical values. The average liquid-water content of a cloud layer, as measured by the multicylinder technique, seldom exceeded two-thirds of that which could be released by adiabatic lifting. Local areas near the cloud tops equaled or occasionally exceeded the calculated maximum quantity of liquid water.
NASA Technical Reports Server (NTRS)
Strong, A. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Through combined use of imagery from ERTS-1 and NOAA-2 satellites was found that when the sun elevation exceeds 55 degrees, the ERTS-1 imagery is subject to considerable contamination by sunlight even though the actual specular point is nearly 300 nautical miles from nadir. Based on sea surface wave slope information, a wind speed of 10 knots will theoretically provide approximately 0.5 percent incident solar reflectance under observed ERTS multispectral scanner detectors. This reflectance nearly doubles under the influence of a 20 knot wind. The most pronounced effect occurs in areas of calm water where anomalous dark patches are observed. Calm water at distances from the specular point found in ERTS scenes will reflect no solar energy to the multispectral scanner, making these regions stand out as dark areas in all bands in an ocean scene otherwise comprosed by a general diffuse sunlight from rougher ocean surfaces. Anomalous dark patches in the outer parts of the glitter zones may explain the unusual appearance of some scenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Štengl, Václav, E-mail: stengl@iic.cas.cz; Henych, Jiří; Grygar, Tomáš
Nanostructured TiO{sub 2} and mixed oxides of Ti and Fe, Hf, In, Mn or Zr -were prepared by homogeneous hydrolysis of aqueous solution of metal sulphates with urea. The oxides were characterised by X-ray powder diffraction (XRD), scanning electron microscopy, particle size distribution, surface area and porosity. The oxide materials consists of a few nanometre primary crystals (mainly anatase) arranged in a few micrometre regular spherical agglomerates with specific surface area 133–511 m{sup 2} g{sup −1}. The FTIR diffuse spectroscopy was used for monitoring chemical degradation of trimethylphosphate (TMP) as a surrogate for organo-phosphorus pesticides under ambient and higher temperatures.more » Undoped TiO{sub 2} and Ti,Mn-mixed oxide were most active in cleavage (hydrolysis) of CH{sub 3}O from TMP at room temperature and 100 °C. Cleavage of CH{sub 3}O in the other studied mixed oxides was not complete until temperature exceeds the boiling point of TMP.« less
Surface protection of light metals by one-step laser cladding with oxide ceramics
NASA Astrophysics Data System (ADS)
Nowotny, S.; Richter, A.; Tangermann, K.
1999-06-01
Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.
Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia).
Youssef, Mohamed; El-Sorogy, Abdelbaset; Al Kahtany, Khaled; Al Otiaby, Naif
2015-07-15
Thirty eight surface sediments samples have been collected in the area around Tarut Island, Saudi Arabian Gulf to determine the spatial distribution of metals, and to assess the magnitude of pollution. Total concentrations of Fe, Mn, As, B, Cd, Co, Cr, Cu, Hg, Mo, Pb, Se, and Zn in the sediments were measured using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Nature of sediments and heavy metals distribution reflect marked changes in lithology, biological activities in Tarut bay. Very high arsenic concentrations were reported in all studied locations from Tarut Island. The concentrations of Mercury are generally high comparing to the reported values from the Gulf of Oman, Red Sea. The concentrations of As and Hg exceeded the wet threshold safety values (MEC, PEC) indicating possible As and Hg contamination. Dredging and land filling, sewage, and oil pollution are the most important sources of pollution in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Zhi-Qiang; Brun, Antonio; Price, Edwin R; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique
2015-01-01
Studies on birds have led to the hypothesis that increased intestinal absorption between enterocytes (paracellular) evolved as a compensation for smaller intestinal size in fliers, which was perhaps selected to minimize the mass of digesta carried. This hypothesis predicts that bats will also exhibit relatively reduced intestinal size and high paracellular absorption, compared with nonflying mammals. Published studies on three bat species indicate relatively high paracellular absorption. One mechanism for increasing paracellular absorption per cm2 small intestine (SI) is increased number of tight junctions (TJs) across which paracellular absorption occurs. To our knowledge, we provide the first comparative analysis of enterocyte size and number in flying and nonflying mammals. Intestines of insectivorous bats Tadarida brasiliensis were compared with Mus musculus using hematoxylin and eosin staining method. Bats had shorter and narrower SIs than mice, and after correction for body size difference by normalizing to mass3/4, the bats had 40% less nominal surface area than the mouse, as predicted. Villous enhancement of surface area was 90% greater in the bat than in the mouse, mainly because of longer villi and a greater density of villi in bat intestines. Bat and mouse were similar in enterocyte diameter. Bats exceeded mice by 54.4% in villous area per cm length SI and by 95% in number of enterocytes per cm2 of the nominal surface area of the SI. Therefore, an increased density of TJs per cm2 SI may be a mechanistic explanation that helps to understand the high paracellular absorption observed in bats compared to nonflying mammals. © 2014 Wiley Periodicals, Inc.
Eggers, R; Haug, H; Fischer, D
1984-01-01
The studies here reported were performed on the prosencephalons of 12 human brains between 37 and 86 years of age having no signs of neuropathological alteration. The evaluation was carried out on serial frontal sections with a mean thickness of 5 mm with stereological point counting procedures for volume and surface area. The results were mainly given in relative values since the range of variation is very high and the sample small. The aging process was evaluated with the aid of a linear regression function. The stereological investigation regarding the absolute values of volume and surface area (border face) of the macroscopical brain parts show a high interindividual variability. However, the relative volume of brain parts shows only small variations. Changes during aging could consequently only be revealed with the help of the relative values. The relative volumes and surface areas of the frontal lobe and the prosencephalic ganglia decrease with aging, while the parieto-occipital lobe and the striate cortex increase. However, if we refer these relative increases to the absolute decrease of brain volume, corresponding changes cannot be found in the parieto-occipital lobe until old age. The shrinkage of the frontal lobe, of the centrum semiovale and of the prosencephalic ganglia exceeds 10%. In the grays it is probably accompanied by a loss of neurons. The relative sizes of the surface area do not change significantly during aging with exception of the frontal cortex. The thickness of the cortex remains probably constant. The size of lateral ventricles increases with aging.
Detection of short-term changes in vegetation cover by use of LANDSAT imagery. [Arizona
NASA Technical Reports Server (NTRS)
Turner, R. M. (Principal Investigator); Wiseman, F. M.
1975-01-01
The author has identified the following significant results. By using a constant band 6 to band 5 radiance ratio of 1.25, the changing pattern of areas of relatively dense vegetation cover was detected for the semiarid region in the vicinity of Tucson, Arizona. Electronically produced binary thematic masks were used to map areas with dense vegetation. The foliar cover threshold represented by the ratio was not accurately determined but field measurements show that the threshold lies in the range of 10 to 25 percent foliage cover. Montana evergreen forests with constant dense cover were correctly shown to exceed the threshold on all dates. The summer active grassland exceeded the threshold in the summer unless rainfall was insufficient. Desert areas exceeded the threshold during the spring of 1973 following heavy rains; the same areas during the rainless spring of 1974 did not exceed threshold. Irrigated fields, parks, golf courses, and riparian communities were among the habitats most frequently surpassing the threshold.
Estimation of tunnel blockage from wall pressure signatures: A review and data correlation
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Wilsden, D. J.; Lilley, D. E.
1979-01-01
A method is described for estimating low speed wind tunnel blockage, including model volume, bubble separation and viscous wake effects. A tunnel-centerline, source/sink distribution is derived from measured wall pressure signatures using fast algorithms to solve the inverse problem in three dimensions. Blockage may then be computed throughout the test volume. Correlations using scaled models or tests in two tunnels were made in all cases. In many cases model reference area exceeded 10% of the tunnel cross-sectional area. Good correlations were obtained regarding model surface pressures, lift drag and pitching moment. It is shown that blockage-induced velocity variations across the test section are relatively unimportant but axial gradients should be considered when model size is determined.
Sneed, Michelle; Stork, Sylvia V.; Ikehara, Marti E.
2002-01-01
Land subsidence associated with ground-water-level declines has been recognized as a potential problem in Coachella Valley, California. Since the early 1920s, ground water has been a major source of agricultural, municipal, and domestic supply in the valley. Pumping of ground water resulted in water-level declines as large as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the lower Coachella Valley began, resulting in a reduction in ground-water pumping and a recovery of water levels during the 1950s through the 1970s. Since the late 1970s, demand for water in the valley has exceeded deliveries of imported surface water, resulting in increased pumping and associated ground-water-level declines and, consequently, an increase in the potential for land subsidence caused by aquifer-system compaction. The location, extent, and magnitude of the vertical land-surface changes in Coachella Valley between 1998 and 2000 were determined using Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) methods. GPS measurements made at 15 geodetic monuments in the lower Coachella Valley indicate that -34 to +60 millimeters ? 45 millimeters (-0.11 to +0.20 foot ? 0.15 foot) of vertical change in the land surface occurred during the 2-year period. Changes at three of the monuments exceeded the maximum uncertainty of ? 45 millimeters (? 0.15 foot) at the 95-percent confidence level, which indicates that small amounts of uplift occurred at these monuments between October 1998 and August 2000. Water-level measurements made at wells near the three uplifted monuments during this 2-year period indicate that the water levels fluctuate seasonally; water-level measurements made at these wells in September 1998 and September 2000 indicate that the water levels rose slightly near two monuments and declined slightly near the third. The relation between the seasonally fluctuating, but fairly stable, water levels between September 1998 and September 2000 and the slight uplift at the monuments may indicate that the water levels are fluctuating in the elastic range of stress and that the preconsolidation stress of the aquifer system was not exceeded during the 2-year period. Results of the InSAR measurements made between June 17, 1998, and October 4, 2000, indicate that land subsidence, ranging from about 40 to 80 millimeters (0.13 to 0.26 foot), occurred in three areas of the Coachella Valley; near Palm Desert, Indian Wells, and La Quinta. Measurements made between June 17, 1998, and June 2, 1999, indicate that about 15 millimeters (0.05 foot) occurred southeast of Lake Cahuilla. All the subsiding areas coincide with or are near areas where ground-water levels declined between 1998 and 2000; some water levels in 2000 were at the lowest levels in their recorded histories. The coincident areas of subsidence and declining water levels suggest that aquifer-system compaction may be causing subsidence. If the stresses imposed by the historically lowest water levels exceeded the preconsolidation stress, the aquifer-system compaction and associated land subsidence may be permanent. Although the localized character of the subsidence signals look typical of the type of subsidence characteristically caused by localized pumping, the subsidence also may be related to tectonic activity in the valley.
Water quality and hydrology of the Silver River Watershed, Baraga County, Michigan, 2005-08
Weaver, Thomas L.; Sullivan, Daniel J.; Rachol, Cynthia M.; Ellis, James M.
2010-01-01
The Silver River Watershed comprises about 69 square miles and drains part of northeastern Baraga County, Michigan. For generations, tribal members of the Keweenaw Bay Indian Community have hunted and fished in the watershed. Tribal government and members of Keweenaw Bay Indian Community are concerned about the effect of any development within the watershed, which is rural, isolated, and lightly populated. For decades, the area has been explored for various minerals. Since 2004, several mineral-exploration firms have been actively investigating areas within the watershed; property acquisition, road construction, and subsurface drilling have taken place close to tributary streams of the Silver River. The U.S. Geological Survey, in cooperation with Keweenaw Bay Indian Community, conducted a multi-year water-resources investigation of the Silver River Watershed during 2005-08. Methods of investigation included analyses of streamflow, water-quality sampling, and ecology at eight discrete sites located throughout the watershed. In addition, three continuous-record streamgages located within the watershed provided stage, discharge, specific conductance, and water-temperature data on an hourly basis. Water quality of the Silver River Watershed is typical of many streams in undeveloped areas of Upper Michigan. Concentrations of most analytes typically were low, although several exceeded applicable surface-water-quality standards. Seven samples had concentrations of copper that exceeded the Michigan Department of Environmental Quality standards for wildlife, and one sample had concentrations of cyanide that exceeded the same standards. Concentrations of total mercury at all eight sampling sites exceeded the Great Lakes Basin water-quality standard, but the ratio of methylmercury to total mercury was similar to the 5 to 10 percent found in most natural waters. Concentrations of arsenic and chromium in bed sediments were near the threshold-effect concentration. A qualitative ecological assessment of fishes and macroinvertebrates showed that intolerant salmonids were present at most sampled sites, and macroinvertebrate communities were indicative of near-excellent or excellent conditions at all eight sites. This baseline information will aid in an ongoing monitoring effort designed to protect the water resources of the
Surface Water pCO2 Variations and Sea-Air CO2 Fluxes During Summer in the Eastern Canadian Arctic
NASA Astrophysics Data System (ADS)
Burgers, T. M.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T.
2017-12-01
Based on a 2 year data set, the eastern Canadian Arctic Archipelago and Baffin Bay appear to be a modest summertime sink of atmospheric CO2. We measured surface water CO2 partial pressure (pCO2), salinity, and temperature throughout northern Baffin Bay, Nares Strait, and Lancaster Sound from the CCGS Amundsen during its 2013 and 2014 summer cruises. Surface water pCO2 displayed considerable variability (144-364 μatm) but never exceeded atmospheric concentrations, and average calculated CO2 fluxes in 2013 and 2014 were -12 and -3 mmol C m-2 d-1 (into the ocean), respectively. Ancillary measurements of chlorophyll a reveal low summertime productivity in surface waters. Based on total alkalinity and stable oxygen isotopes (δ18O) data, a strong riverine signal in northern Nares Strait coincided with relatively high surface pCO2, whereas areas of sea-ice melt occur with low surface pCO2. Further assessments, extending the seasonal observation period, are needed to properly constrain both seasonal and annual CO2 fluxes in this region.
Trombley, T.J.; Wolf, R.J.; Jordan, P.R.; Brewer, L.D.
1996-01-01
An overview of water resources is provided for a 4,005-square-mile area of northeastern Kansas and southeastern Nebraska that includes the treatylands for the Iowa Tribe of Kansas and Nebraska, the Kickapoo Tribe of Kansas, the Prairie Band of Potawatomi, and the Sac and Fox Tribe ofMissouri. The only plentiful supplies of surface water are available from the Missouri and Kansas Rivers. The smallest mean streamflows for 4 consecutive months occur in November through February for most streams in the area. The smallest flows for 7 consecutive days in a year occur most often in August, September, or October. The typical seasonal distribution of streamflows indicates a pattern favorable for the same-year use of small surface-water impoundments for low-flow augmentation; large flows that could be impounded typically occur in the month shortly before augmentation is most needed. However, droughts of 2 or more consecutive years are common and would largely negate the advantage of using small impoundments except for very small water-supply needs. Alluvial deposits along the Kansas and Missouri Rivers provide the largest well yields in the study area, but these deposits are limited in areal extent. The Kansas River alluvium reaches a maximum saturated thickness of about 70 feet, and the Missouri River alluvium reaches a maximum thickness of 120 feet. Well yields in the Kansas River generally range from 300 to 1,000 gallons per minute (gal/min) but may be as large as 2,500 gal/min. Well yields in the Missouri River alluvium generally range from 150 to 2,500 gal/min but may be as large as 3,000 gal/min. Although generally capable only of small sustained yields to wells, minor aquifers are important because they are available throughout most of the study area. Within the thick, mostly fine-grained glacial deposits, isolated sand and gravel layers may yield adequate supplies for stock- watering or domestic use. Sodium concentrations exceed the U.S. Environmental Protection Agency's (USEPA) Secondary Maximum Contaminant Level of 20 milligrams per liter most often in the middle Kansas and Delaware Basins. Total iron andmanganese concentrations in water generally exceed the USEPA Secondary Maximum Contaminant Levels of 50 micrograms per liter for iron and 300micrograms per liter for manganese. Atrazine concentrations in surface water, primarily from post-application runoff, commonly exceed the USEPA Maximum Contaminant Level of 3.0 micrograms per liter during the months of May, June, and July. Most of the erosion and about one- half of the total sediment yield in parts of the study area may result from sheet and rill erosion and gullying on cultivated cropland. A total of 3.13 million gallons per day (Mgal/d) of water was used in 1990 in the Big Nemaha River Basin, 74 percent of which was derived from ground water. In the Wolf River Basin, 1.29 Mgal/d were used, 71 percent derived from ground water. The Middle Kansas River Basin had the highest water use, 83.01 Mgal/d, 67 percent of which was from surface water. A total of 4.37 Mgal/d was used in the Delaware River Basin, 55 percent from ground water.
NASA Astrophysics Data System (ADS)
Wang, Wei; Wang, Liang; Dai, Gaole; Deng, Wei; Zhang, Xiujuan; Jie, Jiansheng; Zhang, Xiaohong
2017-10-01
Organic field-effect transistors (OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm2 V-1 s-1, demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene (BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 × 10 cm2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed. By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm2 V-1 s-1 (average mobility 1.2 cm2 V-1 s-1) and 3.0 cm2 V-1 s-1 (average mobility 2.0 cm2 V-1 s-1), respectively. They both have a high on/off ratio ( I on/ I off) > 109. The performance can well satisfy the requirements for light-emitting diodes driving.
Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
Sheberla, Dennis; Bachman, John C; Elias, Joseph S; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea
2017-02-01
Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 ), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.
Conductive MOF electrodes for stable supercapacitors with high areal capacitance
NASA Astrophysics Data System (ADS)
Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea
2017-02-01
Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.
NASA Astrophysics Data System (ADS)
Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter
2018-01-01
The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.
A mechanism for comet surface collapse as observed by Rosetta on 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Prialnik, D.; Sierks, H.
2017-07-01
We explore a possible mechanism that may explain sudden depressions of surface areas on a comet nucleus, as suggested by observations of the Rosetta mission on comet 67P/Churyumov-Gerasimenko (hereafter, 67P/C-G). Assuming the area is covered by a thin, compact dust layer of low permeability to gas flow compared to deeper, porous layers, gas can accumulate below the surface when a surge of gas release from amorphous ice occurs upon crystallization. The gas pressure is found to exceed the hydrostatic pressure down to a depth of a few metres. The rapid build-up of pressure may weaken the already fragile, highly porous structure. Eventually, the high pressure gradient that arises drives the gas out and the pressure falls well below the hydrostatic pressure. The rapid pressure drop may result in collapse. Since the crystallization front lies at some depth below the surface, the location on the orbit when this phenomenon occurs is determined by the thermal lag, which, in turn, depends on the thermal conductivity. Numerical simulations show that mostly such activity occurs post-perihelion, but it may also occur pre-perihelion. When permeability is uniform, crystallization still causes increased gas production, but the gas pressure inside the nucleus remains below hydrostatic pressure.
Study of adsorption mechanism of heavy metals onto waste biomass (wheat bran).
Ogata, Fumihiko; Kangawa, Moe; Tominaga, Hisato; Tanaka, Yuko; Ueda, Ayaka; Iwata, Yuka; Kawasaki, Naohito
2013-01-01
In this study, raw wheat bran (R-WB), a type of waste biomass (WB) was treated with Pectinase PL (P-WB), and the properties (yield percentage, carboxy group surface concentration, the solution pH, and specific surface area) of R-WB and P-WB were investigated. The surface concentration of carboxy groups on R-WB (3.56 mmol/g) was greater than that of P-WB (2.11 mmol/g). In contrast, the specific surface area of P-WB (24.98 m²/g) was greater than that of R-WB (3.25 m²/g). In addition, the adsorption of cadmium and lead ions to WB was evaluated. Adsorption of the heavy-metal ions reached equilibrium within 9 h, and the experimental data was fitted to a pseudo-second-order model. More heavy-metal ions were adsorbed onto R-WB than onto P-WB. The correlation coefficient between the amount of ions adsorbed and the number of carboxy groups or pectin exceeded 0.884 and 0.975, respectively. This study indicated that wheat bran was useful for the removal of cadmium or lead ions from aqueous solutions. The adsorption mechanism of cadmium and lead ions to WB was associated with presence of carboxy group in pectin.
Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model
Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen
2015-01-01
Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses. PMID:25695057
Skinner, Kenneth D.; Bartolino, James R.; Tranmer, Andrew W.
2007-01-01
This report analyzes trends in ground-water and surface-water data, documents 2006 hydrologic conditions, and compares 2006 and historic ground-water data of the Wood River Valley of south-central Idaho. The Wood River Valley extends from Galena Summit southward to the Timmerman Hills. It is comprised of a single unconfined aquifer and an underlying confined aquifer present south of Baseline Road in the southern part of the study area. Streams are well-connected to the shallow unconfined aquifer. Because the entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth since the 1970s has raised concerns about the continued availability of ground and surface water to support existing uses and streamflow. To help address these concerns, this report evaluates ground- and surface-water conditions in the area before and during the population growth that started in the 1970s. Mean annual water levels in three wells (two completed in the unconfined aquifer and one in the confined aquifer) with more than 50 years of semi-annual measurements showed statistically significant declining trends. Mean annual and monthly streamflow trends were analyzed for three gaging stations in the Wood River Valley. The Big Wood River at Hailey gaging station (13139500) showed a statistically significant trend of a 25-percent increase in mean monthly base flow for March over the 90-year period of record, possibly because of earlier snowpack runoff. Both the 7-day and 30-day low-flow analyses for the Big Wood River near Bellevue gaging station (13141000) show a mean decrease of approximately 15 cubic feet per second since the 1940s, and mean monthly discharge showed statistically significant decreasing trends for December, January, and February. The Silver Creek at Sportsman Access near Picabo gaging station (13150430) also showed statistically significant decreasing trends in annual and mean monthly discharge for July through February and April from 1975 to 2005. Comparisons of partial-development (ground-water conditions from 1952 to 1986) and 2006 ground-water resources in the Wood River Valley using a geographic information system indicate that most ground-water levels for the unconfined aquifer in the study area are either stable or declining. Declines are predominant in the southern part of the study area south of Hailey, and some areas exceed what is expected of natural fluctuations in ground-water levels. Some ground-water levels rose in the northern part of the study area; however, these increases are approximated due to a lack of water-level data in the area. Ground-water level declines in the confined aquifer exceed the range of expected natural fluctuations in large areas of the confined aquifer in the southern part of the study area in the Bellevue fan. However, the results in this area are approximated due to limited available water-level data.
Anning, David W.
2003-01-01
Stream properties and water-chemistry constituent concentrations from data collected by the National Water-Quality Assessment and other U.S. Geological Survey water-quality programs were analyzed to (1) assess water quality, (2) determine natural and human factors affecting water quality, and (3) compute stream loads for the surface-water resources in the Central Arizona Basins study area. Stream temperature, pH, dissolved-oxygen concentration and percent saturation, and dissolved-solids, suspended-sediment, and nutrient concentration data collected at 41 stream-water quality monitoring stations through water year 1998 were used in this assessment. Water-quality standards applicable to the stream properties and water-chemistry constituent concentration data for the stations investigated in this study generally were met, although there were some exceedences. In a few samples from the White River, the Black River, and the Salt River below Stewart Mountain Dam, the pH in reaches designated as a domestic drinking water source was higher than the State of Arizona standard. More than half of the samples from the Salt River below Stewart Mountain Dam and almost all of the samples from the stations on the Central Arizona Project Canal?two of the three most important surface-water sources used for drinking water in the Central Arizona Basins study area?exceeded the U.S. Environmental Protection Agency drinking water Secondary Maximum Contaminant Level for dissolved solids. Two reach-specific standards for nutrients established by the State of Arizona were exceeded many times: (1) the annual mean concentration of total phosphorus was exceeded during several years at stations on the main stems of the Salt and Verde Rivers, and (2) the annual mean concentration of total nitrogen was exceeded during several years at the Salt River near Roosevelt and at the Salt River below Stewart Mountain Dam. Stream properties and water-chemistry constituent concentrations were related to streamflow, season, water management, stream permanence, and land and water use. Dissolved-oxygen percent saturation, pH, and nutrient concentrations were dependent on stream regulation, stream permanence, and upstream disposal of wastewater. Seasonality and correlation with streamflow were dependant on stream regulation, stream permanence, and upstream disposal of wastewater. Temporal trends in streamflow, stream properties, and water-chemistry constituent concentrations were common in streams in the Central Arizona Basins study area. Temporal trends in the streamflow of unregulated perennial reaches in the Central Highlands tended to be higher from 1900 through the 1930s, lower from the 1940s through the 1970s, and high again after the 1970s. This is similar to the pattern observed for the mean annual precipitation for the Southwestern United States and indicates long-term trends in flow of streams draining the Central Highlands were driven by long-term trends in climate. Streamflow increased over the period of record at stations on effluent-dependent reaches as a result of the increase in the urban population and associated wastewater returns to the Salt and Gila Rivers in the Phoenix metropolitan area and the Santa Cruz River in the Tucson metropolitan area. Concentrations of dissolved solids decreased in the Salt River below Stewart Mountain Dam and in the Verde River below Bartlett Dam. This decrease represents an improvement in the water quality and resulted from a concurrent increase in the amount of runoff entering the reservoirs. Stream loads of water-chemistry constituents were compared at different locations along the streams with one another, and stream loads were compared to upstream inputs of the constituent from natural and anthropogenic sources to determine the relative importance of different sources and to determine the fate of the water-chemistry constituent. Of the dissolved solids transported into the Basin and Range Lowlands each year
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Patrick and Sloop, Christy
2011-04-01
This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 372, Area 20 Cabriolet/Palanquin Unit Craters, located within Areas 18 and 20 at the Nevada National Security Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 372 comprises four corrective action sites (CASs): • 18-45-02, Little Feller I Surface Crater • 18-45-03, Little Feller II Surface Crater • 20-23-01, U-20k Contamination Area • 20-45-01, U-20L Crater (Cabriolet) The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action ismore » needed for CAU 372 based on the implementation of the corrective action of closure in place with administrative controls at all CASs. Corrective action investigation (CAI) activities were performed from November 9, 2009, through December 10, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 372 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL was established of 25 millirem per year based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present at all four CASs. It is assumed that radionuclide levels present within the Little Feller I and Cabriolet high contamination areas and within the craters at Palanquin and Cabriolet exceed the FAL. It is also assumed that potential source material in the form of lead bricks at Little Feller I and lead-acid batteries at Palanquin and Cabriolet exceed the FAL. Therefore, corrective actions were undertaken that consist of removing potential source material, where present, and implementing a use restriction and posting warning signs at each CAS. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: • No further corrective actions are necessary for CAU 372. • A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 372. • Corrective Action Unit 372 should be moved from Appendix III to Appendix IV of the FFACO.« less
Stormwater plume detection by MODIS imagery in the southern California coastal ocean
Nezlin, N.P.; DiGiacomo, P.M.; Diehl, D.W.; Jones, B.H.; Johnson, S.C.; Mengel, M.J.; Reifel, K.M.; Warrick, J.A.; Wang, M.
2008-01-01
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S 33.0 ('ocean'). The plume optical signatures (i.e., the nLw differences between 'plume' and 'ocean') were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into 'plume' and 'ocean' using two criteria: (1) 'plume' included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in 'plume' exceeded the California State Water Board standards. The salinity threshold between 'plume' and 'ocean' was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color. ?? 2008 Elsevier Ltd.
Stormwater plume detection by MODIS imagery in the southern California coastal ocean
NASA Astrophysics Data System (ADS)
Nezlin, Nikolay P.; DiGiacomo, Paul M.; Diehl, Dario W.; Jones, Burton H.; Johnson, Scott C.; Mengel, Michael J.; Reifel, Kristen M.; Warrick, Jonathan A.; Wang, Menghua
2008-10-01
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S < 32.0 ("plume") and S > 33.0 ("ocean"). The plume optical signatures (i.e., the nLw differences between "plume" and "ocean") were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into "plume" and "ocean" using two criteria: (1) "plume" included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in "plume" exceeded the California State Water Board standards. The salinity threshold between "plume" and "ocean" was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color.
Seasonal Variation of Barrier Layer in the Southern Ocean
NASA Astrophysics Data System (ADS)
Pan, Li; Zhong, Yisen; Liu, Hailong; Zhou, Lei; Zhang, Zhaoru; Zhou, Meng
2018-03-01
The seasonal variability of barrier layer (BL) and its formation mechanism in the Southern Ocean are investigated using the most recent Argo data. The results reveal that the BL is a persistent feature in the Southern Ocean with a strong seasonal cycle. The thickest BL appears in winter with the maximum amplitude exceeding 250 m while it dramatically decreases to less than 50 m in summer. The spatial distribution of BL is zonally oriented in the Pacific and Indian Ocean sectors, which is in agreement with that of the mixed layer depth (MLD) and the isothermal layer depth (ILD). Two areas with the most prominent BL are identified. One is located south of Australia and the other in the southeastern Pacific. The BL formation in both areas is generally attributed to a shallow mixed layer controlled by surface freshwater intrusion and a deep isothermal layer modulated by seasonal vertical convection. In the former region, the cold and fresh Antarctic Surface Water (ASW) is transported northward across the Subantarctic Front (SAF) by the Ekman effect and overlies the warm Subantarctic Mode Water (SAMW). The resulting inverse temperature structure facilitates the development of thick BLs. In the latter region, the BL emerges in the ventilation area where the shallow Surface Salinity Minimum Water (SSMW) coming from north leans against the deep vertical isotherms. In summer, positive surface heat flux into the ocean overwhelms other thermodynamic effects in the mixed layer heat budget. The MLD and ILD coincide and thus the BL is destroyed.
Clawges, Rick M.; Stackelberg, Paul E.; Ayers, Mark A.; Vowinkel, Eric F.
1999-01-01
This report describes the ground-water systems in the unconsolidated sand and gravel aquifers of the Coastal Plain of New Jersey and Long Island and in the fractured bedrock and valley-fill aquifers of northern New Jersey; summarizes current knowledge about the occurrence and distribution of nitrate, volatile organic compounds (VOCs), and pesticides in these systems; and explains why some ground-water systems are more vulnerable to comtamination than others. Although the vulnerability of ground water to contamination from the land surface is influenced by many factors, the degree of aquifer confinement, the depth of the well, and the surrounding land use are key factors. Unconfined aquifers generally are much more vulnerable to contamination than confined aquifers. For a well in a confined aquifer, the farther the well is from the unconfined area, the less vulnerable it is to contamination. Generally, the deeper the well, the less vulnerable it is to contamination. Finally, because human activities greatly affect the quality of water that recharges an aquifer, the amount and type of land use in the area that contributes water to the well is a key factor in determining vulnerability. Nitrate contamination of ground water typically occurs in agricultural and residential areas, especially where the aquifer is very permeable and unconfined and nitrogen-fertilizer use is high. In New Jersey and on Long Island, concentrations of nitrate exceed the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) more often than those of VOCs or pesticides. Nitrate contamination generally is associated with nonpoint sources. VOC contamination of ground water occurs primarily in urban areas, especially in mixed urban and industrial areas where chemicals are used. In general, VOC concentrations are low and do not exceed MCLs. High concentrations of VOCs generally are associated with point sources. Pesticide contamination of ground water occurs in some agricultural and residential areas, where the aquifer is very permeable and unconfined, and where the chemicals are used. Concentrations of pesticides in New Jersey and on Long Island generally are low; in agricultural areas of Long Island, however, some have been found to exceed MCLs. Pesticide contamination generally is associated with nonpoint sources.
DOT National Transportation Integrated Search
1994-12-01
This publication consists of individual profiles for each reporting transit agency located in an urbanized area with a population exceeding 200,000. The data contained in each profile consists of general and summary reports, as well as modal, perform...
DOT National Transportation Integrated Search
1995-12-01
This publication consists of individual profiles for each reporting transit agency located in an urbanized area with a population exceeding 200,000. The data contained in each profile consists of general and summary reports, as well as modal, perform...
Water-quality characteristics in the Black Hills area, South Dakota
Williamson, Joyce E.; Carter, Janet M.
2001-01-01
This report summarizes the water-quality characteristics of ground-water and surface-water in the Black Hills area. Differences in groundwater quality by aquifer and differences in surfacewater quality by water source are presented. Ground-water characteristics are discussed individually for each of the major aquifers in the Black Hills area, referred to herein as the Precambrian, Deadwood, Madison, Minnelusa, Minnekahta, and Inyan Kara aquifers. Characteristics for minor aquifers also are discussed briefly. Surface-water characteristics are discussed for hydrogeologic settings including headwater springs, crystalline core sites, artesian springs, and exterior sites. To characterize the water quality of aquifers and streams in the Black Hills area, data from the U.S. Geological Survey National Water Information System water-quality database were examined. This included samples collected as part of the Black Hills Hydrology Study as well as for other studies within the time frame of October 1, 1930, to September 30, 1998. Tables of individual results are not presented in this report, only summaries. Constituents summarized and discussed include physical properties, common ions, nutrients, trace elements, and radionuclides. Comparisons of concentration levels are made to drinking-water standards as well as beneficial-use and aquatic-life criteria. Ground water within the Black Hills and surrounding area generally is fresh and hard to very hard. Concentrations exceeding various Secondary and Maximum Contaminant Levels may affect the use of the water in some areas for many aquifers within the study area. Concentrations that exceed Secondary Maximum Contaminant Levels (SMCL's) generally affect the water only aesthetically. Radionuclide concentrations may be especially high in some of the major aquifers used within the study area and preclude the use of water in some areas. The sodiumadsorption ratio and specific conductance may affect irrigation use for some wells. High concentrations of iron and manganese are the only concentrations that may hamper the use of water from Precambrian aquifers. The principal deterrents to use of water from the Deadwood aquifer are the high concentrations of radionuclides as well as iron and manganese. Iron, manganese, and hardness may deter use of water from the Madison aquifer as well as dissolved solids and sulfate in downgradient wells (generally deeper than 2,000 feet). Iron, manganese, and hardness may also deter use of the Minnelusa aquifer. Water from the Minnekahta aquifer generally is suitable for all water uses although it is hard to very hard. High concentrations of dissolved solids, iron, sulfate, and manganese may hamper the use of water from the Inyan Kara aquifer. In the southern Black Hills, radium-226 and uranium concentrations also may preclude use of water from the Inyan Kara aquifer. Suitability for irrigation may be affected by high specific conductance and sodium-adsorption ratio for the Inyan Kara. Surface-water quality within the Black Hills and surrounding area generally is very good but the water is hard to very hard. Concentrations of some constituents in the study area tend to be higher exterior to the Black Hills, primarily due to influences from the Cretaceous-age marine shales, including dissolved solids, sodium, sulfate, selenium, and uranium. Headwater springs have relatively constant discharge, specific conductance, dissolved solids, and concentrations of most other constituents. Concentrations at crystalline core sites are very similar to those found in samples from Precambrian aquifers. Some high nitrate concentrations greater than the Maximum Contaminant Level (MCL) of 10 mg/L (milligrams per liter) have occurred at Annie Creek near Lead, which have been attributed to mining impacts. Trace elements generally are low with the exception of arsenic, for which 60 percent of samples exceed the proposed MCL of 10 ug/L (micrograms per liter) and one sample
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge
NASA Astrophysics Data System (ADS)
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-01
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-19
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement
NASA Astrophysics Data System (ADS)
Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi
2015-04-01
Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.
