Sample records for surface areas obtained

  1. Method of and device for detecting oil pollutions on water surfaces

    DOEpatents

    Belov, Michael Leonidovich [Moscow, RU; Gorodnichev, Victor Aleksandrovich [Moscow, RU; Kozintsev, Valentin Ivanovich [Moscow, RU; Smimova, Olga Alekseevna [Moscow, RU; Fedotov, Yurii Victorovich [Moscow, RU; Khroustaleva, Anastasiva Michailovnan [Moscow, RU

    2008-08-26

    Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.

  2. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  3. New Mathematical Model for the Surface Area of the Left Ventricle by the Truncated Prolate Spheroid

    PubMed Central

    Vale, Marcos de Paula; Martinez, Carlos Barreira

    2017-01-01

    The main aim of this study was the formula application of the superficial area of a truncated prolate spheroid (TPS) in Cartesian coordinates in obtaining a cardiac parameter that is not so much discussed in literature, related to the left ventricle (LV) surface area of the human heart, by age and sex. First we obtain a formula for the area of a TPS. Then a simple mathematical model of association of the axes measures of a TPS with the axes of the LV is built. Finally real values of the average dimensions of the humans LV are used to measure surface areas approximations of this heart chamber. As a result, the average superficial area of LV for normal patients is obtained and it is observed that the percentage differences of areas between men and women and their consecutive age groups are constant. A strong linear correlation between the obtained areas and the ventricular volumes normalized by the body areas was observed. The obtained results indicate that the superficial area of the LV, besides enabling a greater knowledge of the geometrical characteristics of the human LV, may be used as one of the normality cardiac verification criteria and be useful for medical and biological applications. PMID:28547001

  4. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  5. Comparative Study of Lunar Roughness from Multi - Source Data

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Kang, Z.

    2017-07-01

    The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.

  6. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  7. A comparison of computer-assisted and manual wound size measurement.

    PubMed

    Thawer, Habiba A; Houghton, Pamela E; Woodbury, M Gail; Keast, David; Campbell, Karen

    2002-10-01

    Accurate and precise wound measurements are a critical component of every wound assessment. To examine the reliability and validity of a new computerized technique for measuring human and animal wounds, chronic human wounds (N = 45) and surgical animal wounds (N = 38) were assessed using manual and computerized techniques. Using intraclass correlation coefficients, intrarater and interrater reliability of surface area measurements obtained using the computerized technique were compared to those obtained using acetate tracings and planimetry. A single measurement of surface area using either technique produced excellent intrarater and interrater reliability for both human and animal wounds, but the computerized technique was more precise than the manual technique for measuring the surface area of animal wounds. For both types of wounds and measurement techniques, intrarater and interrater reliability improved when the average of three repeated measurements was obtained. The precision of each technique with human wounds and the precision of the manual technique with animal wounds also improved when three repeated measurement results were averaged. Concurrent validity between the two techniques was excellent for human wounds but poor for the smaller animal wounds, regardless of whether single or the average of three repeated surface area measurements was used. The computerized technique permits reliable and valid assessment of the surface area of both human and animal wounds.

  8. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  9. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  10. Area densitometry using rotating Scheimpflug photography for posterior capsule opacification and surface light scattering analyses.

    PubMed

    Minami, Keiichiro; Honbo, Masato; Mori, Yosai; Kataoka, Yasushi; Miyata, Kazunori

    2015-11-01

    To compare area densitometry analysis using rotating Scheimpflug photography in quantifications of posterior capsule opacification (PCO) and surface light scattering with previous anterior-segment analyzer measurement. Miyata Eye Hospital, Miyazaki, Japan. Prospective observational case series. Scheimpflug images of eyes with foldable intraocular lenses (IOLs) were obtained using rotating and fixed Scheimpflug photography. Area densitometry on the posterior and anterior surfaces was conducted for PCO and surface light scattering analyses, respectively, with an identical area size. Correlation between two measurements was analyzed using linear regression. The study included 105 eyes of 74 patients who received IOLs 1 to 18 years (mean, 4.9 ± 4.5 years) postoperatively. In the PCO analysis on the posterior IOL surface, there was a significant correlation between the two measurements (P < .001, R(2) = 0.60). In the surface light scattering analysis, a significant and higher correlation was obtained (P < .001, R(2) = 0.91) until the fixed Scheimpflug photography exhibited saturation due to intensive scatterings. Area densitometry combined with a rotating Scheimpflug photography was exchangeable to previously established densitometry measurement, and allowed successive evaluation in longer-term observations. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Floating substrate process: Large-area silicon sheet task low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Garfinkel, M.; Hall, R. N.

    1978-01-01

    Supercooling of silicon-tin alloy melts was studied. Values as high as 78 C at 1100 C and 39 C at 1200 C were observed, corresponding to supersaturation parameter values 0.025 and 0.053 at 1050 C and 1150 C, respectively. The interaction of tin with silane gas streams was investigated over the temperature range 1000 to 1200 C. Single-pass conversion efficiencies exceeding 30% were obtained. The growth habit of spontaneously-nucleated surface growth was determined to be consistent with dendritic and web growth from singly-twinned triangular nucleii. Surface growth of interlocking silicon crystals, thin enough to follow the surface of the liquid and with growth velocity as high as 5 mm/min, was obtained. Large area single-crystal growth along the melt surface was not achieved. Small single-crystal surface growth was obtained which did not propagate beyond a few millimeters.

  12. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    PubMed

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  13. Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas.

    PubMed

    Lin, Yen-Pin; Huang, Ching-Jer; Chen, Sheng-Hsueh; Doong, Dong-Jiing; Kao, Chia Chuen

    2017-01-18

    In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas.

  14. Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas

    PubMed Central

    Lin, Yen-Pin; Huang, Ching-Jer; Chen, Sheng-Hsueh; Doong, Dong-Jiing; Kao, Chia Chuen

    2017-01-01

    In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas. PMID:28106763

  15. a Research on Monitoring Surface Deformation and Relationships with Surface Parameters in Qinghai Tibetan Plateau Permafrost

    NASA Astrophysics Data System (ADS)

    Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.

    2017-09-01

    The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were different in arid areas and wet areas. During the research time, frost heaving firstly accounted for a large proportion both in the arid and wet areas with the decrease of downward radiation from July to December; after December, thaw settlement came into prominence with the increase downward radiation in the arid areas, while in the wet areas, surface put into diverse situations because of water transformation leading to severe deformation. In summary, soil moisture is an important factor that influences the surface deformation. This relationship between deformation process and soil moisture will be researched more in our further work.

  16. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  17. High surface area nanocrystalline hausmannite synthesized by a solvent-free route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Miranda, Daniel; Ponrouch, Alexandre; Pons, Josefina

    Highlights: ► High surface area Mn{sub 3}O{sub 4} nanoparticles obtained by a solvent-free low temperature route. ► 3,6,9-Trioxadecanoic acid allows to obtain nanocrystalline hausmannite. ► Tape casted electrodes show up to 300 mAh g{sup −1} capacity after more than 40 cycles at a C/3 rate. ► Upper cut off voltage strongly influences capacity retention upon cycling at high C rates. -- Abstract: Nanocrystalline high surface area Mn{sub 3}O{sub 4} powder was obtained at low temperature by a solvent-free route. The precursor was a mixture of manganese (II) acetate, 3,6,9-trioxadecanoic acid (TODA) and ammonium acetate that were intimately mixed by groundingmore » in an agate mortar. Nanocrystalline Mn{sub 3}O{sub 4} was obtained by thermal treatment at 120 °C. Powder X-ray diffraction, selected area electron diffraction, high resolution transmission electron microscopy, and Fourier transformed infrared characterization confirmed the formation of the hausmannite phase. The as-prepared mesoporous material has high specific surface area (120 m{sup 2} g{sup −1}). The performances of tape casted Mn{sub 3}O{sub 4} nanopowder electrodes were investigated as anode material for lithium ion batteries. High capacity values were achieved at diverse C rates. Capacity fading was found to be dependent on the upper cut off voltage, the presence of a plateau at 2.25 V vs. Li{sup +}/Li being detrimental for long term cyclability.« less

  18. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    PubMed Central

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  19. The Area of a Surface Generated by Revolving a Graph about Any Line

    ERIC Educational Resources Information Center

    Goins, Edray Herber; Washington, Talitha M.

    2013-01-01

    We discuss a general formula for the area of the surface that is generated by a graph [t[subscript 0], t[subscript 1] [right arrow] [the set of real numbers][superscript 2] sending t [maps to] (x(t), y(t)) revolved around a general line L : Ax + By = C. As a corollary, we obtain a formula for the area of the surface formed by revolving y = f(x)…

  20. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube powders prepared by Process 1 and Process 2 have different crystal structure and specific surface area. - Highlights: • Titania nanotube (TNT) powder is prepared in low water organic electrolyte. • Characterization of TNT powders prepared from aqueous and organic electrolyte. • TNTs prepared by Process 1 are crystalline with higher specific surface area. • TNTs obtained by Process 2 have carbonaceous impurities in the structure.« less

  1. Toward surface quantification of liver fibrosis progression

    NASA Astrophysics Data System (ADS)

    He, Yuting; Kang, Chiang Huen; Xu, Shuoyu; Tuo, Xiaoye; Trasti, Scott; Tai, Dean C. S.; Raja, Anju Mythreyi; Peng, Qiwen; So, Peter T. C.; Rajapakse, Jagath C.; Welsch, Roy; Yu, Hanry

    2010-09-01

    Monitoring liver fibrosis progression by liver biopsy is important for certain treatment decisions, but repeated biopsy is invasive. We envision redefinition or elimination of liver biopsy with surface scanning of the liver with minimally invasive optical methods. This would be possible only if the information contained on or near liver surfaces accurately reflects the liver fibrosis progression in the liver interior. In our study, we acquired the second-harmonic generation and two-photon excitation fluorescence microscopy images of liver tissues from bile duct-ligated rat model of liver fibrosis. We extracted morphology-based features, such as total collagen, collagen in bile duct areas, bile duct proliferation, and areas occupied by remnant hepatocytes, and defined the capsule and subcapsular regions on the liver surface based on image analysis of features. We discovered a strong correlation between the liver fibrosis progression on the anterior surface and interior in both liver lobes, where biopsy is typically obtained. The posterior surface exhibits less correlation with the rest of the liver. Therefore, scanning the anterior liver surface would obtain similar information to that obtained from biopsy for monitoring liver fibrosis progression.

  2. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    NASA Astrophysics Data System (ADS)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  3. Highly sensitive quartz crystal microbalance based biosensor using Au dendrite structure

    NASA Astrophysics Data System (ADS)

    Asai, Naoto; Terasawa, Hideaki; Shimizu, Tomohiro; Shingubara, Shoso; Ito, Takeshi

    2018-02-01

    A Au dendrite structure was obtained by only electroplating under a suitable potential. A blanch like nanostructure was formed along the crystal orientation. In this study, we attempted to fabricate a Au dendrite structure on the electrode of a quartz crystal by electroplating to increase the specific surface area. We estimated the effective surface area by cyclic voltammetry (CV) and monitored the frequency shift induced by antigen-antibody interaction by the quartz crystal microbalance (QCM) method. The dendrite structure with the largest surface area was formed under -0.95 V for 5 min. In the measurement of the antigen-antibody interaction, the frequency shifts of 40, 80, and 110 Hz were obtained with the dendrite structured QCM chips formed at the above potential for 1, 1.5, and 2.0 min, respectively. The sensitivity was improved compared with that QCM chip having a flat surface electrode.

  4. Evaluation of the Biological Sampling Kit (BiSKit) for Large-Area Surface Sampling

    PubMed Central

    Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Klima-Comba, Amy K.; Stevens, Vanessa L.; Emanuel, Peter A.

    2004-01-01

    Current surface sampling methods for microbial contaminants are designed to sample small areas and utilize culture analysis. The total number of microbes recovered is low because a small area is sampled, making detection of a potential pathogen more difficult. Furthermore, sampling of small areas requires a greater number of samples to be collected, which delays the reporting of results, taxes laboratory resources and staffing, and increases analysis costs. A new biological surface sampling method, the Biological Sampling Kit (BiSKit), designed to sample large areas and to be compatible with testing with a variety of technologies, including PCR and immunoassay, was evaluated and compared to other surface sampling strategies. In experimental room trials, wood laminate and metal surfaces were contaminated by aerosolization of Bacillus atrophaeus spores, a simulant for Bacillus anthracis, into the room, followed by settling of the spores onto the test surfaces. The surfaces were sampled with the BiSKit, a cotton-based swab, and a foam-based swab. Samples were analyzed by culturing, quantitative PCR, and immunological assays. The results showed that the large surface area (1 m2) sampled with the BiSKit resulted in concentrations of B. atrophaeus in samples that were up to 10-fold higher than the concentrations obtained with the other methods tested. A comparison of wet and dry sampling with the BiSKit indicated that dry sampling was more efficient (efficiency, 18.4%) than wet sampling (efficiency, 11.3%). The sensitivities of detection of B. atrophaeus on metal surfaces were 42 ± 5.8 CFU/m2 for wet sampling and 100.5 ± 10.2 CFU/m2 for dry sampling. These results demonstrate that the use of a sampling device capable of sampling larger areas results in higher sensitivity than that obtained with currently available methods and has the advantage of sampling larger areas, thus requiring collection of fewer samples per site. PMID:15574898

  5. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii

    USGS Publications Warehouse

    Baum, R.L.; Messerich, J.; Fleming, R.W.

    1998-01-01

    Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.

  6. Urban Heat Island ın Ankara

    NASA Astrophysics Data System (ADS)

    Yılmaz, Erkan

    2016-04-01

    In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.

  7. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO2 adsorption performance

    NASA Astrophysics Data System (ADS)

    Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali; Ebrahimipour, S. Yousef

    2017-06-01

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2k-1 factorial design experiments, and the response surface optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m2/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO2 adsorption.

  8. Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash

    2017-03-01

    Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.

  9. Application of multispectral scanner data to the study of an abandoned surface coal mine

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.

