Sample records for surface area model

  1. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction.

    PubMed

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin

    2016-10-26

    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  2. New model for estimating the relationship between surface area and volume in the human body using skeletal remains.

    PubMed

    Kasabova, Boryana E; Holliday, Trenton W

    2015-04-01

    A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.

  3. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder dissolution experiment. In the model of the flow-through column experiment, the accessible mineral surface area, computed from the multi-scale image analysis, is evaluated in addition to the traditional surface area estimates.

  4. The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling.

    PubMed

    Nguyen, Duc D; Wei, Guo-Wei

    2017-01-05

    This article explores the impact of surface area, volume, curvature, and Lennard-Jones (LJ) potential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust analytical expressions for maximum, minimum, mean, and Gaussian curvatures of solvent-solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth dielectric profile. Extensive correlation analysis is performed to examine the linear dependence of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean curvature, and Gaussian curvature for solvation modeling. It is found that surface area and surfaces enclosed volumes are highly correlated to each other's, and poorly correlated to various curvatures for six test sets of molecules. Different curvatures are weakly correlated to each other for six test sets of molecules, but are strongly correlated to each other within each test set of molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solvation models. Our numerical results reveal that the LJ potential plays a vital role in nonpolar solvation modeling, especially for molecules involving strong van der Waals interactions. It is found that curvatures are at least as important as surface area or surface enclosed volume in nonpolar solvation modeling. In conjugation with the GPB model, various curvature-based nonpolar solvation models are shown to offer some of the best solvation free energy predictions for a wide range of test sets. For example, root mean square errors from a model constituting surface area, volume, mean curvature, and LJ potential are less than 0.42 kcal/mol for all test sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Coupling surface water (Delft3D) to groundwater (MODFLOW) in the Bay-Delta community model: the effect of major abstractions in the Delta

    NASA Astrophysics Data System (ADS)

    Hendriks, D.; Ball, S. M.; Van der Wegen, M.; Verkaik, J.; van Dam, A.

    2016-12-01

    We present a coupled groundwater-surface water model for the San Francisco Bay and Sacramento Valley that consists of a combination of a spatially-distributed groundwater model (Modflow) based on the USGS Central Valley model(1) and the Flexible Mesh (FM) surface water model of the Bay Area(2). With this coupled groundwater-surface water model, we assessed effects of climate, surface water abstractions and groundwater pumping on surface water and groundwater levels, groundwater-surface water interaction and infiltration/seepage fluxes. Results show that the effect of climate (high flow and low flow) on surface water and groundwater is significant and most prominent in upstream areas. The surface water abstractions cause significant local surface water levels decrease (over 2 m), which may cause inflow of bay water during low flow periods, resulting in salinization of surface water in more upstream areas. Groundwater level drawdown due to surface water withdrawal is moderate and limited to the area of the withdrawals. The groundwater pumping causes large groundwater level drawdowns (up to 0.8 m) and significant changes in seepage/infiltration fluxes in the model. However, the effect on groundwater-surface water exchange is relatively small. The presented model instrument gives a sound first impression of the effects of climate and water abstraction on both surface water and groundwater. The combination of Modflow and Flexible Mesh has potential for modelling of groundwater-surface water exchange in deltaic areas, also in other parts of the world. However, various improvements need to be made in order to make the simulation results useful in practice. In addition, a water quality aspect could be added to assess salinization processes as well as groundwater-surface water aspects of water and soil pollution. (1) http://ca.water.usgs.gov/projects/central-valley/central-valley-hydrologic-model.html (2) www.d3d-baydelta.org

  6. A solution to the surface intersection problem. [Boolean functions in geometric modeling

    NASA Technical Reports Server (NTRS)

    Timer, H. G.

    1977-01-01

    An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.

  7. The Use of CASES-97 Observations to Assess and Parameterize the Impact of Land-Surface Heterogeneity on Area-Average Surface Heat Fluxes for Large-Scale Coupled Atmosphere-Hydrology Models

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Yates, David; LeMone, Margaret

    2001-01-01

    To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.

  8. Calculating landscape surface area from digital elevation models

    Treesearch

    Jeff S. Jenness

    2004-01-01

    There are many reasons to want to know the true surface area of the landscape, especially in landscape analysis and studies of wildlife habitat. Surface area provides a better estimate of the land area available to an animal than planimetric area, and the ratio of this surface area to planimetric area provides a useful measure of topographic roughness of the landscape...

  9. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    NASA Astrophysics Data System (ADS)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  10. The effects of green areas on air surface temperature of the Kuala Lumpur city using WRF-ARW modelling and Remote Sensing technique

    NASA Astrophysics Data System (ADS)

    Isa, N. A.; Mohd, W. M. N. Wan; Salleh, S. A.; Ooi, M. C. G.

    2018-02-01

    Matured trees contain high concentration of chlorophyll that encourages the process of photosynthesis. This process produces oxygen as a by-product and releases it into the atmosphere and helps in lowering the ambient temperature. This study attempts to analyse the effect of green area on air surface temperature of the Kuala Lumpur city. The air surface temperatures of two different dates which are, in March 2006 and March 2016 were simulated using the Weather Research and Forecasting (WRF) model. The green area in the city was extracted using the Normalized Difference Vegetation Index (NDVI) from two Landsat satellite images. The relationship between the air surface temperature and the green area were analysed using linear regression models. From the study, it was found that, the green area was significantly affecting the distribution of air temperature within the city. A strong negative correlation was identified through this study which indicated that higher NDVI values tend to have lower air surface temperature distribution within the focus study area. It was also found that, different urban setting in mixed built-up and vegetated areas resulted in different distributions of air surface temperature. Future studies should focus on analysing the air surface temperature within the area of mixed built-up and vegetated area.

  11. The role of advanced reactive surface area characterization in improving predictions of mineral reaction rates

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Zhang, S.; Mitnick, E.; Cole, D. R.; Yang, L.; Anovitz, L. M.; Sheets, J.; Swift, A.; Kneafsey, T. J.; Landrot, G.; Mito, S.; Xue, Z.; Steefel, C. I.; DePaolo, D. J.; Ajo Franklin, J. B.

    2014-12-01

    Geologic sequestration of CO2 in deep sedimentary formations is a promising means of mitigating carbon emissions from coal-fired power plants but the long-term fate of injected CO2 is challenging to predict. Reactive transport models are used to gain insight over long times but rely on laboratory determined mineral reaction rates that have been difficult to extrapolate to field systems. This, in part, is due to a lack of understanding of mineral reactive surface area. Many models use an arbitrary approximation of reactive surface area, applying orders of magnitude scaling factors to measured BET or geometric surface areas. Recently, a few more sophisticated approaches have used 2D and 3D image analyses to determine mineral-specific reactive surface areas that account for the accessibility of minerals. However, the ability of these advanced surface area estimates to improve predictions of mineral reaction rates has yet to be determined. In this study, we fuse X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB analysis to determine mineral-specific accessible reactive surface areas for a core sample from the Nagaoka pilot CO2 injection site (Japan). This sample is primarily quartz, plagioclase, smectite, K-feldspar, and pyroxene. SEM imaging shows abundant smectite cement and grain coatings that decrease the fluid accessibility of other minerals. However, analysis of FIB-SEM images reveals that smectite nano-pores are well connected such that access to underlying minerals is not occluded by smectite coatings. Mineral-specific accessible surfaces are determined, accounting for the connectivity of the pore space with and without connected smectite nano-pores. The large-scale impact of variations in accessibility and dissolution rates are then determined through continuum scale modeling using grid-cell specific information on accessible surface areas. This approach will be compared with a traditional continuum scale model using mineral abundances and common surface area estimates. Ultimately, the effectiveness of advanced surface area characterization to improve mineral dissolution rates will be evaluated by comparison of model results with dissolution rates measured from a flow-through column experiment.

  12. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  13. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  14. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  15. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  16. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  17. Gex-Model Using Local Area Fraction for Binary Electrolyte Systems

    NASA Astrophysics Data System (ADS)

    Haghtalab, Ali; Joda, Marzieh

    2007-06-01

    The correlation and prediction of phase equilibria of electrolyte systems are essential in the design and operation of many industrial processes such as downstream processing in biotechnology, desalination, hydrometallurgy, etc. In this research, the local composition non-random two liquid-nonrandom factor (NRTL-NRF) model of Haghtalab and Vera was extended for uni-univalent aqueous electrolyte solutions. Based on the assumptions of the NRTL-NRF model, excess Gibbs free energy ( g E) functions were derived for binary electrolyte systems. In this work, the local area fraction was applied and the modified model of NRTL-NRF was developed with either an equal or unequal surface area of an anion to the surface area of a cation. The modified NRTL-NRF models consist of two contributions, one due to long-range forces represented by the Debye-Hückel theory, and the other due to short-range forces, represented by local area fractions of species through nonrandom factors. Each model contains only two adjustable parameters per electrolyte. In addition, the model with unequal surface area of ionic species gives better results in comparison with the second new model with equal surface area of ions. The results for the mean activity coefficients for aqueous solutions of uni-univalent electrolytes at 298.15 K showed that the present model is more accurate than the original NRTL-NRF model.

  18. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Archuleta County

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  19. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, San Miguel County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  20. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Fremont County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  1. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Routt County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  2. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Alamosa and Saguache Counties, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  3. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Dolores County

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  4. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    NASA Astrophysics Data System (ADS)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  5. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  6. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, C. R.; Mainzer, A.; Masiero, J.

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emittedmore » flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.« less

  7. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  8. Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea

    NASA Astrophysics Data System (ADS)

    Kurniawan, Reski; Suriamihardja, D. A.; Hamzah Assegaf, Alimuddin

    2018-03-01

    Upwelling phenomenon is crucial to be forecasted, mainly concerning the information of potential fishery areas. Utilization of calibrated model for recorded upwelling such as INDESO gives benefit for historical result up to the present time. The aim of this study is to estimate areas and seasons of upwelling occurrences in the Flores Sea using data assimilation of satellite and modeling result. This study uses sea surface temperature, chlorophyll-a data from level 3 of MODIS image and sea surface height from satellite Jason-2 monthly for three years (2014-2016) and INDESO model data for sea surface temperature, sea surface height, and chlorophyll-a daily for three years (2014-2016). The upwelling is indicated by declining of sea surface temperature, sea surface height and increasing of chlorophyll-a. Verification is conducted by comparing the model result with recorded MODIS satellite image. The result shows that the area of southern Makassar Strait having occurrences of upwelling phenomenon every year starting in June, extended to July and August. The strongest upwelling occurred in 2015 covering more or less the area of 23,000 km2. The relation of monthly data of satellite has significantly correlated with daily data of INDESO model

  9. Modelling of XCO₂ Surfaces Based on Flight Tests of TanSat Instruments.

    PubMed

    Zhang, Li Li; Yue, Tian Xiang; Wilson, John P; Wang, Ding Yi; Zhao, Na; Liu, Yu; Liu, Dong Dong; Du, Zheng Ping; Wang, Yi Fu; Lin, Chao; Zheng, Yu Quan; Guo, Jian Hong

    2016-11-01

    The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km² and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO₂) surface based on flight test data which measured the near- and short-wave infrared (NIR) reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO₂ in the flight area using the limited flight test data and the approximate surface of XCO₂, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM) platform to fill the gaps where there is no information on XCO₂ in the flight test area, which takes the approximate surface of XCO₂ as its driving field and the XCO₂ observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO₂ were constructed with HASM based on the flight's observations. The results showed that the mean XCO₂ in the flight test area is about 400 ppm and that XCO₂ over urban areas is much higher than in other places. Compared with OCO-2's XCO₂, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO₂ surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  10. Test-area surface tension calculation of the graphene-methane interface: Fluctuations and commensurability

    NASA Astrophysics Data System (ADS)

    d'Oliveira, H. D.; Davoy, X.; Arche, E.; Malfreyt, P.; Ghoufi, A.

    2017-06-01

    The surface tension (γ) of methane on a graphene monolayer is calculated by using the test-area approach. By using a united atom model to describe methane molecules, strong fluctuations of surface tension as a function of the surface area of the graphene are evidenced. In contrast with the liquid-vapor interfaces, the use of a larger cutoff does not fully erase the fluctuations in the surface tension. Counterintuitively, the description of methane and graphene from the Optimized Potentials for Liquid Simulations all-atom model and a flexible model, respectively, led to a lessening in the surface tension fluctuations. This result suggests that the origin of fluctuations in γ is due to a model-effect rather than size-effects. We show that the molecular origin of these fluctuations is the result of a commensurable organization between both graphene and methane. This commensurable structure can be avoided by describing methane and graphene from a flexible force field. Although differences in γ with respect to the model have been often reported, it is the first time that the model drastically affects the physics of a system.

  11. Analysis of turbulence and surface growth models on the estimation of soot level in ethylene non-premixed flames

    NASA Astrophysics Data System (ADS)

    Yunardi, Y.; Munawar, Edi; Rinaldi, Wahyu; Razali, Asbar; Iskandar, Elwina; Fairweather, M.

    2018-02-01

    Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, growth and destruction of the soot are affected by the temperature. This paper reported the study on the influences of turbulence closure and surface growth models on the prediction of soot levels in turbulent flames. The results demonstrated that a substantial distinction was observed in terms of temperature predictions derived using the k-ɛ and the Reynolds stress models, for the two ethylene flames studied here amongst the four types of surface growth rate model investigated, the assumption of the soot surface growth rate proportional to the particle number density, but independent on the surface area of soot particles, f ( A s ) = ρ N s , yields in closest agreement with the radial data. Without any adjustment to the constants in the surface growth term, other approaches where the surface growth directly proportional to the surface area and square root of surface area, f ( A s ) = A s and f ( A s ) = √ A s , result in an under- prediction of soot volume fraction. These results suggest that predictions of soot volume fraction are sensitive to the modelling of surface growth.

  12. Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.

    PubMed

    Perez, Cristina R; Moye, John K; Pritsos, Chris A

    2014-05-08

    Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.

  13. Principal curvatures and area ratio of propagating surfaces in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Tianhang; You, Jiaping; Yang, Yue

    2017-10-01

    We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.

  14. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  15. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures.

    PubMed

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-09-30

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.

  16. Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

    PubMed Central

    Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert

    2010-01-01

    Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126

  17. Effects of surface tension and intraluminal fluid on mechanics of small airways.

    PubMed

    Hill, M J; Wilson, T A; Lambert, R K

    1997-01-01

    Airway constriction is accompanied by folding of the mucosa to form ridges that run axially along the inner surface of the airways. The mucosa has been modeled (R. K. Lambert. J. Appl. Physiol. 71:666-673, 1991) as a thin elastic layer with a finite bending stiffness, and the contribution of its bending stiffness to airway elastance has been computed. In this study, we extend that work by including surface tension and intraluminal fluid in the model. With surface tension, the pressure on the inner surface of the elastic mucosa is modified by the pressure difference across the air-liquid interface. As folds form in the mucosa, intraluminal fluid collects in pools in the depressions formed by the folds, and the curvature of the air-liquid interface becomes nonuniform. If the amount of intraluminal fluid is small, < 2% of luminal volume, the pools of intraluminal fluid are small, the air-liquid interface nearly coincides with the surface of the mucosa, and the area of the air-liquid interface remains constant as airway cross-sectional area decreases. In that case, surface energy is independent of airway area, and surface tension has no effect on airway mechanics. If the amount of intraluminal fluid is > 2%, the area of the air-liquid interface decreases as airway cross-sectional area decreases. and surface tension contributes to airway compression. The model predicts that surface tension plus intraluminal fluid can cause an instability in the area-pressure curve of small airways. This instability provides a mechanism for abrupt airway closure and abrupt reopening at a higher opening pressure.

  18. Effects of surface area and inflow on the performance of stormwater best management practices with uncertainty analysis.

    PubMed

    Park, Daeryong; Roesner, Larry A

    2013-09-01

    The performance of stormwater best management practices (BMPs) is affected by BMP geometric and hydrologic factors. The objective of this study was to investigate the effect of BMP surface area and inflow on BMP performance using the k-C* model with uncertainty analysis. Observed total suspended solids (TSS) from detention basins and retention ponds data sets in the International Stormwater BMP Database were used to build and evaluate the model. Detention basins are regarded as dry ponds because they do not always have water, whereas retention ponds have a permanent pool and are considered wet ponds. In this study, Latin hypercube sampling (LHS) was applied to consider uncertainty in both influent event mean concentration (EMC), C(in), and the areal removal constant, k. The latter was estimated from the hydraulic loading rate, q, through use of a power function relationship. Results show that effluent EMC, C(out), decreased as inflow decreased and as BMP surface area increased in both detention basins and retention ponds. However, the change in C(out), depending on inflow and BMP surface area for detention basins, differed from the change in C(out) for retention ponds. Specifically, C(in) was more dominantly associated with the performance of the k-C* model of detention basins than were BMP surface area and inflow. For retention ponds, however, results suggest that BMP surface area and inflow both influenced changes in C(out) as well as C(in). These results suggest that sensitive factors in the performance of the k-C* model are limited to C(in) for detention basins, whereas BMP surface area, inflow, and C(in) are important for retention ponds.

  19. Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc

    2015-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.

  20. Automated map sharpening by maximization of detail and connectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.

    An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less

  1. Automated map sharpening by maximization of detail and connectivity

    DOE PAGES

    Terwilliger, Thomas C.; Sobolev, Oleg V.; Afonine, Pavel V.; ...

    2018-05-18

    An algorithm for automatic map sharpening is presented that is based on optimization of the detail and connectivity of the sharpened map. The detail in the map is reflected in the surface area of an iso-contour surface that contains a fixed fraction of the volume of the map, where a map with high level of detail has a high surface area. The connectivity of the sharpened map is reflected in the number of connected regions defined by the same iso-contour surfaces, where a map with high connectivity has a small number of connected regions. By combining these two measures inmore » a metric termed the `adjusted surface area', map quality can be evaluated in an automated fashion. This metric was used to choose optimal map-sharpening parameters without reference to a model or other interpretations of the map. Map sharpening by optimization of the adjusted surface area can be carried out for a map as a whole or it can be carried out locally, yielding a locally sharpened map. To evaluate the performance of various approaches, a simple metric based on map–model correlation that can reproduce visual choices of optimally sharpened maps was used. The map–model correlation is calculated using a model withBfactors (atomic displacement factors; ADPs) set to zero. Finally, this model-based metric was used to evaluate map sharpening and to evaluate map-sharpening approaches, and it was found that optimization of the adjusted surface area can be an effective tool for map sharpening.« less

  2. Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.

    2011-03-01

    The performance of different urban surface parameterizations in the WRF (Weather Research and Forecasting) in simulating urban boundary layer (UBL) was investigated using extensive measurements during the Texas Air Quality Study 2006 field campaign. The extensive field measurements collected on surface (meteorological, wind profiler, energy balance flux) sites, a research aircraft, and a research vessel characterized 3-dimensional atmospheric boundary layer structures over the Houston-Galveston Bay area, providing a unique opportunity for the evaluation of the physical parameterizations. The model simulations were performed over the Houston metropolitan area for a summertime period (12-17 August) using a bulk urban parameterization in the Noah land surface model (original LSM), a modified LSM, and a single-layer urban canopy model (UCM). The UCM simulation compared quite well with the observations over the Houston urban areas, reducing the systematic model biases in the original LSM simulation by 1-2 °C in near-surface air temperature and by 200-400 m in UBL height, on average. A more realistic turbulent (sensible and latent heat) energy partitioning contributed to the improvements in the UCM simulation. The original LSM significantly overestimated the sensible heat flux (~200 W m-2) over the urban areas, resulting in warmer and higher UBL. The modified LSM slightly reduced warm and high biases in near-surface air temperature (0.5-1 °C) and UBL height (~100 m) as a result of the effects of urban vegetation. The relatively strong thermal contrast between the Houston area and the water bodies (Galveston Bay and the Gulf of Mexico) in the LSM simulations enhanced the sea/bay breezes, but the model performance in predicting local wind fields was similar among the simulations in terms of statistical evaluations. These results suggest that a proper surface representation (e.g. urban vegetation, surface morphology) and explicit parameterizations of urban physical processes are required for accurate urban atmospheric numerical modeling.

  3. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  4. Areas of Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  5. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  6. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  7. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  8. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  9. Some aerodynamic considerations related to wind tunnel model surface definition

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1980-01-01

    The aerodynamic considerations related to model surface definition are examined with particular emphasis in areas of fabrication tolerances, model surface finish, and orifice induced pressure errors. The effect of model surface roughness texture on skin friction is also discussed. It is shown that at a given Reynolds number, any roughness will produce no skin friction penalty.

  10. Estimation of the specific surface area for a porous carrier.

    PubMed

    Levstek, Meta; Plazl, Igor; Rouse, Joseph D

    2010-03-01

    In biofilm systems, treatment performance is primarily dependent upon the available biofilm growth surface area in the reactor. Specific surface area is thus a parameter that allows for making comparisons between different carrier technologies used for wastewater treatment. In this study, we estimated the effective surface area for a spherical, porous polyvinyl alcohol (PVA) gel carrier (Kuraray) that has previously demonstrated effectiveness for retention of autotrophic and heterotrophic biomass. This was accomplished by applying the GPS-X modeling tool (Hydromantis) to a comparative analysis of two moving-bed biofilm reactor (MBBR) systems. One system consisted of a lab-scale reactor that was fed synthetic wastewater under autotrophic conditions where only the nitrification process was studied. The other was a pre-denitrification pilot-scale plant that was fed real, primary-settled wastewater. Calibration of an MBBR process model for both systems indicated an effective specific surface area for PVA gel of 2500 m2/m3, versus a specific surface area of 1000 m2/m3 when only the outer surface of the gel beads is considered. In addition, the maximum specific growth rates for autotrophs and heterotrophs were estimated to be 1.2/day and 6.0/day, respectively.

  11. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandal, Adrian; Pastor, Jose M.; Payri, Raul

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. In conclusion, the modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  12. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

    DOE PAGES

    Pandal, Adrian; Pastor, Jose M.; Payri, Raul; ...

    2017-03-28

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. In conclusion, the modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  13. Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  14. Determining Surface Roughness in Urban Areas Using Lidar Data

    NASA Technical Reports Server (NTRS)

    Holland, Donald

    2009-01-01

    An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.

  15. Nano- to Formation-Scale Estimates of Mineral-Specific Reactive Surface Area

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Swift, A.; Sheets, J.; Anovitz, L. M.

    2017-12-01

    Predictions of changes in fluid composition, coupled with the evolution of the solid matrix, include the generation and testing of reactive transport models. However, translating a heterogeneous natural system into physical and chemical model parameters, including the critical but poorly-constrained metric of fluid-accessible surface area, continues to challenge Earth scientists. Studies of carbon storage capacity, permeability, rock strain due to mineral dissolution and precipitation, or the prediction of rock evolution through diagenesis and weathering each consider macroscale outcomes of processes that often are critically impacted by rock surface geometry at the nanoscale. The approach taken here is to consider the whole vertical extent of a saline reservoir and then to address two questions. First, what is the accessible surface area for each major mineral, and for all adjacent pore sizes from <2 nm on up, within each major lithofacies in that formation? Second, with the formation thus divided into units of analysis, parameterized, and placed into geologic context, what constraints can be placed on reactive surface area as a function of mineral composition? A complex sandstone covering a substantial fraction of the quartz-K-feldspar-illite ternary is selected and mineral-specific surface area quantified using neutron scattering, nitrogen and mercury porosimetry, multi-signal high-resolution mineral mapping, and other techniques. For neutron scattering, scale-specific pore geometries enable more accurate translation of volume into surface area. By applying this workflow to all end-member lithologies of this reservoir formation, equations and maps of surface area as a function of position on a quartz-feldspar-clay ternary plot are developed for each major mineral. Results from this work therefore advance our ability to parameterize models not just for the particular formation studied, but for similar geologic units as well.

  16. Integration of remote sensing based surface information into a three-dimensional microclimate model

    NASA Astrophysics Data System (ADS)

    Heldens, Wieke; Heiden, Uta; Esch, Thomas; Mueller, Andreas; Dech, Stefan

    2017-03-01

    Climate change urges cities to consider the urban climate as part of sustainable planning. Urban microclimate models can provide knowledge on the climate at building block level. However, very detailed information on the area of interest is required. Most microclimate studies therefore make use of assumptions and generalizations to describe the model area. Remote sensing data with area wide coverage provides a means to derive many parameters at the detailed spatial and thematic scale required by urban climate models. This study shows how microclimate simulations for a series of real world urban areas can be supported by using remote sensing data. In an automated process, surface materials, albedo, LAI/LAD and object height have been derived and integrated into the urban microclimate model ENVI-met. Multiple microclimate simulations have been carried out both with the dynamic remote sensing based input data as well as with manual and static input data to analyze the impact of the RS-based surface information and the suitability of the applied data and techniques. A valuable support of the integration of the remote sensing based input data for ENVI-met is the use of an automated processing chain. This saves tedious manual editing and allows for fast and area wide generation of simulation areas. The analysis of the different modes shows the importance of high quality height data, detailed surface material information and albedo.

  17. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  18. Consequences of land-cover misclassification in models of impervious surface

    USGS Publications Warehouse

    McMahon, G.

    2007-01-01

    Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.

  19. Why mushrooms form gills: efficiency of the lamellate morphology

    PubMed Central

    FISCHER, Mark W. F.; MONEY, Nicholas P.

    2009-01-01

    Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production. Relative to spore production over a flat surface, gills achieve a maximum 20-fold increase in surface area. The branching of gills produces the same increase in surface area as the formation of freestanding lamellulae (short gills). The addition of lamellulae between every second gill would offer a slightly greater increase in surface area in comparison to the addition of lamellulae between every pair of opposing gills, but this morphology does not appear in nature. Analysis of photographs of mushrooms demonstrates an excellent match between natural gill arrangements and configurations predicted by our model. PMID:20965062

  20. Sex determination using discriminant analysis of upper and lower extremity bones: New approach using the volume and surface area of digital model.

    PubMed

    Lee, U-Young; Kim, In-Beom; Kwak, Dai-Soon

    2015-08-01

    This study used 110 CT images taken from donated Korean cadavers to create 3-D models of the following upper and lower limb bones: the clavicle, scapula, humerus, radius, ulna, hip bone (os coxa), femur, patella (knee cap), tibia, talus, and calcaneus. In addition, the bone volume and surface area were calculated to determine sex differences using discriminant analysis. Significant sex differences were found in all bones with respect to volume and surface area (p<0.01). The order of volume was the same in females and males (femur>hip bone>tibia>humerus>scapula), although the order of surface area was different. The largest surface area in men was the femur and in women was the hip bone (p<0.01). An interesting finding of this study was that the ulna is the bone with the highest accuracy for sex determination (94%). When using the surface area of multiple bones, the maximum accuracy (99.4%) was achieved. The equation was as follows: (discriminant equation of surface area; female<0

  1. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.

  2. Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model

    NASA Astrophysics Data System (ADS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2016-12-01

    The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.

  3. Base of Principal Aquifer for the Elkhorn-Loup Model Area, North-Central Nebraska

    USGS Publications Warehouse

    McGuire, V.L.; Peterson, Steven M.

    2008-01-01

    In Nebraska, the water managers in the Natural Resources Districts and the Nebraska Department of Natural Resources are concerned with the effect of ground-water withdrawal on the availability of surface water and the long-term effects of ground-water withdrawal on ground- and surface-water resources. In north-central Nebraska, in the Elkhorn and Loup River Basins, ground water is used for irrigation, domestic supply, and public supply; surface water is used in this area for irrigation, recreation, and hydropower production. In recognition of these sometimes competing ground- and surface-water uses in the Elkhorn and Loup River Basins, the U.S. Geological Survey, the Lewis and Clark Natural Resources District, the Lower Elkhorn Natural Resources District, the Lower Loup Natural Resources District, the Lower Niobrara Natural Resources District, the Lower Platte North Natural Resources District, the Middle Niobrara Natural Resources District, the Upper Elkhorn Natural Resources District, and the Upper Loup Natural Resources District agreed to cooperatively study water resources in the Elkhorn and Loup River Basins. The goals of the overall study were to construct and calibrate a regional ground-water flow model of the area and to use that flow model as a tool to assess current and future effects of ground-water irrigation on stream base flow and to help develop long-term water-resource management strategies for this area, hereafter referred to as the Elkhorn-Loup model area. The Elkhorn-Loup model area covers approximately 30,800 square miles, and extends from the Niobrara River in the north to the Platte River in the south. The western boundary of the Elkhorn-Loup model area coincides with the western boundary of the Middle Niobrara, Twin Platte, and Upper Loup Natural Resources Districts; the eastern boundary coincides with the approximate location of the western extent of glacial till in eastern Nebraska. The principal aquifer in most of the Elkhorn-Loup model area is the High Plains aquifer; the principal aquifer in the remaining part of the Elkhorn-Loup model area is an unnamed alluvial aquifer. The upper surface of the geologic units that directly underlie the aquifer is called the 'base of aquifer' in this report. The geologic unit that forms the base of aquifer in the Elkhorn-Loup model area varies by location. The Tertiary-age Brule Formation generally is the base of aquifer in the west; the Cretaceous-age Pierre Shale generally is the base of aquifer in the east. The purpose of this report is to update the altitude and configuration of the base of the principal aquifer in the Elkhorn-Loup model area and a 2-mile buffer area around the Elkhorn-Loup model area, using base-of-aquifer data from test holes, registered water wells, and oil and gas wells within the Elkhorn-Loup model area and a 20-mile buffer area around the Elkhorn-Loup model area that have become available since the publication of earlier maps of the base of aquifer for this area. The base-of-aquifer map is important for the Elkhorn-Loup ground-water flow model because it defines the model's lower boundary. The accuracy of the Elkhorn-Loup ground-water flow model and the accuracy of the model's predictions about the effects of ground-water irrigation on stream base flow are directly related to the accuracy of the model's lower boundary.

  4. Estimating regional evapotranspiration from remotely sensed data by surface energy balance models

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Kanemasu, Edward; Myneni, R. B.; Lapitan, R. L.; Harris, T. R.; Killeen, J. M.; Cooper, D. I.; Hwang, C.

    1987-01-01

    Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model.

  5. Modeling Linkages Between Effective Impervious Surface and Urban Vegetation Productivity in Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Shields, C. A.; Tague, C.

    2010-12-01

    With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (<5m) spatial arrangement of impervious surfaces affects water available to vegetation, which in turn can significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff and degraded downstream water quality). We explore the relative roles of TIA and EIA on water availability and plant productivity in a semi-arid urban environment through a series of modeling exercises. The Regional HydroEcological Simulation System (RHESSys) is used to model a range of impervious surface and vegetation scenarios on a test hillslope in the Mission Creek catchment in Santa Barbara CA. Results indicate that reduced EIA can indeed act to mitigate the impact of TIA on water available to plants. We then implement a modification to the RHESSys model that incorporates patch scale estimates of EIA into simulations of the entire Mission Creek catchment, allowing us to quantify likely catchment-scale impacts of altering EIA.

  6. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2015-03-01

    We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.

  7. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  8. [Computer aided design and 3-dimensional printing for the production of custom trays of maxillary edentulous jaws based on 3-dimensional scan of primary impression].

    PubMed

    Chen, H; Zhao, T; Wang, Y; Sun, Y C

    2016-10-18

    To establish a digital method for production of custom trays for edentulous jaws using fused deposition modeling (FDM) based on three-dimensional (3D) scans of primary jaw impressions, and to quantitatively evaluate the accuracy. A red modeling compound was used to make a primary impression of a standard maxillary edentulous plaster model. The plaster model data and the primary impression tissue surface data were obtained using a 3D scanner. In the Gemomagic 2012 software, several commands were used, such as interactive drawing curves, partial filling holes, local offset, bodily offset, bodily shell, to imitate clinical procedures of drawing tray boundary, filling undercut, buffer, and generating the tray body. A standard shape of tray handle was designed and attached to the tray body and the data saved as stereolithography (STL) format. The data were imported into a computer system connected to a 3D FDM printing device, and the custom tray for the edentulous jaw model was printed layer upon layer at 0.2 mm/layer, using polylactic acid (PLA) filament, the tissue surface of the tray was then scanned with a 3D scanner. The registration functions of Geomagic 2012 was used to register the 3-dimentional surface data, and the point-cloud deviation analysis function of the Imageware 13.0 system was used to analyze the error. The CAD data of the custom tray was registered to the scan data, and the error between them was analyzed. The scanned plaster model surface was registered to the scanned impression surface and the scanned tray data to the CAD data, then the distance between the surface of plaster model and the scanned tissue surface of the custom tray was measured in Imageware 13.0. The deviation between the computer aided design data and the scanned data of the custom tray was (0.17±0.20) mm, with (0.19±0.18) mm in the primary stress-bearing area, (0.17±0.22) mm in the secondary stress-bearing area, (0.30±0.29) mm in the border seal area, (0.08±0.06) mm in the buffer area; the space between the tissue faces of the plaster model and the scanned tissue surface of custom tray was (1.98±0.40) mm, with (1.85±0.24) mm in the primary stress-bearing area, (1.86±0.26) mm in the secondary stress-bearing area, (1.77±0.36) mm in the border seal area, (2.90±0.26) mm in the buffer area. With 3D scanning, computer aided design and FDM technology, an efficient means of custom tray production was established.

  9. Habitat of calling blue and fin whales in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Sirovic, A.; Chou, E.; Roch, M. A.

    2016-02-01

    Northeast Pacific blue whale B calls and fin whale 20 Hz calls were detected from passive acoustic data collected over seven years at 16 sites in the Southern California Bight (SCB). Calling blue whales were most common in the coastal areas, during the summer and fall months. Fin whales began calling in fall and continued through winter, in the southcentral SCB. These data were used to develop habitat models of calling blue and fin whales in areas of high and low abundance in the SCB, using remotely sensed variables such as sea surface temperature, sea surface height, chlorophyll a, and primary productivity as model covariates. A random forest framework was used for variable selection and generalized additive models were developed to explain functional relationships, evaluate relative contribution of each significant variable, and investigate predictive abilities of models of calling whales. Seasonal component was an important feature of all models. Additionally, areas of high calling blue and fin whale abundance both had a positive relationship with the sea surface temperature. In areas of lower abundance, chlorophyll a concentration and primary productivity were important variables for blue whale models and sea surface height and primary productivity were significant covariates in fin whale models. Predictive models were generally better for predicting general trends than absolute values, but there was a large degree of variation in year-to-year predictability across different sites.

  10. Simulating pesticide transport in urbanized catchments: a new spatially-distributed dynamic pesticide runoff model

    NASA Astrophysics Data System (ADS)

    Tang, Ting; Seuntjens, Piet; van Griensven, Ann; Bronders, Jan

    2016-04-01

    Urban areas can significantly contribute to pesticide contamination in surface water. However, pesticide behaviours in urban areas, particularly on hard surfaces, are far less studied than those in agricultural areas. Pesticide application on hard surfaces (e.g. roadsides and walkways) is of particular concern due to the high imperviousness and therefore high pesticide runoff potential. Experimental studies have shown that pesticide behaviours on and interactions with hard surfaces are important factors controlling the pesticide runoff potential, and therefore the magnitude and timing of peak concentrations in surface water. We conceptualized pesticide behaviours on hard surfaces and incorporated the conceptualization into a new pesticide runoff model. The pesticide runoff model was implemented in a catchment hydrological model WetSpa-Python (Water and Energy Transfer between Soil, Plants and Atmosphere, Python version). The conceptualization for pesticide processes on hard surfaces accounts for the differences in pesticide behaviour on different hard surfaces. Four parameters are used to describe the partitioning and wash-off of each pesticide on hard surfaces. We tested the conceptualization using experimental dataset for five pesticides on two types of hard surfaces, namely concrete and asphalt. The conceptualization gave good performance in accounting for the wash-off pattern for the modelled pesticides and surfaces, according to quantitative evaluations using the Nash-Sutcliffe efficiency and percent bias. The resulting pesticide runoff model WetSpa-PST (WetSpa for PeSTicides) can simulate pesticides and their metabolites at the catchment scale. Overall, it includes four groups of pesticide processes, namely pesticide application, pesticide interception by plant foliage, pesticide processes on land surfaces (including partitioning, degradation and wash-off on hard surface; partitioning, dissipation, infiltration and runoff in soil) and pesticide processes in depression storage (including degradation, infiltration and runoff). Processes on hard surfaces employs the conceptualization described in the paragraph above. The WetSpa-PST model can account for various spatial details of the urban features in a catchment, such as asphalt, concrete and roof areas. The distributed feature also allows users to input detailed pesticide application data of both non-point and point origins. Thanks to the Python modelling framework prototype used in the WetSpa-Python model, processes in the WetSpa-PST model can be simulated at different time steps depending on data availability and the characteristic temporal scale of each process. This helps to increase the computational accuracy during heavy rainfall events, especially for the associated fast transport of pesticides into surface water. Overall, the WetSpa-PST model has good potential in predicting effects of management options on pesticide releases from heavily urbanized catchments.

  11. A mobile app for measuring the surface area of a burn in three dimensions: comparison to the Lund and Browder assessment.

    PubMed

    Goldberg, Harry; Klaff, Justin; Spjut, Aaron; Milner, Stephen

    2014-01-01

    The aim of this study was to compare the ease and accuracy of measuring the surface area of a severe burn through the use of a mobile software application (BurnMed) to the traditional method of assessment, the Lund and Browder chart. BurnMed calculates the surface area of a burn by enabling the user to first manipulate a three-dimensional model on a mobile device and then by touching the model at the locations representing the patient's injury. The surface area of the burn is calculated in real time. Using a cohort of 18 first-year medical students with no experience in burn care, the surface area of a simulated burn on a mannequin was made using BurnMed and compared to estimates derived from the Lund and Browder chart. At the completion of this study, students were asked to complete a questionnaire designed to assess the ease of use of BurnMed. Users were able to easily and accurately measure the surface area of a simulated burn using the BurnMed application. In addition, there was less variability in surface area measurements with the application compared to the results obtained using the Lund and Browder chart. Users also reported that BurnMed was easier to use than the Lund and Browder chart. A software application, BurnMed, has been developed for a mobile device that easily and accurately determines the surface area of a burn. This system uses a three-dimensional model that can be rotated, enlarged, and transposed by the health care provider to easily determine the extent of a burn. Results show that the variability of measurements using BurnMed is lower than the measurements obtained using the Lund and Browder chart. BurnMed is available at no charge in the Apple™ Store.

  12. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches

    NASA Astrophysics Data System (ADS)

    Toler, Benjamin F.; Coutu, Ronald A., Jr.; McBride, John W.

    2013-10-01

    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.

  13. Surface models for coupled modelling of runoff and sewer flow in urban areas.

    PubMed

    Ettrich, N; Steiner, K; Thomas, M; Rothe, R

    2005-01-01

    Traditional methods fail for the purpose of simulating the complete flow process in urban areas as a consequence of heavy rainfall and as required by the European Standard EN-752 since the bi-directional coupling between sewer and surface is not properly handled. The new methodology, developed in the EUREKA-project RisUrSim, solves this problem by carrying out the runoff on the basis of shallow water equations solved on high-resolution surface grids. Exchange nodes between the sewer and the surface, like inlets and manholes, are located in the computational grid and water leaving the sewer in case of surcharge is further distributed on the surface. Dense topographical information is needed to build a model suitable for hydrodynamic runoff calculations; in urban areas, in addition, many line-shaped elements like houses, curbs, etc. guide the runoff of water and require polygonal input. Airborne data collection methods offer a great chance to economically gather densely sampled input data.

  14. Parameterizing atmosphere-land surface exchange for climate models with satellite data: A case study for the Southern Great Plains CART site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, W.

    High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surfacemore » contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.« less

  15. Multiscale geomorphometric modeling of Mercury

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.

    2018-02-01

    Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.

  16. Shapes of embedded minimal surfaces

    PubMed Central

    Colding, Tobias H.; Minicozzi, William P.

    2006-01-01

    Surfaces that locally minimize area have been extensively used to model physical phenomena, including soap films, black holes, compound polymers, protein folding, etc. The mathematical field dates to the 1740s but has recently become an area of intense mathematical and scientific study, specifically in the areas of molecular engineering, materials science, and nanotechnology because of their many anticipated applications. In this work, we show that all minimal surfaces are built out of pieces of the surfaces in Figs. 1 and 2. PMID:16847265

  17. Assessment and application of a snowblow modelling approach for identifying enhanced snow accumulation in areas of former glaciation

    NASA Astrophysics Data System (ADS)

    Mills, Stephanie; Smith, Michael; Le Brocq, Anne; Ardakova, Ekaterina; Hillier, John; Boston, Clare

    2016-04-01

    The redistribution of snow by wind can play an important role in providing additional mass to the surface of glaciers and can, therefore, have an impact on the glacier's surface mass balance. In areas of marginal glaciation, this local topo-climatic effect may be prove crucial for the initiation and survival of glaciers, whilst it can also increase heterogeneity in the distribution of snow on ice caps and ice sheets. We present a newly developed snowblow model which calculates spatial variations in relative snow accumulation that result from variations in topography. We apply this model to areas of former marginal glaciation in the Brecon Beacons, Wales and an area of former plateau icefield glaciation in the Monadhliath, Scotland. We can then determine whether redistribution by snow can help explain variations in the estimated equilibrium line altitudes (ELAs) of these former glaciers. Specifically, we compare the areas where snow is modelled as accumulating, to the reconstructed glacier surface, which is based on mapped moraines believed to be of Younger Dryas age. The model is applied to 30 m resolution DEMs and potential snow accumulation is simulated from different wind directions in order to determine the most likely contributing sector. Total snow accumulation in sub-set areas is then calculated and compared to the reconstructed glacier area. The results suggest that areas with larger amounts of snow accumulation often correspond with those where the ELA is lower than surrounding glaciers and vice versa, in both the marginal and icefield setting, suggesting that the role of snowblow in supplying additional mass to the surface of glaciers is significant.