NASA Astrophysics Data System (ADS)
Farooqui, Mohmmed Zuber
Tropospheric ozone is one of the major air pollution problems affecting urban areas of United States as well as other countries in the world. Analysis of surface observed ozone levels in south and central Texas revealed several days exceeding 8-hour average ozone National Ambient of Air Quality Standards (NAAQS) over the past decade. Two major high ozone episodes were identified during September of 1999 and 2002. A photochemical modeling framework for the high ozone episodes in 1999 and 2002 were developed for the Corpus Christi urban airshed. The photochemical model was evaluated as per U.S. Environmental Protection Agency (EPA) recommended statistical methods and the models performed within the limits set by EPA. An emission impact assessment of various sources within the urban airshed was conducted using the modeling framework. It was noted that by nudging MM5 with surface observed meteorological parameters and sea-surface temperature, the coastal meteorological predictions improved. Consequently, refined meteorology helped the photochemical model to better predict peak ozone levels in urban airsheds along the coastal margins of Texas including in Corpus Christi. The emissions assessment analysis revealed that Austin and San Antonio areas were significantly affected by on-road mobile emissions from light-duty gasoline and heavy-duty diesel vehicles. The urban areas of San Antonio, Austin, and Victoria areas were estimated to be NOx sensitive. Victoria was heavily influenced by point sources in the region while Corpus Christi was influenced by both point and non-road mobile sources and was identified to be sensitive to VOC emissions. A rise in atmospheric temperature due to climate change potentially increase ozone exceedances and the peak ozone levels within the study region and this will be a major concern for air quality planners. This study noted that any future increase in ambient temperature would result in a significant increase in the urban and regional ozone levels within the modeling domain and it would also enhance the transported levels of ozone across the region. Overall, the photochemical modeling framework helped in evaluating the impact of various parameters affecting ozone air quality; and, it has the potential to be a tool for policy-makers to develop effective emissions control strategies under various regulatory and climate conditions.
Faults in parts of north-central and western Houston metropolitan area, Texas
Verbeek, Earl R.; Ratzlaff, Karl W.; Clanton, Uel S.
1979-01-01
Hundreds of residential, commercial, and industrial structures in the Houston metropolitan area have sustained moderate to severe damage owing to their locations on or near active faults. Paved roads have been offset by faults at hundreds of locations, butted pipelines have been distorted by fault movements, and fault-induced gradient changes in drainage lines have raised concern among flood control engineers. Over 150 faults, many of them moving at rates of 0.5 to 2 cm/yr, have been mapped in the Houston area; the number of faults probably far exceeds this figure.This report includes a map of eight faults, in north-central and western Houston, at a scale useful for land-use planning. Seven of the faults, are known, to be active and have caused considerable damage to structures built on or near them. If the eighth fault is active, it may be of concern to new developments on the west side of Houston. A ninth feature shown on the map is regarded only as a possible fault, as an origin by faulting has not been firmly established.Seismic and drill-hold data for some 40 faults, studied in detail by various investigators have verified connections between scarps at the land surface and growth faults in the shallow subsurface. Some scarps, then, are known to be the surface manifestations of faults that have geologically long histories of movement. The degree to which natural geologic processes contribute to current fault movement, however, is unclear, for some of man’s activities may play a role in faulting as well.Evidence that current rates of fault movement far exceed average prehistoric rates and that most offset of the land surface in the Houston area has occurred only within the last 50 years indirectly suggest that fluid withdrawal may be accelerating or reinitiating movement on pre-existing faults. This conclusion, however, is based only on a coincidence in time between increased fault activity and increased rates of withdrawal of water, oil, and gas from subsurface sediments; no cause-and-effect relationship has been demonstrated. An alternative hypothesis is that natural fault movements are characterized by short—term episodicity and that Houston is experiencing the effects of a brief period of accelerated natural fault movement. Available data from monitored faults are insufficient to weigh the relative importance of natural vs. induced fault movements.
Modeling Source Water Threshold Exceedances with Extreme Value Theory
NASA Astrophysics Data System (ADS)
Rajagopalan, B.; Samson, C.; Summers, R. S.
2016-12-01
Variability in surface water quality, influenced by seasonal and long-term climate changes, can impact drinking water quality and treatment. In particular, temperature and precipitation can impact surface water quality directly or through their influence on streamflow and dilution capacity. Furthermore, they also impact land surface factors, such as soil moisture and vegetation, which can in turn affect surface water quality, in particular, levels of organic matter in surface waters which are of concern. All of these will be exacerbated by anthropogenic climate change. While some source water quality parameters, particularly Total Organic Carbon (TOC) and bromide concentrations, are not directly regulated for drinking water, these parameters are precursors to the formation of disinfection byproducts (DBPs), which are regulated in drinking water distribution systems. These DBPs form when a disinfectant, added to the water to protect public health against microbial pathogens, most commonly chlorine, reacts with dissolved organic matter (DOM), measured as TOC or dissolved organic carbon (DOC), and inorganic precursor materials, such as bromide. Therefore, understanding and modeling the extremes of TOC and Bromide concentrations is of critical interest for drinking water utilities. In this study we develop nonstationary extreme value analysis models for threshold exceedances of source water quality parameters, specifically TOC and bromide concentrations. In this, the threshold exceedances are modeled as Generalized Pareto Distribution (GPD) whose parameters vary as a function of climate and land surface variables - thus, enabling to capture the temporal nonstationarity. We apply these to model threshold exceedance of source water TOC and bromide concentrations at two locations with different climate and find very good performance.
Liquid-metal plasma-facing component research on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Jaworski, M. A.; Khodak, A.; Kaita, R.
2013-12-01
Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.
How well can we test probabilistic seismic hazard maps?
NASA Astrophysics Data System (ADS)
Vanneste, Kris; Stein, Seth; Camelbeeck, Thierry; Vleminckx, Bart
2017-04-01
Recent large earthquakes that gave rise to shaking much stronger than shown in probabilistic seismic hazard (PSH) maps have stimulated discussion about how well these maps forecast future shaking. These discussions have brought home the fact that although the maps are designed to achieve certain goals, we know little about how well they actually perform. As for any other forecast, this question involves verification and validation. Verification involves assessing how well the algorithm used to produce hazard maps implements the conceptual PSH model ("have we built the model right?"). Validation asks how well the model forecasts the shaking that actually occurs ("have we built the right model?"). We explore the verification issue by simulating shaking histories for an area with assumed uniform distribution of earthquakes, Gutenberg-Richter magnitude-frequency relation, Poisson temporal occurrence model, and ground-motion prediction equation (GMPE). We compare the maximum simulated shaking at many sites over time with that predicted by a hazard map generated for the same set of parameters. The Poisson model predicts that the fraction of sites at which shaking will exceed that of the hazard map is p = 1 - exp(-t/T), where t is the duration of observations and T is the map's return period. Exceedance is typically associated with infrequent large earthquakes, as observed in real cases. The ensemble of simulated earthquake histories yields distributions of fractional exceedance with mean equal to the predicted value. Hence, the PSH algorithm appears to be internally consistent and can be regarded as verified for this set of simulations. However, simulated fractional exceedances show a large scatter about the mean value that decreases with increasing t/T, increasing observation time and increasing Gutenberg-Richter a-value (combining intrinsic activity rate and surface area), but is independent of GMPE uncertainty. This scatter is due to the variability of earthquake recurrence, and so decreases as the largest earthquakes occur in more simulations. Our results are important for evaluating the performance of a hazard map based on misfits in fractional exceedance, and for assessing whether such misfit arises by chance or reflects a bias in the map. More specifically, we determined for a broad range of Gutenberg-Richter a-values theoretical confidence intervals on allowed misfits in fractional exceedance and on the percentage of hazard-map bias that can thus be detected by comparison with observed shaking histories. Given that in the real world we only have one shaking history for an area, these results indicate that even if a hazard map does not fit the observations, it is very difficult to assess its veracity, especially for low-to-moderate-seismicity regions. Because our model is a simplified version of reality, any additional uncertainty or complexity will tend to widen these confidence intervals.
Lindsey, Bruce D.; Bickford, Tammy M.
1999-01-01
State agencies responsible for regulating pesticides are required by the U.S. Environmental Protection Agency to develop state management plans for specific pesticides. A key part of these management plans includes assessing the potential for contamination of ground water by pesticides throughout the state. As an example of how a statewide assessment could be implemented, a plan is presented for the Commonwealth of Pennsylvania to illustrate how a hydrogeologic framework can be used as a basis for sampling areas within a state with the highest likelihood of having elevated pesticide concentrations in ground water. The framework was created by subdividing the state into 20 areas on the basis of physiography and aquifer type. Each of these 20 hydrogeologic settings is relatively homogeneous with respect to aquifer susceptibility and pesticide use—factors that would be likely to affect pesticide concentrations in ground water. Existing data on atrazine occurrence in ground water was analyzed to determine (1) which areas of the state already have sufficient samples collected to make statistical comparisons among hydrogeologic settings, and (2) the effect of factors such as land use and aquifer characteristics on pesticide occurrence. The theoretical vulnerability and the results of the data analysis were used to rank each of the 20 hydrogeologic settings on the basis of vulnerability of ground water to contamination by pesticides. Example sampling plans are presented for nine of the hydrogeologic settings that lack sufficient data to assess vulnerability to contamination. Of the highest priority areas of the state, two out of four have been adequately sampled, one of the three areas of moderate to high priority has been adequately sampled, four of the nine areas of moderate to low priority have been adequately sampled, and none of the three low priority areas have been sampled.Sampling to date has shown that, even in the most vulnerable hydrogeologic settings, pesticide concentrations in ground water rarely exceed U.S. Environmental Protection Agency Drinking Water Standards or Health Advisory Levels. Analyses of samples from 1,159 private water supplies reveal only 3 sites for which samples with concentrations of pesticides exceeded drinking-water standards. In most cases, samples with elevated concentrations could be traced to point sources at pesticide loading or mixing areas. These analyses included data from some of the most vulnerable areas of the state, indicating that it is highly unlikely that pesticide concentrations in water from wells in other areas of the state would exceed the drinking-water standards unless a point source of contamination were present. Analysis of existing data showed that water from wells in areas of the state underlain by carbonate (limestone and dolomite) bedrock, which commonly have a high percentage of corn production, was much more likely to have pesticides detected. Application of pesticides to the land surface generally has not caused concentrations of the five state priority pesticides in ground water to exceed health standards; however, this study has not evaluated the potential human health effects of mixtures of pesticides or pesticide degradation products in drinking water. This study also has not determined whether concentrations in ground water are stable, increasing, or decreasing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2008-08-01
This Post-Closure Inspection and Monitoring Report (PCIMR) provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 WMD [Waste Management Division] U-3ax/bl Crater. This PCIMR includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110 for the period July 2007 through June 2008. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, perimeter fence, and use restriction (UR) warning signs was good. However, settling was observed thatmore » exceeded the action level as specified in Section VII.B.7 of the Hazardous Waste Permit Number NEV HW021 (Nevada Division of Environmental Protection, 2005). This permit states that cracks or settling greater than 15 centimeters (6 inches) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection. Two areas of settling and cracks were observed on the south and east edges of the cover during the September 2007 inspection that exceeded the action level and required repair. The areas were repaired in October 2007. Additional settling and cracks were observed along the east side of the cover during the December 2007 inspection that exceeded the action level, and the area was repaired in January 2008. Significant animal burrows were also observed during the March 2008 inspection, and small mammal trapping and relocation was performed in April 2008. The semiannual subsidence surveys were performed in September 2007 and March 2008. No significant subsidence was observed in the survey data. Monument 5 shows the greatest amount of subsidence (-0.02 m [-0.08 ft] compared to the baseline survey of 2000). This amount is negligible and near the resolution of the survey instruments; it does not indicate that subsidence is occurring overall on the cover. Soil moisture results obtained to date indicate that the CAU 110 cover is performing well. Time Domain Reflectometry (TDR) data show regular changes in the shallow subsurface with significant rain events; however, major changes in volumetric moisture content (VMC) appear to be limited to 1.8 m (6 ft) below ground surface or shallower, depending on the location on the cover. At 2.4 m (8 ft) below the cover surface, TDR data show soil moisture content remained between 9 and 15 percent VMC, depending on the TDR location. The west portion of the cover tends to reflect a lower moisture content and less variability in annual fluctuations in moisture content at this depth. Results of soil moisture monitoring of the cover indicate that VMC at the compliance level (at 2.4 m [8 ft] below the cover surface) is approaching a steady state. If the moisture content at this level remains consistent with recent years, then a recommendation may be made for establishing compliance levels for future monitoring.« less
Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.
2017-07-10
Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the northeastern part of the basin where agricultural activity is prominent. All of the total nitrogen (N) and a majority of the total phosphorus (P) concentrations in the main stem exceeded regional nutrient criteria levels of 0.31 and 0.01 milligrams per liter (mg/L), respectively. The highest total N and total P concentrations in the main stem were 1.42 and 0.06 mg/L, respectively. Tributary sites with the highest nutrient concentrations are in subbasins where treated wastewater is discharged, such as Kooser Run and Lost Creek. The highest total N and total P concentrations in subbasins were 3.45 and 0.11 mg/L, respectively. Dissolved chloride and sodium concentrations were highest in the upper part of the basin downstream from Interstate 76 because of road deicing salts. The mean base-flow concentrations of dissolved chloride and sodium were 117 and 77 mg/L, respectively, in samples from the main stem just below Interstate 76, and the mean concentrations in Clear Run were 210 and 118 mg/L, compared to concentrations less than 15 mg/L in tributaries that were not affected by highway runoff. Water quality in forested tributary subbasins underlain by the Allegheny and Pottsville Formations was influenced by acidic precipitation and, to a lesser extent, the underlying geology as indicated by pH values less than 5.0 and corresponding specific conductance ranging from 26 to 288 microsiemens per centimeter at 25 degrees Celsius for some samples; in contrast, pH values for main stem sites ranged from 6.6 to 8.5. Manganese (Mn) was the only dissolved constituent in the surface-water samples that exceeded the secondary maximum contaminant level (SMCL). More than one-half the samples from the main stem had Mn concentrations exceeding the SMCL level of 50 micrograms per liter (μg/L), whereas only 19 percent of samples from tributaries exceeded the SMCL for Mn.Stream temperatures along the main stem of Laurel Hill Creek became higher moving downstream. During the summer months of June through August, the daily mean temperatures at the five sites exceeded the limit of 18.9 degrees Celsius (°C) for a cold-water fishery. The maximum instantaneous values for each site ranged from 27.2 to 32.8 °C.Water-quality samples collected at groundwater sites (wells and springs) indicate that wells developed within the Mauch Chunk Formation had the best water quality, whereas wells developed within the Allegheny and Pottsville Formations yielded the poorest water quality. Waters from the Mauch Chunk Formation had the highest median pH (7.6) and alkalinity (80 mg/L calcium carbonate) values. The lowest pH and alkalinity median values were in waters from the Allegheny and Pottsville Formations. Groundwater samples collected from wells in the Allegheny and Pottsville Formations also had the highest concentrations of dissolved iron (Fe) and dissolved Mn. Seventy-eight percent of the groundwater samples collected from the Allegheny Formation exceeded the SMCL of 300 μg/L for Fe and 50 μg/L for Mn. Forty-three and 62 percent of the groundwater samples collected from the Pottsville Formation exceeded the SMCL for iron and Mn, respectively. The highest Fe and Mn concentrations for surface waters were measured for tributaries draining the Pottsville Formation. The highest median Fe concentration for tributaries was in samples from streams draining the Allegheny Formation.During base-flow conditions, the streamflow per unit area along the main stem of Laurel Hill Creek was lowest in the upper parts of the basin [farthest upstream site 0.07 cubic foot per second per square mile (ft3/s/mi2)] and highest (two sites averaging about 0.20 (ft3/s/mi2) immediately downstream from Laurel Hill Lake in the center of the basin. Tributaries with the highest streamflow per unit area were those subbasins that drain the western ridge of the Laurel Hill Creek Basin. The mean streamflow per unit area for tributaries draining areas that extend into the western ridge and draining eastern or central sections was 0.24 and 0.05 ft3/s/mi2, respectively. In general, as the drainage area increased for tributary basins, the streamflow per unit area increased.Criteria established by the Pennsylvania Department of Environmental Protection indicate that the safe yield of water withdrawals from the Laurel Hill Creek Basin is 1.43 million gallons per day (Mgal/d). Water-use data for 2009 indicate that net (water withdrawals subtracted by water discharges) water withdrawals from groundwater and surface-water sources in the basin were approximately 1.93 Mgal/d. Water withdrawals were concentrated in the upper part of the basin with approximately 80 percent of the withdrawals occurring in the upper 36 mi2 of the basin. Three subbasins—Allen Creek, Kooser Run, and Shafer Run— in the upper part were affected the most by water withdrawals such that safe yields were exceeded by more than 1,000 percent in the first two and more than 500 percent in the other. In the subbasin of Shafer Run, intermittent streamflow characterizes sections that historically have been perennial.The GSFLOW model of the Laurel Hill Creek Basin is a simple one-layer representation of the groundwater flow system. The GSFLOW model was primarily calibrated to reduce the error term associated with base-flow periods. The total amount of observed streamflow at the Laurel Hill Creek at Ursina, Pa. streamflow-gaging station and the simulated streamflow were within 0.1 percent over the entire modeled period; however, annual differences between simulated and observed streamflow showed a range of -27 to 24 percent from 1992 to 2007 with nine of the years having less than a 10-percent difference. The primary source of simulated streamflow in the GSFLOW model was the subsurface (interflow; 62 percent), followed by groundwater (25 percent) and surface runoff (13 percent). Most of the simulated subsurface flow that reached the stream was in the form of slow flow as opposed to preferential (fast) interflow.
Analytical models for the groundwater tidal prism and associated benthic water flux
King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.
2010-01-01
The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 12.5-acre Anderson Development site is an active chemical manufacturing facility in Adrian, Madison Township, Lenawee County, Michigan. The site is in a 40-acre industrial park, and is comprised of several areas of contamination that exceed health-based levels, including a 0.5-acre former process wastewater pretreatment lagoon containing lagoon sludge, clay underlying the lagoon, and a small quantity of soil near the lagoon. From 1970 to 1979, the plant produced 4,4-methylene bis(2-chloroaniline) (MBOCA), a hardening agent for the production of polyurethane plastics. Process wastewater was discharged directly to surface water until 1973, when it was discharged to a publicly owned treatmentmore » works (POTW). In 1979, the State ordered the POTW not to accept the waste stream because of the decreased efficiency of the POTW resulting from MBOCA. In 1980 and 1981, the site owner and the State performed a cleanup action of all contaminated site areas with levels of MBOCA above 1 ppm. This included decontaminating the plant, sweeping streets, shampooing/vacuuming residential carpet, and removing some surface soil. The Record of Decision (ROD) addresses the remediation of the pretreatment lagoon area. The primary contaminants of concern affecting soil and lagoon sludge are organics, namely MBOCA and its degradation products.« less
Different mechanisms of magnetisation recorded in experimental fires: Archaeomagnetic implications
NASA Astrophysics Data System (ADS)
Carrancho, Á.; Villalaín, J. J.
2011-12-01
We present here the archaeomagnetic and rock-magnetic results obtained from the experimental recreation of prehistoric fires on a clayish soil substratum. By using a system of thermocouples that allows the control of temperatures and heat penetration with depth, the magneto-mineralogical transformations as well as the ability to acquire magnetic remanences are studied. A detailed set of rock-magnetic analyses - carried out both on surface and depth with a millimetre scale resolution- shows the creation of post-burn magnetite over the entire surface of the hearth, thus promoting a distinguishable magnetic enhancement. On the basis of a detailed control of temperatures, interesting differences between areas (centre vs. periphery) were observed and two different mechanisms of magnetisation have been recorded. The central area which exceeded 600 °C acquired a thermal remanent magnetisation (TRM) and the periphery, which was heated up to 300 °C, recorded a thermo-chemical (TCRM) remanent magnetisation. The most noticeable mineralogical changes are focused to the first centimetre of the central area, where single-domain magnetite has been created. The implications of these results for archaeomagnetic and palaeointensity studies as well as their utility for the detection of fire in archaeological sites are discussed.
Water resources of Sleeping Bear Dunes National Lakeshore, Michigan
Handy, A.H.; Stark, J.R.
1984-01-01
Sleeping Bear Dunes National Lakeshore in a water-rich area. It borders Lake Michigan and several small streams flow through the park to the lake. Small lakes are numerous within the park and near its boundaries. Ground water is available at most places in the park and wells yield as much as 100 gallons per minute. Water from streams, lakes, wells, and springs is of good quality. Dissolved solids range from 35 to 180 mg/L in lakes, from 145 to 214 mg/L in streams, and from 136 to 468 mg/L in groundwater. Analyses of samples for pesticides and trace metals indicate that no pesticides are present in the water, and that concentrations of trace metals do not exceed recommended drinking-water standards. Surface and ground water are available in sufficient quantity in most areas of the park for the development of water supplies for visitor 's centers, campgrounds, picnic areas, and other park facilities.
Di Leonardo, R; Mazzola, A; Tramati, C D; Vaccaro, A; Vizzini, S
2014-12-15
An assessment of trace element and polycyclic aromatic hydrocarbon (PAH) contamination based on surface sediments collected in summer 2012 was carried out in Priolo Bay adjoining one of the most polluted areas of the Mediterranean Sea, the industrial Augusta harbour (Italy, Central Mediterranean). Inorganic and organic contaminants were generally not remarkable. Occasional elevated concentrations of Hg, Cd, Ni and PAHs exceeding sediment quality guidelines were detected in the northern sector of Priolo Bay, close to Augusta harbour, possibly as a result of water drainage of industrialised and urbanised areas and/or potential direct export of contaminated material from Augusta harbour, whose influence on the adjoining Priolo Bay ecosystem cannot be ruled out. By domino effect, Priolo sediments may therefore become a potential source of pollutants and may represent a threat to the biota. Copyright © 2014 Elsevier Ltd. All rights reserved.
Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Jensen, E.G.
1995-01-01
Water, bottom-sediment, and biota samples were collected in 1990-91 to identify water-quality problems associated with irrigation drainage in the Dolores Project area. Concentrations of cadmium, mercury, and selenium in some water samples exceeded aquatic-life criteria. Selenium was associated with irrigaton drainage from the Dolores Project, but other trace elements may be transported into the area in the irrigation water supply. Selenium concentrations exceeded the chronic aquatic-life criterion in water samples from lower McElmo Creek and Navajo Wash, which drain the Montezuma Valley, from newly irrigated areas, and from the Mancos River. The maximum selenium con- centration in water was 88 micrograms per liter from Navajo Wash. Concentrations of herbicides in water were less than concentrations harmful to aquatic life. Selenium concentrations in four bottom-sediment samples exceeded the baseline concentrations for soils in the Western United States. The largest selenium concentrations in biota were in samples from Navajo Wash, from newly irrigated areas north of the Montezuma Valley, and from the Mancos River basin. Selenium concentrations in aquatic-invertebrate samples from the newly irrigated areas exceeded a guideline for food items consumed by fish and wildlife. Selenium concen- trations in whole-body suckers were larger in the San Juan River downstream from the Dolores Project than upstream from the project at Four Corners. Selenium concentrations in fathead minnow samples from two sites were at adverse-effect levels. Mercury concentrations in warm-water game fish in reservoirs in the study area may be of concern to human health. Some concentrations of other trace elements exceeded background concentrations, but the concentrations were not toxicologically significant or the toxicologic significance is not known.
Verstraeten, Ingrid M.; Ellis, M.J.
1995-01-01
A reconnaissance of ground-water quality was conducted in the Papio-Missouri River Natural Resources District of eastern Nebraska. Sixty-one irrigation, municipal, domestic, and industrial wells completed in the principal aquifers--the unconfined Elkhorn, Missouri, and Platte River Valley alluvial aquifers, the upland area alluvial aquifers, and the Dakota aquifer--were selected for water-quality sampling during July, August, and September 1992. Analyses of water samples from the wells included determination of dissolved nitrate as nitrogen and triazine and acetanilide herbicides. Waterquality analyses of a subset of 42 water samples included dissolved solids, major ions, metals, trace elements, and radionuclides. Concentrations of dissolved nitrate as nitrogen in water samples from 2 of 13 wells completed in the upland area alluvial aquifers exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Thirty-nine percent of the dissolved nitrate-as-nitrogen concentrations were less than the detection level of 0.05 milligram per liter. The largest median dissolved nitrate-as-nitrogen concentrations were in water from the upland area alluvial aquifers and the Dakota aquifer. Water from all principal aquifers, except the Dakota aquifer, had detectable concentrations of herbicides. Herbicides detected included alachlor (1 detection), atrazine (13 detections), cyanazine (5 detections), deisopropylatrazine (6 detections), deethylatrazine (9 detections), metolachlor (6 detections), metribuzin (1 detection), prometon (6 detections), and simazine (2 detections). Herbicide concentrations did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water. In areas where the hydraulic gradient favors loss of surface water to ground water, the detection of herbicides in water from wells along the banks of the Platte River indicates that the river could act as a line source of herbicides. Water from the alluvial and bedrock aquifers generally was a calcium bicarbonate type and was hard. Two of nine water samples collected from the Dakota aquifer contained calcium sulfate type water. Results of analyses of 42 groundwater samples for major ions, metals, trace elements, and radionuclide constituents indicated that statistically at least one principal aquifer had significant differences in its water chemistry. In general, the water chemistry of the Dakota aquifer was similar to the water chemistry of the upland area alluvial aquifers in areas where there was a hydraulic connection. The water from the Dakota aquifer had large dissolved-solids, calcium, sulfate, chloride, iron, lithium, manganese, and strontium concentrations in areas where the aquifer is thought not to be in hydraulic connection with the Missouri River Valley and upland area alluvial aquifers. Ground-water quality in the Papio-MissouriRiver Natural Resources District is generally suitable for most uses. However, the numerous occurrences of herbicides in water of the Elkhorn and Platte River Valley alluvial aquifers, especially near the Platte River, are of concern because U.S. Environmental Protection Agency Maximum Contaminant Levels could be exceeded. Concentrations in three of nine water samples collected from wells completed in the Dakota aquifer exceeded the U.S. Environmental Protection Agency Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for gross alpha activity, radon-222 activity, dissolved solids, sulfate, or iron. Also of concern are the exceedances of the U.S Environmental Protection Agency proposed Maximum Contaminant Level for radon-222 activity.
Obiri-Danso, K; Adonadaga, M G; Hogarh, J N
2011-01-01
The effect of agrochemical use in agricultural activities on the drinking water quality of ground and surface water within Agogo, a prominent tomato growing area in the Ashanti region of Ghana was assessed by monitoring physicochemical parameters, trace metals and microbial quality of two water sources. Levels of contamination were greater in surface water than groundwater. Trace metal levels (mg/L) were 1.40, 0.12, 0.08 and 0.18 in surface water and 0.08, 0.10, 0.05 and 0.08 in groundwater for Fe, Pb, Zn and Cd, respectively. Lead and Cd in surface and groundwater exceeded USEPA maximum acceptable levels (MCLs) for drinking water. Bacterial indicator numbers (geometric means/100 mL) in surface water varied from 9.35 x 10⁵ to 1.57 x 10¹¹ for total coliforms, 4.15 x 10⁴ to 2.10 x 10⁷ for faecal coliforms and 2.80 x 10 to 3.25 x 10² for enterococci, but none was found in groundwater.
The flux of radionuclides in flowback fluid from shale gas exploitation.
Almond, S; Clancy, S A; Davies, R J; Worrall, F
2014-11-01
This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, USA. The radioactive flux from these basins was estimated, given estimates of the number of wells developed or to be developed, the flowback volume per well and the concentration of K (potassium) and Ra (radium) in the flowback water. For comparative purposes, the range of concentration was itself considered within four scenarios for the concentration range of radioactive measured in each shale gas basin, the groundwater of the each shale gas basin, global groundwater and local surface water. The study found that (i) for the Barnett Shale and the Silurian Shale, Poland, the 1 % exceedance flux in flowback water was between seven and eight times that would be expected from local groundwater. However, for the Bowland Shale, UK, the 1 % exceedance flux (the flux that would only be expected to be exceeded 1 % of the time, i.e. a reasonable worst case scenario) in flowback water was 500 times that expected from local groundwater. (ii) In no scenario was the 1 % exceedance exposure greater than 1 mSv-the allowable annual exposure allowed for in the UK. (iii) The radioactive flux of per energy produced was lower for shale gas than for conventional oil and gas production, nuclear power production and electricity generated through burning coal.
Remotely Sensed Index of Deforestation/Urbanization for use in Climate Models
NASA Technical Reports Server (NTRS)
Carlson, Toby N.
1996-01-01
The purpose of this investigation is to use a new method for deriving land surface parameters from a combination of thermal infrared and vegetation index measurements from satellites (Landsat-TM, and NOAA-AVHRR) and to integrate these parameters with more conventional data bases. We have completed an investigation of urbanization in the State College, PA area and have begun work in Chester County, PA, and Costa Rica. Our basic hypothesis is that changes in land use, including deforestation, exert a profound influence on local microclimates whose effects may greatly exceed in importance those occurring on larger scales.
Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010
Nystrom, Elizabeth A.
2012-01-01
Water quality in both study areas is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (one sample in the St. Lawrence study area), pH (three samples in the Delaware study area), sodium (one sample in the St. Lawrence study area), total dissolved solids (one sample in the St. Lawrence study area), aluminum (one sample in the Delaware study area and one sample in the St. Lawrence study area), iron (seven samples in the St. Lawrence study area), manganese (one sample in the Delaware study area and five samples in the St. Lawrence study area), gross alpha radioactivity (one sample in the St. Lawrence study area), radon-222 (10 samples in the Delaware study area and 14 samples in the St. Lawrence study area), and bacteria (5 samples in the Delaware study area and 10 samples in the St. Lawrence study area). E. coli bacteria were detected in samples from two wells in the St. Lawrence study area. Concentrations of chloride, fluoride, sulfate, nitrate, nitrite, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and uranium did not exceed existing drinking-water standards in any of the samples collected.
A preview of Delaware's timber resource
Joseph E. Barnard; Teresa M. Bowers
1973-01-01
The recently completed forest survey of Delaware indicated little change in the total forest area since the 1957 estimate. Softwood volume and the acreage of softwood types decreased considerably. Hardwoods now comprise two-thirds of the volume and three-fourths of the forest area. Total average annual growth exceeded removals, but softwood removals exceeded average...
Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release
NASA Astrophysics Data System (ADS)
van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent
2017-06-01
Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.
Surface-water hydrology of the Western New York Nuclear Service Center Cattaraugus County, New York
Kappel, W.M.; Harding, W.E.
1987-01-01
Precipitation data were collected from October 1980 through September 1983 from three recording gages at the Western New York Nuclear Service Center, and surface water data were collected at three continuous-record gaging stations and one partial-record gage on streams that drain a 0.7 sq km part of the site. Seepage from springs was measured periodically during the study. The data were used to identify runoff characteristics at the waste burial ground and the reprocessing plant area, 400 meters to the north. Preliminary water budgets for April 1982 through March 1983 were calculated to aid in the development of groundwater flow models to the two areas. Nearly 80% of the measured runoff from the burial ground area was storm runoff; the remaining 20% was base flow. In contrast, only 30% of the runoff leaving the reprocessing plant area was storm runoff, and 70% was base flow. This difference is attributed to soil composition. The burial ground soil consists of clayey silty till that limits infiltration and causes most precipitation to flow to local channels as direct runoff. In contrast, the reprocessing plant area is overlain by alluvial sand and gravel that allows rapid infiltration of precipitation and subsequent steady discharge from the water table to nearby stream channels and seepage faces. Measured total annual runoff and estimated evapotranspiration from the reprocessing plant area exceeded the precipitation by 35%, which suggests that the groundwater basin is larger than the surface water basin. The additional outflow probably includes underflow from bedrock upgradient from the plant, water leakage from plant facilities, and groundwater flow from adjacent basins. (Author 's abstract)
Chafin, Daniel T.