    1978-01-01

    The utility of aircraft multispectral scanner data for describing the land cover features of an abandoned contour-mined coal mine is considered. The data were obtained with an 11 band multispectral scanner at an altitude of 1.2 kilometers. Supervised, maximum-likelihood statistical classifications of the data were made to establish land-cover classes and also to describe in more detail the barren surface features as they may pertain to the reclamation or restoration of the area. The scanner data for the surface-water areas were studied to establish the variability and range of the spectral signatures. Both day and night thermal images of the area are presented. The results of the study show that a high degree of statistical separation can be obtained from the multispectral scanner data for the various land-cover features.

  10. Hydrogeology for land-use planning: the Peters Creek area, Municipality of Anchorage, Alaska

    USGS Publications Warehouse

    Brunett, Jilann O.; Lee, Michael

    1983-01-01

    Wells currently provide all water supplies in the area. Most wells obtain enough water for individual household needs from unconsolidated, principally glacial and glacioalluvial deposits. In some places, however, wells must be drilled into the underlying bedrock to obtain adequate supplies. It may be possible to develop small community supplies--for individual trailer courts or subdivisions--in areas where yields of 20 gallons per minute or greater are reported for private, domestic wells. Peters Creek is a potential source of surface-water supply, but it would have to be treated to remove glacial silt during summer months. The chemical quality of both ground water and surface water in the area in generally acceptable for most uses. Foundation and excavation conditions, the potential for water pollution from onsite disposal of wastewater through septic tank systems, and the suitability of specific areas for certain types of development may be affected by the following factors: wetlands and areas of shallow ground water underlie about 30 percent of the study area; landslope exceeds 20 percent in about a third of the area; areas of fine-grained, low-permeability sediments are present locally; bedrock is within 25 feet of the land surface in about a third of the area. (USGS)

  11. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  12. Oriented microtexturing on the surface of high-speed steel cutting tool

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    Microtexturing the metal cutting tool surfaces is a novel technique intended for enhancing the workability of these tools. The microtexturing is used in machining the titanium alloys for air-space applications for reducing the adhesion wear of metal cutting blades. This paper is focused on forming the microtextured dotted, banded and overlapped areas on the surfaces of high-speed steel samples. The treated areas have been examined using laser scanning microscopy for the microtexture pattern and roughness. It has been shown that the microtextured surfaces obtained on the high-speed steel samples were free of cracks. Surface pattern and roughness of all three microtextured areas have been examined and analyzed.

  13. A mobile app for measuring the surface area of a burn in three dimensions: comparison to the Lund and Browder assessment.

    PubMed

    Goldberg, Harry; Klaff, Justin; Spjut, Aaron; Milner, Stephen

    2014-01-01

    The aim of this study was to compare the ease and accuracy of measuring the surface area of a severe burn through the use of a mobile software application (BurnMed) to the traditional method of assessment, the Lund and Browder chart. BurnMed calculates the surface area of a burn by enabling the user to first manipulate a three-dimensional model on a mobile device and then by touching the model at the locations representing the patient's injury. The surface area of the burn is calculated in real time. Using a cohort of 18 first-year medical students with no experience in burn care, the surface area of a simulated burn on a mannequin was made using BurnMed and compared to estimates derived from the Lund and Browder chart. At the completion of this study, students were asked to complete a questionnaire designed to assess the ease of use of BurnMed. Users were able to easily and accurately measure the surface area of a simulated burn using the BurnMed application. In addition, there was less variability in surface area measurements with the application compared to the results obtained using the Lund and Browder chart. Users also reported that BurnMed was easier to use than the Lund and Browder chart. A software application, BurnMed, has been developed for a mobile device that easily and accurately determines the surface area of a burn. This system uses a three-dimensional model that can be rotated, enlarged, and transposed by the health care provider to easily determine the extent of a burn. Results show that the variability of measurements using BurnMed is lower than the measurements obtained using the Lund and Browder chart. BurnMed is available at no charge in the Apple™ Store.

  14. Photogrammetric registration of dental plaque accumulation in vivo.

    PubMed

    Bergström, J

    1981-01-01

    Using the labial surface of upper anterior laterals for determination, the accumulation of plaque was assessed by means of a stereo-photogrammetric method. The stereoimages were subjected to photogrammetric evaluation, the part of the surface area covered by plaque being given in per cent of the total surface area of the tooth. Plaque extension and plaque topography was studied in young adults with healthy periodontia during a 20 day period of no oral hygiene. At the end of the experimental period, on an average 75 per cent of the surface area was covered by plaque, corresponding to an extension rate of 3.75 per cent per day. The correlation between plaque values obtained by photogrammetry and various estimates obtained from clinical scoring ranged between r = 0.66 and r = 0.78. It is concluded that the method introduced is a sensitive means of determining small amounts of plaque and should prove useful for in vivo investigation of plaque growth and plaque suppression, where measurements of high quality is of importance.

  15. Monitoring of Surface Subsidence of the Mining Area Based on Sbas

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Zhou, S.; Zang, D.; Lu, T.

    2018-05-01

    This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.

  16. Forces and Holes in Liquid Surfaces and Soap Films: A Simple Measurement of a Not-So-Simple Effect

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Oss, Stefano

    2004-01-01

    In this article we show how to verify that in a fluid surface or film the value of the surface tension (i.e. the free energy per unit area) does not depend on the area of the film itself. The experimental evidence discussed can be obtained extremely simply yet with great accuracy. This experiment is important in that it leads to a deeper…

  17. Ultrasound-assisted facile synthesis of a new tantalum(V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO{sub 2} adsorption performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargazi, Ghasem, E-mail: g.sargazi@gmail.com; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran; Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com

    2017-06-15

    This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2{sup k-1} factorial design experiments, and the response surfacemore » optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m{sup 2}/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO{sub 2} adsorption. - Graphical abstract: A facile route was used for fabrication of a new metal -organic framework based on tantalum nanostructures that have high surface area, considerable porosity, homogenous morphology, and small size distribution.« less

  18. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE PAGES

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek; ...

    2017-08-28

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  19. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Eduardo; Calderon, Miguel Martinez; Krzywinski, Jacek

    We demonstrate the formation of laser-induced periodic surface structures (LIPSS) in boron-doped diamond (BDD) by irradiation with femtosecond near-IR laser pulses. The results show that the obtained LIPSS are perpendicular to the laser polarization, and the ripple periodicity is on the order of half of the irradiation wavelength. The surface structures and their electrochemical properties were characterized using Raman micro-spectroscopy, in combination with scanning electron and atomic force microscopies. The textured BDD surface showed a dense and large surface area with no change in its structural characteristics. The effective surface area of the textured BDD electrode was approximately 50% largermore » than that of a planar substrate, while wetting tests showed that the irradiated area becomes highly hydrophilic. Lastly, our results indicate that LIPSS texturing of BDD is a straightforward and simple technique for enhancing the surface area and wettability properties of the BDD electrodes, which could enable higher current efficiency and lower energy consumption in the electrochemical oxidation of toxic organics.« less

  20. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed.more » Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle size range examined. The surface area results were consistent with particle morphology, examined by scanning electron microscopy, and have significant implications for the release of radionuclides and toxic metals in the environment.« less

  1. Human body surface area: a theoretical approach.

    PubMed

    Wang, Jianfeng; Hihara, Eiji

    2004-04-01

    Knowledge of the human body surface area has important applications in medical practice, garment design, and other engineering sizing. Therefore, it is not surprising that several expressions correlating body surface area with direct measurements of body mass and length have been reported in the literature. In the present study, based on the assumption that the exterior shape of the human body is the result of convex and concave deformations from a basic cylinder, we derive a theoretical equation minimizing body surface area (BSA) at a fixed volume (V): BSA=(9pi VL)(0.5), where L is the reference length of the body. Assuming a body density value of 1,000 kg.m(-3), the equation becomes BSA=(BM.BH/35.37)(0.5), where BSA is in square meters, BM is the body mass in kilograms, and BH is the body height in meters. BSA values calculated by means of this equation fall within +/-7% of the values obtained by means of the equations available in the literature, in the range of BSA from children to adults. It is also suggested that the above equation, which is obtained by minimizing the outer body surface at a fixed volume, implies a fundamental relation set by the geometrical constraints governing the growth and the development of the human body.

  2. Surface Wave Dispersion Measurements and Tomography from Ambient Seismic Noise Correlation in China

    DTIC Science & Technology

    2010-03-15

    R.A. Jamieson, M.H. Nguyen, et al., Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface...9 8. Crustal thickness map obtained in this study...not in the margin areas, consistent with the crustal channel flow model. 2. INTRODUCTION The overall objective of this project is to obtain

  3. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  4. Bias Correction of MODIS AOD using DragonNET to obtain improved estimation of PM2.5

    NASA Astrophysics Data System (ADS)

    Gross, B.; Malakar, N. K.; Atia, A.; Moshary, F.; Ahmed, S. A.; Oo, M. M.

    2014-12-01

    MODIS AOD retreivals using the Dark Target algorithm is strongly affected by the underlying surface reflection properties. In particular, the operational algorithms make use of surface parameterizations trained on global datasets and therefore do not account properly for urban surface differences. This parameterization continues to show an underestimation of the surface reflection which results in a general over-biasing in AOD retrievals. Recent results using the Dragon-Network datasets as well as high resolution retrievals in the NYC area illustrate that this is even more significant at the newest C006 3 km retrievals. In the past, we used AERONET observation in the City College to obtain bias-corrected AOD, but the homogeneity assumptions using only one site for the region is clearly an issue. On the other hand, DragonNET observations provide ample opportunities to obtain better tuning the surface corrections while also providing better statistical validation. In this study we present a neural network method to obtain bias correction of the MODIS AOD using multiple factors including surface reflectivity at 2130nm, sun-view geometrical factors and land-class information. These corrected AOD's are then used together with additional WRF meteorological factors to improve estimates of PM2.5. Efforts to explore the portability to other urban areas will be discussed. In addition, annual surface ratio maps will be developed illustrating that among the land classes, the urban pixels constitute the largest deviations from the operational model.

  5. Mesoporous ZrO2 fibers with enhanced surface area and the application as recyclable absorbent

    NASA Astrophysics Data System (ADS)

    Yu, Zhichao; Liu, Benxue; Zhou, Haifeng; Feng, Cong; Wang, Xinqiang; Yuan, Kangkang; Gan, Xinzhu; Zhu, Luyi; Zhang, Guanghui; Xu, Dong

    2017-03-01

    Highly crystalline mesoporous zirconia fibers with high surface area have been prepared by the use of electrospinning combined with precursors method. The obtained precursor fibers were treated in water steam and directly in air at different temperature respectively. Compared with the direct calcination in air, the water steam cannot only promote the crystallization of ZrO2 but also effectively remove off the organics and prevent the pore structure collapse. Moreover, through adding hydrochloric acid to modify the solution pH value, the obtained t-ZrO2 fibers treated in water steam at 300 °C have high surface area and large pore volume of 232.70 m2 g-1 and 0.36 cm3 g-1. The formation mechanism of the mesostucture was studied and the schematic was represented. Compared with the previous reports of mesoporous ZrO2 fibers, the as-synthesized materials exhibited the high crystallinity, large surface area and the long-range order mesostructure.The adsorption of Congo red indicates that the samples have a high adsorption capacity of 103.46 mg g-1 and long-periodic repeated availability.

  6. The Use of CASES-97 Observations to Assess and Parameterize the Impact of Land-Surface Heterogeneity on Area-Average Surface Heat Fluxes for Large-Scale Coupled Atmosphere-Hydrology Models

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Yates, David; LeMone, Margaret

    2001-01-01

    To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.

  7. A RESEARCH PLAN FOR THE USE OF THERMAL AVHRR IMAGERY TO STUDY ANNUAL AND SEASONAL MEAN SURFACE TEMPERATURES FOR LARGE LAKES IN NORTH AMERICA

    EPA Science Inventory

    Surface and vertical temperature data will be obtained from several large lakes With surface areas large enough to be effectively sampled with AVHRR imagery. Yearly and seasonal patterns of surface and whole water column thermal values will be compared to estimates of surface tem...

  8. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [The Everglades agricultural area, Lake Okeechobee, and the Suwanee River basin

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Transparencies, prints, and computer compatible tapes of temperature differential and thermal inertia for the winter of 1978 to 1979 were obtained. Thermal inertial differences in the South Florida depicted include: drained organic soils of the Everglades agricultural area, undrained organic soils of the managed water conservation areas of the South Florida water management district, the urbanized area around Miami, Lake Okeechobee, and the mineral soil west of the Everglades agricultural area. The range of wetlands and uplands conditions within the Suwanee River basin was also identified. It is shown that the combination of wetlands uplands surface features of Florida yield a wide range of surface temperatures related to wetness of the surface features.

  9. Electrical resistance behavior of oxyfluorinated graphene under oxidizing and reducing gas exposure.

    PubMed

    Im, Ji Sun; Bae, Tae-Sung; Shin, Eunjeong; Lee, Young-Seak

    2014-03-01

    The electrical resistance behavior of graphene was studied under oxidizing and reducing gas exposure. The graphene surface was modified via oxyfluorination to obtain a specific surface area and oxygen functional groups. Fluorine radicals provided improved pore structure and introduction of an oxygen functional group. A high-performance gas sensor was obtained based on enlarged target gas adsorption sites and an enhanced electron charge transfer between the target gas and carbon surface via improved pore structure and the introduction of oxygen functional groups, respectively.

  10. New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2000-01-01

    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.

  11. New Variance-Reducing Methods for the PSD Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2010-01-01

    Edge data of a measured surface map of a circular optic result in large variance or "spectral leakage" behavior in the corresponding Power Spectral Density (PSD) data. In this paper we present two new, alternative methods for reducing such variance in the PSD data by replacing the zeros outside the circular area of a surface map by non-zero values either obtained from a PSD fit (method 1) or taken from the inside of the circular area (method 2).