  18. The monocular visual imaging technology model applied in the airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  19. The influence of land surface properties on Sahel climate. Part 1: Desertification

    NASA Technical Reports Server (NTRS)

    Xue, Yongkang; Shukla, Jagadish

    1993-01-01

    This is a general circulation model sensitivity study of the physical mechanisms of the effects of desertification on the Sahel drought. The model vegetation types were changed in the prescribed desertification area, which led to changes in the surface characteristics. The model was integrated for three months (June, July, August) with climatological surface conditions (control) and desertification conditions (anomaly) to examine the summer season response to the changed surface conditions. The control and anomaly experiments consisted of five pairs of integrations with different initial conditions and/or sea surface temperature boundary conditions. In the desertification experiment, the moisture flux convergence and rainfall were reduced in the test area and increased to the immediate south of this area. The simulated anomaly dipole pattern was similar to the observed African drought patterns in which the axis of the maximum rainfall shifts to the south. The circulation changes in the desertification experiment were consistent with those observed during sub-Saharan dry years. The tropical easterly jet was weaker and the African easterly jet was stronger than normal. Further, in agreement with the observations, the easterly wave disturbances were reduced in intensity but not in number. Descending motion dominated the desertification area. The surface energy budget and hydrological cycle were also changed substantially in the anomaly experiment.

  20. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    USGS Publications Warehouse

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  1. Why mushrooms form gills: efficiency of the lamellate morphology.

    PubMed

    Fischer, Mark W F; Money, Nicholas P

    2010-01-01

    Gilled mushrooms are produced by multiple orders within the Agaricomycetes. Some species form a single array of unbranched radial gills beneath their caps, many others produce multiple files of lamellulae between the primary gills, and branched gills are also common. In this largely theoretical study we modeled the effects of different gill arrangements on the total surface area for spore production. Relative to spore production over a flat surface, gills achieve a maximum 20-fold increase in surface area. The branching of gills produces the same increase in surface area as the formation of free-standing lamellulae (short gills). The addition of lamellulae between every second gill would offer a slightly greater increase in surface area in comparison to the addition of lamellulae between every pair of opposing gills, but this morphology does not appear in nature. Analysis of photographs of mushrooms demonstrates an excellent match between natural gill arrangements and configurations predicted by our model. Copyright © 2009 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calo, J.M.; Zhang, L.; Hall, P.J.

    1997-09-01

    A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. Frommore » the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.« less

  3. Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media

    NASA Astrophysics Data System (ADS)

    Beckingham, Lauren E.; Steefel, Carl I.; Swift, Alexander M.; Voltolini, Marco; Yang, Li; Anovitz, Lawrence M.; Sheets, Julia M.; Cole, David R.; Kneafsey, Timothy J.; Mitnick, Elizabeth H.; Zhang, Shuo; Landrot, Gautier; Ajo-Franklin, Jonathan B.; DePaolo, Donald J.; Mito, Saeko; Xue, Ziqiu

    2017-05-01

    The rates of mineral dissolution reactions in porous media are difficult to predict, in part because of a lack of understanding of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area used in reactive transport models for porous media are typically ad hoc and often based on average grain size, increased to account for surface roughness or decreased by several orders of magnitude to account for reduced surface reactivity of field as opposed to laboratory samples. In this study, accessible mineral surface areas are determined for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan) using a multi-scale image analysis based on synchrotron X-ray microCT, SEM QEMSCAN, XRD, SANS, and FIB-SEM. This analysis not only accounts for accessibility of mineral surfaces to macro-pores, but also accessibility through connected micro-pores in smectite, the most abundant clay mineral in this sample. While the imaging analysis reveals that most of the micro- and macro-pores are well connected, some pore regions are unconnected and thus inaccessible to fluid flow and diffusion. To evaluate whether mineral accessible surface area accurately reflects reactive surface area a flow-through core experiment is performed and modeled at the continuum scale. The core experiment is performed under conditions replicating the pilot site and the evolution of effluent solutes in the aqueous phase is tracked. Various reactive surface area models are evaluated for their ability to capture the observed effluent chemistry, beginning with parameter values determined as a best fit to a disaggregated sediment experiment (Beckingham et al., 2016) described previously. Simulations that assume that all mineral surfaces are accessible (as in the disaggregated sediment experiment) over-predict the observed mineral reaction rates, suggesting that a reduction of RSA by a factor of 10-20 is required to match the core flood experimental data. While the fit of the effluent chemistry (and inferred mineral dissolution rates) greatly improve when the pore-accessible mineral surface areas are used, it was also necessary to include highly reactive glass phases to match the experimental observations, in agreement with conclusions from the disaggregated sediment experiment. It is hypothesized here that the 10-20 reduction in reactive surface areas based on the limited pore accessibility of reactive phases in core flood experiment may be reasonable for poorly sorted and cemented sediments like those at the Nagaoka site, although this reflects pore rather than larger scale heterogeneity.

  4. Selenium in irrigated agricultural areas of the western United States

    USGS Publications Warehouse

    Nolan, B.T.; Clark, M.L.

    1997-01-01

    A logistic regression model was developed to predict the likelihood that Se exceeds the USEPA chronic criterion for aquatic life (5 ??g/L) in irrigated agricultural areas of the western USA. Preliminary analysis of explanatory variables used in the model indicated that surface-water Se concentration increased with increasing dissolved solids (DS) concentration and with the presence of Upper Cretaceous, mainly marine sediment. The presence or absence of Cretaceous sediment was the major variable affecting Se concentration in surface-water samples from the National Irrigation Water Quality Program. Median Se concentration was 14 ??g/L in samples from areas underlain by Cretaceous sediments and < 1 ??g/L in samples from areas underlain by non-Cretaceous sediments. Wilcoxon rank sum tests indicated that elevated Se concentrations in samples from areas with Cretaceous sediments, irrigated areas, and from closed lakes and ponds were statistically significant. Spearman correlations indicated that Se was positively correlated with a binary geology variable (0.64) and DS (0.45). Logistic regression models indicated that the concentration of Se in surface water was almost certain to exceed the Environmental Protection Agency aquatic-life chronic criterion of 5 ??g/L when DS was greater than 3000 mg/L in areas with Cretaceous sediments. The 'best' logistic regression model correctly predicted Se exceedances and nonexceedances 84.4% of the time, and model sensitivity was 80.7%. A regional map of Cretaceous sediment showed the location of potential problem areas. The map and logistic regression model are tools that can be used to determine the potential for Se contamination of irrigated agricultural areas in the western USA.

  5. Estimation of body surface area in the musk shrew ( Suncus murinus): a small animal for testing chemotherapy-induced emesis.

    PubMed

    Eiseman, Julie L; Sciullo, Michael; Wang, Hong; Beumer, Jan H; Horn, Charles C

    2017-10-01

    Several cancer chemotherapies cause nausea and vomiting, which can be dose-limiting. Musk shrews are used as preclinical models for chemotherapy-induced emesis and for antiemetic effectiveness. Unlike rats and mice, shrews possess a vomiting reflex and demonstrate an emetic profile similar to humans, including acute and delayed phases. As with most animals, dosing of shrews is based on body weight, while translation of such doses to clinically equivalent exposure requires doses based on body surface area. In the current study body surface area in musk shrews was directly assessed to determine the Meeh constant (K m ) conversion factor (female = 9.97, male = 9.10), allowing estimation of body surface area based on body weight. These parameters can be used to determine dosing strategies for shrew studies that model human drug exposures, particularly for investigating the emetic liability of cancer chemotherapeutic agents.

  6. Use of aerial photos and field reconnaissance to predict groundwater flow of a karst area in the Inner Bluegrass Region of Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gremos, K.; Sendlein, L.V.A.

    1993-03-01

    Significant areas of the continental US (Kentucky included) are underlain by karstified limestone. In many of these areas agriculture is a leading business and a potential non-point source of pollution to the groundwater. A study is underway to assess the Best Management Practices (BMP) on a farm in north-central Woodford County in Kentucky. As part of the study, various computer-based decision models for integrated farm operation will be assessed. Because surface area and run off are integral parts of all of these models, diversion of surface run off through karst features such as sinkholes will modify predictions from these models.more » This study utilizes areal photographs to identify all sinkholes on the property and characterize their morphometric parameters such as length, width, depth, and area and distribution. Sink hole areas represent approximately 10 percent of the area and all but a few discharge within the basin monitored as part of the model. The bedrock geology and fractures of the area have been defined using fracture trace analysis and a rectified drainage linear analysis. Surface drainage patterns, spring distribution, and stream and spring discharge data have been collected. Dye tracing has identified groundwater basins whose catchment area is outside the boundaries of the study site.« less

  7. The U.S. Geological Survey Coal Hydrology Program and the potential of hydrologic models for impact assessments

    USGS Publications Warehouse

    Doyle, W. Harry

    1981-01-01

    A requirement of Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977, is the understanding of the hydrology in actual and proposed surface-mined areas. Surface-water data for small specific-sites and for larger areas such as adjacent and general areas are needed also to satisfy the hydrologic requirements of the Act. The Act specifies that surface-water modeling techniques may be used to generate the data and information. The purpose of this report is to describe how this can be achieved for smaller watersheds. This report also characterizes 12 ' state-of-the-art ' strip-mining assessment models that are to be tested with data from two data-intensive studies involving small watersheds in Tennessee and Indiana. Watershed models are best applied to small watersheds with specific-site data. Extending the use of modeling techniques to larger watersheds remains relatively untested, and to date the upper limits for application have not been established. The U.S. Geological Survey is currently collecting regional hydrologic data in the major coal provinces of the United States and this data will be used to help satisfy the ' general-area ' data requirements of the Act. This program is reviewed and described in this report. (USGS)

  8. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  9. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  10. Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Yang, Jian; He, Yuhong

    2017-02-01

    Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.

  11. Three-dimensional model of the hydrostratigraphy and structure of the area in and around the U.S. Army-Camp Stanley Storage Activity Area, northern Bexar County, Texas

    USGS Publications Warehouse

    Pantea, Michael P.; Blome, Charles D.; Clark, Allan K.

    2014-01-01

    A three-dimensional model of the Camp Stanley Storage Activity area defines and illustrates the surface and subsurface hydrostratigraphic architecture of the military base and adjacent areas to the south and west using EarthVision software. The Camp Stanley model contains 11 hydrostratigraphic units in descending order: 1 model layer representing the Edwards aquifer; 1 model layer representing the upper Trinity aquifer; 6 model layers representing the informal hydrostratigraphic units that make up the upper part of the middle Trinity aquifer; and 3 model layers representing each, the Bexar, Cow Creek, and the top of the Hammett of the lower part of the middle Trinity aquifer. The Camp Stanley three-dimensional model includes 14 fault structures that generally trend northeast/southwest. The top of Hammett hydrostratigraphic unit was used to propagate and validate all fault structures and to confirm most of the drill-hole data. Differences between modeled and previously mapped surface geology reflect interpretation of fault relations at depth, fault relations to hydrostratigraphic contacts, and surface digital elevation model simplification to fit the scale of the model. In addition, changes based on recently obtained drill-hole data and field reconnaissance done during the construction of the model. The three-dimensional modeling process revealed previously undetected horst and graben structures in the northeastern and southern parts of the study area. This is atypical, as most faults in the area are en echelon that step down southeasterly to the Gulf Coast. The graben structures may increase the potential for controlling or altering local groundwater flow.

  12. Estimation of the fractional coverage of rainfall in climate models

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.

  13. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    PubMed

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2)-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.

  14. Comparison of NMR simulations of porous media derived from analytical and voxelized representations.

    PubMed

    Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel

    2009-10-01

    We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.

  15. The energy balance of an urban area: Examining temporal and spatial variability through measurements, remote sensing and modeling

    NASA Astrophysics Data System (ADS)

    Offerle, Brian

    Urban environmental problems related to air quality, thermal stress, issues of water demand and quality, all of which are linked directly or indirectly to urban climate, are emerging as major environmental concerns at the start of the 21st century. Thus there are compelling social, political and economic, and scientific reasons that make the study and understanding of the fundamental causes of urban climates critically important. This research addresses these topics through an intensive study of the surface energy balance of Lodz, Poland. The research examines the temporal variability in long-term measurements of urban surface-atmosphere exchange at a downtown location and the spatial variability of this exchange over distinctly different neighborhoods using shorter-term observations. These observations provide the basis for an evaluation of surface energy balance models. Monthly patterns in energy exchange are consistent from year-to-year with variability determined by net radiation and the timing and amount of precipitation. Spatial variability can be determined from plan area fractions of vegetation and impervious surface, though heat storage exerts a strong control on shorter term variability of energy exchange, within and between locations in an urban area. Anthropogenic heat fluxes provide most of the energy driving surface-atmosphere exchange in winter, From a modeling perspective, sensible heat fluxes can be reliably determined from radiometrically sensed surface temperatures and spatially representative surface-atmosphere exchange in an urban area can be determined from satellite remote sensing products. Models of the urban surface energy balance showed good agreement with mean values of energy exchange and under most conditions represented the temporal variability due to synoptic and shorter time scale forcing well.

  16. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    NASA Astrophysics Data System (ADS)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  17. Modelling landscape evolution at the flume scale

    NASA Astrophysics Data System (ADS)

    Cheraghi, Mohsen; Rinaldo, Andrea; Sander, Graham C.; Barry, D. Andrew

    2017-04-01

    The ability of a large-scale Landscape Evolution Model (LEM) to simulate the soil surface morphological evolution as observed in a laboratory flume (1-m × 2-m surface area) was investigated. The soil surface was initially smooth, and was subjected to heterogeneous rainfall in an experiment designed to avoid rill formation. Low-cohesive fine sand was placed in the flume while the slope and relief height were 5 % and 20 cm, respectively. Non-uniform rainfall with an average intensity of 85 mm h-1 and a standard deviation of 26 % was applied to the sediment surface for 16 h. We hypothesized that the complex overland water flow can be represented by a drainage discharge network, which was calculated via the micro-morphology and the rainfall distribution. Measurements included high resolution Digital Elevation Models that were captured at intervals during the experiment. The calibrated LEM captured the migration of the main flow path from the low precipitation area into the high precipitation area. Furthermore, both model and experiment showed a steep transition zone in soil elevation that moved upstream during the experiment. We conclude that the LEM is applicable under non-uniform rainfall and in the absence of surface incisions, thereby extending its applicability beyond that shown in previous applications. Keywords: Numerical simulation, Flume experiment, Particle Swarm Optimization, Sediment transport, River network evolution model.

  18. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS)

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.

    2012-12-01

    Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.

  19. On the kinematics of scalar iso-surfaces in turbulent flow

    NASA Astrophysics Data System (ADS)

    Blakeley, Brandon C.; Riley, James J.; Storti, Duane W.; Wang, Weirong

    2017-11-01

    The behavior of scalar iso-surfaces in turbulent flows is of fundamental interest and importance in a number of problems, e.g., the stoichiometric surface in non-premixed reactions, and the turbulent/non-turbulent interface in localized turbulent shear flows. Of particular interest here is the behavior of the average surface area per unit volume, Σ. We report on the use of direct numerical simulations and sophisticated surface tracking techniques to directly compute Σ and model its evolution. We consider two different scalar configurations in decaying, isotropic turbulence: first, the iso-surface is initially homogenous and isotropic in space, second, the iso-surface is initially planar. A novel method of computing integral properties from regularly-sampled values of a scalar function is leveraged to provide accurate estimates of Σ. Guided by simulation results, modeling is introduced from two perspectives. The first approach models the various terms in the evolution equation for Σ, while the second uses Rice's theorem to model Σ directly. In particular, the two principal effects on the evolution of Σ, i.e., the growth of the surface area due to local surface stretching, and the ultimate decay due to molecular destruction, are addressed.

  20. Coastal retracking using along-track echograms and its dependency on coastal topography

    NASA Astrophysics Data System (ADS)

    Ichikawa, K.; Wang, X.

    2017-12-01

    Although the Brown mathematical model is the standard model for waveform retracking over open oceans, coastal waveforms usually deviate from open ocean waveform shapes due to inhomogeneous surface reflections within altimeter footprints, and thus cannot be directly interpreted by the Brown model. Generally, the two primary sources of heterogeneous surface reflections are land surfaces and bright targets such as calm surface water. The former reduces echo power, while the latter often produces particularly strong echoes. In previous studies, sub-waveform retrackers, which use waveform samples collected from around leading edges in order to avoid trailing edge noise, have been recommended for coastal waveform retracking. In the present study, the peaky-type noise caused by fixed-point bright targets is explicitly detected and masked using the parabolic signature in the sequential along-track waveforms (or, azimuth-range echograms). Moreover, the power deficit of waveform trailing edges caused by weak land reflections is compensated for by estimating the ratio of sea surface area within each annular footprint in order to produce pseudo-homogeneous reflected waveforms suitable for the Brown model. Using this method, Jason-2 altimeter waveforms are retracked in several coastal areas. Our results show that both the correlation coefficient and root mean square difference between the derived sea surface height anomalies and tide gauge records retain similar values at the open ocean (0.9 and 20 cm) level, even in areas approaching 3 km from coastlines, which is considerably improved from the 10 km correlation coefficient limit of the conventional MLE4 retracker and the 7 km sub-waveform ALES retracker limit. These values, however, depend on the coastal topography of the study areas because the approach distance limit increases (decreases) in areas with complicated (straight) coastlines

  1. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed

    McPoil, Thomas G; Vicenzino, Bill; Cornwall, Mark W; Collins, Natalie

    2009-10-28

    Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 +/- 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  2. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed Central

    2009-01-01

    Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region. PMID:19863799

  3. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  4. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  5. Comparison of aerodynamically and model-derived roughness lengths (zo) over diverse surfaces, central Mojave Desert, California, USA

    USGS Publications Warehouse

    MacKinnon, D.J.; Clow, G.D.; Tigges, R.K.; Reynolds, R.L.; Chavez, P.S.

    2004-01-01

    The vulnerability of dryland surfaces to wind erosion depends importantly on the absence or the presence and character of surface roughness elements, such as plants, clasts, and topographic irregularities that diminish wind speed near the surface. A model for the friction velocity ratio has been developed to account for wind sheltering by many different types of co-existing roughness elements. Such conditions typify a monitored area in the central Mojave Desert, California, that experiences frequent sand movement and dust emission. Two additional models are used to convert the friction velocity ratio to the surface roughness length (zo) for momentum. To calculate roughness lengths from these models, measurements were made at 11 sites within the monitored area to characterize the surface roughness element. Measurements included (1) the number of roughness species (e.g., plants, small-scale topography, clasts), and their associated heights and widths, (2) spacing among species, and (3) vegetation porosity (a measurement of the spatial distribution of woody elements of a plant). Documented or estimated values of drag coefficients for different species were included in the modeling. At these sites, wind-speed profiles were measured during periods of neutral atmospheric stability using three 9-m towers with three or four calibrated anemometers on each. Modeled roughness lengths show a close correspondence (correlation coefficient, 0.84-0.86) to the aerodynamically determined values at the field sites. The geometric properties of the roughness elements in the model are amenable to measurement at much higher temporal and spatial resolutions using remote-sensing techniques than can be accomplished through laborious ground-based methods. A remote-sensing approach to acquire values of the modeled roughness length is particularly important for the development of linked surface/atmosphere wind-erosion models sensitive to climate variability and land-use changes in areas such as the southwestern United States, where surface roughness has large spatial and temporal variations. ?? 2004 Elsevier B.V. All rights reserved.

  6. Numerical Model Simulation of Atmosphere above A.C. Airport

    NASA Astrophysics Data System (ADS)

    Lutes, Tiffany; Trout, Joseph

    2014-03-01

    In this research project, the Weather Research & Forecasting (WRF) model from the National Center for Atmospheric Research (NCAR) is used to investigate past and present weather conditions. The Atlantic City Airport area in southern New Jersey is the area of interest. Long-term hourly data is analyzed and model simulations are created. By inputting high resolution surface data, a more accurate picture of the effects of different weather conditions will be portrayed. Currently, the impact of gridded model runs is being tested, and the impact of surface characteristics is being investigated.

  7. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less

  8. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    USGS Publications Warehouse

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  9. Modeling of microclimatic characteristics of highland area

    NASA Astrophysics Data System (ADS)

    Sitdikova, Iuliia; Rusin, Igor

    2013-04-01

    Microclimatic characteristics of highlands may vary considerably over distances of a few meters depending on slope and aspect. There is a problem of estimation of components of surface energy balance based on observation of single stations for description of microclimate highlands. The aim of this paper is to develop a method that would restore microclimatic characteristics of terrain, based on observations of the single station, by physical extrapolation. The input parameters to obtain the microclimatic characteristics are as follows: air temperature, relative humidity, and wind speed on two vertical levels, air pressure, surface temperature, direct and diffused solar radiation and surface albedo. The recent version of the Meteorological Radiation Model (MRM) has been used to calculate a solar radiation over the area and to estimate an influence of cloudiness amounts. The height, slope and aspect were accounted at each point with using a digital elevation model. Have been supposed that air temperature and specific humidity vary with altitude only. Net radiation was calculated at all points of the area. Supposed that the difference between the surface temperature and the air temperature is a linear function of net radiation. The empirical coefficient, which depends on wind speed with adjustment of given area. Latent and sensible fluxes are calculated by using the modified Bowen ratio, which varies on the area. Method was tested on field research in Krasnodar region (RF). The meteorological observations were made every three hour on actinometric and gradient sites. The editional gradient site with different orientation of the slope was organized from 400 meters of the main site. Topographic survey of area was made 1x1,3 km in size for a digital elevation model constructing. At all points of the area of radiation and heat balance were calculated. The results of researches are the maps of surface temperature, net radiation, latent and sensible fluxes. The calculations showed that the average value of components of heat balance by area differ significantly from the data observed on meteorological station.

  10. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    NASA Astrophysics Data System (ADS)

    Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru

    2017-08-01

    The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be extended to the water balance study of the whole Heihe River basin.

  11. Impact of land cover change on the environmental hydrology characteristics in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Saadatkhah, Nader; Mansor, Shattri; Khuzaimah, Zailani; Asmat, Arnis; Adnan, Noraizam; Adam, Siti Noradzah

    2016-09-01

    Changing the land cover/ land use has serious environmental impacts affecting the ecosystem in Malaysia. The impact of land cover changes on the environmental functions such as surface water, loss water, and soil moisture is considered in this paper on the Kelantan river basin. The study area at the east coast of the peninsular Malaysia has suffered significant land cover changes in the recent years. The current research tried to assess the impact of land cover changes in the study area focused on the surface water, loss water, and soil moisture from different land use classes and the potential impact of land cover changes on the ecosystem of Kelantan river basin. To simulate the impact of land cover changes on the environmental hydrology characteristics, a deterministic regional modeling were employed in this study based on five approaches, i.e. (1) Land cover classification based on Landsat images; (2) assessment of land cover changes during last three decades; (3) Calculation the rate of water Loss/ Infiltration; (4) Assessment of hydrological and mechanical effects of the land cover changes on the surface water; and (5) evaluation the impact of land cover changes on the ecosystem of the study area. Assessment of land cover impact on the environmental hydrology was computed with the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) based on the transient infiltration, and subsequently changes in the surface water, due to precipitation events. The results showed the direct increased in surface water from development area, agricultural area, and grassland regions compared with surface water from other land covered areas in the study area. The urban areas or lower planting density areas tend to increase for surface water during the monsoon seasons, whereas the inter flow from forested and secondary jungle areas contributes to the normal surface water.

  12. Surface roughness formation during shot peen forming

    NASA Astrophysics Data System (ADS)

    Koltsov, V. P.; Vinh, Le Tri; Starodubtseva, D. A.

    2018-03-01

    Shot peen forming (SPF) is used for forming panels and skins, and for hardening. As a rule, shot peen forming is performed after milling. Surface roughness is a complex structure, a combination of an original microrelief and shot peen forming indentations of different depths and chaotic distribution along the surface. As far as shot peen forming is a random process, surface roughness resulted from milling and shot peen forming is random too. During roughness monitoring, it is difficult to determine the basic surface area which would ensure accurate results. It can be assumed that the basic area depends on the random roughness which is characterized by the degree of shot peen forming coverage. The analysis of depth and shot peen forming indentations distribution along the surface made it possible to identify the shift of an original center profile plane and create a mathematical model for the arithmetic mean deviation of the profile. Experimental testing proved model validity and determined an inversely proportional dependency of the basic area on the degree of coverage.

  13. Effect of surface curvature on diffusion-limited reactions on a curved surface

    NASA Astrophysics Data System (ADS)

    Eun, Changsun

    2017-11-01

    To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.

  14. Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

  15. Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in-situ recovery site

    DOE PAGES

    Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.; ...

    2017-05-01

    The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less

  16. Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in-situ recovery site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.

    The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less

  17. The Sensitivity of Tropical Squall Lines (GATE and TOGA COARE) to Surface Fluxes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Yansen; Tao, Wei-Kuo; Simpson, Joanne; Lang, Stephen

    1999-01-01

    Two tropical squall lines from TOGA COARE and GATE were simulated using a two-dimensional cloud-resolving model to examine the impact of surface fluxes on tropical squall line development and associated precipitation processes. The important question of how CAPE in clear and cloudy areas is maintained in the tropics is also investigated. Although the cloud structure and precipitation intensity are different between the TOGA COARE and GATE squall line cases, the effects of the surface fluxes on the amount of rainfall and on the cloud development processes are quite similar. The simulated total surface rainfall amount in the runs without surface fluxes is about 67% of the rainfall simulated with surface fluxes. The area where surface fluxes originated was categorized into clear and cloudy regions according to whether there was cloud in the vertical column. The model results indicated that the surface fluxes from the large clear air environment are the dominant moisture source for tropical squall line development even though the surface fluxes in the cloud region display a large peak. The high-energy air from the boundary layer in the clear area is what feeds the convection while the CAPE is removed by the convection. The surface rainfall was only reduced 8 to 9% percent in the simulations without surface fluxes in the cloud region. Trajectory and water budget analysis also indicated that most moisture (92%) was from the boundary layer of the clear air environment.

  18. Integration of Heterogenous Digital Surface Models

    NASA Astrophysics Data System (ADS)

    Boesch, R.; Ginzler, C.

    2011-08-01

    The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI), two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM) with 1m resolution covering whole switzerland (approx. 41000 km2). The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM). Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET) generates the image based surface model (ADS-DSM) and delivers also a map with figures of merit (FOM) of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point distribution can be used to derive a local accuracy measure. For the calculation of a robust point distribution measure, a constrained triangulation of local points (within an area of 100m2) has been implemented using the Open Source project CGAL. The area of each triangle is a measure for the spatial distribution of raw points in this local area. Combining the FOM-map with the local evaluation of LiDAR points allows an appropriate local accuracy evaluation of both surface models. The currently implemented strategy ("partial replacement") uses the hypothesis, that the ADS-DSM is superior due to its better global accuracy of 1m. If the local analysis of the FOM-map within the 100m2 area shows significant matching errors, the corresponding area of the triangulated LiDAR points is analyzed. If the point density and distribution is sufficient, the LiDAR-DSM will be used in favor of the ADS-DSM at this location. If the local triangulation reflects low point density or the variance of triangle areas exceeds a threshold, the investigated location will be marked as NODATA area. In a future implementation ("anisotropic fusion") an anisotropic inverse distance weighting (IDW) will be used, which merges both surface models in the point data space by using FOM-map and local triangulation to derive a quality weight for each of the interpolation points. The "partial replacement" implementation and the "fusion" prototype for the anisotropic IDW make use of the Open Source projects CGAL (Computational Geometry Algorithms Library), GDAL (Geospatial Data Abstraction Library) and OpenCV (Open Source Computer Vision).

  19. Role of Induced and Natural Imbibition in Frac Fluid Transport and Fate in Gas Shales, March 28-29, 2011

    EPA Pesticide Factsheets

    Hydraulic fracture modeling and fracture surface area calculations determined from pressure decay analysis and reservoir numerical flow simulation support estimates of created hydraulic fracture surface areas of 24-60 MM sq ft.

  20. Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012

    DOE Data Explorer

    Bob Busey; Larry Hinzman; William Cable; Vladimir Romanovsky

    2014-12-04

    Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

  1. Guard cells elongate: relationship of volume and surface area during stomatal movement.

    PubMed

    Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard

    2007-02-01

    Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.

  2. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    USGS Publications Warehouse

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer and pumping five leachate recovery wells. Results of the flow analysis indicate that the telescoping grid modeling approach can be used to simulate ground-water flow in small areas such as the Lantana landfill site and to simulate the effects of possible remedial actions. Water-quality data indicate the leachate-enriched ground water is divided vertically into two parts by a fine sand layer at about 40 to 50 feet below land surface. Data also indicate the extent of the leachate-enriched ground-water contamination and concentrations of constituents seem to be decreasing over time.

  3. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    As a part of the Texas Water Development Board Ground- Water Availability Modeling program, the U.S. Geological Survey developed and tested a numerical finite-difference (MODFLOW) model to simulate ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2000. The model is intended to be a tool that water-resource managers can use to address future ground-water-availability issues.From land surface downward, the Chicot aquifer, the Evangeline aquifer, the Burkeville confining unit, the Jasper aquifer, and the Catahoula confining unit are the hydrogeologic units of the Gulf Coast aquifer system. Withdrawals of large quantities of ground water have resulted in potentiometric surface (head) declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments. In a generalized conceptual model of the aquifer system, water enters the ground-waterflow system in topographically high outcrops of the hydrogeologic units in the northwestern part of the approximately 25,000-square-mile model area. Water that does not discharge to streams flows to intermediate and deep zones of the system southeastward of the outcrop areas where it is discharged by wells and by upward leakage in topographically low areas near the coast. The uppermost parts of the aquifer system, which include outcrop areas, are under water-table conditions. As depth increases in the aquifer system and as interbedded sand and clay accumulate, water-table conditions evolve into confined conditions.The model comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining unit, the assumed no-flow base of the system. Each layer consists of 137 rows and 245 columns of uniformly spaced grid blocks, each block representing 1 square mile. Lateral no-flow boundaries were located on the basis of outcrop extent (northwestern), major streams (southwestern, northeastern), and downdip limit of freshwater (southeastern). The MODFLOW general-head boundary package was used to simulate recharge and discharge in the outcrops of the hydrogeologic units. Simulation of land-surface subsidence (actually, compaction of clays) and release of water from storage in the clays of the Chicot and Evangeline aquifers was accomplished using the Interbed-Storage Package designed for use with the MODFLOW model. The model was calibrated by trial-anderror adjustment of selected model input data in a series of transient simulations until the model output (potentiometric surfaces, land-surface subsidence, and selected water-budget components) reasonably reproduced field measured (or estimated) aquifer responses.Model calibration comprised four elements: The first was qualitative comparison of simulated and measured heads in the aquifers for 1977 and 2000; and quantitative comparison by computation and areal distribution of the root-mean-square error between simulated and measured heads. The second calibration element was comparison of simulated and measured hydrographs from wells in the aquifers in a number of counties throughout the modeled area. The third calibration element was comparison of simulated water-budget componentsprimarily recharge and dischargeto estimates of physically reasonable ranges of actual water-budget components. The fourth calibration element was comparison of simulated land-surface subsidence from predevelopment to 2000 to measured land surface subsidence from 1906 through 1995.

  4. Efficient gaussian density formulation of volume and surface areas of macromolecules on graphical processing units.

    PubMed

    Zhang, Baofeng; Kilburg, Denise; Eastman, Peter; Pande, Vijay S; Gallicchio, Emilio

    2017-04-15

    We present an algorithm to efficiently compute accurate volumes and surface areas of macromolecules on graphical processing unit (GPU) devices using an analytic model which represents atomic volumes by continuous Gaussian densities. The volume of the molecule is expressed by means of the inclusion-exclusion formula, which is based on the summation of overlap integrals among multiple atomic densities. The surface area of the molecule is obtained by differentiation of the molecular volume with respect to atomic radii. The many-body nature of the model makes a port to GPU devices challenging. To our knowledge, this is the first reported full implementation of this model on GPU hardware. To accomplish this, we have used recursive strategies to construct the tree of overlaps and to accumulate volumes and their gradients on the tree data structures so as to minimize memory contention. The algorithm is used in the formulation of a surface area-based non-polar implicit solvent model implemented as an open source plug-in (named GaussVol) for the popular OpenMM library for molecular mechanics modeling. GaussVol is 50 to 100 times faster than our best optimized implementation for the CPUs, achieving speeds in excess of 100 ns/day with 1 fs time-step for protein-sized systems on commodity GPUs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Effect of Surface Reflectivity Variations On Uv-visible Limb Scattering Measurements of The Atmosphere

    NASA Astrophysics Data System (ADS)

    Oikarinen, L.

    Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.

  6. Two-Dimensional Flood-Inundation Model of the Flint River at Albany, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.; Dyar, Thomas R.

    2007-01-01

    Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). Simulated inundated areas, in 1-foot (ft) increments, were created for water-surface altitudes at the Flint River at Albany streamgage (02352500) from 192.5-ft altitude with a flow of 123,000 cubic feet per second (ft3/s) to 179.5-ft altitude with a flow of 52,500 ft3/s. The model was calibrated to match actual floods during July 1994 and March 2005 and Federal Emergency Management Administration floodplain maps. Continuity checks of selected stream profiles indicate the area near the Oakridge Drive bridge had lower velocities than other areas of the Flint River, which contributed to a rise in the flood-surface profile. The modeled inundated areas were mapped onto monochrome orthophoto imagery for use in planning for future floods. As part of a cooperative effort, the U.S. Geological Survey, the City of Albany, and Dougherty County, Georgia, conducted this study.

  7. Coupled 1-D sewer and street networks and 2-D flooding model to rapidly evaluate surface inundation

    NASA Astrophysics Data System (ADS)

    Kao, Hong-Ming; Hsu, Hao-Ming

    2017-04-01

    Flash floods have occurred frequently in the urban areas around the world and cause the infrastructure and people living to expose continuously in the high risk level of pluvial flooding. According to historical surveys, the major reasons of severe surface inundations in the urban areas can be attributed to heavy rainfall in the short time and/or drainage system failure. In order to obtain real-time flood forecasting with high accuracy and less uncertainty, an appropriate system for predicting floods is necessary. For the reason, this study coupled 1-D sewer and street networks and 2-D flooding model as an operational modelling system for rapidly evaluating surface inundation. The proposed system is constructed by three significant components: (1) all the rainfall-runoff of a sub-catchment collected via gullies is simulated by the RUNOFF module of the Storm Water Management Model (SWMM); (2) and directly drained to the 1-D sewer and street networks via manholes as inflow discharges to conduct flow routing by using the EXTRAN module of SWMM; (3) after the 1-D simulations, the surcharges from manholes are considered as point sources in 2-D overland flow simulations that are executed by the WASH123D model. It can thus be used for urban flood modelling that reflects the rainfall-runoff processes, and the dynamic flow interactions between the storm sewer system and the ground surface in urban areas. In the present study, we adopted the Huwei Science and Technology Park, located in the south-western part of Taiwan, as the demonstration area because of its high industrial values. The region has an area about 1 km2 with approximately 1 km in both length and width. It is as isolated urban drainage area in which there is a complete sewer system that collects the runoff and drains to the detention pond. Based on the simulated results, the proposed modelling system was found that the simulated floods fit to the survey records because the physical rainfall-runoff phenomena in urban environment were better reflected. Keywords: SWMM, WASH123D, surface inundation, real-time.

  8. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.

  10. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    NASA Technical Reports Server (NTRS)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  11. The impact of using area-averaged land surface properties —topography, vegetation condition, soil wetness—in calculations of intermediate scale (approximately 10 km 2) surface-atmosphere heat and moisture fluxes

    NASA Astrophysics Data System (ADS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.

    1997-03-01

    It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.

  12. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  13. Workshop on Grid Generation and Related Areas

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A collection of papers given at the Workshop on Grid Generation and Related Areas is presented. The purpose of this workshop was to assemble engineers and scientists who are currently working on grid generation for computational fluid dynamics (CFD), surface modeling, and related areas. The objectives were to provide an informal forum on grid generation and related topics, to assess user experience, to identify needs, and to help promote synergy among engineers and scientists working in this area. The workshop consisted of four sessions representative of grid generation and surface modeling research and application within NASA LeRC. Each session contained presentations and an open discussion period.

  14. Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota

    USGS Publications Warehouse

    Huang, Shengli; Dahal, Devendra; Young, Claudia; Chander, Gyanesh; Liu, Shuguang

    2011-01-01

    Spatiotemporal variations of wetland water in the Prairie Pothole Region are controlled by many factors; two of them are temperature and precipitation that form the basis of the Palmer Drought Severity Index (PDSI). Taking the 196 km2 Cottonwood Lake area in North Dakota as our pilot study site, we integrated PDSI, Landsat images, and aerial photography records to simulate monthly water surface. First, we developed a new Wetland Water Area Index (WWAI) from PDSI to predict water surface area. Second, we developed a water allocation model to simulate the spatial distribution of water bodies at a resolution of 30 m. Third, we used an additional procedure to model the small wetlands (less than 0.8 ha) that could not be detected by Landsat. Our results showed that i) WWAI was highly correlated with water area with an R2 of 0.90, resulting in a simple regression prediction of monthly water area to capture the intra- and inter-annual water change from 1910 to 2009; ii) the spatial distribution of water bodies modeled from our approach agreed well with the water locations visually identified from the aerial photography records; and iii) the R2 between our modeled water bodies (including both large and small wetlands) and those from aerial photography records could be up to 0.83 with a mean average error of 0.64 km2 within the study area where the modeled wetland water areas ranged from about 2 to 14 km2. These results indicate that our approach holds great potential to simulate major changes in wetland water surface for ecosystem service; however, our products could capture neither the short-term water change caused by intensive rainstorm events nor the wetland change caused by human activities.

  15. Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions

    NASA Astrophysics Data System (ADS)

    Daniel, M.; Lemonsu, Aude; Déqué, M.; Somot, S.; Alias, A.; Masson, V.

    2018-06-01

    Most climate models do not explicitly model urban areas and at best describe them as rock covers. Nonetheless, the very high resolutions reached now by the regional climate models may justify and require a more realistic parameterization of surface exchanges between urban canopy and atmosphere. To quantify the potential impact of urbanization on the regional climate, and evaluate the benefits of a detailed urban canopy model compared with a simpler approach, a sensitivity study was carried out over France at a 12-km horizontal resolution with the ALADIN-Climate regional model for 1980-2009 time period. Different descriptions of land use and urban modeling were compared, corresponding to an explicit modeling of cities with the urban canopy model TEB, a conventional and simpler approach representing urban areas as rocks, and a vegetated experiment for which cities are replaced by natural covers. A general evaluation of ALADIN-Climate was first done, that showed an overestimation of the incoming solar radiation but satisfying results in terms of precipitation and near-surface temperatures. The sensitivity analysis then highlighted that urban areas had a significant impact on modeled near-surface temperature. A further analysis on a few large French cities indicated that over the 30 years of simulation they all induced a warming effect both at daytime and nighttime with values up to + 1.5 °C for the city of Paris. The urban model also led to a regional warming extending beyond the urban areas boundaries. Finally, the comparison to temperature observations available for Paris area highlighted that the detailed urban canopy model improved the modeling of the urban heat island compared with a simpler approach.

  16. OCT-based full crystalline lens shape change during accommodation in vivo.

    PubMed

    Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana

    2017-02-01

    The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic.

  17. OCT-based full crystalline lens shape change during accommodation in vivo

    PubMed Central

    Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana

    2017-01-01

    The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic. PMID:28270993

  18. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  19. Dissolution process analysis using model-free Noyes-Whitney integral equation.

    PubMed

    Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto

    2013-02-01

    Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.

    2010-10-01

    The impact of urban surface parameterizations in the WRF (Weather Research and Forecasting) model on the simulation of local meteorological fields is investigated. The Noah land surface model (LSM), a modified LSM, and a single-layer urban canopy model (UCM) have been compared, focusing on urban patches. The model simulations were performed for 6 days from 12 August to 17 August during the Texas Air Quality Study 2006 field campaign. Analysis was focused on the Houston-Galveston metropolitan area. The model simulated temperature, wind, and atmospheric boundary layer (ABL) height were compared with observations from surface meteorological stations (Continuous Ambient Monitoring Stations, CAMS), wind profilers, the NOAA Twin Otter aircraft, and the NOAA Research Vessel Ronald H. Brown. The UCM simulation showed better results in the comparison of ABL height and surface temperature than the LSM simulations, whereas the original LSM overestimated both the surface temperature and ABL height significantly in urban areas. The modified LSM, which activates hydrological processes associated with urban vegetation mainly through transpiration, slightly reduced warm and high biases in surface temperature and ABL height. A comparison of surface energy balance fluxes in an urban area indicated the UCM reproduces a realistic partitioning of sensible heat and latent heat fluxes, consequently improving the simulation of urban boundary layer. However, the LSMs have a higher Bowen ratio than the observation due to significant suppression of latent heat flux. The comparison results suggest that the subgrid heterogeneity by urban vegetation and urban morphological characteristics should be taken into account along with the associated physical parameterizations for accurate simulation of urban boundary layer if the region of interest has a large fraction of vegetation within the urban patch. Model showed significant discrepancies in the specific meteorological conditions when nocturnal low-level jets exist and a thermal internal boundary layer over water forms.

  1. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  2. Physical re-examination of parameters on a molecular collisions-based diffusion model for diffusivity prediction in polymers.

    PubMed

    Ohashi, Hidenori; Tamaki, Takanori; Yamaguchi, Takeo

    2011-12-29

    Molecular collisions, which are the microscopic origin of molecular diffusive motion, are affected by both the molecular surface area and the distance between molecules. Their product can be regarded as the free space around a penetrant molecule defined as the "shell-like free volume" and can be taken as a characteristic of molecular collisions. On the basis of this notion, a new diffusion theory has been developed. The model can predict molecular diffusivity in polymeric systems using only well-defined single-component parameters of molecular volume, molecular surface area, free volume, and pre-exponential factors. By consideration of the physical description of the model, the actual body moved and which neighbor molecules are collided with are the volume and the surface area of the penetrant molecular core. In the present study, a semiempirical quantum chemical calculation was used to calculate both of these parameters. The model and the newly developed parameters offer fairly good predictive ability. © 2011 American Chemical Society

  3. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S. M.; Xiao, X.; Faber, K. T.