1994-01-01
In July 1990, the U.S. Geological Survey began a study of the occurrence of natural gas in near-surface ground water in the Animas River valley in the San Juan Basin between Durango, Colorado, and Aztec, New Mexico. The general purpose of the study was to identify the sources and migration pathways of natural gas in nearsurface ground water in the study area. The purpose of this report is to present interpretive conclusions for the study, primarily based on data collected by the U.S. Geological Survey from August 1990 to May 1991.Seventy of the 205 (34 percent) groundwater samples collected during August-November 1990 had methane concentrations that exceeded the reporting limit of 0.005 milligram per liter. The maximum concentration was 39 milligrams per liter, and the mean concentration was 1.3 milligrams per liter. Samples from wells completed in bedrock have greater mean concentrations of methane than samples from wells completed in alluvium. Correlations indicate weak or nonexistent associations between dissolved-methane concentrations and concentrations of dissolved solids, major ions, bromide, silica, iron, manganese, and carbon dioxide. Dissolved methane was associated with hydrogen sulfide.Soil-gas-methane concentrations were measurable at few of 192 ground-water sites, even at sites at which ground water contained large concentrations of dissolved methane, which indicates that soil-gas surveys are not useful to delineate areas of gas-affected ground water. The reporting limit of 0.005 milligram per liter of gas was equaled or exceeded by 40 percent of soil-gas measurements adjacent to 352 gas-well casings. Concentrations of at least 100 milligrams per liter of gas were measured at 25 (7 percent) of the sites.Potential sources of gases in water, soil, gas-well surface casings, and cathodic-protection wells were determined on the basis of their isotopic and molecular compositions and available information about gas-well construction or leaks. Biogenic and thermogenic sources of gas exist in the near-surface environment of the study area. Biogenic gas is present locally in the near-surface Animas and Nacimiento formations, and biogenic gas has been detected in water wells completed in those rocks. Most gas probably is thermogenic gas from deep reservoirs, including the Dakota Sandstone, Mesaverde Group, Lewis Shale, Pictured Cliffs Sandstone, and coals in the Fruitland Formation. Less important sources include sandstones in the upper Fruitland Formation and the Kirtland Shale.Although migration of gas by diffusion or through natural fractures is possible, manmade conduits probably account for most of the upward migration of gas to the near-surface environment of the study area. Primary migration pathways largely consist of 1) leaking, conventional gas wells and 2) uncemented annuli of conventional gas wells along coals in the Fruitland Formation. Secondary migration pathways are gas-well annuli, cathodic-protection wells, seismic-test holes, and bedrock water wells.
O'Neill, A; Phillips, D H; Bowen, J; Sen Gupta, B
2015-04-15
A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO3-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. Copyright © 2015 Elsevier B.V. All rights reserved.
Lumia, Richard; Firda, Gary D.; Smith, Travis L.
2014-01-01
Record rainfall combined with above-average temperatures and substantial spring snowmelt resulted in record flooding throughout New York during 2011. Rainfall totals in eastern New York were the greatest since 1895 and as much as 60 percent above the long-term average within the Catskill Mountains area and the Susquehanna River Basin. This report documents the three largest storms and resultant flooding during the year: (1) spring storm during April and May, (2) Tropical Storm Irene during August, and (3) remnants of Tropical Storm Lee during September. According to the Federal Emergency Management Agency (FEMA), the cost of these three storms exceeded $1 billion in Federal disaster assistance. A warm and wet spring in northern New York resulted in record flooding at 21 U.S. Geological Survey (USGS) active streamgages during late April to early May with the annual exceedance probabilities (AEPs) of 11 peak discharges equaling or exceeding 1 percent. Nearly 5 inches of rain during late April combined with a rapidly melting snowpack caused widespread flooding throughout northern New York, resulting in many road closures, millions of dollars in damages, and 23 counties declared disaster areas and eligible for public assistance. On May 6, Lake Champlain recorded its highest lake level in over 140 years. Hurricane Irene entered New York State on August 28 as a tropical storm and traveled up the eastern corridor of the State, leaving a path of destruction and damage never seen in many parts of New York. Thirty-one counties in New York were declared disaster areas with damages of over $1.3 billion dollars and 10 reported deaths. Storm rainfall exceeded 18 inches in the Catskill Mountains area of southeastern New York with many other areas of eastern New York receiving over 7 inches. Catastrophic flooding resulted from the extreme rainfall in many locations, including Schoharie Creek and its tributaries, the eastern Delaware River Basin, the Ausable and Bouquet River Basins in northeastern New York, and several other stream basins throughout southeastern New York. Downstream reaches of the Mohawk River also had substantial flooding. Sixty-two USGS streamgages throughout eastern New York documented record high stream flows and elevations with AEPs of 25 peak discharges equaling or exceeding 1 percent. The USGS streamgage for the Schoharie Creek at Prattsville recorded its greatest peak discharge in 109 years of record at 120,000 cubic feet per second (greater than the 0.2-percent AEP discharge) on August 28. The peak water-surface elevation at the streamgage in Prattsville was 5 feet higher than its previous record in 1996. USGS personnel surveyed 184 high-water marks (HWMs) at 30 locations along an 84-mile reach of Schoharie Creek and compared the elevations to those published by FEMA for the 10-, 2-, 1-, and 0.2-percent AEP floods. Elevations in the lower reaches of the basin exceeded published elevations for the 0.2-percent AEP flood. Remnants of Tropical Storm Lee brought a third major storm to New York in September 2011. Moisture from Lee began moving into New York on September 7 and intensified over the already saturated Susquehanna River Basin. Most of the rain fell on September 8 with storm totals nearing 13 inches in some areas (12.73 inches at Apalachin in Tioga County). Major disaster declarations were issued for 15 counties in and around central New York, making them eligible for individual or public assistance. Ten USGS streamgages within the Susquehanna River Basin documented record-high stream discharges and elevations on September 8, and all were greater than the 1-percent AEP discharge. USGS personnel surveyed 20 HWMs at 18 locations along a 114- mile reach of the Susquehanna River and compared the elevations to those published by FEMA for the 10-, 2-, 1-, and 0.2-percent AEP floods. Several of the surveyed HWMs exceeded published elevations for the 0.2-percent AEP flood.
Storm and flood of July 5, 1989, in northern New Castle County, Delaware
Paulachok, G.N.; Simmons, R.H.; Tallman, A.J.
1995-01-01
On July 5, 1989, intense rainfall from the remnants of Tropical Storm Allison caused severe flooding in northern New Castle County, Delaware. The flooding claimed three lives, and damage was estimated to be $5 million. Flood conditions were aggravated locally by rapid runoff from expansive urban areas. Record- breaking floods occurred on many streams in northern New Castle County. Peak discharges at three active, continuous-record streamflow-gaging stations, one active crest-stage station, and at two discontinued streamflow-gaging stations exceeded previously recorded maximums. Estimated recurrence intervals for peak flow at the three active, continuous-record streamflow stations exceeded 100 years. The U.S. Geological Survey conducted comprehensive post-flood surveys to determine peak water-surface elevations that occurred on affected streams and their tributaries during the flood of July 5, 1989. Detailed surveys were performed near bridge crossings to provide additional information on the extent and severity of the flooding and the effects of hydraulic constrictions on floodwaters.
Stamer, J.K.; Wieczorek, M.E.
1996-01-01
Distributions of concentrations of 46 pesticides were documented from May 1992 through March 1994 for Maple Creek near Nickerson, Neb., and Platte River at Louisville, Neb. As their source of public water supplies, Lincoln and the western part of Omaha withdraw groundwater from the adjacent alluvium near the Platte River site, which is hydraulically connected to the Platte River. Organonitrogen herbicides dominated the pesticide distributions at each site. Variations in the distributions of pesticides at the two sites partly reflect differences in land use and land management practices. Diazinon, an insecticide used in urban areas, was commonly detected at the Platte River site but not at the Maple Creek site. Of the 46 pesticides analyzed at the Platte River site, the herbicides atrazine and alachlor were more likely to exceed their respective maximum contaminant levels of 3.0 and 2.0 pg/L; cyanazine was more likely to exceed the health advisory level of 1.0 ??g/L.
Ground-water quality in east-central New Jersey, and a plan for sampling networks
Harriman, D.A.; Sargent, B.P.
1985-01-01
Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Generally, water in the confined aquifers is of satisfactory quality for human consumption and most other uses. Iron (Fe) and manganese (Mn) concentrations exceed U.S. EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system (the water table aquifer) was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. The results of chi-square tests of constituent distributions based on analyses from 158 wells in the water table aquifer indicate that calcium is higher in industrial and commercial areas; and Mg, chloride, and nitrate-plus-nitrite is higher in residential areas. (Author 's abstract)
Apitz, Sabine E; Barbanti, Andrea; Bocci, Martina; Carlin, Anna; Montobbio, Laura; Bernstein, Alberto Giulio
2007-07-01
A number of studies carried out in recent years have shown the presence of a wide range of contaminants in the Venice Lagoon. It is important to have a good understanding of the ecological quality of Venice Lagoon sediments in order to 1) define and locate areas where a threat to the environment is present and therefore an intervention is needed (i.e., in situ assessment and management); and 2) define sustainable and environmentally correct ways of managing sediments that are to be dredged for navigational purposes or in relation to other interventions (i.e., ex situ management). This study reports on a critical comparison of chemical quality of sediments in Venice Lagoon and its subregions. Data on the Venice Lagoon were compiled from several studies conducted during the past decade on surface sediment contamination; temporal variation and risks for contaminants at depth were not addressed. The comparison of observed pollutant concentrations with local and internationally used sediment quality guidelines (SQGs) was used as a tool to benchmark different sites and for a tier I (screening) ecological risk assessment. Meaning and relevance of a number of SQGs are discussed, together with the options available for carrying out the comparison with sediment data. The screening of the Venice Lagoon sediment quality is discussed from a risk-assessment perspective and appropriate values for use in an in situ-ex situ management framework are suggested. Although there were some differences depending upon which specific SQGs were applied, different SQGs provided the same general picture of screening risk in Venice Lagoon: Although there are geographic differences, median levels for several contaminants in surface sediments exceeded a number of SQGs. Many contaminants exceed threshold effects SQGs, and Hg exceeds probable effects SQGs in most sub-basins except the southern Lagoon. Venice Lagoon south has the lowest screening risk levels, Venice Lagoon central/north has the highest (and is nearest to the Porto Marghera and Venice City Canals sites). Ranges are high in all areas, therefore any remedial or disposal decision should use site-specific data.
Holocene sedimentation in the shallow nearshore zone off Nauset Inlet, Cape Cod, Massachusetts
Aubrey, D.G.; Twichell, D.C.; Pfirman, S.L.
1982-01-01
Present conditions and sedimentary evolution of the shallow offshore region near Nauset Inlet on Cape Cod, Massachusetts were clarified using high-resolution seismic-reflection profiles, sidescan-sonar records, surface grab samples and current meter measurements. The study area contains three provinces: (1) a nearshore province (shallower than 18 m) with a relatively steep slope (0.6°) and a cover of medium sand; (2) a northern offshore province covered with coarse sand, gravel, and boulders, interpreted to be glacial drift; and (3) a southern offshore province with a gentle seaward-dipping slope (0.3°) and a surface sediment of coarse sand. The glacial drift exposed in the northern offshore province can be traced southward under the coarse sand province. The overlying fill is comprised of either outwash sediment derived from the Pleistocene South Channel ice lobe to the east or Holocene-aged marine sediments eroded from seacliffs to the north. Latest Holocene sediment appears to be limited to the zone shoreward of 18 m where the medium sand occurs.Near-bottom mean flows (measured over two winter months in 10 m water depth) average 6 cm sec−1 to the south. Mean flows exceeded 20 cm sec−1approx. 23% of the time. Ninety percent of the flows exceeding 20 cm sec−1were directed to the south, reflecting the dominant atmospheric forcing during these winter months. Waves had an average variance of 650 cm2 with variance exceeding 5000 cm2, 3% of the time, indicating moderate wave activity.Present processes are actively reshaping the nearshore province, which is characterized by many east to northeast-trending shore-oblique channels that do not extend seaward of the 18-m contour. Coarse sand in the floors of these channels suggests they may be erosional features, and the presence of megaripples oriented perpendicular to the channel axes indicates active transport in these channels. Megaripple orientation and the current and wave regime of the study area support a rip-current origin for these channels.
Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.
2008-01-01
Relations between the elevation of the static water level in wells and the elevation of the accounting surface within the Colorado River aquifer in the vicinity of Vidal, California, the Chemehuevi Indian Reservation, California, and on Mohave Mesa, Arizona, were used to determine which wells outside the flood plain of the Colorado River are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation equal to or below the elevation of the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Geographic Information System (GIS) interpolation tools were used to produce maps of areas where water levels are above, below, and near (within ? 0.84 foot) the accounting surface. Calculated water-level elevations and interpolated accounting-surface elevations were determined for 33 wells in the vicinity of Vidal, 16 wells in the Chemehuevi area, and 35 wells on Mohave Mesa. Water-level measurements generally were taken in the last 10 years with steel and electrical tapes accurate to within hundredths of a foot. A Differential Global Positioning System (DGPS) was used to determine land-surface elevations to within an operational accuracy of ? 0.43 foot, resulting in calculated water-level elevations having a 95-percent confidence interval of ? 0.84 foot. In the Vidal area, differences in elevation between the accounting surface and measured water levels range from -2.7 feet below to as much as 17.6 feet above the accounting surface. Relative differences between the elevation of the water level and the elevation of the accounting surface decrease from west to east and from north to south. In the Chemehuevi area, differences in elevation range from -3.7 feet below to as much as 8.7 feet above the accounting surface, which is established at 449.6 feet in the vicinity of Lake Havasu. In all of the Mohave Mesa area, the water-level elevation is near or below the elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.
Williams, Shannon D.
2003-01-01
From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10 wells contained concentrations equal to or greater than the analytical reporting level of 1 ?g/L for PCE. Samples from one of these wells contained PCE concentrations (12 ?g/L and 11 ?g/L) exceeding the drinking water maximum contaminant level of 5 ?g/L for PCE. The spatial distribution of PCE detections and the relative concentrations of PCE and trichloroethylene suggest that the PCE detections are associated with a small and localized ground-water contamination plume unrelated to AAFB ground-water contamination.
Ballog, A.P.; Moyle, W.R.
1980-01-01
The water resources of the Los Coyotes Indian Reservation, San Diego County, Calif., are sufficient to supply the limited domestic and stock-water needs of the present residents of the reservation. Surface-water runoff is derived from direct precipitation on the area and from intermittent spring flow. Groundwater occurs in the alluvial deposits and in the consolidated rocks where they are highly fractured or deeply weathered. The best potential for groundwater development on the reservation is in the small alluvial basins in the San Ysidro and San Ignacio areas. Most water on the reservation is good to excellent in chemical quality for domestic, stock, and irrigation use. Water from two wells (and one spring), however, exceeds the primary drinking-water standard for nitrate plus nitrate. (USGS)
The quality of surface waters in Texas
Rawson, Jack
1974-01-01
The discharge-weighted average concentrations of dissolved solids, chloride, and ,sulfate for many of the principal streams in Texas are less than 500 mg/l (millijgraljls per liter), 250 mg/l, and 250 mg/l, respectively. At 65 of 131 sites on streams that were sampled at least 10 times, the biochemical oxygen demand of at least half the samples exceeded 3.0 mg/l. At 20 of the sites, the dissolved-oxygen content of at least half the samples was less than 5.0 mg/l. The higher concentrations of minor elements usually were detected in waters from urban areas, indicating a relation to man's activities. Small amounts of some pesticides are widely distributed in low concentrations. The higher concentrations usually were detected in waters from urban areas.
NASA Astrophysics Data System (ADS)
Zhu, Xiaobin; Wu, Jichun; Nie, Huijun; Guo, Fei; Wu, Jianfeng; Chen, Kouping; Liao, Penghui; Xu, Hongxia; Zeng, Xiankui
2018-06-01
Inter-basin water transfer projects (IBWTPs) can involve basins as water donors and water receivers. In contrast to most studies on IBWTPs, which mainly impact the surface-water eco-environment, this study focuses on the impacts of an IBWTP on groundwater and its eco-environment in a water donor basin in an arid area, where surface water and groundwater are exchanged. Surface water is assumed to recharge groundwater and a groundwater numerical simulation model was constructed using MODFLOW. The model was used to quantitatively evaluate the impact of an IBWTP located in the upstream portion of Nalenggele River (the biggest river in the Qaidam basin, Northwest China). The impact involved decrease in spring flow, drawdown of groundwater, reduction in oasis area, and an increase in species replacement of oasis vegetation in the midstream and downstream of the river. Results show that the emergence sites of springs at the front of the oasis will move 2-5 km downstream, and the outflow of springs will decrease by 42 million m3/a. The maximum drawdown of groundwater level at the front of the oasis will be 3.6 m and the area across which groundwater drawdown exceeds 2.0 m will be about 59.02 km2, accounting for 2.71% of the total area of the oasis. Under such conditions, reeds will gradually be replaced by Tamarix, shrubs, and other alternative plant species. These findings have important implications for the optimization of water resource allocation and protection of the eco-environment in arid regions.
Ross Schmidt, Heather C.
2004-01-01
Water-quality samples were collected from 20 surface-water sites and 11 ground-water sites on the Prairie Band Potawatomi Reservation in northeastern Kansas in an effort to describe existing water-quality conditions on the reservation and to compare water-quality conditions to results from previous reports published as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Water is a valuable resource to the Prairie Band Potawatomi Nation as tribal members use the streams draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, to fulfill subsistence hunting and fishing needs and as the tribe develops an economic base on the reservation. Samples were collected once at 20 surface-water monitoring sites during June 2001, and quarterly samples were collected at 5 of the 20 monitoring sites from May 2001 through August 2003. Ground-water-quality samples were collected once from seven wells and twice from four wells during April through May 2003 and in August 2003. Surface-water-quality samples collected from May through August 2001 were analyzed for physical properties, nutrients, pesticides, fecal indicator bacteria, and total suspended solids. In November 2001, an additional analysis for dissolved solids, major ions, trace elements, and suspended-sediment concentration was added for surface-water samples. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in a sample from one monitoring well located near a construction and demolition landfill on the reservation. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Forty percent of the 65 surface-water samples analyzed for total phosphorus exceeded the aquatic-life goal of 0.1 mg/L (milligrams per liter) established by the U.S. Environmental Protection Agency (USEPA). Concentrations of dissolved solids and sodium occasionally exceeded USEPA Secondary Drinking-Water Regulations and Drinking-Water Advisory Levels, respectively. One of the 20 samples analyzed for atrazine concentrations exceeded the Maximum Contaminant Level (MCL) of 3.0 ?g/L (micrograms per liter) as an annual average established for drinking water by USEPA. A triazine herbicide screen was used on 63 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. Nitrite plus nitrate concentrations in two ground-water samples from one monitoring well exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in two samples from one monitoring well also exceeded the proposed MCL of 10 ?g/L established by the USEPA for drinking water. Concentrations of dissolved solids and sulfate in some ground-water samples exceeded their respective Secondary Drinking-Water Regulations, and concentrations exceeded the taste threshold of the USEPA?s Drinking-Water Advisory Level for sodium. Consequently, in the event that ground water on the reservation is to be used as a drinking-water source, additional treatment may be necessary to remove excess dissolved solids, sulfate, and sodium.
Gill, Amy C.; Robinson, John A.; Redmond, Jymalyn E.; Bradley, Michael W.
2008-01-01
The watershed of Fivemile Creek (FMC), a tributary to the Locust Fork of the Black Warrior River, is located north of Birmingham, Alabama. Areas that have been previously coal-mined border the creek, and portions of the upper watershed have been and are currently (2007) being used for industrial and urban uses. The U.S. Geological Survey (USGS), in cooperation with the City of Tarrant, the Freshwater Land Trust, and the Jefferson County Commission, conducted a water-quality assessment of 12 sites along FMC during 2003?2005. Water samples were analyzed for basic physical and chemical properties and concentrations of major ions, nutrients, fecal indicator bacteria, organic wastewater compounds, pesticides, trace elements, and semivolatile organic compounds. Streambed-sediment samples were analyzed for concentrations of trace elements and semivolatile organic compounds. Benthic invertebrate communities were evaluated for taxonomic composition and relation to water-quality conditions. Nutrient concentrations in the FMC watershed reflect the influences of natural and anthropogenic sources. Concentrations of total nitrogen in all samples and total Kjeldahl nitrogen in at least one sample each collected from FMC at Hewitt Park, FMC below Springdale Road, FMC at Lewisburg, FMC near Republic, FMC at Brookside, and FMC at Linn Crossing exceeded U.S. Environmental Protection Agency (USEPA) ecoregion nutrient criteria. Total phosphorus concentrations in about 58 percent of all samples were above the ecoregion nutrient criteria. Concentrations of chlorophyll a, an indicator of algal biomass, in the FMC watershed were below the appropriate USEPA ecoregion criteria. Fecal indicator bacteria concentrations occasionally exceeded criteria established by the Alabama Department of Environmental Management (ADEM) and the USEPA to protect human health and aquatic life. Median fecal-coliform concentrations equaled or exceeded USEPA criteria at four of the six sites with multiple samples. Maximum Escherichia coli (E. coli) concentrations usually occurred during high-flow conditions and exceeded the single-sample criterion for infrequently-used whole-body contact (576 colonies per 100 milliliters) at all but one site. Median E. coli concentrations for two of the seven sites with multiple samples exceeded USEPA criteria. Twenty-nine samples were collected from sites along FMC and analyzed by the USGS National Water Quality Laboratory for the presence of 57 organic wastewater compounds. Forty-six of the 57 organic wastewater compounds, representing all 11 general-use categories, were detected in samples from FMC. All detections of organic wastewater compounds were estimated below laboratory reporting limits except for several detections of the herbicide bromacil. Herbicides accounted for approximately 62 percent of the number of pesticide detections in the FMC study area. Two herbicides, atrazine and simazine, were detected most frequently, in 100 percent of the surface-water samples. Fipronil sulfide was the most commonly detected insecticide-derived compound, occurring in 52 percent of the surface-water samples. Concentrations of one insecticide, dieldrin, exceeded the USEPA?s health advisory level for drinking water in one sample at FMC at Hewitt Park and in one sample at FMC below Springdale Road. Concentrations of carbaryl in two samples and malathion in one sample exceeded aquatic-life criteria. Only a few trace element concentrations measured in FMC exceeded established standards or criteria. Some concentrations of aluminum and manganese were above secondary drinking-water standards. One cadmium concentration and three selenium concentrations measured at FMC at Lewisburg exceeded ADEM chronic aquatic-life criteria. Streambed-sediment samples were collected at seven sites along FMC, and analyzed for selected semivolatile organic compounds and trace elements. Forty-nine of 98 semivolatile organic compounds were detected in stre
Thodal, Carl E.; Tuttle, Peter L.
1996-01-01
A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated in several biological samples collected throughout the Basin, although concentrations in water and bottom sediment were below analytical reporting limits. Sources of arsenic, boron, and mercury in the Basin are uncertain, but ambient levels reported for a variety of sample matrices collected from western Nevada generally exceed ranges cited as natural background levels. Because these potentially toxic constituents exceeded concern levels in areas that do not directly receive irrigation drainage, concentrations measured in samples collected for this study may not necessarily be attributable to agricultural activities. Diversion of river water for irrigation may have greater effects on beneficial uses of water and on fish and wildlife than does drainage from agricultural areas on the Reservation. In 1994, agricultural water consumption precluded dilution of ground-water seepage to the river channel. This resulted in concentrations of potentially toxic solutes that exceeded levels of concern. Diversion of irrigation water also may have facilitated leaching of potentially toxic solutes from irrigated soil on the Reservation, but during this study all water applied for irrigation on the Reservation was either consumed by evapotranspiration or infiltrated to recharge shallow ground water. No irrigation drainage was found on the Reservation during this study. However, because 1994 samples of ground-water seepage to the Walker River channel exceeded at least six Nevada waterquality standards, water-quality problems may result should ground-water levels rise enough to cause ground-water discharge to the agricultural drain on the Reservation. Nevertheless, the potential for adverse effects from irrigation drainage on the Reservation is believed to be small because surface-water rights for the Walker River Indian Reservation amount to only 2 percent of total surface- water rights in the entire Walker River Basin.
Recharge of an Unconfined Pumice Aquifer: Winter Rainfall Versus Snow Pack, South-central Oregon
NASA Astrophysics Data System (ADS)
Cummings, M. L.; Weatherford, J. M.; Eibert, D.
2015-12-01
Walker Rim study area, an uplifted fault block east of the Cascade Range, south-central Oregon, exceeds 1580 m elevation and includes Round Meadow-Sellers Marsh closed basin, and headwaters of Upper Klamath Basin, Deschutes Basin, and Christmas Lake Valley in the Great Basin. The water-bearing unit is 2.8 to 3.0 m thick Plinian pumice fall from the Holocene eruption of Mount Mazama, Cascade Range. The perched pumice aquifer is underlain by low permeability regolith and bedrock. Disruption of the internal continuity of the Plinian pumice fall by fluvial and lacustrine processes resulted in hydrogeologic environments that include fens, wet meadows, and areas of shallow water table. Slopes are low and surface and groundwater pathways follow patterns inherited from the pre-eruption landscape. Discharge for streams and springs and depth to water table measured in open-ended piezometers slotted in the pumice aquifer have been measured between March and October, WY 2011 through WY2015. Yearly occupation on same date has been conducted for middle April, June 1st, and end of October. WY2011 and WY2012 received more precipitation than the 30 year average while WY2014 was the third driest year in 30 years of record. WY2014 and WY2015 provide an interesting contrast. Drought conditions dominated WY2014 while WY2015 was distinct in that the normal cold-season snow pack was replaced by rainfall. Cumulative precipitation exceeded the 30-year average between October and March. The pumice aquifer of wet meadows and areas of shallow water table experienced little recharge in WY2015. Persistence of widespread diffuse discharge from fens declined by middle summer as potentiometric surfaces lowered into confining peat layers or in some settings into the pumice aquifer. Recharge of the perched pumice aquifer in rain-dominated WY2015 was similar to or less than in the snow-dominated drought of WY2014. Rain falling on frozen ground drove runoff rather than aquifer recharge.
Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009
Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.
2014-01-01
Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.
Quality of surface-water supplies in the Triangle Area of North Carolina, water years 2012–13
Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.
2016-09-07
Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2011 through September 2012 (water year 2012) and October 2012 through September 2013 (water year 2013). Major findings for this period include:Annual precipitation was approximately 2 percent above the long-term mean (average) annual precipitation in 2012 and approximately 3 percent below the long-term mean in 2013.In water year 2012, streamflow was generally below the long-term mean during most of the period for the 10 project streamflow gaging stations. Streamflow was near or above the long-term mean at the same streamflow gaging stations during the 2013 water year.More than 7,000 individual measurements of water quality were made at a total of 17 sites—6 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-three water-quality properties or constituents were measured; State water-quality standards exist for 23 of these.All observations met State water-quality standards for pH, temperature, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium.North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, turbidity, chlorophyll a, copper, iron, manganese, mercury, silver, and zinc. Exceedances occurred at all 17 sites.Stream samples collected during storm events contained elevated concentrations of 19 water-quality constituents relative to non-storm events.
Adikaram, Madurya; Pitawala, Amarasooriya; Ishiga, Hiroaki; Jayawardana, Daham
2017-01-01
The present paper is the first documentation of distribution and contamination status of environmentally important elements of superficial sediments in the Batticaloa lagoon that is connected to the largest bay of the world. Surface sediment samples were collected from 34 sites covering all over the lagoon. Concentrations of elements such as As, Cr, Cu, Fe, Nb, Ni, Pb, Sc, Sr, Th, V, Y, Zn, and Zr were measured by X-ray florescence analysis. Geochemically, the lagoon has three different zones that were influenced mainly by fresh water sources, marine fronts, and intermediate mixing zones. The marine sediment quality standards indicate that Zr and Th values are exceeded throughout the lagoon. According to the freshwater sediment quality standards, Cr levels of all sampling sites exceed the threshold effect level (TEL) and 17 % of them are even above the probable effect level (PEL). Most sampling sites of the channel discharging areas show minor enrichment of Cu, Ni, and Zn with respect to the TEL. Contamination indices show that the lagoon mouth area is enriched with As. Statistical analysis implies that discharges from agricultural channel and marine fluxes of the lagoon effects on the spatial distribution of measured elements. Further research is required to understand the rate of contamination in the studied marine system.
Long-term atmospheric deposition wet-dry fluxes. Critical loads exceedences in an urban area.
Morselli, L; Brusori, B; Cecchini, M; Olivieri, P; Silingardi, D; Passarini, F
2001-01-01
The present work provides an overview of the most relevant results concerning a five years monitoring programme of wet and dry deposition (1995-1999) in the city of Bologna. The aim of this research is to get an overall picture of atmospheric pollutants deposition inventory in an urban territory and to allow an assessment of the vulnerability of the area by comparing actual fluxes of acidity and nutrient nitrogen with the respective "critical loads" associated to the territory, in the framework of the UNECE LRTAP (Long Range Transboundary Air Pollution Convention). This comparison, for the Bologna monitoring station, shows "exceedance classes" from 4 to 6 for acidity and from 1 to 5 for nutrient nitrogen, reflecting an urban-industrial context, though a trend in reducing occurs from 1995 to 1999. A water layer surface sampler (DAS-MTX sampler) was employed for "surrogate" dry deposition collection. The contribute of dry fraction to the total deposition fluxes appears to prevail on wet fraction for many pollutants (up to more than 90% for total calcium and alkalinity). A comparison with long term monitoring results from some stations in Italian territory, shows that the differences among chemical species deposition fluxes may be ascribed both to the long distance aerial transport of pollutants and to site characteristics.
Sloto, Ronald A.
2009-01-01
Several shutdown-rebound tests have been conducted at the Henderson Road Superfund Site, which has been on the U.S. Environmental Protection Agency's National Priorities List since 1984. For a given test, the extraction wells are turned off, and water samples are collected from selected monitor wells at regular intervals before and during cessation of pumping to monitor for changes in chemical concentrations. A long-term shutdown-rebound test began on July 17, 2006. In support of this test, the U.S. Geological Survey conducted this study to determine the effects of shutting down on-site extraction wells on concentrations of selected contaminants and water levels. Concentrations were compared to ARARs (applicable relevant and appropriate requirements), which were set as remediation goals in the Henderson Road Site Record of Decision. Water from 10 wells in and near the source area and to the north, northeast, and northwest of the source area sampled in 2008 exceeded the 5.52 ug/L (micrograms per liter) ARAR for benzene. The greatest changes in benzene concentration between pre-shutdown samples collected in July 2006 and samples collected in February and March 2008 (19 months after the shutdown) were for wells in and north of the source area; increases in benzene concentration ranged from 1.5 to 164 ug/L. Water from five wells in the source area and to the north and northwest of the source area sampled in 2008 exceeded the 60 ug/L ARAR for chlorobenzene. The greatest changes in chlorobenzene concentration between pre-shutdown samples collected in July 2006 and samples collected in February and March 2008 were for wells north of the source area; increases in chlorobenzene concentration ranged from 6.9 to 99 ug/L. The highest concentrations of chlorobenzene were near or outside the northern site boundary, indicating chlorobenzene may have moved north away from the source area; however, no monitor well clusters are on the northern side of the Pennsylvania Turnpike, which is about 190 feet north of the source area. A much larger area was affected by chlorobenzene than benzene. Chlorobenzene concentrations decreased in the source area and increased at and beyond the site boundary. Water from four wells in and northeast of the source area sampled in 2008 exceeded the 5.06 ug/L ARAR for 1,1-dichloroethane (1,1-DCA). Increases in 1,1-DCA concentration between pre-shutdown samples collected in July 2006 and samples collected in February 2008 ranged from 0.4 to 20 ug/L. Water from two wells in the source area sampled in 2008 exceeded the 175 ug/L ARAR for total xylene. The 1,1-DCA and xylene plumes appear to extend in an east-northeast direction from the source area. Large drawdowns in the Upper Merion Reservoir during droughts in 1998 and 2001 affected water levels in the Chester Valley and at the Henderson Road Site, except for well HR-17-170. After the drought of 2001, water levels in the Chester Valley showed a protracted recovery lasting from September 2001 until June 2005 (46 months). Water-level data were evaluated temporally for 1997-2008 and spatially for (1) June 16, 2003, when the extraction wells were pumping at the full rate prior to the start of the June 2003 shutdown test; (2) July 10, 2006, during the period of reduced pumping after the June 2003 shutdown test; and (3) February 25-29, 2008, when the extraction wells were not pumping. Except for well HR-5-195, wells were categorized as shallow, intermediate-depth, and deep wells. The potentiometric surface for shallow wells did not appear to be affected by pumping of the extraction wells. The general direction of ground-water flow was to the north. The potentiometric surface for intermediate-depth wells showed a cone of depression when the extraction wells were pumping at the full rate but did not show a cone of depression when the extraction wells were pumping at the reduced rate. The ground-water-flow direction was toward the north and northeast, similar to
Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb
NASA Technical Reports Server (NTRS)
Wang, Yazhen; Regel, Liya L.; Wilcox, William R.
2000-01-01
We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.
Lacombe, Pierre
1986-01-01
Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)
Sneed, Michelle; Brandt, Justin T.