  12. MARS as viewed by Mariner 9

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Photographs of the surface of the planet Mars which were obtained by the Mariner 9 space probe are presented. Areas of investigation during the Mariner 9 flight involved television coverage, ultraviolet spectroscopy, infrared spectroscopy, infrared radiometry, S-band occultation, and celestial mechanics. Descriptions of the photographs are provided to further identify the surface features and the coordinates of the area photographed are included. Emphasis is placed on the visual evidence of the effects of wind in shaping the Martian surface. Photographs of cloud formations and dust storms are analyzed.

  13. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  14. Investigation the Amplitude Uniformity on the Surface of the Wide-Blade Ultrasonic Plastic Welding Horn

    NASA Astrophysics Data System (ADS)

    Hai Nguyen, Thanh; Thanh Quang, Quang; Luat Tran, Cong; Loc Nguyen, Huu

    2017-10-01

    Ultrasonic welding has been applied for joining thermoplastic components due to their advantages such as clean, fast and reliable. The basic principle is to use the mechanical energy of ultrasonic frequency vibration to produce the molten pool at the interface of the joined components under high pressure to create solid-state welding joints. Depending on the specific application, the ultrasonic horn is designed to generate suitable amplitudes on the surface of the welding zone. Uniformity of the amplitudes can be a challenge as the welding area increases. Therefore, design a welding horn in order to obtain the uniform amplitudes at the large area is significant difficult. This work presents a method for obtaining the uniform amplitudes at the working surface of the stepped wide-blade horn. Finite element method is used to analyze the amplitude distribution at the horn surface of 250 × 34 mm2 with working frequency of 15 kHz and aluminum alloy 7075. The uniformity of amplitude is obtained by changing the shape of the horn.

  15. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    NASA Astrophysics Data System (ADS)

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  16. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.

    PubMed

    Nair, Vaishakh; Vinu, R

    2016-09-01

    In this study, mesoporous activated biochar with high surface area and controlled pore size was prepared from char obtained as a by-product of pyrolysis of Prosopis juliflora biomass. The activation was carried out by a simple process that involved H2O2 treatment followed by microwave pyrolysis. H2O2 impregnation time and microwave power were optimized to obtain biochar with high specific surface area and high adsorption capacity for commercial dyes such as Remazol Brilliant Blue and Methylene Blue. Adsorption parameters such as initial pH of the dye solution and adsorbent dosage were also optimized. Pore size distribution, surface morphology and elemental composition of activated biochar were thoroughly characterized. H2O2 impregnation time of 24h and microwave power of 600W produced nanostructured biochar with narrow and deep pores of 357m(2)g(-1) specific surface area. Langmuir and Langmuir-Freundlich isotherms described the adsorption equilibrium, while pseudo second order model described the kinetics of adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Euclidean Wilson loops and minimal area surfaces in lorentzian AdS 3

    DOE PAGES

    Irrgang, Andrew; Kruczenski, Martin

    2015-12-14

    The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal area surfaces in AdS 5 × S 5 space. If the Wilson loop is Euclidean and confined to a plane (t, x) then the dual surface is Euclidean and lives in Lorentzian AdS 3 c AdS 5. In this paper we study such minimal area surfaces generalizing previous results obtained in the Euclidean case. Since the surfaces we consider have the topology of a disk, the holonomy of the flat current vanishes which is equivalent to the condition that a certain boundary Schrödinger equation has all its solutionsmore » anti-periodic. If the potential for that Schrödinger equation is found then reconstructing the surface and finding the area become simpler. In particular we write a formula for the Area in terms of the Schwarzian derivative of the contour. Finally an infinite parameter family of analytical solutions using Riemann Theta functions is described. In this case, both the area and the shape of the surface are given analytically and used to check the previous results.« less

  18. Evaluation of Advanced Reactive Surface Area Estimates for Improved Prediction of Mineral Reaction Rates in Porous Media

    NASA Astrophysics Data System (ADS)

    Beckingham, L. E.; Mitnick, E. H.; Zhang, S.; Voltolini, M.; Yang, L.; Steefel, C. I.; Swift, A.; Cole, D. R.; Sheets, J.; Kneafsey, T. J.; Landrot, G.; Anovitz, L. M.; Mito, S.; Xue, Z.; Ajo Franklin, J. B.; DePaolo, D.

    2015-12-01

    CO2 sequestration in deep sedimentary formations is a promising means of reducing atmospheric CO2 emissions but the rate and extent of mineral trapping remains difficult to predict. Reactive transport models provide predictions of mineral trapping based on laboratory mineral reaction rates, which have been shown to have large discrepancies with field rates. This, in part, may be due to poor quantification of mineral reactive surface area in natural porous media. Common estimates of mineral reactive surface area are ad hoc and typically based on grain size, adjusted several orders of magnitude to account for surface roughness and reactivity. This results in orders of magnitude discrepancies in estimated surface areas that directly translate into orders of magnitude discrepancies in model predictions. Additionally, natural systems can be highly heterogeneous and contain abundant nano- and micro-porosity, which can limit connected porosity and access to mineral surfaces. In this study, mineral-specific accessible surface areas are computed for a sample from the reservoir formation at the Nagaoka pilot CO2 injection site (Japan). Accessible mineral surface areas are determined from a multi-scale image analysis including X-ray microCT, SEM QEMSCAN, XRD, SANS, and SEM-FIB. Powder and flow-through column laboratory experiments are performed and the evolution of solutes in the aqueous phase is tracked. Continuum-scale reactive transport models are used to evaluate the impact of reactive surface area on predictions of experimental reaction rates. Evaluated reactive surface areas include geometric and specific surface areas (eg. BET) in addition to their reactive-site weighted counterparts. The most accurate predictions of observed powder mineral dissolution rates were obtained through use of grain-size specific surface areas computed from a BET-based correlation. Effectively, this surface area reflects the grain-fluid contact area, or accessible surface area, in the powder dissolution experiment. In the model of the flow-through column experiment, the accessible mineral surface area, computed from the multi-scale image analysis, is evaluated in addition to the traditional surface area estimates.

  19. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    USGS Publications Warehouse

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as estimates of depth to bedrock and depth to water table, as well as indications of underlying geologic structure, were obtained from geophysical surveys. Site-specific geologic data were collected during the drilling of observation wells and test holes. These data include depth to bedrock or refusal, depth to water table, and lithologic information.

  20. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics.

    PubMed

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K

    2018-07-15

    Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2  g -1 and 4.50 cm 3  g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of organic loading rates and proton exchange membrane surface area on the performance of an up-flow cylindrical microbial fuel cell.

    PubMed

    Jana, Partha S; Behera, Manaswini; Ghangrekar, M M

    2012-01-01

    The effect of organic loading rates (OLRs) and proton exchange membrane (PEM) surface area on the performance of microbial fuel cells (MFCs) was evaluated. Three MFCs (MFC-1, MFC-2 and MFC-3) having PEM surface area of 10 cm2, 20 cm2 and 40 cm2, respectively, were used in the study. The MFCs were operated at influent chemical oxygen demand (COD) of 500 mg L(-1) and hydraulic retention time (HRT) of 20 h, 17 h, 13 h and 6 h in experimental Run-1 to Run-4. MFC-3, with highest PEM surface area showed highest power generation throughout the study. The optimum performancewas obtained at HRT of 13 h. In Run-5 and Run-6, the influent COD was increased to 1000 mg L(-1) and 1500 mg L(-1), respectively, maintaining the HRT at 13 h. Maximum volumetric powers of 4.26 W m(-3), 9.41 W m(-3) and 17.24 W m(-3) were obtained in MFC-1, MFC-2 and MFC-3, respectively, in Run-5 under the OLR of 1.84 kg COD m(-3) d(-1). These power values are among the higher values reported in literature; MFCs with higher PEM surface area showed better electricity generation, which clearly demonstrates that proton mass transfer is the main constraint in the MFCs which limits the power output. Combined effect of influent COD and HRT was found on electricity generation.

  2. Laboratory Studies of Atmospheric Heterogeneous Chemistry

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.; Leu, M-T.

    1993-01-01

    In the laboratory, ice films formed by freezing from the liquid or more frequently by deposition from the vapor phase have been used to simulate stratospheric cloud surfaces for measurements of reaction and uptake rates. To obtain intrinsic surface reaction probabilities that can be used in atmospheric models, the area of the film surface that actually takes part in the reaction must be known. It is important to know not only the total surface area but also the film morphology in order to determine where and how the surface is situated and, thus, what fraction of it is available for reaction. Information on the structure of these ice films has been obtained by using several experimental methods. In the sections that follow, these methods will be discussed, then the results will be used to construct a working model of the ice films, and finally the model will be applied to an experimental study of HC1 uptake by H_2O ice.

  3. [Determination of joint contact area using MRI].

    PubMed

    Yoshida, Hidenori; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji

    2009-10-20

    Elevated contact stress on the articular joints has been hypothesized to contribute to articular cartilage wear and joint pain. However, given the limitations of using contact stress and areas from human cadaver specimens to estimate articular joint stress, there is need for an in vivo method to obtain such data. Magnetic resonance imaging (MRI) has been shown to be a valid method of quantifying the human joint contact area, indicating the potential for in vivo assessment. The purpose of this study was to describe a method of quantifying the tibiofemoral joint contact area using MRI. The validity of this technique was established in porcine cadaver specimens by comparing the contact area obtained from MRI with the contact area obtained using pressure-sensitive film (PSF). In particular, we assessed the actual condition of contact by using the ratio of signal intensity of MR images of cartilage surfaces. Two fresh porcine cadaver knees were used. A custom loading apparatus was designed to apply a compressive load to the tibiofemoral joint. We measured the contact area by using MRI and PSF methods. When the ratio of signal intensity of the cartilage surface was 0.9, the error of the contact area between the MR image and PSF was about 6%. These results suggest that this MRI method may be a valuable tool in quantifying joint contact area in vivo.

  4. Dynamic change in mitral regurgitant orifice area: comparison of color Doppler echocardiographic and electromagnetic flowmeter-based methods in a chronic animal model.

    PubMed

    Shiota, T; Jones, M; Teien, D E; Yamada, I; Passafini, A; Ge, S; Sahn, D J

    1995-08-01

    The aim of the present study was to investigate dynamic changes in the mitral regurgitant orifice using electromagnetic flow probes and flowmeters and the color Doppler flow convergence method. Methods for determining mitral regurgitant orifice areas have been described using flow convergence imaging with a hemispheric isovelocity surface assumption. However, the shape of flow convergence isovelocity surfaces depends on many factors that change during regurgitation. In seven sheep with surgically created mitral regurgitation, 18 hemodynamic states were studied. The aliasing distances of flow convergence were measured at 10 sequential points using two ranges of aliasing velocities (0.20 to 0.32 and 0.56 to 0.72 m/s), and instantaneous flow rates were calculated using the hemispheric assumption. Instantaneous regurgitant areas were determined from the regurgitant flow rates obtained from both electromagnetic flowmeters and flow convergence divided by the corresponding continuous wave velocities. The regurgitant orifice sizes obtained using the electromagnetic flow method usually increased to maximal size in early to midsystole and then decreased in late systole. Patterns of dynamic changes in orifice area obtained by flow convergence were not the same as those delineated by the electromagnetic flow method. Time-averaged regurgitant orifice areas obtained by flow convergence using lower aliasing velocities overestimated the areas obtained by the electromagnetic flow method ([mean +/- SD] 0.27 +/- 0.14 vs. 0.12 +/- 0.06 cm2, p < 0.001), whereas flow convergence, using higher aliasing velocities, estimated the reference areas more reliably (0.15 +/- 0.06 cm2). The electromagnetic flow method studies uniformly demonstrated dynamic change in mitral regurgitant orifice area and suggested limitations of the flow convergence method.

  5. Surface and downhole shear wave seismic methods for thick soil site investigations

    USGS Publications Warehouse

    Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.

    2002-01-01

    Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.

  6. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE PAGES

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; ...

    2015-02-01

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  7. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  8. Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores

    NASA Astrophysics Data System (ADS)

    Meng, Long; Guo, Zhan-cheng; Qu, Jing-kui; Qi, Tao; Guo, Qiang; Hou, Gui-hua; Dong, Peng-yu; Xi, Xin-guo

    2018-01-01

    A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30°C, 0.25 mol/L Co2+, and a calcination temperature of 350°C, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.

  9. Influence of Articulating Paper Thickness on Occlusal Contacts Registration: A Preliminary Report.

    PubMed

    Brizuela-Velasco, Aritza; Álvarez-Arenal, Ángel; Ellakuria-Echevarria, Joseba; del Río-Highsmith, Jaime; Santamaría-Arrieta, Gorka; Martín-Blanco, Nerea

    2015-01-01

    The objective of this preliminary study was to determine if the occlusal contact surface registered with an articulating paper during fixed prosthodontic treatment was contained within the area marked on a thicker articulating paper. This information would optimize any necessary occlusal adjustment of a prosthesis' veneering material. A convenience sample of 15 patients who were being treated with an implant-supported fixed singleunit dental prosthesis was selected. Occlusal registrations were obtained from each patient using 12-μm, 40-μm, 80-μm, and 200-μm articulating paper. Photographs of the occlusal registrations were obtained, and pixel measurements of the surfaces were taken and overlapped for comparison. The results showed that the thicker the articulating paper, the larger the occlusal contact area obtained. The differences were statistically significant. In all cases, the occlusal registrations obtained with the thinnest articulating paper were contained within the area marked on the thickest articulating paper. The results suggested that the use of thin articulating papers (12-μm or 40-μm) can avoid unnecessary grinding of veneering material or teeth during occlusal adjustment.

  10. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles.

    PubMed

    Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S

    2002-05-15

    A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.

  11. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    PubMed

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  12. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    NASA Astrophysics Data System (ADS)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  13. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  14. Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.

    PubMed

    Parker, Alison; Marszewski, Michal; Jaroniec, Mietek

    2013-03-01

    Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.

  15. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  16. High surface area calcite

    NASA Astrophysics Data System (ADS)

    Schultz, L. N.; Andersson, M. P.; Dalby, K. N.; Müter, D.; Okhrimenko, D. V.; Fordsmand, H.; Stipp, S. L. S.