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less

  4. Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas

    NASA Astrophysics Data System (ADS)

    Rüther, Heinz; Martine, Hagai M.; Mtalo, E. G.

    This paper presents a novel approach to semiautomatic building extraction in informal settlement areas from aerial photographs. The proposed approach uses a strategy of delineating buildings by optimising their approximate building contour position. Approximate building contours are derived automatically by locating elevation blobs in digital surface models. Building extraction is then effected by means of the snakes algorithm and the dynamic programming optimisation technique. With dynamic programming, the building contour optimisation problem is realized through a discrete multistage process and solved by the "time-delayed" algorithm, as developed in this work. The proposed building extraction approach is a semiautomatic process, with user-controlled operations linking fully automated subprocesses. Inputs into the proposed building extraction system are ortho-images and digital surface models, the latter being generated through image matching techniques. Buildings are modeled as "lumps" or elevation blobs in digital surface models, which are derived by altimetric thresholding of digital surface models. Initial windows for building extraction are provided by projecting the elevation blobs centre points onto an ortho-image. In the next step, approximate building contours are extracted from the ortho-image by region growing constrained by edges. Approximate building contours thus derived are inputs into the dynamic programming optimisation process in which final building contours are established. The proposed system is tested on two study areas: Marconi Beam in Cape Town, South Africa, and Manzese in Dar es Salaam, Tanzania. Sixty percent of buildings in the study areas have been extracted and verified and it is concluded that the proposed approach contributes meaningfully to the extraction of buildings in moderately complex and crowded informal settlement areas.

  5. Near Surface Geophysical Investigations of Potential Direct Recharge Zones in the Biscayne Aquifer within Everglades National Park, Florida.

    NASA Astrophysics Data System (ADS)

    Mount, G.; Comas, X.

    2017-12-01

    The karstic Miami Limestone of the Biscayne aquifer is characterized as having water flow that is controlled by the presence of dissolution enhanced porosity and mega-porous features. The dissolution features and other high porosity areas create horizontal preferential flow paths and high rates of ground water velocity, which may not be accurately conceptualized in groundwater flow models. In addition, recent research suggests the presence of numerous vertical dissolution features across Everglades National Park at Long Pine Key Trail, that may act as areas of direct recharge to the aquifer. These vertical features have been identified through ground penetrating radar (GPR) surveys as areas of velocity pull-down which have been modeled to have porosity values higher than the surrounding Miami Limestone. As climate change may induce larger and longer temporal variability between wet and dry times in the Everglades, a more comprehensive understanding of preferential flow pathways from the surface to the aquifer would be a great benefit to modelers and planners. This research utilizes near surface geophysical techniques, such as GPR, to identify these vertical dissolution features and then estimate the spatial variability of porosity using petrophysical models. GPR transects that were collected for several kilometers along the Long Pine Key Trail, show numerous pull down areas that correspond to dissolution enhanced porosity zones within the Miami Limestone. Additional 3D GPR surveys have attempted to delineate the boundaries of these features to elucidate their geometry for future modelling studies. We demonstrate the ability of near surface geophysics and petrophysical models to identify dissolution enhanced porosity in shallow karstic limestones to better understand areas that may act as zones of direct recharge into the Biscayne Aquifer.

  6. Surface finish measurement studies

    NASA Technical Reports Server (NTRS)

    Teague, E. C.

    1983-01-01

    The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.

  7. Research Advances on Radiation Transfer Modeling and Inversion for Multi-Scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.

    2011-09-01

    At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  8. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The modelmore » also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less

  9. ASTER Thermal Anomalies in Western Colorado

    DOE Data Explorer

    Richard E. Zehner

    2013-01-01

    This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2o, and areas with temperature equal to 1o to 2o, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Note: 'o' is used in place of lowercase sigma in this description.

  10. Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms.

    PubMed

    Lefevre, Sjannie; McKenzie, David J; Nilsson, Göran E

    2017-09-01

    Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass-specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists. © 2017 John Wiley & Sons Ltd.

  11. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. Note: 'o' is used in this description to represent lowercase sigma

  12. Modeling the Effects of Irrigation on Land Surface Fluxes and States over the Conterminous United States: Sensitivity to Input Data and Model Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong

    2013-09-16

    Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to producemore » unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service (NASS), differences between the two irrigation area datasets still dominate the differences in the interannual variability of land surface response to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by (1) calibrating model parameter values to account for regional differences in irrigation demand and (2) accurate representation of the spatial distribution and intensity of irrigated areas.« less

  13. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1996-01-01

    A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.

  14. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  15. Can static foot posture measurements predict regional plantar surface area?

    PubMed

    McPoil, Thomas G; Haager, Mathew; Hilt, John; Klapheke, John; Martinez, Ray; VanSteenwyk, Cory; Weber, Nicholas; Cornwall, Mark W; Bade, Michael

    2014-12-01

    The intent of this study was to determine if the use of a single or combination of static foot posture measurements can be used to predict rearfoot, midfoot, and forefoot plantar surface area in individuals with pronated or normal foot types. Twelve foot measurements were collected on 52 individuals (mean age 25.8 years) with the change in midfoot width used to place subjects in a pronated or normal foot mobility group. Dynamic plantar contact area was collected during walking with a pressure sensor platform. The 12 measures were entered into a stepwise regression analysis to determine the optimal set of measures associated with regional plantar surface area. A two variable model was found to describe the relationship between the foot measurements and forefoot plantar contact area (r(2)=0.79, p<0.0001). A four variable model was found to describe the relationship between the foot measurements and midfoot plantar contact area (r(2)=0.85, p<0.0001) in those individuals with a 1.26cm or greater change in midfoot width. The results indicate that clinicians can use a combination of simple, reliable and time efficient foot measures to explain 79% and 85% of the plantar surface area in the forefoot and midfoot, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality

    PubMed Central

    Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio

    2017-01-01

    Abstract The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project. Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal–temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal–parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. PMID:28122961

  17. Application of the Gillette model for windblown dust at Owens Lake, CA

    NASA Astrophysics Data System (ADS)

    Ono, Duane

    Windblown dust can have significant impacts on local air pollution levels, and in cases such as dust from Africa or Asia, can have global impacts on our environment. Models to estimate particulate matter emissions from windblown dust are generally based on the local wind speed, the threshold wind speed to initiate erosion, and the soil texture of a given surface. However, precipitation, soil crusting, and soil disturbance can dramatically change the threshold wind speed and erosion potential of a surface, making modeling difficult. A low-cost sampling and analysis method was developed to account for these surface changes in a wind erosion model. Windblown dust emissions measured as PM 10 (particulate matter less than a nominal 10 μm aerodynamic diameter) have been found to be generally proportional to sand flux (also known as saltation flux). In this study, a model was used to estimate sand flux using the relationship Q=AρG/g, where Q is horizontal sand flux, A is a surface erosion potential factor, ρ is air density, g is the gravitational constant, and G=∫ u*(u*2-u*t2)dt, where u* is friction velocity and u is the threshold friction velocity of the surface. The variable A in the model was derived by comparing the measured sand flux for a given period and area to G for the same period. Sand flux was monitored at Owens Lake, CA using low-cost Cox Sand Catchers (CSCs) for monthly measurements, and more expensive electronic sensors (Sensits) to measure hourly flux rates and u. Monitors were spaced 1 km apart at 114 sites, covering one clay and three sand-dominated soil areas. Good model results relied primarily on the erosion potential A, which could be determined from CSC measurements and wind speed data. Annual values for A were found to range from 1.3 to 3.5 in the three sand areas. The value of A was an order of magnitude lower (0.2) in the less erodible clay area. Previous studies showed similar values for A of 0.7 and 2.9 for a sandy site at Owens Lake, and 1.1 for a site in the Chihuahuan desert in New Mexico. The model performed well using annual values for A and better with monthly values, with R2 ranging from 0.74 to 0.87 for hourly sand flux rates in the four study areas. Monthly changes in A accounted for temporal surface changes, such as precipitation and surface crusting in the model predictions. This study demonstrated that low-cost periodic sand flux sampling using CSCs can provide a practical method to determine values for A in a simple wind erosion model, and that this model can provide good hourly and monthly estimates of sand flux rates in windblown dust areas.

  18. Hydrology, description of computer models, and evaluation of selected water-management alternatives in the San Bernardino area, California

    USGS Publications Warehouse

    Danskin, Wesley R.; McPherson, Kelly R.; Woolfenden, Linda R.

    2006-01-01

    The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to investigators and water managers in other areas, this report provides an expanded description of constrained optimization techniques and how to use them to better understand the local hydrogeology and to evaluate inter-related water-management problems. In this report, the hydrology of the San Bernardino area, defined as the Bunker Hill and Lytle Creek basins, is described and quantified for calendar years 1945-98. The major components of the surface-water system are identified, and a routing diagram of flow through these components is provided. Annual surface-water inflow and outflow for the area are tabulated using gaged measurements and estimated values derived from linear-regression equations. Average inflow for the 54-year period (1945-98) was 146,452 acre-feet per year; average outflow was 67,931 acre-feet per year. The probability of exceedance for annual surface-water inflow is calculated using a Log Pearson Type III analysis. Cumulative surface-water inflow and outflow and ground-water-level measurements indicate that the relation between the surface-water system and the ground-water system changed in about 1951, in about 1979, and again in about 1992. Higher ground-water levels prior to 1951 and between 1979 and 1992 induced ground-water discharge to Warm Creek. This discharge was quantified using streamflow measurements and can be estimated for other time periods using ground-water levels from a monitoring well (1S/4W-3Q1) and a logarithmic-regression equation. Annual wastewater discharge from the area is tabulated for the major sewage and power-plant facilities. More...

  19. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  20. Evaluation of Floodplain Modifications to Reduce the Effect of Floods Using a Two-Dimensional Hydrodynamic Model of the Flint River at Albany, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2008-01-01

    Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). The model was run at four water-surface altitudes at the Flint River at Albany streamgage (02352500): 181.5-foot (ft) altitude with a flow of 61,100 cubic feet per second (ft3/s), 184.5-ft altitude with a flow of 75,400 ft3/s, 187.5-ft altitude with a flow of 91,700 ft3/s, and 192.5-ft altitude with a flow of 123,000 ft3/s. The model was run to measure changes in inundated areas and water-surface altitudes for eight scenarios of possible modifications to the 4.8-mile reach on the Flint River. The eight scenarios include removing a human-made peninsula located downstream from Oglethorpe Boulevard, increasing the opening under the Oakridge Drive bridge, adding culverts to the east Oakridge Drive bridge approach, adding culverts to the east and west Oakridge Drive bridge approaches, adding an overflow across the oxbow north of Oakridge Drive, making the overflow into a channel, removing the Oakridge Drive bridge, and adding a combination of an oxbow overflow and culverts on both Oakridge Drive bridge approaches. The modeled inundation and water-surface altitude changes were mapped for use in evaluating the river modifications. The most effective scenario at reducing inundated area was the combination scenario. At the 187.5-ft altitude, the inundated area decreased from 4.24 square miles to 4.00 square miles. The remove-peninsula scenario was the least effective with a reduction in inundated area of less than 0.01 square miles. In all scenarios, the inundated area reduction increased with water-surface altitude, peaking at the 187.5-ft altitude. The inundated area reduction then decreased at the gage altitude of 192.5 ft.

  1. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  2. Geospatial analysis of spaceborne remote sensing data for assessing disaster impacts and modeling surface runoff in the built-environment

    NASA Astrophysics Data System (ADS)

    Wodajo, Bikila Teklu

    Every year, coastal disasters such as hurricanes and floods claim hundreds of lives and severely damage homes, businesses, and lifeline infrastructure. This research was motivated by the 2005 Hurricane Katrina disaster, which devastated the Mississippi and Louisiana Gulf Coast. The primary objective was to develop a geospatial decision-support system for extracting built-up surfaces and estimating disaster impacts using spaceborne remote sensing satellite imagery. Pre-Katrina 1-m Ikonos imagery of a 5km x 10km area of Gulfport, Mississippi, was used as source data to develop the built-up area and natural surfaces or BANS classification methodology. Autocorrelation of 0.6 or higher values related to spectral reflectance values of groundtruth pixels were used to select spectral bands and establish the BANS decision criteria of unique ranges of reflectance values. Surface classification results using GeoMedia Pro geospatial analysis for Gulfport sample areas, based on BANS criteria and manually drawn polygons, were within +/-7% of the groundtruth. The difference between the BANS results and the groundtruth was statistically not significant. BANS is a significant improvement over other supervised classification methods, which showed only 50% correctly classified pixels. The storm debris and erosion estimation or SDE methodology was developed from analysis of pre- and post-Katrina surface classification results of Gulfport samples. The SDE severity level criteria considered hurricane and flood damages and vulnerability of inhabited built-environment. A linear regression model, with +0.93 Pearson R-value, was developed for predicting SDE as a function of pre-disaster percent built-up area. SDE predictions for Gulfport sample areas, used for validation, were within +/-4% of calculated values. The damage cost model considered maintenance, rehabilitation and reconstruction costs related to infrastructure damage and community impacts of Hurricane Katrina. The developed models were implemented for a study area along I-10 considering the predominantly flood-induced damages in New Orleans. The BANS methodology was calibrated for 0.6-m QuickBird2 multispectral imagery of Karachi Port area in Pakistan. The results were accurate within +/-6% of the groundtruth. Due to its computational simplicity, the unit hydrograph method is recommended for geospatial visualization of surface runoff in the built-environment using BANS surface classification maps and elevations data. Key words. geospatial analysis, satellite imagery, built-environment, hurricane, disaster impacts, runoff.

  3. Investigation of possible effects of surface coal mining on hydrology and landscape stability in part of the Powder River structural basin, northeastern Wyoming

    USGS Publications Warehouse

    Bloyd, R.M.; Daddow, P.B.; Jordon, P.R.; Lowham, H.W.

    1986-01-01

    The effects of surface coal mining on the surface- and groundwater systems in a 5,400 sq mi area in the Powder River Basin, Wyoming, that includes 20 major coal mines were evaluated using three approaches: A surface water model, a landscape-stability analysis, and a groundwater model. A surface water model was developed for the Belle Fourche River basin. The Hydrological Simulation Program-Fortran model was used to simulate changes in streamflow and changes in dissolved-solids and sulfate concentrations. Simulated streamflows resulting from less than average rainfall were small, changes in flow from premining to during-mining and postmining conditions were less than 2.5%, and changes in mean dissolved-solids and sulfate concentrations ranged from 1 to 7%. A landscape-stability analysis resulted in regression relations to aid in the reconstruction of reclaimed drainage networks. Hypsometric analyses indicate the larger basins are relatively stable, and statistical data from these basins may be used to design the placement of material within a mined basin to approximate natural, stable landscapes in the area. The attempt to define and simulate the groundwater system in the area using a groundwater-flow model was unsuccessful. The steady-state groundwater-flow model could not be calibrated. The modeling effort failed principally because of insufficient quantity and quality of data to define the spatial distribution of aquifer properties; the hydraulic-head distribution within and between aquifers; and the rates of groundwater recharge and discharge, especially for steady-state conditions. (USGS)

  4. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    EPA Pesticide Factsheets

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  5. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H2O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.

  6. Two-dimensional simulation of the June 11, 2010, flood of the Little Missouri River at Albert Pike Recreational Area, Ouachita National Forest, Arkansas

    USGS Publications Warehouse

    Wagner, Daniel M.

    2013-01-01

    In the early morning hours of June 11, 2010, substantial flooding occurred at Albert Pike Recreation Area in the Ouachita National Forest of west-central Arkansas, killing 20 campers. The U.S. Forest Service needed information concerning the extent and depth of flood inundation, the water velocity, and flow paths throughout Albert Pike Recreation Area for the flood and for streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The two-dimensional flow model Fst2DH, part of the Federal Highway Administration’s Finite Element Surface-water Modeling System, and the graphical user interface Surface-water Modeling System (SMS) were used to perform a steady-state simulation of the flood in a 1.5-mile reach of the Little Missouri River at Albert Pike Recreation Area. Peak streamflows of the Little Missouri River and tributary Brier Creek served as inputs to the simulation, which was calibrated to the surveyed elevations of high-water marks left by the flood and then used to predict flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The simulated extent of the June 11, 2010, flood matched the observed extent of flooding at Albert Pike Recreation Area. The mean depth of inundation in the camp areas was 8.5 feet in Area D, 7.4 feet in Area C, 3.8 feet in Areas A, B, and the Day Use Area, and 12.5 feet in Lowry’s Camp Albert Pike. The mean water velocity was 7.2 feet per second in Area D, 7.6 feet per second in Area C, 7.2 feet per second in Areas A, B, and the Day Use Area, and 7.6 feet per second in Lowry’s Camp Albert Pike. A sensitivity analysis indicated that varying the streamflow of the Little Missouri River had the greatest effect on simulated water-surface elevation, while varying the streamflow of tributary Brier Creek had the least effect. Simulated water-surface elevations were lower than those modeled by the U.S. Forest Service using the standard-step method, but the comparison between the two was favorable with a mean absolute difference of 0.58 feet in Area C and 0.32 feet in Area D. Results of a HEC-RAS model of the Little Missouri River watershed upstream from the U.S. Geological Survey streamflow-gaging station near Langley showed no difference in mean depth in the areas in common between the models, and a difference in mean velocity of only 0.5 foot per second. Predictions of flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent indicated that the extent of inundation of the June 11, 2010, flood exceeded that of the 1 percent flood, and that for both the 1 and 2 percent floods, all of Areas C and D, and parts of Areas A, B, and the Day Use Area were inundated. Predicted water-surface elevations for the 1 and 2 percent floods were approximately 1 foot lower than those predicted by the U.S. Forest Service using a standard-step model.

  7. An Improved MUSIC Model for Gibbsite Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area wasmore » available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.« less

  8. Spatial variability and landscape controls of near-surface permafrost within the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Rose, Joshua R.; Rigge, Matthew; Walvoord, Michelle Ann

    2014-01-01

    The distribution of permafrost is important to understand because of permafrost's influence on high-latitude ecosystem structure and functions. Moreover, near-surface (defined here as within 1 m of the Earth's surface) permafrost is particularly susceptible to a warming climate and is generally poorly mapped at regional scales. Subsequently, our objectives were to (1) develop the first-known binary and probabilistic maps of near-surface permafrost distributions at a 30 m resolution in the Alaskan Yukon River Basin by employing decision tree models, field measurements, and remotely sensed and mapped biophysical data; (2) evaluate the relative contribution of 39 biophysical variables used in the models; and (3) assess the landscape-scale factors controlling spatial variations in permafrost extent. Areas estimated to be present and absent of near-surface permafrost occupy approximately 46% and 45% of the Alaskan Yukon River Basin, respectively; masked areas (e.g., water and developed) account for the remaining 9% of the landscape. Strong predictors of near-surface permafrost include climatic indices, land cover, topography, and Landsat 7 Enhanced Thematic Mapper Plus spectral information. Our quantitative modeling approach enabled us to generate regional near-surface permafrost maps and provide essential information for resource managers and modelers to better understand near-surface permafrost distribution and how it relates to environmental factors and conditions.

  9. Surges of outlet glaciers from the Drangajökull ice cap, northwest Iceland

    NASA Astrophysics Data System (ADS)

    Brynjólfsson, Skafti; Schomacker, Anders; Korsgaard, Niels J.; Ingólfsson, Ólafur

    2016-09-01

    Surface elevation and volume changes of the Drangajökull surge-type glaciers, Reykjarfjarðarjökull and Leirufjarðarjökull, were studied by comparing digital elevation models that pre-date and post-date their most recent surges. Annual glacier-frontal measurements were used to estimate average ice velocities during the last surge of the glaciers. The observations show a distinct ice discharge, most of which was from the upper reservoir areas, down to the receiving areas during the surges. The surface draw-down in the reservoir areas was usually 10-30 m during the surges, while the thickening of the receiving areas was significantly more variable, on the order of 10-120 m. Despite a negative geodetic net mass balance derived from the digital elevation models, the reservoir areas have been gaining mass since the surge terminations. This surface thickening along with considerable ablation of the receiving areas will most likely return the glacier surface profiles to the pre-surge stage. Our results indicate that (a) greatest surface thinning in the upper reservoir areas of Drangajökull rather than proximal to the equilibrium line during Vatnajökull surges and (b) development of Drangajökull surges that resembles Svalbard surge-type glaciers rather than Vatnajökull surge-type glaciers. The contrasting surge characteristics could be explained by differences in glacier geometry, topography and substratum of the Drangajökull and Vatnajökull surge-type glaciers.

  10. In-use catalyst surface area and its relation to HC conversion efficiency and FTP emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, K.S.; Sabourin, M.A.; Larson, R.E.

    1986-01-01

    Surface area data, steady-state hydrocarbon conversion efficiency data, and hydrocarbon emissions results have been determined for catalysts collected by the U.S. Environmental Protection Agency from properly maintained 1981 and 1982 model year vehicles. Catalysts covered in this study were limited to those with three-way-plus-oxidation monolith technologies. Catalyst surface areas were measured using the BET method, conversion efficiencies were measured on an exhaust gas generator, and emissions results were determined using the Urban Driving Schedule of the Federal Test Procedure. Results indicate that correlation of catalyst surface area data with hydrocarbon conversion efficiency data and hydrocarbon emissions results is significant formore » the sample studied.« less

  11. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  12. Verification of Methods for Assessing the Sustainability of Monitored Natural Attenuation (MNA)

    DTIC Science & Technology

    2013-01-01

    surface CVOC chlorinated volatile organic compound DCE cis-1,2-Dichloroethylene DNAPL dense non-aqueous phase liquid DO dissolved oxygen DOC...considered detailed representations of aquifer heterogeneity, DNAPL distributions, and interfacial surface area. Thus, the upscaled SZD function considers...the effects of decreases in interfacial surface area with time as NAPL mass depletes, but not in an explicit manner. Likewise, the upscaled model is

  13. Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, M. H.; Wen, W. H.; Chen, C. C.

    2014-12-01

    Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.

  14. Cometary activity and nucleus modelling: a new approach

    NASA Astrophysics Data System (ADS)

    Möhlmann, D.

    1996-06-01

    The phenomena of comet splittings with an average frequency of about one splitting per 100 years and comet (Chen and Jewitt, Icarus108, 265-271, 1994), and the restriction of cometary activity to well-defined small areas at the almost passive and mantle covered surface (Keller et al., ESA SP-250, Vol. II, pp. 363-364, 1986) are at present driving challenges to models of structure and evolution of comet nuclei. Extending the presently discussed models by incorporating lateral subsurface transport of sublimed volatiles, there appears the possibility that the places of sublimation are different from those of activity (the so-called active areas). Then, there is no necessity to distinguish between different surface properties at active and passive areas, assuming, e.g. an uncovered icy surface at active areas. Active areas are simply the very local "source sites" where the accumulated subsurface flows from distant regions reach the surface. The pressure driven subsurface flows of volatiles may not only leave the comet at its surface, they may penetrate via cracks, etc. also deeply into the nucleus. There they can cause a further growth of cracks and also new cracks. This can be a cause for the observed regular splittings. Furthermore, actual models (Kührt and Keller, Icarus109, 121-132, 1994; Skorov and Rickman, Planet. Space Sci.43, 1587-1594, 1995) of the gas transport through porous comet surface crusts can be interpreted as to give first indications for thermodynamical parameters in heat conducting and porous cometary crusts which are appropriate for 1 AU conditions to permit the temporary existence of a layer with fluid subsurface water within these crusts. This exciting result of the possible temporary existence of subsurface warm water in comets which approach the Sun within about 1 AU makes a cometary subsurface chemistry much more efficient than expected hitherto.

  15. Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis.

    PubMed

    Mui, Edward L K; Cheung, W H; Valix, Marjorie; McKay, Gordon

    2010-07-15

    Two types of activated carbons from tyre char (with or without sulphuric acid treatment) were produced via carbon dioxide activation with BET surface areas in the range 59-1118 m(2)/g. Other characterisation tests include micropore and mesopore surface areas and volumes, pH, and elemental compositions, particularly heteroatoms such as nitrogen and sulphur. They were correlated to the adsorption capacity which were in the range of 0.45-0.71 mmol/g (untreated) and 0.62-0.84 mmol/g (acid-treated) for Acid Blue 25. In the case of larger-sized molecules like Acid Yellow 117, capacities were in the range of 0.23-0.42 mmol/g (untreated) and 0.29-0.40 mmol/g (acid-treated). Some tyre carbons exhibit a more superior performance than a microporous, commercial activated carbon (Calgon F400). By modelling the dye adsorption equilibrium data, the Redlich-Peterson isotherm is adopted as it has the lowest SSE. Based on the surface coverage analysis, a novel molecular orientation modelling of adsorbed dyes has been proposed and correlated with surface area and surface charge. For the acid dyes used in this study, molecules were likely to be adsorbed by the mesopore areas. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Modelling surface water-groundwater interaction with a conceptual approach: model development and application in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; McMillan, H. K.

    2016-12-01

    As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of data requirement, the integrated model could be used at local and national scales to improve the simulation of hydrological processes in non-topographically driven areas (where groundwater processes are important), and to assess impact of climate change on the integrated hydrological cycle in these areas.

  17. Modeling of the fate of radionuclides in urban sewer systems after contamination due to nuclear or radiological incidents.

    PubMed

    Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R

    2013-04-01

    After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the treatment plant is estimated. For Cs-137 radiation levels in the plant are low since wash-off of cesium from surfaces is an ineffective process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models, which shows that porosity reduction is always accompanied by a reduction in characteristic pore size. The high powers of porosity of the grain-based and surface-area models are required to compensate for the inclusion of the small end of the pore size spectrum.

  19. Research Advances on Radiation Transfer Modeling and Inversion for Multi-scale Land Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.

    2011-12-01

    As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.

  20. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  1. Multiscale Simulations of ALD in Cross Flow Reactors

    DOE PAGES

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less

  2. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen

    2006-09-21

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significantmore » improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.« less

  3. Model velocities assessment and HF radar data assimilation in the Ibiza Channel

    NASA Astrophysics Data System (ADS)

    Hernandez Lasheras, Jaime; Mourre, Baptiste; Reyes, Emma; Marmain, Julien; Orfila, Alejandro; Tintoré, Joaquin

    2017-04-01

    High Frequency Radar (HFR) provides continuous and high-resolution surface current measurements over wide coastal areas, enabling the observation of dynamic processes at the atmosphere-ocean interface, where a lot of momentum and heat exchange takes place, which is still not fully understood. Furthermore, HFR data provide critical information to improve numerical model predictions through data assimilation. However, the routine assimilation of HFR surface current data in operational models is still a challenge from both the methodological and computational points of view. Since 2012, SOCIB, the Balearic Islands Coastal Observing and Forecasting System, operates two coastal HFR sites with the purpose of monitoring the surface currents of the Ibiza Channel (Western Mediterranean Sea). It is an area characterized by important meridional flow exchanges with significant impacts on ecosystems. The circulation in the Ibiza Channel results from the complex interaction of different water masses under strong topographic constraints. This makes the area very challenging from the point of view of numerical modeling. Indeed, models are generally found to represent erroneous flows across this section. In this work, we perform the first steps to evaluate the potential of HFR data to improve the model circulation in the Ibiza Channel area with data assimilation. A multimodel Ensemble Optimal Interpolation scheme has been coupled to the SOCIB Western Mediterranean Operational Model (WMOP) to assimilate multiplatform observations, including the HFR surface velocities. WMOP is a 2-km resolution configuration of the ROMS model using CMEMS numerical products as initial and boundary conditions and high-resolution surface forcing from the Spanish Meteorological Agency. To evaluate whether the model properly captures the main dynamical features observed in the Ibiza Channel (which is a prerequisite for a successful data assimilation), comparison of spatial empirical orthogonal function (EOF) patterns from HFR observations and from model results have been performed. Results show good agreement between the two first modes of variability of both data sets, which explain the north-south and east-west flows, respectively. The comparison with ADCP data in the HFR coverage area shows also good agreement with the main vertical modes of the model at the first 120 m. In our approach, model error covariances are estimated by sampling three long-run simulations of the WMOP system with different initial/boundary forcing and mixing parameters. Vertical correlations in the HFR coverage area are validated using ADCP measurements at the mooring. As expected, correlations decrease with depth both in the model as well as with the ADCP data. The agreement is found to vary with the season and the velocity component under consideration. The first results of multiplatform data assimilation experiments using this modelling setup and including HFR, SST, SSH and in situ profiles will then be presented.

  4. Constraining the uncertainty in emissions over India with a regional air quality model evaluation

    NASA Astrophysics Data System (ADS)

    Karambelas, Alexandra; Holloway, Tracey; Kiesewetter, Gregor; Heyes, Chris

    2018-02-01

    To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km × 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (-63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km2. In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km2 (dense-urban), we find model overestimates in both the column (+57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus serve as an important emissions and model evaluation metric where surface observations are lacking, such as rural India, and support improved emissions inventory development.

  5. New Mathematical Model for the Surface Area of the Left Ventricle by the Truncated Prolate Spheroid

    PubMed Central

    Vale, Marcos de Paula; Martinez, Carlos Barreira

    2017-01-01

    The main aim of this study was the formula application of the superficial area of a truncated prolate spheroid (TPS) in Cartesian coordinates in obtaining a cardiac parameter that is not so much discussed in literature, related to the left ventricle (LV) surface area of the human heart, by age and sex. First we obtain a formula for the area of a TPS. Then a simple mathematical model of association of the axes measures of a TPS with the axes of the LV is built. Finally real values of the average dimensions of the humans LV are used to measure surface areas approximations of this heart chamber. As a result, the average superficial area of LV for normal patients is obtained and it is observed that the percentage differences of areas between men and women and their consecutive age groups are constant. A strong linear correlation between the obtained areas and the ventricular volumes normalized by the body areas was observed. The obtained results indicate that the superficial area of the LV, besides enabling a greater knowledge of the geometrical characteristics of the human LV, may be used as one of the normality cardiac verification criteria and be useful for medical and biological applications. PMID:28547001

  6. Restoring the hydrologic response to pre-developed conditions in an urbanized headwater catchment: Reality or utopia?

    NASA Astrophysics Data System (ADS)

    Wright, O.; Istanbulluoglu, E.

    2012-12-01

    The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.

  7. Laboratory Studies of Atmospheric Heterogeneous Chemistry

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.; Leu, M-T.

    1993-01-01

    In the laboratory, ice films formed by freezing from the liquid or more frequently by deposition from the vapor phase have been used to simulate stratospheric cloud surfaces for measurements of reaction and uptake rates. To obtain intrinsic surface reaction probabilities that can be used in atmospheric models, the area of the film surface that actually takes part in the reaction must be known. It is important to know not only the total surface area but also the film morphology in order to determine where and how the surface is situated and, thus, what fraction of it is available for reaction. Information on the structure of these ice films has been obtained by using several experimental methods. In the sections that follow, these methods will be discussed, then the results will be used to construct a working model of the ice films, and finally the model will be applied to an experimental study of HC1 uptake by H_2O ice.

  8. Monitoring the inhibition of erosion by a CO2 laser with OCT

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Fried, Daniel

    2014-02-01

    Since optical coherence tomography (OCT) is well suited for measuring small dimensional changes on tooth surfaces, OCT has great potential for monitoring tooth erosion. Previous studies have shown that enamel areas ablated by a carbon dioxide laser manifested lower rates of erosion compared to the nonablated areas. The purpose of this study was to develop a model to monitor erosion in vitro that could potentially be used in vivo. Teeth surfaces were irradiated with a carbon dioxide laser at low sub-ablative fluence to create an acid-resistant reference layer without damaging the enamel. The laser treated areas were compared with the unprotected areas using OCT during exposure to a pH cycling model for up to 6 days. The laser treated areas markedly reduced the rate of erosion.

  9. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    PubMed

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    PubMed Central

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  11. Assessment of Cottle's areas through the application of a mathematical model deriving from acoustic rhinometry and rhinomanometric data.

    PubMed

    Zambetti, G; Filiaci, F; Romeo, R; Soldo, P; Filiaci, F

    2005-04-01

    Each nasal area, as defined by Cottle, has a different influence on the nasal airflow. The longitudinal distribution of resistances in nasal cavities was calculated by the anterior rhinomanometry and acoustic rhinometry data. Dynamic study of Cottle's areas in normal subjects was carried out by rhinomanometry and acoustic rhinometry. Study by the Department of Otolaryngology of the University of Rome-La Sapienza. Twenty-seven Caucasian adults in local and general healthy conditions took part and completed this study, with a total of 54 nasal cavities included because of negativity at ENT-examination and clinical history, with normal respiratory parameters at the rhinomanometry and acoustic rhinometry. We determined nasal and acoustic resistances, nasal volumes and cross-sectional surface areas, as defined by Cottle, using nasal endoscopy. The longitudinal distribution of nasal resistances was obtained by integrating experimental surface areas using a novel mathematical model. The estimation of the longitudinal nasal resistance variations as a result of a theoretical reduction of the surface areas. The reduction of the 2-3-1 areas (in this order of importance) showed the greatest influence on the nasal resistances with coefficients of determinations greater than 0.98, this being quite different from that of the areas 4 and 5 for quite smaller area reduction percentages. The areas 2-3-1 control the overall nasal resistance so the surgical procedures on these areas greatly influence the dynamics of nasal airflow. The mathematical model developed here gives useful information to nasal functional surgery and may be applied to other schemes of nasal cavity.

  12. An LNG release, transport, and fate model system for marine spills.

    PubMed

    Spaulding, Malcolm L; Swanson, J Craig; Jayko, Kathy; Whittier, Nicole

    2007-02-20

    LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets. The model is designed to predict the gas mass balance as a function of time and to display the spatial and temporal evolution of the gas (and radiated energy field). LNGMAP has been validated by comparisons to predictions of models developed by ABS Consulting and Sandia for time dependent point releases from a draining tank, with and without burning. Simulations were in excellent agreement with those performed by ABS Consulting and consistent with Sandia's steady state results. To illustrate the model predictive capability for realistic emergency scenarios, simulations were performed for a tanker entering Block Island Sound. Three hypothetical cases were studied: the first assumes the vessel continues on course after the spill starts, the second that the vessel stops as soon as practical after the release begins (3 min), and the third that the vessel grounds at the closest site practical. The model shows that the areas of the surface pool and the incident thermal radiation field (with burning) are minimized and dispersed vapor cloud area (without burning) maximized if the vessel continues on course. For this case the surface pool area, with burning, is substantially smaller than for the without burning case because of the higher mass loss rate from the surface pool due to burning. Since the vessel speed substantially exceeds the spill spreading rate, both the thermal radiation fields and surface pool trail the vessel. The relative directions and speeds of the wind and vessel movement govern the orientation of the dispersed plume. If the vessel stops, the areas of the surface pool and incident radiation field (with burning) are maximized and the dispersed cloud area (without burning) minimized. The longer the delay in stopping the vessel, the smaller the peak values are for the pool area and the size of the thermal radiation field. Once the vessel stops, the spill pool is adjacent to the vessel and moving down current. The thermal radiation field is oriented similarly. These results may be particularly useful in contingency planning for underway vessels.

  13. Simulation of the shallow groundwater-flow system in the Forest County Potawatomi Community, Forest County, Wisconsin

    USGS Publications Warehouse

    Fienen, Michael N.; Saad, David A.; Juckem, Paul F.

    2013-01-01

    The shallow groundwater system in the Forest County Potawatomi Comminity, Forest County, Wisconsin, was simulated by expanding and recalibrating a previously calibrated regional model. The existing model was updated using newly collected water-level measurements, inclusion of surface-water features beyond the previous near-field boundary, and refinements to surface-water features. The updated model then was used to calculate the area contributing recharge for seven existing and three proposed pumping locations on lands of the Forest County Potawatomi Community. The existing wells were the subject of a 2004 source-water evaluation in which areas contributing recharge were calculated using the fixed-radius method. The motivation for the present (2012) project was to improve the level of detail of areas contributing recharge for the existing wells and to provide similar analysis for the proposed wells. Delineated 5- and 10-year areas contributing recharge for existing and proposed wells extend from the areas of pumping to delineate the area at the surface contributing recharge to the wells. Steady-state pumping was simulated for two scenarios: a base-pumping scenario using pumping rates that reflect what the Community currently (2012) pumps (or plans to in the case of proposed wells), and a high-pumping scenario in which the rate was set to the maximum expected from wells installed in this area, according to the Forest County Potawatomi Community Natural Resources Department. In general, the 10-year areas contributing recharge did not intersect surface-water bodies. The 5- and 10-year areas contributing recharge simulated at the maximum pumping rate at Bug Lake Road may intersect Bug Lake. At the casino near the Town of Carter, Wisconsin, the 10-year areas contributing recharge intersect infiltration ponds. At the Devils Lake and Lois Crow Drive wells, areas contributing recharge are near cultural features, including residences.

  14. A hybrid HDRF model of GOMS and SAIL: GOSAIL

    NASA Astrophysics Data System (ADS)

    Dou, B.; Wu, S.; Wen, J.

    2016-12-01

    Understanding the surface reflectance anisotropy is the key facet in interpreting the features of land surface from remotely sensed information, which describes the property of land surface to reflect the solar radiation directionally. Most reflectance anisotropy models assumed the nature surface was illuminated only by the direct solar radiation, while the diffuse skylight becomes dominant especially for the over cast sky conditions and high rugged terrain. Correcting the effect of diffuse skylight on the reflectance anisotropy to obtain the intrinsic directional reflectance of land surface is highly desirable for remote sensing applications. This paper developed a hybrid HDRF model of GOMS and SAIL called GOSAIL model for discrete canopies. The accurate area proportions of four scene components are calculated by the GOMS model and the spectral signatures of scene components are provided by the SAIL model. Both the single scattering contribution and the multiple scattering contributions within and between the canopy and background under the clear and diffuse illumination conditions are considered in the GOSAIL model. The HDRF simulated by the 3-D Discrete Anisotropic Radiative Transfer (DART) model and the HDRF measurements over the 100m×100m mature pine stand at the Järvselja, Estonia are used for validating and evaluating the performance of proposed GOSAIL model. The comparison results indicate the GOSAIL model can accurately reproducing the angular feature of discrete canopy for both the clear and overcast atmospheric conditions. The GOSAIL model is promising for the land surface biophysical parameters retrieval (e.g. albedo, leaf area index) over the heterogeneous terrain.

  15. Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain.

    PubMed

    Potvin, Olivier; Dieumegarde, Louis; Duchesne, Simon

    2017-08-01

    Proper normative data of anatomical measurements of cortical regions, allowing to quantify brain abnormalities, are lacking. We developed norms for regional cortical surface areas, thicknesses, and volumes based on cross-sectional MRI scans from 2713 healthy individuals aged 18 to 94 years using 23 samples provided by 21 independent research groups. The segmentation was conducted using FreeSurfer, a widely used and freely available automated segmentation software. Models predicting regional cortical estimates of each hemisphere were produced using age, sex, estimated total intracranial volume (eTIV), scanner manufacturer, magnetic field strength, and interactions as predictors. The explained variance for the left/right cortex was 76%/76% for surface area, 43%/42% for thickness, and 80%/80% for volume. The mean explained variance for all regions was 41% for surface areas, 27% for thicknesses, and 46% for volumes. Age, sex and eTIV predicted most of the explained variance for surface areas and volumes while age was the main predictors for thicknesses. Scanner characteristics generally predicted a limited amount of variance, but this effect was stronger for thicknesses than surface areas and volumes. For new individuals, estimates of their expected surface area, thickness and volume based on their characteristics and the scanner characteristics can be obtained using the derived formulas, as well as Z score effect sizes denoting the extent of the deviation from the normative sample. Models predicting normative values were validated in independent samples of healthy adults, showing satisfactory validation R 2 . Deviations from the normative sample were measured in individuals with mild Alzheimer's disease and schizophrenia and expected patterns of deviations were observed. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Develop and Test a Solvent Accessible Surface Area-Based Model in Conformational Entropy Calculations

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2012-01-01

    It is of great interest in modern drug design to accurately calculate the free energies of protein-ligand or nucleic acid-ligand binding. MM-PBSA (Molecular Mechanics-Poisson Boltzmann Surface Area) and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) have gained popularity in this field. For both methods, the conformational entropy, which is usually calculated through normal mode analysis (NMA), is needed to calculate the absolute binding free energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the conformational entropy based upon solvent accessible surface area calculations. In our approach, the conformational entropy of a molecule, S, can be obtained by summing up the contributions of all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the same weight and a general parameter k is applied to balance the contributions of the two types of surface areas. This entropy model was parameterized using a large set of small molecules for which their conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated in three tests. For the convenience, TS, the product of temperature T and conformational entropy S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid systems sampled with molecular dynamics simulations (10 snapshots were collected for post-entropy calculations): the mean correlation coefficient squares (R2) was 0.56. As to the 20 complexes, the TS changes upon binding, TΔS, were also calculated and the mean R2 was 0.67 between NMA and WSAS. In the second test, TS were calculated for 12 proteins decoy sets (each set has 31 conformations) generated by the Rosetta software package. Again, good correlations were achieved for all decoy sets: the mean, maximum, minimum of R2 were 0.73, 0.89 and 0.55, respectively. Finally, binding free energies were calculated for 6 protein systems (the numbers of inhibitors range from 4 to 18) using four scoring functions. Compared to the measured binding free energies, the mean R2 of the six protein systems were 0.51, 0.47, 0.40 and 0.43 for MM-GBSA-WSAS, MM-GBSA-NMA, MM-PBSA-WSAS and MM-PBSA-NMA, respectively. The mean RMS errors of prediction were 1.19, 1.24, 1.41, 1.29 kcal/mol for the four scoring functions, correspondingly. Therefore, the two scoring functions employing WSAS achieved a comparable prediction performance to that of the scoring functions using NMA. It should be emphasized that no minimization was performed prior to the WSAS calculation in the last test. Although WSAS is not as rigorous as physical models such as quasi-harmonic analysis and thermodynamic integration (TI), it is computationally very efficient as only surface area calculation is involved and no structural minimization is required. Moreover, WSAS has achieved a comparable performance to normal mode analysis. We expect that this model could find its applications in the fields like high throughput screening (HTS), molecular docking and rational protein design. In those fields, efficiency is crucial since there are a large number of compounds, docking poses or protein models to be evaluated. A list of acronyms and abbreviations used in this work is provided for quick reference. PMID:22497310

  17. Coupling impervious surface rate derived from satellite remote sensing with distributed hydrological model for highly urbanized watershed flood forecasting

    NASA Astrophysics Data System (ADS)

    Dong, L.