2007-01-01
Land subsidence associated with ground-water-level declines has been investigated by the U.S. Geological Survey in the Coachella Valley, California, since 1996. Ground water has been a major source of agricultural, municipal, and domestic supply in the valley since the early 1920s. Pumping of ground water resulted in water-level declines as large as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the southern Coachella Valley began, resulting in a reduction in ground-water pumping and a recovery of water levels during the 1950s through the 1970s. Since the late 1970s, demand for water in the valley has exceeded deliveries of imported surface water, resulting in increased pumping and associated ground-water-level declines and, consequently, an increase in the potential for land subsidence caused by aquifer-system compaction. Global Positioning System (GPS) surveying and interferometric synthetic aperture radar (InSAR) methods were used to determine the location, extent, and magnitude of the vertical land-surface changes in the southern Coachella Valley. GPS measurements made at 13 geodetic monuments in 1996 and in 2005 in the southern Coachella Valley indicate that the elevation of the land surface had a net decline of 333 to 22 millimeters ?58 millimeters (1.1 to 0.07 foot ?0.19 foot) during the 9-year period. Changes at 10 of the 13 monuments exceeded the maximum uncertainty of ?58 millimeters (?0.19 foot) at the 95-percent confidence level, indicating that subsidence occurred at these monuments between June 1996 and August 2005. GPS measurements made at 20 geodetic monuments in 2000 and in 2005 indicate that the elevation of the land surface changed -312 to +25 millimeters ?42 millimeters (-1.0 to +0.08 foot ?0.14 foot) during the 5-year period. Changes at 14 of the 20 monuments exceeded the maximum uncertainty of ?42 millimeters (?0.14 foot) at the 95-percent confidence level, indicating that subsidence occurred at these monuments between August 2000 and August 2005. Eight of the fourteen monuments for which subsidence rates could be compared indicate that subsidence rates increased by as much as a factor of 10 between 2000 and 2005 compared with subsidence rates before 2000. InSAR measurements made between May 7, 2003, and September 25, 2005, indicate that land subsidence, ranging from about 75 to 180 millimeters (0.25 to 0.59 foot), occurred in three areas of the Coachella Valley: near Palm Desert, Indian Wells, and La Quinta; the equivalent subsidence rates range from about 3 to more than 6 mm/month (0.01 to 0.02 ft/month). The subsiding areas near Palm Desert, Indian Wells, and La Quinta were previously identified using InSAR measurements for 1996-2000, which indicated that about 35 to 150 mm (0.11 to 0.49 ft) of subsidence occurred during the four-year period; the equivalent subsidence rates range from about 1 to 3 mm/month (0.003 to 0.01 ft/month). Comparison of the InSAR results indicates that subsidence rates have increased 2 to 4 times since 2000 in these three areas. Water-level measurements made at wells near the subsiding monuments and in the three subsiding areas generally indicated that the water levels fluctuated seasonally and declined annually between 1996 and 2005; some water levels in 2005 were at the lowest levels in their recorded histories. The coincident areas of subsidence and declining water levels suggest that aquifer-system compaction may be causing subsidence. If the stresses imposed by the historically lowest water levels exceeded the preconsolidation stress, the aquifer-system compaction and associated land subsidence may be permanent. Although the localized character of the subsidence signals is typical of the type of subsidence characteristically caused by localized ground-water pumping, the subsidence may also be related to tectonic activity in the valley.
Farrar, Christopher D.; Metzger, Loren F.
2003-01-01
Ground water obtained from individual private wells is the sole source of water for about 4,800 residents living in the lower Milliken-Sarco-Tulucay Creeks area of southeastern Napa County. Increases in population and in irrigated vineyards during the past few decades have increased water demand. Estimated ground-water pumpage in 2000 was 5,350 acre-feet per year, an increase of about 80 percent since 1975. Water for agricultural irrigation is the dominant use, accounting for about 45 percent of the total. This increase in ground-water extraction has resulted in the general decline of ground-water levels. The purpose of this report is to present selected hydrologic data collected from 1975 to 2002 and to quantify changes in the ground-water system during the past 25 years. The study area lies in one of several prominent northwest-trending structural valleys in the North Coast Ranges. The area is underlain by alluvial deposits and volcanic rocks that exceed 1,000 feet in thickness in some places. Alluvial deposits and tuff beds in the volcanic sequence are the principal source of water to wells. The ground-water system is recharged by precipitation that infiltrates, in minor amounts, directly on the valley floor but mostly by infiltration in the Howell Mountains. Ground water moves laterally from the Howell Mountains into the study area. Although the area receives abundant winter precipitation in most years, nearly half of the precipitation is lost as surface runoff to the Napa River. Evapotranspiration also is high, accounting for nearly one-half of the total precipitation received. Because of the uncertainties in the estimates of precipitation, runoff, and evapotranspiration, a precise estimate of potential ground-water recharge cannot be made. Large changes in ground-water levels occurred between 1975 and 2001. In much of the western part of the area, water levels increased; but in the central and eastern parts, water levels declined by 25 to 125 feet. Ground-water extraction produced three large pumping depressions in the northern and east-central parts of the area. The general decline in ground-water levels is a result of increases in ground-water pumpage and possibly changes in infiltration capacity caused by changes in land use. Ground-water-level declines during 1960-2002 are evident in the records for 9 of 10 key monitoring wells. In five of these wells, water levels dropped by greater than 20 feet since the 1980s. The largest water-level declines have occurred since the mid 1970s, corresponding with a period of accelerated well construction and ground-water extraction. Analysis of samples from 15 wells indicates that the chemical quality of ground water in the study generally is acceptable. However, arsenic concentrations in samples from five wells exceed the U.S. Environmental Protection Agency primary drinking-water standard of 10 micrograms per liter, and iron concentrations in samples from five wells exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 300 micrograms per liter. Water from 12 of 15 wells sampled contained concentrations of manganese that exceed the U.S. Environmental Protection Agency and the California Department of Health Services secondary drinking-water standard of 50 micrograms per liter. Two wells produced water that had boron in excess of the California Department of Health Services action level of 1 milligram per liter. Stable isotope, chlorofluorocarbon, and tritium data indicate that ground water in the area is a mixture of waters that recharged the aquifer system at different times. The presence of chlorofluorocarbons and tritium in water from the study area is evidence that modern recharge (post 1950) does take place. Water-temperature logs indicate that ground-water temperatures throughout the study area exceed 30?C at depths in excess of 600 feet. Further, water at
Numerical Simulations of the Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.
2010-01-01
Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.
Lavrentyeva, G V
2014-09-01
The studies were conducted in the territory contaminated by (90)Sr with groundwater inflow as a result of leakage from the near-surface trench-type radioactive waste storage. The vertical soil (90)Sr distribution up to the depth of 2-3 m is analyzed. The area of radioactive contamination to be calculated with a value which exceeds the minimum significant activity 1 kBq/kg for the tested soil layers: the contaminated area for the 0-5 cm soil layer amounted to 1800 ± 85 m(2), for the 5-10 cm soil layer amounted to 300 ± 12 m(2), for the 10-15 cm soil layer amounted to 180 ± 10 m(2). It is found that (90)Sr accumulation proceeds in a natural sorption geochemical barrier of the marshy terrace near flood plain. The exposure doses for terrestrial mollusks Bradybaena fruticum are presented. The excess (90)Sr interference level was registered both in the ground and surface water during winter and summer low-water periods and autumn heavy rains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Technical Reports Server (NTRS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-01-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Astrophysics Data System (ADS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-06-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Estimating the exceedance probability of rain rate by logistic regression
NASA Technical Reports Server (NTRS)
Chiu, Long S.; Kedem, Benjamin
1990-01-01
Recent studies have shown that the fraction of an area with rain intensity above a fixed threshold is highly correlated with the area-averaged rain rate. To estimate the fractional rainy area, a logistic regression model, which estimates the conditional probability that rain rate over an area exceeds a fixed threshold given the values of related covariates, is developed. The problem of dependency in the data in the estimation procedure is bypassed by the method of partial likelihood. Analyses of simulated scanning multichannel microwave radiometer and observed electrically scanning microwave radiometer data during the Global Atlantic Tropical Experiment period show that the use of logistic regression in pixel classification is superior to multiple regression in predicting whether rain rate at each pixel exceeds a given threshold, even in the presence of noisy data. The potential of the logistic regression technique in satellite rain rate estimation is discussed.
Tadayon, Saeid
1995-01-01
Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.
Stamos, Christina L.; Cox, Brett F.; Izbicki, John A.; Mendez, Gregory O.
2003-01-01
The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has resulted in rapid population growth and, consequently, an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry--except for periods of flow after intense storms; therefore, the region relies almost entirely on ground water to meet its agricultural and municipal needs. The area where the Helendale Fault intersects the Mojave River is of particular hydrogeologic interest because of its importance as a boundary between two water-management subareas of the Mojave Water Agency. The fault is the boundary between the upper Mojave River Basin (Oeste, Alto, and Este subareas) and the lower Mojave River Basin (Centro and Baja subareas); specifically, the fault is the boundary between the Alto and the Centro subareas. To obtain the information necessary to help better understand the hydrogeology of the area near the fault, multiple-well monitoring sites were installed, the surface geology was mapped in detail, and water-level and water-quality data were collected from wells in the study area. Detailed surficial geologic maps and water-level measurements indicate that the Helendale Fault impedes the flow of ground water in the deeper regional aquifer, but not in the overlying floodplain aquifer. Other faults mapped in the area impede the flow of ground water in both aquifers. Evidence of flowing water in the Mojave River upgradient of the Helendale Fault exists in the historical record, suggesting an upward gradient of ground-water flow. However, water-level data from this study indicate that pumping upstream of the Helendale Fault has reversed the vertical gradient of ground-water flow since predevelopment conditions, and the potential now exists for water to flow downward from the floodplain aquifer to the regional aquifer. Sixty-seven ground-water samples were analyzed for major ions, nutrients, and stable isotopes of oxygen and hydrogen from 34 wells within the study area between May 1990 and November 1999. Dissolved-solids concentrations in water samples from 14 wells in the floodplain aquifer ranged from 339 to 2,330 milligrams per liter (mg/L) with a median concentration of 825 mg/L. Concentrations in water from 11 of these wells exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 mg/L. Dissolved-solids concentrations of water from nine wells sampled in the regional aquifer ranged from 479 to 946 mg/L with a median concentration of 666 mg/L. Concentrations in at least one sample of water from each of the wells in the regional aquifer exceeded the USEPA SMCL for dissolved solids. Arsenic concentrations in water from 14 wells in the floodplain aquifer ranged from less than the detection limit of 2 micrograms per liter (?g/L) to a maximum of 34 ?g/L with a median concentration of 6 ?g/L. Concentrations in water from six of the 14 wells exceeded the USEPA Maximum Contaminant Level (MCL) for arsenic of 10 ?g/L. Arsenic concentrations in water from nine wells in the regional aquifer ranged from less than the detection limit of 2 to 130 ?g/L with a median concentration of 11 ?g/L. Concentrations in water from five of these nine wells exceeded the USEPA MCL for arsenic. Dissolved-solids concentrations in water from seven wells completed in the igneous and metamorphic basement rocks that underlie the floodplain and regional aquifers ranged from 400 to 3,190 mg/L with a median concentration of 1,410 mg/L. Concentrations in water from all but one of the seven wells sampled exceeded the USEPA SMCL for dissolved solids. Concentrations in water from the basement rocks exceeded the USEPA SMCL for arsenic of 10 ?g/L in five of the seven wells. The high concentrations of arsenic, dissolved solids, and other constituents probably occur naturally. Stable isotopes of oxygen and hydrogen indicate that before pumping began in
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhang, L.; Chen, Y.; Liu, X.; Xu, W.; Pan, Y.; Duan, L.
2016-12-01
We present a national-scale model analysis of the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2°×1/3° horizontal resolution. Averaged model results for 2008-2012 are evaluated with an ensemble of surface measurements of nitrogen wet deposition flux and concentration, and satellite measurements of tropospheric NO2 columns. Annual inorganic nitrogen deposition fluxes are shown to be generally less than 10 kg N ha-1 a-1 in the western China, 15-50 kg N ha-1 a-1 in the eastern China, and 15.6 kg N ha-1 a-1 averaged over China. The model simulates an annual total deposition flux of 16.4 Tg N to China, with 10.3 Tg N (63%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported out of China. We also find while nitrogen deposition to China is comparable to the nitrogen input from fertilizer application (16.5 Tg N a-1) on the national scale, it is much more widely distributed spatially. The deposition flux is also much higher than natural biological fixation (7.3 Tg N a-1). A comparison with estimates of nitrogen critical load for eutrophication indicates that about 40% of the land over China faces nitrogen critical load exceedances. However, 45% of the exceeding areas, mainly in Beijing-Tianjin-Hebei, Central China, East China, and South China, will not occur in the absence of nitrogen deposition, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects over these areas.
Nanotextured polymer substrates show enhanced cancer cell isolation and cell culture
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Sajid, Adeel; Arif Iftakher Mahmood, M.; Motasim Bellah, Mohammad; Allen, Peter B.; Kim, Young-Tae; Iqbal, Samir M.
2015-06-01
Detection of circulating tumor cells (CTCs) in the early stages of cancer is a great challenge because of their exceedingly small concentration. There are only a few approaches sensitive enough to differentiate tumor cells from the plethora of other cells in a sample like blood. In order to detect CTCs, several antibodies and aptamers have already shown high affinity. Nanotexture can be used to mimic basement membrane to further enhance this affinity. This article reports an approach to fabricate nanotextured polydimethylsiloxane (PDMS) substrates using micro reactive ion etching (micro-RIE). Three recipes were used to prepare nanotextured PDMS using oxygen and carbon tetrafluoride. Micro-RIE provided better control on surface properties. Nanotexturing improved the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers against cell membrane overexpressed with epidermal growth factor receptors. In all cases, nanotexture of PDMS increased the effective surface area by creating nanoscale roughness on the surface. Nanotexture also enhanced the growth rate of cultured cells compared to plain surfaces. A comparison among the three nanotextured surfaces demonstrated an almost linear relationship between the surface roughness and density of captured tumor cells. The nanotextured PDMS mimicked biophysical environments for cells to grow faster. This can have many implications in microfluidic platforms used for cell handling.
Frans, Lonna M.
2000-01-01
Logistic regression was used to relate anthropogenic (man-made) and natural factors to the occurrence of elevated concentrations of nitrite plus nitrate as nitrogen in ground water in the Columbia Basin Ground Water Management Area, eastern Washington. Variables that were analyzed included well depth, depth of well casing, ground-water recharge rates, presence of canals, fertilizer application amounts, soils, surficial geology, and land-use types. The variables that best explain the occurrence of nitrate concentrations above 3 milligrams per liter in wells were the amount of fertilizer applied annually within a 2-kilometer radius of a well and the depth of the well casing; the variables that best explain the occurrence of nitrate above 10 milligrams per liter included the amount of fertilizer applied annually within a 3-kilometer radius of a well, the depth of the well casing, and the mean soil hydrologic group, which is a measure of soil infiltration rate. Based on the relations between these variables and elevated nitrate concentrations, models were developed using logistic regression that predict the probability that ground water will exceed a nitrate concentration of either 3 milligrams per liter or 10 milligrams per liter. Maps were produced that illustrate the predicted probability that ground-water nitrate concentrations will exceed 3 milligrams per liter or 10 milligrams per liter for wells cased to 78 feet below land surface (median casing depth) and the predicted depth to which wells would need to be cased in order to have an 80-percent probability of drawing water with a nitrate concentration below either 3 milligrams per liter or 10 milligrams per liter. Maps showing the predicted probability for the occurrence of elevated nitrate concentrations indicate that the irrigated agricultural regions are most at risk. The predicted depths to which wells need to be cased in order to have an 80-percent chance of obtaining low nitrate ground water exceed 600 feet in the irrigated agricultural regions, whereas wells in dryland agricultural areas generally need a casing in excess of 400 feet. The predicted depth to which wells need to be cased to have at least an 80-percent chance to draw water with a nitrate concentration less than 10 milligrams per liter generally did not exceed 800 feet, with a 200-foot casing depth typical of the majority of the area.
Pradhan, Jatindra Kumar; Kumar, Sudhir
2014-01-01
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Glukhovskoi, E. G.; Khazanov, A. A.
2016-06-15
The characteristics of the injection of electrons into a semiconductor from a microprobe–micrograin nanogap are investigated with a tunneling microscope in the mode of field emission into locally selected surface microcrystals of indium antimonide, indium arsenide, and gallium arsenide. The current mechanisms are established and their parameters are determined by comparing the experimental I–V characteristics and those calculated from formulas of current transport. The effect of limitation of the current into the micrograins of indium antimonide and indium arsenide which manifests itself at injection levels exceeding a certain critical value, e.g., 6 × 10{sup 16} cm{sup –3} for indium antimonidemore » and 4 × 10{sup 17} cm{sup –3} for indium arsenide, is discovered. A physical model, i.e., the localization of electrons in the surface area of a micrograin due to their Coulomb interaction, is proposed.« less
NASA Astrophysics Data System (ADS)
Troian, Sandra; Dietzel, Mathias
2010-03-01
Nanoscale structures manifest exceedingly large surface to volume ratios and are therefore highly susceptible to control by surface stresses. Actuation techniques which can exploit this feature provide a key strategy for construction and self-organization of large area arrays. During the past decade, several groups have reported that molten polymer nanofilms subject to an ultra-large transverse thermal gradient undergo spontaneous formation of nanopillar arrays. The prevailing explanation is that coherent interfacial reflection of acoustic phonons causes periodic modulation of the radiation pressure leading to instability and pillar growth. We demonstrate instead that thermocapillary forces play a crucial if not dominant role in the formation process due to the strong modulation of surface tension with temperature. Any nanoscale viscous film is prone to such formations, not just polymeric films. Analysis of the governing interface equation reveals the mechanism controlling the growth, spacing and symmetry of these self-assembling arrays. We discuss how these findings are being used in our laboratory to construct nanoscale components for optical and photonic applications.
Phytotoxic substances in runoff from forested catchment areas
NASA Astrophysics Data System (ADS)
Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan
Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.
Stevens, Michael R.
2001-01-01
The Guanella Pass road, located about 40 miles west of Denver, Colorado, between the towns of Georgetown and Grant, has been designated a scenic byway and is being considered for reconstruction. The purpose of this report is to present an assessment of hydrologic and water-quality conditions in the Guanella Pass area and provide baseline data for evaluation of the effects of the proposed road reconstruction. The data were collected during water years 1995-97 (October 1, 1995, to September 30, 1997).Based on Colorado water-quality standards, current surface-water quality near Guanella Pass road was generally acceptable for specified use classifications of recreation, water supply, agriculture, and aquatic life. Streams had small concentrations of dissolved solids, nutrients, trace elements, and suspended sediment. An exception was upper Geneva Creek, which was acidic and had relatively large concentrations of iron, zinc, and other trace elements related to acid-sulfate weathering. Concentrations of many water-quality constituents, especially particle-related phases and suspended sediment, increased during peak snowmelt and rainstorm events and decreased to prerunoff concentrations at the end of runoff periods. Some dissolved (filtered) trace-element loads in Geneva Creek decreased during rainstorms when total recoverable loads remained generally static or increased, indicating a phase change that might be explained by adsorption of trace elements to suspended sediment during storm runoff.Total recoverable iron and dissolved zinc exceeded Colorado stream-water-quality standards most frequently. Exceedances for iron generally occurred during periods of high suspended-sediment transport in several streams. Zinc standards were exceeded in about one-half the samples collected in Geneva Creek 1.5 miles upstream from Grant.Lake-water quality was generally similar to that of area streams. Nitrogen and phosphorus ratios calculated for Clear and Duck Lakes indicated that phytoplankton in the lakes were probably phosphorus-limited. Measures of trophic status (secchi depth, total phosphorus, and chlorophyll-a) indicated that Duck and Clear Lakes were oligotrophic in 1997.Ground water had relatively low specific conductance (range 24 to 584 microsiemens per centimeter) and did not exceed U.S. Environmental Protection Agency drinking-water standards, except for samples collected from a single well, which exceeded the Proposed Maximum Contaminant Level for uranium.Runoff from the Guanella Pass road enters streams through surface channels connected to culverts and roadside ditches. Fifty-six percent of the total number of culvert and roadside-ditch drainage features on the Guanella Pass road showed evidence of recent surface runoff connection to an adjacent stream. Road runoff is generated during snowmelt and during summer rainstorms.At a road cross-drain culvert monitored continuously for discharge (water years 1996-97), most runoff (77 to 96 percent) was a result of snowmelt, and runoff from the road preceded the basinwide peak streamflow, resulting in sediment and water-quality constituent inputs to the stream when the stream?s capacity for dilution of the road runoff was low. Specific conductance of road-runoff samples ranged from 14 to 468 microsiemens per centimeter. Major-ion composition of some samples indicated effects from deicing salt (sodium chloride) and dust inhibitor (magnesium chloride) applied to sections of the road, but changes in the stream concentrations that might be attributed to the runoff were brief and relatively small.Nutrients were commonly measured in road-runoff samples at larger concentrations than in streamflow. Concentrations of nitrate and ammonia, especially during rainfall-generated road runoff, were more similar to the concentrations in precipitation than to the concentrations in stream water. Concentrations of ammonia plus organic nitrogen (total as N) (range less than 0.2 to 24 milligrams per liter) and t
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2011-12-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) has been applied to model the spatial distribution of nitrogen deposition and air concentration over the UK at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
NASA Astrophysics Data System (ADS)
Dore, A. J.; Kryza, M.; Hall, J. R.; Hallsworth, S.; Keller, V. J. D.; Vieno, M.; Sutton, M. A.
2012-05-01
The Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME) was applied to model the spatial distribution of reactive nitrogen deposition and air concentration over the United Kingdom at a 1 km spatial resolution. The modelled deposition and concentration data were gridded at resolutions of 1 km, 5 km and 50 km to test the sensitivity of calculations of the exceedance of critical loads for nitrogen deposition to the deposition data resolution. The modelled concentrations of NO2 were validated by comparison with measurements from the rural sites in the national monitoring network and were found to achieve better agreement with the high resolution 1 km data. High resolution plots were found to represent a more physically realistic distribution of reactive nitrogen air concentrations and deposition resulting from use of 1 km resolution precipitation and emissions data as compared to 5 km resolution data. Summary statistics for national scale exceedance of the critical load for nitrogen deposition were not highly sensitive to the grid resolution of the deposition data but did show greater area exceedance with coarser grid resolution due to spatial averaging of high nitrogen deposition hot spots. Local scale deposition at individual Sites of Special Scientific Interest and high precipitation upland sites was sensitive to choice of grid resolution of deposition data. Use of high resolution data tended to generate lower deposition values in sink areas for nitrogen dry deposition (Sites of Scientific Interest) and higher values in high precipitation upland areas. In areas with generally low exceedance (Scotland) and for certain vegetation types (montane), the exceedance statistics were more sensitive to model data resolution.
Photovoltaic array mounting apparatus, systems, and methods
West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil
2014-12-02
An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takacs, P.Z.
1981-07-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, andmore » few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.« less
Evaluation of CVD silicon carbide for synchrotron radiation mirrors
NASA Astrophysics Data System (ADS)
Takacs, Peter Z.
1982-04-01
Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense X-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods.
Status of Air Quality in Central California and Needs for Further Study
NASA Astrophysics Data System (ADS)
Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Jia, Y.; Matsuoka, J.; McNider, R. T.; Biazar, A. P.; Palazoglu, A.; Lee, P.; Wang, J.; Kang, D.; Aneja, V. P.
2012-12-01
Ozone and PM2.5 levels frequently exceed NAAQS in central California (CC). Additional emission reductions are needed to attain and maintain the standards there. Agencies are developing cost-effective emission control strategies along with complementary incentive programs to reduce emissions when exceedances are forecasted. These approaches require accurate modeling and forecasting capabilities. A variety of models have been rigorously applied (MM5, WRF, CMAQ, CAMx) over CC. Despite the vast amount of land-based measurements from special field programs and significant effort, models have historically exhibited marginal performance. Satellite data may improve model performance by: establishing IC/BC over outlying areas of the modeling domain having unknown conditions; enabling FDDA over the Pacific Ocean to characterize important marine inflows and pollutant outflows; and filling in the gaps of the land-based monitoring network. BAAQMD, in collaboration with the NASA AQAST, plans to conduct four studies that include satellite-based data in CC air quality analysis and modeling: The first project enhances and refines weather patterns, especially aloft, impacting summer ozone formation. Surface analyses were unable to characterize the strong attenuating effect of the complex terrain to steer marine winds impinging on the continent. The dense summer clouds and fog over the Pacific Ocean form spatial patterns that can be related to the downstream air flows through polluted areas. The goal of this project is to explore, characterize, and quantify these relationships using cloud cover data. Specifically, cloud agreement statistics will be developed using satellite data and model clouds. Model skin temperature predictions will be compared to both MODIS and GOES skin temperatures. The second project evaluates and improves the initial and simulated fields of meteorological models that provide inputs to air quality models. The study will attempt to determine whether a cloud dynamical adjustment developed by UAHuntsville can improve model performance for maritime stratus and whether a moisture adjustment scheme in the Pleim-Xiu boundary layer scheme can use satellite data in place of coarse surface air temperature measurements. The goal is to improve meteorological model performance that leads to improved air quality model performance. The third project evaluates and improves forecasting skills of the National Air Quality Forecasting Model in CC by using land-based routine measurements as well as satellite data. Local forecasts are mostly based on surface meteorological and air quality measurements and weather charts provided by NWS. The goal is to improve the average accuracy in forecasting exceedances, which is around 60%. The fourth project uses satellite data for monitoring trends in fine particulate matter (PM2.5) in the San Francisco Bay Area. It evaluates the effectiveness of a rule adopted in 2008 that restricts household wood burning on days forecasted to have high PM2.5 levels. The goal is to complement current analyses based on surface data covering the largest sub-regions and population centers. The overall goal is to use satellite data to overcome limitations of land-based measurements. The outcomes will be further conceptual understanding of pollutant formation, improved regulatory model performance, and better optimized forecasting programs.
Ground water in the Pullman area, Whitman County, Washington
Foxworthy, B.L.; Washburn, R.L.
1963-01-01
This report presents the results of an investigation of the ground-water resources of the Pullman area, Whitman County, Wash. The investigation war made in cooperation with the State of Washington, Department of Conservation, Division of Water Resources, to determine whether the 1959 rate of ground-water withdrawal exceeded the perennial yield of the developed aquifers, and if so, (1) whether additional aquifers could be developed in the area, and (2) whether the yield of the developed aquifers could be increased by artificial recharge. The Pullman area includes the agricultural district surrounding the city of Pullman, in southeastern Whitman County, and the western two-thirds of the Moscow-Pullman basin, which extends into Latah County, Idaho. The mapped area comprises shout 250 square miles. The area is in a region of smooth rolling hills formed by erosion of thick deposits of loess, which cover a dissected lava plain. The loess (Palouse formation of Pleistocene age) ranges in thickness from less than 1 foot to more than 150 feet. The underlying lava flows, part of the Columbia River basalt of Tertiary age, are nearly horizontal and form bluffs and low cliffs along the major streams. The total thickness of the basalt sequence in the area is not known, but it may be considerably greater than 1,000 feet beneath the city of Pullman. The basalt sequence is underlain by a basement mass of granite, granite gneiss, and quartzite, of pre-Tertiary age. The most productive aquifers in the area are in the Columbia River basalt. They consist of the permeable zones, commonly occurring at the tops of individual lava flows, which may contain ground water under either artesian or water-table conditions. Two such permeable zones have produced more than 95 percent of the ground water used in the Pullman area, or as much as 870 million gallons per year (1957). These two zones are hydraulically connected and lie at depths ranging from about 50 to 170 feet below the land surface at Pullman. The area receives about 21 inches of precipitation annually, about two-thirds of it from October through March. 0nly a fraction of the precipitation reaches the aquifers; the remainder is returned to the atmosphere by evapotranspiration or leaves the area as surface runoff. The basalt is recharged mainly by infiltration from streams and downward percolation from the overlying loess. The ground water moves generally westward. However, most water in the artesian aquifers tapped by wells in the vicinity of Pullman may move toward the city of Pullman, which is the center of major pumping. The rate of movement ranges from extremely slow in the loess and the massive basalt to very rapid in the permeable zones of basalt. The principal modes of discharge from the artesian aquifers are seepage to streams and pumpage from wells. The amount of natural discharge is unknown, but the pumpage ranged from about 340 to 870 million gallons per year, and during 1949-59 it averaged about 800 million gallons (2,500 ac-ft) per year. For about the last 25 years at least, the piezometric surface of the artesian zones has declined each year, indicating that the annual ground-water discharge from the artesian aquifers (including pumpage and natural discharge) has exceeded the recharge in the Pullman area. An analysis of the relation of pumpage to the decline in artesian level indicates that during 1952-59 an average of about 65 million gallons per year was removed from storage. Although the decline in artesian pressures has resulted in an increase in the recharge to the aquifers, the present rate of pumping may be equal to or even exceed the perennial yield of the artesian aquifer in the report area under natural conditions. Geologic and hydrologic conditions seem favorable for the existence of potentially good aquifers below those which are now extensively developed. The deep aquifers seem to have only a slight hydraulic connection with the overlying artesian basalt
Flood of April 2-3, 2005, Neversink River Basin, New York
Suro, Thomas P.; Firda, Gary D.
2006-01-01
Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.
Feasibility of high recovery highwall mining equipment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Three equipment systems exhibited significant promise: the RSV Miner, a surface longwall using standard underground equipment, and the variable angle auger. Other equipment systems showing considerable merit were the surface shortwall, and the two extended depth augers. Of the three most significant systems, the RSV Miner exhibits the greatest versatility and adaptability. It may be used competently in many surface mining applications and readily adapts to geologic anomalies and changing seam heights. The machine employs steering and guidance equipment and provides the necessary capabilities for extended depth operation. Safety is good, as no men are required to work underground. However,more » most important is the system's recovery factor of approximately 75% to 80% of the in-situ coal reserve within reach. The surface longwall system using standard underground equipment (preferably a ranging drum shearer in conjunction with shield supports) is most suited to either a trench mining or a modified area mining application. Both applications would allow the length of the face to be held constant. Another important consideration is legal requirements for a tailgate entry, which would necessitate additional equipment for development in a modified area mining application. When compared to surface shortwall, surface longwall exhibits higher productivity, a far greater equipment selection which allows system tailoring to geologic conditions, and greater roof control due to the significantly smaller section of overburden that must be supported. Recovery should approach, and possibly exceed, 90% of the coal in-place. The variable angle auger, which is currently only a concept, fills a very real need for which no other equipment is available at this time.« less
Development of a human-specific B. thetaiotaomicron IMS ...
Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-coupled (Inv-IMS/ATP)assay for detection of Bacteroides thetaiotaomicron was developed and applied for rapid detection of human-associated fecal contamination in surface waters in Baja California. Specificity of the assay was tested against challenge solutions of varying concentrations of dog, gull, horse and chicken feces, and a field validation survey of coastal and WWTP effluent water quality in Rosarito and Enseneda, Baja California was conducted. Inv IMS/ATP measurements made shown to be specific and sensitive to human fecal contamination. At test concentrations of less than 1000 MPN ENT/100 mL, sensitivity and specificity of the assay both exceeded 80%. Moreover, the Inv-IMS/ATP assay yielded measurements of viable B. thetaiotaomicron that were comparable to the HF183 human marker in complex surface waters impacted with both wastewater and runoff, and the Inv-IMS/ATP assay was able to effectively differentiate between surface waters impacted with adequately and inadequately treated wastewater. The Inv-IMS/ATP assays shows promise for rapid evaluation of recreational water quality in areas where access to more expensive methods is limited and in areas where water quality in unpredicta
Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.
2002-01-01
Arsenicals have been used extensively in agriculture in the United States as insecticides and herbicides. Mono- and disodium methylarsonate and dimethylarsinic acid are organoarsenicals used to control weeds in cotton fields and as defoliation agents applied prior to cotton harvesting. Because the toxicity of most organoarsenicals is less than that of inorganic arsenic species, the introduction of these compounds into the environment might seem benign. However, biotic and abiotic degradation reactions can produce more problematic inorganic forms of arsenic, such as arsenite [As(III)] and arsenate [As(V)]. This study investigates the occurrences of these compounds in samples of soil and associated surface and groundwaters. Preliminary results show that surface water samples from cotton-producing areas have elevated concentrations of methylarsenic species (>10 ??g of As/L) compared to background areas (<1 ??g of As/L). Species transformations also occur between surface waters and adjacent soils and groundwaters, which also contain elevated arsenic. The data indicate that point sources of arsenic related to agriculture might be responsible for increased arsenic concentrations in local irrigation wells, although the elevated concentrations did not exceed the new (2002) arsenic maximum contaminant level of 10 ??g/L in any of the wells sampled thus far.
Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method.
Jin, Ruiben; Wu, Zhongbiao; Liu, Yue; Jiang, Boqiong; Wang, Haiqiang
2009-01-15
A series of Si-doped TiO2 (Si/TiO2) photocatalysts supported on woven glass fabric were prepared by hydrothermal method for photocatalytic reduction of NO with NH3. The photocatalytic activity tests were carried out in a continuous Pyrex reactor with the flow rate of 2000mL/min under UV irradiation (luminous flux: 1.1x10(4)lm, irradiated catalyst area: 160cm2). The photocatalysts were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectrophotometer, transmission electron microscopy (TEM), photoluminescence (PL) and temperature-programmed desorption (TPD). The experiment results showed that NO conversion on Si/TiO2 at 323K could exceed 60%, which was about 50% higher than that on Degussa P25 and pure TiO2. With the doping of Si, photocatalysts with smaller crystal size, larger surface area and larger pore volume were obtained. It was also found that Ti-O-Si bands were formed on the surface of Si/TiO2 and that the surface hydroxyl concentration was greatly increased. As a result, total acidity and NH3 chemisorption amount were enhanced for Si/TiO2 leading to its photocatalytic activity improvement.
Land claim and loss of tidal flats in the Yangtze Estuary.
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
Land claim and loss of tidal flats in the Yangtze Estuary
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-01-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525
Land claim and loss of tidal flats in the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun
2016-04-01
Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.
Ground-water quality in selected areas of Wisconsin
Hindall, S.M.
1979-01-01
Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)
Code of Federal Regulations, 2010 CFR
2010-01-01
...) When an indentation exceeds three-sixteenths inch in diameter; (c) Growth cracks: (1) When not healed... bacterial spot when cracked, or when the aggregate area exceeds that of a circle one-fourth inch in diameter...
Code of Federal Regulations, 2011 CFR
2011-01-01
...) When an indentation exceeds three-sixteenths inch in diameter; (c) Growth cracks: (1) When not healed... bacterial spot when cracked, or when the aggregate area exceeds that of a circle one-fourth inch in diameter...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) When an indentation exceeds three-sixteenths inch in diameter; (c) Growth cracks: (1) When not healed... bacterial spot when cracked, or when the aggregate area exceeds that of a circle one-fourth inch in diameter...