    2013-05-01

    Calcite (CaCO3) is important in many fields—in nature, because it is a component of aquifers, oil reservoirs and prospective CO2 storage sites, and in industry, where it is used in products as diverse as paper, toothpaste, paint, plastic and aspirin. It is difficult to obtain high purity calcite with a high surface area but such material is necessary for industrial applications and for fundamental calcite research. Commercial powder is nearly always contaminated with growth inhibitors such as sugars, citrate or pectin and most laboratory synthesis methods deliver large precipitates, often containing vaterite or aragonite. To address this problem, we (i) adapted the method of carbonating a Ca(OH)2 slurry with CO2 gas to develop the first simple, cheap, safe and reproducible procedure using common laboratory equipment, to obtain calcite that reproducibly had a surface area of 14-17 m2/g and (ii) conducted a thorough characterization of the product. Scanning electron microscopy (SEM) revealed nanometer scale, rhombohedral crystals. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) confirmed highly crystalline, pure calcite that more closely resembles the dimensions of the biogenic calcite produced by algae in coccoliths than other methods for synthesizing calcite. We suggest that this calcite is useful when purity and high surface area are important.

  17. Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-05-01

    The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole unit. On the other hand, together with crater count results from extensive counting areas and lower-resolution images, crater counts on small counting areas but by using very high-resolution images is a very valuable tool for obtaining unique additional information about the local processes on the surface units.

  18. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  19. Evaluation of algorithms for point cloud surface reconstruction through the analysis of shape parameters

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Verbeek, Fons J.

    2012-03-01

    In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.

  20. Novel imaging analysis system to measure the spatial dimension of engineered tissue construct.

    PubMed

    Choi, Kyoung-Hwan; Yoo, Byung-Su; Park, So Ra; Choi, Byung Hyune; Min, Byoung-Hyun

    2010-02-01

    The measurement of the spatial dimensions of tissue-engineered constructs is very important for their clinical applications. In this study, a novel method to measure the volume of tissue-engineered constructs was developed using iterative mathematical computations. The method measures and analyzes three-dimensional (3D) parameters of a construct to estimate its actual volume using a sequence of software-based mathematical algorithms. The mathematical algorithm is composed of two stages: the shape extraction and the determination of volume. The shape extraction utilized 3D images of a construct: length, width, and thickness, captured by a high-quality camera with charge coupled device. The surface of the 3D images was then divided into fine sections. The area of each section was measured and combined to obtain the total surface area. The 3D volume of the target construct was then mathematically obtained using its total surface area and thickness. The accuracy of the measurement method was verified by comparing the results with those obtained from the hydrostatic weighing method (Korea Research Institute of Standards and Science [KRISS], Korea). The mean difference in volume between two methods was 0.0313 +/- 0.0003% (n = 5, P = 0.523) with no significant statistical difference. In conclusion, our image-based spatial measurement system is a reliable and easy method to obtain an accurate 3D volume of a tissue-engineered construct.

  1. Europa: Sea Salts or Battery Acid

    NASA Image and Video Library

    2000-04-19

    This composite image of the Jupiter-facing hemisphere of Europa was obtained on Nov. 25, 1999 by NASA Galileo spacecraft. Blue areas show cleanest, brightest icy surfaces, while the red areas have the highest concentrations of darker, non-ice materials.

  2. A method of measuring rainfall on windy slopes

    Treesearch

    G. L. Hayes

    1944-01-01

    The object of precipitation measurement, as stated by Brooks (1), is to obtain "a fair sample of the fall reaching the earth's surface over the area represented by the measurement." The area referred to is horizontal, or map area. Even when measured on a slope, precipitation is always expressed as depth of water on a horizontal area.

  3. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    NASA Astrophysics Data System (ADS)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  4. Four-channel surface coil array for sequential CW-EPR image acquisition

    NASA Astrophysics Data System (ADS)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  5. Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.

    PubMed

    Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi

    2017-09-04

    About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2  g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Minimizing the area required for time constants in integrated circuits

    NASA Technical Reports Server (NTRS)

    Lyons, J. C.

    1972-01-01

    When a medium- or large-scale integrated circuit is designed, efforts are usually made to avoid the use of resistor-capacitor time constant generators. The capacitor needed for this circuit usually takes up more surface area on the chip than several resistors and transistors. When the use of this network is unavoidable, the designer usually makes an effort to see that the choice of resistor and capacitor combinations is such that a minimum amount of surface area is consumed. The optimum ratio of resistance to capacitance that will result in this minimum area is equal to the ratio of resistance to capacitance which may be obtained from a unit of surface area for the particular process being used. The minimum area required is a function of the square root of the reciprocal of the products of the resistance and capacitance per unit area. This minimum occurs when the area required by the resistor is equal to the area required by the capacitor.

  7. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gnilitskyi, Iaroslav; Gruzdev, Vitaly; Bulgakova, Nadezhda M.; Mocek, Tomáš; Orazi, Leonardo

    2016-10-01

    Silicon is one of the most abundant materials which is used in many areas of modern research and technology. A variety of those applications require surface nanopatterning with minimum structure defects. However, the high-quality nanostructuring of large areas of silicon surface at industrially acceptable speed is still a challenge. Here, we report a rapid formation of highly regular laser-induced periodic surface structures (HR-LIPSS) in the regime of strong ablation by infrared femtosecond laser pulses at sub-MHz repetition rate. Parameters of the laser-surface interactions and obtained experimental results suggest an important role of electrostatically assisted bond softening in initiating the HR-LIPSS formation.

  8. Effects of Thickness and Amount of Carbon Nanofiber Coated Carbon Fiber on Improving the Mechanical Properties of Nanocomposites

    PubMed Central

    Ghaemi, Ferial; Ahmadian, Ali; Yunus, Robiah; Ismail, Fudziah; Rahmanian, Saeed

    2016-01-01

    In the current study, carbon nanofibers (CNFs) were grown on a carbon fiber (CF) surface by using the chemical vapor deposition method (CVD) and the influences of some parameters of the CVD method on improving the mechanical properties of a polypropylene (PP) composite were investigated. To obtain an optimum surface area, thickness, and yield of the CNFs, the parameters of the chemical vapor deposition (CVD) method, such as catalyst concentration, reaction temperature, reaction time, and hydrocarbon flow rate, were optimized. It was observed that the optimal surface area, thickness, and yield of the CNFs caused more adhesion of the fibers with the PP matrix, which enhanced the composite properties. Besides this, the effectiveness of reinforcement of fillers was fitted with a mathematical model obtaining good agreement between the experimental result and the theoretical prediction. By applying scanning electronic microscope (SEM), transmission electron microscope (TEM), and Raman spectroscopy, the surface morphology and structural information of the resultant CF-CNF were analyzed. Additionally, SEM images and a mechanical test of the composite with a proper layer of CNFs on the CF revealed not only a compactness effect but also the thickness and surface area roles of the CNF layers in improving the mechanical properties of the composites. PMID:28344263

  9. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    NASA Astrophysics Data System (ADS)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be utilized to model oil recovery, waste disposal, and groundwater contamination processes in the presence of fractures.

  10. Comparative Study of the Electrochemical, Biomedical, and Thermal Properties of Natural and Synthetic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Kargarzadeh, Hanieh; Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Abbasian, Maryam

    2018-04-01

    In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.

  11. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  12. Altitude and configuration of the potentiometric surface in East Nottingham and West Nottingham Townships, Chester County, Pennsylvania, April through June 2004

    USGS Publications Warehouse

    Hale, Lindsay B.

    2006-01-01

    The maps shows the potentiometric surface for an area along the western boundary of Chester County that includes parts of East Nottingham and West Nottingham Townships.  The study area is mostly uderlain by metamorphic rocks of the Peters Creek Schist and Wissahickon Formation(Sloto, 1994).  Ground water is obtained from these bedrock formations by wells that intercept fractures.

  13. Error reduction in three-dimensional metrology combining optical and touch probe data

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2010-08-01

    Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.

  14. Modelling the degree of porosity of the ceramic surface intended for implants.

    PubMed

    Stach, Sebastian; Kędzia, Olga; Garczyk, Żaneta; Wróbel, Zygmunt

    2018-05-18

    The main goal of the study was to develop a model of the degree of surface porosity of a biomaterial intended for implants. The model was implemented using MATLAB. A computer simulation was carried out based on the developed model, which resulted in a two-dimensional image of the modelled surface. Then, an algorithm for computerised image analysis of the surface of the actual oxide bioceramic layer was developed, which enabled determining its degree of porosity. In order to obtain the confocal micrographs of a few areas of the biomaterial, measurements were performed using the LEXT OLS4000 confocal laser microscope. The image analysis was carried out using MountainsMap Premium and SPIP. The obtained results allowed determining the input parameters of the program, on the basis of which porous biomaterial surface images were generated. The last part of the study involved verification of the developed model. The modelling method was tested by comparing the obtained results with the experimental data obtained from the analysis of surface images of the test material.

  15. Rubber friction on road surfaces: Experiment and theory for low sliding speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, B.; Persson, B. N. J.; Oh, Y. R.

    We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, theremore » is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.« less

  16. Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.

  17. Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.

    2017-06-01

    In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.

  18. High resolution measures of polarization and color of selected lunar areas

    NASA Technical Reports Server (NTRS)

    Riley, L. A.; Hall, J. S.

    1972-01-01

    High resolution observations of intensity, color (UBV) and polarization were obtained with scanning techniques for a number of lunar areas of special interest, including boundaries of some of the brightest and darkest lunar regions, certain Apollo landing sites and prominent craters. Two dimensional raster scans of colors were obtained for Alphonsus, Aristarchus, and Herodotus. The degree of polarization for any given phase angle appears to be roughly indicative of age. The darker younger mare surface are more highly polarized than the lighter and older mare surfaces, which appear to be more contaminated by lighter material from the highlands or by ray material thrown out from fresh craters. All mare surfaces are more highly polarized than the still older and lighter terra regions surrounding the maria. The very oldest craters are either dark-floored and show polarization characteristics similar to those of the mare surfaces, or if located in the highlands, they are less and less distinguishable from the highland background with greater age, and show the general highland polarization characteristics.

  19. Characterization of nanoporous shales with gas sorption

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  20. Land Surface Properties near Terra Nova Bay, East Antarctica, Analyzed by Time-series Height, Coherence and Amplitude Maps Derived from COSMO-SkyMed One-day Tandem Pairs

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Han, H.; Lee, H.

    2014-12-01

    Analysis of the surface properties of Antarctica is very important to study the change of environment and climate in the polar region. Synthetic aperture radar (SAR) has been widely used to study Antarctic surface properties because it is independent of sun altitude and atmospheric conditions. Interferometric SAR (InSAR) observes surface topography and deformation, by calculating the phase differences between two or more SAR images obtained over same area. InSAR technique can be used for height mapping in stable areas with a few meter accuracy. However, the InSAR-derived height map can have errors if the phase differences due to surface deformation or change of the scattering center by microwave penetration into snow are misinterpreted as the elevation. In this study, we generated the height maps around Terra Nova Bay in East Antarctica from 13 COSMO-SkyMed one-day tandem InSAR pairs obtained from December 2010 to January 2012. By analyzing the height maps averaged over the 13 interferograms and its standard deviation (STD) map, we could classify the surface types into glacier, mountains and basin areas covered with snow. The mountain areas showed very small STD because its surface property is unchanged with time, except for the small STD values caused by the errors from the unwrapping processing, satellite orbit or atmospheric phase distortion. Over the basin areas, however, the STD of the height was much larger than the mountain area due to the variation of scattering center either from the change in surface property such as snowfall and sublimation or by the surface displacement of snow mass that are too slow. A year-long constant motion of such slow-creeping snow body was positively identified by its linear relationship between the misinterpreted elevation and the baseline perpendicular component of InSAR pair. Analysis of time-series coherence maps and amplitude maps have also contributed to clarify the surface properties and its changes due to various environmental factors such as snow fall, wind, sublimation, and the freezing-thawing processes in this Antarctic land surface. Acknowledgement - This research was supported by National Research Foundation of Korea through NRF-2013R1A1A2008062 and NRF-2013M1A3A3A02041853.

  1. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic composite sample. Impressive results were obtained for all samples when compared with diamond-tip profiles and measurements from micrometers. The method is completely nondestructive, noninvasive, non-contact and does not require light-reflective surfaces.

  2. Multicolor fluorescence enhancement from a photonics crystal surface

    NASA Astrophysics Data System (ADS)

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-09-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ˜3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ =632.8 nm laser (cyanine-5) and a dye excited by a λ =532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays.

  3. Multicolor fluorescence enhancement from a photonics crystal surface

    PubMed Central

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-01-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ∼3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ=632.8 nm laser (cyanine-5) and a dye excited by a λ=532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays. PMID:20957067

  4. Combined Effect of Textured Patterns and Graphene Flake Additives on Tribological Behavior under Boundary Lubrication

    PubMed Central

    Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao

    2016-01-01

    A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762

  5. Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing.

    PubMed

    Heitbrink, William A; Evans, Douglas E; Ku, Bon Ki; Maynard, Andrew D; Slavin, Thomas J; Peters, Thomas M

    2009-01-01

    This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R2 = 0.6 for both plants) than in the summer (R2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 mu m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.

  6. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  7. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  8. Resolution and contrast in Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A.

    1998-08-01

    The combination of atomic force microscopy and Kelvin probe technology is a powerful tool to obtain high-resolution maps of the surface potential distribution on conducting and nonconducting samples. However, resolution and contrast transfer of this method have not been fully understood, so far. To obtain a better quantitative understanding, we introduce a model which correlates the measured potential with the actual surface potential distribution, and we compare numerical simulations of the three-dimensional tip-specimen model with experimental data from test structures. The observed potential is a locally weighted average over all potentials present on the sample surface. The model allows us to calculate these weighting factors and, furthermore, leads to the conclusion that good resolution in potential maps is obtained by long and slender but slightly blunt tips on cantilevers of minimal width and surface area.

  9. Decoupling the Effects of High Crystallinity and Surface Area on the Photocatalytic Overall Water Splitting over β-Ga2 O3 Nanoparticles by Chemical Vapor Synthesis.