    2017-12-01

    Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin

  18. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    NASA Astrophysics Data System (ADS)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  19. The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone

    NASA Astrophysics Data System (ADS)

    Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.

    2017-12-01

    Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.

  20. Using airborne laser scanning profiles to validate marine geoid models

    NASA Astrophysics Data System (ADS)

    Julge, Kalev; Gruno, Anti; Ellmann, Artu; Liibusk, Aive; Oja, Tõnis

    2014-05-01

    Airborne laser scanning (ALS) is a remote sensing method which utilizes LiDAR (Light Detection And Ranging) technology. The datasets collected are important sources for large range of scientific and engineering applications. Mostly the ALS is used to measure terrain surfaces for compilation of Digital Elevation Models but it can also be used in other applications. This contribution focuses on usage of ALS system for measuring sea surface heights and validating gravimetric geoid models over marine areas. This is based on the ALS ability to register echoes of LiDAR pulse from the water surface. A case study was carried out to analyse the possibilities for validating marine geoid models by using ALS profiles. A test area at the southern shores of the Gulf of Finland was selected for regional geoid validation. ALS measurements were carried out by the Estonian Land Board in spring 2013 at different altitudes and using different scan rates. The one wavelength Leica ALS50-II laser scanner on board of a small aircraft was used to determine the sea level (with respect to the GRS80 reference ellipsoid), which follows roughly the equipotential surface of the Earth's gravity field. For the validation a high-resolution (1'x2') regional gravimetric GRAV-GEOID2011 model was used. This geoid model covers the entire area of Estonia and surrounding waters of the Baltic Sea. The fit between the geoid model and GNSS/levelling data within the Estonian dry land revealed RMS of residuals ±1… ±2 cm. Note that such fitting validation cannot proceed over marine areas. Therefore, an ALS observation-based methodology was developed to evaluate the GRAV-GEOID2011 quality over marine areas. The accuracy of acquired ALS dataset were analyzed, also an optimal width of nadir-corridor containing good quality ALS data was determined. Impact of ALS scan angle range and flight altitude to obtainable vertical accuracy were investigated as well. The quality of point cloud is analysed by cross validation between overlapped flight lines and the comparison with tide gauge stations readings. The comparisons revealed that the ALS based profiles of sea level heights agree reasonably with the regional geoid model (within accuracy of the ALS data and after applying corrections due to sea level variations). Thus ALS measurements are suitable for measuring sea surface heights and validating marine geoid models.

  1. Surface area-volume ratios in insects.

    PubMed

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. A simulation-optimization model for effective water resources management in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. The refined model is based on the finite volume method using a cell-centred structured grid, providing thus flexibility and accuracy in simulating irregular boundary geometries. For addressing water resources management problems, simulation models are usually externally coupled with optimisation-based management models. However this usually requires a very large number of iterations between the optimisation and simulation models in order to obtain the optimal management solution. As an alternative approach, for improved computational efficiency, an Artificial Neural Network (ANN) is trained as an approximate simulator of IRENE. The trained ANN is then linked to a Genetic Algorithm (GA) based optimisation model for managing salinisation problems in the coastal zone. The linked simulation-optimisation model is applied to a hypothetical study area for performance evaluation. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece.

  3. Wave optics simulation of statistically rough surface scatter

    NASA Astrophysics Data System (ADS)

    Lanari, Ann M.; Butler, Samuel D.; Marciniak, Michael; Spencer, Mark F.

    2017-09-01

    The bidirectional reflectance distribution function (BRDF) describes optical scatter from surfaces by relating the incident irradiance to the exiting radiance over the entire hemisphere. Laboratory verification of BRDF models and experimentally populated BRDF databases are hampered by sparsity of monochromatic sources and ability to statistically control the surface features. Numerical methods are able to control surface features, have wavelength agility, and via Fourier methods of wave propagation, may be used to fill the knowledge gap. Monte-Carlo techniques, adapted from turbulence simulations, generate Gaussian distributed and correlated surfaces with an area of 1 cm2 , RMS surface height of 2.5 μm, and correlation length of 100 μm. The surface is centered inside a Kirchhoff absorbing boundary with an area of 16 cm2 to prevent wrap around aliasing in the far field. These surfaces are uniformly illuminated at normal incidence with a unit amplitude plane-wave varying in wavelength from 3 μm to 5 μm. The resultant scatter is propagated to a detector in the far field utilizing multi-step Fresnel Convolution and observed at angles from -2 μrad to 2 μrad. The far field scatter is compared to both a physical wave optics BRDF model (Modified Beckmann Kirchhoff) and two microfacet BRDF Models (Priest, and Cook-Torrance). Modified Beckmann Kirchhoff, which accounts for diffraction, is consistent with simulated scatter for multiple wavelengths for RMS surface heights greater than λ/2. The microfacet models, which assume geometric optics, are less consistent across wavelengths. Both model types over predict far field scatter width for RMS surface heights less than λ/2.

  4. Spatially Distributed Assimilation of Remotely Sensed Leaf Area Index and Potential Evapotranspiration for Hydrologic Modeling in Wetland Landscapes

    EPA Science Inventory

    Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. However, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate ...

  5. COMPARISON OF MEASURED AND MODELED SURFACE FLUXES OF HEAT, MOISTURE, AND CHEMICAL DRY DEPOSITION

    EPA Science Inventory

    Realistic air quality modeling requires accurate simulation of both meteorological and chemical processes within the planetary boundary layer (PBL). n vegetated areas, the primary pathway for surface fluxes of moisture as well a many gaseous chemicals is through vegetative transp...

  6. Microwave scattering models and basic experiments

    NASA Technical Reports Server (NTRS)

    Fung, Adrian K.

    1989-01-01

    Progress is summarized which has been made in four areas of study: (1) scattering model development for sparsely populated media, such as a forested area; (2) scattering model development for dense media, such as a sea ice medium or a snow covered terrain; (3) model development for randomly rough surfaces; and (4) design and conduct of basic scattering and attenuation experiments suitable for the verification of theoretical models.

  7. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    NASA Astrophysics Data System (ADS)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react with CO2-rich fluids, decreasing the effective reactive surface area. Predictive models of CO2 sequestration under geological conditions should take into account the inhibiting role of surface coating formation. The CO2 rich fluid-rock interactions may also have significant consequences on metal mobilization. Our results indicated that the formation of stable carbonate complexes enhances the solubility of uranium minerals of both albitite and granite, facilitating the U(IV) oxidation, and limiting the extent of uranium adsorption onto particles in oxidized waters. This clearly produces an increase of the uranium mobility with significant consequences for the environment.

  8. Grain boundaries at the surface of consolidated MgO nanocrystals and acid-base functionality.

    PubMed

    Vingurt, Dima; Fuks, David; Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2013-09-21

    The increase of the surface basicity-acidity of MgO material by factors of 1.8-3.0 due to consolidation of its nanocrystals was demonstrated by the indicator titration. It was shown that the parallel increase of surface acidity and basicity is attributed to the formation of grain boundaries (GB) after MgO aerogel densification. A simple model predicting the increase of surface acidity-basicity of MgO that correlates with the results of direct measurements was proposed. The model is based on the study of the fine atomic structure at GB surface areas in consolidated MgO nanocrystals in the framework of Density Functional Theory. It is found that the displacements of coordinatively unsaturated surface ions near the GB are significant at the distances ~3-4 atomic layers from the geometrical contact plane between nanocrystals. The detailed analysis of atomic positions inside GB demonstrated the coordination deficiency of surface atoms at the GB areas leading to the formation of stretched bonds and to creation of low coordinated surface ions due to splitting of coordination numbers of surface atoms belonging to GB areas. Density of states for electrons shows the existence of additional states in the band gap close to the bottom of the conduction band. The adsorption energy of CO2 molecules atop oxygen atoms exposed at surface GB areas is of the same order of magnitude as that reported for oxygen atoms at crystallographic edges and corners of MgO crystals. It provides additional options for bonding of molecules at the surface of nanocrystalline MgO increasing the adsorption capacity and catalytic activity.

  9. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens.

    PubMed

    Mokhtari, Amir; Oryang, David; Chen, Yuhuan; Pouillot, Regis; Van Doren, Jane

    2018-01-08

    We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  10. Seismic Velocity Assessment In The Kachchh Region, India, From Multiple Waveform Functionals

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Sen, M. K.; Mandal, P.; Pulliam, J.; Agrawal, M.

    2014-12-01

    The primary goal of this study is to estimate well constrained crust and upper mantle seismic velocity structure in the Kachchh region of Gujarat, India - an area of active interest for earthquake monitoring purposes. Several models based on 'stand-alone' surface wave dispersion and receiver function modeling exist in this area. Here we jointly model the receiver function, surface wave dispersion and, S and shear-coupled PL wavetrains using broadband seismograms of deep (150-700 km), moderate to-large magnitude (5.5-6.8) earthquakes recorded teleseismically at semi-permanent seismograph stations in the Kachchh region, Gujarat, India. While surface wave dispersion and receiver function modeling is computationally fast, full waveform modeling makes use of reflectivity synthetic seismograms. An objective function that measures misfit between all three data is minimized using a very fast simulated annealing (VFSA) approach. Surface wave and receiver function data help reduce the model search space which is explored extensively for detailed waveform fitting. Our estimated crustal and lithospheric thicknesses in this region vary from 32 to 41 km and 70 to 80 km, respectively, while crustal P and S velocities from surface to Moho discontinuity vary from 4.7 to 7.0 km/s and 2.7 to 4.1 km/s, respectively. Our modeling clearly reveals a zone of crustal as well as an asthenospheric upwarping underlying the Kachchh rift zone relative to the surrounding unrifted area. We believe that this feature plays a key role in the seismogenesis of lower crustal earthquakes occurring in the region through the emanation of volatile CO2 into the hypocentral zones liberating from the crystallization of carbonatite melts in the asthenosphere. Such a crust-mantle structure might be related to the plume-lithosphere interaction during the Deccan/Reunion plume episode (~65 Ma).

  11. Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.

  12. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    PubMed

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  13. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation.

    PubMed

    Sheppard, Amy L; Evans, C John; Singh, Krish D; Wolffsohn, James S; Dunne, Mark C M; Davies, Leon N

    2011-06-01

    To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model. Nineteen volunteers, aged 19 to 30 years, were recruited. T(2)-weighted MRIs, optimized to show fluid-filled chambers of the eye, were acquired using an eight-channel radio frequency head coil. Twenty-four oblique-axial slices of 0.8 mm thickness, with no interslice gaps, were acquired to visualize the crystalline lens. Three Maltese cross-type accommodative stimuli (at 0.17, 4.0, and 8.0 D) were presented randomly to the subjects in the MRI to examine lenticular changes with accommodation. MRIs were analyzed to generate a three-dimensional surface model. During accommodation, mean crystalline lens thickness increased (F = 33.39, P < 0.001), whereas lens equatorial diameter (F = 24.00, P < 0.001) and surface radii both decreased (anterior surface, F = 21.78, P < 0.001; posterior surface, F = 13.81, P < 0.001). Over the same stimulus range, mean crystalline lens surface area decreased (F = 7.04, P < 0.005) with a corresponding increase in lens volume (F = 6.06, P = 0.005). These biometric changes represent a 1.82% decrease and 2.30% increase in crystalline lens surface area and volume, respectively. CONCLUSIONS; The results indicate that the capsular bag undergoes elastic deformation during accommodation, causing reduced surface area, and the observed volumetric changes oppose the theory that the lens is incompressible.

  14. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    USGS Publications Warehouse

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be accomplished in a virtual environment. Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  15. Comparison of GCM subgrid fluxes calculated using BATS and SiB schemes with a coupled land-atmosphere high-resolution model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jinmei; Arritt, R.W.

    The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation,more » many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.« less

  16. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  17. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    USGS Publications Warehouse

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  18. Characterization, modeling and simulation of fused deposition modeling fabricated part surfaces

    NASA Astrophysics Data System (ADS)

    Taufik, Mohammad; Jain, Prashant K.

    2017-12-01

    Surface roughness is generally used for characterization, modeling and simulation of fused deposition modeling (FDM) fabricated part surfaces. But the average surface roughness is not able to provide the insight of surface characteristics with sharp peaks and deep valleys. It deals in the average sense for all types of surfaces, including FDM fabricated surfaces with distinct surface profile features. The present research work shows that kurtosis and skewness can be used for characterization, modeling and simulation of FDM surfaces because these roughness parameters have the ability to characterize a surface with sharp peaks and deep valleys. It can be critical in certain application areas in tribology and biomedicine, where the surface profile plays an important role. Thus, in this study along with surface roughness, skewness and kurtosis are considered to show a novel strategy to provide new transferable knowledge about FDM fabricated part surfaces. The results suggest that the surface roughness, skewness and kurtosis are significantly different at 0° and in the range (0°, 30°], [30°, 90°] of build orientation.

  19. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.

    PubMed

    Wang, Chao; Fuller, Mark E; Schaefer, Charles; Caplan, Jeffrey L; Jin, Yan

    2012-05-30

    2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are common contaminants around active military firing ranges. Dissolution of these compounds is usually the first step prior to their spreading in subsurface environments. Nevertheless, dissolution of individual TNT, RDX, and HMX under continuous flow conditions has not been well investigated. This study applied spectral confocal microscopy to observe and quantify the dissolution of TNT, RDX, and HMX (<100 μm crystals) in micromodel channels. Dissolution models were developed to describe the changes of their radii, surface areas, volumes, and specific surface areas as a function of time. Results indicated that a model incorporating a resistance term that accounts for the surface area in direct contact with the channel surfaces (and hence, was not exposed to the flowing water) described the dissolution processes well. The model without the resistance term, however, could not capture the observed data at the late stage of TNT dissolution. The model-fitted mass transfer coefficients were in agreement with the previous reports. The study highlights the importance of including the resistance term in the dissolution model and illustrates the utility of the newly developed spectral imaging method for quantification of mass transfer of TNT, RDX, and HMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  1. Impact of stratospheric aircraft on calculations of nitric acid trihydrate cloud surface area densities using NMC temperatures and 2D model constituent distributions

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.

    1994-01-01

    A parameterization of NAT (nitric acid trihydrate) clouds is developed for use in 2D models of the stratosphere. The parameterization uses model distributions of HNO3 and H2O to determine critical temperatures for NAT formation as a function of latitude and pressure. National Meteorological Center temperature fields are then used to determine monthly temperature frequency distributions, also as a function of latitude and pressure. The fractions of these distributions which fall below the critical temperatures for NAT formation are then used to determine the NAT cloud surface area density for each location in the model grid. By specifying heterogeneous reaction rates as functions of the surface area density, it is then possible to assess the effects of the NAT clouds on model constituent distributions. We also consider the increase in the NAT cloud formation in the presence of a fleet of stratospheric aircraft. The stratospheric aircraft NO(x) and H2O perturbations result in increased HNO3 as well as H2O. This increases the probability of NAT formation substantially, especially if it is assumed that the aircraft perturbations are confined to a corridor region.

  2. Using the 3D active fault model to estimate the surface deformation, a study on HsinChu area, Taiwan.

    NASA Astrophysics Data System (ADS)

    Lin, Y. K.; Ke, M. C.; Ke, S. S.

    2016-12-01

    An active fault is commonly considered to be active if they have moved one or more times in the last 10,000 years and likely to have another earthquake sometime in the future. The relationship between the fault reactivation and the surface deformation after the Chi-Chi earthquake (M=7.2) in 1999 has been concerned up to now. According to the investigations of well-known disastrous earthquakes in recent years, indicated that surface deformation is controlled by the 3D fault geometric shape. Because the surface deformation may cause dangerous damage to critical infrastructures, buildings, roads, power, water and gas lines etc. Therefore it's very important to make pre-disaster risk assessment via the 3D active fault model to decrease serious economic losses, people injuries and deaths caused by large earthquake. The approaches to build up the 3D active fault model can be categorized as (1) field investigation (2) digitized profile data and (3) build the 3D modeling. In this research, we tracked the location of the fault scarp in the field first, then combined the seismic profiles (had been balanced) and historical earthquake data to build the underground fault plane model by using SKUA-GOCAD program. Finally compared the results come from trishear model (written by Richard W. Allmendinger, 2012) and PFC-3D program (Itasca) and got the calculated range of the deformation area. By analysis of the surface deformation area made from Hsin-Chu Fault, we concluded the result the damage zone is approaching 68 286m, the magnitude is 6.43, the offset is 0.6m. base on that to estimate the population casualties, building damage by the M=6.43 earthquake in Hsin-Chu area, Taiwan. In the future, in order to be applied accurately on earthquake disaster prevention, we need to consider further the groundwater effect and the soil structure interaction inducing by faulting.

  3. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  4. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    USDA-ARS?s Scientific Manuscript database

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian

    The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less

  6. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  7. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data around Pinkerton Hot Springs, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  8. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Northwest Delta, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  9. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Ouray, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  10. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Southwest Steamboat Springs, Garfield County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  11. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Northern Saguache County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  12. Coupled atmosphere-biophysics-hydrology models for environmental modeling

    USGS Publications Warehouse

    Walko, R.L.; Band, L.E.; Baron, Jill S.; Kittel, T.G.F.; Lammers, R.; Lee, T.J.; Ojima, D.; Pielke, R.A.; Taylor, C.; Tague, C.; Tremback, C.J.; Vidale, P.L.

    2000-01-01

    The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.

  13. Surface area dependence of calcium isotopic reequilibration in carbonates: Implications for isotopic signatures in the weathering zone

    NASA Astrophysics Data System (ADS)

    Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.

    2016-12-01

    The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to lower δ44Ca values and a faster approach to isotopic equilibrium. The dependence of δ44Ca resetting on calcite surface areas has broad ramifications for tracing carbonate weathering in the Critical Zone.

  14. A Semi-Structured MODFLOW-USG Model to Evaluate Local Water Sources to Wells for Decision Support.

    PubMed

    Feinstein, Daniel T; Fienen, Michael N; Reeves, Howard W; Langevin, Christian D

    2016-07-01

    In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A "semi-structured" approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a). Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. A semi-structured MODFLOW-USG model to evaluate local water sources to wells for decision support

    USGS Publications Warehouse

    Feinstein, Daniel T.; Fienen, Michael N.; Reeves, Howard W.; Langevin, Christian D.

    2016-01-01

    In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A “semi-structured” approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).

  16. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although specific to the area, the resulting model is deemed useful for water management within the wide range of conditions similar to those present during the experimental period.

  17. The human first carpometacarpal joint: osteoarthritic degeneration and 3-dimensional modeling.

    PubMed

    Kovler, Maksim; Lundon, Katie; McKee, Nancy; Agur, Anne

    2004-01-01

    The purpose of this study was to gain insight into potential mechanical factors contributing to osteoarthritis of the human first carpometacarpal joint (CMC). This was accomplished by creating three-dimensional (3-D) computer models of the articular surfaces of CMC joints of older humans and by determining their locus of cartilage degeneration. The research questions of this study were: 1) What is the articular wear pattern of cartilage degeneration in CMC osteoarthritis?, (2) Are there significant topographic differences in joint area and contour between the joints of males and females?, and 3) Are there measurable bony joint recesses consistently found within the joint? The articular surfaces of 25 embalmed cadaveric joints (from 13 cadavers) were graded for degree of osteoarthritis, and the location of degeneration was mapped using a dissection microscope. The surfaces of 14 mildly degenerated joints were digitized and reconstructed as 3-D computer models using the Microscribe 3D-X Digitizer and the Rhinoceros 2.0 NURBS Modeling Software. This technology provided accurate and reproducible information on joint area and topography. The dorsoradial trapezial region was found to be significantly more degenerated than other quadrants in both males and females. Mean trapezial articular surface area was 197 mm 2 in males and 160 mm(2) in females; the respective mean areas for the metacarpal were 239 mm(2) in males and 184 mm(2) in females. Joints of females were found to be significantly more concave in radioulnar profile than those of males. Three bony joint recesses were consistently found, two in the radial and ulnar aspects of the trapezium and the third in the palmar surface of the metacarpal.

  18. Towards spatially smart abatement of human pharmaceuticals in surface waters: Defining impact of sewage treatment plants on susceptible functions.

    PubMed

    Coppens, Lieke J C; van Gils, Jos A G; Ter Laak, Thomas L; Raterman, Bernard W; van Wezel, Annemarie P

    2015-09-15

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at, or in the service area of, STPs. This study was performed on a nation-wide scale for the Netherlands. Point source emissions included were 345 Dutch STPs and nine rivers from neighboring countries. The Dutch surface waters were represented by 2511 surface water units. Modeling was performed for two extreme discharge conditions. Monitoring data of 7 locations along the rivers Rhine and Meuse fall mostly within the range of modeled concentrations. Half of the abstracted volumes of raw water for drinking water production, and a quarter of the Natura 2000 areas (European Union nature protection areas) hosted by the surface waters, are influenced by STPs at low discharge. The vast majority of the total impact of all Dutch STPs during both discharge conditions can be attributed to only 19% of the STPs with regard to the drinking water function, and to 39% of the STPs with regard to the Natura 2000 function. Attributing water treatment technologies to STPs as one of the possible measures to improve water quality and protect susceptible functions can be done in a spatially smart and cost-effective way, using consumption-based detailed hydrological and water quality modeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 3D Visualization of Urban Area Using Lidar Technology and CityGML

    NASA Astrophysics Data System (ADS)

    Popovic, Dragana; Govedarica, Miro; Jovanovic, Dusan; Radulovic, Aleksandra; Simeunovic, Vlado

    2017-12-01

    3D models of urban areas have found use in modern world such as navigation, cartography, urban planning visualization, construction, tourism and even in new applications of mobile navigations. With the advancement of technology there are much better solutions for mapping earth’s surface and spatial objects. 3D city model enables exploration, analysis, management tasks and presentation of a city. Urban areas consist of terrain surfaces, buildings, vegetation and other parts of city infrastructure such as city furniture. Nowadays there are a lot of different methods for collecting, processing and publishing 3D models of area of interest. LIDAR technology is one of the most effective methods for collecting data due the large amount data that can be obtained with high density and geometrical accuracy. CityGML is open standard data model for storing alphanumeric and geometry attributes of city. There are 5 levels of display (LoD0, LoD1, LoD2, LoD3, LoD4). In this study, main aim is to represent part of urban area of Novi Sad using LIDAR technology, for data collecting, and different methods for extraction of information’s using CityGML as a standard for 3D representation. By using series of programs, it is possible to process collected data, transform it to CityGML and store it in spatial database. Final product is CityGML 3D model which can display textures and colours in order to give a better insight of the cities. This paper shows results of the first three levels of display. They consist of digital terrain model and buildings with differentiated rooftops and differentiated boundary surfaces. Complete model gives us a realistic view of 3D objects.

  20. Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives

    PubMed Central

    Yapuncich, Gabriel S; Boyer, Doug M

    2014-01-01

    The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether ‘muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between ‘muscle vs. mass' dominance is likely bone-and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces. PMID:24219027

  1. Wetting of crystalline polymer surfaces: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fan, Cun Feng; Caǧin, Tahir

    1995-11-01

    Molecular dynamics has been used to study the wetting of model polymer surfaces, the crystal surfaces of polyethylene (PE), poly(tetrafluoroethylene) (PTFE), and poly(ethylene terephthalate) (PET) by water and methylene iodide. In the simulation a liquid droplet is placed on a model surface and constant temperature, rigid body molecular dynamics is carried out while the model surface is kept fixed. A generally defined microscopic contact angle between a liquid droplet and a solid surface is quantitatively calculated from the volume of the droplet and the interfacial area between the droplet and the surface. The simulation results agree with the trend in experimental data for both water and methylene iodide. The shape of the droplets on the surface is analyzed and no obvious anisotropy of the droplets is seen in the surface plane, even though the crystal surfaces are highly oriented. The surface free energies of the model polymer surfaces are estimated from their contact angles with the two different liquid droplets.

  2. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    NASA Astrophysics Data System (ADS)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  3. Microscopic contact area and friction between medical textiles and skin.

    PubMed

    Derler, S; Rotaru, G-M; Ke, W; El Issawi-Frischknecht, L; Kellenberger, P; Scheel-Sailer, A; Rossi, R M

    2014-10-01

    The mechanical contact between medical textiles and skin is relevant in the health care for patients with vulnerable skin or chronic wounds. In order to gain new insights into the skin-textile contact on the microscopic level, the 3D surface topography of a normal and a new hospital bed sheet with a regular surface structure was measured using a digital microscope. The topographic data was analysed concerning material distribution and real contact area against smooth surfaces as a function of surface deformations. For contact conditions that are relevant for the skin of patients lying in a hospital bed it was found that the order of magnitude of the ratio of real and apparent contact area between textiles and skin or a mechanical skin model lies between 0.02 and 0.1 and that surface deformations, i.e. penetration of the textile surface asperities into skin or a mechanical skin model, range from 10 to 50µm. The performed analyses of textile 3D surface topographies and comparisons with previous friction measurement results provided information on the relationship between microscopic surface properties and macroscopic friction behaviour of medical textiles. In particular, the new bed sheet was found to be characterised by a trend towards a smaller microscopic contact area (up to a factor of two) and by a larger free interfacial volume (more than a factor of two) in addition to a 1.5 times lower shear strength when in contact with counter-surfaces. The applied methods can be useful to develop improved and skin-adapted materials and surfaces for medical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Differential photoelectric charging of nonconducting surfaces in space. [on sunlit strip

    NASA Technical Reports Server (NTRS)

    Pelizzari, M. A.; Criswell, D. R.

    1978-01-01

    The photoelectric charging caused by an infinitely long strip of sunlight across a nonconducting plane is studied by use of a model which contains an electrical cutoff radius, and the results of numerical calculations are presented. The model simulates charging of a sunlit area with dimensions equal to the strip's width, exposed to a plasma with a comparatively large Debye length. Uniform potential is quickly established on a uniformly sunlit strip as a result of charge redistribution by low-energy photoelectrons. The results are in accord with a theoretical surface conductivity derived for photoelectron sheaths above highly charged sunlit areas. The surface potential, which drops sharply across the sunlight-shadow boundary, is discussed.

  5. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    PubMed

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  6. Gasification Characteristics of Coal/Biomass Mixed Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Reginald

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less

  7. Four pi calibration and modeling of a bare germanium detector in a cylindrical field source

    NASA Astrophysics Data System (ADS)

    Dewberry, R. A.; Young, J. E.

    2012-05-01

    In this paper we describe a 4π cylindrical field acquisition configuration surrounding a bare (unshielded, uncollimated) high purity germanium detector. We perform an efficiency calibration with a flexible planar source and model the configuration in the 4π cylindrical field. We then use exact calculus to model the flux on the cylindrical sides and end faces of the detector. We demonstrate that the model accurately represents the experimental detection efficiency compared to that of a point source and to Monte Carlo N-particle (MCNP) calculations of the flux. The model sums over the entire source surface area and the entire detector surface area including both faces and the detector's cylindrical sides. Agreement between the model and both experiment and the MCNP calculation is within 8%.

  8. Leaf area dynamics of conifer forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, H.; Oren, R.; Whitehead, D.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less

  9. Estimating Small-area Populations by Age and Sex Using Spatial Interpolation and Statistical Inference Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qai, Qiang; Rushton, Gerald; Bhaduri, Budhendra L

    The objective of this research is to compute population estimates by age and sex for small areas whose boundaries are different from those for which the population counts were made. In our approach, population surfaces and age-sex proportion surfaces are separately estimated. Age-sex population estimates for small areas and their confidence intervals are then computed using a binomial model with the two surfaces as inputs. The approach was implemented for Iowa using a 90 m resolution population grid (LandScan USA) and U.S. Census 2000 population. Three spatial interpolation methods, the areal weighting (AW) method, the ordinary kriging (OK) method, andmore » a modification of the pycnophylactic method, were used on Census Tract populations to estimate the age-sex proportion surfaces. To verify the model, age-sex population estimates were computed for paired Block Groups that straddled Census Tracts and therefore were spatially misaligned with them. The pycnophylactic method and the OK method were more accurate than the AW method. The approach is general and can be used to estimate subgroup-count types of variables from information in existing administrative areas for custom-defined areas used as the spatial basis of support in other applications.« less

  10. Extent of Low-accumulation 'Wind Glaze' Areas on the East Antarctic Plateau: Implications for Continental Ice Mass Balance

    NASA Technical Reports Server (NTRS)

    Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.; hide

    2012-01-01

    Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.

  11. Summary of hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    The northern part of the Gulf Coast aquifer system in Texas, which includes the Chicot, Evangeline, and Jasper aquifers, supplies most of the water used for industrial, municipal, agricultural, and commercial purposes for an approximately 25,000- square-mile (mi2) area that includes the Beaumont and Houston metropolitan areas. The area has an abundant amount of potable ground water, but withdrawals of large quantities of ground water have resulted in potentiometric-surface declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence from depressurization and compaction of clay layers interbedded in the aquifer sediments. This fact sheet summarizes a study done in cooperation with the Texas Water Development Board (TWDB) and the Harris-Galveston Coastal Subsidence District (HGCSD) as a part of the TWDB Ground-Water Availability Modeling (or Model) (GAM) program. The study was designed to develop and test a ground-water-flow model of the northern part of the Gulf Coast aquifer system in the GAM area (fig. 1) that waterresource managers can use as a tool to address future groundwater- availability issues.

  12. Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions.

    PubMed

    Eeftens, Marloes; Meier, Reto; Schindler, Christian; Aguilera, Inmaculada; Phuleria, Harish; Ineichen, Alex; Davey, Mark; Ducret-Stich, Regina; Keidel, Dirk; Probst-Hensch, Nicole; Künzli, Nino; Tsai, Ming-Yi

    2016-04-18

    Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models. Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data. Model explained variance (R(2)) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R(2) range 0.52-0.89) outperformed combined-area alpine (R (2)  = 0.53) and non-alpine (R (2)  = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors. LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study-area specific models was preferable over applying combined-area alpine/non-alpine models. Correlations between pollutants were higher in the model predictions than in the measurements, so it will remain challenging to disentangle their health effects.

  13. Assessing the effects of the Great Eastern China urbanization on the East Asian summer monsoon by coupling an urban canopy model with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Xue, Y.; Liu, S.; Oleson, K. W.

    2012-12-01

    The urbanization causes one of the most significant land cover changes. Especially over the eastern China from Beijing to Shanghai, the great urbanization occurs during the past half century.It modifies the physical characteristics of land surface, including land surface albedo, surface roughness length and aerodynamicresistanceand thermodynamic conduction over land. All of these play very important role in regional climate change. Afteremploying several WRF/Urban models to tests land use and land cover change(LUCC) caused by urbanization in East Asia, we decided to introducea urban canopy submodule,the Community Land surface Model urban scheme(CLMU)to the WRF and coupled with the WRF-SSiB3 regional climate model. The CLMU and SSIB share the similar principal to treat the surface energy and water balances and aerodynamic resistance between land and atmosphere. In the urban module, the energy balances on the five surface conditions are considered separately: building roof, sun side building wall, shade side building wall, pervious land surface and impervious road. The surface turbulence calculation is based on Monin-Obukhov similarity theory. We have made further improvements for the urban module. Over each surface condition, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value for SVF. Our approach along with other improvement in short and long wave radiation transfer improves the accuracy of long-wave and shortwave radiation processing over urban surface. The force-restore approximation is employed to calculate the temperature of each outer surfaces of building. The inner side temperature is used as the restore term and was assigned as a tuning constant. Based on the nature of the force-restore method and our tests, we decide to employ the air mean temperature of last 72 hours as a restore term, which substantially improve the surface energy balance. We evaluate the ability of the newly coupled model by two runs: one without and one with the urban canopy module. The coupled model is integrated from March through September, covering a summer monsoon season. The preliminary results show more significant urban heat island (UHI) effect over urban areas with the urban canopy model. The existence of the UHIs enhances the convection in lower atmosphere, affects the water vapor transportation and precipitation of the surrounding area, consistent with the phenomena that occur in urban areas. We further test the effect of urbanization on the monsoon by introducing two maps, one with and one without urbanization and the effect of the urbanization on the monsoon evolution and low level circulation will be discussed in the presentation.

  14. Quantifying the Uncertainty in Estimates of Surface Atmosphere Fluxes by Evaluation of SEBS and SCOPE Models

    NASA Astrophysics Data System (ADS)

    Timmermans, J.; van der Tol, C.; Verhoef, A.; Wang, L.; van Helvoirt, M.; Verhoef, W.; Su, Z.

    2009-11-01

    An earth observation based evapotranspiration (ET) product is essential to achieving the GEWEX CEOP science objectives and to achieve the GEOSS water resources societal benefit areas. Conventional techniques that employ point measurements to estimate the components of the energy balance are only representative for local scales and cannot be extended to large areas because of the heterogeneity of the land surface and the dynamic nature of heat transfer processes.The objective of this research is to quantify the uncertainties of evapotranspiration estimates by the Surface Energy Balance System (SEBS) algorithm through validation against the detailed Soil Canopy Observation, Photochemistry and Energy fluxes process (SCOPE) model with site optimized parameters. This SCOPE model takes both radiative processes and biochemical processes into account; it combines the SAIL radiative transfer model with the energy balance at leaf level to simulate the interaction between surface and atmosphere. In this paper the validation results are presented for a semi long term dataset in Reading on 2002.The comparison between the two models showed a high correlation over the complete growth of maize capturing the daily variation to good extent. The absolute values of the SEBS model are however much lower compared to those of the SCOPE model. This is due to the fact the SEBS model uses a surface resistance parameterization that is unable to account of high vegetation. An update of the SEBS model will resolve this problem.

  15. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion

    PubMed Central

    Gil‐Lozano, Carolina; Uceda, Esther R.; Losa‐Adams, Elisabeth; Davila, Alfonso F.; Gago‐Duport, Luis

    2017-01-01

    Abstract Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water‐sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere‐water and water‐sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size. PMID:29104844

  16. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    PubMed

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  17. Extracting scene feature vectors through modeling, volume 3

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Smith, J. A.

    1976-01-01

    The remote estimation of the leaf area index of winter wheat at Finney County, Kansas was studied. The procedure developed consists of three activities: (1) field measurements; (2) model simulations; and (3) response classifications. The first activity is designed to identify model input parameters and develop a model evaluation data set. A stochastic plant canopy reflectance model is employed to simulate reflectance in the LANDSAT bands as a function of leaf area index for two phenological stages. An atmospheric model is used to translate these surface reflectances into simulated satellite radiance. A divergence classifier determines the relative similarity between model derived spectral responses and those of areas with unknown leaf area index. The unknown areas are assigned the index associated with the closest model response. This research demonstrated that the SRVC canopy reflectance model is appropriate for wheat scenes and that broad categories of leaf area index can be inferred from the procedure developed.

  18. Investigating Bidirectional Reflectance in the Los Angeles Megacity Using CLARS Multiangle and Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    Zeng, Z. C.; Natraj, V.; Pongetti, T.; Shia, R. L.; Sander, S. P.; Yung, Y. L.

    2017-12-01

    The surface reflectance is a key ingredient in the remote sensing of surface and atmospheric properties from space. The determination of atmospheric composition, including greenhouse gas (GHG) and aerosol concentrations, from reflected sunlight requires accurate knowledge of the contribution from the underlying surface. Over megacity areas, such as the Los Angeles (LA) basin, which are major sources of GHGs and anthropogenic aerosols, the quantification of surface reflectance is challenging due to the associated complex land use types. In this study, we investigate the bidirectional reflectance in the Los Angeles megacity area using multiangle and hyperspectral radiance measurements from the California Laboratory for Atmospheric Remote Sensing (CLARS). The CLARS facility is located near the top of Mt. Wilson, at an altitude of 1670 m a.s.l., overlooking the LA megacity area with an FTS operating since 2011 to continuously monitor the GHGs and near-surface aerosols in the basin. The CLARS-FTS offers continuous high-resolution spectral measurements in the visible, near infrared and shortwave infrared spectral regions. The CLARS measurements mimic the off-nadir viewing of a low-Earth orbiting instrument, such as GOSAT and OCO-2, but with daily viewing capability. Eight surface targets with different land use types, including urban parks, industrial and residential areas, are selected in this study. The surface reflectance for specific solar incident and viewing angles is calculated by dividing, for non-absorbing spectral channels on clear days (such that gas and aerosol extinction can be ignored), the observed radiance reflected from surface targets by the observed irradiance. The non-linear Rahman-Pinty-Verstraete (RPV) model is used to model the Bidirectional Reflectance Distribution Function (BRDF) by fitting the multiangle and hyperspectral measurements. By evaluating the retrieved RPV parameters, we find that the RPV model provides a good representation of the BRDF in the LA megacity area. The fitted RPV parameters and their dependence on wavelength provides quantification of BRDF and potentially contributes towards reducing uncertainties in retrievals of GHGs and aerosols in megacity from space.

  19. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.

    PubMed

    Croft, Daniel E; van Hemert, Jano; Wykoff, Charles C; Clifton, David; Verhoek, Michael; Fleming, Alan; Brown, David M

    2014-01-01

    Accurate quantification of retinal surface area from ultra-widefield (UWF) images is challenging due to warping produced when the retina is projected onto a two-dimensional plane for analysis. By accounting for this, the authors sought to precisely montage and accurately quantify retinal surface area in square millimeters. Montages were created using Optos 200Tx (Optos, Dunfermline, U.K.) images taken at different gaze angles. A transformation projected the images to their correct location on a three-dimensional model. Area was quantified with spherical trigonometry. Warping, precision, and accuracy were assessed. Uncorrected, posterior pixels represented up to 79% greater surface area than peripheral pixels. Assessing precision, a standard region was quantified across 10 montages of the same eye (RSD: 0.7%; mean: 408.97 mm(2); range: 405.34-413.87 mm(2)). Assessing accuracy, 50 patients' disc areas were quantified (mean: 2.21 mm(2); SE: 0.06 mm(2)), and the results fell within the normative range. By accounting for warping inherent in UWF images, precise montaging and accurate quantification of retinal surface area in square millimeters were achieved. Copyright 2014, SLACK Incorporated.

  20. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    NASA Astrophysics Data System (ADS)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical elements mobilised by the water-minerals interaction processes. To validate our model we simulated the compacted bentonite (MX80) studied for engineered barriers for radioactive waste confinement and mainly composed of Na-Ca-montmorillonite. The study of particles morphology and reactive surfaces evolutions reveals that aqueous ions have a complex behaviour, especially when competitions between various mineral phases occur. In that case, our model predicts a preferential precipitation of finest particles, favouring smectites instead of zeolites. This work is a part of a PhD Thesis supported by Andra, the French Radioactive Waste Management Agency.

  1. Hydraulic Characteristics of Bedrock Constrictions and Evaluation of One- and Two-Dimensional Models of Flood Flow on the Big Lost River at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Berenbrock, Charles; Rousseau, Joseph P.; Twining, Brian V.

    2007-01-01

    A 1.9-mile reach of the Big Lost River, between the Idaho National Engineering and Environmental Laboratory (INEEL) diversion dam and the Pioneer diversion structures, was investigated to evaluate the effects of streambed erosion and bedrock constrictions on model predictions of water-surface elevations. Two one-dimensional (1-D) models, a fixed-bed surface-water flow model (HEC-RAS) and a movable-bed surface-water flow and sediment-transport model (HEC-6), were used to evaluate these effects. The results of these models were compared to the results of a two-dimensional (2-D) fixed-bed model [Transient Inundation 2-Dimensional (TRIM2D)] that had previously been used to predict water-surface elevations for peak flows with sufficient stage and stream power to erode floodplain terrain features (Holocene inset terraces referred to as BLR#6 and BLR#8) dated at 300 to 500 years old, and an unmodified Pleistocene surface (referred to as the saddle area) dated at 10,000 years old; and to extend the period of record at the Big Lost River streamflow-gaging station near Arco for flood-frequency analyses. The extended record was used to estimate the magnitude of the 100-year flood and the magnitude of floods with return periods as long as 10,000 years. In most cases, the fixed-bed TRIM2D model simulated higher water-surface elevations, shallower flow depths, higher flow velocities, and higher stream powers than the fixed-bed HEC-RAS and movable-bed HEC-6 models for the same peak flows. The HEC-RAS model required flow increases of 83 percent [100 to 183 cubic meters per second (m3/s)], and 45 percent (100 to 145 m3/s) to match TRIM2D simulations of water-surface elevations at two paleoindicator sites that were used to determine peak flows (100 m3/s) with an estimated return period of 300 to 500 years; and an increase of 13 percent (150 to 169 m3/s) to match TRIM2D water-surface elevations at the saddle area that was used to establish the peak flow (150 m3/s) of a paleoflood with a return period of 10,000 years. A field survey of the saddle area, however, indicated that the elevation of the lowest point on the saddle area was 1.2 feet higher than indicated on the 2-ft contour map that was used in the TRIM2D model. Because of this elevation discrepancy, HEC-RAS model simulations indicated that a peak flow of at least 210 m3/s would be needed to initiate flow across the 10,000-year old Pleistocene surface. HEC-6 modeling results indicated that to compensate for the effects of streambed scour, additional flow increases would be needed to match HEC-RAS and TRIM2D water-surface elevations along the upper and middle reaches of the river, and to compensate for sediment deposition, a slight decrease in flows would be needed to match HEC-RAS water-surface elevations along the lower reach of the river. Differences in simulated water-surface elevations between the TRIM2D and the HEC-RAS and HEC-6 models are attributed primarily to differences in topographic relief and to differences in the channel and floodplain geometries used in these models. Topographic differences were sufficiently large that it was not possible to isolate the effects of these differences on simulated water-surface elevations from those attributable to the effects of supercritical flow, streambed scour, and sediment deposition.