Review of surface particulate monitoring of dust events using geostationary satellite remote sensing
NASA Astrophysics Data System (ADS)
Sowden, M.; Mueller, U.; Blake, D.
2018-06-01
The accurate measurements of natural and anthropogenic aerosol particulate matter (PM) is important in managing both environmental and health risks; however, limited monitoring in regional areas hinders accurate quantification. This article provides an overview of the ability of recently launched geostationary earth orbit (GEO) satellites, such as GOES-R (North America) and HIMAWARI (Asia and Oceania), to provide near real-time ground-level PM concentrations (GLCs). The review examines the literature relating to the spatial and temporal resolution required by air quality studies, the removal of cloud and surface effects, the aerosol inversion problem, and the computation of ground-level concentrations rather than columnar aerosol optical depth (AOD). Determining surface PM concentrations using remote sensing is complicated by differentiating intrinsic aerosol properties (size, shape, composition, and quantity) from extrinsic signal intensities, particularly as the number of unknown intrinsic parameters exceeds the number of known extrinsic measurements. The review confirms that development of GEO satellite products has led to improvements in the use of coupled products such as GEOS-CHEM, aerosol types have consolidated on model species rather than prior descriptive classifications, and forward radiative transfer models have led to a better understanding of predictive spectra interdependencies across different aerosol types, despite fewer wavelength bands. However, it is apparent that the aerosol inversion problem remains challenging because there are limited wavelength bands for characterising localised mineralogy. The review finds that the frequency of GEO satellite data exceeds the temporal resolution required for air quality studies, but the spatial resolution is too coarse for localised air quality studies. Continual monitoring necessitates using the less sensitive thermal infra-red bands, which also reduce surface absorption effects. However, given the challenges of the aerosol inversion problem and difficulties in converting columnar AOD to surface concentrations, the review identifies coupled GEO-neural networks as potentially the most viable option for improving quantification.
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2010-02-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2009-09-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan
NASA Astrophysics Data System (ADS)
Nakagawa, K.; Amano, H.
2017-12-01
Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.
Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery
NASA Astrophysics Data System (ADS)
Wright, Nicholas C.; Polashenski, Chris M.
2018-04-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.
Mechanism of Urban Water Dissipation: A Case Study in Xiamen Island
NASA Astrophysics Data System (ADS)
Zhou, J.; Liu, J.; Wang, Z.
2017-12-01
Urbanization have resulted in increasing water supply and water dissipation from water uses in urban areas, but traditional hydrological models usually ignores the dissipation from social water cycle. In order to comprehensively calculate the water vapor flux of urban natural - social binary water cycle, this study advanced the concept of urban water dissipation (UWD) to describe all form water transfer from liquid to gas in urban area. UWD units were divided according to the water consumption characteristics of the underlying surface, and experimental methods of investigation, statistics, observation and measurement were used to study the water dissipation of different units, determine the corresponding calculation method, and establish the UWD calculation model. Taking Xiamen Island as an example, the city's water dissipation in 2016 was calculated to be 850 mm and verified by water balance. The results showed that the contributions of water dissipation from the green land, building, hardened ground and water surface. The results means that water dissipation inside buildings was one main component of the total UWD. The proportion of water vapor fluxes exceeds the natural water cycle in the urban area. Social water cycle is the main part of the city's water cycle, and also the hot and focus of urban hydrology research in the future.
Oya, Maiko; Takahashi, Toshiaki; Tanabe, Hidenori; Oe, Makoto; Murayama, Ryoko; Yabunaka, Koichi; Matsui, Yuko; Sanada, Hiromi
Infiltration is a frequent complication of infusion therapy. We previously demonstrated the usefulness of infrared thermography as an objective method of detecting infiltration in healthy people. However, whether thermography can detect infiltration in clinical settings remains unknown. Therefore, we report two cases where thermography was useful in detecting infiltration at puncture sites. In both cases, tissue changes were verified ultrasonographically. The patients were a 56-year-old male with cholangitis and a 76-year-old female with hepatoma. In both cases, infiltration symptoms such as swelling and erythema occurred one day after the insertion of a peripheral intravenous catheter. Thermographic images from both patients revealed low-temperature areas spreading from the puncture sites; however, these changes were not observed in other patients. The temperature difference between the low-temperature areas and their surrounding skin surface exceeded 1.0°C. Concurrently, ultrasound images revealed that tissues surrounding the vein had a cobblestone appearance, indicating edema. In both patients, subcutaneous tissue changes suggested infiltration and both had low-temperature areas spreading from the puncture sites. Thus, subcutaneous edema may indicate infusion leakage, resulting in a decrease in the temperature of the associated skin surface. These cases suggest that infrared thermography is an effective method of objectively and noninvasively detecting infiltration.
Distribution and mobility of arsenic in soils of a mining area (Western Spain).
García-Sánchez, A; Alonso-Rojo, P; Santos-Francés, F
2010-09-01
High levels of total and bioavailable As in soils in mining areas may lead to the potential contamination of surface water and groundwater, being toxic to human, plants, and animals. The soils in the studied area (Province of Salamanca, Spain) recorded a total As concentration that varied from 5.5mg/kg to 150mg/kg, and water-soluble As ranged from 0.004mg/kg to 0.107mg/kg, often exceeding the guideline limits for agricultural soil (50mg/kg total As, 0.04mg/kg water-soluble As). The range of As concentration in pond water was <0.001microg/l-60microg/l, with 40% of samples exceeding the maximum permissible level (10microg/l) for drinking water. Estimated bioavailable As in soil varied from 0.045mg/kg to 0.760mg/kg, around six times higher than water-soluble As fraction, which may pose a high potential risk in regard to its entry into food chain. Soil column leaching tests show an As potential mobility constant threatening water contamination by continuous leaching. The vertical distribution of As through soil profiles suggests a deposition mechanism of this element on the top-soils that involves the wind or water transport of mine tailings. A similar vertical distribution of As and organic matter (OM) contents in soil profiles, as well as, significant correlations between As concentrations and OM and N contents, suggests that type and content of soil OM are major factors for determining the content, distribution, and mobilization of As in the soil. Due to the low supergenic mobility of this element in mining environments, the soil pollution degree in the studied area is moderate, in spite of the elevated As contents in mine tailings. Copyright 2010 Elsevier B.V. All rights reserved.
21 CFR 178.3505 - Glyceryl tri-(12-acetoxy-stearate).
Code of Federal Regulations, 2010 CFR
2010-04-01
... for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting... surface of calcium carbonate at a level not to exceed 1 weight-percent of the total mixture. (b) The... with nonfatty foods at a level not to exceed 20 weight-percent of the polymer. [50 FR 1503, Jan. 11...
46 CFR 151.10-20 - Hull construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle reactions (if applicable) shall be determined. The hull bending stress shall not exceed the applicable... hull. In such case, the hull stress shall not exceed either 50 percent of the minimum ultimate tensile...
Laser Radiation-Induced Air Breakdown And Plasma Shielding
NASA Astrophysics Data System (ADS)
Smith, David C.
1981-12-01
Gas breakdown, or the ionization of the air in the path of a high power laser, is a limit on the maximum intensity which can be propagated through the atmosphere. When the threshold for breakdown is exceeded, a high density, high temperature plasma is produced which is opaque to visible and infrared wavelengths and thus absorbs the laser radiation. The threshold in the atmosphere is significantly lower than in pure gases because of laser interaction and vaporization of aerosols. This aspect of air breakdown is discussed in detail. Parametric studies have revealed the scaling laws of breakdown as to wavelength and laser pulse duration, and these will be discussed and compared with existing models. A problem closely related to breakdown is the plasma produc-tion when a high intensity laser interacts with a surface. In this case, the plasma can be beneficial for coupling laser energy into shiny surfaces. The plasma absorbs the laser radiation and reradiates the energy at shorter wavelengths; this shorter wavelength radiation is absorbed by the surface, thus increasing the coupling of energy into the surface. The conditions for the enhancement of laser coupling into surfaces will be discussed, particularly for cw laser beams, an area of recent experimen-tal investigation.
Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Thompson, A.L.; Formea, J.J.; Wickman, D.W.
1993-01-01
During 1988-89, water, bottom sediment, biota, soil, and plants were sampled for a reconnaissance investigation of the Pine River Project area in southwestern Colorado. Irrigation drainage does not seem to be a major source of dissolved solids in streams. Concentrations of manganese, mercury, and selenium exceeded drinking-water regulations in some streams. The maximum selenium concentration in a stream sample was 94 microg/L in Rock Creek. Irrigation drainage and natural groundwater are sources of some trace elements to streams. Water from a well in a nonirrigated area had 4,800 microg/L of selenium. Selenium concentrations in soil on the Oxford Tract were greater in areas previously or presently irrigated than in areas never irrigated. Some forage plants on the Oxford Tract had large selenium concentrations, including 180 mg/km in alfalfa. Most fish samples had selenium concentrations greater than the National Contaminant Biomonitoring Program 85th percentile. Selenium concentrations in aquatic plants, aquatic inverte- brates, and small mammals may be of concern to fish and wildlife because of possible food-chain bioconcentration. Selenium concentrations in bird samples indicate selenium contamination of biota on the Oxford Tract. Mallard breasts had selenium concentrations exceeding a guideline for human consumption. The maximum selenium concentration in biota was 50 microg/g dry weight in a bird liver from the Oxford Tract. In some fish samples, arsenic, cadmium, copper, and zinc exceeded background concentrations, but concentrations were not toxic. Mercury concentrations in 16 fish samples exceeded the background concentration. Ten mercury concentrations in fish exceeded a guideline for mercury in food for consumption by pregnant women.
F-Area Acid/Caustic Basin groundwater monitoring report: Third quarter 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-12-01
During third quarter 1994, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. New monitoring wells FAC 9C, 10C, 11C, and 12C were sampled for the first time during third quarter. Analytical results that exceeded final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alphamore » exceeded the final PDWS and aluminum, iron, manganese, and total alpha-emitting radium exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard in wells FAC 3 and 10C. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters.« less
NASA Astrophysics Data System (ADS)
Tiwari, Ashwani Kumar; Singh, Abhay Kumar; Singh, Amit Kumar; Singh, M. P.
2017-07-01
The hydrogeochemical study of surface water in Pratapgarh district has been carried out to assess the major ion chemistry and water quality for drinking and domestic purposes. For this purpose, twenty-five surface water samples were collected from river, ponds and canals and analysed for pH, electrical conductivity, total dissolved solids (TDS), turbidity, hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 -, F-, Cl-, NO3 -, SO4 2-) and dissolved silica concentration. The analytical results show mildly acidic to alkaline nature of surface water resources of Pratapgarh district. HCO3 - and Cl- are the dominant anions, while cation chemistry is dominated by Na+ and Ca2+. The statistical analysis and data plotted on the Piper diagram reveals that the surface water chemistry is mainly controlled by rock weathering with secondary contributions from agriculture and anthropogenic sources. Ca2+-Mg2+-HCO3 -, Ca2+-Mg2+-Cl- and Na+-HCO3 --Cl- are the dominant hydrogeochemical facies in the surface water of the area. For quality assessment, values of analysed parameters were compared with Indian and WHO water quality standards, which shows that the concentrations of TDS, F-, NO3 -, Na+, Mg2+ and total hardness are exceeding the desirable limits in some water samples. Water Quality Index (WQI) is one of the most effective tools to communicate information on the quality of any water body. The computed WQI values of Pratapgarh district surface water range from 28 to 198 with an average value of 82, and more than half of the study area is under excellent to good category.
To the theory of particle lifting by terrestrial and Martian dust devils
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2018-01-01
The combined Rankine vortex model is applied to describe the radial profile of azimuthal velocity in atmospheric dust devils, and a simplified model version is proposed of the turbulent surface boundary layer beneath the Rankine vortex periphery that corresponds to the potential vortex. Based on the results by Burggraf et al. (1971), it is accepted that the radial velocity near the ground in the potential vortex greatly exceeds the azimuthal velocity, which makes tractable the problem of the surface shear stress determination, including the case of the turbulent surface boundary layer. The constructed model explains exceeding the threshold shear velocity for aeolian transport in typical dust-devil vortices both on Earth and on Mars.
Paul, Angela P.; Thodal, Carl E.
2003-01-01
This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con
Wintertime Emissions from Produced Water Ponds
NASA Astrophysics Data System (ADS)
Evans, J.; Lyman, S.; Mansfield, M. L.
2013-12-01
Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond surfaces. These compounds are highly reactive and, because of their relatively high water solubility, tend to concentrate in produced water. The average methanol emission rate from unfrozen pond surfaces was more than 100 mg m-2 h-1. Methanol, used as an antifreeze and anti-scaler in the oil and gas industry, is abundant during winter inversions in the Uintah Basin and may also be a significant precursor to ozone production. Total VOC and methanol emissions from produced water ponds during winter were estimated to be 178 and 83 tons month-1, respectively, for the entire Uintah Basin.
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
Rodis, Harry George; Munch, D.A.
1983-01-01
The Floridan aquifer supplies most of the fresh groundwater for municipal, industrial, and agricultural uses within the 12,400 sq mi St. Johns River Water Management District. Because of the growing demand for water and the variation in rainfall, resource managers need timely information on short-term and long-term changes in the availability of fresh water. The purpose of this report is to explain potentiometric surface maps and their value in assessing the resource, particularly during drought conditions. The Floridan aquifer is recharged by rainfall falling directly on the outcrop of the aquifer, and, where the aquifer is overlain by the surficial aquifer with the water table above the potentiometric surface of the Floridan, by water infiltrating downward from the overlying surficial aquifer. Water is discharged by pumping and free-flowing wells, springflow, and upward leakage into overlying formations, streams, and lakes or into the ocean. Fluctuations in the potentiometric surface reflect net gains (recharge) or losses (discharge) of water stored in the aquifer. Net gains occur during the wet season (June through September) when recharge exceeds discharge and causes the potentiometric surface to rise in most places. Net losses in storage, and declines in the potentiometric surface, follow during the dry season (October through May) when discharge exceeds recharge. Seasonal changes in the potentiometric surface, based on a 2-yr average of water level measurements during May and September 1977, and May and September 1978, are illustrated. Two of the greater long-term declines in the potentiometric surface have occurred in the growing metropolitan areas of Jacksonville and Orlando-Winter Park, the two largest public suppliers of water in the Water Management District. Municipal pumpage increased in Jacksonville from 37 million gallons per day (mgd) in 1961 to 56 mgd in 1980. The increased pumpage and a deficiency in rainfall of 15.8 inches contributed to a decline in the potentiometric surface of as much as 15 ft. Orlando-Winter Park municipal pumpage increasing from 27 mgd in 1961 to 62 mgd in 1980. The periodic preparation of maps showing changes in the potentiometric surface of the aquifer provide the best base information for both short-term and long-term management of the water resources in the St. Johns River Water Management District. (Lantz-PTT)
Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.
1996-01-01
Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground water, was found in 15 of 95 samples from 15 of 79 wells with concentrations ranging from 0.1 to 8.2 micrograms per liter. Metolachlor, alachlor, and prometon were detected more than once with maximum concentrations less than 1.0 micrograms per liter, except for prometon (2.4 micrograms per liter). Chlordane was the pesticide having the most number of detections in bed sediment and biological tissue. Chlordane was detected in 12 of 73 samples from 10 of 45 bed-sediment sites with concentrations ranging from 2.0 to 240 micrograms per kilogram. In biological tissue, chlordane was found in 93 of 151 samples from 39 of 53 sites with concentrations ranging from 0.009 to 8.6 milligrams per kilogram. Other pesticides or pesticide metabolites detected more than once in bed sediment include DDT, DDD, p,p'-DDE, DDE, and hexachlorobenzene and in biological tissue include DDT, p,p'-DDE, and hexachlorobenzene. Quality criteria or standards have been established for 15 of the pesticides detected in the study unit. For surface-water samples, the drinking water maximum contaminant level for alachlor was exceeded in one sample from one site in 1982. For ground-water samples, the drinking water maximum contaminant level for atrazine was exceeded in four samples from four wells in 1990. For biological-tissue samples collected during the years 1982-89, the fish tissue action levels for chlordane (19 sites; 26 samples), heptachlor epoxide (3 sites; 3 samples), p,p'-DDE (2 sites; 2 samples), dieldrin (2 sites, 2 samples), and mirex (1 site; 1 sample) were exceeded. For bed-sediment samples, quality criteria or standards were not exceeded for any pesticide. Pesticides do not pose any widespread or persistent problems in the study unit, based on the limited number of samples that exceeded quality criteria and standards.
Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont
Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.
2013-01-01
The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM-based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic metal-rich location, likely due to the low lability of copper in that sediment, as indicated by a low proportion of extractable copper (simultaneously extracted metal (SEM) copper only 5 percent of total copper) and due to the flushing of acidic metal-rich pore water from experimental chambers as overlying test water was introduced before and replaced periodically during the toxicity tests. Depositional habitat invertebrate richness and abundance data generally agreed with the results of toxicity tests and with the extent of impact in the watersheds on the basis of sediment and pore waters. The information was used to develop an overall assessment of the impact of mine drainage on the aquatic system downstream from the Pike Hill copper mines. Most of Pike Hill Brook, including several wetland areas that are all downstream from the Eureka and Union mines, was found to be impaired on the basis of water-quality data and biological assessments of fish or benthic invertebrate communities. In contrast, only one location in the tributary to Cookville Brook, downstream from the Smith mine, is definitively impaired. The biological community begins to recover at the most downstream locations in both brooks due to natural attenuation from mixing with unimpaired streams. On the basis of water quality and biological assessment, the reference locations were of good quality. The sediment toxicity, chemistry, and aquatic community survey data suggest that the sediments could be a source of toxicity in Pike Hill Brook and the tributary to Cookville Brook. On the basis of water quality, sediment quality, and biologic communities, the impacts of mine drainage on the aquatic ecosystem health of the watersheds in the study area are generally consistent with the toxicity suggested from laboratory toxicity testing on pore water and sediments.
Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.
2000-01-01
The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and industrial wastewater- treatment and thermoelectric plants, urban runoff, and disposal of solid and hazardous wastes contribute contaminants to surface water and ground water throughout the study area. Surface water and ground water in the Great and Little Miami River Basins are classified as very hard, calcium-magnesium- bicarbonate waters. The major-ion composition and hardness of surface water and ground water reflect extensive contact with the carbonate-rich soils, glacial sediments, and limestone or dolomite bedrock. Dieldrin, endrin, endosulfan II, and lindane are the most commonly reported organochlorine pesticides in streams draining the Great and Little Miami River Basins. Peak concentrations of the her-bicides atrazine and metolachlor in streams commonly are associated with post-application runoff events. Nitrate concentrations in surface water average 3 to 4 mg/L (milligrams per liter) in the larger streams and also show strong seasonal variations related to application periods and runoff events. Ambient iron concentrations in ground water pumped from aquifers in the Great and Little Miami River Basins often exceed the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (300 micrograms per liter). Chloride concentrations are below aesthetic drinking-water guidelines (250 mg/L), except in ground water pumped from low-yielding Ordovician shale; chloride concentrations in sodium-chloride- rich ground water pumped from the shale bedrock can exceed 1,000 mg/L. Some of the highest average nitrate concentrations in ground water in Ohio and Indiana are found in wells completed in the buried-valley aquifer; these concentrations typically are found in those parts of the sand and gravel aquifer that are not overlain by clay-rich till. Atrazine was the most commonly detected herbicide in private wells. Concentrations of volatile organic compounds in ground water generally were below Federal drinking-water standards, except near areas of known or
Stets, E G; Lee, C J; Lytle, D A; Schock, M R
2018-02-01
Corrosion in water-distribution systems is a costly problem and controlling corrosion is a primary focus of efforts to reduce lead (Pb) and copper (Cu) in tap water. High chloride concentrations can increase the tendency of water to cause corrosion in distribution systems. The effects of chloride are also expressed in several indices commonly used to describe the potential corrosivity of water, the chloride-sulfate mass ratio (CSMR) and the Larson Ratio (LR). Elevated CSMR has been linked to the galvanic corrosion of Pb whereas LR is indicative of the corrosivity of water to iron and steel. Despite the known importance of chloride, CSMR, and LR to the potential corrosivity of water, monitoring of seasonal and interannual changes in these parameters is not common among water purveyors. We analyzed long-term trends (1992-2012) and the current status (2010-2015) of chloride, CSMR, and LR in order to investigate the short and long-term temporal variability in potential corrosivity of US streams and rivers. Among all sites in the trend analyses, chloride, CSMR, and LR increased slightly, with median changes of 0.9mgL -1 , 0.08, and 0.01, respectively. However, urban-dominated sites had much larger increases, 46.9mgL -1 , 2.50, and 0.53, respectively. Median CSMR and LR in urban streams (4.01 and 1.34, respectively) greatly exceeded thresholds found to cause corrosion in water distribution systems (0.5 and 0.3, respectively). Urbanization was strongly correlated with elevated chloride, CSMR, and LR, especially in the most snow-affected areas in the study, which are most likely to use road salt. The probability of Pb action-level exceedances (ALEs) in drinking water facilities increased along with raw surface water CSMR, indicating a statistical connection between surface water chemistry and corrosion in drinking water facilities. Optimal corrosion control will require monitoring of critical constituents reflecting the potential corrosivity in surface waters. Published by Elsevier B.V.
Boyd, Robert A.
2001-01-01
Water samples collected from the alluvium indicated ground water can be classified as a calcium-magnesium-bicarbonate type. Reducing conditions likely occur in some localized areas of the alluvium, as suggested by relatively large concentrations of dissolved iron (4,390 micrograms per liter) and manganese (2, 430 micrograms per liter) in some ground-water samples. Nitrite plus nitrate was detected at concentrations greater than or equal to 8 milligrams per liter in three samples collected from observation wells completed in close proximity to cropland; the nitrite plus nitrate concentration in one groundwater sample exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for nitrate in drinking water (10 milligrams per liter as N). Triazine herbicides (atrazine, cyanazine, propazine, simazine, and selected degradation products) and chloroacetanilide herbicides (acetochlor, alachlor, and metolachlor) were detected in some water samples. A greater number of herbicide compounds were detected in surface-water samples than in ground-water samples. Herbicide concentrations typically were at least an order of magnitude greater in surfacewater samples than in ground-water samples. The Maximum Contaminant Level for alachlor (2 micrograms per liter) was exceeded in a sample from Dry Branch Creek at Tama Road and for atrazine (3 micrograms per liter) was exceeded in samples collected from Dry Branch Creek at Tama Road and the county drainage ditch at Tama Road.
Heavy metal concentration in mangrove surface sediments from the north-west coast of South America.
Fernández-Cadena, J C; Andrade, S; Silva-Coello, C L; De la Iglesia, R
2014-05-15
Mangrove ecosystems are coastal estuarine systems confined to the tropical and subtropical regions. The Estero Salado mangrove located in Guayaquil, Ecuador, has suffered constant disturbances during the past 20 years, due to industrial wastewater release. However, there are no published data for heavy metals present in its sediments and the relationship with anthropogenic disturbance. In the present study, metal concentrations were evaluated in surface sediment samples of the mangrove, showing that B, Cd, Cu, Pb, Se, V, and Zn levels exceeded those declared in international environmental quality standards. Moreover, several metals (Pb, Sn, Cd, Ag, Mo, Zn and Ni) could be linked to the industrial wastewater present in the studied area. In addition, heavy metal levels detected in this mangrove are higher than previous reports on mangrove sediments worldwide, indicating that this mangrove ecosystem is one of the most disrupted on earth. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1981-01-01
Sliding friction experiments were performed in vacuum at room temperature on a plane-type SiC surface in contact with iron-based binary alloys. Multiangular and spherical wear particles were found to form as a result of multipass sliding. The multiangular particles were produced by primary and secondary cracking of the 0001, 10(-)10, and 11(-)20 plane-type cleavage planes under the Hertzian stress field or local inelastic deformation zone. When alloy surfaces are in contact with silicon carbide under a load of 0.2 N, the alloy around the contact area is subjected to stresses that are close to the elastic limit in the elastic deformation region and/or exceed it. It was also found that spherical wear particles may be produced by two mechanisms: a penny-shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and the attrition and fatigue of wear particles.
Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA
Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.
2012-01-01
Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (−1 yr−1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha−1 yr−1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha−1 yr−1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3− threshold at which ecological effects are thought to occur. Based on an NO3− threshold of 0.5 μmol L−1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.
Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA
Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.
2012-01-01
Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha-1 yr-1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3- threshold at which ecological effects are thought to occur. Based on an NO3- threshold of 0.5 μmol L-1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.
Ahearn, Elizabeth A.
2010-01-01
Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.
Terheyden, H; Mühlendyck, C; Feldmann, H; Ludwig, K; Härle, F
1999-02-01
Besides rigid fixation, lag screws have distinct advantages compared with plates in appropriate indications in mandibular fractures. However, in current lag screw systems, the relatively small area of the screw head has to transfer the tensile force which can exceed 1000 N in the symphysis, to the thin cortical bone plate. Countersinking, which is obligatory in most systems, will weaken the cortical plate. Finite element analysis (FEA) revealed that load in this situation can exceed the normal tensile strength of metal and bone. Consequently, a new washer was constructed which both increased the supporting surface and did not require countersinking. The washer is self adapting (SAW) to the cortical plate in a defined position, forming a ball and socket joint with the screw head. Using the FEA model, a ten-fold reduction in load on bone and metal was observed with the new washer. In a miniature pig mandibular symphysis fracture model, the clinical applicability and a favourable histological reaction were demonstrated, compared with conventional lag screw designs.
Vowinkel, Eric F.; Tapper, Robert J.
1995-01-01
Previously collected and new water-quality data from shallow wells (screened interval less than 30 meters below the land surface) in predominantly agricultural areas of the New Jersey Coastal Plain were used to determine the relation of nitrate concentrations in shallow ground water to various hydrogeologic and land-use factors in the study area. Information on land use, well construction, hydrogeology, and water quality were used to predict the conditions under which concentrations of nitrate as nitrogen in water from domestic wells in predominantly agricultural areas are most likely to be equal to or larger than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 milligrams per liter. Results of the analyses of water-quality samples collected during 1980-89 from 230 shallow wells in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the regional effects of land use on shallow-ground-water quality. Results of statistical analysis indicate that concentrations of nitrate in shallow ground water are significantly different (p= 0.001) in agricultural areas than in undeveloped areas in both aquifer systems. Concentrations of nitrate nitrogen exceeded the MCL in water from more than 33 percent of the 60 shallow wells in agricultural areas. Concentrations of hitrate in water from shallow wells in agricultural areas increased as the percentage of agricultural land within an 800-meter-radius buffer zone of the wellhead increased (r= 0.81). Concentrations ofhitrate in water from domestic wells in agricultural areas were similar (p= 0.23) to those concentrations in water from irrigation wells. These results indicate that most of the nitrate in water from domestic wells in agricultural areas results from agricultural practices rather than other sources, such as septic systems. Water-quality samples collected from 12 shallow domestic wells in agricultural areas screened in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the local effects of hydrogeologic conditions and land-use activities on shallow-ground-water quality. Concentrations of water-quality constituents in these wells were similar among four sampling events over a l-year span. The concentration of hitrate in water from 6 of the 12 wells exceeded the MCL. Concentrations of nitrate greater than the MCL are associated with: values of specific conductance greater than 200 microsiemens per centimeter at 25 degrees Celsius, a screened interval whose top is less than 20 meters below land surface, concentrations of dissolved oxygen greater than 6 milligrams per liter, presence of pesticides in the ground water, a distance of less than 250 meters between the wellhead and the surfacewater divide, and presence of livestock near the wellhead. Ratios of stable isotopes of nitrogen in the water samples indicate that the source of hitrate in the ground water was predominantly chemical fertilizers rather than livestock wastes or effluent from septic systems.
Biogeochemistry of Urban, Suburban and Rural Ponds and Lakes in South Central Texas, USA
NASA Astrophysics Data System (ADS)
Young, K. L.; Aitkenhead-Peterson, J. A.; Gentry, T. J.; Schwab, A. P.
2017-12-01
Urban lotic surface waters have been extensively studied due to reported increases in their alkalinization and dissolved organic carbon (DOC). The same cannot be said for urban lentic surface waters, which are subject to the same Environmental Protection Agency (EPA) standards for recreation and other classifications, yet have received much less attention. This study analyzed 24 urban, suburban, and rural lakes and ponds throughout the Bryan/College Station, TX area for E. coli (monthly), biogeochemistry, BOD5, and total suspended solids (twice monthly). Some of the lentic surface waterbodies are for recreational activities such as swimming, fishing, and boating, while others serve more simply as storm water retention ponds in neighborhoods that have been `beautified' by adding trails for walking recreation or as ponds on golf courses. According to the EPA, the geometric mean standards for surface water E. coli are: 1) Primary Contact Recreation: 126 MPN per 100 mL of water, 2) Secondary Contact Recreation I: 630 MPN per 100 mL, and 3) Secondary Contact Recreation II: 1030 MPN per 100 mL. E. coli concentrations of the 24 lentic lakes and ponds during the spring season averaged 1-1417 MPN per 100 mL, with 7 of the 24 lentic waterbodies exceeding Secondary Contact Recreation I and 1 exceeding Secondary Contact Recreation II standards. There were also several individual samples exceeding the Noncontact Recreation Standard of 2060 MPN per 100 mL. Spring season DOC and DON concentrations averaged 7.3 - 21.9 mg L-1 and 0.48-15.62 mg L-1, respectively, with average specific ultraviolet absorbance at 254 nm (SUVA254) values ranging from 3.4 - 7.7 L mg-1 m-1. Nutrients NO3-N, NH4-N, and PO4-P ranged from 0.01-16.28, 0.01-0.41, and 0.02-5.05 mg L-1, respectively. pH in these surface waterbodies averaged 8.0-10.2 and electrical conductivity values ranged from 147-1677 µS cm-1 in the spring, indicating a tendency towards sodicity rather than salinity. BOD5 ranged from 1.6 - 22.6 mg L-1 and TSS from 6 - 404 mg L-1 Metals in the waterbodies' sediment that is potentially derived from urban runoff will be later quantified, but this presentation will concentrate primarily on the biogeochemistry of these urban lentic water bodies during the spring, summer and fall seasons.
Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan
2016-01-01
Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle number. Linear regression analysis of the same data showed statistically significant regression coefficients only for the mass-based aerosol measures. Similar results were seen for rank correlation in the stationary rig, and linear regression analysis implied significant correlation for mass-based and particle surface area measures. The mass-based air concentration levels of cobalt and tungsten in the hard metal plant in our study were low compared to Swedish OELs. Particle number and particle surface area concentrations were in the same order of magnitude as for other industrial settings. Regression analysis implied the use of stationary determined mass-based and particle surface area aerosol concentration as proxies for various exposure measures in our study. PMID:27143598
Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.
2014-01-01
Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.
NASA Astrophysics Data System (ADS)
Dao, Ligang; Zhang, Chaosheng; Morrison, Liam
2010-05-01
Soils in the vicinity of bonfires are recipients of metal contaminants from burning of metal-containing materials. In order to better understand the impacts of bonfires on soils, a total of 218 surface soil samples were collected from a traditional bonfire site in Galway City, Ireland. Concentrations of Cu, Pb and Zn were determined using a portable X-ray Fluorescence (P-XRF) analyser. Strong variations were observed for these metals, and several samples contained elevated Zn concentrations which exceeded the intervention threshold of the Dutch criteria (720 mg kg-1). Spatial clusters and spatial outliers were detected using the local Moran's I index and were mapped using GIS. Two clear high value spatial clusters could be observed on the upper left side and centre part of the study area for Cu, Pb and Zn. Results of variogram analyses showed high nugget-sill-ratios for Cu, Pb and Zn, indicating strong spatial variation over short distances which could be resulted from anthropogenic activities. The spatial interpolation method of ordinary kriging was applied to produce the spatial interpolation maps for Cu, Pb and Zn, and the areas with elevated concentrations were in line with historical locations of the bonfires. The hazard maps showed small parts of the study area with Zn concentrations exceeding the Dutch intervention values. In order to prevent further contamination from bonfires, it is advised that tyres and other metal-containing wastes should not be burnt. The results in this study provide useful information for management of bonfires.
Smith, Erik A.; Sanocki, Chris A.; Lorenz, David L.; Jacobsen, Katrin E.
2017-12-27
Streamflow distribution maps for the Cannon River and St. Louis River drainage basins were developed by the U.S. Geological Survey, in cooperation with the Legislative-Citizen Commission on Minnesota Resources, to illustrate relative and cumulative streamflow distributions. The Cannon River was selected to provide baseline data to assess the effects of potential surficial sand mining, and the St. Louis River was selected to determine the effects of ongoing Mesabi Iron Range mining. Each drainage basin (Cannon, St. Louis) was subdivided into nested drainage basins: the Cannon River was subdivided into 152 nested drainage basins, and the St. Louis River was subdivided into 353 nested drainage basins. For each smaller drainage basin, the estimated volumes of groundwater discharge (as base flow) and surface runoff flowing into all surface-water features were displayed under the following conditions: (1) extreme low-flow conditions, comparable to an exceedance-probability quantile of 0.95; (2) low-flow conditions, comparable to an exceedance-probability quantile of 0.90; (3) a median condition, comparable to an exceedance-probability quantile of 0.50; and (4) a high-flow condition, comparable to an exceedance-probability quantile of 0.02.Streamflow distribution maps were developed using flow-duration curve exceedance-probability quantiles in conjunction with Soil-Water-Balance model outputs; both the flow-duration curve and Soil-Water-Balance models were built upon previously published U.S. Geological Survey reports. The selected streamflow distribution maps provide a proactive water management tool for State cooperators by illustrating flow rates during a range of hydraulic conditions. Furthermore, after the nested drainage basins are highlighted in terms of surface-water flows, the streamflows can be evaluated in the context of meeting specific ecological flows under different flow regimes and potentially assist with decisions regarding groundwater and surface-water appropriations. Presented streamflow distribution maps are foundational work intended to support the development of additional streamflow distribution maps that include statistical constraints on the selected flow conditions.