    PubMed

    Lukic, Sasa; Menze, Jasper; Weide, Philipp; Busser, G Wilma; Winterer, Markus; Muhler, Martin

    2017-09-11

    Chemical vapor synthesis (CVS) is a unique method to prepare well-defined photocatalyst materials with both large specific surface area and a high degree of crystallinity. The obtained β-Ga 2 O 3 nanoparticles were optimized for photocatalysis by reductive photodeposition of the Rh/CrO x co-catalyst system. The influence of the degree of crystallinity and the specific surface area on photocatalytic aqueous methanol reforming and overall water splitting (OWS) was investigated by synthesizing β-Ga 2 O 3 samples in the temperature range from 1000 °C to 1500 °C. With increasing temperature, the specific surface area and the microstrain were found to decrease, whereas the degree of crystallinity and the crystallite size increased. Whereas the photocatalyst with the highest specific surface area showed the highest aqueous methanol reforming activity, the highest OWS activity was that for the sample with an optimum ratio between high degree of crystallinity and specific surface area. Thus, it was possible to show that the facile aqueous methanol reforming and the demanding OWS have different requirements for high photocatalytic activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Superwetting and aptamer functionalized shrink-induced high surface area electrochemical sensors.

    PubMed

    Hauke, A; Kumar, L S Selva; Kim, M Y; Pegan, J; Khine, M; Li, H; Plaxco, K W; Heikenfeld, J

    2017-08-15

    Electrochemical sensing is moving to the forefront of point-of-care and wearable molecular sensing technologies due to the ability to miniaturize the required equipment, a critical advantage over optical methods in this field. Electrochemical sensors that employ roughness to increase their microscopic surface area offer a strategy to combatting the loss in signal associated with the loss of macroscopic surface area upon miniaturization. A simple, low-cost method of creating such roughness has emerged with the development of shrink-induced high surface area electrodes. Building on this approach, we demonstrate here a greater than 12-fold enhancement in electrochemically active surface area over conventional electrodes of equivalent on-chip footprint areas. This two-fold improvement on previous performance is obtained via the creation of a superwetting surface condition facilitated by a dissolvable polymer coating. As a test bed to illustrate the utility of this approach, we further show that electrochemical aptamer-based sensors exhibit exceptional signal strength (signal-to-noise) and excellent signal gain (relative change in signal upon target binding) when deployed on these shrink electrodes. Indeed, the observed 330% gain we observe for a kanamycin sensor is 2-fold greater than that seen on planar gold electrodes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water

    PubMed Central

    Raschke, Tanya M.; Tsai, Jerry; Levitt, Michael

    2001-01-01

    The hydrophobic interaction, the tendency for nonpolar molecules to aggregate in solution, is a major driving force in biology. In a direct approach to the physical basis of the hydrophobic effect, nanosecond molecular dynamics simulations were performed on increasing numbers of hydrocarbon solute molecules in water-filled boxes of different sizes. The intermittent formation of solute clusters gives a free energy that is proportional to the loss in exposed molecular surface area with a constant of proportionality of 45 ± 6 cal/mol⋅Å2. The molecular surface area is the envelope of the solute cluster that is impenetrable by solvent and is somewhat smaller than the more traditional solvent-accessible surface area, which is the area transcribed by the radius of a solvent molecule rolled over the surface of the cluster. When we apply a factor relating molecular surface area to solvent-accessible surface area, we obtain 24 cal/mol⋅Å2. Ours is the first direct calculation, to our knowledge, of the hydrophobic interaction from molecular dynamics simulations; the excellent qualitative and quantitative agreement with experiment proves that simple van der Waals interactions and atomic point-charge electrostatics account for the most important driving force in biology. PMID:11353861

  12. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    PubMed

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up to 3 m(2) with the same drying time for the same slurry height. The surface-structured ceramics display interesting wetting properties, for example, eicosane-coated mesoporous microstructured alumina shows superhydrophobic behavior. Additionally, ceramic bulk samples could be further used as second-generation very hard and low-wear molds for further microfabrication.

  13. Water resources of Lincoln County coastal area, Oregon

    USGS Publications Warehouse

    Frank, F.J.; Laenen, Antonius

    1976-01-01

    Water supplies for all municipalities in Lincoln County currently (1975) are obtained from surface-water sources. Because of rapid economic development of the coastal area, it is expected that additional water will be needed in the future. Additional water can be supplied (1) by reservoirs on major streams; (2) by the expansion, in some locations, of present surface-water facilities on small streams; and (3) locally, by an additional small volume of supplemental water from ground-water sources.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jomekian, A.; Faculty of Chemical Engineering, Iran University of Science and Technology; Behbahani, R.M., E-mail: behbahani@put.ac.ir

    Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N{sub 2} adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1–2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m{sup 2}/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to themore » synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn{sup 2+} had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. - Highlights: • The pore size of ZIF-8 samples synthesized with Pebax 1657 increased remarkably. • The BET surface area of 1869 m{sup 2}/gr obtained for a ZIF-8 synthesized sample with Pebax. • Increase in temperature had increasing effect on textural properties of ZIF-8 samples. • Decrease in MeIM/Zn{sup 2+} had increasing effect on textural properties of ZIF-8 samples.« less

  15. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE PAGES

    Harrison, Neil

    2016-08-16

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  16. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Neil

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  17. Mapping of the Lunokhod-1 Landing Site: A Case Study for Future Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I.; Oberst, J.; Konopikhin, A.; Shingareva, K.; Gusakova, E.; Kokhanov, A.; Baskakova, M.; Peters, O.; Scholten, F.; Wählisch, M.; Robinson, M.

    2012-04-01

    Introduction. Luna-17 landed on November 17, 1970 and deployed Lunokhod-1, the first remotely operated roving vehicle ever to explore a planetary surface. Within 332 days, the vehicle conquered a traverse of approx. 10 km. The rover was equipped with a navigation camera system as well as a scanner camera with which panoramic images were obtained. From separated stations, stereoscopic views were obtained. The history of the Lunokhods came back into focus recently, when the Lunar Reconnaissance Orbiter [1] obtained images from orbit at highest resolutions of 0.5-0.25 m/pixel. The Luna-17 landing platform as well as the roving vehicles at their final resting positions can clearly be identified. In addition, the rover tracks are clearly visible in most areas. From LRO stereo images, digital elevation model (DEM) of the Lunokhod-1 landing site areas have been derived [2]. These are useful to study the topographic profile and slopes of the traverse. The data are also useful to study the 3-D morphology of craters in the surroundings. Methodology. Lunokhod-1 area mapping have been done using GIS techniques. With CraterTools [3] we digitized craters in the Lunokhod-1 traverse area and created a geodatabase, which consists at this moment of about 45,000 craters including their diameters and depths, obtained from the DEM [4]. The LRO DEM also was used to measure traverse. We used automatic GIS functions for calculating various surface parameters of the Lunokhod-1 area surface including slopes, roughness, crater cumulative and spatial densities, and prepared respective thematic maps. We also measured relative depth (ratio D/H) and inner slopes of craters and classified craters by their morphological type using automatic and visual methods. Vertical profiles through several craters using the high resolution DEM have been done, and the results show good agreement with the topographic models with contours in 10cm that have been obtained from the Lunokhod-1 stereo images [5]. The preliminary results of crater morphology show that highest H/D for studied craters of the Lunokhod 1 area is ~0.14, that is noticeably smaller than that for very fresh well studied small craters, for example, in the Apollo 14 [6]. At present more detailed geomorphology analyses using orthoimages with different illumination is in progress and will be shown at the conference. Conclusions and future works. While new missions to the Lunar surface are being planned, it is of utmost importance to identify and make available for access all Lunar surface data. We show that these data can be used for large-scale mapping and surface studies of landing sites for future lunar missions, for example LUNA-GLOB and LUNA-RESOURCE. Acknowledgments: This research was partly funded by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021).

  18. Analysis of factors that affect the potential of star fruit (Averhoa Bilimbi) and cactus (Gymnocalycium Hossei) extracts as alternative battery

    NASA Astrophysics Data System (ADS)

    Rahmawati, Sitti; Agnesstacia

    2014-03-01

    This research analyzes the factors that affect the work of the battery from the star fruit extract and the cactus extract. The value voltage and current generated are measure the work of the battery. Voltage measurement based on the electrode distance function, and electrode surface area. Voltage as a surface area electrode function and electrode distance function determined the current density and the voltage generated. From the experimental results obtained that the battery voltage is large enough, it is about 1.8 V for the extract of star fruit, and 1.7 V for the extract of cactus, which means that the juice extract from star fruit and the juice extract of cactus can become an alternative as battery replacement. The measurements with different electrode surface area on the star fruit and cactus extract which has the depth of the electrode 0.5 cm to 4 cm causes a decrease in the electric current generated from 12.5 mA to 1.0 mA, but obtained the same voltage.

  19. Production of activated carbon from rice husk Vietnam

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  20. Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area.

    PubMed

    Ustarroz, Jon; Geboes, Bart; Vanrompay, Hans; Sentosun, Kadir; Bals, Sara; Breugelmans, Tom; Hubin, Annick

    2017-05-17

    Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (R f ) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller R f , the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.

  1. Thermal mapping, geothermal source location, natural effluents and plant stress in the Mediterranean coast of Spain

    NASA Technical Reports Server (NTRS)

    Delascuevas, R. N. (Principal Investigator); Dearagon, A. M.

    1981-01-01

    Data obtained by HCMM satellite over a complex area in eastern Spain were evaluated and found to be most useful in studying macrostructures in geology and in analyzing marine currents, layers, and areas (although other satellites provide more data). The upper scale to work with HCMM data appears to be 1:2.000.000. Techniques used in preprocessing, processing, and analyzing imagery are discussed as well as methods for pattern recognition. Surface temperatures obtained for soils, farmlands, forests, geological structures, and coastal waters are discussed. Suggestions are included for improvements needed to achieve better results in geographic areas similar to the study area.

  2. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Hannula, Simo-Pekka

    2017-05-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO4) solution (Process 1), and ethylene glycol (EG) mixture with HClO4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25-600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m2 g-1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes.

  3. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinrich, Martin, E-mail: mh.seris@gmail.com; NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456; Kluska, Sven

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given onmore » how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.« less

  4. Detection of surface deformation and ionospheric perturbation by the North Korea nuclear test

    NASA Astrophysics Data System (ADS)

    Park, S. C.; Lee, W. J.; Sohn, D. H.; Lee, D. K.; Jung, H. S.

    2017-12-01

    We used remote sensing data to detect the changes on surface and ionosphere due to the North Korea nuclear test. To analyze the surface deformation before and after the 6th North Korea (NK) nuclear test, we used Satellite Aperture Radar (SAR) images. It was reported that there were some surface deformation with about 10 cm by the 4th test (Wei, 2017) and the 5th test (Jo, 2017) using Interferometric SAR (InSAR) technique. However we could not obtain surface deformation by the 6th test using InSAR with Advanced Land Observation Satellite 2 (ALOS-2) data because of low coherence in the area close to the epicenter. Although the low coherence can be occurred due to several reasons, the main reason may be large deformation in this particular case. Therefore we applied pixel offset method to measure the amount of surface deformation in the area with low coherence. Pixel offset method calculates the deformation in the directions along track and Line-of-Sight (LOS) using cross correlation of intensity of two SAR images before and after the event for a pixel and is used frequently to obtain large deformation of glacier (e.g. Lee et al., 2015). Applying pixel offset method to the area of the 6th NK nuclear test, we obtained about 3 m surface deformation in maximum. It seems that the larger deformation occurs as the mountain slope is steeper.We then analyzed ionospheric perturbation using Global Navigation Satellite System (GNSS) data. If acoustic wave by a nuclear test goes up to the ionosphere and disturbs electron density, then the changes in slant total electron content (STEC) may be detected by GNSS satellites. STEC perturbation has been reported in the previous NK nuclear tests (e.g. Park et al., 2011). We analyzed the third order derivatives of STEC for 51 GNSS stations in South Korea and found that some perturbation were appeared at 4 stations about 20 40 minutes after the test.

  5. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  6. Evaluating blood-brain barrier permeability in delayed cerebral infarction after aneurysmal subarachnoid hemorrhage.

    PubMed

    Ivanidze, J; Kesavabhotla, K; Kallas, O N; Mir, D; Baradaran, H; Gupta, A; Segal, A Z; Claassen, J; Sanelli, P C

    2015-05-01

    Patients with SAH are at increased risk of delayed infarction. Early detection and treatment of delayed infarction remain challenging. We assessed blood-brain barrier permeability, measured as permeability surface area product, by using CTP in patients with SAH with delayed infarction. We performed a retrospective study of patients with SAH with delayed infarction on follow-up NCCT. CTP was performed before the development of delayed infarction. CTP data were postprocessed into permeability surface area product, CBF, and MTT maps. Coregistration was performed to align the infarcted region on the follow-up NCCT with the corresponding location on the CTP maps obtained before infarction. Permeability surface area product, CBF, and MTT values were then obtained in the location of the subsequent infarction. The contralateral noninfarcted region was compared with the affected side in each patient. Wilcoxon signed rank tests were performed to determine statistical significance. Clinical data were collected at the time of CTP and at the time of follow-up NCCT. Twenty-one patients with SAH were included in the study. There was a statistically significant increase in permeability surface area product in the regions of subsequent infarction compared with the contralateral control regions (P < .0001). However, CBF and MTT values were not significantly different in these 2 regions. Subsequent follow-up NCCT demonstrated new delayed infarction in all 21 patients, at which time 38% of patients had new focal neurologic deficits. Our study reveals a statistically significant increase in permeability surface area product preceding delayed infarction in patients with SAH. Further investigation of early permeability changes in SAH may provide new insights into the prediction of delayed infarction. © 2015 by American Journal of Neuroradiology.