  2. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  3. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE PAGES

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.; ...

    2018-03-23

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  4. A conjunctive use hydrologic model for a semi-arid region with irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Harter, T.

    2003-04-01

    A GIS-based sub-basin scale conjunctive use (CU) model is developed for a semi-arid agricultural area in the southern San Joaquin Valley, California. The study area is 2230 square kilometers, and consists of 9114 individual landuse units and 26 water service districts. The CU model consists of three sub-models: 1) a surface water supply (SWS) model, 2) an unsaturated zone water budget (UZWB) model, and 3) a groundwater flow model. The study period is 1970-99. For each modeled surface water channel, the SWS model computes monthly surface water deliveries to each district and conveyance losses due to evaporation and seepage. The UZWB model then calculates the monthly water storage changes in the soil root zone and deep vadose zone of each landuse unit. The UZWB model is driven by surface water applications, precipitation, and crop consumptive use (evapotranspiration) demands. Its outputs are the recharge to the unconfined aquifer and the groundwater pumping demand from the unconfined and confined aquifers. The transient recharge and pumping rates become input for the groundwater flow model which calculates changes in unconfined aquifer water levels and inter-district groundwater fluxes. The groundwater flow model was calibrated against data from 1970-85 and validated with data from 1986-99. From 1970-99, a total of 18500 million cubic meters (MCM) of surface water was applied to land units in the study area. Precipitation added from 219 MCM (1990) to 1200 MCM (1998) annually. The combined total annual agricultural and urban consumptive use ranged from 1070 MCM in 1970 to 1540 MCM in 1999. Total annual channel seepage varied over almost two orders of magnitude from a low of 10 MCM in 1977 to 576 MCM in 1983. Diffuse recharge from surface applied water ranged from 79.9 MCM in 1992 to 432 MCM in 1983. The estimated total pumping ranged from 183 MCM in 1978 to 703 MCM in 1990. As expected, pumping was heaviest during the droughts of 1975-77 and 1987-92, and lightest during the wet years of 1973, 1978, 1982-83, 1995, and 1998. The study area cumulative annual groundwater storage changes were computed by the CU model and compared against those of the water-table fluctuation (WTF) method. Relative to 1970, the maximum groundwater accumulation occurred in 1987 with the WTF method and the CU model estimating positive storage changes of 1410 MCM and 1110 MCM. The maximum groundwater overdraft (storage depletion) occurred in 1993 with the WTF method and the CU model estimating negative storage changes of 1990 MCM and 1500 MCM. Annual inter-district net groundwater fluxes ranged from negligibly small (<0.123 MCM) to as much as 98.7 MCM between some of the larger districts.

  5. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling

    NASA Astrophysics Data System (ADS)

    Leandro, J.; Schumann, A.; Pfister, A.

    2016-04-01

    Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).

  6. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of interactions within the 1D sewer network. Other areas that recorded flooding outside the main streets have been also included with the second mesh resolution for an accurate determination of flood maps (12.5m2 - 50m2). Permeable areas have been identified and used as infiltration zones using the Horton infiltration model. A mesh sensitivity analysis has been performed for the low flood risk areas for a proper model optimization. As outcome of that analysis, the third mesh resolution has been chosen (75m2 - 300m2). Performance tests have been applied for several synthetic design storms as well as historical storm events displaying satisfactory results upon comparing the flood mapping outcomes produced by the different approaches. Accounting for the infiltration in the green city spaces reduces the flood extents in the range 39% - 68%, while the average reduction in flood volume equals 86%. Acknowledgement: Funding for this research was provided by the Interreg IVB NWE programme (project RainGain) and the Belgian Science Policy Office (project PLURISK). The high resolution topographical information data were obtained from the geographical information service AGIV; the original full hydrodynamic sewer network model from the service company Farys, and the InfoWorks licence from Innovyze.

  7. Simple formula for the surface area of the body and a simple model for anthropometry.

    PubMed

    Reading, Bruce D; Freeman, Brian

    2005-03-01

    The body surface area (BSA) of any adult, when derived from the arithmetic mean of the different values calculated from four independent accepted formulae, can be expressed accurately in Systeme International d'Unites (SI) units by the simple equation BSA = 1/6(WH)0.5, where W is body weight in kg, H is body height in m, and BSA is in m2. This formula, which is derived in part by modeling the body as a simple solid of revolution or a prolate spheroid (i.e., a stretched ellipsoid of revolution) gives students, teachers, and clinicians a simple rule for the rapid estimation of surface area using rational units. The formula was tested independently for human subjects by using it to predict body volume and then comparing this prediction against the actual volume measured by Archimedes' principle. Copyright 2005 Wiley-Liss, Inc.

  8. A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    NASA Technical Reports Server (NTRS)

    Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.

    2010-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using traditional verification methodologies. Output from object-based verification within NCAR s Meteorological Evaluation Tools reveals that the WRF runs initialized with LIS+MODIS data consistently generated precipitation objects that better matched observed precipitation objects, especially at higher precipitation intensities. The LIS+MODIS runs produced on average a 4% increase in matched precipitation areas and a simultaneous 4% decrease in unmatched areas during three months of daily simulations.

  9. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  10. A simple method for estimation of evapotranspiration using remotely sensed data during vegetation period in Hungary

    NASA Astrophysics Data System (ADS)

    Dunkel, Zoltan; Grob-Szenyán, Ildiko

    The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of the daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ET d-R nd= a+ b( Tc- Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observations trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field ( 1 km×1 km) and a larger, and relatively homogeneous area was scanned, before noon and afternoon. In the western part of the country, a much larger area ( 45 km×45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed. Comparison of model output with data from field experiment has played a crucial role in model development and suggested an evaluation method.

  11. Drug release through liposome pores.

    PubMed

    Dan, Nily

    2015-02-01

    Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.

    2017-06-01

    Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

  13. Optimal sample formulations for DNP SENS: The importance of radical-surface interactions

    DOE PAGES

    Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian; ...

    2017-11-15

    The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less

  14. Modeling the Restraint of Liquid Jets by Surface Tension in Microgravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Jacqmim, David A.

    2001-01-01

    An axisymmetric phase field model is developed and used to model surface tension forces on liquid jets in microgravity. The previous work in this area is reviewed and a baseline drop tower experiment selected 'for model comparison. A mathematical model is developed which includes a free surface. a symmetric centerline and wall boundaries with given contact angles. The model is solved numerically with a compact fourth order stencil on a equally spaced axisymmetric grid. After grid convergence studies, a grid is selected and all drop tower tests modeled. Agreement was assessed by comparing predicted and measured free surface rise. Trend wise agreement is good but agreement in magnitude is only fair. Suspected sources of disagreement are suspected to be lack of a turbulence model and the existence of slosh baffles in the experiment which were not included in the model.

  15. Impact of new land boundary conditions from Moderate Resolution Imaging Spectroradiometer (MODIS) data on the climatology of land surface variables

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Dickinson, R. E.; Zhou, L.; Shaikh, M.

    2004-10-01

    This paper uses the Community Land Model (CLM2) to investigate the improvements of a new land surface data set, created from multiple high-quality collection 4 Moderate Resolution Imaging Spectroradiometer data of leaf area index (LAI), plant functional type, and vegetation continuous fields, for modeled land surface variables. The previous land surface data in CLM2 underestimate LAI and overestimate the percent cover of grass/crop over most of the global area. For snow-covered regions with abundant solar energy the increased LAI and percent cover of tree/shrub in the new data set decreases the percent cover of surface snow and increases net radiation and thus increases ground and surface (2-m) air temperature, which reduces most of the model cold bias. For snow-free regions the increased LAI and changes in the percent cover from grass/crop to tree or shrub decrease ground and surface air temperature by converting most of the increased net radiation to latent heat flux, which decreases the model warm bias. Furthermore, the new data set greatly decreases ground evaporation and increases canopy evapotranspiration over tropical forests, especially during the wet season, owing to the higher LAI and more trees in the new data set. It makes the simulated ground evaporation and canopy evapotranspiration closer to reality and also reduces the warm biases over tropical regions.

  16. A diffusive ink transport model for lipid dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Urtizberea, A.; Hirtz, M.

    2015-09-01

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04352b

  17. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    USDA-ARS?s Scientific Manuscript database

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  18. Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System

    EPA Science Inventory

    Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...

  19. A novel film-pore-surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding.

    PubMed

    Zhang, Haiyan; Chen, Longjian; Lu, Minsheng; Li, Junbao; Han, Lujia

    2016-01-01

    Ultrafine grinding is an environmentally friendly pretreatment that can alter the degree of polymerization, the porosity and the specific surface area of lignocellulosic biomass and can, thus, enhance cellulose hydrolysis. Enzyme adsorption onto the substrate is a prerequisite for the enzymatic hydrolysis process. Therefore, it is necessary to investigate the enzyme adsorption properties of corn stover pretreated by ultrafine grinding. The ultrafine grinding pretreatment was executed on corn stover. The results showed that ultrafine grinding pretreatment can significantly decrease particle size [from 218.50 μm of sieve-based grinding corn stover (SGCS) to 17.45 μm of ultrafine grinding corn stover (UGCS)] and increase the specific surface area (SSA), pore volume (PV) and surface composition (SSA: from 1.71 m(2)/g of SGCS to 2.63 m(2)/g of UGCS, PV: from 0.009 cm(3)/g of SGCS to 0.024 m(3)/g of UGCS, cellulose surface area: from 168.69 m(2)/g of SGCS to 290.76 m(2)/g of UGCS, lignin surface area: from 91.46 m(2)/g of SGCS to 106.70 m(2)/g of UGCS). The structure and surface composition changes induced by ultrafine grinding increase the enzyme adsorption capacity from 2.83 mg/g substrate of SGCS to 5.61 mg/g substrate of UGCS. A film-pore-surface diffusion model was developed to simultaneously predict the enzyme adsorption kinetics of both the SGCS and UGCS. Satisfactory predictions could be made with the model based on high R (2) and low RMSE values (R (2) = 0.95 and RMSE = 0.16 mg/g for the UGCS, R (2) = 0.93 and RMSE = 0.09 mg/g for the SGCS). The model was further employed to analyze the rate-limiting steps in the enzyme adsorption process. Although both the external-film and internal-pore mass transfer are important for enzyme adsorption on the SGCS and UGCS, the UGCS has a lower internal-pore resistance compared to the SGCS. Ultrafine grinding pretreatment can enhance the enzyme adsorption onto corn stover by altering structure and surface composition. The film-pore-surface diffusion model successfully captures features on enzyme adsorption on ultrafine grinding pretreated corn stover. These findings identify wherein the probable rate-limiting factors for the enzyme adsorption reside and could, therefore, provide a basis for enhanced cellulose hydrolysis processes.

  20. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    PubMed Central

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  1. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.

  2. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The model will quantitatively assess the interaction between surface water and ground water, particularly the amount of exchange between the creek and ground water and to what extent these systems influence each other. Model sensitivity study will help identify important system parameters. A comprehensive model of the study area will serve as a tool for efficiently allocating water throughout the study area (from Boulder Creek). Water allocation is needed to prevent the eutrophication of the ponds, improve fishery management, and efficiently meet the water rights obligations in the watershed.

  3. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    NASA Astrophysics Data System (ADS)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  4. A plastic flow model for the Acquara - Vadoncello landslide in Senerchia, Southern Italy

    USGS Publications Warehouse

    Savage, W.; Wasowski, J.

    2006-01-01

    A previously developed model for stress and velocity fields in two-dimensional Coulomb plastic materials under self-weight and pore pressure predicts that long, shallow landslides develop slip surfaces that manifest themselves as normal faults and normal fault scarps at the surface in areas of extending flow and as thrust faults and thrust fault scarps at the surface in areas of compressive flow. We have applied this model to describe the geometry of slip surfaces and ground stresses developed during the 1995 reactivation of the Acquara - Vadoncello landslide in Senerchia, southern Italy. This landslide is a long and shallow slide in which regions of compressive and extending flow are clearly identified. Slip surfaces in the main scarp region of the landslide have been reconstructed using surface surveys and subsurface borehole logging and inclinometer observations made during retrogression of the main scarp. Two of the four inferred main scarp slip surfaces are best constrained by field data. Slip surfaces in the toe region are reconstructed in the same way and three of the five inferred slip surfaces are similarly constrained. The location of the basal shear surface of the landslide is inferred from borehole logging and borehole inclinometry. Extensive data on material properties, landslide geometries, and pore pressures collected for the Acquara - Vadoncello landslide give values for cohesion, friction angle, and unit weight, plus average basal shear-surface slopes, and pore-pressures required for modelling slip surfaces and stress fields. Results obtained from the landslide-flow model and the field data show that predicted slip surface shapes are consistent with inferred slip surface shapes in both the extending flow main scarp region and in the compressive flow toe region of the Acquara - Vadoncello landslide. Also predicted stress distributions are found to explain deformation features seen in the toe and main scarp regions of the landslide. ?? 2005 Elsevier B.V. All rights reserved.

  5. Use of modeling to protect, plan, and manage water resources in catchment areas.

    PubMed

    Constant, Thibaut; Charrière, Séverine; Lioeddine, Abdejalil; Emsellem, Yves

    2016-08-01

    The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m(3)/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another model, developed from Epiclès© software, permits the calculation of the under-root nitrate concentrations for each field based on soil type, climate, and farming practices. When the Watermodel and Epiclès© are coupled, nitrate transfers from the soil to the catchment and the river can be modeled. In this study, the initial pollution due to the actual farming practices was simulated and we were also able to estimate the efficiency of the agronomic action plan by testing several scenarios and calculating the time needed to reach the target nitrate concentration in the well.

  6. Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics

    NASA Astrophysics Data System (ADS)

    Roden, E. E.

    2003-12-01

    Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady-state systems, e.g. subsurface environments in which Fe(III) reduction is stimulated by contamination with organics or for the purposes of metal/radionuclide bioremediation.

  7. Surface roughness effects on the solar reflectance of cool asphalt shingles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less

  8. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  9. Prediction and uncertainty analysis of surface and groundwater exchange in a Rhine floodplain in south-west Germany

    NASA Astrophysics Data System (ADS)

    Maier, Nadine; Breuer, Lutz; Kraft, Philipp

    2017-04-01

    Inundations and the resulting exchange between surface water and groundwater are of importance for all floodplain ecosystems. Because of the high groundwater level in floodplains and the groundwater dependence of floodplain vegetation habitat models of floodplains should include detailed information of groundwater and surface water dynamics. Such models can, for example, serve as a basis for restoration measures, focusing on the re-establishment of rare species. To capture these groundwater and surface water dynamics we use a distributed model approach to simulate the groundwater levels in a floodplain stream section of the Rhine in Hesse, Germany (14.8 km2). This area is part of the large nature reserve "Kühkopf-Knoblochsaue" and hosts rare and endangered flora and fauna. We developed a physical-deterministic model of a floodplain to simulate the groundwater situation and the flooding events in the floodplain. The model is built with the Catchment Modeling Framework (CMF) and includes the interaction of groundwater and surface water flow. To reduce the computation time of the model, we used a simple flood distribution scheme instead of solving the St. Venant equation for surface water fluxes. The floodplain is split into two sub-regions, according to the two nature reserve regions with the same model setup. Each model divides the study area laterally into irregular polygonal cells (270 - 400) with different sizes (114 - 480'000 m2), based on similar elevation and land use. For each sub-region the water level of the Rhine and the groundwater levels of three monitoring wells at the boundary of the model area are used as driving factors. As predictor variables we use observation data from four to six different groundwater monitoring wells in the sub-regions. For each model we run 5,000 simulations following a Latin Hypercube sampling procedure to investigate parameter uncertainty and derive behavioral model runs. We received RMSEs between 0.18 and 0.28 m for the different groundwater wells for the calibration period of 2.5 years and RMSEs between 0.16 and 0.23 m for the validation period of 9.5 years. Finally, we derived hydrological predictors (e.g. longest flooding period, amount of flooding days during the vegetation period, etc) from the model runs for following habitat models.

  10. Surface interactions relevant to space station contamination problems

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.

    1988-01-01

    The physical and chemical processes at solid surfaces which can contribute to Space Station contamination problems are reviewed. Suggested areas for experimental studies to provide data to improve contamination modeling efforts are presented.

  11. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition, the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi

  12. Project JOVE. [microgravity experiments and applications

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1994-01-01

    The goal of this project is to investigate new areas of research pertaining to free surface-interface fluids mechanics and/or microgravity which have potential commercial applications. This paper presents an introduction to ferrohydrodynamics (FHD), and discusses some applications. Also, computational methods for solving free surface flow problems are presented in detail. Both have diverse applications in industry and in microgravity fluids applications. Three different modeling schemes for FHD flows are addressed and the governing equations, including Maxwell's equations, are introduced. In the area of computational modeling of free surface flows, both Eulerian and Lagrangian schemes are discussed. The state of the art in computational methods applied to free surface flows is elucidated. In particular, adaptive grids and re-zoning methods are discussed. Additional research results are addressed and copies of the publications produced under the JOVE Project are included.

  13. Sauropod necks: are they really for heat loss?

    PubMed

    Henderson, Donald M

    2013-01-01

    Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating.

  14. Sauropod Necks: Are They Really for Heat Loss?

    PubMed Central

    Henderson, Donald M.

    2013-01-01

    Three-dimensional digital models of 16 different sauropods were used to examine the scaling relationship between metabolism and surface areas of the whole body, the neck, and the tail in an attempt to see if the necks could have functioned as radiators for the elimination of excess body heat. The sauropod taxa sample ranged in body mass from a 639 kg juvenile Camarasaurus to a 25 t adult Brachiosaurus. Metabolism was assumed to be directly proportional to body mass raised to the ¾ power, and estimates of body mass accounted for the presence of lungs and systems of air sacs in the trunk and neck. Surface areas were determined by decomposing the model surfaces into triangles and their areas being computed by vector methods. It was found that total body surface area was almost isometric with body mass, and that it showed negative allometry when plotted against metabolic rate. In contrast, neck area showed positive allometry when plotted against metabolic rate. Tail area show negative allometry with respect to metabolic rate. The many uncertainties about the biology of sauropods, and the variety of environmental conditions that different species experienced during the groups 150 million years of existence, make it difficult to be absolutely certain about the function of the neck as a radiator. However, the functional combination of the allometric increase of neck area, the systems of air sacs in the neck and trunk, the active control of blood flow between the core and surface of the body, changing skin color, and strategic orientation of the neck with respect to wind, make it plausible that the neck could have functioned as a radiator to avoid over-heating. PMID:24204747

  15. Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Richard, Olivier; Bender, Hugo; Mols, Yves; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc

    2017-12-01

    The mechanism of widely observed intermixing of wurtzite and zinc-blende crystal structures in InAs nanowire (NW) grown by selective area epitaxy (SAE) is studied. We demonstrate that the crystal structure in InAs NW grown by SAE can be controlled using basic growth parameters, and wurtzitelike InAs NWs are achieved. We link the polytypic InAs NWs SAE to the reconstruction of the growth front (111)B surface. Surface reconstruction study of InAs (111) substrate and the following homoepitaxy experiment suggest that (111) planar defect nucleation is related to the (1 × 1) reconstruction of InAs (111)B surface. In order to reveal it more clearly, a model is presented to correlate growth temperature and arsenic partial pressure with InAs NW crystal structure. This model considers the transition between (1 × 1) and (2 × 2) surface reconstructions in the frame of adatom atoms adsorption/desorption, and the polytypism is thus linked to reconstruction quantitatively. The experimental data fit well with the model, which highly suggests that surface reconstruction plays an important role in the polytypism phenomenon in InAs NWs SAE.

  16. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  17. Assimilation of GOES Land Surface Data into a Mesoscale Models

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating Geostationary Operational Environmental Satellite (GOES)-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The assimilation technique has been applied to the Oklahoma-Kansas region during the spring-summer 2000 time period when dynamic changes in vegetation cover occur. In April, central Oklahoma is characterized by large NDVI associated with winter wheat while surrounding areas are primarily rangeland with lower NDVI. In July the vegetation pattern reverses as the central wheat area changes to low NDVI due to harvesting and the surrounding rangeland is greener than it was in April. The goal of this study is to determine if assimilating satellite land surface data can improve simulation of the complex spatial distribution of surface energy and water fluxes across this region. The PSU/NCAR NM5 V3 system is used in this study. The grid configuration consists of a 36-km CONUS domain and a 12-km nest over the area of interest. Bulk verification statistics (BIAS and RMSE) of surface air temperature and dewpoint indicates that assimilation of the satellite data results reduces both the bias and RMSE for both state variables. In addition, comparison of model data with ARM/CART EBBR flux observations reveals that the assimilation technique adjusts the bowen ratio in a realistic fashion.

  18. [Effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea].

    PubMed

    Huang, Zu-xiong; Ye, Li-yan; Zheng, Zhi-yong; Chen, Xin-min; Ren, Rong-na; Tong, Guo-yuan

    2005-05-01

    To investigate the nutrient effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea. Forty 21-day-old wistar rats were randomly divided into five groups (8 in each). Animal model of chronic diarrhea was induced by a lactose enriched diet in the weanling Wistar rat, normal control group was fed with a standard semipurified diet, and after 14 days the rats in both groups were killed to test the establishment of the model. After the establishment of the model, the other groups were fed with the standard semipurified diet to recover for 7 days, and were randomly divided into three groups: non-intervention group, glutamine (Gln)-intervention group and control group. Glutamine concentrations in blood was detected by high-performance liquid chromatography (HPLC). Morphological changes including villus height and villus surface area of the jejunum were measured under a light microscope and electron microscope, expression of proliferating cell nuclear antigen (PCNA) as an index of cell proliferation was observed using immunohistochemical staining and image analysis. The diarrhea rate in model group was 100 percent, average diarrhea index was 1.16 +/- 0.06, but both diarrhea rate and average diarrhea index in control group were 0 (P < 0.01), which affirmed establishment of the model. There was significant decrease of body weight, plasma Gln concentration, villus height, villus surface area and expression of PCNA in non-intervened group compared with the control group (P < 0.01). There was still significant decrease of body weight, villus height and villus surface area in Gln-intervened group compared with control group (P < 0.01), but plasma Gln concentration and expression of PCNA in Gln-intervened group had recovered to normal (P > 0.05). And compared with non-intervened group, except for body weight (P > 0.05), plasma glutamine, villus height, villus surface area and expression of PCNA were all significantly increased in Gln-intervened group. Chronic diarrhea can induce malnutrition and reduce the villus height, villus surface area, expression of PCNA and plasm glutamine concentration. Oral glutamine could improve the proliferation of crypt cell and promote repair of intestinal mucosa after chronic diarrhea.

  19. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates, ultimately affecting the amount of absorbed radiation. In addition patterns of simulated turbulent fluxes appear opposite to observations. Such systematic errors shed light on the current partial understanding of some of the mechanisms controlling the surface energy balance. In contrast forests appear reasonably well represented with respect to the interactions between LAI and turbulent fluxes across most climatological gradients, while for net radiation this is only true for warm climates. These proven strengths increase the confidence on how certain processes are simulated in LSMs. The model capacity to mimic the vegetation-biophysics interplay has been tested over the real scenario of greening that occurred in the last 30 years. We found that the modeled trends in surface heat fluxes associated with the long-term changes in leaf area could vary largely from those observed, with different discrepancies across models and climate zones. Our findings help to identify knowledge gaps and improve model representation of the sensitivity of biophysical processes to changes in leaf area density. In particular, comparing models and observations over a wide range of climate and vegetation conditions, as analyzed here, allowed capturing non-linearity of system responses that may emerge more frequently in future climate scenarios.

  20. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Miller, P E; Menapace, J A

    The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanicsmore » and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding particles. The model illustrates the importance of the particle size distribution of the abrasive and its influence on the resulting crack distribution. The results of these studies are summarized in references 1-7. In the second area of polishing, we conducted a series of experiments showing the influence of rogue particles (i.e., particles in the polishing slurry that are larger than base particles) on the creation of scratches on polished surfaces. Scratches can be thought of a as a specific type of sub-surface damage. The characteristics (width, length, type of fractures, concentration) were explained in terms of the rogue particle size, the rogue particle material, and the viscoelastic properties of the lap. The results of these studies are summarized in references 6-7. In the third area of etching, we conducted experiments aimed at understanding the effect of HF:NH{sub 4}F acid etching on surface fractures on fused silica. Etching can be used as a method: (a) to expose sub-surface mechanical damage, (b) to study the morphology of specific mechanical damage occurring by indentation, and (c) to convert a ground surface containing a high concentration of sub-surface mechanical damage into surface roughness. Supporting models have been developed to describe in detail the effect of etching on the morphology and evolution of surface cracks. The results of these studies are summarized in references 8-9. In the fourth area of scratch forensics or scratch fractography, a set of new scratch forensic rule-of-thumbs were developed in order to aid the optical fabricator and process engineer to interpret the cause of scratches and digs on surfaces. The details of how these rules were developed are described in each of the references included in this summary (1-9). Figure 2 provides as a summary of some of the more commonly used rules-of-thumbs that have been developed in this study. In the fifth and final area of laser damage, we demonstrated that the removal of such surface fractures from the surface during optical fabrication can dramatically improve the laser damage.« less

  1. Documentation for Program SOILSIM: A computer program for the simulation of heat and moisture flow in soils and between soils, canopy and atmosphere

    NASA Technical Reports Server (NTRS)

    Field, Richard T.

    1990-01-01

    SOILSIM, a digital model of energy and moisture fluxes in the soil and above the soil surface, is presented. It simulates the time evolution of soil temperature and moisture, temperature of the soil surface and plant canopy the above surface, and the fluxes of sensible and latent heat into the atmosphere in response to surface weather conditions. The model is driven by simple weather observations including wind speed, air temperature, air humidity, and incident radiation. The model intended to be useful in conjunction with remotely sensed information of the land surface state, such as surface brightness temperature and soil moisture, for computing wide area evapotranspiration.

  2. Future heat waves and surface ozone

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  3. Two Blades-Up Runs Using the JetStream Navitus Atherectomy Device Achieve Optimal Tissue Debulking of Nonocclusive In-Stent Restenosis: Observations From a Porcine Stent/Balloon Injury Model.

    PubMed

    Shammas, Nicolas W; Aasen, Nicole; Bailey, Lynn; Budrewicz, Jay; Farago, Trent; Jarvis, Gary

    2015-08-01

    To determine the number of runs with blades up (BU) using the JetStream Navitus to achieving optimal debulking in a porcine model of femoropopliteal artery in-stent restenosis (ISR). In this porcine model, 8 limbs were implanted with overlapping nitinol self-expanding stents. ISR was treated initially with 2 blades-down (BD) runs followed by 4 BU runs (BU1 to BU4). Quantitative vascular angiography (QVA) was performed at baseline, after 2 BD runs, and after each BU run. Plaque surface area and percent stenosis within the treated stented segment were measured. Intravascular ultrasound (IVUS) was used to measure minimum lumen area (MLA) and determine IVUS-derived plaque surface area. QVA showed that plaque surface area was significantly reduced between baseline (83.9%±14.8%) and 2 BD (67.7%±17.0%, p=0.005) and BU1 (55.4%±9.0%, p=0.005) runs, and between BU1 and BU2 runs (50.7%±9.7%, p<0.05). Percent stenosis behaved similarly with no further reduction after BU2. There were no further reductions in plaque surface area or percent stenosis with BU 3 and 4 runs (p=0.10). Similarly, IVUS (24 lesions) confirmed optimal results with BU2 runs and no additional gain in MLA or reduction in plaque surface area with BU3 and 4. IVUS confirmed no orbital cutting with JetStream Navitus. There were no stent strut discontinuities on high-resolution radiographs following atherectomy. JetStream Navitus achieved optimal tissue debulking after 2 BD and 2 BU runs with no further statistical gain in debulking after the BU2 run. Operators treating ISR with JetStream Navitus may be advised to limit their debulking to 2 BD and 2 BU runs to achieve optimal debulking. © The Author(s) 2015.

  4. Modelling gas dynamics in 1D ducts with abrupt area change

    NASA Astrophysics Data System (ADS)

    Menina, R.; Saurel, R.; Zereg, M.; Houas, L.

    2011-09-01

    Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow-area change interaction is determined by a specific estimate of the surface pressure integral. Model's predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.

  5. Sensitivity of Regional Climate to Deforestation in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1994-01-01

    The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.

  6. Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs

    USGS Publications Warehouse

    Wilson, Gary L.; Richards, Joseph M.

    2006-01-01

    Because of the increasing use and importance of lakes for water supply to communities, a repeatable and reliable procedure to determine lake bathymetry and capacity is needed. A method to determine the accuracy of the procedure will help ensure proper collection and use of the data and resulting products. It is important to clearly define the intended products and desired accuracy before conducting the bathymetric survey to ensure proper data collection. A survey-grade echo sounder and differential global positioning system receivers were used to collect water-depth and position data in December 2003 at Sugar Creek Lake near Moberly, Missouri. Data were collected along planned transects, with an additional set of quality-assurance data collected for use in accuracy computations. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and area/capacity tables were created from the geographic information system database. An accuracy assessment was completed on the collected data, bathymetric surface model, area/capacity table, and contour map products. Using established vertical accuracy standards, the accuracy of the collected data, bathymetric surface model, and contour map product was 0.67 foot, 0.91 foot, and 1.51 feet at the 95 percent confidence level. By comparing results from different transect intervals with the quality-assurance transect data, it was determined that a transect interval of 1 percent of the longitudinal length of Sugar Creek Lake produced nearly as good results as 0.5 percent transect interval for the bathymetric surface model, area/capacity table, and contour map products.

  7. Evaluation of methods for characterizing surface topography of models for high Reynolds number wind-tunnels

    NASA Technical Reports Server (NTRS)

    Teague, E. C.; Vorburger, T. V.; Scire, F. E.; Baker, S. M.; Jensen, S. W.; Gloss, B. B.; Trahan, C.

    1982-01-01

    Current work by the National Bureau of Standards at the NASA National Transonic Facility (NTF) to evaluate the performance of stylus instruments for determining the topography of models under investigation is described along with instrumentation for characterization of the surface microtopography. Potential areas of surface effects are reviewed, and the need for finer surfaced models for the NTF high Reynolds number flows is stressed. Current stylus instruments have a radii as large as 25 microns, and three models with surface finishes of 4-6, 8-10, and 12-15 micro-in. rms surface finishes were fabricated for tests with a stylus with a tip radius of 1 micron and a 50 mg force. Work involving three-dimensional stylus profilometry is discussed in terms of stylus displacement being converted to digital signals, and the design of a light scattering instrument capable of measuring the surface finish on curved objects is presented.

  8. Towards large scale modelling of wetland water dynamics in northern basins.

    NASA Astrophysics Data System (ADS)

    Pedinotti, V.; Sapriza, G.; Stone, L.; Davison, B.; Pietroniro, A.; Quinton, W. L.; Spence, C.; Wheater, H. S.

    2015-12-01

    Understanding the hydrological behaviour of low topography, wetland-dominated sub-arctic areas is one major issue needed for the improvement of large scale hydrological models. These wet organic soils cover a large extent of Northern America and have a considerable impact on the rainfall-runoff response of a catchment. Moreover their strong interactions with the lower atmosphere and the carbon cycle make of these areas a noteworthy component of the regional climate system. In the framework of the Changing Cold Regions Network (CCRN), this study aims at providing a model for wetland water dynamics that can be used for large scale applications in cold regions. The modelling system has two main components : a) the simulation of surface runoff using the Modélisation Environmentale Communautaire - Surface and Hydrology (MESH) land surface model driven with several gridded atmospheric datasets and b) the routing of surface runoff using the WATROUTE channel scheme. As a preliminary study, we focus on two small representative study basins in Northern Canada : Scotty Creek in the lower Liard River valley of the Northwest Territories and Baker Creek, located a few kilometers north of Yellowknife. Both areas present characteristic landscapes dominated by a series of peat plateaus, channel fens, small lakes and bogs. Moreover, they constitute important fieldwork sites with detailed data to support our modelling study. The challenge of our new wetland model is to represent the hydrological functioning of the various landscape units encountered in those watersheds and their interactions using simple numerical formulations that can be later extended to larger basins such as the Mackenzie river basin. Using observed datasets, the performance of the model to simulate the temporal evolution of hydrological variables such as the water table depth, frost table depth and discharge is assessed.

  9. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  10. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the Chicot and Evangeline aquifers, Houston area, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Strom, Eric W.

    2002-01-01

    In November 1997, the U.S. Geological Survey, in cooperation with the City of Houston Utilities Planning Section and the City of Houston Department of Public Works & Engineering, began an investigation of the Chicot and Evangeline aquifers in the greater Houston area in Texas to better understand the hydrology, flow, and associated land-surface subsidence. The principal part of the investigation was a numerical finite-difference model (MODFLOW) developed to simulate ground-water flow and land-surface subsidence in an 18,100-square-mile area encompassing greater Houston.The focus of the study was Harris and Galveston Counties, but other counties were included to achieve the appropriate boundary conditions. The model was vertically discretized into three 103-row by 109-column layers resulting in a total of 33,681 grid cells. Layer 1 represents the water table using a specified head, layer 2 represents the Chicot aquifer, and layer 3 represents the Evangeline aquifer.Simulations were made under transient conditions for 31 ground-water-withdrawal (stress) periods spanning 1891–1996. The years 1977 and 1996 were chosen as potentiometric-surface calibration periods for the model. Simulated and measured potentiometric surfaces of the Chicot and Evangeline aquifers for 1977 match closely. Waterlevel measurements indicate that by 1977, large ground-water withdrawals in east-central and southeastern areas of Harris County had caused the potentiometric surfaces to decline as much as 250 feet below sea level in the Chicot aquifer and as much as 350 feet below sea level in the Evangeline aquifer. Simulated and measured potentiometric surfaces of the Chicot and Evangeline aquifers for 1996 also match closely. The large potentiometric-surface decline in 1977 in the southeastern Houston area showed significant recovery by 1996. The 1996 centers of potentiometric-surface decline are located much farther northwest. Potentiometric-surface declines of more than 200 feet below sea level in the Chicot aquifer and more than 350 feet below sea level in the Evangeline aquifer were measured in observation wells and simulated in the flow model.Simulation of land-surface subsidence and water released from storage in the clay layers was accomplished using the Interbed-Storage Package of the MODFLOW model. Land-surface subsidence was calibrated by comparing simulated long-term (1891–1995) and short-term (1978–95) land-surface subsidence with published maps of land-surface subsidence for about the same period until acceptable matches were achieved.Simulated 1996 Chicot aquifer flow rates indicate that a net flow of 562.5 cubic feet per second enters the Chicot aquifer in the outcrop area, and a net flow of 459.5 cubic feet per second passes through the Chicot aquifer into the Evangeline aquifer. The remaining 103.0 cubic feet per second of flow is withdrawn as pumpage, with a shortfall of about 84.9 cubic feet per second supplied to the wells from storage in sands and clays. Water simulated from storage in clays in the Chicot aquifer is about 19 percent of the total water withdrawn from the aquifer.Simulated 1996 Evangeline aquifer flow rates indicate that a net flow of 14.8 cubic feet per second enters the Evangeline aquifer in the outcrop area, and a net flow of 459.5 cubic feet per second passes through the Chicot aquifer into the Evangeline aquifer for a total inflow of 474.3 cubic feet per second. A greater amount, 528.6 cubic feet per second, is withdrawn by wells; the shortfall of about 54.8 cubic feet per second is supplied from storage in sands and clays. Water simulated from storage in clays in the Evangeline aquifer is about 10 percent of the total water withdrawn from the aquifer.

  11. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.

  12. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Volumes and surface areas of pendular rings

    USGS Publications Warehouse

    Rose, W.

    1958-01-01

    A packing of spheres is taken as a suitable model of porous media. The packing may be regular and the sphere size may be uniform, but in general, both should be random. Approximations are developed to give the volumes and surface areas of pendular rings that exist at points of sphere contact. From these, the total free volume and interfacial specific surface area are derived as expressive of the textural character of the packing. It was found that the log-log plot of volumes and surface areas of pendular rings vary linearly with the angle made by the line joining the sphere centers and the line from the center of the largest sphere to the closest edge of the pendular ring. The relationship, moreover, was found not to be very sensitive to variation in the size ratio of the spheres in contact. It also was found that the addition of pendular ring material to various sphere packings results in an unexpected decrease in the surface area of the boundaries that confine the resulting pore space. ?? 1958 The American Institute of Physics.

  14. Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change.

    PubMed Central

    Cseh, R; Benz, R

    1999-01-01

    Phloretin is known to adsorb to lipid surfaces and alters the dipole potential of lipid monolayers and bilayers. Its adsorption to biological and artificial membranes results in a change of the membrane permeability for a variety of charged and neutral compounds. In this respect phloretin represents a model substance to study the effect of dipole potentials on membrane permeability. In this investigation we studied the interaction of phloretin with monolayers formed of different lipids in the liquid-expanded and the condensed state. Phloretin integrated into the monolayers as a function of the aqueous concentration of its neutral form, indicated by an increase of the surface pressure in the presence of phloretin. Simultaneous recording of the surface potential of the monolayers allowed us to correlate the degree of phloretin integration and the phloretin-induced dipole potential change. Increasing the surface pressure decreased the phloretin-induced shift of the isotherms, but did not influence the phloretin-induced surface potential change. This means that phloretin adsorption to the lipid surface can occur without affecting the lipid packing. The surface potential effect of phloretin is accompanied by a change of the lipid dipole moment vector dependent on the lipid packing. This means that the relation between the surface potential change and the lipid packing cannot be described by a static model alone. Taking into account the deviations of the surface potential change versus molecular area isotherms of the experimental data to the theoretically predicted course, we propose a model that relates the area change to the dipole moment in a dynamic manner. By using this model the experimental data can be described much better than with a static model. PMID:10465758

  15. A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.

    2015-05-01

    In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the simulated results, the proposed approach was found to simulate floodings closer to the survey records than other approaches because the physical rainfall-runoff phenomena in urban environment were better reflected.

  16. Measured body composition and geometrical data of four ``virtual family'' members for thermoregulatory modeling

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojiang; Rioux, Timothy P.; MacLeod, Tynan; Patel, Tejash; Rome, Maxwell N.; Potter, Adam W.

    2017-03-01

    The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.

  17. Hydrology of the Ferron sandstone aquifer and effects of proposed surface-coal mining in Castle Valley, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, G.C.; Morrissey, D.J.

    Coal in the Ferron Sandstone Member of the Mancos Shale of Cretaceous age has traditionally been mined by underground techniques in the Emery Coal Field in the southern end of Castle Valley in east-central Utah. However, approximately 99 million tons are recoverable by surface mining. Ground water in the Ferron is the sole source of supply for the town of Emery, but the aquifer is essentially untapped outside the Emery area. A three-dimensional digital-computer model was used to simulate ground-water flow in the Ferron sandstone aquifer in the Emery area. The model also was used to predict the effects ofmore » dewatering of a proposed surface mine on aquifer potentiometric surfaces and the base flow of streams. Discharge from the proposed surface mine is predicted to average about 0.3 cubic foot per second during the 15 years of mine operation. Dewatering of the mine would affect the potentiometric surface of all sections of the Ferron sanstone aquifer, but the greatest effects would be in the upper section. Modeling results indicate that, except for Christiansen Wash, the dewatering of the proposed surface mine would not affect the base flow of streams.« less

  18. Potential sources of nitrous acid (HONO) and their impacts on ozone: A WRF-Chem study in a polluted subtropical region

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Tao; Zhang, Qiang; Zheng, Junyu; Xu, Zheng; Lv, Mengyao

    2016-04-01

    Current chemical transport models commonly undersimulate the atmospheric concentration of nitrous acid (HONO), which plays an important role in atmospheric chemistry, due to the lack or inappropriate representations of some sources in the models. In the present study, we parameterized up-to-date HONO sources into a state-of-the-art three-dimensional chemical transport model (Weather Research and Forecasting model coupled with Chemistry: WRF-Chem). These sources included (1) heterogeneous reactions on ground surfaces with the photoenhanced effect on HONO production, (2) photoenhanced reactions on aerosol surfaces, (3) direct vehicle and vessel emissions, (4) potential conversion of NO2 at the ocean surface, and (5) emissions from soil bacteria. The revised WRF-Chem was applied to explore the sources of the high HONO concentrations (0.45-2.71 ppb) observed at a suburban site located within complex land types (with artificial land covers, ocean, and forests) in Hong Kong. With the addition of these sources, the revised model substantially reproduced the observed HONO levels. The heterogeneous conversions of NO2 on ground surfaces dominated HONO sources contributing about 42% to the observed HONO mixing ratios, with emissions from soil bacterial contributing around 29%, followed by the oceanic source (~9%), photochemical formation via NO and OH (~6%), conversion on aerosol surfaces (~3%), and traffic emissions (~2%). The results suggest that HONO sources in suburban areas could be more complex and diverse than those in urban or rural areas and that the bacterial and/or ocean processes need to be considered in HONO production in forested and/or coastal areas. Sensitivity tests showed that the simulated HONO was sensitive to the uptake coefficient of NO2 on the surfaces. Incorporation of the aforementioned HONO sources significantly improved the simulations of ozone, resulting in increases of ground-level ozone concentrations by 6-12% over urban areas in Hong Kong and the Pearl River Delta region. This result highlights the importance of accurately representing HONO sources in simulations of secondary pollutants over polluted regions.