A method for estimating mean and low flows of streams in national forests of Montana
Parrett, Charles; Hull, J.A.
1985-01-01
Equations were developed for estimating mean annual discharge, 80-percent exceedance discharge, and 95-percent exceedance discharge for streams on national forest lands in Montana. The equations for mean annual discharge used active-channel width, drainage area and mean annual precipitation as independent variables, with active-channel width being most significant. The equations for 80-percent exceedance discharge and 95-percent exceedance discharge used only active-channel width as an independent variable. The standard error or estimate for the best equation for estimating mean annual discharge was 27 percent. The standard errors of estimate for the equations were 67 percent for estimating 80-percent exceedance discharge and 75 percent for estimating 95-percent exceedance discharge. (USGS)
Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.
1998-01-01
In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi
46 CFR 32.63-20 - Hull structure-B/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... condition such that the forward rake bulkhead rests upon a pinnacle at the water surface, the maximum hull bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70...
10 CFR 850.31 - Release criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... lowest contamination level practicable, but not to exceed the levels established in paragraphs (b) and (c... contamination level of equipment or item surfaces does not exceed the higher of 0.2 µg/100 cm 2 or the... the equipment or item and its future use and the nature of the beryllium contamination. (c) Before...
Fate and identification of oil-brine contamination in different hydrogeologic settings
Whittemore, Donald O.
2007-01-01
Past disposal of oil-field brine at the surface has caused substantial contamination of water resources in Kansas. Natural saline water occurs in and discharges from Permian bedrock in parts of the state, and other anthropogenic sources of saline water exist, requiring clear identification of different sources. Time-series analysis of Cl- concentration and streamflow relative to pre-contamination contents, and end-member mixing plots, especially for Br- and Cl-, are practical methods for source differentiation and quantification. Although regulations preventing escape of saltwater from oil wells were first passed in Kansas in 1935, much oil and gas brine was disposed on the surface through the 1940s. Hydrogeologic characteristics of the areas with past surface disposal of oil brine differ appreciably and result in large differences in the ratio of saltwater transported in streams or ground water. Much of the brine disposed during the 1910s to 1940s in an area of silty clay soils overlying shale and limestone bedrock in south-central Kansas soon ran off or was flushed from the surface by rain into streams. Chloride concentration in the rivers draining this area often exceeded 1000 mg/L after the start of oil production up to the 1950s. Chloride content in the rivers then generally declined to about 100 mg/L or less in recent low flows. Oil brine was also disposed in surface ponds overlying the unconsolidated High Plains aquifer in south-central Kansas from the latter 1920s into the 1940s. Most of the surface-disposed brine infiltrated to the underlying aquifer. Where the High Plains aquifer is thin, saltwater has migrated along the top of clay layers or the underlying shaly bedrock and either discharged into small streams or flowed into thicker parts of the aquifer. Where the aquifer is thick, surface-disposed oil brine moved downward until reaching clay lenses, migrated latterly to the edge of the clay, and again moved downward if still dense enough. Water-level declines from pumping have increased the lateral migration rate of the saltwater contamination in the aquifer towards water-supply wells. The period of flushing most of the surface-disposed saltwater from the area of shale and limestone bedrock is on the order of many decades but is at least many centuries for the deeper parts of the High Plains aquifer. ?? 2007 Elsevier Ltd. All rights reserved.
30 CFR 18.23 - Limitation of external surface temperatures.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction... external surfaces of mechanical or electrical components shall not exceed 150 °C. (302 °F.) under normal...
Use of INSAR in surveillance and control of a large field project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patzek, T.W.; Silin, D.B.
2000-06-01
In this paper, we introduce a new element of our [1] multilevel, integrated surveillance and control system: satellite Synthetic Aperture Radar interferometry (InSAR) images of oil field surface. In particular, we analyze five differential InSAR images of the Belridge Diatomite field, CA, between 11/98 and 12/99. The images have been reprocessed and normalized to obtain the ground surface displacement rate. In return, we have been able to calculate pixel-by-pixel the net subsidence of ground surface over the entire field area. The calculated annual subsidence volume of 19 million barrels is thought to be close to the subsidence at the topmore » of the diatomite. We have also compared the 1999 rate of surface displacement from the satellite images with the surface monument triangulations between 1942 and 1997. We have found that the maximum rate of surface subsidence has been steadily increasing from -0.8 ft/year in 1988-97 to -1 ft/year in 1998-99. The respective rates of uplift of the field fringes also increased from 0.1 ft/year to 0.24 ft/year. In 1999, the observed subsidence rate exceeded by 4.5 million barrels the volumetric deficit of fluid injection.« less
Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.
Hori, Norio; Ueno, Takeshi; Suzuki, Takeo; Yamada, Masahiro; Att, Wael; Okada, Shunsaku; Ohno, Akinori; Aita, Hideki; Kimoto, Katsuhiko; Ogawa, Takahiro
2010-01-01
To examine the bioactivity of differently aged titanium (Ti) disks and to determine whether ultraviolet (UV) light treatment reverses the possible adverse effects of Ti aging. Ti disks with three different surface topographies were prepared: machined, acid-etched, and sandblasted. The disks were divided into three groups: disks tested for biologic capacity immediately after processing (fresh surfaces), disks stored under dark ambient conditions for 4 weeks, and disks stored for 4 weeks and treated with UV light. The protein adsorption capacity of Ti was examined using albumin and fibronectin. Cell attraction to Ti was evaluated by examining migration, attachment, and spreading behaviors of human osteoblasts on Ti disks. Osteoblast differentiation was evaluated by examining alkaline phosphatase activity, the expression of bone-related genes, and mineralized nodule area in the culture. Four-week-old Ti disks showed = or < 50% protein adsorption after 6 hours of incubation compared with fresh disks, regardless of surface topography. Total protein adsorption for 4-week-old surfaces did not reach the level of fresh surfaces, even after 24 hours of incubation. Fifty percent fewer human osteoblasts migrated and attached to 4-week-old surfaces compared with fresh surfaces. Alkaline phosphatase activity, gene expression, and mineralized nodule area were substantially reduced on the 4-week-old surfaces. The reduction of these biologic parameters was associated with the conversion of Ti disks from superhydrophilicity to hydrophobicity during storage for 4 weeks. UV-treated 4-week-old disks showed even higher protein adsorption, osteoblast migration, attachment, differentiation, and mineralization than fresh surfaces, and were associated with regenerated superhydrophilicity. Time-related degradation of Ti bioactivity is substantial and impairs the recruitment and function of human osteoblasts as compared to freshly prepared Ti surfaces, suggesting a "biologic aging"-like change of Ti. UV treatment of aged Ti, however, restores and even enhances bioactivity, exceeding its innate levels.
Thickness of the Mississippi River Valley confining unit, eastern Arkansas
Gonthier, Gerard; Mahon, Gary L.
1993-01-01
Concern arose in the late 1980s over the vulnerability of the Mississippi Valley alluvial aquifer to contamination from potential surface sources related to pesticide or fertilizer use, industrial activity, landfills, or livestock operations. In 1990 a study was begun to locate areas in Arkansas where the groundwater flow system is susceptible to contamination by surface contaminants. As a part of that effort, the thickness of the clay confining unit overlying the alluvial aquifer in eastern Arkansas was mapped. The study area included all or parts of 27 counties in eastern Arkansas that are underlain by the alluvial aquifer and its overlying confining unit. A database of well attributes was compiled based on data from driller's logs and from published data and stored in computer files. A confining-unit thickness map was created from the driller's-log database using geographic information systems technology. A computer program was then used to contour the data. Where the confining unit is present, it ranges in thickness from 0 feet in many locations in the study area to 140 feet in northeastern Greene County and can vary substantially over short distances. Although general trends in the thickness of the confining unit are apparent, the thickness has great spatial variability. An apparent relation exists between thickness of the confining unit and spatial variability in thickness. In areas where the thickness of the confining unit is 40 feet or less, such as in Clay, eastern Craighead, northwestern Mississippi, and Woodruff Counties, thickness of the unit tends robe more uniform than in areas where the thickness of the unit generally exceeds 40 feet, such as in Arkansas, Lonoke, and Prairie Counties. At some sites the confining unit is very thick compared to its thickness in the immediate surrounding area. Locations of abandoned Mississippi River meander channels generally coincide with location of locally thick confining unit. Deposition of the confining unit onto the coarser alluvial aquifer deposits has reduced the relief of the land surface. Hence, the altitude of the top of the alluvial aquifer varies more than the altitude of the land surface and is indicative of a depositional setting.
Cultured Skin Substitutes Reduce Donor Skin Harvesting for Closure of Excised, Full-Thickness Burns
Boyce, Steven T.; Kagan, Richard J.; Yakuboff, Kevin P.; Meyer, Nicholas A.; Rieman, Mary T.; Greenhalgh, David G.; Warden, Glenn D.
2002-01-01
Objective Comparison of cultured skin substitutes (CSS) and split-thickness skin autograft (AG) was performed to assess whether donor-site harvesting can be reduced quantitatively and whether functional and cosmetic outcome is similar qualitatively in the treatment of patients with massive cutaneous burns. Summary Background Data Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates populated with autologous fibroblasts and keratinocytes have been shown to close full-thickness skin wounds in preclinical and clinical studies with acceptable functional and cosmetic results. Methods Qualitative outcome was compared between CSS and AG in 45 patients on an ordinal scale (0, worst; 10, best) with primary analyses at postoperative day 28 and after about 1 year for erythema, pigmentation, pliability, raised scar, epithelial blistering, and surface texture. In the latest 12 of the 45 patients, tracings were performed of donor skin biopsies and wounds treated with CSS at postoperative days 14 and 28 to calculate percentage engraftment, the ratio of closed wound:donor skin areas, and the percentage of total body surface area closed with CSS. Results Measures of qualitative outcome of CSS or AG were not different statistically at 1 year after grafting. Engraftment at postoperative day 14 exceeded 75% in the 12 patients evaluated. The ratio of closed wound:donor skin areas for CSS at postoperative day 28 was significantly greater than for conventional 4:1 meshed autografts. The percentage of total body surface area closed with CSS at postoperative day 28 was significantly less than with AG. Conclusions The requirement for harvesting of donor skin for CSS was less than for conventional skin autografts. These results suggest that acute-phase recovery of patients with extensive burns is facilitated and that complications are reduced by the use of CSS together with conventional skin grafting. PMID:11807368
Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns.
Boyce, Steven T; Kagan, Richard J; Yakuboff, Kevin P; Meyer, Nicholas A; Rieman, Mary T; Greenhalgh, David G; Warden, Glenn D
2002-02-01
Comparison of cultured skin substitutes (CSS) and split-thickness skin autograft (AG) was performed to assess whether donor-site harvesting can be reduced quantitatively and whether functional and cosmetic outcome is similar qualitatively in the treatment of patients with massive cutaneous burns. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates populated with autologous fibroblasts and keratinocytes have been shown to close full-thickness skin wounds in preclinical and clinical studies with acceptable functional and cosmetic results. Qualitative outcome was compared between CSS and AG in 45 patients on an ordinal scale (0, worst; 10, best) with primary analyses at postoperative day 28 and after about 1 year for erythema, pigmentation, pliability, raised scar, epithelial blistering, and surface texture. In the latest 12 of the 45 patients, tracings were performed of donor skin biopsies and wounds treated with CSS at postoperative days 14 and 28 to calculate percentage engraftment, the ratio of closed wound:donor skin areas, and the percentage of total body surface area closed with CSS. Measures of qualitative outcome of CSS or AG were not different statistically at 1 year after grafting. Engraftment at postoperative day 14 exceeded 75% in the 12 patients evaluated. The ratio of closed wound:donor skin areas for CSS at postoperative day 28 was significantly greater than for conventional 4:1 meshed autografts. The percentage of total body surface area closed with CSS at postoperative day 28 was significantly less than with AG. The requirement for harvesting of donor skin for CSS was less than for conventional skin autografts. These results suggest that acute-phase recovery of patients with extensive burns is facilitated and that complications are reduced by the use of CSS together with conventional skin grafting.
Contribution to the study of pollution of soil and water in Oued El Maleh area (Mohammedia, Morocco)
NASA Astrophysics Data System (ADS)
El hajjaji, Souad; Dahchour, Abdelmalek; Belhsaien, Kamal; Zouahri, Abdelmjid; Moussadek, Rachid; Douaik, Ahmed
2016-04-01
In Morocco, diffuse ground and surface water pollution in irrigated areas has caused an increase in the risk of water and soil quality deterioration. This has generated a health and environmental risks. The present study was carried out in the Oued El Maleh region located 65 Km to the south of Rabat on the Moroccan Atlantic coast. It covers a surface area of 310 km2 where agriculture constitutes the main activity of the population. This region is considered as a very important agricultural area, known nationally for its high potential for market gardening. This intensification has been accompanied by an excessive use of agrochemical inputs and poor control of irrigation and drainage. Consequently, salinization phenomena and deterioration of soil structure as well as water are about to create an alarming situation. In order to assess the state of pollution of waters and soil in the region, our study focuses on the determination of physicochemical parameters for the quality of water and soil. The obtained results from sampled wells and surface water show relatively higher values of nitrate and conductivity exceeding Moroccan national standards and revealing net degradation of water quality; therefore the water can be considered not suitable for human consumption and can induce a degradation of soil. The results of the studied soil show that the pH of these soils is weakly to moderately basic; they are usually non-saline with organic matter content moderately filled. Moreover, very high concentrations of nutrients (potassium, phosphorus and nitrogen) were recorded, highlighting poor management fertilizing vegetable crops in the region of Oued El Maleh.
Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P
2009-04-01
The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.
NASA Astrophysics Data System (ADS)
Ishitsuka, Y.; Yoshimura, K.
2016-12-01
Floods have a potential to be a major source of economic or human damage caused by natural disasters. Flood prediction systems were developed all over the world and to treat the uncertainty of the prediction ensemble simulation is commonly adopted. In this study, ensemble flood prediction system using global scale land surface and hydrodynamic model was developed. The system requests surface atmospheric forcing and Land Surface Model, MATSIRO, calculates runoff. Those generated runoff is inputted to hydrodynamic model CaMa-Flood to calculate discharge and flood inundation. CaMa-Flood can simulate flood area and its fraction by introducing floodplain connected to river channel. Forecast leadtime was set 39hours according to forcing data. For the case study, the flood occurred at Kinu river basin, Japan in 2015 was hindcasted. In a 1761 km² Kinu river basin, 3-days accumulated average rainfall was 384mm and over 4000 people was left in the inundated area. Available ensemble numerical weather prediction data at that time was inputted to the system in a resolution of 0.05 degrees and 1hour time step. As a result, the system predicted the flood occurrence by 45% and 84% at 23 and 11 hours before the water level exceeded the evacuation threshold, respectively. Those prediction lead time may provide the chance for early preparation for the floods such as levee reinforcement or evacuation. Adding to the discharge, flood area predictability was also analyzed. Although those models were applied for Japan region, this system can be applied easily to other region or even global scale. The areal flood prediction in meso to global scale would be useful for detecting hot zones or vulnerable areas over each region.
Trombley, T.J.
2001-01-01
Water-quality samples were collected from 20 surface-water sites and 7 ground-water sites across the Prairie Band Potawatomi Reservation in northeastern Kansas as part of a water-quality study begun in 1996. Water quality is a very important consideration for the tribe. Three creeks draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, are important tribal resources used for maintaining subsistence fishing and hunting needs for tribal members. Samples were collected twice during June 1999 and June 2000 at all 20 surface-water sites after herbicide application, and nine quarterly samples were collected at 5 of the 20 sampling sites from February 1999 through February 2001. Samples were collected once at six wells and twice at one well from September through December 2000. Surface-water-quality constituents analyzed included nutrients, pesticides, and bacteria. In addition to nutrients, pesticides, and bacteria, ground-water constituents analyzed included major dissolved ions, arsenic, boron, and dissolved iron and manganese. The median nitrite plus nitrate concentration was 0.376 mg/L (milligram per liter) for 81 surface-water samples, and the maximum concentration was 4.18 mg/L as nitrogen, which is less than one-half the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) for drinking water of 10 mg/L as nitrogen. Fifty-one of the 81 surface-water-quality samples exceeded the U.S. Environmental Protection Agency's recommended goal for total phosphorus of 0.10 mg/L for the protection of aquatic life. Triazine concentrations in 26 surface-water-quality samples collected during May and June 1999 and 2000 exceeded 3.0 ?g/L (micrograms per liter), the Maximum Contaminant Level established for drinking water by the U.S. Environmental Protection Agency. Triazine herbicide concentrations tended to be highest during late spring runoff after herbicide application. High concentrations of fecal indicator bacteria in surface water are a concern on the reservation with fecal coliform concentrations ranging from 4 to greater than 31,000 colonies per 100 milliliters of water with a median concentration of 570 colonies per 100 milliliters. More than one-half of the surface-water-quality samples exceeded the Kansas Department of Health and Environment contact recreation criteria of 200 and 2,000 colonies per 100 milliliters of water and were collected mostly during the spring and summer. Two wells had sodium concentrations of about 10 times the U.S. Environmental Protection Agengy health advisory level (HAL) of 20 mg/L; concentrations ranged from 241 to 336 mg/L. In water from two wells, sulfate concentrations exceeded 800 mg/L, more than three times the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for drinking water of 250 mg/L. All but two of the eight ground-water-quality samples had dissolved-solids concentrations exceeding the SMCL of 500 mg/L. The highest concentration of 2,010 mg/L was more than four times the SMCL. Dissolved boron concentrations exceeded the U.S. Environmental Protection Agency 600-?g/L HAL in water from two of the seven wells sampled. Because the HAL is for a lifetime of exposure, the anticipated health risk due to dissolved boron is low. Dissolved iron concentrations in ground-water samples exceeded the 300-?g/L SMCL for treated drinking water in three of the seven wells sampled. Dissolved manganese concentrations in water from the same three wells also exceeded the established SMCL of 50 ?g/L. Dissolved pesticides were not detected in any of the well samples; however, there were degradation products of the herbicides alachlor and metolachlor in several samples. Insecticides were not detected in any ground-water-quality samples. Low concentrations of E. coli and fecal coliform bacteria were detected in water from two wells, and E. coli was detected in water from one well. Much higher concentrations of E. coli, fecal coliform, and fecal strepto
Eberle, Michael; Razem, A.C.
1985-01-01
The hydrologic effects of surface coal mining in unlimited areas is difficult to predict, partly because of a lack of adequate data collected before and after mining and reclamation. In order to help provide data to assess the effects of surface mining on the hydrology of small basins in the coal fields of the eastern United States, the U.S. Bureau of Mines sponsored a comprehensive hydrologic study at three sites in the Ohio part of the Eastern Coal Province. These sites are within the unqlaciated part of the Allegheny Plateau, and are representative of similar coal-producing areas in Kentucky, West Virginia, and Pennsylvania. The U.S. Geological Survey was responsible for the ground-water phase of the study. The aquifer system at each watershed consisted of two localized perched aquifers (top and middle) above a deeper, more regional aquifer. The premining top aquifer was destroyed by mining in each case, and was replaced by spoils during reclamation. The spoils formed new top aquifers that were slowly becoming resaturated at the end of the study period. Water levels in the aquifers were about the same after reclamation as before mining, although levels rose in a few places. It appears that the underclay at the base of the new top aquifers at all three sites prevents significant downward leakage from the top aquifers to lower except in places where the layer may have been damaged during mining. Water in the top aquifers is a calcium sulfate type, whereas calcium bicarbonate type water predominated before mining. The median specific conductance of water in the new top aquifers was about 5 times greater than that of the original top aquifers in two of the watersheds, and 1 1/2 times the level of the original top aquifers in the third. Concentrations of dissolved sulfate, iron, and manganese in the top aquifers before mining generally did not exceed U.S. and Ohio Environmental Protection Agency drinking-water limits, but generally exceeded these limits after reclamation. Water-quality changes in the middle aquifers were minor by comparison. Water levels and water quality in the deeper, regional aquifers were unaffected by mining.
Whitehead, Matthew T.; Ostheimer, Chad J.
2014-01-01
Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.
Measuring and Mapping the Topography of the Florida Everglades for Ecosystem Restoration
Desmond, Gregory B.
2003-01-01
One of the major issues facing ecosystem restoration and management of the Greater Everglades is the availability and distribution of clean, fresh water. The South Florida ecosystem encompasses an area of approximately 28,000 square kilometers and supports a human population that exceeds 5 million and is continuing to grow. The natural systems of the Kissimmee-Okeechobee-Everglades watershed compete for water resources primarily with the region's human population and urbanization, and with the agricultural and tourism industries. Surface water flow modeling and ecological modeling studies are important means of providing scientific information needed for ecosystem restoration planning and modeling. Hydrologic and ecological models provide much-needed predictive capabilities for evaluating management options for parks, refuges, and land acquisition and for understanding the impacts of land management practices in surrounding areas. These models require various input data, including elevation data that very accurately define the topography of the Florida Everglades.
Rapid subsidence over oil fields measured by SAR
NASA Technical Reports Server (NTRS)
Fielding, E. J.; Blom, R. G.; Goldstein, R. M.
1998-01-01
The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.
An experimental study of the transient regime to fluidized chimney in a granular medium
NASA Astrophysics Data System (ADS)
Philippe, Pierre; Mena, Sarah; Brunier-Coulin, Florian; Curtis, Jennifer
2017-06-01
Localized fluidization within a granular packing along an almost cylindrical chimney is observed when an upward fluid-flow, injected through a small port diameter, exceeds a critical flow-rate. Once this threshold reached, a fluidized area is first initiated in the close vicinity of the injection hole before gradually growing upward to the top surface of the granular layer. In this work, we present an experimental investigation specifically dedicated to the kinetics of chimney fluidization in an immersed granular bed. Two different transient regimes are identified depending on wether the expansion of the fluidized area is rather fast and regular, reaching the final chimney state typically in less than 10 seconds, or, on the contrary, slow and very progressively accelerated, giving rise to transient duration up to 1 hour or even more. Some systematic investigations allow to propose several empirical scaling relations for the kinetics of chimney fluidization in the fast regular regime.
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect the creek. However, most TPH detections were located in and immediately adjacent to a debris field located within the former landfill and in areas where debris was not visible, including the northwestern and southeastern parts of the study area. Two of the four soil-gas samplers installed within a former military training area adjacent to the landfill also had TPH detections above the method detection level. Benzene, toluene, ethylbenzene, and xylene (as combined BTEX mass) were detected at 0.02 microgram or greater in three soil-gas samplers installed at the northwestern boundary and in five samplers installed in the southeastern part of the study area. There was no BTEX mass detected above the method detection level in samplers installed in the debris field. Toluene was the most frequently detected BTEX compound. Compounds indicative of diesel-range organics were detected above 0.04 microgram in 12 soil-gas samplers and had a distribution similar to that of TPH, including being detected in the debris field. Undecane was the most frequently detected diesel compound. Chloroform and naphthalene were detected in eight and two soil-gas samplers, respectively. Five soil-gas samplers deployed during September 2010 were analyzed for organic compounds classified as chemical agents and explosives, but none exceeded the method detection levels. Five composite soil samples collected from within the estimated boundaries of the former landfill were analyzed for 35 inorganic constituents, but none of the constituents detected exceeded regional screening levels for industrial soils. The sample collected in the debris field exceeded background levels for aluminum, barium, calcium, chromium, lead, nickel, potassium, sodium, and zinc. Three surface-water samples were collected in September 2010 from a stormwater outfall culvert that drains to the creek and from the open channel of the creek at upstream and downstream locations relative to the outfall. Toluene was detected at 0.661 mi
Diamond-Based Supercapacitors: Realization and Properties.
Gao, Fang; Nebel, Christoph E
2016-10-26
In this Spotlight on Applications, we describe our recent progress on the fabrication of surface-enlarged boron-doped polycrystalline diamond electrodes, and evaluate their performance in supercapacitor applications. We begin with a discussion of the fabrication methods of porous diamond materials. The diamond surface enlargement starts with a top-down plasma etching method. Although the extra surface area provided by surface roughening or nanostructuring provides good outcome for sensing applications, a capacitance value <1 mF cm -2 or a surface-enlargement factor <100 fail to meet the requirement of a practical supercapacitor. Driven by the need for large surface areas, we recently focused on the tempated-growth method. We worked on both supported and free-standing porous diamond materials to enhance the areal capacitance to the "mF cm -2 " range. With our newly developed free-standing diamond paper, areal capacitance can be multiplied by stacking multilayers of the electrode material. Finally, considering the fact that there is no real diamond-based supercapacitor device up to now, we fabricated the first prototype pouch-cell device based on the free-standing diamond paper to evaluate its performance. The results reveal that the diamond paper is suitable for operation in high potential windows (up to 2.5 V) in aqueous electrolyte with a capacitance of 0.688 mF cm -2 per layer of paper (or 0.645 F g -1 ). Impedance spectroscopy revealed that the operation frequency of the device exceeds 30 Hz. Because of the large potential window and the ability to work at high frequency, the specific power of the device reached 1 × 10 5 W kg -1 . In the end, we made estimations on the future target performance of diamond supercapacitors based on the existing information.
Scanlon, Bridget R.; Reedy, Robert C.; Faunt, Claudia; Pool, Donald R.; Uhlman, Kristine;
2016-01-01
Projected longer‐term droughts and intense floods underscore the need to store more water to manage climate extremes. Here we show how depleted aquifers have been used to store water by substituting surface water use for groundwater pumpage (conjunctive use, CU) or recharging groundwater with surface water (Managed Aquifer Recharge, MAR). Unique multi‐decadal monitoring from thousands of wells and regional modeling datasets for the California Central Valley and central Arizona were used to assess CU and MAR. In addition to natural reservoir capacity related to deep water tables, historical groundwater depletion further expanded aquifer storage by ~44 km3 in the Central Valley and by ~100 km3 in Arizona, similar to or exceeding current surface reservoir capacity by up to three times. Local river water and imported surface water, transported through 100s of km of canals, is substituted for groundwater (≤15 km3/yr, CU) or is used to recharge groundwater (MAR, ≤1.5 km3/yr) during wet years shifting to mostly groundwater pumpage during droughts. In the Central Valley, CU and MAR locally reversed historically declining water‐level trends, which contrasts with simulated net regional groundwater depletion. In Arizona, CU and MAR also reversed historically declining groundwater level trends in Active Management Areas. These rising trends contrast with current declining trends in irrigated areas that lack access to surface water to support CU or MAR. Use of depleted aquifers as reservoirs could expand with winter flood irrigation or capturing flood discharges to the Pacific (0 – 1.6 km3/yr, 2000–2014) with additional infrastructure in California. Because flexibility and expanded portfolio options translate to resilience, CU and MAR enhance drought resilience through multi‐year storage, complementing shorter term surface reservoir storage, and facilitating water markets.
NASA Astrophysics Data System (ADS)
Hopkinson, C.; Brisco, B.; Chasmer, L.; Devito, K.; Montgomery, J. S.; Patterson, S.; Petrone, R. M.
2017-12-01
The dense forest cover of the Western Boreal Plains of northern Alberta is underlain by a mix of glacial moraines, sandy outwash sediments and clay plains possessing spatially variable hydraulic conductivities. The region is also characterised by a large number of post-glacial surface depression wetlands that have seasonally and topographically limited surface connectivity. Consequently, drainage along shallow regional hydraulic gradients may be dominated either by variations in surface geology or local variations in Et. Long-term government lake level monitoring is sparse in this region, but over a decade of hydrometeorological monitoring has taken place around the Utikuma Regional Study Area (URSA), a research site led by the University of Alberta. In situ lake and ground water level data are here combined with time series of airborne lidar and RadarSat II synthetic aperture radar (SAR) data to assess the spatial variability of water levels during late summer period characterised by flow recession. Long term Lidar data were collected or obtained by the authors in August of 2002, 2008, 2011 and 2016, while seasonal SAR data were captured approximately every 24 days during the summers of 2015, 2016 and 2017. Water levels for wetlands exceeding 100m2 in area across a north-trending 20km x 5km topographic gradient north of Utikuma Lake were extracted directly from the lidar and indirectly from the SAR. The recent seasonal variability in spatial water levels was extracted from SAR, while the lidar data illustrated more long term trends associated with land use and riparian vegetation succession. All water level data collected in August were combined and averaged at multiple scales using a raster focal statistics function to generate a long term spatial map of the regional hydraulic gradient and scale-dependent variations. Areas of indicated high and low drainage efficiency were overlain onto layers of landcover and surface geology to ascertain causal relationships. Areas associated with high spatial variability in water level illustrate reduced drainage connectivity, while areas of reduced variability indicate high surface connectivity and/or hydraulic conductivity. The hypothesis of surface geology controls on local wetland connectivity and landscape drainage efficiency is supported through this analysis.
24 CFR 599.303 - Rating of applications.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the area poverty rate, area unemployment rate, and for urban areas, the percentage of families below... jurisdiction in the nominated area, does not exceed by more than 25% the nation-wide 1999 Crime Index rate per...
24 CFR 599.303 - Rating of applications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the area poverty rate, area unemployment rate, and for urban areas, the percentage of families below... jurisdiction in the nominated area, does not exceed by more than 25% the nation-wide 1999 Crime Index rate per...
24 CFR 599.303 - Rating of applications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the area poverty rate, area unemployment rate, and for urban areas, the percentage of families below... jurisdiction in the nominated area, does not exceed by more than 25% the nation-wide 1999 Crime Index rate per...
24 CFR 599.303 - Rating of applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the area poverty rate, area unemployment rate, and for urban areas, the percentage of families below... jurisdiction in the nominated area, does not exceed by more than 25% the nation-wide 1999 Crime Index rate per...
Senior, Lisa A.
1996-01-01
The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of 300 pCi/L (picoCuries per liter).Differences in selected major and minor ion concentrations and radon-222 activities were statistically significant between some lithologies and are related to differences in mineralogy. Ground water from felsic gneiss and schist generally contained higher radon-222 activities than the other lithologies; activities as high as 10,000 pCi/L were measured in a water sample from the felsic gneiss.Differences in the concentrations of nitrate, sodium, and chloride, and the frequency of pesticide detections in ground water were statistically significant between samples from wells in some land-use categories. Concentrations of nitrate generally were greatest in agricultural and in industrial and commercial areas and can be attributed to the use of fertilizers on the land surface and other agricultural activities. Much of the industrial and commercial land use is in areas previously used for or related to mushroom production. Concentrations of chloride and sodium also were greatest in water from wells in agricultural and industrial and commercial areas, probably because of the use of fertilizer and road salt. Concentrations of nitrate, chloride, and sodium in water samples from wells in forested and residential land use did not differ statistically significantly from each other. The herbicides metolachlor and atrazine were the most frequently detected pesticides and were detected more frequently in agricultural areas than in areas with other land uses; their presence is related to their use in crop production. VOC's were detected infrequently and only in residential and industrial and commercial areas.The relation between ground-water quality and surface-water quality is assessed by comparing nitrate and chloride concentrations in the 1993 ground-water samples and 1993-94 base-flow samples. Base-flow samples were collected at eight stream sites in the headwaters of the West Branch of Red Clay Creek in 1994 and at two long-term stream-monitoing sites on the East and West Branches of the Red Clay Creek in 1993-94. The average concentrations of chloride and nitrate in ground-water samples from wells in areas above the headwater stream sites and two long-term stream-monitoring sites were similar to the concentrations of chloride and nitrate in base flow at those sites. An observed increase in nitrate concentration in base flow at the long-term monitoring site on the West Branch of Red Clay Creek from 1970 to 1995 may be related to an increase in nitrate concentrations in ground water in that area of the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ITLV.
1999-03-01
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: Perform video surveys of the discharge and outfall lines. Collect samples of material in the septic tanks. Conduct exploratory trenching to locate and inspect subsurface components. Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. Drill boreholes and collect subsurface soil samples if required. Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007
Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.
2011-01-01
The spatial patterns for concentrations of trace metals (aluminum, cadmium, copper, iron, manganese, and zinc) indicate an increase in dissolved concentrations of these metals near historical mining areas in the Eagle River and several tributaries near Belden. In general, concentrations decrease downstream from mining areas. Concentrations typically are near or below reporting limits in Gore Creek and other tributaries within the watershed. Concentrations for trace elements (arsenic, selenium, and uranium) in the watershed usually are below the reporting limit, and no prevailing spatial patterns were observed in the data. Step-trend analysis and temporal-trend analysis provide evidence that remediation of historical mining areas in the upper Eagle River have led to observed decreases in metals concentrations in many surface-waters. Comparison of pre- and post-remediation concentrations for many metals indicates significant decreases in metals concentrations for cadmium, manganese, and zinc at sites downstream from the Eagle Mine Superfund Site. Some sites show order of magnitude reductions in median concentrations between these two periods. Evaluation of monotonic trends for dissolved metals concentrations show downward trends at numerous sites in, and downstream from, historic mining areas. The spatial pattern of nutrients shows lower concentrations on many tributaries and on the Eagle River upstream from Red Cliff with increases in nutrients downstream of major urban areas. Seasonal variations show that for many nutrient species, concentrations tend to be lowest May-June and highest January-March. The gradual changes in concentrations between seasons may be related to dilution effects from increases and decreases in streamflow. Upward trends in nutrients between the towns of Gypsum and Avon were detected for nitrate, orthophosphate, and total phosphorus. An upward trend in nitrite was detected in Gore Creek. No trends were detected in un-ionized ammonia within the ERW. Exceedances of State water-quality standards (nitrite, nitrate, and un-ionized ammonia) and levels higher than U.S. Environmental Protection Agency recommendations (total phosphorus) occur in several areas within the ERW. The majority of the exceedances are from comparisons to the U.S. Environmental Protection Agency total phosphorus recommendations. A positive correlation was observed between suspended sediment and total phosphorus. An upward trend in total dissolved solids in Gore Creek may be the result of increases in chloride salts. Highly significant trends were detected in sodium, potassium, and chloride with a significant upward trend in magnesium and a weakly significant upward trend in calcium. A quantitative analysis of the relative abundance of calcium, magnesium, sodium, and potassium to the available anions suggests that chloride salts likely are the source for the detected upward trends because chloride is the only commonly occurring anion with a trend in Gore Greek. A potential source for the observed chloride salts may be the chemical anti-icing and deicing products used during winter road maintenance in municipal areas and on Interstate-70. A downward trend in dissolved solids in the Eagle River between Gypsum and Avon may be contributing to the detected trend on the Eagle River at Gypsum. Significant downward trends were detected in specific ions such as calcium, magnesium, sulfate, and silica. Measures of total dissolved solids as well as comparisons to specific ions show that in water-quality samples within the ERW concentrations generally are lower in the headwaters, with increases downstream from Wolcott. Differences in concentrations likely result from increased abundance of salt-bearing geologic units downstream from Avon. Few sites had measured concentrations that exceeded the State standards for chloride.