  7. The Difference Between the Potentiometric Surfaces of the Magothy Aquifer in Southern Maryland, September 1975 and September 2009

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2010-01-01

    This report presents a map showing the change in the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland between September 1975 and September 2009. The map, based on water level differences obtained from 48 wells, shows that during the 34-year period, the potentiometric surface had little change at the outcrop area, which is in the northernmost part of the study area, but declined 75 feet at Waldorf. Waldorf is located near the southwesternmost part of the study area, and approaches the downdip boundary of the aquifer. The map also shows well yield in gallons per day for 2008 at wells or well fields.

  8. Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.

    PubMed

    Namkhang, Pornpan; Kongkachuichay, Paisan

    2015-07-01

    The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.

  9. The geometry of folds in granitoid rocks of northeastern Alberta

    NASA Astrophysics Data System (ADS)

    Willem Langenberg, C.; Ramsden, John

    1980-06-01

    Granitoid rocks which predominate in the Precambrian shield of northeastern Alberta show large-scale fold structures. A numerical procedure has been used to obtain modal foliation orientations. This procedure results in the smoothing of folded surfaces that show roughness on a detailed scale. Statistical tests are used to divide the study areas into cylindrical domains. Structural sections can be obtained for each domain, and horizontal and vertical sections are used to construct block diagrams. The projections are performed numerically and plotted by computer. This method permits blocks to be viewed from every possible angle. Both perspective and orthographic projections can be produced. The geometries of a dome in the Tulip Lake area and a synform in the Hooker Lake area have been obtained. The domal structure is compared with polyphase deformational interference patterns and with experimental diapiric structures obtained in a centrifuge system. The synform in the Hooker Lake area may be genetically related to the doming in the Tulip Lake area.

  10. Ability of barrier coat S-PRG coating to arrest artificial enamel lesions in primary teeth.

    PubMed

    Hosoya, Yumiko; Ando, Susumu; Otani, Hideji; Yukinari, Tetsuhiro; Miyazaki, Masashi; Garcia-Godoy, Franklin

    2013-10-01

    To evaluate the effects of a surface pre-reacted glass-ionomer (S-PRG) filled coating material to arrest artificial enamel lesions in primary teeth. Buccal and lingual enamel was demineralized in 0.1 M lactic acid buffer solution (pH 4.75) for 5 days and then divided in the PRG-applied and non-PRG areas. Proximal surfaces were used as a control area without demineralization and coating application. Teeth were divided into three groups (n = 4) according to the 1-week immersion in different solutions: Group 1 (distilled water), Group 2 (demineralizing solution) and Group 3 (artificial saliva). Hardness and Young's modulus by nano-indentation test, and elemental contents and ultrastructure by SEM/EDX analysis were obtained. Data were statistically analyzed using ANOVA and Fisher's PLSD at alpha = 0.05. Only for the non-PRG area in Group 1, the hardness and Young's modulus of the demineralized surface enamel were significantly lower than those of the enamel 30-60 microm beneath the surface. Demineralized enamel of non-PRG and PRG-applied areas showed similar SEM views. Only for the non-PRG area in Group 2 and control area in Group 3, the Ca/P of the surface enamel was significantly higher than that of the enamel 5-10 microm beneath the surface. There was no significant difference of the Ca/P among the measuring points from the surface to 10 microm depth of enamel for the PRG applied area in Group 2.

  11. Size distributions and exposure concentrations of nanoparticles associated with the emissions of oil mists from fastener manufacturing processes.

    PubMed

    Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Dai, Yu-Tung

    2011-12-30

    The aims of the present study were set out to measure size distributions and estimate workers' exposure concentrations of oil mist nanoparticles in three selected workplaces of the forming, threading, and heat treating areas in a fastener manufacturing plant by using a modified electrical aerosol detector (MEAD). The results were further compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS) for the validation purpose. Results show that oil mist nanoparticles in the three selected process areas were formed mainly through the evaporation and condensation processes. The measured size distributions of nanoparticles were consistently in the form of uni-modal. The estimated fraction of nanoparticles deposited on the alveolar (AV) region was consistently much higher than that on the head airway (HD) and tracheobronchial (TB) regions in both number and surface area concentration bases. However, a significant difference was found in the estimated fraction of nanoparticles deposited on each individual region while different exposure metrics were used. Comparable results were found between results obtained from both NSAM and MEAD. After normalization, no significant difference can be found between the results obtained from SMPS and MEAD. It is concluded that the obtained MEAD results are suitable for assessing oil mist nanoparticle exposures. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Meteorite bombardment and dating of planetary surfaces. Thesis - Feb. 1983

    NASA Technical Reports Server (NTRS)

    Neukum, G.

    1984-01-01

    Dating by measurement of impact crater frequencies developed in the past years primarily on the basis of the data from the missions to the Moon and Mars. The method allows a good relative dating to be obtained and the moons of Jupiter and Saturn through photographic analyses. A cratering chronology was obtained for the period between the oldest Moon crust (4.3 to 4.4 billion years) to the present time which gives a good absolute dating of any areas of the Moon's surface.

  13. Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.

    PubMed

    Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra

    2014-08-11

    A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.

  14. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  15. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  16. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less

  17. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  18. Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture

    NASA Astrophysics Data System (ADS)

    Ma, Xiancheng; Li, Liqing; Chen, Ruofei; Wang, Chunhao; Li, Hailong; Wang, Shaobin

    2018-03-01

    Four nanoporous carbons (MUCT) were prepared from metal-organic framework (MOF-5) template and additional carbon source (i.e. urea) by carbonization at different temperatures (600-900 °C). The results showed that specific surface area of four samples was obtained in the range from 1030 to 2307 m2 g-1. By changing the carbonization temperature it can finely tune the pore volume of the MUCT, which having a uniform pore size of around 4.0 nm. With an increasing carbonization temperature, the micropore surface area of MUCT samples varied slightly, but mesopore surface area increased obviously, which had little influence on carbon dioxide (CO2) adsorption capacity. The as-obtained sample MUC900 exhibited the superior CO2 capture capacity of 3.7 mmol g-1 at 0 °C (1 atm). First principle calculations were conducted on carbon models with various functional groups to distinguish heterogeneity and understand carbon surface chemistry for CO2 adsorption. The interaction between CO2 and N-containing functional groups is mainly weak Lewis acid-base interaction. On the other hand, the pyrrole and amine groups show exceptional hydrogen-bonding interaction. The hydroxyls promote the interaction between carbon dioxide and functional groups through hydrogen-bonding interactions and electrostatic potentials, thereby increasing CO2 capture of MUCT.

  19. Reciprocal-space and real-space neutron investigation of nanostructured Mo 2C and WC

    NASA Astrophysics Data System (ADS)

    Page, Katharine; Li, Jun; Savinelli, Robert; Szumila, Holly N.; Zhang, Jinping; Stalick, Judith K.; Proffen, Thomas; Scott, Susannah L.; Seshadri, Ram

    2008-11-01

    As possible substitute materials for platinum group metal heterogeneous catalysts, high surface area carbides of the early transition metals Mo and W are of great interest. Here we report nanostructured, high surface area Mo 2C and WC prepared by decomposing and carburizing ammonium paramolybdate [(NH 4) 6Mo 7O 24·4H 2O] and ammonium paratungstate [(NH 4) 10W 12O 41·5H 2O] in flowing 50%CH 4/50%H 2. Surface areas as high as 52 m 2/g for Mo 2C and 24 m 2/g for WC were obtained, with both structures crystallizing in structures appropriate for catalytic activity. We have studied these materials using a combination of neutron diffraction Rietveld refinement, X-ray photoelectron spectroscopy, surface area measurements, and scanning transmission electron microscopy. In addition, we have used pair-distribution function (PDF) analysis of the neutron total scattering data as a means of establishing the presence of graphitic carbon in the as-prepared materials.

  20. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed

    McPoil, Thomas G; Vicenzino, Bill; Cornwall, Mark W; Collins, Natalie

    2009-10-28

    Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 +/- 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  1. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    PubMed Central

    2009-01-01

    Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years). The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p < 0.0001)). A three variable model was also found to describe the relationship between the foot measures/ratio and plantar contact area minus the toe region (R2 = 0.76, p < 0.0001). Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region. PMID:19863799

  2. Ammonia sensing using arrays of silicon nanowires and graphene

    NASA Astrophysics Data System (ADS)

    Fobelets, K.; Panteli, C.; Sydoruk, O.; Li, Chuanbo

    2018-06-01

    Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitivity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amplitude by a factor of ~7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs increases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffusion processes.

  3. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    NASA Astrophysics Data System (ADS)

    Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.

    2016-10-01

    Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general active site density functions, such as the popular ns parameterization, cannot be reliably extrapolated below this critical surface area threshold to describe freezing curves for lower particle surface area concentrations. Freezing curves obtained below this threshold translate to higher ns values, while the ns values are essentially the same from curves obtained above the critical area threshold; ns should remain the same for a system as concentration is varied. However, we can successfully predict the lower concentration freezing curves, which are more atmospherically relevant, through a process of random sampling from g distributions obtained from high particle concentration data. Our analysis is applied to cold plate freezing measurements of droplets containing variable concentrations of particles from NX illite minerals, MCC cellulose, and commercial Snomax bacterial particles. Parameterizations that can predict the temporal evolution of the frozen fraction of cloud droplets in larger atmospheric models are also derived from this new framework.

  4. An easy-to-use approach for determining the disintegration ability of disintegrants by analysis of available surface area.

    PubMed

    Iwao, Yasunori; Tanaka, Shoko; Uchimoto, Takeaki; Noguchi, Shuji; Itai, Shigeru

    2013-05-01

    With the aim of directly predicting the functionality and mechanism of disintegrants during the disintegration and dissolution of tablets, we investigated an analysis method based on available surface area, which is the surface area of a drug in a formulation in direct contact with the external solvent during dissolution. We evaluated the following disintegrants in this study: sodium starch glycolate (Glycolys), crospovidone (Kollidon CL), carboxymethylcellulose calcium (CMC-Ca), low-substituted hydroxypropylcellulose (L-HPC), and croscarmellose sodium (Ac-Di-Sol). When disintegrant was added to a 50% ethenzamide tablet formulation, an increase in the dissolution rate dependent on disintegrant concentration was observed, according to the type of disintegrant. In addition, the available surface area also differed between disintegrants. For Glycolys, CMC-Ca, and Ac-Di-Sol, a rapid increase in available surface area and a large increase in maximum available surface area (Smax) were observed due to high swellability and wicking, even when the disintegrant concentration was only 1.0%. In contrast, for Kollidon CL and LH-21, a gradual increase in available surface area was observed, depending on the disintegrant concentration. To evaluate the disintegrant ability, Δtmax and ΔSmax were calculated by subtracting peak time (tmax) at 5.0% from that at 1.0% and subtracting Smax at 1.0% from that at 5.0%, respectively, and it was found that the water absorption ratio had strong negative correlations with Δtmax and ΔSmax. Therefore, this study demonstrates that analysis of only available surface area and parameters thereby obtained can directly provide useful information, especially about the disintegration ability of disintegrants. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Area Estimation of Deep-Sea Surfaces from Oblique Still Images

    PubMed Central

    Souto, Miguel; Afonso, Andreia; Calado, António; Madureira, Pedro; Campos, Aldino

    2015-01-01

    Estimating the area of seabed surfaces from pictures or videos is an important problem in seafloor surveys. This task is complex to achieve with moving platforms such as submersibles, towed or remotely operated vehicles (ROV), where the recording camera is typically not static and provides an oblique view of the seafloor. A new method for obtaining seabed surface area estimates is presented here, using the classical set up of two laser devices fixed to the ROV frame projecting two parallel lines over the seabed. By combining lengths measured directly from the image containing the laser lines, the area of seabed surfaces is estimated, as well as the camera’s distance to the seabed, pan and tilt angles. The only parameters required are the distance between the parallel laser lines and the camera’s horizontal and vertical angles of view. The method was validated with a controlled in situ experiment using a deep-sea ROV, yielding an area estimate error of 1.5%. Further applications and generalizations of the method are discussed, with emphasis on deep-sea applications. PMID:26177287

  6. Methods for growth of relatively large step-free SiC crystal surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  7. Guard cells elongate: relationship of volume and surface area during stomatal movement.

    PubMed

    Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard

    2007-02-01

    Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.

  8. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.

    1986-01-01

    During this reporting period three investigations were carried out. The first area of research concerned the analysis of the structure-energy relationship in small clusters. This study is very closely related to the improvement of the potential energy functions which are suitable and simple enough to be used in atomistic simulation studies. Parameters obtained from ab initio calculations for dimers and trimers of Al were used to estimate energetics and global minimum energy structures of clusters continuing up to 15 Al atoms. The second research topic addressed modeling of the collision process for atoms impinging on surfaces. In this simulation study qualitative aspects of the O atom collision with a graphite surface were analyzed. Four different O/graphite systems were considered and the aftermath of the impact was analyzed. The final area of investigation was related to the simulation of thin amorphous Si films on crystalline Si substrates. Parameters obtained in an earlier study were used to model an exposed amorphous Si surface and an a-Si/c-Si interface. Structural details for various film thicknesses were investigated at an atomistic level.

  9. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  10. Automatic rocks detection and classification on high resolution images of planetary surfaces

    NASA Astrophysics Data System (ADS)

    Aboudan, A.; Pacifici, A.; Murana, A.; Cannarsa, F.; Ori, G. G.; Dell'Arciprete, I.; Allemand, P.; Grandjean, P.; Portigliotti, S.; Marcer, A.; Lorenzoni, L.

    2013-12-01

    High-resolution images can be used to obtain rocks location and size on planetary surfaces. In particular rock size-frequency distribution is a key parameter to evaluate the surface roughness, to investigate the geologic processes that formed the surface and to assess the hazards related with spacecraft landing. The manual search for rocks on high-resolution images (even for small areas) can be a very intensive work. An automatic or semi-automatic algorithm to identify rocks is mandatory to enable further processing as determining the rocks presence, size, height (by means of shadows) and spatial distribution over an area of interest. Accurate rocks and shadows contours localization are the key steps for rock detection. An approach to contour detection based on morphological operators and statistical thresholding is presented in this work. The identified contours are then fitted using a proper geometric model of the rocks or shadows and used to estimate salient rocks parameters (position, size, area, height). The performances of this approach have been evaluated both on images of Martian analogue area of Morocco desert and on HiRISE images. Results have been compared with ground truth obtained by means of manual rock mapping and proved the effectiveness of the algorithm. The rock abundance and rocks size-frequency distribution derived on selected HiRISE images have been compared with the results of similar analyses performed for the landing site certification of Mars landers (Viking, Pathfinder, MER, MSL) and with the available thermal data from IRTM and TES.