  19. Computer-assisted quantification of the skull deformity for craniosynostosis from 3D head CT images using morphological descriptor and hierarchical classification

    NASA Astrophysics Data System (ADS)

    Lee, Min Jin; Hong, Helen; Shim, Kyu Won; Kim, Yong Oock

    2017-03-01

    This paper proposes morphological descriptors representing the degree of skull deformity for craniosynostosis in head CT images and a hierarchical classifier model distinguishing among normal and different types of craniosynostosis. First, to compare deformity surface model with mean normal surface model, mean normal surface models are generated for each age range and the mean normal surface model is deformed to the deformity surface model via multi-level threestage registration. Second, four shape features including local distance and area ratio indices are extracted in each five cranial bone. Finally, hierarchical SVM classifier is proposed to distinguish between the normal and deformity. As a result, the proposed method showed improved classification results compared to traditional cranial index. Our method can be used for the early diagnosis, surgical planning and postsurgical assessment of craniosynostosis as well as quantitative analysis of skull deformity.

  20. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    NASA Astrophysics Data System (ADS)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  1. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    NASA Astrophysics Data System (ADS)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  2. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.

  3. Footprint (A Screening Model for Estimating the Area of a Plume Produced from Gasoline Containing Ethanol

    EPA Science Inventory

    FOOTPRINT is a simple and user-friendly screening model to estimate the length and surface area of BTEX plumes in ground water produced from a spill of gasoline that contains ethanol. Ethanol has a potential negative impact on the natural biodegradation of BTEX compounds in groun...

  4. Applications of HCMM satellite data to the study of urban heating patterns

    NASA Technical Reports Server (NTRS)

    Carlson, T. N. (Principal Investigator)

    1980-01-01

    A research summary is presented and is divided into two major areas, one developmental and the other basic science. In the first three sub-categories are discussed: image processing techniques, especially the method whereby surface temperature image are converted to images of surface energy budget, moisture availability and thermal inertia; model development; and model verification. Basic science includes the use of a method to further the understanding of the urban heat island and anthropogenic modification of the surface heating, evaporation over vegetated surfaces, and the effect of surface heat flux on plume spread.

  5. Increase in surface albedo caused by agricultural plastic film

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, H.; Xia, X.

    2016-12-01

    The area of agricultural greenhouses and cropland covered by plastic film has increased inChina over the past three decades. Construction of large-area plastic greenhouse potentiallychanges the physical and radiative properties of the surface and its albedo, thereby potentiallyaffecting the surface energy budget and climate change. This study aims to investigate theeffect of the plastic-film cover on surface albedo based on computationswith a simplified modeland several field observation experiments. The results showed that surface albedo increasedby ˜23.5 and ˜33.9% on clear and overcast days, respectively, if grassland was covered byplastic film. Surface albedo of bare soil covered by plastic film increased by ˜16.6% underclear sky conditions. A larger increase in surface albedo was derived for surface types withsmaller surface albedo. Model calculations were in good agreement with field observations.

  6. Poroelastic Response to the 2012 Costa Rica Earthquake and the Effects on Geodetic Surface Deformation and Groundwater Fluxes

    NASA Astrophysics Data System (ADS)

    McCormack, K. A.; Hesse, M.

    2016-12-01

    Remote sensing and geodetic measurements are providing a new wealth of spatially distributed, time-series data that have the ability to improve our understanding of co-seismic rupture and post-seismic processes in subduction zones. Following a large earthquake, large-scale deformation is influenced by a myriad of post-seismic processes occurring on different spatial and temporal scales. These include continued slip on the fault plane (after-slip), a poroelastic response due to the movement of over-pressurized groundwater and viscoelastic relaxation of the underlying mantle. Often, the only means of observing these phenomena are through surface deformation measurements - either GPS or InSAR. Such tools measure the combined result of all these processes, which makes studying the effects of any single process difficult. For the 2012 Mw 7.6 Costa Rica Earthquake, we formulate a Bayesian inverse problem to infer the slip distribution on the plate interface using an elastic finite element model and GPS surface deformation measurements. From this study we identify a horseshoe-shaped rupture area surrounding a locked patch that is likely to release stress in the future. The results of our inversion are then used as an initial condition in a coupled poroelastic forward model to investigate the role of poroelastic effects on post-seismic deformation and stress transfer. We model the co-seismic pore pressure change as well as the pressure evolution and resulting deformation in the months after the earthquake. The surface permeability field is constrained by pump-test data from 526 groundwater wells throughout the study area. The results of the forward model indicate that earthquake-induced pore pressure changes dissipate quickly in most areas near the surface, resulting in relaxation of the surface in the seven to twenty days following the earthquake. Near the subducting slab interface, pore pressure changes can be an order of magnitude larger and may persist for many months after the earthquake. Dissipation of earthquake-induced pore pressure in deeper, low permeability areas manifests as surface deformation over a much longer timescale - on the order of months - which may influence the interpretation of longer timescale post-seismic deformation as purely viscoelastic relaxation.

  7. A Reactive Transport Model for Marcellus Shale Weathering

    NASA Astrophysics Data System (ADS)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important factors affecting chemical weathering of the Marcellus shale in the shallow subsurface. This study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature and pressure.

  8. Comparative Analysis of InSAR Digital Surface Models for Test Area Bucharest

    NASA Astrophysics Data System (ADS)

    Dana, Iulia; Poncos, Valentin; Teleaga, Delia

    2010-03-01

    This paper presents the results of the interferometric processing of ERS Tandem, ENVISAT and TerraSAR- X for digital surface model (DSM) generation. The selected test site is Bucharest (Romania), a built-up area characterized by the usual urban complex pattern: mixture of buildings with different height levels, paved roads, vegetation, and water bodies. First, the DSMs were generated following the standard interferometric processing chain. Then, the accuracy of the DSMs was analyzed against the SPOT HRS model (30 m resolution at the equator). A DSM derived by optical stereoscopic processing of SPOT 5 HRG data and also the SRTM (3 arc seconds resolution at the equator) DSM have been included in the comparative analysis.

  9. Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models

    USDA-ARS?s Scientific Manuscript database

    Irrigation is a widely used water management practice that is often poorly parameterized in land surface and climate models. Previous studies have addressed this issue via use of irrigation area, applied water inventory data, or soil moisture content. These approaches have a variety of drawbacks i...

  10. Simulation of Urban Rainfall-Runoff in Piedmont Cities: A Case Study in Jinan City, China

    NASA Astrophysics Data System (ADS)

    Chang, X.; Xu, Z.; Zhao, G.; Li, H.

    2017-12-01

    During the past decades, frequent flooding disasters in urban areas resulted in catastrophic impacts such as human life casualties and property damages especially in piedmont cities due to its specific topography. In this study, a piedmont urban flooding model was developed in the Huangtaiqiao catchment based on SWMM. The sub-catchments in this piedmont area were divided into mountainous area, plain area and main urban area according to the variations of underlying surface topography. The impact of different routing mode and channel roughness on simulation results was quantitatively analyzed under different types of scenarios, and genetic algorithm was used to optimize model parameters. Results show that the simulation is poor (with a mean Nash coefficient of 0.61) when using the traditional routing mode in SWMM model, which usually ignores terrain variance in piedmont area. However, when the difference of routing mode, percent routed and channel roughness are considered, the prediction precision of model were significantly increased (with a mean Nash coefficient of 0.86), indicating that the difference of surface topography significantly affects the simulation results in piedmont cities. The relevant results would provide the scientific basis and technical support for rainfall-runoff simulation, flood control and disaster alleviation in piedmont cities.

  11. Assessing the Effects of Irrigation on Land Surface Processes Utilizing CLM.PF in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Reyes, B.; Vahmani, P.; Hogue, T. S.; Maxwell, R. M.

    2013-05-01

    Irrigation can significantly alter land surface properties including increases in evapotranspiration (ET) and latent heat flux and a decrease in land surface temperatures that have a wide range of effects on the hydrologic cycle. However, most irrigation in land surface modeling studies has generally been limited to large-scale cropland applications while ignoring the, relatively, much smaller use of irrigation in urban areas. Although this assumption may be valid in global studies, as we seek to apply models at higher resolutions and at more local scales, irrigation in urban areas can become a key factor in land-atmosphere interactions. Landscape irrigation can account for large portions of residential urban water use, especially in semi-arid environments (e.g. ~50% in Los Angeles, CA). Previous modeling efforts in urbanized semi-arid regions have shown that disregarding irrigation leads to inaccurate representation of the energy budget. The current research models a 49.5-km2 (19.11-mi2) domain near downtown Los Angeles in the Ballona Creek watershed at a high spatial and temporal resolution using a coupled hydrologic (ParFlow) and land surface model (CLM). Our goals are to (1) provide a sensitivity analysis for urban irrigation parameters including sensitivity to total volume and timing of irrigation, (2) assess the effects of irrigation on varying land cover types on the energy budget, and (3) evaluate if residential water use data is useful in providing estimates for irrigation in land surface modeling. Observed values of land surface parameters from remote sensing products (Land Surface Temperature and ET), water use data from the Los Angeles Department of Water and Power (LADWP), and modeling results from an irrigated version of the NOAH-Urban Canopy Model are being used for comparison and evaluation. Our analysis provides critical information on the degree to which urban irrigation should be represented in high-resolution, semi-arid urban land surface modeling of the region. This research also yields robust upper-boundary conditions for further analysis and modeling in Los Angeles.

  12. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  13. Experimental High-Resolution Land Surface Prediction System for the Vancouver 2010 Winter Olympic Games

    NASA Astrophysics Data System (ADS)

    Belair, S.; Bernier, N.; Tong, L.; Mailhot, J.

    2008-05-01

    The 2010 Winter Olympic and Paralympic Games will take place in Vancouver, Canada, from 12 to 28 February 2010 and from 12 to 21 March 2010, respectively. In order to provide the best possible guidance achievable with current state-of-the-art science and technology, Environment Canada is currently setting up an experimental numerical prediction system for these special events. This system consists of a 1-km limited-area atmospheric model that will be integrated for 16h, twice a day, with improved microphysics compared with the system currently operational at the Canadian Meteorological Centre. In addition, several new and original tools will be used to adapt and refine predictions near and at the surface. Very high-resolution two-dimensional surface systems, with 100-m and 20-m grid size, will cover the Vancouver Olympic area. Using adaptation methods to improve the forcing from the lower-resolution atmospheric models, these 2D surface models better represent surface processes, and thus lead to better predictions of snow conditions and near-surface air temperature. Based on a similar strategy, a single-point model will be implemented to better predict surface characteristics at each station of an observing network especially installed for the 2010 events. The main advantage of this single-point system is that surface observations are used as forcing for the land surface models, and can even be assimilated (although this is not expected in the first version of this new tool) to improve initial conditions of surface variables such as snow depth and surface temperatures. Another adaptation tool, based on 2D stationnary solutions of a simple dynamical system, will be used to produce near-surface winds on the 100-m grid, coherent with the high- resolution orography. The configuration of the experimental numerical prediction system will be presented at the conference, together with preliminary results for winter 2007-2008.

  14. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of ferrihydrite can be rationalized based on the estimated proton affinity constant for singly-coordinated surface groups. Nanoparticles have an enhanced surface charge. The charging behavior of Fh nanoparticles can be described satisfactory using the capacitance of a spherical Stern layer condenser in combination with a diffuse double layer for flat plates.

  15. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data around South Canyon Hot Springs, Garfield County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  16. iFlorida model deployment final evaluation report.

    DOT National Transportation Integrated Search

    2009-01-01

    This document is the final report for the evaluation of the USDOT-sponsored Surface Transportation Security and Reliability Information System Model Deployment, or iFlorida Model Deployment. This report discusses findings in the following areas: ITS ...

  17. iFlorida model deployment final evaluation report

    DOT National Transportation Integrated Search

    2009-01-01

    This document is the final report for the evaluation of the USDOT-sponsored Surface Transportation Security and Reliability Information System Model Deployment, or iFlorida Model Deployment. This report discusses findings in the following areas: ITS ...

  18. Hydrogeology and simulation of groundwater flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas, 1891-2009

    USGS Publications Warehouse

    Kasmarek, Mark C.

    2012-01-01

    The MODFLOW-2000 groundwater flow model described in this report comprises four layers, one for each of the hydrogeologic units of the aquifer system except the Catahoula confining system, the assumed no-flow base of the system. The HAGM is composed of 137 rows and 245 columns of 1-square-mile grid cells with lateral no-flow boundaries at the extent of each hydrogeologic unit to the northwest, at groundwater divides associated with large rivers to the southwest and northeast, and at the downdip limit of freshwater to the southeast. The model was calibrated within the specified criteria by using trial-and-error adjustment of selected model-input data in a series of transient simulations until the model output (potentiometric surfaces, land-surface subsidence, and selected water-budget components) acceptably reproduced field measured (or estimated) aquifer responses including water level and subsidence. The HAGM-simulated subsidence generally compared well to 26 Predictions Relating Effective Stress to Subsidence (PRESS) models in Harris, Galveston, and Fort Bend Counties. Simulated HAGM results indicate that as much as 10 feet (ft) of subsidence has occurred in southeastern Harris County. Measured subsidence and model results indicate that a larger geographic area encompassing this area of maximum subsidence and much of central to southeastern Harris County has subsided at least 6 ft. For the western part of the study area, the HAGM simulated as much as 3 ft of subsidence in Wharton, Jackson, and Matagorda Counties. For the eastern part of the study area, the HAGM simulated as much as 3 ft of subsidence at the boundary of Hardin and Jasper Counties. Additionally, in the southeastern part of the study area in Orange County, the HAGM simulated as much as 3 ft of subsidence. Measured subsidence for these areas in the western and eastern parts of the HAGM has not been documented.

  19. Changing Surface-Atmosphere Energy Exchange and Refreezing Capacity of the Lower Accumulation Area, West Greenland

    NASA Astrophysics Data System (ADS)

    Charalampidis, C.; van As, D.; Machguth, H.; Smeets, P.; van den Broeke, M. R.; Box, J. E.

    2014-12-01

    We present five years (2009-2013) of automatic weather station (AWS) data from the lower accumulation area (1840 m above sea level) of the Kangerlussuaq region, western Greenland ice sheet. The summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in negative surface mass budget (SMB) and surface runoff. The observed runoff was due to a large ice fraction in the upper 10 m of firn that prevented melt water from percolating to available pore space below. Analysis of the in situ data reveals a relatively low 2012 summer albedo of ~0.7 as melt water was present at the surface. Consequently, during the 2012 melt season the surface absorbed 30% (213 MJ m-2) more solar radiation than in 2010. We drive a surface energy balance model with the AWS data to evaluate the seasonal and interannual variability of all surface energy fluxes. The model is able to reproduce the observed melt rates as well as the SMB for each season. While the drive for melt is solar radiation, year-to-year differences are controlled by terrestrial radiation, apart from 2012 when solar radiation dominated melt. Sensitivity tests reveal that 72% of the excess solar energy in 2012 was used for melt, corresponding to 40% (0.67 m) of the 2012 surface ablation. The remaining ablation (0.99 m) was primarily due to the relatively high atmospheric temperatures up to +2.6 °C daily average, indicating that 2012 would have been a negative SMB year in the lower accumulation area even without the melt-albedo feedback. Longer time series of SMB, regional temperature and remotely sensed albedo (MODIS) suggest that 2012 was the first negative SMB year with the lowest albedo at this elevation on record. The warming conditions of the last years resulted in enhanced melt and reduction of the refreezing capacity of the lower accumulation area. If the warming continues the lower accumulation area will be transformed into superimposed ice.

  20. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    NASA Astrophysics Data System (ADS)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.

  1. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    NASA Astrophysics Data System (ADS)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  2. Numerical modelling of microdroplet self-propelled jumping on micro-textured surface

    NASA Astrophysics Data System (ADS)

    Attarzadeh, S. M. Reza; Dolatabadi, Ali; Chun Kim, Kyung

    2015-11-01

    Understanding various stages of single and multiple droplet impact on a super-hydrophobic surface is of interest for many industrial applications such as aerospace industry. In this study, the phenomenon of coalescence induced droplets self-propelled jumping on a micro-textured super-hydrophobic surface is numerically simulated using Volume of Fluid (VOF) method. This model mimics the scenario of coalescing cloud-sized particles over the surface structure of an aircraft. The VOF coupled with a dynamic contact angle model is used to simulate the coalescence of two equal size droplets, that are initially placed very closed to each other with their interface overlapping with each other's which triggers the incipience of their coalescence. The textured surface is modeled as a series of equally spaced squared pillars, with 111° as the intrinsic contact angle all over the solid contact area. It is shown that the radial velocity of coalescing liquid bridge is reverted to upward direction due to the counter action of the surface to the basal area of droplet in contact. The presence of air beneath the droplet inside micro grooves which aimed at repelling water droplet is also captured in this model. The simulated results are found in good agreement with experimental observations. The authors gratefully acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), Consortium de Recherche et d'innovation en Aerospatiale au Quebec (CRIAQ), Bombardier Aerospace, Pratt Whitney Canada.

  3. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    PubMed

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  4. Characterizing low-Z erosion and deposition in the DIII-D divertor using aluminum

    DOE PAGES

    Chrobak, Chris P.; Doerner, R. P.; Stangeby, Peter C.; ...

    2017-01-28

    Here, we present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ~100nm thick were applied to ideal (smooth) and realistic (rough) surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition and re-erosion in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non spectroscopic measurements. The gross Al erosion yield estimated from both Hemore » and D plasma exposures was ~40-70% of the expected erosion yield based on theoretical physical sputtering yields. However, the multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration, was found to be influenced by the surface roughness and/or porosity. On rough surfaces, the fraction of the eroded Al coating found redeposited outside the original coating area was 25x higher than on smooth surfaces. The amount of Al found redeposited on the rough substrate was in fact proportional to the net eroded Al, suggesting an accumulation of deposited Al in surface pores and other areas shadowed from re-erosion. In order to determine the fraction and distribution of eroded Al returning to the surface, a simple model for erosion and redeposition was developed and fitted to the measurements. The model presented here reproduces many of the observed results in these experiments by using theoretically calculated sputtering yields, calculating surface composition changes and erosion rates in time, assuming a spatial distribution function for redepositing atoms, and accounting for deposit trapping in pores. The results of the model fits reveal that total redeposition fraction increases with higher plasma temperature (~30% for 15-18eV plasmas, and ~45% for 25-30eV plasmas), and that 50% of the atoms redepositing on rough surfaces accumulated in shadowed areas.« less

  5. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    NASA Technical Reports Server (NTRS)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  6. High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.

  7. Land cover characterization and land surface parameterization research

    USGS Publications Warehouse

    Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.

    1997-01-01

    The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.

  8. Chloride and salicylate influence prestin-dependent specific membrane capacitance: support for the area motor model.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2014-04-11

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.

  9. Prior-knowledge-based spectral mixture analysis for impervious surface mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinshui; He, Chunyang; Zhou, Yuyu

    2014-01-03

    In this study, we developed a prior-knowledge-based spectral mixture analysis (PKSMA) to map impervious surfaces by using endmembers derived separately for high- and low-density urban regions. First, an urban area was categorized into high- and low-density urban areas, using a multi-step classification method. Next, in high-density urban areas that were assumed to have only vegetation and impervious surfaces (ISs), the Vegetation-Impervious model (V-I) was used in a spectral mixture analysis (SMA) with three endmembers: vegetation, high albedo, and low albedo. In low-density urban areas, the Vegetation-Impervious-Soil model (V-I-S) was used in an SMA analysis with four endmembers: high albedo, lowmore » albedo, soil, and vegetation. The fraction of IS with high and low albedo in each pixel was combined to produce the final IS map. The root mean-square error (RMSE) of the IS map produced using PKSMA was about 11.0%, compared to 14.52% using four-endmember SMA. Particularly in high-density urban areas, PKSMA (RMSE = 6.47%) showed better performance than four-endmember (15.91%). The results indicate that PKSMA can improve IS mapping compared to traditional SMA by using appropriately selected endmembers and is particularly strong in high-density urban areas.« less

  10. Representation of urban surfaces of tropical and subtropical cities in numerical models of the atmosphere

    NASA Astrophysics Data System (ADS)

    Karam, H. A.; Pereira Filho, A. J.

    This work proposes a numerical representation of the urban surface for tropical and subtropical cities in numerical models of atmosphere. A typical tropical metropolis is São Paulo City, SP, Brazil, that presents a neighborhood area characterized by an uncompleted urbanization and where the public services are limited in attend the needs of the population. The suburban area of São Paulo city presents an occupation that is distinguished of the typical occupation of the European cities because: (1) it occurs in risk areas, i.e., over inclined terrain or potentially flooded areas on the borders of rivers; (2) the buildings are made with some cheap row material mixed with traditional materials; (3) the distribution of short and long wave radiation is conditioned by the inclination of the terrain, geometry of the buildings, materials and population density; (4) the exclusion of many common living areas; (5) intense or free thermal convection is found over the urban surface on the diurnal time with impact in the Atmospheric Boundary Layer dynamics; (6) high levels of airborne pollutants are found; etc. The proposed numerical scheme is designed to contribute with the current tools used to forecast the impact of convective precipitations in the risk areas of São Paulo City.

  11. Subsurface structure imaging of the Sembalun-Propok area, West Nusa Tenggara, Indonesia by using the audio-frequency magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Febriani, F.; Widarto, D. S.; Gaffar, E.; Nasution, A.; Grandis, H.

    2017-07-01

    We have investigated the subsurface structure of the Sembalun-Propok Area, West Nusa Tenggara, by using the audio-frequency magnetotelluric (AMT) method. This area is one of the geothermal prospect areas in eastern Indonesia. There are 38 AMT observation points, which were deployed along three profiles. We applied the phase tensor analysis on all observation points to determine both the dimensionality of and the regional strike of the study area. The results of the phase tensor analysis show that the study area can be assumed as 2-D and the regional strike of the study area is about N330°E. Then, after rotating the impedance tensor data to the regional strike, we carried out the 2-D inversion modeling to know more detail the subsurface structure of the study area. The results of the 2-D MT inversion are consistent with the geology of the study area. The near surface along all profiles is dominated by the higher resistivity layer (> 500 Ωm). It is highly associated with the surface geology of the study area which is characterized by the volcanic rock and mostly consist of andesitic to dacitic rocks of a calc-alkaline suite. Below the resistive layer at the near surface, the modelings show the layer which has the lower-moderate resistivity layer. It is possibly a cap rock layer of geothermal system of the Sembalun-Propok area. Lastly, the third layer is the very conductive layer and possibly associated with the presence of thermal fluids in the study area.

  12. Evaluation of airborne lidar elevation surfaces for propagation of coastal inundation: the importance of hydrologic connectivity

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.

    2015-01-01

    Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as part of a coastal inundation. A visual analysis indicated that developed, medium intensity and palustrine forested wetland land cover types would be impacted for those locations. This article demonstrates that hydrologic connectivity is an important factor to consider when inundating a lidar elevation surface. This information is needed for inundation monitoring and management in sensitive coastal regions.

  13. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    NASA Astrophysics Data System (ADS)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  14. Sub-kilometer Numerical Weather Prediction in complex urban areas

    NASA Astrophysics Data System (ADS)

    Leroyer, S.; Bélair, S.; Husain, S.; Vionnet, V.

    2013-12-01

    A Sub-kilometer atmospheric modeling system with grid-spacings of 2.5 km, 1 km and 250 m and including urban processes is currently being developed at the Meteorological Service of Canada (MSC) in order to provide more accurate weather forecasts at the city scale. Atmospheric lateral boundary conditions are provided with the 15-km Canadian Regional Deterministic Prediction System (RDPS). Surface physical processes are represented with the Town Energy Balance (TEB) model for the built-up covers and with the Interactions between the Surface, Biosphere, and Atmosphere (ISBA) land surface model for the natural covers. In this study, several research experiments over large metropolitan areas and using observational networks at the urban scale are presented, with a special emphasis on the representation of local atmospheric circulations and their impact on extreme weather forecasting. First, numerical simulations are performed over the Vancouver metropolitan area during a summertime Intense Observing Period (IOP of 14-15 August 2008) of the Environmental Prediction in Canadian Cities (EPiCC) observational network. The influence of the horizontal resolution on the fine-scale representation of the sea-breeze development over the city is highlighted (Leroyer et al., 2013). Then severe storms cases occurring in summertime within the Greater Toronto Area (GTA) are simulated. In view of supporting the 2015 PanAmerican and Para-Pan games to be hold in GTA, a dense observational network has been recently deployed over this region to support model evaluations at the urban and meso scales. In particular, simulations are conducted for the case of 8 July 2013 when exceptional rainfalls were recorded. Leroyer, S., S. Bélair, J. Mailhot, S.Z. Husain, 2013: Sub-kilometer Numerical Weather Prediction in an Urban Coastal Area: A case study over the Vancouver Metropolitan Area, submitted to Journal of Applied Meteorology and Climatology.

  15. RCCM2-BATS model over tropical South America: Applications to tropical deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahmann, A.N.; Dickinson, R.E.

    A multiyear simulation of the global climate uses a revised version of the National Center for Atmospheric Research (NCAR) Community Climate Model Version 2 (CCM2) coupled to the Biosphere-Atmosphere Transfer Scheme (BATS). It is compared with global and rain gauge precipitation climatologies to evaluate precipitation fields and European Centre for Medium-Range Forecasts analyses to evaluate the atmospheric circulation. The near-surface climate is compared with data from Amazonian field campaigns. The model simulation of the South American climate agrees closely with the observational record and is much improved from past simulations with previous versions of the NCAR Community Climate model overmore » this portion of the Tropics. The model is then used to study the local and regional response to tropical deforestation over Amazonia. In addition to the standard deforestation forcing, consisting mainly of increased albedo and decreased roughness length, two additional sensitivity experiments were conducted to assess the individual contributions from these forcings to the deforestation changes. The standard deforestation simulation shows slight increases in annually averaged surface temperature (+1{degrees}C) and reductions in annually averaged precipitation and evaporation (-363 and -149 mm yr{sup -1}, respectively). As expected, increases in surface albedo over Amazonia produce a reduction in net downward solar radiation at the surface and consequently a reduction in net surface radiation and surface latent heat flux. The roughness decrease, on the other hand, reduces the surface latent heat fluxes through decreases in the surface drag coefficient. The regional changes in moisture convergence and precipitation during the Amazonian wet season display a shift in the area of maximum precipitation rather than an overall decrease over the deforested area. 45 refs., 16 figs., 4 tabs.« less

  16. Predictive model for ice formation on superhydrophobic surfaces.

    PubMed

    Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom

    2011-12-06

    The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society

  17. Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2018-02-01

    Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.

  18. Parametric Investigation of Liquid Jets in Low Gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2005-01-01

    An axisymmetric phase field model is developed and used to model surface tension forces on liquid jets in microgravity. The previous work in this area is reviewed and a baseline drop tower experiment selected for model comparison. This paper uses the model to parametrically investigate the influence of key parameters on the geysers formed by jets in microgravity. Investigation of the contact angle showed the expected trend of increasing contact angle increasing geyser height. Investigation of the tank radius showed some interesting effects and demonstrated the zone of free surface deformation is quite large. Variation of the surface tension with a laminar jet showed clearly the evolution of free surface shape with Weber number. It predicted a breakthrough Weber number of 1.

  19. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    NASA Astrophysics Data System (ADS)

    Resurreccion, Augustus C.; Moldrup, Per; Tuller, Markus; Ferré, T. P. A.; Kawamoto, Ken; Komatsu, Toshiko; de Jonge, Lis Wollesen

    2011-06-01

    Accurate description of the soil water retention curve (SWRC) at low water contents is important for simulating water dynamics and biochemical vadose zone processes in arid environments. Soil water retention data corresponding to matric potentials of less than -10 MPa, where adsorptive forces dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were classified into four groups on the basis of the Dexter number (n = CL/OC), and the Tuller-Or (TO) general scaling model describing water film thickness at a given matric potential (<-10 MPa) was evaluated. The SA estimated from the dry end of the SWRC (SA_SWRC) was in good agreement with the SA measured with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about -800 MPa). The semi-log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from -10 to -800 MPa and yielded high correlations with CL and SA. It is therefore recommended to apply the empirical CSRN model for predicting the dry part of the water retention curve (-10 to -800 MPa) from measured soil texture or surface area. Further research should aim to modify the more physically based TO model to obtain better descriptions of the SWRC in the very dry range (-300 to -800 MPa).

  20. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    PubMed

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-07-01

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m 2 /g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model

    NASA Astrophysics Data System (ADS)

    Larson, K. J.; Başaǧaoǧlu, H.; Mariño, M. A.

    2001-02-01

    Land subsidence caused by the excessive use of ground water resources has traditionally caused serious and costly damage to the Los Banos-Kettleman City area of California's San Joaquin Valley. Although the arrival of surface water from the Central Valley Project has reduced subsidence in recent decades, the growing instability of surface water supplies has refocused attention on the future of land subsidence in the region. This paper uses integrated numerical ground water and land subsidence models to simulate land subsidence caused by ground water overdraft. The simulation model is calibrated using observed data from 1972 to 1998, and the responsiveness of the model to variations in subsidence parameters are analyzed through a sensitivity analysis. A probable future drought scenario is used to evaluate the effect on land subsidence of three management alternatives over the next thirty years. The model reveals that maintaining present practices virtually eliminates unrecoverable land subsidence, but may not be a sustainable alternative because of a growing urban population to the south and concern over the ecological implications of water exportation from the north. The two other proposed management alternatives reduce the dependency on surface water by increasing ground water withdrawal. Land subsidence is confined to tolerable levels in the more moderate of these proposals, while the more aggressive produces significant long-term subsidence. Finally, an optimization model is formulated to determine maximum ground water withdrawal from nine pumping sub-basins without causing irrecoverable subsidence during the forecast period. The optimization model reveals that withdrawal can be increased in certain areas on the eastern side of the study area without causing significant inelastic subsidence.

  2. A system for 3D representation of burns and calculation of burnt skin area.

    PubMed

    Prieto, María Felicidad; Acha, Begoña; Gómez-Cía, Tomás; Fondón, Irene; Serrano, Carmen

    2011-11-01

    In this paper a computer-based system for burnt surface area estimation (BAI), is presented. First, a 3D model of a patient, adapted to age, weight, gender and constitution is created. On this 3D model, physicians represent both burns as well as burn depth allowing the burnt surface area to be automatically calculated by the system. Each patient models as well as photographs and burn area estimation can be stored. Therefore, these data can be included in the patient's clinical records for further review. Validation of this system was performed. In a first experiment, artificial known sized paper patches were attached to different parts of the body in 37 volunteers. A panel of 5 experts diagnosed the extent of the patches using the Rule of Nines. Besides, our system estimated the area of the "artificial burn". In order to validate the null hypothesis, Student's t-test was applied to collected data. In addition, intraclass correlation coefficient (ICC) was calculated and a value of 0.9918 was obtained, demonstrating that the reliability of the program in calculating the area is of 99%. In a second experiment, the burnt skin areas of 80 patients were calculated using BAI system and the Rule of Nines. A comparison between these two measuring methods was performed via t-Student test and ICC. The hypothesis of null difference between both measures is only true for deep dermal burns and the ICC is significantly different, indicating that the area estimation calculated by applying classical techniques can result in a wrong diagnose of the burnt surface. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  3. SMOS after 2 YEARS and a half in orbit

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Richaume, P.; Wigneron, J.-P.; Waldteufel, P.; Mecklenburg, S.; Cabot, F.; Boutin, J.; Font, J.; Reul, N.

    2012-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3) and ocean salinity. These two geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches in particular in improving models forecasts. The purpose of this communication is to present the mission results after more than two years in orbit as well as some outstanding results already obtained. A special attention will be devoted to level 2 products. Modeling multi-angular brightness temperatures is not straightforward. The radiative model transfer model L-MEB (L-band Microwave Emission) is used over land while different models with different approaches as to the modeling of sea surface roughness are used over ocean surfaces. Over land the approach is based on semi-empirical relationships, adapted to different type of surface. The model computes a dielectric constant leading to surface emissivity. Surface features (roughness, vegetation) are also considered in the models. However, considering SMOS spatial resolution a wide area is seen by the instrument with strong heterogeneity. The L2 soil moisture retrieval scheme takes this into account. Brightness temperatures are computed for every classes composing a working area. A weighted function is applied for the incidence angle and the antenna beam. Once the brightness temperature is computed for the entire working area, the minimizing process starts. If no soil moisture is derived (not attempted or process failed) a dielectric constant is still derived from an simplified modeled (the cardioid model). SMOS data enabled very quickly to infer Sea surface salinity fields. As salinity retrieval is quite challenging, retrieving it enable to assess very finely the characteristics of the complete system in terms of stability, drift etc. Some anomalies such as the ascending descending temperature differences, temporal drifts or land sea contamination were used to infer issues and improve data quality. The modeling has to account for several perturbing factors 'galactic reflection, sea state, atmospheric path and Faraday rotation etc…as the useful signal is quite small when compared to the perturbing factors impact as well as the instrument sensitivity. Over sea ice several studies showed that it was possible to infer thin ice (first year ice, 50 cm or less) from SMOS measurements. Other studies focused on the Antarctic plateau with also very interesting new results. This presentation will show in detail the SMOS in flight results. The retrieval schemes have been developed to reach science requirements, that is to derive the surface soil moisture over continental surface with an accuracy better than 0,04m3/m3. Over the ocean the goals are not yet satisfied but results are already getting close to the requirements.

  4. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones.

    PubMed

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-06-06

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations.

  5. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    PubMed Central

    Matejicek, Lubos; Janour, Zbynek; Benes, Ludek; Bodnar, Tomas; Gulikova, Eva

    2008-01-01

    Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust deposition at a local scale. In general, this project could be used as a template for dust-transport modelling which couples spatial data focused on the construction of digital terrain models and thematic mapping with data generated by numerical simulations based on Reynolds averaged Navier-Stokes equations. PMID:27879911

  6. Physical gills in diving insects and spiders: theory and experiment.

    PubMed

    Seymour, Roger S; Matthews, Philip G D

    2013-01-15

    Insects and spiders rely on gas-filled airways for respiration in air. However, some diving species take a tiny air-store bubble from the surface that acts as a primary O(2) source and also as a physical gill to obtain dissolved O(2) from the water. After a long history of modelling, recent work with O(2)-sensitive optodes has tested the models and extended our understanding of physical gill function. Models predict that compressible gas gills can extend dives up to more than eightfold, but this is never reached, because the animals surface long before the bubble is exhausted. Incompressible gas gills are theoretically permanent. However, neither compressible nor incompressible gas gills can support even resting metabolic rate unless the animal is very small, has a low metabolic rate or ventilates the bubble's surface, because the volume of gas required to produce an adequate surface area is too large to permit diving. Diving-bell spiders appear to be the only large aquatic arthropods that can have gas gill surface areas large enough to supply resting metabolic demands in stagnant, oxygenated water, because they suspend a large bubble in a submerged web.

  7. Relationship between radiation-induced aberrations in individual chromosomes and their DNA content: effects of interaction distance

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; Lucas, J. N.

    2001-01-01

    PURPOSE: To study the effect of the interaction distance on the frequency of inter- and intrachromosome exchanges in individual chromosomes with respect to their DNA content. Assumptions: Chromosome exchanges are formed by misrejoining of two DNA double-strand breaks (DSB) induced within an interaction distance, d. It is assumed that chromosomes in G(0)/G(1) phase of the cell cycle occupy a spherical domain in a cell nucleus, with no spatial overlap between individual chromosome domains. RESULTS: Formulae are derived for the probability of formation of inter-, as well as intra-, chromosome exchanges relating to the DNA content of the chromosome for a given interaction distance. For interaction distances <1 microm, the relative frequency of interchromosome exchanges predicted by the present model is similar to that by Cigarran et al. (1998) based on the assumption that the probability of interchromosome exchanges is proportional to the "surface area" of the chromosome territory. The "surface area" assumption is shown to be a limiting case of d-->0 in the present model. The present model also predicts that the probability of intrachromosome exchanges occurring in individual chromosomes is proportional to their DNA content with correction terms. CONCLUSION: When the interaction distance is small, the "surface area" distribution for chromosome participation in interchromosome exchanges has been expected. However, the present model shows that for the interaction distance as large as 1 microm, the predicted probability of interchromosome exchange formation is still close to the surface area distribution. Therefore, this distribution does not necessarily rule out the formation of complex chromosomal aberrations by long-range misrejoining of DSB.

  8. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    NASA Astrophysics Data System (ADS)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  9. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  10. A MODELING APPROACH FOR ESTIMATING WATERSHED IMPERVIOUS SURFACE AREA FROM NATIONAL LAND COVER DATA 92

    EPA Science Inventory

    We used National Land Cover Data 92 (NLCD92), vector impervious surface data, and raster GIS overlay methods to derive impervious surface coefficients per NLCD92 class in portions of the Nfid-Atlantic physiographic region. The methods involve a vector to raster conversion of the ...

  11. WNDCOM: estimating surface winds in mountainous terrain

    Treesearch

    Bill C. Ryan

    1983-01-01

    WNDCOM is a mathematical model for estimating surface winds in mountainous terrain. By following the procedures described, the sheltering and diverting effect of terrain, the individual components of the windflow, and the surface wind in remote mountainous areas can be estimated. Components include the contribution from the synoptic scale pressure gradient, the sea...

  12. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

    Treesearch

    Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi Kelly

    2013-01-01

    We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m

  13. Evaluate the urban effect on summer convective precipitation by coupling a urban canopy model with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.

    2013-12-01

    One of the most significant urbanization in the world occurred in Great Beijing Area of China during the past several decades. The land use and land cover changes modifies the land surface physical characteristics, including the anthropogenic heat and thermo-dynamic conduction. All of those play important roles in the urban regional climate changes. We developed a single layer urban canopy module based on the Community Land Surface Model Urban Module (CLMU). We have made further improvements in the urban module: the energy balances on the five surface conditions are considered separately: building roof, sun side and shade side wall, pervious and impervious land surface. Over each surface, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value; A new scheme for calculating the latent heat flux is applied on both wall and impervious land; anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicle and air condition. All of these developments improve the accuracy of surface energy balance processing in urban area. The urban effect on summer convective precipitation under the unstable atmospheric condition in the Great Beijing Area was investigated by simulating a heavy rainfall event in July 21st 2012. In this storm, strong meso-scale convective complexes (MCC) brought precipitation of averagely 164 mm within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling MCLMU with WRF. Several condition/blank control cases were also set up. The horizontal resolution in all simulations was 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF-MCLMU is much closer to the observation though still underestimated. More sensitive experiments gave a preliminary conclusion of how the urban canopy physics processing affects the local precipitation: the existence of large area of impervious surfaces restrain the surface evaporation and latent heat flux in urban while the anthropogenic heat and enhanced sensible heat flux warm up the lower atmospheric layer and strengthen the vertical stratification instability; In this storm event, the water supply of the MCC was thought to be sufficient, thus the instability of the vertical stratification was the key factor for precipitation.

  14. the Underestimation of Isorene in Houston during the Texas 2013 DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Diao, L.; Czader, B.; Li, X.; Estes, M. J.

    2014-12-01

    This study applies principal component analysis to aircraft data from the Texas 2013 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign to characterize isoprene sources over Houston during September 2013. The biogenic isoprene signature appears in the third principal component and anthropogenic signals in the following two. Evaluations of the Community Multiscale Air Quality (CMAQ) model simulations of isoprene with airborne measurements are more accurate for suburban areas than for industrial areas. This study also compares model outputs to eight surface automated gas chromatograph (Auto-GC) measurements near the Houston ship channel industrial area during the nighttime and shows that modeled anthropogenic isoprene is underestimated by a factor of 10.60. This study employs a new simulation with a modified anthropogenic emissions inventory (constraining using the ratios of observed values versus simulated ones) that yields closer isoprene predictions at night with a reduction in the mean bias by 56.93%, implying that model-estimated isoprene emissions from the 2008 National Emission Inventory are underestimated in the city of Houston and that other climate models or chemistry and transport models using the same emissions inventory might also be underestimated in other Houston-like areas in the United States.

  15. Central Facilities Area Sewage Lagoon Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giesbrecht, Alan

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose ofmore » this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.« less

  16. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    NASA Astrophysics Data System (ADS)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval Sentinel) high-performance computing infrastructure of University of Strasbourg.

  17. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    NASA Astrophysics Data System (ADS)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  18. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery

    USGS Publications Warehouse

    Yang, Limin; Huang, Chengquan; Homer, Collin G.; Wylie, Bruce K.; Coan, Michael

    2003-01-01

    A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.

  19. Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.

    2016-12-01

    Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.

  20. Toward the Understanding of MNEI Sweetness from Hydration Map Surfaces

    PubMed Central

    De Simone, Alfonso; Spadaccini, Roberta; Temussi, Piero A.; Fraternali, Franca

    2006-01-01

    The binding mechanism of sweet proteins to their receptor, a G-protein-coupled receptor, is not supported by direct structural information. In principle, the key groups responsible for biological activity (glucophores) can be localized on a small structural unit (sweet finger) or spread on a larger surface area. A recently proposed model, called “wedge model”, implies a large surface of interaction with the receptor. To explore this model in greater detail, it is necessary to examine the physicochemical features of the surfaces of sweet proteins, since their interaction with the receptor, with respect to that of small sweeteners, is more dependent on general physicochemical properties of the interface, such as electrostatic potential and hydration. In this study, we performed exhaustive molecular dynamics simulations in explicit water of the sweet protein MNEI and of its structural mutant G-16A, whose sweetness is one order of magnitude lower than that of MNEI. Solvent density and self-diffusion calculated from molecular dynamics simulations suggest a likely area of interaction delimited by four stretches arranged as a tetrahedron whose shape is complementary to that of a cavity on the surface of the receptor, in agreement with the wedge model. The suggested area of interaction is amazingly consistent with known mutagenesis data. In addition, the asymmetric hydration of the only helix in both proteins hints at a specific role for this secondary structure element in orienting the protein during the binding process. PMID:16461400

  1. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  2. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  3. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics.