Walter, Donald A.; Whealan, Ann T.
2005-01-01
The sandy sediments underlying Cape Cod, Massachusetts, compose an important aquifer that is the sole source of water for a region undergoing rapid development. Population increases and urbanization on Cape Cod lead to two primary environmental effects that relate directly to water supply: (1) adverse effects of land use on the quality of water in the aquifer and (2) increases in pumping that can adversely affect environmentally sensitive surface waters, such as ponds and streams. These considerations are particularly important on the Sagamore and Monomoy flow lenses, which underlie the largest and most populous areas on Cape Cod. Numerical models of the two flow lenses were developed to simulate ground-water-flow conditions in the aquifer and to (1) delineate areas at the water table contributing water to wells and (2) estimate the effects of pumping and natural changes in recharge on surface waters. About 350 million gallons per day (Mgal/d) of water recharges the aquifer at the water table in this area; most water (about 65 percent) discharges at the coast and most of the remaining water (about 28 percent) discharges into streams. A total of about 24.9 Mgal/d, or about 7 percent, of water in the aquifer is withdrawn for water supply; most pumped water is returned to the hydrologic system as return flow creating a state of near mass balance in the aquifer. Areas at the water table that contribute water directly to production wells total about 17 square miles; some water (about 10 percent) pumped from the wells flows through ponds prior to reaching the wells. Current (2003) steady-state pumping reduces simulated ground-water levels in some areas by more than 4 feet; projected (2020) pumping may reduce water levels by an additional 3 feet or more in these same areas. Current (2003) and future (2020) pumping reduces total streamflow by about 4 and 9 cubic feet per second (ft3/s), corresponding to about 5 percent and 9 percent, respectively, of total streamflow. Natural recharge varies with time, over both monthly and multiyear time scales. Monthly changes in recharge cause pond levels to vary between 1 and 2 feet in an average year; annual changes in recharge, which can be much larger than monthly variations, can cause pond levels to vary by more than 10 feet in some areas over a period of years. Streamflow, which also changes in response to changes in recharge, varies by a factor of two over an average year and can vary more over multiyear periods. On average, monthly pumping ranges from 15.8 Mgal/d in March to 45.3 Mgal/d in August. Pumping and the distribution of return flow can seasonally affect the hydrologic system by lowering ground-water and pond levels and by depleting streamflows, particularly in the summer months. Maximum drawdowns in March and August exceed 3 feet and 6 feet, respectively, for current (2003) pumping. Simulated drawdowns from projected (2020) pumping, relative to water levels representing 2003 pumping conditions, exceed 2 feet in March and 5 feet in August. Current (2003) and future (2020) pumping can decrease pond levels in some areas by more than 3 feet; drawdown generally is largest during the month of August of an average year. Over multiyear periods, seasonal pumping can lower pond levels in some areas by more than 4 feet; the effects of seasonal pumping are largest during periods of reduced recharge. Monthly streamflow depletion varies in individual streams but can exceed 2 ft3/s in some streams. The combined effects of seasonal pumping and drought can reduce pond levels by more than 10 feet below average levels. Water levels in Mary Dunn Pond, which is in an area of large current and projected pumping, are predicted (2020) to decline during drought conditions by about 10.6 feet: about 6.9 feet from lower recharge, about 2.3 feet from current (2003) pumping, and about 1.4 feet from additional future (2020) pumping. The results indicate that pumping generally does not cause substantial
Estimation of external dose by car-borne survey in Kerala, India.
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.
NASA Astrophysics Data System (ADS)
Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.
2018-01-01
Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.
F-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
During first quarter 1995, samples from the FAC monitoring wells at the F-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, volatile organic compounds, and other constituents. Piezometer FAC 5P and monitoring well FAC 6 were dry and could not be sampled. New monitoring wells FAC 9C, 10C, 11C, and 12C were completed in the Barnwell/McBean aquifer and were sampled for the first time during third quarter 1994 (first quarter 1995 is the third of four quarters of data required to support the closure of the basin). Analytical results that exceeded final Primary Drinkingmore » Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard of 50 NTU during the quarter were as follows: gross alpha exceeded the final PDWS and aluminum, iron, manganese, and total alpha-emitting radium exceeded the SRS Flag 2 criteria in one or more of the FAC wells. Turbidity exceeded the SRS standard (50 NTU) in wells FAC 3 and 11C. Groundwater flow direction and rate in the water table beneath the F-Area Acid/Caustic Basin were similar to past quarters.« less
Li, Pei; Xin, Jinyuan; Bai, Xiaoping; Wang, Yuesi; Wang, Shigong; Liu, Shixi; Feng, Xiaoxin
2013-01-01
Continuous measurements of surface ozone (O3) and nitrogen oxides (NOX) at an urban site (39°37′N, 118°09′E) in Tangshan, the largest heavy industry city of North China during summertime from 2008 to 2011 are presented. The pollution of O3 was serious in the city. The daily maximum 1 h means (O3_1-hr max) reached 157 ± 55, 161 ± 54, 120 ± 50, and 178 ± 75 μg/m3 corresponding to an excess over the standard rates of 21%, 27%, 10%, and 40% in 2008–2011, respectively. The total oxidant level (OX = O3 + NO2) was high, with seasonal average concentrations up to 100 μg/m3 in summer. The level of OX at a given location was made up of NOX-independent and NOX-dependent contributions. The independent part can be considered as a regional contribution and was about 100 μg/m3 in Tangshan. Statistical early warning analysis revealed that the O3 levels would exceed the standard rate by 50% on the day following a day when the daily average ozone concentration (O3_mean) exceeded 87 μg/m3 and the daily maximum temperature (T_max) exceeded 29 °C. The exceed-standard rate would reach 80% when O3_mean and T_max exceeded 113 μg/m3 and 31 °C. Similarly, the exceed-standard rate would reach 100% when O3_mean and T_max exceeded 127 μg/m3 and 33 °C, respectively. PMID:23485953
[Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].
Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao
2015-12-01
China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.
This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explor...
Brown, Christopher R.; Macy, Jamie P.
2012-01-01
Water-chemistry data for selected wells and baseflow investigations sites are presented. No well samples analyzed exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level standards for drinking water, but several samples exceeded Secondary Maximum Contaminant Level standards for chloride, fluoride, sulfate, iron, and total dissolved solids.
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
10 CFR 71.51 - Additional requirements for Type B packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... sensitivity of 10−6 A2 per hour, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging; and (2) Section 71.73 (“Hypothetical accident... radioactive material exceeding a total amount A2 in 1 week, and no external radiation dose rate exceeding 10 m...
NASA Astrophysics Data System (ADS)
Ruiz Suarez, L.; Garcia-Yee, J.; Torres-JArdon, R.; Barrera Huertas, H.; Torres-Jaramillo, A.; Ortinez, A.
2013-05-01
Varying levels of oxidants (Ox = O3 + NO2) with respect to NOx were registered at three sites in a mountain southeast of the Mexico City Metropolitan Area (MCMA) in February and March 2011. The Ox-NOx ratio was used to gain a better understanding of the photochemical and transport processes happening over this mountain pass. Relatively high concentrations of O3 (moving average concentrations of 8 hours) exceeded maximum levels of the World Health Organization, and the European Union. The cumulative exceedances above background level of O3 in the one month-long campaign also exceeded the three months accumulative UN-ECE AOT40 critical level for crop protection. It was observed that the level of Ox in the mountain gap sites consisted of two contributions: One, independent of NOx emissions, extremely dominant and considered equivalent to the regional background O3 concentration; the second and much smaller was dependent of NOx local concentrations. Evidence was found that the oxidation of NO provided the major contribution of NO2 to Ox, rather than direct NO2 emissions. The contribution of regional Ox dominated from midmorning to noon when the boundary layer height began to increase due to sunlight heating of the surface leading to the mixing of higher concentrations of O3 above the nighttime thermal inversion. After noon, when the ozone vertical distribution was uniform, the Ox and O3 concentrations reached their maximum; they were very similar with very low levels of NO2. The analysis of wind data collected at the monitoring sites showed that from mid-morning to early afternoon, a northerly weak flow was common. Afterwards stronger southerly winds became dominant bringing in O3 rich air parcels into the atmospheric basin where MCMA is located. The high regional ozone concentrations add evidence for the need of coordinated air quality management policies for the complete central part of Mexico. Keywords: mountain gap, oxidant, ground level ozone, Central Mexico
NASA Astrophysics Data System (ADS)
Babcock, K. P.; Ge, S.; Crifasi, R. R.
2006-12-01
Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The model will quantitatively assess the interaction between surface water and ground water, particularly the amount of exchange between the creek and ground water and to what extent these systems influence each other. Model sensitivity study will help identify important system parameters. A comprehensive model of the study area will serve as a tool for efficiently allocating water throughout the study area (from Boulder Creek). Water allocation is needed to prevent the eutrophication of the ponds, improve fishery management, and efficiently meet the water rights obligations in the watershed.
Effect of urban stormwater runoff on ground water beneath recharge basins on Long Island, New York
Ku, H.F.; Simmons, D.L.
1986-01-01
Urban stormwater runoff was monitored during 1980-82 to investigate the source, type, quantity, and fate of contaminants routed to the more than 3,000 recharge basins on Long Island and to determine whether this runoff might be a significant source of contamination to the groundwater reservoir. Forty-six storms were monitored at five recharge basins in representative land use areas (strip commercial, shopping-mall parking lot, major highway, low-density residential, and medium-density residential). Runoff:precipitation ratios indicate that all storm runoff is derived from precipitation on impervious surfaces in the drainage area, except during storms of high intensity or long duration, when additional runoff can be derived from precipitation on permeable surfaces. Lead was present in highway runoff in concentrations up to 3300 micrograms/L, and chloride was found in parking lot runoff concentrations up to 1,100 mg/L during winter, when salt is used for deicing. In the five composite stormwater samples and nine groundwater grab samples that were analyzed for 113 EPA-designated ' priority pollutants, ' four constituents were detected in concentrations exceeding New York State guidelines of 50 micrograms/L for an individual organic compound in drinking water: p-chloro-m-cresol (79 micrograms/L); 2 ,4-dimethylphenol (96 micrograms/L); 4-nitrophenol (58 micrograms/L); and methylene chloride (230 micrograms/L in either groundwater or stormwater at the highway basin). One stormwater sample and two groundwater samples exceeded New York State guidelines for total organic compounds in drinking water (100 micrograms/L). The presence of these constituents is attributed to contamination from point sources rather than to the quality of runoff from urban areas. The median number of indicator bacteria in stormwater ranged from 0.1 to 10 billion MPN/100 ml. Fecal coliforms and fecal streptococci increased by 1 to 2 orders of magnitude during the warm season. The use of recharge basins to dispose of storm runoff does not appear to have significant adverse effects on groundwater quality in terms of the chemical and microbiological stormwater constituents studied. (Author 's abstract)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... monitoring, accumulated refuse, surface methane monitoring, and collection and control system exceedances... included a burden item for Agency review of surface methane monitoring reports. Respondents, however, are... adjusted the calculations to exclude any Agency burden associated with surface methane monitoring. We have...
Effects of a coastal golf complex on water quality, periphyton, and seagrass
Lewis, M.A.; Boustany, R.G.; Dantin, D.D.; Quarles, R.L.; Moore, J.C.; Stanley, R.S.
2002-01-01
The objective of this study was to provide baseline information on the effects of a golf course complex on water quality, colonized periphyton, and seagrass meadows in adjacent freshwater, near-coastal, and wetland areas. The chemical and biological impacts of the recreational facility, which uses reclaimed municipal wastewater for irrigation, were limited usually to near-field areas and decreased seaward during the 2-year study. Concentrations of chromium, copper, and organochlorine pesticides were below detection in surface water, whereas mercury, lead, arsenic, and atrazine commonly occurred at all locations. Only mercury and lead exceeded water quality criteria. Concentrations of nutrients and chlorophyll a were greater in fairway ponds and some adjacent coastal areas relative to reference locations and Florida estuaries. Periphyton ash free dry weight and pigment concentrations statistically differed but not between reference and non-reference coastal areas. Biomass of Thalassia testudinum (turtle grass) was approximately 43% less in a meadow located adjacent to the golf complex (P < 0.05). The results of the study suggest that the effects of coastal golf courses on water quality may be primarily localized and limited to peripheral near-coastal areas. However, this preliminary conclusion needs additional supporting data. ?? 2002 Elsevier Science (USA).
Odum, J.K.; Yehle, L.A.; Schmoll, H.R.; Gilbert, Chuck
1986-01-01
This map shows the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity, Florida, for May 1986. The Upper Floridan aquifer is the principal source of potable water in the area. Water level measurements were made on approximately 1,000 wells and on several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area of Nassau County, a 30-ft. interval is used to show a deep cone of depression. The potentiometric surface ranged from 125 feet above sea level in Polk County to 75 feet below sea level in Nassau County. Water levels in most key wells ranged from 1 to 9 feet below the May average in response to the lack of recharge from rainfall and an attendant increase in pumpage. Many levels in the district were equal to or lower than the below average levels of May 1985. Declines of about a foot from May 1985 levels were common in the eastern half of the district. However, the largest declines from May 1985 levels, as much as 7 to 9 feet, were mostly in well fields along the coastline. Levels in many wells approached, and in a few wells exceeded, record lows. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishore, Vidya; Ajinjeru, Christine; Duty, Chad E
The Big Area Additive Manufacturing (BAAM) system has the capacity to print structures on the order of several meters at a rate exceeding 50 kg/h, thereby having the potential to significantly impact the production of components in automotive, aerospace and energy sectors. However, a primary issue that limits the functional use of such parts is mechanical anisotropy. The strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This is largely due to poor bonding between the printed layers as the lower layers cool below the glass transitionmore » temperature (Tg) before the next layer is deposited. This work explores the use of infrared heating to increase the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. The material used in this study was acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber by weight. Significant improvements in z-strength were observed for the parts whose surface temperature was increased from below Tg to close to or above Tg using infrared heating. Parameters such as print speed, nozzle diameter and extrusion temperature were also found to impact the heat input required to enhance interlayer adhesion without significantly degrading the polymer and compromising on surface finish.« less
Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand
NASA Astrophysics Data System (ADS)
Abrahim, G. M. S.; Parker, R. J.; Nichol, S. L.
2007-07-01
Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.
NASA Astrophysics Data System (ADS)
Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Morris, Mark; Woodall, George; Zhang, Tong; Bacon, Allan; Richter, Daniel De B.; Vandenberg, John
2011-12-01
Detailed Spanish records of mercury use and silver production during the colonial period in Potosí, Bolivia were evaluated to estimate atmospheric emissions of mercury from silver smelting. Mercury was used in the silver production process in Potosí and nearly 32,000 metric tons of mercury were released to the environment. AERMOD was used in combination with the estimated emissions to approximate historical air concentrations of mercury from colonial mining operations during 1715, a year of relatively low silver production. Source characteristics were selected from archival documents, colonial maps and images of silver smelters in Potosí and a base case of input parameters was selected. Input parameters were varied to understand the sensitivity of the model to each parameter. Modeled maximum 1-h concentrations were most sensitive to stack height and diameter, whereas an index of community exposure was relatively insensitive to uncertainty in input parameters. Modeled 1-h and long-term concentrations were compared to inhalation reference values for elemental mercury vapor. Estimated 1-h maximum concentrations within 500 m of the silver smelters consistently exceeded present-day occupational inhalation reference values. Additionally, the entire community was estimated to have been exposed to levels of mercury vapor that exceed present-day acute inhalation reference values for the general public. Estimated long-term maximum concentrations of mercury were predicted to substantially exceed the EPA Reference Concentration for areas within 600 m of the silver smelters. A concentration gradient predicted by AERMOD was used to select soil sampling locations along transects in Potosí. Total mercury in soils ranged from 0.105 to 155 mg kg-1, among the highest levels reported for surface soils in the scientific literature. The correlation between estimated air concentrations and measured soil concentrations will guide future research to determine the extent to which the current community of Potosí and vicinity is at risk of adverse health effects from historical mercury contamination.
Are streams in agricultural and urban areas contaminated by pesticides?
Kimbrough, R.A.
1995-01-01
To answer this question, a study of pesticides in streams in a small agricultural area and a small urban area in Colorado was conducted in 1993 by the U.S. Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. The results indicate that pesticides are present in streams, and both agricultural and urban areas are probable sources of the contamination. In the agricultural area, 30 pesticides were detected and in the urban area, 26 pesticides were detected at least once during the thirteen month study. In the agricultural area, the herbicides alachlor (two samples) and cyanazine (four samples) and the insecticide diazinon (one sample) were the only pesticides that exceeded the U.S. Environmental Protection Agency's maximum contaminant levels (MCLs) or health advisory levels (HALs) for drinking water. No pesticides exceeded MCLs or HALs in the urban area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatman, Shawn ME; Zarzycki, Piotr P.; Preocanin, Tajana
Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well defined hematite/aqueous electrolyte interfaces. Our recently proposed thermodynamic model [1,23] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly organized (001), (012), and (113) crystal face terminations using pH equilibration times ranging from 15 to 30 mins. Hysteresis loop areas indicate that (001) faces equilibrate faster than the (012) and (113) faces, consistent with the different expected ensembles of singly, doubly, and triply coordinated surface sites on each face. Strongly non-linear hystereticmore » pH-potential relationships were found, with slopes exceeding Nernstian, collectively indicating that protonation and deprotonation is much more complex than embodied in present day surface complexation models. The asymmetrical shape of the acidimetric and alkalimetric titration branches were used to illustrate a proposed steric "leaky screen" repulsion/trapping interaction mechanism that stems from high affinity singly-coordinated sites electrostatically and sterically screening lower affinity doubly and triply coordinated sites. Our data indicate that site interaction is the dominant phenomenon defining surface potential accumulation behavior on single crystal faces of metal oxide minerals.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... authorized native organization, that has zoning and building code jurisdiction over a particular area having... of each claim (including building and contents payments) exceeding $5,000, and with the cumulative... (building payments only) have been made under such coverage, with cumulative amount of such claims exceeding...
Code of Federal Regulations, 2014 CFR
2014-10-01
... authorized native organization, that has zoning and building code jurisdiction over a particular area having... of each claim (including building and contents payments) exceeding $5,000, and with the cumulative... (building payments only) have been made under such coverage, with cumulative amount of such claims exceeding...
Laidlaw, Mark A S; Mohmmad, Shaike M; Gulson, Brian L; Taylor, Mark P; Kristensen, Louise J; Birch, Gavin
2017-07-01
Surface soils in portions of the Sydney (New South Wales, Australia) urban area are contaminated with lead (Pb) primarily from past use of Pb in gasoline, the deterioration of exterior lead-based paints, and industrial activities. Surface soil samples (n=341) were collected from a depth of 0-2.5cm at a density of approximately one sample per square kilometre within the Sydney estuary catchment and analysed for lead. The bioaccessibility of soil Pb was analysed in 18 samples. The blood lead level (BLL) of a hypothetical 24 month old child was predicted at soil sampling sites in residential and open land use using the United States Environmental Protection Agency (US EPA) Integrated Exposure Uptake and Biokinetic (IEUBK) model. Other environmental exposures used the Australian National Environmental Protection Measure (NEPM) default values. The IEUBK model predicted a geometric mean BLL of 2.0±2.1µg/dL using measured soil lead bioavailability measurements (bioavailability =34%) and 2.4±2.8µg/dL using the Australian NEPM default assumption (bioavailability =50%). Assuming children were present and residing at the sampling locations, the IEUBK model incorporating soil Pb bioavailability predicted that 5.6% of the children at the sampling locations could potentially have BLLs exceeding 5µg/dL and 2.1% potentially could have BLLs exceeding 10µg/dL. These estimations are consistent with BLLs previously measured in children in Sydney. Copyright © 2017 Elsevier Inc. All rights reserved.
Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe
NASA Astrophysics Data System (ADS)
Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.
2013-12-01
Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.
Air Quality Impacts of Oil and Gas Operations in the Northern Colorado Front Range
NASA Astrophysics Data System (ADS)
Helmig, D.; Thompson, C. R.; Jacques, H.; Smith, K. R.; Terrell, R. M.
2014-12-01
Exceedences of the US EPA National Ambient Air Quality Standard (NAAQS) for surface ozone have been reported from monitoring sites in the Northern Colorado Front Range (NCFR) for more than fifteen years during summer. Comparison of ozone records from the NCFR clearly show that ozone primarily results from regional photochemical daytime production. Recent trend analyses do not show an improvement of surface ozone despite efforts by the State of Colorado to curb ozone precursor emissions. Our review of atmospheric volatile organic compound (VOC) measurements from historic and recent monitoring shows significant spatial increases of atmospheric VOC towards the oil and gas development area in Weld County, NW of the Denver-Boulder metropolitan region. Secondly, analyses of VOC trends and VOC signatures show an overall increase of oil and gas associated VOC relative to other VOC sources. These analyses suggest that oil and gas emissions are playing and increasing role in ozone production in the NCFR and that reductions of oil and gas emissions would be beneficial for lowering surface ozone and attainment of the ozone NAAQS.
Characterization of structural response to hypersonic boundary-layer transition
Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; ...
2016-05-24
The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less
Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia
NASA Astrophysics Data System (ADS)
Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.
2015-12-01
Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.
Hydrology, secondary growth, and elevation accuracy in two preliminary Amazon Basin SRTM DEMs
NASA Astrophysics Data System (ADS)
Alsdorf, D.; Hess, L.; Sheng, Y.; Souza, C.; Pavelsky, T.; Melack, J.; Dunne, T.; Hendricks, G.; Ballantine, A.; Holmes, K.
2003-04-01
Two preliminary Shuttle Radar Topography Mission digital elevation models (SRTM DEMs) of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from the "PI Processor" at NASA JPL. We compared the Manaus DEM (C-band) with a previously constructed Cabaliana floodplain classification based on Global RainForest Mapping (GRFM) JERS-1 SAR data (L-band) and determined that habitats of open water, bare ground, and flooded shrub contained the lowest elevations; macrophyte and non-flooded shrub habitats are marked by intermediate elevations; and the highest elevations are found within flooded and non-flooded forest. Although the water surface typically produces specular reflections, double-bounce travel paths result from dead, leafless trees found across the Balbina reservoir near Manaus. There (i.e., in Balbina) the water surface is marked by pixel-to-pixel height changes of generally 0 to 1 m and changes across a ˜100 km transect rarely exceed 3 m. Reported SRTM errors throughout the transect range from 1 to 2 m with some errors up to 5 m. The smooth Balbina surface contrasts with the wind-roughened Amazon River surface where SRTM height variations easily range from 1 to 10 m (reported errors often exceed 5 m). Deforestation and subsequent regrowth in the Rondonia DEM is remarkably clear. Our colleagues used a 20 year sequence of Landsat TM/MSS classified imagery to delineate areas in various stages of secondary growth and we find a general trend of increasing vegetation height with increasing age. Flow path networks derived from the Cabaliana floodplain DEM are in general agreement with networks previously extracted from the GRFM mosaics; however, watershed boundaries differ. We have also developed an algorithm for extracting channel widths, which is presently being applied to the DEM and classified imagery to determine morphological variations between reaches.
A survey of the water resources of St. Thomas, Virgin Islands
Jordon, D.G.; Cosner, O.J.
1973-01-01
St. Thomas, with an area of 32 square miles, is the second largest of the Virgin Islands of the United States. The island is mountainous, and slopes commonly exceed 35 degrees along a central ridge 800 to 1,200 feet high running the length of the island. The general appearance is a panorama of numerous steep interstream spurs and rounded peaks. The island is made up of rocks of Cretaceous age, mostly volcanic flows and breccia s. A thin limestone and tuffaceous wacke complete the sequence of major rock types. All the rocks have been tilted and dip about 50 degrees north. Water in Charlotte Amalie, the capital, is supplied by sea-water desalting and water barged from Puerto Rico and is augmented by hillside rain catchments and individual roof catchments. Rainwater augmented by water hauling and a few wells is the source of water for the rural areas. Streamflow is meager--2 to 8 percent of the annual rainfall-and is predominantly storm runoff. Runoff after rainstorms seldom exceeds 5 percent of the rainfall. Runoff is rapid, however, and flash floods occasionally occur. Test drilling has shown that water can be obtained from fractured volcanic rocks in nearly all parts of the island. Wells will yield, generally, less than 1,000 gpd (gallons per day). In the upper Turpentine Run Valley and the Lovenlund Valley, short-term yields of individual wells are as great as 100 gallons per minute. Estimates of potential yield from these areas are 300,000 and 100,000 gpd, respectively. Two smaller areas--Long Bay and Lindberg Bay on the outskirts of Charlotte Amalie have estimated ground-water yields of 70,000 and 30,000 gpd, respectively. Fully developed, the surface- and ground-water resources of the island could yield 1.3 million gallons of water per day. Ground water is slightly saline, commonly containing more than 1,000 milligrams per liter dissolved solids. The principal source of the minerals is bulk fallout of sea- and land-derived dust from the atmosphere. Solution of minerals from the rocks of the aquifers is the second largest contributor. Nitrate and some of the bicarbonate content of the water is probably derived from vegetation and animal and human wastes. Surface water is similar in mineral content to ground water during base flow.
Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P
2015-02-01
Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the ground surface.
Li, Anqi; Tang, Chunyu; Hang, Hui; Cheng, Xuemin; Gao, Yalin; Cheng, Hongyang; Huang, Qi; Luo, Yixin; Xue, Yutang; Zuo, Qiting; Ba, Yue; Cui, Liuxin
2013-03-01
To investigate the effect of phthalates exposure from drinking water on children's intelligence and secretion of thyroid hormone. Two villages in S County were selected randomly as polluted area and control area according to the distance from the Shaying river basin. Phthalates including DEP, DBP, DMP, DEHP were measured both in the river water and drinking water using HPLC method. Children aged 8 to 13 years old studying in the village primary school were recruited by cluster sampling (n = 154). The combined Reven Test was used to test children intelligence and ELISA method was used to determined thyroid hormone levels. The concentrations of phthalates (DEP, DBP) were exceeding standards of surface water quality in any of the three sections of the river. Compared to the control area, the concentration of DEP and DBP in drinking water were significant higher in the polluted area than that in control area (P < 0.05). Children from polluted area had significant higher FT4 concentration compared to children from control area (P < 0.05). Intelligence level in children from polluted area was lower than that from control area (P < 0.05). The drinking water has been polluted by Shaying river and thyroid hormones levels of children were affected in the polluted areas. It is necessary to verify if this change is related to the phthalates.
Analysis of a Destructive Wind Storm on 16 November 2008 in Brisbane, Australia
Richter, Harald; Peter, Justin; Collis, Scott
2014-08-25
During the late afternoon on 16 November 2008 the Brisbane (Australia) suburb of “The Gap” experienced extensive wind damage caused by an intense local thunderstorm. The CP2 research radar nearby detected near-surface radial velocities exceeding 44 m s -1 above The Gap while hail size reports did not exceed golf ball size, and no tornadoes were reported. This study shows that the storm environment was characterized by a layer of very moist (mixing ratios exceeding 12 g kg -1) near-surface air embedded in strong storm-relative low-level flow, whereas the storm-relative winds aloft were significantly weaker. And while the thermodynamic stormmore » environment contained a range of downdraft promoting ingredients such as a ~4 km high melting level above a ~2 km deep layer with nearly dry adiabatic lapse rates mostly collocated with dry ambient air, a ~1 km deep stable layer near the ground would generally lower expectations of destructive surface winds based on the downburst mechanism. We also found that once observed reflectivities exceed 70 dBZ that downdraft cooling due to hail melting and downdraft acceleration based on hail loading are likely to become non-negligible forcing mechanisms for a strong downdraft. The study found a close proximity of the hydrostatically and dynamically driven mesohigh at the base of the downdraft to a dynamically driven mesolow associated with a radar-observed low-level circulation. This proximity is hypothesized to have been instrumental in the observed anisotropic horizontal acceleration of the near-ground outflow and the ultimate strength of the Gap storm surface winds. Finally, we speculate that the 44 weak storm-relative midlevel winds allowed the downdraft to descend close to the low45 level circulation which set up this strong horizontal perturbation pressure gradient.« less
Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain
NASA Astrophysics Data System (ADS)
Rodríguez, S.; Querol, X.; Alastuey, A.; Kallos, G.; Kakaliagou, O.
The analysis of PM10 and TSP levels recorded in rural areas from Southern and Eastern Spain (1996-1999) shows that most of the PM10 and TSP peak events are simultaneously recorded at monitoring stations up to 1000 km apart. The study of the atmospheric dynamics by back-trajectory analysis and simulations with the SKIRON Forecast System show that these high PM10 and TSP events occur when high-dust Saharan air masses are transported over the Iberian Peninsula. In the January-June period, this dust transport is mainly caused by cyclonic activity over the West or South of Portugal, whereas in the summer period this is induced by anticyclonic activity over the East or Southeast Iberian Peninsula. Most of the Saharan intrusions which exert a major influence on the particulate levels occur from May to September (63%) and in January and October. In rural areas in Northeast Spain, where the PM10 annual mean is around 18 μg PM10 m -3, the Saharan dust accounts for 4-7 annual daily exceedances of the forthcoming PM10-EU limit value (50 μg PM10 m -3 daily mean). Higher PM10 background levels are recorded in Southern Spain (30 μg PM10 m -3 as annual mean for rural areas) and very similar values are recorded in industrial and urban areas. In rural areas in Southern Spain, the Saharan dust events accounts for 10-23 annual daily exceedances of the PM10 limit value, a high number when compared with the forthcoming EU standard, which states that the limit value cannot be exceeded more than 7 days per year. The proportion of Sahara-induced exceedances with respect to the total annual exceedances is discussed for rural, urban and industrial sites in Southern Spain.
Ground water in the carbonate rocks of the Franklin area, Tennessee
Zurawski, Ann; Burchett, C.R.
1980-01-01
A study of ground water in the Franklin area, Tennessee, was undertaken to fill a growing need for information on ground-water occurrence in the carbonate rocks of central Tennessee. Fifteen drilling sites were selected that had one or more of the following characteristics: medium- to thick-bedded limestones within 200 feet of land surface, structural lows, significant streamflow gains and losses, elongated sinkholes, straight stream reaches, linear features or other surface indications of solution cavities at depth. The 15 test wells produced from less than 1 to about 600 gallons per minute and had an average yield of 68 gallons per minute, measured while pumping the wells with compressed air. The average driller-reported yield for the area is five gallons per minute. Specific capacities for the four highest yielding wells ranged from 0.6 to 357 gallons per minute per foot of drawdown after 8 hours of pumping at rates ranging from 70 to 225 gallons per minute. Additional drilling at two sites revealed extensive solution openings. At one site, drawdown in five observation wells did not exceed 8.5 feet during 48 hours of pumping at an average rate of 502 gallons per minute. Raw water in the test wells meets most drinking-water standards and is of rather uniform quality from well to well and throughout the year. (USGS)
Leeth, David C.; Holloway, Owen G.
2000-01-01
In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Cavalieri, Donald J.; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
During spring and summer, the Surface of the Arctic sea ice cover undergoes rapid changes that greatly affect the surface albedo and significantly impact the further decay of the sea ice. These changes are primarily the development of a wet snow cover and the development of melt ponds. As melt pond diameters generally do not exceed a couple of meters, the spatial resolutions of sensors like AVHRR and MODIS are too coarse for their identification. Landsat 7, on the other hand, has a spatial resolution of 30 m (15 m for the pan-chromatic band). The different wavelengths (bands) from blue to near-infrared offer the potential to distinguish among different surface conditions. Landsat 7 data for the Baffin Bay region for June 2000 have been analyzed. The analysis shows that different surface conditions, such as wet snow and meltponded areas, have different signatures in the individual Landsat bands. Consistent with in-situ albedo measurements, melt ponds show up as blueish whereas dry and wet ice have a white to gray appearance in the Landsat true-color image. These spectral differences enable the distinction of melt ponds. The melt pond fraction for the scene studied in this paper was 37%.
Effect of surface site interactions on potentiometric titration of hematite (α-Fe2O3) crystal faces.
Chatman, Shawn; Zarzycki, P; Preočanin, T; Rosso, K M
2013-02-01
Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well-defined hematite/electrolyte interfaces. Our recently proposed thermodynamic model [1,25] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly organized (001), (012), and (113) crystal face terminations using pH equilibration times ranging from 15 to 30 min. Hysteresis loop areas indicate that (001) faces equilibrate faster than the (012) and (113) faces, consistent with the different expected ensembles of singly-, doubly-, and triply-coordinated surface sites on each face. Strongly non-linear hysteretic pH-potential relationships were found, with slopes exceeding Nernstian, collectively indicating that protonation and deprotonation is much more complex than embodied in present day surface complexation models. The asymmetrical shape of the acidimetric and alkalimetric titration branches were used to illustrate a proposed steric "leaky screen" repulsion/trapping interaction mechanism that stems from high affinity singly-coordinated sites electrostatically and sterically screening lower affinity doubly- and triply-coordinated sites. Our data indicate that site interaction is the dominant phenomenon defining surface potential accumulation behavior on single crystal faces of metal oxide minerals. Copyright © 2012 Elsevier Inc. All rights reserved.
Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.
Federle, Walter; Baumgartner, Werner; Hölldobler, Bert
2004-01-01
Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.
Copernicus: Lunar surface mapper
NASA Technical Reports Server (NTRS)
Redd, Frank J.; Anderson, Shaun D.
1992-01-01
The Utah State University (USU) 1991-92 Space Systems Design Team has designed a Lunar Surface Mapper (LSM) to parallel the development of the NASA Office of Exploration lunar initiatives. USU students named the LSM 'Copernicus' after the 16th century Polish astronomer, for whom the large lunar crater on the face of the moon was also named. The top level requirements for the Copernicus LSM are to produce a digital map of the lunar surface with an overall resolution of 12 meters (39.4 ft). It will also identify specified local surface features/areas to be mapped at higher resolutions by follow-on missions. The mapping operation will be conducted from a 300 km (186 mi) lunar-polar orbit. Although the entire surface should be mapped within six months, the spacecraft design lifetime will exceed one year with sufficient propellant planned for orbit maintenance in the anomalous lunar gravity field. The Copernicus LSM is a small satellite capable of reaching lunar orbit following launch on a Conestoga launch vehicle which is capable of placing 410 kg (900 lb) into translunar orbit. Upon orbital insertion, the spacecraft will weigh approximately 233 kg (513 lb). This rather severe mass constraint has insured attention to component/subsystem size and mass, and prevented 'requirements creep.' Transmission of data will be via line-of-sight to an earth-based receiving system.
Perreault, Jeff A.
2007-01-01
American Memorial Park, a unit of the National Park Service on the Island of Saipan, includes among its features a 27-acre estuarine system that has become a rarity within the Commonwealth of the Northern Mariana Islands. The estuarine system's mosaic of marshy areas interspersed with emergent wetlands and mixed wet forests provides critical habitat for various migratory and resident waterfowl, including two Federally listed endangered species: the Marianas gallinule (Gallinula chloropus guami) and the nightingale reed warbler (Acrocephalus luscinia). With sensitivity to the park's ecologic assets and the uncertainty associated with locally rapid urbanization, a need to better understand the hydrology of American Memorial Park was recognized. To address that need, a reconnaissance study of the park was undertaken during August and September 2005. The goals of the study were (1) to describe the occurrence and salinity of surface and ground water within the park; (2) to develop a hydrologic model of the park area of the island, with emphasis on the 27-acre estuarine system; and (3) to identify additional data needed to further develop this model. With regard to surface water, three freshwater inputs to the park's natural wetland are possible: direct rainfall, seaward-flowing ground water, and overland flow. Direct rainfall, which is an important source of freshwater to the wetland, commonly exceeds evapotranspiration both seasonally and per storm. The seaward flow of ground water is likely to be a source of freshwater to the wetland because ground water generally has an upward vertical component in the nearshore environment. Overland flow upgradient of the park could potentially contribute a significant input of freshwater during periods of intense rainfall, but roads that flank the park's perimeter act as a barrier to surficial inflows. During the reconnaissance, four discrete bodies, or zones, of surface water were observed within the park's natural wetland. Conductivity within these surface-water zones typically ranged from 1,540 to 4,370 microsiemens per centimeter (?S/cm) at 25?C, although values as low as 829 and as high as 8,750 ?S/cm were measured. As a result of these observations, the American Memorial Park wetland area meets the definition criteria of an estuarine system that is dominantly oligohaline. Conductivity was also measured in a constructed wetland that was built within the park to augment the storm-drainage infrastructure of the village of Garapan. Reverse-osmosis facilities, in operation at hotels adjacent to the park, have historically discharged highly saline wastewater into the storm-drainage system. This collective storm and wastewater flow is routed into the constructed wetland and from there into the ocean. The conductivity of water in the constructed wetland ranged from 45,000 to 62,500 ?S/cm, exceeding nominal seawater values by as much as 25 percent, with the highest conductivities recorded near discharging storm drains. With regard to ground water, the reconnaissance included installation of a ground-water-monitoring network. Data collected from this network identified the presence of freshwater underlying the park and indicated that surface water is directly connected to ground water in the natural wetland because the water levels of both surface water and ground water directly varied with the tide. Conductivities of ground-water samples from wells in the monitoring network indicated that ground-water salinity was geographically related: conductivities were lower (801-2,490 ?S/cm) in surficially dry areas, intermediate (6,090-9,180 ?S/cm) in natural-wetland areas, and higher (18,250-27,700 ?S/cm) in areas adjacent to the constructed wetland and its associated ocean-discharge channel. Synoptic water-level surveys were made to enhance understanding of the spatial expression of the water table; they were scheduled to overlap with peak and trough tidal signals to enable limited characteri
Apodaca, Lori Estelle; Bails, Jeffrey B.
1999-01-01
The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a possible indication of contamination from wastewater. Age of the alluvial ground water ranged from 10 to 30 years; therefore, results of land-management practices to improve water quality may not be apparent for many years.Surface-water-quality data for the Fraser River watershed are sparse. The surface-water-quality data show that elevated concentrations of selected constituents generally are related to specific land uses in the watershed. For one sample (about 2 percent; 1 of 53), dissolved manganese concentration exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Two samples from two surface-water sites in the watershed exceeded the un-ionized ammonia chronic criterion. Spatial distribution of nutrient species (ammonia, nitrite, nitrate, and total phosphorus) shows that elevated concentrations occur primarily downstream from urban areas. Sites with five or more years of record were analyzed for temporal trends in concentration of nutrient species. Downward trends were identified for ammonia and nitrite for three surface-water sites. For nitrate, no trends were observed at two sites and a downward trend was observed at one site. Total phosphorus showed no trend for the site near the mouth of the Fraser River. Downward trends in the nutrient species may reflect changes in the wastewater-treatment facilities in the watershed. Bacteria sampling completed in the watershed indicates that more bacteria are present in the water near urban settings.The limited ground-water and surface-water data for the Fraser River watershed provide a general assessment of the quantity and quality of these resources. Concentrations of most water-quality constituents generally are less than ground- and surface-water-quality standards, but the presence of bacteria, some volatile organic compounds, methylene blue active substances, and increased nutrients in the water may indicate that land use is affecting the water quality..
Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima).
Gough, William T; Farina, Stacy C; Fish, Frank E
2015-06-01
Common eiders (Somateria mollissima) are heavy sea-ducks that spend a large portion of their time swimming at the water surface. Surface swimming generates a bow and hull wave that can constructively interfere and produce wave drag. The speed at which the wavelengths of these waves equal the waterline length of the swimming animal is the hull speed. To increase surface swimming speed beyond the hull speed, an animal must overtake the bow wave. This study found two distinct behaviors that eider ducks used to exceed the hull speed: (1) 'steaming', which involved rapid oaring with the wings to propel the duck along the surface of the water, and (2) 'paddle-assisted flying', during which the ducks lifted their bodies out of the water and used their feet to paddle against the surface while flapping their wings in the air. An average hull speed (0.732±0.046 m s(-1)) was calculated for S. mollissima by measuring maximum waterline length from museum specimens. On average, steaming ducks swam 5.5 times faster and paddle-assisted flying ducks moved 6.8 times faster than the hull speed. During steaming, ducks exceeded the hull speed by increasing their body angle and generating dynamic lift to overcome wave drag and hydroplane along the water surface. During paddle-assisted flying, ducks kept their bodies out of the water, thereby avoiding the limitations of wave drag altogether. Both behaviors provided alternatives to flight for these ducks by allowing them to exceed the hull speed while staying at or near the water surface. © 2015. Published by The Company of Biologists Ltd.
Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.
2004-01-01
The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per year of ground water is lost to evapotranspiration in Dry Valley. Combining subsurface-outflow estimates with ground-water evapotranspiration estimates, total natural ground-water discharge from Dry Valley ranges from a minimum of about 700 acre-feet to a maximum of about 1,000 acre-feet annually. Water quality in Dry Valley generally is good and primary drinking-water standards were not exceeded in any samples collected. The secondary standard for manganese was exceeded in three ground-water samples. One spring sample and two surface-water samples exceeded the secondary standard for pH. Dry Valley has two primary types of water chemistry that are distinguishable by cation ratios and related to the two volcanic-rock units that make up much of the surrounding mountains. In addition, two secondary types of water chemistry appear to have evolved by evaporation of the primary water types. Ground water near the State line appears to be an equal mixture of the two primary water chemistries and has as an isotopic characteristic similar to evaporated surface water.
Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.
Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci
2015-01-01
Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.
Durfee, Paul N.; Lin, Yu-Shen; Dunphy, Darren R.; ...
2016-07-15
Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayermore » composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Paul N.; Lin, Yu-Shen; Dunphy, Darren R.
Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here in this research, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayermore » composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. In conclusion, overall we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.« less
Preliminary appraisal of the hydrology of the Red Oak area, Latimer County, Oklahoma
Marcher, M.V.; Bergman, D.L.; Stoner, J.D.; Blumer, S.P.
1983-01-01
Bed rock in the Red Oak area consists of shale, siltstone, and sandstone of the McAlester and Savanna Formations of Pennsylvanian age. Water in bedrock occurs in bedding planes, joints, and fractures and is confined. The potentiometric surface generally is less than 20 feet below the land surface. Wells yield enough water for domestic and stock use, but larger amounts of ground water are not available. Ground water commonly is a sodium or mixed cation carbonate/bicarbonate type with dissolved-solids concentrations ranging from 321 to 714 milligrams per liter. Although variable in quality, ground water generally is suitable for domestic use. No relationship between water chemistry and well depth or location is apparent. Brazil Creek, the principal stream in the area, has no flow 15 percent of the time, and flow is less than 1 cubic foot per second about 25 percent of the time. Water in Brazil Creek is a mixed cation carbonate/bicarbonate type. Dissolved-solids concentrations in Brazil Creek upstream from areas of old and recent mining ranged from 31 to 99 milligrams per liter with a mean of 58 milligrams per liter, whereas concentrations downstream from the mine areas ranged from 49 to 596 milligrams per liter with a mean of 132 milligrams per liter. Water in Brazil and Rock Creeks had concentrations of cadmium, chromium, lead, and mercury that exceeded maximum contaminant levels established by the U.S. Environmental Protection Agency at least once during the 1979-81 water years. Maximum suspended-sediment discharge, in tons per day, was 2,500 for Brazil Creek and 3,318 for Rock Creek. Silt-clay particles (diameters less than 0.062 millimeter) were the dominant sediment size. A significant hydrologic effect of surface mining is creation of additional water storage in mine ponds; one such pond supplies water for the town of Red Oak. Other effects or potential effects of surface mining include changes in rock permeability and ground-water storage, changes in drainage patterns, and changes in the chemical quality and sediment loads of streams.
Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study area. All samplers in the survey had detections of TPH, but only eight of the samplers had detections of TPH greater than 0.9 mg. Four samplers had TPH detections greater than 9 mg; the only other fuel-related compounds detected in these four samplers included toluene in three of the samplers and undecane in the fourth sampler. Three samplers deployed along the western margin of the northern landfill had detections of both diesel-and gasoline-related compounds; however, the diesel-related compounds were detected at or below method detection levels. Seven samplers in the northern study area had detections of chlorinated compounds, including three perchloroethene detections, three chloroform detections, and one 1,4-dichloro-benzene detection. One sampler on the western margin of the landfill had detections of 1,2,4-trimethylbenzene and 1,3,5-tr-methylbenene below method detection levels.
Steele, G.V.; Cannia, J.C.
1997-01-01
In 1993, the U.S. Geological Survey and the North Platte Natural Resources District began a 3-year study to determine the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The objectives of the study were to determine the geohydrologic properties of the North Platte River alluvial aquifer, to establish a well network for long- term monitoring of concentrations of agricultural chemicals including nitrate and herbicides, and to establish baseline concentrations of major ions in the ground water. To meet these objectives, monitor wells were installed at 11 sites near Oshkosh. The geohydrologic properties of the aquifer were estimated from water-level measurements at selected irrigation wells located in the study area and short- term constant-discharge aquifer tests at two monitor wells. Water samples were collected bimonthly and analyzed for specific conductance, pH, water temperature, dissolved oxygen, and nutrients including dissolved nitrate. Samples were collected semiannually for analysis of major ions, and annually for triazine and acetamide herbicides. Evaluation of the aquifer-test data indicates the hydraulic conductivities of the North Platte River alluvial aquifer range between 169 and 184 feet per day and transmissivities ranged from 12,700 to 26,700 feet-squared per day. The average specific yield for the alluvial aquifer, based on the two aquifer tests, was 0.2. Additional hydrologic data for the alluvial aquifer include a horizontal gradient of about 0.002 foot per foot and estimated ground- water flow velocities of about 0.1 to 1.8 feet per day. Evaluation of the water-quality data indicates that nitrate concentrations exceed the U.S. Environmental Protection Agency's (USEPA) Maximum Contamination Level of 10 milligrams per liter for drinking water in areas to the east and west of Oshkosh. In these areas, nitrate concentrations generally are continuing to rise. West of Oshkosh the highest concentrations are now exceeding 50 milligrams per liter. With the exception of one sample, nitrate concentrations exceeding the Maximum Contamination Level were not detected in three wells used to monitor the ground water flowing into and out of the study area, nor in a monitor well located near a municipal well. Results of the study also indicate that an influx of water from Lost Creek Valley, north of the study area, may be mixing with ground water near Oshkosh and diluting concentrations of nitrate.
Schmidt, Arthur R.; Blanchard, Stephen F.
1997-01-01
A water-quality assessment of the upper Illinois River Basin (10,949 square miles) was conducted during water years 1987-91. This assessment involved interpretation of available data; 4 years of intensive data collection, including monthly sample collection at eight fixed-monitoring stations in the basin; and synoptic studies of selected water-quality constituents at many sites. The number of exceedances of water-quality criteria for chromium, copper, lead, mercury, silver, and zinc in water was essentially the same at similar stations between 1978-86 and 1987-90. For water and sediment, a large signature for many trace inorganic constituents was observed from the Chicago metropolitan area, mainly from the Des Plaines River Basin and continuing down the Illinois River. Loads of trace inorganic constituents in water were 2-13 times greater from the Chicago metropolitan area than from rural areas in the upper Illinois River Basin. Concentrations of cadmium, mercury, nickel, selenium, and zinc appeared to be relatively enriched in biota in the upper Illinois River Basin compared to other river basins. Biota from some urban sites were enriched with respect to several elements. For example, relatively large concentrations of cadmium, chromium, copper, lead, and nickel were observed in biota from sites in the Chicago River in the metropolitan area and the Calumet River. Results of pesticide sampling in 1988 and 1989 identified the pesticides bromacil, diazinon, malathion, prometon, and simazine as urban related and alachlor, atrazine, cyanazine, metolachlor, and metribuzin as agricultural related. Phenol concentrations never exceeded general-use and secondary-contact water-quality standards of 100 and 300 micrograms per liter, respectively. Pentachlorophenol concentrations observed at the Illinois River at Marseilles, Ill., between 1981 and 1992 decreased beginning in 1987. A breakdown product of the organochlorine pesticide dichloro-diphenyl-trichloroethane (DDT), p,p'-DDE was the most commonly detected organic compound in biota in both 1989 and 1990. In the nine fish-fillet samples collected in 1989, exceedances of U.S. Environmental Protection Agency (USEPA) fish tissue concentrations were noted for p,p'-DDE in all nine fillets and for dieldrin in five of the nine fillets. Nutrient concentrations in water in the study area generally were larger than concentrations typically found in natural waters. The Des Plaines River Basin contributed approximately 41 percent of the total nitrogen load to the upper Illinois River Basin, whereas the Kankakee River and Iroquois River Basins contributed about 34 and 14 percent of the total load, respectively. Dissolved-oxygen concentrations measured during a 1988 synoptic sampling exceeded State water-quality standards at 76 percent of the sampled sites. Bacteria densities greater than water-quality standards were observed at all of the fixed-monitoring stations, but densities greater than water-quality criteria and standards were observed more often at stations in the Des Plaines River Basin. Results from the analysis of changes in water quality following changes in wastewater-treatment practices indicated that current monitoring programs, although sufficient for their intended purposes, are not suitable for this type of retrospective assessment in large-scale water-quality assessments. Changes were not indicated in fish-community structure and population following changes in wastewater-treatment practices. A strong relation between the quality of the fish community and overall water-quality conditions was observed, although USEPA acute criteria for the protection of freshwater aquatic life were rarely exceeded. Analyses of fish-community data clearly showed that water quality in the urbanized parts of the study area were degraded relative to those in agricultural areas. Total chromium in streambed sediments and total recoverable sodium in water were highly correlated
NASA Astrophysics Data System (ADS)
Krehbiel, C. P.; Jackson, T.; Henebry, G. M.
2014-12-01
Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.
Stevens, Michael R.
2013-01-01
The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.
NASA Astrophysics Data System (ADS)
Belitz, K.
2015-12-01
What is the value of clean groundwater? Might one aquifer be considered more valuable than another? To help address these, and similar, questions, we propose that aquifers be assessed by two metrics: 1) the contaminated area of an aquifer, defined by high concentrations (km2 or proportion); and 2) equivalent-population potentially impacted by that contamination (number of people or proportion). Concentrations are considered high if they are above a human health benchmark. The two metrics provide a quantitative basis for assessment at the aquifer scale, rather than the well scale. This approach has been applied to groundwater used for public supply in California (Belitz and others, 2015). The assessment distinguishes between population (34 million, 2000 census) and equivalent-population (11 million) because public drinking water supplies can be a mix of surface water and groundwater. The assessment was conducted in 87 study areas which account for nearly 100% of the groundwater used for public supply. The area-metric, when expressed as a proportion, is useful for identifying where a particular contaminant or class of contaminants might be a cause for concern. In CA, there are 38 study where the area-metric ≥ 25% for one or more contaminants; in 7 of these, the area-metric ≥ 50%. Naturally-occurring trace elements, such as arsenic and uranium, are the most prevalent contaminant class in 72 study areas. Nitrate is most prevalent at high concentrations in 11 study areas, and organic compounds in 4. By the area-metric, 23% of the groundwater used for public supply in CA has high concentrations of one or more contaminants (20,000 of 89,000 km2 assessed). The population-metric, when expressed as a number of people, identifies the potential impact of groundwater contamination. There are 33 CA study areas where the population-metric exceeds 10,000 people (equivalent population multiplied by detection frequency of wells with high concentrations). The population-metric exceeds 50,000 people in 10 study areas. On a statewide basis, the population metric is 2 million people (18% of 11 million equivalent-people). The proposed assessment approach is independent of scale, allows for consistent comparison across regions, and provides a foundation for subsequent economic or health assessments.
Qu, Liyin; Huang, Hong; Xia, Fang; Liu, Yuanyuan; Dahlgren, Randy A; Zhang, Minghua; Mei, Kun
2018-06-01
Heavy metal pollution is a major concern in China because of its serious effects on human health. To assess potential human health and ecological risks of heavy metal pollution, concentration data for seven heavy metals (As, Pb, Cd, Cr, Hg, Cu, Zn) from 14 sites spanning the rural-urban interface of the Wen-Rui Tang River watershed in southeast China were collected from 2000 to 2010. The heavy metal pollution index (HPI), hazard index (HI) and carcinogenic risk (CR) metrics were used to assess potential heavy metal risks. Further, we evaluated the uncertainty associated with the risk assessment indices using Monte Carlo analysis. Results indicated that all HPI values were lower than the critical level of 100 suggesting that heavy metal levels posed acceptable ecological risks; however, one site having an industrial point-source input reached levels of 80-97 on several occasions. Heavy metal concentrations fluctuated over time, and the decrease after 2007 is due to increased wastewater collection. The HI suggested low non-carcinogenic risk throughout the study period (HI < 1); however, nine sites showed CR values above the acceptable level of 10 -4 for potential cancer risk from arsenic in the early 2000s. Uncertainty analysis revealed an exposure risk for As at all sites because some CR values exceeded the 10 -4 level of concern; levels of Cd near an old industrial area also exceeded the Cd exposure standard (2.6% of CR values > 10 -4 ). While most metrics for human health risk did not exceed critical values for heavy metals, there is still a potential human health risk from chronic exposure to low heavy metal concentrations due to long-term exposure and potential metal interactions. Results of this study inform water pollution remediation and management efforts designed to protect public health in polluted urban area waterways common in rapidly developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mutzner, Lena; Staufer, Philipp; Ort, Christoph
2016-11-01
Wet-weather discharges contribute to anthropogenic micropollutant loads entering the aquatic environment. Thousands of wet-weather discharges exist in Swiss sewer systems, and we do not have the capacity to monitor them all. We consequently propose a model-based approach designed to identify critical discharge points in order to support effective monitoring. We applied a dynamic substance flow model to four substances representing different entry routes: indoor (Triclosan, Mecoprop, Copper) as well as rainfall-mobilized (Glyphosate, Mecoprop, Copper) inputs. The accumulation on different urban land-use surfaces in dry weather and subsequent substance-specific wash-off is taken into account. For evaluation, we use a conservative screening approach to detect critical discharge points. This approach considers only local dilution generated onsite from natural, unpolluted areas, i.e. excluding upstream dilution. Despite our conservative assumptions, we find that the environmental quality standards for Glyphosate and Mecoprop are not exceeded during any 10-min time interval over a representative one-year simulation period for all 2500 Swiss municipalities. In contrast, the environmental quality standard is exceeded during at least 20% of the discharge time at 83% of all modelled discharge points for Copper and at 71% for Triclosan. For Copper, this corresponds to a total median duration of approximately 19 days per year. For Triclosan, discharged only via combined sewer overflows, this means a median duration of approximately 10 days per year. In general, stormwater outlets contribute more to the calculated effect than combined sewer overflows for rainfall-mobilized substances. We further evaluate the Urban Index (A urban,impervious /A natural ) as a proxy for critical discharge points: catchments where Triclosan and Copper exceed the corresponding environmental quality standard often have an Urban Index >0.03. A dynamic substance flow analysis allows us to identify the most critical discharge points to be prioritized for more detailed analyses and monitoring. This forms a basis for the efficient mitigation of pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... contamination solely by fallout from air emissions of toxaphene; or to stormwater runoff that exceeds that from... contamination solely by fallout from air emissions of toxaphene; or to stormwater runoff that exceeds that from... and other areas which are subject to direct contamination by toxaphene as a result of the...
Pediatric Conjunctivitis and Air Pollution Exposure: A Prospective Observational Study.
Nucci, Paolo; Sacchi, Matteo; Pichi, Francesco; Allegri, Pia; Serafino, Massimiliano; Dello Strologo, Marika; De Cillà, Stefano; Villani, Edoardo
2017-01-01
To investigate, in pediatric patients, the rate and clinical features of unspecific conjunctivitis of unknown origin (UCUO) and to evaluate their relationship with air pollution. From January to December 2013, we consecutively screened all of the patients referred for symptomatic ocular surface inflammation. Inclusion criteria for this study were age<14, diagnosis of conjunctivitis, residence in the Lombardia region. UCUO was defined as conjunctivitis of unknown etiology, not clearly due to infection or allergy. Based on addresses of residence and sites of 73 automatic air pollution monitoring stations (locations and mean annual particulate matter (PM) 10 and 2.5 concentrations were provided by the Regional Environmental Protection Agency (ARPA) Lombardia), each patient was paired with a value of exposure to PM. Relationship between UCUO and PM exposure was investigated. A total of 132 of 251 screened children were included in this study. UCUO was diagnosed in 48/132 patients. The most common symptoms and signs in UCUO children were foreign body sensation (37/48) and conjunctival hyperemia (45/48), respectively. PM10 exposure value was significantly higher in UCUO (33.5±5.4µg/m3) compared to other groups (P<0.001, ANOVA). UCUO/total conjunctivitis ratio was significantly higher in residents in areas with more than 75 (Q3) days/year exceeding 50µg/m3 (EU legal limit) compared to areas with less than 45 (Q1) exceedances/year: 24/39: 61% vs 8/35: 23%; P>0.001, Chi-square test. Our data suggest a relationship between UCUO and air pollution. This form of conjunctivitis is not rare in pediatric patients and may be the most frequent in most polluted areas.
Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments
Camponelli, Kimberly M.; Lev, Steven M.; Snodgrass, Joel W.; Landa, Edward R.; Casey, Ryan E.
2010-01-01
This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92–98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39–62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.
Mosier, Elwin L.; Bullock, John H.
1988-01-01
The Central Oklahoma aquifer is the principal source of ground water for municipal, industrial, and rural use in central Oklahoma. Ground water in the aquifer is contained in consolidated sedimentary rocks consisting of the Admire, Council Grove, and Chase Groups, Wellington Formation, and Garber Sandstone and in the unconsolidated Quaternary alluvium and terrace deposits that occur along the major stream systems in the study area. The Garber Sandstone and the Wellington Formation comprise the main flow system and, as such, the aquifer is often referred to as the 'Garber-Wellington aquifer.' The consolidated sedimentary rocks consist of interbedded lenticular sandstone, shale, and siltstone beds deposited in similar deltaic environments in early Permian time. Arsenic, chromium, and selenium are found in the ground water of the Central Oklahoma aquifer in concentrations that, in places, exceed the primary drinking-water standards of the Environmental Protection Agency. Gross-alpha concentrations also exceed the primary standards in some wells, and uranium concentrations are uncommonly high in places. As a prerequisite to a surface and subsurface solid-phase geochemical study, this report summarizes the general geology of the Central Oklahoma study area. Summaries of results from certain previously reported solid-phase geochemical studies that relate to the vicinity of the Central Oklahoma aquifer are also given; including a summary of the analytical results and distribution plots for arsenic, selenium, chromium, thorium, uranium, copper, and barium from the U.S. Department of Energy's National Uranium Resource Evaluation (NURE) Program.
Ground-water quality in east-central Idaho valleys
Parliman, D.J.
1982-01-01
From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)
Geohydrology of the Aguirre and Pozo Hondo areas, southern Puerto Rico
Graves, R.P.
1992-01-01
The subsurface geology of the Aguirre and Pozo Hondo areas in southern Puerto Rico is primarily a fractured igneous volcanic rock (andesite) with three distinct zones: regolith, transition zone, and bedrock. Alluvial deposits are present, locally in each area, as well as weathered low- grade metamorphosed volcanics with a schistose texture and a vertical plane of foliation. A thin, water-table aquifer exists in the study areas. Ground water in this aquifer occurs primarily in the regolith and transition zone. The depth to the water table ranges from less than 1 foot to 75 feet below land surface. Ground- water flow out of the study areas is to the south into the southern coastal plain. The results of 2 multiple-well aquifer tests and 21 single-well slug injection and removal tests indicate that transmissivities range from 175 to 5,700 feet squared per day; hydraulic conductivities, from 0.02 to 160 feet per day; and storage coefficients from 0.02 to 0.2. The ground water in the study areas is of the calcium carbonate type. With the exception of dissolved solids, which were as much as 1,110 milligrams per liter, concentrations of common constituents in ground water did not exceed the U.S. Environmental Protection Agency's drinking water criteria.
Andrews, William J.; Harich, Christopher R.; Smith, S. Jerrod; Lewis, Jason M.; Shivers, Molly J.; Seger, Christian H.; Becker, Carol J.
2013-01-01
The Citizen Potawatomi Nation Tribal Jurisdictional Area, consisting of approximately 960 square miles in parts of three counties in central Oklahoma, has an abundance of water resources, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), bordered by two major rivers (North Canadian and Canadian), and has several smaller drainages. The Central Oklahoma aquifer (also referred to as the Garber-Wellington aquifer) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the tribal jurisdictional area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies. The approximately 115,000 people living in this area used an estimated 4.41 million gallons of fresh groundwater, 12.12 million gallons of fresh surface water, and 8.15 million gallons of saline groundwater per day in 2005. Approximately 8.48, 2.65, 2.24, 1.55, 0.83, and 0.81 million gallons per day of that water were used for domestic, livestock, commercial, industrial, crop irrigation, and thermoelectric purposes, respectively. Approximately one-third of the water used in 2005 was saline water produced during petroleum production. Future changes in use of freshwater in this area will be affected primarily by changes in population and agricultural practices. Future changes in saline water use will be affected substantially by changes in petroleum production. Parts of the area periodically are subject to flooding and severe droughts that can limit available water resources, particularly during summers, when water use increases and streamflows substantially decrease. Most of the area is characterized by rural types of land cover such as grassland, pasture/hay fields, and deciduous forest, which may limit negative effects on water quality by human activities because of lesser emissions of man-made chemicals on such areas than in more urbanized areas. Much of the water in the area is of good quality, though some parts of this area have water quality impaired by very hard surface water and groundwater; large chloride concentrations in some smaller streams; relatively large concentrations of nutrients and counts of fecal-indicator bacteria in the North Canadian River; and chloride, iron, manganese, and uranium concentrations that exceed primary or secondary drinking-water standards in water samples collected from small numbers of wells. Substantial amounts of hydrologic and water-quality data have been collected in much of this area, but there are gaps in those data caused by relatively few streamflow-gaging stations, uneven distribution of surface-water quality sampling sites, lack of surface-water quality sampling at high-flow and low-flow conditions, and lack of a regularly measured and sampled groundwater network. This report summarizes existing water-use, climatic, geographic, hydrologic, and water-quality data and describes several means of filling gaps in hydrologic data for this area.
Public health risk assessment of groundwater contamination in Batman, Turkey.
Nalbantcilar, M Tahir; Pinarkara, Sukru Yavuz
2016-08-01
In this study, a comprehensive analysis of groundwater was performed to assess contamination and phenol content in Batman, Turkey, particularly in residential areas near agriculture, livestock and oil industry facilities. From these areas, where potentially contaminated groundwater used for drinking and irrigation threatens public health, 30 groundwater samples were collected and analyzed for heavy metal concentrations (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, phenol, S, Sb, Se, SO4, Sr, U, and Zn). Compared with the standards of the Environmental Protection Agency, Al, Fe, and Mn concentrations in groundwater exceeded secondary drinking water regulations, NO3 concentrations were high for maximum contaminant levels, and As, Pb, and U concentrations exceeded maximum contaminant level goals in all samples. Ni, Sb, and Se concentrations also exceeded limits set by the Turkish Standards Institution. Nearly all samples revealed concentrations of Se, Sb, Hg, and phenol due to nearby petroleum refineries, oil storage plants, and agricultural and livestock areas. The results obtained from this study indicate that the groundwater in Batman contains elements in concentrations that approach or exceed limits and thus threatens public health with increased blood cholesterol, decreased blood sugar, and circulatory problems.
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.
2017-12-01
The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and related transport of nutrient and other chemicals many times more than small temperature related increases in potential evaporation rate. This in turn will directly change the water availability and pollutant transport in the many surface source watersheds with variable source area hydrology.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; OCStarr, David (Technical Monitor)
2002-01-01
A recent paper by Shepherd and Pierce (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of approx. 28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.
Becker, Carol J.
2013-01-01
From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.
Characterization of extreme air-sea turbulent fluxes
NASA Astrophysics Data System (ADS)
Gulev, Sergey; Belyaev, Konstantin
2017-04-01
Extreme ocean-atmosphere turbulent fluxes play a critical role in the convective processes in the mid and subpolar latitudes and may also affect a variety of atmospheric processes, such as generation and re-intensification of extreme cyclones in the areas of the mid latitude storm tracks. From the ocean dynamics perspective, specifically for quantifying extreme vertical mixing, characterization of the extreme fluxes requires, besides estimation of the extreme events, also consideration of the relative extremeness of surface fluxes and their timing, e.g. the duration of periods of high surface fluxes. In order to comprehensively characterize extreme turbulent fluxes at sea surface we propose a formalism based upon probability density distributions of surface turbulent fluxes and flux-related variables. Individual absolute flux extremes were derived using Modified Fisher-Tippett (MFT) distribution of turbulent fluxes. Then, we extend this distribution to the fractional distribution, characterizing the fraction of time-integrated turbulent heat flux provided by the fluxes exceeding a given percentile. Finally, we consider the time durations during which fluxes of a given intensity provide extreme accumulations of heat loss from the surface. For estimation of these characteristics of surface fluxes we use fluxes recomputed from the state variables available from modern era reanalyses (ERA-Interim, MERRA and CFSR) for the period from 1979 onwards. Applications of the formalism to the VOS (Voluntary Observing Ship) - based surface fluxes are also considered. We discuss application of the new metrics of mesoscale and synoptic variability of surface fluxes to the dynamics of mixed layer depth in the North Atlantic.
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Wells, Gordon L.; Rendell, Helen M.
1990-01-01
The discovery of 154 meteorite fragments within an 11-sq km area of wind-excavated basins in Roosevelt County, New Mexico, permits a new calculation of the accumulation rate of meteorite falls at the earth's surface. Thermoluminescence dating of the coversand unit comprising the prime recovery surface suggests the maximum terrestrial age of the meteorites to be about 16.0 ka. The 68 meteorite fragments subjected to petrological analyses represent a minimum of 49 individual falls. Collection bias has largely excluded carbonaceous chondrites and achondrites, requiring the accumulation rate derived from the recovered samples to be increased by a factor of 1.25. Terrestrial weathering destroying ordinary chondrites can be modeled as a first-order decay process with an estimated half-life of 3.5 + or - 1.9 ka on the semiarid American High Plains. Having accounted for the age of the recovery surface, area of field searches, pairing of finds, collection bias and weathering half-life, an accumulation rate of 940 falls/a per 10 to the 6th sq km is calculated for falls greater than 10 g total mass. This figure exceeds the best-constrained previous estimate by more than an order of magnitude. One possible reason for this disparity may be the extraordinary length of the fall record preserved in the surficial geology of Roosevelt County. The high accumulation rate determined for the past 16 ka may point to the existence of periods when the meteorite fall rate was significantly greater than at present.