  11. Thermoporometry characterization of silica microparticles and nanowires.

    PubMed

    Wu, Jiaxin; Zheng, Han; Cheng, He; Zhou, L; Leong, K C; Rajagopalan, R; Too, H P; Choi, W K

    2014-03-04

    We present the results of a systematic study on the porosity of silica microparticles and nanowires prepared by glancing angle deposition-metal-assisted chemical etching (GLAD-MACE) and interference lithography-metal-assisted chemical etching (IL-MACE) techniques using the thermoporometry (TPM) method. Good agreement was obtained between our TPM results and published data provided by the suppliers of silica microparticles. TPM characterization of the GLAD-MACE and IL-MACE nanowires was carried out on the basis of parameters obtained from TPM experiments on microparticles. Our nanowires showed a similar trend but lower values of the pore volume and surface area than nanowires prepared by MACE with AgNO3 solution. We attribute the enhanced bioanalysis performance of the GLAD-MACE nanowires based devices to the increased pore volume and total surface area of the nanowires.

  12. Biochar characteristics produced from food-processing products and their sorptive capacity for mercury and phenanthrene

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2015-04-01

    Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. Biochar is used as an additive to soils to sequester carbon and improve soil fertility but its use as a sorbent for environmental remediation processes is gaining increased attention. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The scope of the present work was to evaluate the effect of key characteristics of biochars on their sorptive properties. Raw materials for biochar production were evaluated including byproducts from brewering, coffee, wine, and olive oil industry. The charring process was performed at different temperatures under limited-oxygen conditions using specialized containers. The surface area, the pore volume, and the average pore size of the biochars were determined. Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Raw food-processing waste demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-700 m2/g. For the same temperature range, a high percentage (46 to73%) of the pore volume of the biochars is due to micropores. Positive results were obtained when high surface area biochars were tested for their ability to remove organic (i.e. phenanthrene) and inorganic (i.e. mercury) compounds from aqueous solutions. All these properties point to new materials that can effectively be used for environmental remediation.

  13. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  14. Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels

    NASA Astrophysics Data System (ADS)

    Sadeghi, Morteza; Saidi, Mohammad Hassan; Moosavi, Ali; Sadeghi, Arman

    2017-12-01

    Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any arbitrary cross section, nine nanogeometries including polygonal, trapezoidal, double-trapezoidal, rectangular, elliptical, semi-elliptical, isosceles triangular, rhombic, and isotropically etched profiles are selected for presentation. For the special case of an elliptic cross section, full analytical solutions are also obtained utilizing the Mathieu functions. We show that the geometrical configuration plays a key role in determination of the ionic conductance, surface charge density, electrical potential and velocity fields, and proton enhancement. In this respect, the net electric charge and convective ionic conductance are higher for channels of larger perimeter to area ratio, whereas the opposite is true for the average surface charge density and mean velocity; the geometry impact on the two latest ones, however, vanishes if the background salt concentration is high enough. Moreover, we demonstrate that considering a constant surface potential equal to the average charge-regulated potential provides sufficiently accurate results for smooth geometries such as an ellipse at medium-high aspect ratios but leads to significant errors for geometries having narrow corners such as a triangle.

  15. 10 CFR 63.121 - Requirements for ownership and control of interests in land.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... repository operations area. DOE shall exercise any jurisdiction and control over surface and subsurface... repository operations area. DOE shall exercise any jurisdiction or control of activities necessary to ensure... the public, if necessary. (d) Water rights. (1) DOE shall also have obtained such water rights as may...

  16. 10 CFR 63.121 - Requirements for ownership and control of interests in land.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... repository operations area. DOE shall exercise any jurisdiction and control over surface and subsurface... repository operations area. DOE shall exercise any jurisdiction or control of activities necessary to ensure... the public, if necessary. (d) Water rights. (1) DOE shall also have obtained such water rights as may...

  17. 10 CFR 63.121 - Requirements for ownership and control of interests in land.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... repository operations area. DOE shall exercise any jurisdiction and control over surface and subsurface... repository operations area. DOE shall exercise any jurisdiction or control of activities necessary to ensure... the public, if necessary. (d) Water rights. (1) DOE shall also have obtained such water rights as may...

  18. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  19. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  20. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  1. External Validation of Contact Surface Area as a Predictor of Postoperative Renal Function in Patients Undergoing Partial Nephrectomy.

    PubMed

    Haifler, Miki; Ristau, Benjamin T; Higgins, Andrew M; Smaldone, Marc C; Kutikov, Alexander; Zisman, Amnon; Uzzo, Robert G

    2017-09-20

    We sought to externally validate a mathematical formula for tumor contact surface area as a predictor of postoperative renal function in patients undergoing partial nephrectomy for renal cell carcinoma. We queried a prospectively maintained kidney cancer database for patients who underwent partial nephrectomy between 2014 and 2016. Contact surface area was calculated using data obtained from preoperative cross-sectional imaging. The correlation between contact surface area and perioperative variables was examined. The correlation between postoperative renal functional outcomes, contact surface area and the R.E.N.A.L. (radius, exophytic/endophytic properties, nearness of tumor to collecting system or sinus, anterior/posterior, location relative to polar lines and tumor touches main renal artery or vein) nephrometry score was also assessed. A total of 257 patients who underwent partial nephrectomy had sufficient data to enter the study. Median contact surface area was 14.5 cm 2 (IQR 6.2-36) and the median nephrometry score was 9 (IQR 7-10). Spearman correlation analysis showed that contact surface area correlated with estimated blood loss (r s = 0.42, p <0.001), length of stay (r s = 0.18, p = 0.005), and percent and absolute change in the estimated glomerular filtration rate (r s = -0.77 and -0.78, respectively, each p <0.001). On multivariable analysis contact surface area and nephrometry score were independent predictors of the absolute change in the estimated glomerular filtration rate (each p <0.001). ROC curve analysis revealed that contact surface area was a better predictor of a greater than 20% postoperative decline in the estimated glomerular filtration rate compared with the nephrometry score (AUC 0.94 vs 0.80). Contact surface area correlated with the change in postoperative renal function after partial nephrectomy. It can be used in conjunction with the nephrometry score to counsel patients about the risk of renal functional decline after partial nephrectomy. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes.

    PubMed

    Lin, Shi-Tsung; Thirumavalavan, Munusamy; Jiang, Ting-Yan; Lee, Jiunn-Fwu

    2014-05-25

    A complete set of experiments in two aspects of studies combining the various factors affecting both the preparation and photocatalytic activity of ZnO/Zn nanocomposite obtained using corn starch and cellulose (native and modified) as chelating agents for the photodegradation of methylene blue, and congo red was carried out and discussed. The resulting ZnO/Zn nanoparticles obtained using modified polysaccharides exhibited super catalytic capability. The ZnO/Zn nanoparticles possessed favored surface area (11.8443-15.7100m(2)/g) and pore size (12.3473-13.7453nm). The photocatalytic degradation of nano ZnO/Zn was directly proportional to the surface area of nano ZnO/Zn. Regardless of the dye pollutants, nano ZnO/Zn obtained using modified corn starch showed enhanced catalytic activity than that of cellulose and methylene blue had comparatively faster degradation rate. Our findings shed light on the optimization of both preparation conditions of photocatalysts and their photocatalytic experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Synthesis of rose-like boron nitride particles with a high specific surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hongming; Huang, Xiaoxiao; Wen, Guangwu, E-mail: wgw@hitwh.edu.cn

    2010-08-15

    Novel rose-like BN nanostructures were synthesized on a large scale via a two-step procedure. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer and nitrogen porosimetry. The results show that the obtained rose-like nanostructures are composed of a large amount of h-BN crystalline flakes and have a surface area of 90.31 m{sup 2}/g. A mechanism was proposed to explain the formation process of the rose-like BN nanostructures.

  4. Discovery of a Potent Free Fatty Acid 1 Receptor Agonist with Low Lipophilicity, Low Polar Surface Area, and Robust in Vivo Efficacy.

    PubMed

    Hansen, Steffen V F; Christiansen, Elisabeth; Urban, Christian; Hudson, Brian D; Stocker, Claire J; Due-Hansen, Maria E; Wargent, Ed T; Shimpukade, Bharat; Almeida, Reinaldo; Ejsing, Christer S; Cawthorne, Michael A; Kassack, Matthias U; Milligan, Graeme; Ulven, Trond

    2016-03-24

    The free fatty acid receptor 1 (FFA1 or GPR40) is established as an interesting potential target for treatment of type 2 diabetes. However, to obtain optimal ligands, it may be necessary to limit both lipophilicity and polar surface area, translating to a need for small compounds. We here describe the identification of 24, a potent FFA1 agonist with low lipophilicity and very high ligand efficiency that exhibit robust glucose lowering effect.

  5. Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, Marco, E-mail: marco.marinelli@uniroma2

    Purpose: Small field output correction factors have been studied by several research groups for the PTW 60019 microDiamond (MD) dosimeter, by comparing the response of such a device with both reference dosimeters and Monte Carlo simulations. A general good agreement is observed for field sizes down to about 1 cm. However, evident inconsistencies can be noticed when comparing some experimental results and Monte Carlo simulations obtained for smaller irradiation fields. This issue was tentatively attributed by some authors to unintentional large variations of the MD active surface area. The aim of the present study is a nondestructive experimental determination ofmore » the MD active surface area and active volume. Methods: Ten MD dosimeters, one MD prototype, and three synthetic diamond samples were investigated in the present work. 2D maps of the MD response were recorded under scanned soft x-ray microbeam irradiation, leading to an experimental determination of the device active surface area. Profiles of the device responses were measured as well. In order to evaluate the MD active volume, the thickness of the diamond sensing layer was independently evaluated by capacitance measurements and alpha particle detection experiments. The MD sensitivity, measured at the PTW calibration laboratory, was also used to calculate the device active volume thickness. Results: An average active surface area diameter of (2.19 ± 0.02) mm was evaluated by 2D maps and response profiles of all the MDs. Average active volume thicknesses of (1.01 ± 0.13) μm and (0.97 ± 0.14) μm were derived by capacitance and sensitivity measurements, respectively. The obtained results are well in agreement with the nominal values reported in the manufacturer dosimeter specifications. A homogeneous response was observed over the whole device active area. Besides the one from the device active volume, no contributions from other components of the housing nor from encapsulation materials were observed in the 2D response maps. Conclusions: The obtained results demonstrate the high reproducibility of the MD fabrication process. The observed discrepancies among the output correction factors reported by several authors for MD response in very small fields are very unlikely to be ascribed to unintentional variations of the device active surface area and volume. It is the opinion of the authors that the role of the volume averaging as well as of other perturbation effects should be separately investigated instead, both experimentally and by Monte Carlo simulations, in order to better clarify the behaviour of the MD response in very small fields.« less

  6. Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach.

    PubMed

    Lecloux, André J; Atluri, Rambabu; Kolen'ko, Yury V; Deepak, Francis Leonard

    2017-10-12

    The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the representativeness of the two models described in the first part of this study. They were also used to calculate the VSSA values and these calculated values were compared to the experimental results. For narrow particle size distributions, both models give similar VSSA values quite comparable to the experimental ones. But when the particle size distribution broadens or is of multi-bimodal shape, as theoretically predicted, one model leads to VSSA values higher than the experimental ones while the other most often leads to VSSA values lower than the experimental ones. The experimental VSSA approach then appears as a reliable, simple screening tool to identify nano and non-nano-materials. The modelling approach cannot be used as a formal identification tool but could be useful to screen for potential effects of shape, polydispersity and size, for example to compare various possible nanoforms.

  7. Comparative morphometry of facial surface models obtained from a stereo vision system in a healthy population

    NASA Astrophysics Data System (ADS)

    López, Leticia; Gastélum, Alfonso; Chan, Yuk Hin; Delmas, Patrice; Escorcia, Lilia; Márquez, Jorge

    2014-11-01

    Our goal is to obtain three-dimensional measurements of craniofacial morphology in a healthy population, using standard landmarks established by a physical-anthropology specialist and picked from computer reconstructions of the face of each subject. To do this, we designed a multi-stereo vision system that will be used to create a data base of human faces surfaces from a healthy population, for eventual applications in medicine, forensic sciences and anthropology. The acquisition process consists of obtaining the depth map information from three points of views, each depth map is obtained from a calibrated pair of cameras. The depth maps are used to build a complete, frontal, triangular-surface representation of the subject face. The triangular surface is used to locate the landmarks and the measurements are analyzed with a MATLAB script. The classification of the subjects was done with the aid of a specialist anthropologist that defines specific subject indices, according to the lengths, areas, ratios, etc., of the different structures and the relationships among facial features. We studied a healthy population and the indices from this population will be used to obtain representative averages that later help with the study and classification of possible pathologies.

  8. Estimation of grazing-induced erosion through remote-sensing technologies in the Autonomous Province of Trento, Northern Italy

    NASA Astrophysics Data System (ADS)

    Torresani, Loris; Prosdocimi, Massimo; Masin, Roberta; Penasa, Mauro; Tarolli, Paolo

    2017-04-01

    Grassland and pasturelands cover a vast portion of the Earth surface and are vital for biodiversity richness, environmental protection and feed resources for livestock. Overgrazing is considered one of the major causes of soil degradation worldwide, mainly in pasturelands grazed by domestic animals. Therefore, an in-depth investigation to better quantify the effects of overgrazing in terms of soil loss is needed. At this regard, this work aims to estimate the volume of eroded materials caused by mismanagement of grazing areas in the whole Autonomous Province of Trento (Northern Italy). To achieve this goal, the first step dealt with the analysis of the entire provincial area by means of freely available aerial images, which allowed the identification and accurate mapping of every eroded area caused by grazing animals. The terrestrial digital photogrammetric technique, namely Structure from Motion (SfM), was then applied to obtain high-resolution Digital Surface Models (DSMs) of two representative eroded areas. By having the pre-event surface conditions, DSMs of difference, namely DoDs, was computed to estimate the erosion volume and the average depth of erosion for both areas. The average depths obtained from the DoDs were compared and validated by measures taken in the field. A large amount of depth measures from different sites were then collected to obtain a reference value for the whole province. This value was used as reference depth for calculating the eroded volume in the whole province. In the final stage, the Connectivity Index (CI) was adopted to analyse the existing connection between the eroded areas and the channel network. This work highlighted that SfM can be a solid low-cost technique for the low-cost and fast quantification of eroded soil due to grazing. It can also be used as a strategic instrument for improving the grazing management system at large scales, with the goal of reducing the risk of pastureland degradation.