    PubMed

    Ahmed, M J; Islam, Md Azharul; Asif, M; Hameed, B H

    2017-11-01

    In this work, a human hair-derived high surface area porous carbon material (HHC) was prepared using potassium hydroxide activation. The morphology and textural properties of the HHC structure, along with its adsorption performance for tetracycline (TC) antibiotics, were evaluated. HHC showed a high surface area of 1505.11m 2 /g and 68.34% microporosity. The effects of most important variables, such as initial concentration (25-355mg/L), solution pH (3-13), and temperatures (30-50°C), on the HHC adsorption performance were investigated. Isotherm data analysis revealed the favorable application of the Langmuir model, with maximum TC uptakes of 128.52, 162.62, and 210.18mg/g at 30, 40, and 50°C, respectively. The experimental data of TC uptakes versus time were analyzed efficiently using a pseudo-first order model. Porous HHC could be an efficient adsorbent for eliminating antibiotic pollutants in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mapping and modeling the biogeochemical cycling of turf grasses in the United States.

    PubMed

    Milesi, Cristina; Running, Steven W; Elvidge, Christopher D; Dietz, John B; Tuttle, Benjamin T; Nemani, Ramakrishna R

    2005-09-01

    Turf grasses are ubiquitous in the urban landscape of the United States and are often associated with various types of environmental impacts, especially on water resources, yet there have been limited efforts to quantify their total surface and ecosystem functioning, such as their total impact on the continental water budget and potential net ecosystem exchange (NEE). In this study, relating turf grass area to an estimate of fractional impervious surface area, it was calculated that potentially 163,800 km2 (+/- 35,850 km2) of land are cultivated with turf grasses in the continental United States, an area three times larger than that of any irrigated crop. Using the Biome-BGC ecosystem process model, the growth of warm-season and cool-season turf grasses was modeled at a number of sites across the 48 conterminous states under different management scenarios, simulating potential carbon and water fluxes as if the entire turf surface was to be managed like a well-maintained lawn. The results indicate that well-watered and fertilized turf grasses act as a carbon sink. The potential NEE that could derive from the total surface potentially under turf (up to 17 Tg C/yr with the simulated scenarios) would require up to 695 to 900 liters of water per person per day, depending on the modeled water irrigation practices, suggesting that outdoor water conservation practices such as xeriscaping and irrigation with recycled waste-water may need to be extended as many municipalities continue to face increasing pressures on freshwater.

  5. Modelling the degree of porosity of the ceramic surface intended for implants.

    PubMed

    Stach, Sebastian; Kędzia, Olga; Garczyk, Żaneta; Wróbel, Zygmunt

    2018-05-18

    The main goal of the study was to develop a model of the degree of surface porosity of a biomaterial intended for implants. The model was implemented using MATLAB. A computer simulation was carried out based on the developed model, which resulted in a two-dimensional image of the modelled surface. Then, an algorithm for computerised image analysis of the surface of the actual oxide bioceramic layer was developed, which enabled determining its degree of porosity. In order to obtain the confocal micrographs of a few areas of the biomaterial, measurements were performed using the LEXT OLS4000 confocal laser microscope. The image analysis was carried out using MountainsMap Premium and SPIP. The obtained results allowed determining the input parameters of the program, on the basis of which porous biomaterial surface images were generated. The last part of the study involved verification of the developed model. The modelling method was tested by comparing the obtained results with the experimental data obtained from the analysis of surface images of the test material.

  6. Prediction of lake depth across a 17-state region in the United States

    USGS Publications Warehouse

    Oliver, Samantha K.; Soranno, Patricia A.; Fergus, C. Emi; Wagner, Tyler; Winslow, Luke A.; Scott, Caren E.; Webster, Katherine E.; Downing, John A.; Stanley, Emily H.

    2016-01-01

    Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States.

  7. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization.

    PubMed Central

    Henriques, D. A.; Ladbury, J. E.; Jackson, R. M.

    2000-01-01

    The prediction of binding energies from the three-dimensional (3D) structure of a protein-ligand complex is an important goal of biophysics and structural biology. Here, we critically assess the use of empirical, solvent-accessible surface area-based calculations for the prediction of the binding of Src-SH2 domain with a series of tyrosyl phosphopeptides based on the high-affinity ligand from the hamster middle T antigen (hmT), where the residue in the pY+ 3 position has been changed. Two other peptides based on the C-terminal regulatory site of the Src protein and the platelet-derived growth factor receptor (PDGFR) are also investigated. Here, we take into account the effects of proton linkage on binding, and test five different surface area-based models that include different treatments for the contributions to conformational change and protein solvation. These differences relate to the treatment of conformational flexibility in the peptide ligand and the inclusion of proximal ordered solvent molecules in the surface area calculations. This allowed the calculation of a range of thermodynamic state functions (deltaCp, deltaS, deltaH, and deltaG) directly from structure. Comparison with the experimentally derived data shows little agreement for the interaction of SrcSH2 domain and the range of tyrosyl phosphopeptides. Furthermore, the adoption of the different models to treat conformational change and solvation has a dramatic effect on the calculated thermodynamic functions, making the predicted binding energies highly model dependent. While empirical, solvent-accessible surface area based calculations are becoming widely adopted to interpret thermodynamic data, this study highlights potential problems with application and interpretation of this type of approach. There is undoubtedly some agreement between predicted and experimentally determined thermodynamic parameters: however, the tolerance of this approach is not sufficient to make it ubiquitously applicable. PMID:11106171

  8. A diffusive ink transport model for lipid dip-pen nanolithography.

    PubMed

    Urtizberea, A; Hirtz, M

    2015-10-14

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.

  9. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    USGS Publications Warehouse

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  10. New land surface digital elevation model covers the Earth

    USGS Publications Warehouse

    Gesch, Dean B.; Verdin, Kristine L.; Greenlee, Susan K.

    1999-01-01

    Land surface elevation around the world is reaching new heights—as far as its description and measurement goes. A new global digital elevation model (DEM) is being cited as a significant improvement in the quality of topographic data available for Earth science studies.Land surface elevation is one of the Earth's most fundamental geophysical properties, but the accuracy and detail with which it has been measured and described globally have been insufficient for many large-area studies. The new model, developed at the U.S. Geological Survey's (USGS) EROS Data Center (EDC), has changed all that.

  11. Calibration of a two-dimensional hydrodynamic model for parts of the Allegheny, Monongahela, and Ohio Rivers, Allegheny County, Pennsylvania

    USGS Publications Warehouse

    Fulton, John W.; Wagner, Chad R.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Allegheny County Sanitary Authority, developed a validated two-dimensional Resource Management Associates2 (RMA2) hydrodynamic model of parts of the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) to help assess the effects of combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs) on the rivers. The hydrodynamic model was used to drive a water-quality model of the study area that was capable of simulating the transport and fate of fecal-indicator bacteria and chemical constituents under open-water conditions. The study area includes 14 tributary streams and parts of the Three Rivers where they enter and exit Allegheny County, an area of approximately 730 square miles (mi2). The city of Pittsburgh is near the center of the county, where the Allegheny and Monongahela Rivers join to form the headwaters of the Ohio River. The Three Rivers are regulated by a series of fixed-crest dams, gated dams, and radial (tainter) gates and serve as the receiving waters for tributary streams, CSOs, and SSOs. The RMA2 model was separated into four individual segments on the basis of the U.S. Army Corps of Engineers navigational pools in the study area (Dashields; Emsworth; Allegheny River, Pool 2; and Braddock), which were calibrated individually using measured water-surface slope, velocity, and discharge during high- and low-flow conditions. The model calibration process included the comparison of water-surface elevations at five locations and velocity profiles at more than 80 cross sections in the study area. On the basis of the calibration and validation results that included water-surface elevations and velocities, the model is a representative simulation of the Three Rivers flow patterns for discharges ranging from 4,050 to 47,400 cubic feet per second (ft3/s) on the Allegheny River, 2,550 to 40,000 ft3/s on the Monongahela River, and 10,900 to 99,000 ft3/s on the Ohio River. The Monongahela River was characterized by unsteady conditions during low and high flows, which affected the calibration range. The simulated low-flow water-surface elevations typically were within 0.2 feet (ft) of measured values, whereas the simulated high-flow water-surface elevations were typically within 0.3 ft of the measured values. The mean error between simulated and measured velocities was less than 0.07 ft/s for low-flow conditions and less than 0.17 ft/s for high-flow conditions.

  12. Modelling of micromachining of human tooth enamel by erbium laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.

    2014-08-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.

  13. Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.

    PubMed

    Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales

    2012-12-01

    To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.

  14. Geometric Image Biomarker Changes of the Parotid Gland Are Associated With Late Xerostomia.

    PubMed

    van Dijk, Lisanne V; Brouwer, Charlotte L; van der Laan, Hans Paul; Burgerhof, Johannes G M; Langendijk, Johannes A; Steenbakkers, Roel J H M; Sijtsema, Nanna M

    2017-12-01

    To identify a surrogate marker for late xerostomia 12 months after radiation therapy (Xer 12m ), according to information obtained shortly after treatment. Differences in parotid gland (PG) were quantified in image biomarkers (ΔIBMs) before and 6 weeks after radiation therapy in 107 patients. By performing stepwise forward selection, ΔIBMs that were associated with Xer 12m were selected. Subsequently other variables, such as PG dose and acute xerostomia scores, were added to improve the prediction performance. All models were internally validated. Prediction of Xer 12m based on PG surface reduction (ΔPG-surface) was good (area under the receiver operating characteristic curve, 0.82). Parotid gland dose was related to ΔPG-surface (P<.001, R 2  = 0.27). The addition of acute xerostomia scores to the ΔPG-surface improved the prediction of Xer 12m significantly, and vice versa. The final model including ΔPG-surface and acute xerostomia had outstanding performance in predicting Xer 12m early after radiation therapy (area under the receiver operating characteristic curve, 0.90). Parotid gland surface reduction was associated with late xerostomia. The early posttreatment model with ΔPG-surface and acute xerostomia scores can be considered as a surrogate marker for late xerostomia. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, Adam N.; Lindsey, Cary R.; Fairley, Jerry P.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semiquantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, ID, USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which convection carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.

  16. How well can regional fluxes be derived from smaller-scale estimates?

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.

    1992-01-01

    Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.

  17. Derivation of surface properties from Magellan altimetry data

    NASA Astrophysics Data System (ADS)

    Lovell, Amy J.; Schloerb, F. Peter; McGill, George E.

    1992-12-01

    The fit of the Hagfors model to the Magellan altimetry data provides a means to characterize the surface properties of Venus. However, the derived surface properties are only meaningful if the model provides a good representation of the data. The Hagfors model provides a good representation of the data. The Hagfors model is generally a realistic fit to surface scattering properties of a nadir-directed antenna such as the Magellan altimeter; however, some regions of the surface of Venus are poorly described by the existing model, according to the goodness of fit parameter provided on the ARCDR CD-ROMs. Poorly characterized regions need to be identified and fit to new models in order to derive more accurate surface properties for use in inferring the geological processes that affect the surface in those regions. We have compared the goodness of fit of the Hagfors model to the distribution of features across the planet, and preliminary results show a correlation between steep topographic slopes and poor fits to the standard model, as has been noticed by others. In this paper, we investigate possible relations between many classes of features and the ability of the Hagfors model to fit the observed echo profiles. In the regions that are not well characterized by existing models, we calculate new models that compensate for topographic relief in order to derive improved estimates of surface properties. Areas investigated to date span from longitude 315 through 45, at all latitudes covered by Magellan. A survey of those areas yields preliminary results that suggest that topographically high regions are well suited to the current implementation of the Hagfors model. Striking examples of such large-scale good fits are Alpha Regio, the northern edges of Lada Terra, and the southern edge of Ishtar Terra. Other features that are typically well fit are the rims of coronae such as Heng-O and the peaks of volcanos such as Gula Mons. Surprisingly, topographically low regions, such as the ubiquitous plains areas, are modeled poorly in comparison. However, this generalization has has exceptions: Lakshmi Planum is an elevated region that is not well fit compared to the rest of neighboring Ishtar, while the southern parts of topographically low Guinevere Planitia are characterized quite well by the Hagfors model. Features that are candidates for improved models are impact craters, coronae, ridges of significant scale, complex ridged terrains, moderate-sized mountains, and sharp terrain boundaries. These features are chosen because the goodness of fit is likely to be most affected either by departures from normal incidence angles or by sharp changes in terrain type within a single footprint. Most large features that are elevated with respect to their surroundings will suffer from steep slope effects, and smaller coronae and impact craters will probably suffer due to rapid changes in their appearance within a single footprint (10-20 km).

  18. Derivation of surface properties from Magellan altimetry data

    NASA Technical Reports Server (NTRS)

    Lovell, Amy J.; Schloerb, F. Peter; Mcgill, George E.

    1992-01-01

    The fit of the Hagfors model to the Magellan altimetry data provides a means to characterize the surface properties of Venus. However, the derived surface properties are only meaningful if the model provides a good representation of the data. The Hagfors model provides a good representation of the data. The Hagfors model is generally a realistic fit to surface scattering properties of a nadir-directed antenna such as the Magellan altimeter; however, some regions of the surface of Venus are poorly described by the existing model, according to the goodness of fit parameter provided on the ARCDR CD-ROMs. Poorly characterized regions need to be identified and fit to new models in order to derive more accurate surface properties for use in inferring the geological processes that affect the surface in those regions. We have compared the goodness of fit of the Hagfors model to the distribution of features across the planet, and preliminary results show a correlation between steep topographic slopes and poor fits to the standard model, as has been noticed by others. In this paper, we investigate possible relations between many classes of features and the ability of the Hagfors model to fit the observed echo profiles. In the regions that are not well characterized by existing models, we calculate new models that compensate for topographic relief in order to derive improved estimates of surface properties. Areas investigated to date span from longitude 315 through 45, at all latitudes covered by Magellan. A survey of those areas yields preliminary results that suggest that topographically high regions are well suited to the current implementation of the Hagfors model. Striking examples of such large-scale good fits are Alpha Regio, the northern edges of Lada Terra, and the southern edge of Ishtar Terra. Other features that are typically well fit are the rims of coronae such as Heng-O and the peaks of volcanos such as Gula Mons. Surprisingly, topographically low regions, such as the ubiquitous plains areas, are modeled poorly in comparison. However, this generalization has has exceptions: Lakshmi Planum is an elevated region that is not well fit compared to the rest of neighboring Ishtar, while the southern parts of topographically low Guinevere Planitia are characterized quite well by the Hagfors model. Features that are candidates for improved models are impact craters, coronae, ridges of significant scale, complex ridged terrains, moderate-sized mountains, and sharp terrain boundaries. These features are chosen because the goodness of fit is likely to be most affected either by departures from normal incidence angles or by sharp changes in terrain type within a single footprint. Most large features that are elevated with respect to their surroundings will suffer from steep slope effects, and smaller coronae and impact craters will probably suffer due to rapid changes in their appearance within a single footprint (10-20 km).

  19. Simulated effects of development on regional ground-water/surface-water interactions in the northern Coastal Plain of New Jersey

    NASA Astrophysics Data System (ADS)

    Pucci, Amleto A.; Pope, Daryll A.

    1995-05-01

    Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams in the Middle Aquifer decreases from 80.0 to 22% of the Middle Aquifer hydrologic budget. The utility of assessing ground-water/surface-water interaction in a regional hydrogeologic system by simulation responses to development is demonstrated and which can compensate for lack of long-term stream-gaging data in determining management decisions.

  20. Impact of Middle vs. Inferior Total Turbinectomy on Nasal Aerodynamics

    PubMed Central

    Dayal, Anupriya; Rhee, John S.; Garcia, Guilherme J. M.

    2016-01-01

    Objectives This computational study aims to: (1) Use virtual surgery to theoretically investigate the maximum possible change in nasal aerodynamics after turbinate surgery; (2) Quantify the relative contributions of the middle and inferior turbinates to nasal resistance and air conditioning; (3) Quantify to what extent total turbinectomy impairs the nasal air conditioning capacity. Study Design Virtual surgery and computational fluid dynamics (CFD). Setting Academic tertiary medical center. Subjects and Methods Ten patients with inferior turbinate hypertrophy were studied. Three-dimensional models of their nasal anatomies were built based on pre-surgery computed tomography scans. Virtual surgery was applied to create models representing either total inferior turbinectomy (TIT) or total middle turbinectomy (TMT). Airflow, heat transfer, and humidity transport were simulated at a 15 L/min steady-state inhalation rate. The surface area stimulated by mucosal cooling was defined as the area where heat fluxes exceed 50 W/cm2. Results In both virtual total turbinectomy models, nasal resistance decreased and airflow increased. However, the surface area where heat fluxes exceed 50 W/cm2 either decreased (TIT) or did not change significantly (TMT), suggesting that total turbinectomy may reduce the stimulation of cold receptors by inspired air. Nasal heating and humidification efficiencies decreased significantly after both TIT and TMT. All changes were greater in the TIT models than in the TMT models. Conclusion TIT yields greater increases in nasal airflow, but also impairs the nasal air conditioning capacity to a greater extent than TMT. Radical resection of the turbinates may decrease the surface area stimulated by mucosal cooling. PMID:27165673

  1. Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics.

    PubMed

    Dayal, Anupriya; Rhee, John S; Garcia, Guilherme J M

    2016-09-01

    This computational study aims to (1) use virtual surgery to theoretically investigate the maximum possible change in nasal aerodynamics after turbinate surgery, (2) quantify the relative contributions of the middle and inferior turbinates to nasal resistance and air conditioning, and (3) quantify to what extent total turbinectomy impairs the nasal air-conditioning capacity. Virtual surgery and computational fluid dynamics. Academic tertiary medical center. Ten patients with inferior turbinate hypertrophy were studied. Three-dimensional models of their nasal anatomies were built according to presurgery computed tomography scans. Virtual surgery was applied to create models representing either total inferior turbinectomy (TIT) or total middle turbinectomy (TMT). Airflow, heat transfer, and humidity transport were simulated at a steady-state inhalation rate of 15 L/min. The surface area stimulated by mucosal cooling was defined as the area where heat fluxes exceed 50 W/m(2). In both virtual total turbinectomy models, nasal resistance decreased and airflow increased. However, the surface area where heat fluxes exceed 50 W/m(2) either decreased (TIT) or did not change significantly (TMT), suggesting that total turbinectomy may reduce the stimulation of cold receptors by inspired air. Nasal heating and humidification efficiencies decreased significantly after both TIT and TMT. All changes were greater in the TIT models than in the TMT models. TIT yields greater increases in nasal airflow but also impairs the nasal air-conditioning capacity to a greater extent than TMT. Radical resection of the turbinates may decrease the surface area stimulated by mucosal cooling. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  2. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    PubMed

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  3. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    USGS Publications Warehouse

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature fluctuations which affect manatee behavior. Comparison of the existing conditions simulation with the simulation incorporating restoration changes indicated that the restoration would increase the period of inundation for most of the coastal wetlands. Generally, surface-water salinity was lowered by restoration changes in most of the wetlands areas, especially during the early dry season. However, the opposite pattern was observed in the primary canal habitat for manatees, namely, the Port of the Islands. Salinities at this location tended to be moderately elevated during the dry season, and unchanged during the wet season. Water temperatures were in close agreement between the existing conditions and restoration simulations, although minimum temperatures at the Port of the Islands were slightly higher in the restoration simulation as a result of the additional surface-water ponding and warming that occurs in adjacent wetlands. The TTI application output was used to generate salinity and temperature time series for comparison to manatee field tracking data and an individually-based manatee-behavior model. Overlaying field data with salinity and temperature results from the TTI application reflects the effect of warm water availability and the periodic need for low-salinity drinking water on manatee movements. The manatee-behavior model uses the TTI application data at specific model nodes along the main manatee travel corridors to determine manatee migration patterns. The differences between the existing conditions and restoration scenarios can then be compared for manatee refugia. The TTI application can be used to test a variety of hydrologic conditions and their effect on important criteria.

  4. Improved meteorology from an updated WRF/CMAQ modeling ...

    EPA Pesticide Factsheets

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvement

  5. Stochastic response surface methodology: A study in the human health area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Teresa A., E-mail: teresa.oliveira@uab.pt; Oliveira, Amílcar, E-mail: amilcar.oliveira@uab.pt; Centro de Estatística e Aplicações, Universidade de Lisboa

    2015-03-10

    In this paper we review Stochastic Response Surface Methodology as a tool for modeling uncertainty in the context of Risk Analysis. An application in the survival analysis in the breast cancer context is implemented with R software.

  6. Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling

    NASA Astrophysics Data System (ADS)

    De Sales, Fernando; Xue, Yongkang; Okin, Gregory S.

    2016-12-01

    This study investigates the impact of burned areas on the surface energy balance and monthly precipitation in northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS date of burning product was implemented in a set of 1-year long WRF-NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was imposed through lower ground albedo for a period after burning. In general, wildfire-induced vegetation and ground condition deterioration increased mean surface albedo by exposing the brighter bare ground, which in turn caused a decrease in monthly surface net radiation. On average, the wildfire-season albedo increase was approximately 6.3 % over the Sahel. The associated decrease in surface available energy caused a drop in surface sensible heat flux to the atmosphere during the dry months of winter and early spring, which gradually transitioned to a more substantial decrease in surface evapotranspiration in April and May that lessened throughout the rainy season. Overall, post-fire land condition deterioration resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned area simulations, which played a dominant role in reducing precipitation in the area, especially in the months preceding the monsoon onset. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8 and 3.3 %, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early spring. This study suggests the cooling and drying of atmosphere induced by burned areas caused the strengthening of subsidence during pre-onset and weakening of upward atmospheric motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Monthly mid-tropospheric vertical wind showed a strengthening of downward motion in winter and spring seasons, and weakening of upward movement during the rainy months. Furthermore, precipitation energy analysis revealed that most of precipitation decrease originated from convective events, which supports the hypothesis of reduced convective instability due to wildfires.

  7. Estimating home-range size: when to include a third dimension?

    PubMed Central

    Monterroso, Pedro; Sillero, Neftalí; Rosalino, Luís Miguel; Loureiro, Filipa; Alves, Paulo Célio

    2013-01-01

    Most studies dealing with home ranges consider the study areas as if they were totally flat, working only in two dimensions, when in reality they are irregular surfaces displayed in three dimensions. By disregarding the third dimension (i.e., topography), the size of home ranges underestimates the surface actually occupied by the animal, potentially leading to misinterpretations of the animals' ecological needs. We explored the influence of considering the third dimension in the estimation of home-range size by modeling the variation between the planimetric and topographic estimates at several spatial scales. Our results revealed that planimetric approaches underestimate home-range size estimations, which range from nearly zero up to 22%. The difference between planimetric and topographic estimates of home-ranges sizes produced highly robust models using the average slope as the sole independent factor. Moreover, our models suggest that planimetric estimates in areas with an average slope of 16.3° (±0.4) or more will incur in errors ≥5%. Alternatively, the altitudinal range can be used as an indicator of the need to include topography in home-range estimates. Our results confirmed that home-range estimates could be significantly biased when topography is disregarded. We suggest that study areas where home-range studies will be performed should firstly be scoped for its altitudinal range, which can serve as an indicator for the need for posterior use of average slope values to model the surface area used and/or available for the studied animals. PMID:23919170

  8. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    PubMed

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  9. Evaluation of the effects of sea-level change and coastal canal management on saltwater intrusion in the Biscayne aquifer of south Florida, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Sifuentes, D. F.; White, J.

    2015-12-01

    Sea-level increases are expected to have an effect on the position of the freshwater-saltwater interface in the Biscayne aquifer in south Florida as a result of the low topographic relief of the area and high rates of groundwater withdrawal from the aquifer. To study the effects that future sea-level increases will have on saltwater intrusion in the Biscayne aquifer in Broward County, Florida, a three-dimensional, variable-density, groundwater-flow and transport model was developed. The model was calibrated to observed groundwater heads and chloride concentrations for a 62-year period that includes historic increases in sea level, development of a surface-water management system to control flooding, and increases in groundwater withdrawals as the area transitioned from agricultural to urban land uses. Sensitivity analyses indicate that downward leakage of saltwater from coastal canals and creeks was the primary source of saltwater to the Biscayne aquifer during the last 62-years in areas where the surface-water system is not actively managed and is tidally influenced. In areas removed from the coastal canals and creeks or under active surface-water management, historic groundwater withdrawals were the primary cause of saltwater intrusion into the aquifer. Simulation of future conditions suggests that possible increases in sea level will result in additional saltwater intrusion. Model scenarios suggest that additional saltwater intrusion will be greatest in areas where coastal canals and creeks were historically the primary source of seawater. Future saltwater intrusion in those areas, however, may be reduced by relocation of salinity-control structures.

  10. A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen

    2000-01-01

    A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.

  11. Estimating time and spatial distribution of snow water equivalent in the Hakusan area

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Matsui, Y.; Touge, Y.

    2015-12-01

    In the Sousei program, on-going Japanese research program for risk information on climate change, assessing the impact of climate change on water resources is attempted using the integrated water resources model which consists of land surface model, irrigation model, river routing model, reservoir operation model, and crop growth model. Due to climate change, reduction of snowfall amount, reduction of snow cover and change in snowmelt timing, change in river discharge are of increasing concern. So, the evaluation of snow water amount is crucial for assessing the impact of climate change on water resources in Japan. To validate the snow simulation of the land surface model, time and spatial distribution of the snow water equivalent was estimated using the observed surface meteorological data and RAP (Radar Analysis Precipitation) data. Target area is Hakusan. Hakusan means 'white mountain' in Japanese. Water balance of the Tedori River Dam catchment was checked with daily inflow data. Analyzed runoff was generally well for the period from 2010 to 2012. From the result for 2010-2011 winter, maximum snow water equivalent in the headwater area of the Tedori River dam reached more than 2000mm in early April. On the other hand, due to the underestimation of RAP data, analyzed runoff was under estimated from 2006 to 2009. This underestimation is probably not from the lack of land surface model, but from the quality of input precipitation data. In the original RAP, only the rain gauge data of JMA (Japan Meteorological Agency) were used in the analysis. Recently, other rain gauge data of MLIT (Ministry of Land, Infrastructure, Transport and Tourism) and local government have been added in the analysis. So, the quality of the RAP data especially in the mountain region has been greatly improved. "Reanalysis" of the RAP precipitation is strongly recommended using all the available off-line rain gauges information. High quality precipitation data will contribute to validate hydrological model, satellite based precipitation product, GCM output, etc.

  12. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  13. Urban RoGeR: Merging process-based high-resolution flash flood model for urban areas with long-term water balance predictions

    NASA Astrophysics Data System (ADS)

    Weiler, M.

    2016-12-01

    Heavy rain induced flash floods are still a serious hazard and generate high damages in urban areas. In particular in the spatially complex urban areas, the temporal and spatial pattern of runoff generation processes at a wide spatial range during extreme rainfall events need to be predicted including the specific effects of green infrastructure and urban forests. In addition, the initial conditions (soil moisture pattern, water storage of green infrastructure) and the effect of lateral redistribution of water (run-on effects and re-infiltration) have to be included in order realistically predict flash flood generation. We further developed the distributed, process-based model RoGeR (Runoff Generation Research) to include the relevant features and processes in urban areas in order to test the effects of different settings, initial conditions and the lateral redistribution of water on the predicted flood response. The uncalibrated model RoGeR runs at a spatial resolution of 1*1m² (LiDAR, degree of sealing, landuse), soil properties and geology (1:50.000). In addition, different green infrastructures are included into the model as well as the effect of trees on interception and transpiration. A hydraulic model was included into RoGeR to predict surface runoff, water redistribution, and re-infiltration. During rainfall events, RoGeR predicts at 5 min temporal resolution, but the model also simulates evapotranspiration and groundwater recharge during rain-free periods at a longer time step. The model framework was applied to several case studies in Germany where intense rainfall events produced flash floods causing high damage in urban areas and to a long-term research catchment in an urban setting (Vauban, Freiburg), where a variety of green infrastructures dominates the hydrology. Urban-RoGeR allowed us to study the effects of different green infrastructures on reducing the flood peak, but also its effect on the water balance (evapotranspiration and groundwater recharge). We could also show that infiltration of surface runoff from areas with a low infiltration (lateral redistribution) reduce the flood peaks by over 90% in certain areas and situations. Finally, we also evaluated the model to long-term runoff observations (surface runoff, ET, roof runoff) and to flood marks in the selected case studies.

  14. Numerical Modeling of Exploitation Relics and Faults Influence on Rock Mass Deformations

    NASA Astrophysics Data System (ADS)

    Wesołowski, Marek

    2016-12-01

    This article presents numerical modeling results of fault planes and exploitation relics influenced by the size and distribution of rock mass and surface area deformations. Numerical calculations were performed using the finite difference program FLAC. To assess the changes taking place in a rock mass, an anisotropic elasto-plastic ubiquitous joint model was used, into which the Coulomb-Mohr strength (plasticity) condition was implemented. The article takes as an example the actual exploitation of the longwall 225 area in the seam 502wg of the "Pokój" coal mine. Computer simulations have shown that it is possible to determine the influence of fault planes and exploitation relics on the size and distribution of rock mass and its surface deformation. The main factor causing additional deformations of the area surface are the abandoned workings in the seam 502wd. These abandoned workings are the activation factor that caused additional subsidences and also, due to the significant dip, they are a layer on which the rock mass slides down in the direction of the extracted space. These factors are not taken into account by the geometrical and integral theories.

  15. Application of a Groundwater Modeling Tool for Managing Hydrologically Connected Area in State of Nebraska, US

    NASA Astrophysics Data System (ADS)

    Li, R.; Flyr, B.; Bradley, J.; Pun, M.; Schneider, J.; Wietjes, J.; Chinta, S.

    2014-12-01

    Determination of the nature and degree of hydrologically connected groundwater and surface water resources is of paramount importance to integrated water management within the State of Nebraska to understand the impact of water uses on available supplies, such as depletion of streams and aquifers caused by groundwater pumping. The ability to quantify effects of surface water-groundwater hydrologic connection and interactions, is regarded as one of the most important steps towards effectively managing water resources in Nebraska and provides the basis for designating management areas. Designation of management areas allows the state and other management entities to focus various efforts and resources towards those projects that have the greatest impact to water users. Nebraska Department of Natural Resources (NDNR) developed a groundwater modeling tool, Cycle Well Analysis, to determine the areas defined to have a high degree of connectivity between groundwater and surface water (in accordance with the state regulations). This tool features two graphic user interfaces to allow the analysis to be fully compatible with most MODFLOW-based numerical groundwater models currently utilized by NDNR. Case studies showed that the tool, in combination of Geographic Information Systems (GIS), can be used to quantify the degree of stream depletion and delineate the boundary of hydrologically connected areas within different political boundaries and subbasins in Nebraska. This approach may be applied to other regions with similar background and need for integrated water management.

  16. Influence of urban surface properties and rainfall characteristics on surface water flood outputs - insights from a physical modelling environment

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2017-04-01

    Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope, surface permeability and building density have a significant influence on physical model hydrological outputs. For example, changes in building density across the urban model catchment are shown to result in hydrographs having (i) a more rapid rising limb; (ii) higher peak discharges; (iii) a reduction in the total hydrograph time, and; (iv) a faster falling limb, with the dense building scenario having a 22% increase in peak discharge when compared to the no building scenario. Furthermore, the layout of buildings across the plot surface and their proximity to the outflow unit (i.e. downstream, upstream or to the side of the physical model outlet) is shown to influence outflow hydrograph response, with downstream concentrated building scenarios resulting in a delay in hydrograph onset time and a reduction in the time of the total outflow hydrograph event.

  17. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  18. The biogeophysical effects of extreme afforestation in modeling future climate

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Yan, Xiaodong; Wang, Zhaomin

    2014-11-01

    Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.

  19. UAV-based photogrammetry combination of the elevational outcrop and digital surface models: an example of Sanyi active fault in western Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, Cheng-En; Huang, Wen-Jeng; Chang, Ping-Yu; Lo, Wei

    2016-04-01

    An unmanned aerial vehicle (UAV) with a digital camera is an efficient tool for geologists to investigate structure patterns in the field. By setting ground control points (GCPs), UAV-based photogrammetry provides high-quality and quantitative results such as a digital surface model (DSM) and orthomosaic and elevational images. We combine the elevational outcrop 3D model and a digital surface model together to analyze the structural characteristics of Sanyi active fault in Houli-Fengyuan area, western Taiwan. Furthermore, we collect resistivity survey profiles and drilling core data in the Fengyuan District in order to build the subsurface fault geometry. The ground sample distance (GSD) of an elevational outcrop 3D model is 3.64 cm/pixel in this study. Our preliminary result shows that 5 fault branches are distributed 500 meters wide on the elevational outcrop and the width of Sanyi fault zone is likely much great than this value. Together with our field observations, we propose a structural evolution model to demonstrate how the 5 fault branches developed. The resistivity survey profiles show that Holocene gravel was disturbed by the Sanyi fault in Fengyuan area.

  20. Identifying environmental features for land management decisions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Pairs of HCMM day-night thermal infrared (IR) data were selected to examine patterns of surface temperature and thermal inertia (TI) of peninsular Florida. GOES and NOAA-6 thermal IR, as well as National Climatic Center temperatures and rainfall, were also used. The HCMM apparent thermal inertia (ATI) images closely correspond to the General Soil Map of Florida, based on soil drainage classes. Areas with low ATI overlay well-drained soils, such as deep sands and drained organic soils. Areas with high ATI overlay areas with wetlands and bodies of water. The HCMM ATI images also correspond well with GOES-detected winter nocturnal cold-prone areas. Use of HCMM data with Carlson's energy balance model shows both high moisture availability (MA) and high thermal inertia (TI) of wetland-type surfaces and low MA and low TI of upland, well-drained soils. Since soil areas with low TI develop higher temperatures during the day, then antecedent patterns of highest maximum daytime surface temperature can also be used to predict nocturnal cold-prone areas in Florida.

  1. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    NASA Astrophysics Data System (ADS)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  2. Monitoring global snow cover

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard; Hardman, Molly

    1991-01-01

    A snow model that supports the daily, operational analysis of global snow depth and age has been developed. It provides improved spatial interpolation of surface reports by incorporating digital elevation data, and by the application of regionalized variables (kriging) through the use of a global snow depth climatology. Where surface observations are inadequate, the model applies satellite remote sensing. Techniques for extrapolation into data-void mountain areas and a procedure to compute snow melt are also contained in the model.

  3. Metabolic rate M  0.75 in human beings

    NASA Astrophysics Data System (ADS)

    Agrawal, D. C.

    2014-11-01

    Human beings consume energy every day. Even at rest, energy is still needed for the working of the internal organs. This is achieved by the metabolism of consumed food in the presence of inhaled oxygen. During the resting state this is called the maintenance rate, and follows the mouse-to-elephant formula, Pmet = 70M0.75 kcal per day. Here, M is the body mass of the subject in kilograms. The heat generated in metabolism is lost through the body surface of the subject, so the metabolic rate should also be proportional to the body surface area. In other words, the body surface area in the case of a human being must also depend on M0.75. The present paper examines this issue by finding a relationship between human body surface area and its mass through a very simple model that can be easily understood and verified by physics students, who can also compare it with all the expressions for body surface area available in the literature. This will build confidence in the students that the heat generated from metabolism in fact dissipates through the surface of the body.

  4. FARSITE: Fire Area Simulator-model development and evaluation

    Treesearch

    Mark A. Finney

    1998-01-01

    A computer simulation model, FARSITE, includes existing fire behavior models for surface, crown, spotting, point-source fire acceleration, and fuel moisture. The model's components and assumptions are documented. Simulations were run for simple conditions that illustrate the effect of individual fire behavior models on two-dimensional fire growth.

  5. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics

    PubMed Central

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J.

    2016-01-01

    Objective Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. Methods The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. Results In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. Conclusions We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint. PMID:27936066

  6. Implications of Geology for Construction

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2009-01-01

    The surface of the Moon is covered in regolith, which is NOT soil! The regolith is shattered igneous rock plus glass. The particles are unsorted, unweathered and not abraided. Modeling of the regolith at the level of individual particles will be very problematic. Modeling of the regolith, if successful for one area, will be successful for most other areas if variation in particle size is addressed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less

  8. Acoustic scale modelling of factories, part II: 1-50 Cale model investigations of factory sound fields

    NASA Astrophysics Data System (ADS)

    Hodgson, M. R.; Orlowski, R. J.

    1987-03-01

    In this second part of a report on factory scale modelling use of a 1:50 scale variable model as a research tool is described. Details of the model are presented. The results of measurements of reverberation time and sound propagation, made in various model configurations, are used to investigate the main factors influencing factory sound fields, and the applicability of the Sabine theory to factories. The parameters investigated are the enclosure geometry (aspect ratio, volume and roof pitch), surface absorption and fittings (density, size, surface area, vertical distribution and specific types). Despite certain limitations and uncertainties resulting, for example, from surprising results associated with surface absorption, models are shown to be effective research tools. The inapplicability of the Sabine theory is confirmed and elucidated.

  9. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Beutler, G.

    1978-01-01

    The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave.

  10. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  11. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  12. Coupled SWAT-MODFLOW Model Development for Large Basins

    NASA Astrophysics Data System (ADS)

    Aliyari, F.; Bailey, R. T.; Tasdighi, A.

    2017-12-01

    Water management in semi-arid river basins requires allocating water resources between urban, industrial, energy, and agricultural sectors, with the latter competing for necessary irrigation water to sustain crop yield. Competition between these sectors will intensify due to changes in climate and population growth. In this study, the recently developed SWAT-MODFLOW coupled hydrologic model is modified for application in a large managed river basin that provides both surface water and groundwater resources for urban and agricultural areas. Specific modifications include the linkage of groundwater pumping and irrigation practices and code changes to allow for the large number of SWAT hydrologic response units (HRU) required for a large river basin. The model is applied to the South Platte River Basin (SPRB), a 56,980 km2 basin in northeastern Colorado dominated by large urban areas along the front range of the Rocky Mountains and agriculture regions to the east. Irregular seasonal and annual precipitation and 150 years of urban and agricultural water management history in the basin provide an ideal test case for the SWAT-MODFLOW model. SWAT handles land surface and soil zone processes whereas MODFLOW handles groundwater flow and all sources and sinks (pumping, injection, bedrock inflow, canal seepage, recharge areas, groundwater/surface water interaction), with recharge and stream stage provided by SWAT. The model is tested against groundwater levels, deep percolation estimates, and stream discharge. The model will be used to quantify spatial groundwater vulnerability in the basin under scenarios of climate change and population growth.

  13. Bayesian evidence for the prevalence of waterworlds

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2017-07-01

    Should we expect most habitable planets to share the Earth's marbled appearance? For a planetary surface to boast extensive areas of both land and water, a delicate balance must be struck between the volume of water it retains and the capacity of its perturbations. These two quantities may show substantial variability across the full spectrum of water-bearing worlds. This would suggest that, barring strong feedback effects, most surfaces are heavily dominated by either water or land. Why is the Earth so finely poised? To address this question, we construct a simple model for the selection bias that would arise within an ensemble of surface conditions. Based on the Earth's ocean coverage of 71 per cent, we find substantial evidence (Bayes factor K ≃ 6) supporting the hypothesis that anthropic selection effects are at work. Furthermore, due to the Earth's proximity to the waterworld limit, this model predicts that most habitable planets are dominated by oceans spanning over 90 per cent of their surface area (95 per cent credible interval). This scenario, in which the Earth has a much greater land area than most habitable planets, is consistent with results from numerical simulations and could help explain the apparently low-mass transition in the mass-radius relation.

  14. Estimating and validating surface energy fluxes at field scale over a heterogeneous land surfaces based on two-source energy balance model (TSEB)

    USDA-ARS?s Scientific Manuscript database

    Accurate estimation of surface energy fluxes at field scale over large areas has the potential to improve agricultural water management in arid and semiarid watersheds. Remote sensing may be the only viable approach for mapping fluxes over heterogeneous landscapes. The Two-Source Energy Balance mode...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, YaLing; Tao, Wen -Quan

    The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less

  16. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  17. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    NASA Astrophysics Data System (ADS)

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-12-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

  18. Direct measurements of meltwater runoff on the Greenland ice sheet surface.

    PubMed

    Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E

    2017-12-12

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.

  19. Direct measurements of meltwater runoff on the Greenland ice sheet surface

    PubMed Central

    Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.

    2017-01-01

    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. PMID:29208716

  20. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    PubMed Central

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism. PMID:25462574

  1. Site descriptive modeling as a part of site characterization in Sweden - Concluding the surface based investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Johan; Winberg, Anders; Skagius, Kristina

    The Swedish Nuclear Fuel and Waste Management Co., SKB, is currently finalizing its surface based site investigations for the final repository for spent nuclear fuel in the municipalities of Oestharmnar (the Forsmark area) and Oskarshamn (the Simpevar/Laxemar area). The investigation data are assessed into a Site Descriptive Model, constituting a synthesis of geology, rock mechanics, thermal properties, hydrogeology, hydro-geochemistry, transport properties and a surface system description. Site data constitute a wide range of different measurement results. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modeling. The three-dimensional modelingmore » (i.e. estimating the distribution of parameter values in space) is made in a sequence where the geometrical framework is taken from the geological models and in turn used by the rock mechanics, thermal and hydrogeological modeling. These disciplines in turn are partly interrelated, and also provide feedback to the geological modeling, especially if the geological description appears unreasonable when assessed together with the other data. Procedures for assessing the uncertainties and the confidence in the modeling have been developed during the course of the site modeling. These assessments also provide key input to the completion of the site investigation program. (authors)« less

  2. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    PubMed

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  3. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  4. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.

  5. Modeling Nonresident Seabird Foraging Distributions to Inform Ocean Zoning in Central California.

    PubMed

    Studwell, Anna J; Hines, Ellen; Elliott, Meredith L; Howar, Julie; Holzman, Barbara; Nur, Nadav; Jahncke, Jaime

    2017-01-01

    Seabird aggregations at sea have been shown to be associated with concentrations of prey. Previous research identified Central California as a highly used foraging area for seabirds, with locally breeding seabirds foraging close to their colonies on Southeast Farallon Island. Herein, we focus on nonresident (i.e. non-locally breeding) seabird species off of Central California. We hypothesized that high-use foraging areas for nonresident seabirds would be influenced by oceanographic and bathymetric factors and that spatial and temporal distributions would be similar within planktivorous and generalist foraging guilds but would differ between them. With data collected by the Applied California Current Ecosystem Studies (ACCESS) partnership during cruises between April and October from 2004-2013, we developed generalized linear models to identify high-use foraging areas for each of six nonresident seabird species. The four generalist species are Phoebastria nigripes (black-footed albatross), Ardenna griseus (sooty shearwater), Ardenna creatopus (pink-footed shearwater), and Fulmarus glacialis (northern fulmar). The two planktivorous species are Phalaropus lobatus (red-necked phalarope) and Phalaropus fulicarius (red phalarope). Sea surface temperature was significant for generalist species and sea surface salinity was important for planktivorous species. The distance to the 200-m isobath was significant in five of six models, Pacific Decadal Oscillation with a 3-month lag in four models, and sea surface fluorescence, the distance to Cordell Bank, and depth in three models. We did not find statistically significant differences between distributions of individual seabird species within a foraging guild or between guilds, with the exception of the sooty shearwater. Model results for a multi-use seabird foraging area highlighted the continental shelf break, particularly within the vicinity of Cordell Bank, as the highest use areas as did Marxan prioritization. Our research methods can be implemented elsewhere to identify critical habitat that needs protection as human development pressures continue to expand to the ocean.

  6. An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources

    NASA Astrophysics Data System (ADS)

    Feng, Dapeng; Zheng, Yi; Mao, Yixin; Zhang, Aijing; Wu, Bin; Li, Jinguo; Tian, Yong; Wu, Xin

    2018-02-01

    Water resources in coastal areas can be profoundly influenced by both climate change and human activities. These climatic and human impacts are usually intertwined and difficult to isolate. This study developed an integrated model-based approach for detection and attribution of climatic and human impacts and applied this approach to the Luanhe Plain, a typical coastal area in northern China. An integrated surface water-groundwater model was developed for the study area using GSFLOW (coupled groundwater and surface-water flow). Model calibration and validation were performed for background years between 1975 and 2000. The variation in water resources between the 1980s and 1990s was then quantitatively attributed to climate variability, groundwater pumping and changes in upstream inflow. Climate scenarios for future years (2075-2100) were also developed by downscaling the projections in CMIP5. Potential water resource responses to climate change, as well as their uncertainty, were then investigated through integrated modeling. The study results demonstrated the feasibility and value of the integrated modeling-based analysis for water resource management in areas with complex surface water-groundwater interaction. Specific findings for the Luanhe Plain included the following: (1) During the historical period, upstream inflow had the most significant impact on river outflow to the sea, followed by climate variability, whereas groundwater pumping was the least influential. (2) The increase in groundwater pumping had a dominant influence on the decline in groundwater change, followed by climate variability. (3) Synergetic and counteractive effects among different impacting factors, while identified, were not significant, which implied that the interaction among different factors was not very strong in this case. (4) It is highly probable that future climate change will accelerate groundwater depletion in the study area, implying that strict regulations for groundwater pumping are imperative for adaptation.

  7. The influences of land use and land cover on climate; an analysis of the Washington-Baltimore area that couples remote sensing with numerical simulation

    USGS Publications Warehouse

    Pease, R.W.; Jenner, C.B.; Lewis, J.E.

    1980-01-01

    The Sun drives the atmospheric heat engine by warming the terrestrial surface which in turn warms the atmosphere above. Climate, therefore, is significantly controlled by complex interaction of energy flows near and at the terrestrial surface. When man alters this delicate energy balance by his use of the land, he may alter his climatic environment as well. Land use climatology has emerged as a discipline in which these energy interactions are studied; first, by viewing the spatial distributions of their surface manifestations, and second, by analyzing the energy exchange processes involved. Two new tools for accomplishing this study are presented: one that can interpret surface energy exchange processes from space, and another that can simulate the complex of energy transfers by a numerical simulation model. Use of a satellite-borne multispectral scanner as an imaging radiometer was made feasible by devising a gray-window model that corrects measurements made in space for the effects of the atmosphere in the optical path. The simulation model is a combination of mathematical models of energy transfer processes at or near the surface. Integration of these two analytical approaches was applied to the Washington-Baltimore area to coincide with the August 5, 1973, Skylab 3 overpass which provided data for constructing maps of the energy characteristics of the Earth's surface. The use of the two techniques provides insights into the relationship of climate to land use and land cover and in predicting alterations of climate that may result from alterations of the land surface.

  8. Joint surface modeling with thin-plate splines.

    PubMed

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  9. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGES

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...

    2015-04-30

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less

  10. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    NASA Astrophysics Data System (ADS)

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.

    2015-04-01

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.

  11. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194

  12. Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation.

    PubMed

    Hartvig, Rune A; van de Weert, Marco; Østergaard, Jesper; Jorgensen, Lene; Jensen, Henrik

    2011-03-15

    The understanding of protein adsorption at charged surfaces is important for a wide range of scientific disciplines including surface engineering, separation sciences and pharmaceutical sciences. Compared to chemical entities having a permanent charge, the adsorption of small ampholytes and proteins is more complicated as the pH near a charged surface can be significantly different from the value in bulk solution. In this work, we have developed a phenomenological adsorption model which takes into account the combined role of interfacial ion distribution, interfacial charge regulation of amino acids in the proximity of the surface, electroneutrality, and mass balance. The model is straightforward to apply to a given set of experimental conditions as most model parameters are obtained from bulk properties and therefore easy to estimate or are directly measurable. The model provides a detailed understanding of the importance of surface charge on adsorption and in particular of how changes in surface charge, concentration, and surface area may affect adsorption behavior. The model is successfully used to explain the experimental adsorption behavior of the two model proteins lysozyme and α-lactalbumin. It is demonstrated that it is possible to predict the pH and surface charge dependent adsorption behavior from experimental or theoretical estimates of a preferred orientation of a protein at a solid charged interface.

  13. Numerical Modeling of Local Penetration of Chloride-Containing Medium into Construction Elements Made of Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, I. I.; Snezhkina, O. V.; Ovchinnikov, I. G.

    2017-11-01

    The task of modeling the kinetics of chloride-containing medium penetration into construction elements out of reinforced concrete that have partially damaged anti-corrosion protective coatings is being discussed. As a result, chlorides penetrate the construction element via local surface areas which leads to irregularities between chloride dispersion volumes. The kinetics of chloride penetration is described by the equation of diffusion to solve which the CONDUCT software complex by professor S. Patankar was used. The methodology used to solve the diffusional equation is described. The results of the evaluation of concentration field in the axial section of a cylindrical construction element, which was centrally reinforced, are given. The chloride diffusion was symmetrical to the axis, the medium was applied through the central ring area equal to one third of the side surface area while the rest of the surface was isolated. It was shown that the methodology of evaluation and its algorithm allow one to evaluate the concentration field of chlorides in reinforced concrete structural elements under local or asymmetrical action of the chloride - containing medium. The example given illustrates that after a certain time interval critical the concentration of chlorides develops even in protected areas which are located far from the initial damaged area. This means that the corrosion destruction of reinforced elements develops not only in the immediate damage area, but also further away from it.

  14. Uncertainty in surface water flood risk modelling

    NASA Astrophysics Data System (ADS)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.

  15. Monitoring of the Earth's surface deformation in the area of water dam Zarnowiec

    NASA Astrophysics Data System (ADS)

    Mojzes, Marcel; Wozniak, Marek; Habel, Branislav; Macak, Marek

    2017-04-01

    Mathematical and physical research directly motivates geodetic community which can provide very accurate measurements for testing of the proposed models Earth's surface motion near the water dams should be monitored due to the security of the area. This is a process which includes testing of existing models and their physical parameters. Change of the models can improve the practical results for analyzing the trends of motion in the area of upper reservoir of water dam Zarnowiec. Since 1998 Warsaw University of Technology realized a research focused on the horizontal displacements of the upper reservoir of water dam Zarnowiec. The 15 selected control points located on the upper reservoir crown of the water dam were monitored by classical distance measurements. It was found out that changes in the object's geometry occur due to the variation of the water level. The control measurements of the changes in the object's geometry occurring during the process of emptying and filling of the upper reservoir of water dam were compared with the deformations computed using improved Boussinesqués method programmed in the software MATLAB and ANSYS for elastic and isotropic half space as derivation of suitable potentials extended to the loaded region. The details and numerical results of this process are presented This presentation was prepared within the project "National Centre for Diagnostic of the Earth's Surface Deformations in the Area of Slovakia", ITMS code: 26220220108.

  16. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.

  17. Understanding Practical Catalysts Using a Surface Science Approach. The Importance of Strong Interaction between BaO and Al 2O 3 in NO x Storage Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Cheol-Woo W.; Kwak, Ja Hun; Peden, Charles H.F.

    2007-09-21

    Modern surface science techniques have been commonly applied to understand issues arising from practical catalytic systems.[1-4] However, the applicability of most of the results obtained from model systems has been limited, due, primarily, to the vastly different conditions studies on model and practical systems are carried out (catalyst composition, reaction conditions etc.).[5, 6] Therefore, the need to conduct experiments on compositionally similar systems (model and practical) is necessary to obtain valuable information on the workings of real catalysts. In this communication we demonstrate the utility of surface science studies on model catalysts in understanding the properties of high surface area,more » BaO-based NO x storage-reduction (NSR) catalysts.[7] We present evidence for the facile formation of surface barium aluminate-like species even at very low coverages of BaO. This Ba-aluminate layer, however, can react with NO 2 resulting in the formation of a bulk-like Ba(NO 3) 2 phase. In order to construct model catalysts that are representative of the practical NO x storage systems, we first needed to estimate the BaO covareges on the high surface area catalysts. Since the publication of the work by Fanson et al.[8], BaO loadings of 8 – 10 wt.% on a γ-alumina support (200 m 2/g) have been regarded as corresponding to one monolayer (ML) coverage, based on the unit cell size of bulk BaO. The coverage equivalent of one ML, however, was significantly underestimated. Assuming complete spreading of the BaO layer and using a Ba–O distance of ~ 2.77 Å (one unit of BaO occupies 1.53 × 10 -19 m 2), 10 wt.% loading of BaO would cover only about 1/3 of the alumina surface. Table 1 shows our calculated estimates of two-dimensional BaO coverages as a function of loading on a -Al 2O 3 surface (200 m 2/g) based on the lattice parameters of bulk BaO[9] (5.54 Å). Based on these values, for our model system studies we prepared BaO/Al 2O 3/NiAl(110) materials in which the BaO coverages were very close to those of 4, 8, and 20 wt.% BaO/γ-Al 2O 3 high surface area catalysts used in prior studies.« less

  18. In vitro cleaning potential of three different implant debridement methods.

    PubMed

    Sahrmann, Philipp; Ronay, Valerie; Hofer, Deborah; Attin, Thomas; Jung, Ronald E; Schmidlin, Patrick R

    2015-03-01

    To assess the cleaning potential of three different instrumentation methods commonly used for implant surface decontamination in vitro, using a bone defect-simulating model. Dental implants were stained with indelible ink and mounted in resin models, which represented standardized peri-implantitis defects with different bone defect angulations (30, 60 and 90°). Cleaning procedures were performed by either an experienced dental hygienist or a 2nd-year postgraduate student. The treatment was repeated 20 times for each instrumentation, that is, with a Gracey curette, an ultrasonic device and an air powder abrasive device (PAD) with glycine powder. After each run, implants were removed and images were taken to detect color remnants in order to measure planimetrically the cumulative uncleaned surface area. SEM images were taken to assess micromorphologic surface changes (magnification 10,000 ×). Results were tested for statistical differences using two-way ANOVA and Bonferroni correction. The areas of uncleaned surfaces (%, mean ± standard deviations) for curettes, ultrasonic tips, and airflow accounted for 24.1 ± 4.8%, 18.5 ± 3.8%, and 11.3 ± 5.4%, respectively. These results were statistically significantly different (P < 0.0001). The cleaning potential of the airflow device increased with wider defects. SEM evaluation displayed distinct surface alterations after instrumentation with steel tips, whereas glycine powder instrumentation had only a minute effect on the surface topography. Within the limitations of the present in vitro model, airflow devices using glycine powders seem to constitute an efficient therapeutic option for the debridement of implants in peri-implantitis defects. Still, some uncleaned areas remained. In wide defects, differences between instruments are more accentuated. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. [Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.

    PubMed

    Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi

    2016-03-01

    The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.

  20. Seasonal evolution of the Martian cryptic region: influence of the atmospheric opacity

    NASA Astrophysics Data System (ADS)

    Portyankina, G.; Markiewicz, W. J.; Kossacki, K. J.

    2005-08-01

    Mars Orbiter Camera (MOC) performed repeated observations of chosen areas in polar regions to monitor seasonal and/or annual changes. Images E09-00028 and R08-01730 centered at 82.5°S, 41°E were taken in years 2001 and 2003 respectively. They show the same morphological features, however differ significantly in surface albedo, the image from 2001 shows a lower albedo than the one from 2003. Imaged areas lie inside the cryptic region and show spider patterns. The observed interannual variability may be related to the global dust storm that happened in 2001 and finished around Ls=230°, i.e. just before image E09-00028 was taken. Here we model the seasonal ice sublimation/condensation cycle to show that the evolution of this particular area of the cryptic region was affected by the dust storm during year 2001. The model used for the present work has been described in Kossacki and Markiewicz, (2004). It includes self-consistent treatment of the sublimation and condensation of CO2 and H2O ices, and was used to calculate surface temperatures and thicknesses of CO2 and H2O ice layers for the corresponding conditions of these two years. Our modelling shows that the dust storm lowered surface temperatures, and thus caused later than usual seasonal sublimation of both CO2 and water ices. It also considerably decreased surface albedo and these two important effects almost cancel: the solar flux is reduced during a dust storm but at the same time the dust that precipitates onto the surface reduces the albedo and thus allows a bigger fraction of the solar radiation to be absorbed. The surface temperature stays at about 146K for almost half of the Martian year, both during 2001 and 2003. We also considered impact of the surface roughness: it results in some smoothing of the average temperature rise that is associated with the defrosting of the surface.

  1. Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs

    PubMed Central

    Henriksson, Linda; Karvonen, Juha; Salminen-Vaparanta, Niina; Railo, Henry; Vanni, Simo

    2012-01-01

    The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies. PMID:22590626

  2. Monitoring and validating spatio-temporal continuously daily evapotranspiration and its components at river basin scale

    NASA Astrophysics Data System (ADS)

    Song, L.; Liu, S.; Kustas, W. P.; Nieto, H.

    2017-12-01

    Operational estimation of spatio-temporal continuously daily evapotranspiration (ET), and the components evaporation (E) and transpiration (T), at watershed scale is very useful for developing a sustainable water resource strategy in semi-arid and arid areas. In this study, multi-year all-weather daily ET, E and T were estimated using MODIS-based (Dual Temperature Difference) DTD model under different land covers in Heihe watershed, China. The remotely sensed ET was validated using ground measurements from large aperture scintillometer systems, with a source area of several kilometers, under grassland, cropland and riparian shrub-forest. The results showed that the remotely sensed ET produced mean absolute percent deviation (MAPD) errors of about 30% during the growing season for all-weather conditions, but the model performed better under clear sky conditions. However, uncertainty in interpolated MODIS land surface temperature input data under cloudy conditions to the DTD model, and the representativeness of LAS measurements for the heterogeneous land surfaces contribute to the discrepancies between the modeled and ground measured surface heat fluxes, especially for the more humid grassland and heterogeneous shrub-forest sites.

  3. Turbulence structure of the marine stable boundary layer over the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedman, A.S.; Hoegstroem, U.

    For more than half of the year the land surfaces surrounding the Baltic Sea is warmer than the sea surface, and the marine boundary layer over the Baltic is stable. Observations, at various sites in the Baltic Sea area during the last decade. also indicate frequent occurrence of low-level jets at the top of the stable boundary layer. In many cases the marine jet can be considered as an analogy in space to the evolution of the nocturnal jet with time. The frictional decoupling occurs when warm air over the land is flowing out over the sea. Data from twomore » areas together with model simulations are used in this study to characterize turbulence structure in the marine boundary layer. The measurements include profiles of wind and temperature on towers situated at two isolated islands, together with turbulence recordings and aircraft measurements. Also wave height and water surface temperature have been measured. The model simulations are performed with a second-order closure model.« less

  4. Heat transfer to and from vegetated surfaces - An analytical method for the bulk exchange coefficients

    NASA Technical Reports Server (NTRS)

    Massman, William J.

    1987-01-01

    The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.

  5. Low-illumination image denoising method for wide-area search of nighttime sea surface

    NASA Astrophysics Data System (ADS)

    Song, Ming-zhu; Qu, Hong-song; Zhang, Gui-xiang; Tao, Shu-ping; Jin, Guang

    2018-05-01

    In order to suppress complex mixing noise in low-illumination images for wide-area search of nighttime sea surface, a model based on total variation (TV) and split Bregman is proposed in this paper. A fidelity term based on L1 norm and a fidelity term based on L2 norm are designed considering the difference between various noise types, and the regularization mixed first-order TV and second-order TV are designed to balance the influence of details information such as texture and edge for sea surface image. The final detection result is obtained by using the high-frequency component solved from L1 norm and the low-frequency component solved from L2 norm through wavelet transform. The experimental results show that the proposed denoising model has perfect denoising performance for artificially degraded and low-illumination images, and the result of image quality assessment index for the denoising image is superior to that of the contrastive models.

  6. Role of regional wetland emissions in atmospheric methane variability

    NASA Astrophysics Data System (ADS)

    McNorton, J.; Gloor, E.; Wilson, C.; Hayman, G. D.; Gedney, N.; Comyn-Platt, E.; Marthews, T.; Parker, R. J.; Boesch, H.; Chipperfield, M. P.

    2016-11-01

    Atmospheric methane (CH4) accounts for 20% of the total direct anthropogenic radiative forcing by long-lived greenhouse gases. Surface observations show a pause (1999-2006) followed by a resumption in CH4 growth, which remain largely unexplained. Using a land surface model, we estimate wetland CH4 emissions from 1993 to 2014 and study the regional contributions to changes in atmospheric CH4. Atmospheric model simulations using these emissions, together with other sources, compare well with surface and satellite CH4 data. Modeled global wetland emissions vary by ±3%/yr (σ = 4.8 Tg), mainly due to precipitation-induced changes in wetland area, but the integrated effect makes only a small contribution to the pause in CH4 growth from 1999 to 2006. Increasing temperature, which increases wetland area, drives a long-term trend in wetland CH4 emissions of +0.2%/yr (1999 to 2014). The increased growth post-2006 was partly caused by increased wetland emissions (+3%), mainly from Tropical Asia, Southern Africa, and Australia.

  7. Numerical model of the circulation and dispersion in the east Adriatic coastal waters

    NASA Astrophysics Data System (ADS)

    Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan

    2017-04-01

    The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.

  8. Coupled Source-to-Sink and Geodynamic Modeling of Extensional Basins: A Case Study of the Gulf of Corinth, Greece.

    NASA Astrophysics Data System (ADS)

    Smithells, R. A.

    2015-12-01

    Many studies investigate rift evolution with geodynamic models, giving insight into the architecture and morphology of extensional basins. Recent advances in modeling allow better temporal and spatial resolution in surface processes when coupled with geodynamic processes, allowing modeling the interactions between sediment erosion and deposition with rift development. Here we use a combination of dynamic forward modeling and landscape evolution models to determine feedback and interaction of sediment erosion and deposition with rift development and fault localization. The Gulf of Corinth is an ideal basin to study the effect of surface processes on rifting because it can be considered a closed system for sediment erosion and deposition. It is a young rift, not affected by subsequent overprinting and there is a large amount of data from offshore seismic surveys and onshore fieldwork to constrain its evolution. We reconstruct paleo topography of the catchment area by removing the effects of fault activity and sediment erosion. The reconstructed topography is used to model different scenarios for landscape evolution and the results determine the relative importance of regional and fault related uplift and subsidence on the drainage evolution in the Gulf of Corinth. The landscape models are also used to constrain source area and total amount of sediment eroded from the catchment area. The eroded onshore volume and the amount of sediment deposited offshore are compared in order to reconstruct the source-to-sink balance for the Gulf of Corinth. Our results constrain the evolution of the catchment area and timings of drainage reversals that occurred in the fluvial systems of the Gulf of Corinth. Coupled forward tectonic-surface process modeling is used to investigate feedback between rift formation and the surface processes and to determine its role in developing asymmetry and fault migration in an extensional setting. In this study we investigate the effect of a mature sediment routing system on rift development. Our models show that migrating fault activity may be triggered by migration of sediment deposition filling the accommodation space provided by the associated half grabens. The asymmetric development of the rift can be explained by the preferred erosion and deposition of the southern flank of the Gulf of Corinth.

  9. Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model

    USGS Publications Warehouse

    Subin, Z M; Milly, Paul C.D.; Sulman, B N; Malyshev, Sergey; Shevliakova, E

    2014-01-01

    Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs) generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology), into the Geophysical Fluid Dynamics Laboratory (GFDL) land model (LM3). LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-TiHy has the capability to represent some of the controls of these hydrological variables, but also that improvement in parameterization and input datasets are needed for more realistic simulations. We found large sensitivity in model-diagnosed wetland and inundated area to the depth of conductive soil and the parameterization of macroporosity. With improved parameterization and inclusion of peatland biogeochemical processes, the model could provide a new approach to investigating the vulnerability of Boreal peatland carbon to climate change in ESMs.

  10. Estimation of Areal Distribution of Evapotranspiration Using Remotely Sensed Data During Vegetation Period in Hungary

    NASA Astrophysics Data System (ADS)

    Dunkel, Z.; Szenyán, I. G.

    The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of calculation of daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ETd-Rnd = a + b (Tc-Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA/AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observation trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field (1 km × 1 km) was scanned before noon and afternoon. In the western part of the country, a much larger area (45 km × 45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed too. Comparison of model output with data from field experiment has played a crucial role in model development and suggested evaluation method

  11. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8-2035-2015,2015. Ryder, J., et al. : A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations, Geoscientific Model Development, 9, 223-245, doi:10.5194/gmd-9-223-2016, 2016.

  12. Comparison of Estimated Areas Contributing Recharge to Selected Springs in North-Central Florida by Using Multiple Ground-Water Flow Models

    USGS Publications Warehouse

    Shoemaker, W. Barclay; O'Reilly, Andrew M.; Sepúlveda, Nicasio; Williams, Stanley A.; Motz, Louis H.; Sun, Qing

    2004-01-01

    Areas contributing recharge to springs are defined in this report as the land-surface area wherein water entering the ground-water system at the water table eventually discharges to a spring. These areas were delineated for Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs in north-central Florida using four regional ground-water flow models and particle tracking. As expected, different models predicted different areas contributing recharge. In general, the differences were due to different hydrologic stresses, subsurface permeability properties, and boundary conditions that were used to calibrate each model, all of which are considered to be equally feasible because each model matched its respective calibration data reasonably well. To evaluate the agreement of the models and to summarize results, areas contributing recharge to springs from each model were combined into composite areas. During 1993-98, the composite areas contributing recharge to Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs were about 130, 730, 110, and 120 square miles, respectively. The composite areas for all springs remained about the same when using projected 2020 ground-water withdrawals.

  13. The humidity dependence of ozone deposition onto a variety of building surfaces

    NASA Astrophysics Data System (ADS)

    Grøntoft, Terje; Henriksen, Jan F.; Seip, Hans M.

    Measurements of the dry deposition velocity of O 3 to material samples of calcareous stone, concrete and wood at varying humidity of the air, were performed in a deposition chamber. Equilibrium surface deposition velocities were found for various humidity values by fitting a model to the time-dependent deposition data. A deposition velocity-humidity model was derived giving three separate rate constants for the surface deposition velocities, i.e. on the dry surface, on the first mono-layer of adsorbed water and on additional surface water. The variation in the dry air equilibrium surface deposition velocities among the samples correlated with variations in effective areas, with larger effective areas giving higher measured deposition velocities. A minimum for the equilibrium surface deposition velocity was generally measured at an intermediate humidity close to the humidity found to correspond to one mono-layer of water molecules on the surfaces. At low air humidity the equilibrium surface deposition velocity of O 3 was found to decrease as more adsorbed water prevented direct contact of the O 3 molecules with the surface. This was partly compensated by an increase as more adsorbed water became available for reaction with O 3. At high air humidity the equilibrium surface deposition velocity was found to increase as the mass of water on the surface increased. The deposition velocity on bulk de-ionised water at RH=90% was an order of magnitude lower than on the sample surfaces.

  14. A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2005-01-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model includes two main new developments: (1) It clarifies how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain data about stereopsis. This feedback has previously been used to explain data about 3D figure-ground perception. (2) It proposes that the binocular false match problem is subsumed under the Gestalt grouping problem. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The enhanced model explains all the psychophysical data previously simulated by Grossberg and Howe (2003), such as contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, and da Vinci stereopsis. It also explains psychophysical data about perceptual closure and variations of da Vinci stereopsis that previous models cannot yet explain.

  15. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, Milind; Huang, Hai; Kweon, Hyukmin

    2016-03-28

    Reactivity of carbon dioxide (CO 2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO 2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO 2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batchmore » experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments revealed that an initial high-permeability pathway facilitated the formation of wormholes. The peak cation concentrations and general trends were matched using Toughreact. Batch reactor modeling showed that the geometric factors obtained using powder data that related effective surface area to the BET surface area had to be reduced for fractured samples and cores. This indicates that the available surface area in consolidated samples is lower than that deduced from powder experiments. Field-scale modeling of reactive transport and geomechanics was developed in parallel at Idaho National Laboratory. The model is able to take into account complex chemistry, and consider interactions of natural fractures and faults. Poroelastic geomechanical considerations are also included in the model.« less

  16. Modeling interactions of agriculture and groundwater nitrate contaminants: application of The STICS-Eau-Dyssée coupled models over the Seine River Basin

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.

    2017-12-01

    Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.

  17. An Observing System Simulation Experiment of assimilating leaf area index and soil moisture over cropland

    NASA Astrophysics Data System (ADS)

    Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe

    2013-04-01

    A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.

  18. Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.

  19. Atmospheric release model for the E-area low-level waste facility: Updates and modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.

  20. Surface Signatures of an Underground Explosion as Captured by Photogrammetry

    NASA Astrophysics Data System (ADS)

    Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.; Cooley, J.; Rougier, E.; Larmat, C. S.; Norskog, K.

    2016-12-01

    This study employed high-resolution photogrammetric modeling to quantify cm-scale surface topographic changes resulting from a 5000kg underground chemical explosion. The test occurred in April 2016 at a depth of 76m within a quartz monzonite intrusion in southern Nevada. The field area was a 210m x 150m polygon broadly centered on the explosion's emplacement hole. A grid of ground control points (GCPs) installed in the field area established control within the collection boundaries and ensured high-resolution digital model parameterization. Using RTK GPS techniques, GCP targets were surveyed in the days before and then again immediately after the underground explosion. A quadcopter UAS with a 12MP camera payload captured overlapping imagery at two flight altitudes (10m and 30m AGL) along automated flight courses for consistency and repeatability. The overlapping imagery was used to generate two digital elevation models, pre-shot and post-shot, for each of the flight altitudes. Spatial analyses of the DEMs and orthoimagery show uplift on the order of 1 to 18cm in the immediate area near ground zero. Other features such as alluvial fracturing appear in the photogrammetric and topographic datasets. Portions of the nearby granite outcrop experienced rock fall and rock rotation. The study detected erosional and depositional features on the test bed and adjacent to it. In addition to vertical change, pre-shot and post-shot surveys of the GCPs suggest evidence for lateral motion on the test bed surface, with movement away from surface ground zero on the order of 1 to 3cm. Results demonstrate that UAS photogrammetry method provides an efficient, high-fidelity, non-invasive method to quantify surface deformation. The photogrammetry data allow quantification of permanent surface deformation and of the spatial extent of damage. These constraints are necessary to develop hydrodynamic and seismic models of explosions that can be verified against recorded seismic data.

  1. Total solar irradiance reconstruction since 1700 using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie

    Reconstructions of solar irradiance into the past are crucial for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic fields have been most successful in reproducing the measured irradiance variations. Daily magnetograms, such as those from MDI and HMI, provide the most detailed information on the changing distribution of the photospheric magnetic fields. Since such magnetograms are only available from 1974, we used a surface flux transport model to describe the evolution of the magnetic fields on the solar surface due to the effects of differential rotation, meridional circulation, and turbulent diffusivity, before 1974. In this model, the sources of magnetic flux are the active regions, which are introduced based on sunspot group areas, positions, and tilt angles. The RGO record is, however, only available since 1874. Here we present a model of solar irradiance since 1700, which is based on a semi-synthetic sunspot record. The semi-synthetic record was obtained using statistical relationships between sunspot group properties (areas, positions, tilt angles) derived from the RGO record on one hand, and the cycle strength and phase derived from the sunspot group number (Rg) on the other. These relationships were employed to produce daily records of sunspot group positions, areas, and tilt angles before 1874. The semi-synthetic records were fed into the surface flux transport model to simulate daily magnetograms since 1700. By combining the simulated magnetograms with a SATIRE-type model, we then reconstructed total solar irradiance since 1700.

  2. Mapping the global depth to bedrock for land surface modeling

    NASA Astrophysics Data System (ADS)

    Shangguan, Wei; Hengl, Tomislav; Mendes de Jesus, Jorge; Yuan, Hua; Dai, Yongjiu

    2017-03-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 1,30,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surface reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forest and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250 m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  3. Land Capability Potential Index (LCPI) for the Lower Missouri River Valley

    USGS Publications Warehouse

    Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.

    2007-01-01

    The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.

  4. A subdivision-based parametric deformable model for surface extraction and statistical shape modeling of the knee cartilages

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2006-03-01

    Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.

  5. Modelling of micromachining of human tooth enamel by erbium laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength betweenmore » the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)« less

  6. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term ofmore » condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.« less

  7. Numerical Simulation of the Effects of Water Surface in Building Environment

    NASA Astrophysics Data System (ADS)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  8. Atmospheric Dispersion Modeling of 137Cs generated from Nuclear Spent Fuel under Hypothetic Accidental Condition in the BNPP Area

    NASA Astrophysics Data System (ADS)

    Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo

    2016-04-01

    This study presents the results of atmosphere dispersion modeling using CALPUFF code that are based on computational simulation to evaluate the environmental characteristics of the Barakah nuclear power plant (BNPP) in west area of UAE. According to meteorological data analysis (2012~2013), the winds from the north(7.68%) and west(9.05%) including NNW(41.63%), NW(28.55%), and WNW(6.31%) winds accounted for more than 90% of the wind directions. East(0.2%) and south(0.6%) direction wind, including ESE(0.31%), SE(0.38%), and SSE(0.38%) were rarely distributed during the simulation period. Seasonal effects were not showed. However, a discrepancy in the tendency between daytime and night-time was observed. Approximately 87% of the wind speed was distributed below 5.4m/s (17%, 47% and 23% between the speeds of 0.5-1.8m/s 1.8-3.3m/s and 3.3-5.4m/s, respectively) during the annual period. Seasonal wind speed distribution results presented very similar pattern of annual distribution. Wind speed distribution of day and night, on the other hand, had a discrepancy with annual modeling results than seasonal distribution in some sections. The results for high wind speed (more than 10.8m/s) showed that this wind blew from the west. This high wind speed is known locally as the 'Shamal', which occurs rarely, lasting one or two days with the strongest winds experienced in association with gust fronts and thunderstorms. Six variations of cesium-137 (137Cs) dispersion test were simulated under hypothetic severe accidental condition. The 137Cs dispersion was strongly influenced by the direction and speed of the main wind. From the test cases, east-south area of the BNPP site was mainly influenced by 137Cs dispersion. A virtual receptor was set and calculated for observation of the 137Cs movement and accumulation. Surface roughness tests were performed for the analysis of topographic conditions. According to the surface condition, there are various surface roughness length. Four types of surface conditions were selected, including city area, hedge area, cut grass, and desert area. Four cases of simulations were performed under the same conditions except for surface the roughness factor. The results indicated that relatively high concentrations were found at the high surface roughness near the origin of the source point. The city area contained approximately four times 137Cs concentration than that of desert area. The atmospheric dispersion of 137Cs was affected by the surface condition in the proximal area. Moreover, movement of the radioactive material had a tendency to be dispersed in a relatively wide range in the desert areas compared to in the higher surface roughness areas. The results of these study offer useful information for developing environmental radiation monitoring systems (ERMSs) and evacuation plan under unexpected emergency condition for the BNPP and can be used to assess the environmental effects of new nuclear power plant. This work was supported by the Nuclear Safety Research Program through the Korea Nuclear Safety Foundation(KORSAFe), granted financial resource from the Nuclear Safety and Security Commission(NSSC), Republic of Korea (No. 1503003).

  9. Near-surface structural model for deformation associated with the February 7, 1812, New Madrid, Missouri, earthquake

    USGS Publications Warehouse

    Odum, J.K.; Stephenson, W.J.; Shedlock, K.M.; Pratt, T.L.

    1998-01-01

    The February 7, 1812, New Madrid, Missouri, earthquake (M [moment magnitude] 8) was the third and final large-magnitude event to rock the northern Mississippi Embayment during the winter of 1811-1812. Although ground shaking was so strong that it rang church bells, stopped clocks, buckled pavement, and rocked buildings up and down the eastern seaboard, little coseismic surface deformation exists today in the New Madrid area. The fault(s) that ruptured during this event have remained enigmatic. We have integrated geomorphic data documenting differential surficial deformation (supplemented by historical accounts of surficial deformation and earthquake-induced Mississippi River waterfalls and rapids) with the interpretation of existing and recently acquired seismic reflection data, to develop a tectonic model of the near-surface structures in the New Madrid, Missouri, area. This model consists of two primary components: a northnorthwest-trending thrust fault and a series of northeast-trending, strike-slip, tear faults. We conclude that the Reelfoot fault is a thrust fault that is at least 30 km long. We also infer that tear faults in the near surface partitioned the hanging wall into subparallel blocks that have undergone differential displacement during episodes of faulting. The northeast-trending tear faults bound an area documented to have been uplifted at least 0.5 m during the February 7, 1812, earthquake. These faults also appear to bound changes in the surface density of epicenters that are within the modern seismicity, which is occurring in the stepover zone of the left-stepping right-lateral strike-slip fault system of the modern New Madrid seismic zone.

  10. U.S. Constructed Area Approaches the Size of Ohio

    NASA Astrophysics Data System (ADS)

    Elvidge, Christopher D.; Milesi, Cristina; Dietz, John B.; Tuttle, Benjamin T.; Sutton, Paul C.; Nemani, Ramakrishna; Vogelmann, James E.

    2004-06-01

    The construction and maintenance of impervious surfaces-buildings, roads, parking lots, roofs, etc.-constitutes a major human alteration of the land surface, changing the local hydrology, climate, and carbon cycling. Three types of national coverage data were used to model the spatial distribution and density of impervious surface area (ISA) for the conterminous U.S.A. The results (Figure 1) indicate that total ISA of the 48 states and Washington, D.C., is 112,610 km2 (+/- 12,725 km2), which is slightly smaller than the state of Ohio (116,534 km2) and slightly larger than the area of herbaceous wetlands (98,460 km2) of the conterminous United States. The same characteristics that make impervious surfaces ideal for use in construction produce a series of effects on the environment. Impervious surfaces alter sensible and latent heat fluxes, causing urban heat islands. In heavily vegetated areas, the proliferation of ISA reduces the sequestration of carbon from the atmosphere. ISA alters the character of watersheds by increasing the frequency and magnitude of surface runoff pulses. Watershed effects of ISA begin to be detectable once 10% of the surface is covered by impervious surfaces, altering the shape of stream channels, raising water temperatures, and sweeping urban debris and pollutants into aquatic environments. Consequences of ISA include reduced numbers and diversity of species in fish and aquatic insects, and degradation of wetlands and riparian zones.

  11. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume.

    PubMed

    Vijayakumar, Nandita; Allen, Nicholas B; Youssef, George; Dennison, Meg; Yücel, Murat; Simmons, Julian G; Whittle, Sarah

    2016-06-01

    What we know about cortical development during adolescence largely stems from analyses of cross-sectional or cohort-sequential samples, with few studies investigating brain development using a longitudinal design. Further, cortical volume is a product of two evolutionarily and genetically distinct features of the cortex - thickness and surface area, and few studies have investigated development of these three characteristics within the same sample. The current study examined maturation of cortical thickness, surface area and volume during adolescence, as well as sex differences in development, using a mixed longitudinal design. 192 MRI scans were obtained from 90 healthy (i.e., free from lifetime psychopathology) adolescents (11-20 years) at three time points (with different MRI scanners used at time 1 compared to 2 and 3). Developmental trajectories were estimated using linear mixed models. Non-linear increases were present across most of the cortex for surface area. In comparison, thickness and volume were both characterised by a combination of non-linear decreasing and increasing trajectories. While sex differences in volume and surface area were observed across time, no differences in thickness were identified. Furthermore, few regions exhibited sex differences in the cortical development. Our findings clearly illustrate that volume is a product of surface area and thickness, with each exhibiting differential patterns of development during adolescence, particularly in regions known to contribute to the development of social-cognition and behavioral regulation. These findings suggest that thickness and surface area may be driven by different underlying mechanisms, with each measure potentially providing independent information about brain development. Hum Brain Mapp 37:2027-2038, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Respiratory and olfactory turbinal size in canid and arctoid carnivorans.

    PubMed

    Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-12-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  13. Respiratory and olfactory turbinal size in canid and arctoid carnivorans

    PubMed Central

    Green, Patrick A; Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-01-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637

  14. Catchment area-based evaluation of the AMC-dependent SCS-CN-based rainfall-runoff models

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jain, M. K.; Pandey, R. P.; Singh, V. P.

    2005-09-01

    Using a large set of rainfall-runoff data from 234 watersheds in the USA, a catchment area-based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS-CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS-CN method showed that the modified version performed better than did the existing one on the data of all seven area-based groups of watersheds ranging from 0.01 to 310.3 km2.

  15. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  16. An equivalent layer magnetization model for the United States derived from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Galliher, S. C. (Principal Investigator)

    1982-01-01

    Long wavelength anomalies in the total magnetic field measured field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large-scale tectonic provinces.

  17. Energy balance and runoff modelling of glaciers in the Kongsfjord basin in northwestern Svalbard

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Pramanik, A.; van Pelt, W.

    2016-12-01

    Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744. Glaciers and ice caps cover 36,000 Km2 or 60% of the land area of the Svalbard archipelago. Roughly 60% of the glaciated area drains to the ocean through tidewater glacier fronts. Runoff from tidewater glaciers is posited to have a significant impact on fjord circulation and thereby on fjord ecosystems. Ocean circulation modelling underway in the Kongsfjord system requires specification of the freshwater amounts contributed by both tidewater and land-terminating glaciers in its basin. The total basin area of Kongsfjord is 1850 km2. We use a coupled surface energy-balance and firn model (Van Pelt et al. 2015) to calculate mass balance and runoff from the Kongsfjord glaciers for the period 1969-2015. Meteorological data from the nearby station at Ny-Ålesund is used for climate forcing in the model domain, with mass balance data at four glaciers in the Kongsfjord watershed used to calibrate model parameters. Precipitation and temperature lapse rates are adjusted on the study glaciers through repeated model runs at mass balance stake locations to match observed and modelled surface mass balance. Long-term discharge measurement at two sites in this region are used to validate the modelled runoff. Spatial and temporal evolution of melt, refreezing and runoff are analyzed, along with the vertical evolution of subsurface conditions. Reference: Van Pelt, W.J.J. & J. Kohler. 2015. Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. J. Glaciol, 61(228), 731-744.

  18. A LAI inversion algorithm based on the unified model of canopy bidirectional reflectance distribution function for the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.

    2017-12-01

    Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.

  19. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  20. Quantifying the Significance of Heterogeneity in Supraglacial Reflectance Characteristics for Meltwater Production in Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Irvine-Fynn, T. D.; Bunting, P.; Cook, J.; Hardy, A. J.; Hodson, A. J.; Holt, T.; Hubbard, A.; Naegeli, K.; Nilsson, J.; Ryan, J.; Roberts, O.; Tedstone, A.; Tranter, M.; Williamson, C.

    2017-12-01

    The seasonal melt on the southwestern margin of the Greenland Ice Sheet has been enhanced due to processes affecting the ablation area's ice surface reflectance (albedo). Recent trends in surface reflectance in the region suggest a decline potentially linked to an albedo-feedback associated with regional climate warming, emergence of organic and mineral particulates, and expansion of melt area. However, the heterogeneity of reflectance over bare ice areas in space and time has remained relatively poorly characterised. Numerous surface mass balance models utilise albedo products derived from remote sensing platforms with coarse scale resolution. Such products provide reasonable albedo estimates, but quantification of local variability in reflectance remains lacking. Consequently, there is a need to better define the distribution and representativeness of ice surface reflectance at and below the scale of satellite sensor pixel footprints to facilitate examination of albedo parameterisations. Here, we present reflectance data repeatedly collected in SW Greenland during the 2016 summer melt season over a 0.0625 km2 area proximate to the IMAU K-transect site S6 (67°04.5'N, 49°21.0'W). The Moderate Resolution Imaging Spectrometer (MODIS) albedo product MOD10A1(c6) for the study site was compared to reflectance data from Sentinel-2, centimetre resolution calibrated 12Mpix optical imagery collected using an Unmanned Aerial Vehicle (UAV) flown at a height of 70 m above the ice surface, and ground-based reflectance survey data acquired using a StellarNet Red-Dwarf/Blue-Wave visible-infrared dual system (250-1700nm) at 30 sites distributed over the area of interest. Our data highlight variability in the spatial distribution of ice surface reflectance characteristics over time. Specifically, data demonstrate marked changes in the distribution of reflectance values, despite maintaining a broadly equitable mean and median during July and August. The influence of the varied surface heterogeneity is explored further using surface energy balance modelling to quantify the impact of such changes on melt production. The findings determine the necessity to account for local variability underlying the pixel-averaged values retrieved from remote sensing platforms such as MODIS.

Top