  9. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1996-01-01

    A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.

  10. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    PubMed

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  11. Modelisation of the SECMin molten salts environment

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Slim, C.; Delpech, S.; di Caprio, D.; Stafiej, J.

    2014-06-01

    We develop a cellular automata modelisation of SECM experiments to study corrosion in molten salt media for generation IV nuclear reactors. The electrodes used in these experiments are cylindrical glass tips with a coaxial metal wire inside. As the result of simulations we obtain the current approach curves of the electrodes with geometries characterized by several values of the ratios of glass to metal area at the tip. We compare these results with predictions of the known analytic expressions, solutions of partial differential equations for flat uniform geometry of the substrate. We present the results for other, more complicated substrate surface geometries e. g. regular saw modulated surface, surface obtained by Eden model process, ...

  12. One-step surface doping of organic nanofibers to achieve high dark conductivity and chemiresistor sensing of amines.

    PubMed

    Huang, Helin; Gross, Dustin E; Yang, Xiaomei; Moore, Jeffrey S; Zang, Ling

    2013-08-28

    High dark electrical conductivity was obtained for a p-type organic nanofibril material simply through a one-step surface doping. The nanofibril composite thus fabricated has been proven robust under ambient conditions. The high conductivity, combined with the intrinsic large surface area of the nanofibers, enables development of chemiresistor sensors for trace vapor detection of amines, with detection limit down to sub-parts per billion range.

  13. Reconstruction of the thermal environment evolution in urban areas from underground temperature distribution.

    PubMed

    Yamano, Makoto; Goto, Shusaku; Miyakoshi, Akinobu; Hamamoto, Hideki; Lubis, Rachmat Fajar; Monyrath, Vuthy; Taniguchi, Makoto

    2009-04-15

    It is possible to estimate the ground surface temperature (GST) history of the past several hundred years from temperature profiles measured in boreholes because the temporal variation in GST propagates into the subsurface by thermal diffusion. This "geothermal method" of reconstructing GST histories can be applied to studies of thermal environment evolution in urban areas, including the development of "heat islands." Temperatures in boreholes were logged at 102 sites in Bangkok, Jakarta, Taipei, Seoul and their surrounding areas in 2004 to 2007. The effects of recent surface warming can be recognized in the shapes of most of the obtained temperature profiles. The preliminary results of reconstruction of GST histories through inversion analysis show that GST increased significantly in the last century. Existing temperature profile data for the areas in and around Tokyo and Osaka can also be used to reconstruct GST histories. Because most of these cities are located on alluvial plains in relatively humid areas, it is necessary to use a model with groundwater flow and a layered subsurface structure for reconstruction analysis. Long-term records of subsurface temperatures at multiple depths may demonstrate how the GST variation propagates downward through formations. Time series data provide information on the mechanism of heat transfer (conduction or advection) and the thermal diffusivity. Long-term temperature monitoring has been carried out in a borehole located on the coast of Lake Biwa, Japan. Temperatures at 30 and 40 m below the ground surface were measured for 4 years and 2 years, respectively, with a resolution of 1 mK. The obtained records indicate steady increases at both depths with different rates, which is probably the result of some recent thermal event(s) near the surface. Borehole temperatures have also been monitored at selected sites in Bangkok, Jakarta, and Taiwan.

  14. Predicting skin deficits through surface area measurements in ear reconstruction and adult ear surface area norms.

    PubMed

    Yazar, Memet; Sevim, Kamuran Zeynep; Irmak, Fatih; Yazar, Sevgi Kurt; Yeşilada, Ayşin Karasoy; Karşidağğ, Semra Hacikerim; Tatlidede, Hamit Soner

    2013-07-01

    Ear reconstruction is one of the most challenging procedures in plastic surgery practice. Many studies and techniques have been described in the literature for carving a well-pronounced framework. However, just as important as the cartilage framework is the ample amount of delicate skin coverage of the framework. In this report, we introduce an innovative method of measuring the skin surface area of the auricle from a three-dimensional template created from the healthy ear.The study group consisted of 60 adult Turkish individuals who were randomly selected (30 men and 30 women). The participant ages ranged from 18 to 45 years (mean, 31.5 years), and they had no history of trauma or congenital anomalies. The template is created by dividing the ear into aesthetic subunits and using ImageJ software to estimate the necessary amount of total skin surface area required.Reconstruction of the auricle is a complicated process that requires experience and patience to provide the auricular details. We believe this estimate will shorten the learning curve for residents and surgeons interested in ear reconstruction and will help surgeons obtain adequate skin to drape over the well-sculpted cartilage frameworks by providing a reference list of total ear skin surface area measurements for Turkish men and women.

  15. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    PubMed Central

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-01-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η − γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment. PMID:27682811

  16. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-09-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η - γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment.

  17. Exposure to particle number, surface area and PM concentrations in pizzerias

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Morawska, L.; Stabile, L.; Viola, A.

    2010-10-01

    The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM 1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM 1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM 1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect to the diameter of the semicircular oven door, and particular attention must also be paid to hood efficiency.

  18. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.

  19. A CORRELATION BETWEEN RADIATION TOLERANCE AND NUCLEAR SURFACE AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, S.

    1962-09-22

    Sparrow and Miksche (Science, 134:282) determined the dose (r/day) required to produce severe growth inhibition in 23 species of plants and found a linear relationship between log nuclear volume and log dose. The following equations hold for 6 species: log nuclear volume - 4.42 -0.82 log dose and log nuclear volume = 1.66 + 0.66 log (DNA content). If all the nuclear DNA is distributed in two peripheral zones, the equations also hold: 2(log nuclear surface area) - 1.33(log nuclear volume) - 2.21 + 0.88 log(DNA content) and 5.88-- 1.09 log dose. For the 23 species, the equation was obtained:more » 2(log nuclear surface area) = 5.41 -- 0.97 log dose. All the slopes are close to the expected value of 1.00. (D.L.C.)« less

  20. Conductivity enhancement of carbon aerogel by modified gelation using self additive

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Kohli, D. K.; Bhartiya, Sushmita; Singh, Rashmi; Rajak, Gaurav; Singh, M. K.; Karnal, A. K.

    2018-04-01

    Carbon aerogels having high surface area and open pore structure are being studied for many electrochemical applications such as fuel cells and super capacitors. Moderate electrical conductivity of resorcinol - formaldehyde (R-F) derived carbon aerogel limits its utility in these applications. The current manuscript briefs about the synthesis of composite carbon aerogel using carbon aerogel itself as additive during gelation of water based carbon aerogel and study the effect on its conductivity and surface properties. The additive carbon aerogel was synthesized and pre-treated at higher temperature to achieve enhancement in conductivity. The composite carbon aerogel (CCA) samples were characterized for surface area properties, morphology, electrical conductivity and specific capacitance. The surface area properties of CCA showed improvement and specific surface area of ˜1798 m2/g with total pore volume of 1.7 cm3/g. was obtained. The electrical conductivity of the composite carbon aerogel with 5 wt % additive showed improvement over the plain carbon aerogel with respective values of 144 S/m and 128 S/m. The specific capacitance evaluated for CA and CCA are 102 and 118 F/g at scan rate of 10mV/s with improvement of ˜16%.

  1. The Covalent Binding of Alkaline Phosphatase on Porous Supports and the Stability of the Immobilized Enzyme

    DTIC Science & Technology

    1988-08-11

    and LiChrospher Si 4000 were obtained from Applied Science Laboratories, Inc. LiChrospher Si 100 was obtained from Alltech Assoc. The surface areas...Z U) w I < 0 The earliest attempt to take advantage of evanescent wave interactions in an optical waveguide to detect immunological reactions was made

  2. Electrospinning Fabrication of SrTiO3 Nanofibers and Their Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhao, Yiping; Wang, Wei; Liu, Hao; Wang, Rui

    2018-06-01

    SrTiO3 nanofibers were fabricated by an electrospinning process. The phase, microstructure and photocatalytic activity of the obtained SrTiO3 nanofibers were investigated. The XRD patterns and the SEM images suggest that SrTiO3 nanofibers with perovskite phase and rough surface have been fabricated in the current work. The SrTiO3 nanofibers show a high efficiency decomposition of RhB under ultraviolet light irradiation. The high photocatalytic activity of SrTiO3 nanofibers results from the large specific surface area. The large specific surface area provides more surface active sits and makes an easier charge carrier transport. On the basis of the photocatalytic performance of SrTiO3 nanofibers, the possible photocatalysis mechanism was proposed.

  3. Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, Wafa; Tlili, Ali

    2017-05-01

    This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.

  4. Detection of white spot lesions by segmenting laser speckle images using computer vision methods.

    PubMed

    Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M

    2018-05-05

    This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.

  5. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes.

    PubMed

    Liu, Liqin; Luo, Yunfei; Zhao, Zeyu; Zhang, Wei; Gao, Guohan; Zeng, Bo; Wang, Changtao; Luo, Xiangang

    2016-07-28

    In this paper, large area and deep sub-wavelength interference patterns are realized experimentally by using odd surface plasmon modes in the metal/insulator/metal structure. Theoretical investigation shows that the odd modes possesses much higher transversal wave vector and great inhibition of tangential electric field components, facilitating surface plasmon interference fringes with high resolution and contrast in the measure of electric field intensity. Interference resist patterns with 45 nm (∼λ/8) half-pitch, 50 nm depth, and area size up to 20 mm × 20 mm were obtained by using 20 nm Al/50 nm photo resist/50 nm Al films with greatly reduced surface roughness and 180 nm pitch exciting grating fabricated with conventional laser interference lithography. Much deeper resolution down to 19.5 nm is also feasible by decreasing the thickness of PR. Considering that no requirement of expensive EBL or FIB tools are employed, it provides a cost-effective way for large area and nano-scale fabrication.

  6. Comparison of interleukin-6 removal properties among hemofilters consisting of varying membrane materials and surface areas: an in vitro study.

    PubMed

    Hirayama, Yo; Oda, Shigeto; Wakabayashi, Kiyohito; Sadahiro, Tomohito; Nakamura, Masataka; Watanabe, Eizo; Tateishi, Yoshihisa

    2011-01-01

    We sought to identify the most relevant hemofilter for cytokine removal based on the mechanisms of filtration and adsorption. Ascites were filtered using four types of hemofilters composed of different membrane materials (polymethyl methacrylate, PMMA, cellulose triacetate, CTA, or polysulfone, PS) and different surface areas (1.0 or 2.1 m(2)) to investigate the rate of interleukin-6 (IL-6) filtration. Next, ascites were perfused through each hemofilter without obtaining a filtrate to study each filter's adsorptive capability. The PMMA hemofilters resulted in a marginal observed IL-6 filtration rates, whereas the CTA and PS hemofilters resulted in highly effective IL-6 filtration. Regarding the IL-6 adsorptive capabilities of the filters, the PMMA hemofilter with a large surface area showed the highest level of IL-6 clearance. The present findings suggest that when cytokine removal based on filtration is desired, CTA or PS hemofilters should be selected. When IL-6 removal based on adsorption is desired, a PMMA hemofilter with a large surface area should be selected. Copyright © 2010 S. Karger AG, Basel.

  7. Relating saturation capacity to charge density in strong cation exchangers.

    PubMed

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enhanced reactivity of nanoscale iron particles through a vacuum annealing process

    NASA Astrophysics Data System (ADS)

    Riba, Olga; Barnes, Robert J.; Scott, Thomas B.; Gardner, Murray N.; Jackman, Simon A.; Thompson, Ian P.

    2011-10-01

    A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity 30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.

  9. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume.

    PubMed

    Vijayakumar, Nandita; Allen, Nicholas B; Youssef, George; Dennison, Meg; Yücel, Murat; Simmons, Julian G; Whittle, Sarah

    2016-06-01

    What we know about cortical development during adolescence largely stems from analyses of cross-sectional or cohort-sequential samples, with few studies investigating brain development using a longitudinal design. Further, cortical volume is a product of two evolutionarily and genetically distinct features of the cortex - thickness and surface area, and few studies have investigated development of these three characteristics within the same sample. The current study examined maturation of cortical thickness, surface area and volume during adolescence, as well as sex differences in development, using a mixed longitudinal design. 192 MRI scans were obtained from 90 healthy (i.e., free from lifetime psychopathology) adolescents (11-20 years) at three time points (with different MRI scanners used at time 1 compared to 2 and 3). Developmental trajectories were estimated using linear mixed models. Non-linear increases were present across most of the cortex for surface area. In comparison, thickness and volume were both characterised by a combination of non-linear decreasing and increasing trajectories. While sex differences in volume and surface area were observed across time, no differences in thickness were identified. Furthermore, few regions exhibited sex differences in the cortical development. Our findings clearly illustrate that volume is a product of surface area and thickness, with each exhibiting differential patterns of development during adolescence, particularly in regions known to contribute to the development of social-cognition and behavioral regulation. These findings suggest that thickness and surface area may be driven by different underlying mechanisms, with each measure potentially providing independent information about brain development. Hum Brain Mapp 37:2027-2038, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose.

    PubMed

    Mihranyan, Albert; Nyholm, Leif; Bennett, Alfonso E Garcia; Strømme, Maria

    2008-10-02

    We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.

  11. Modelling of XCO₂ Surfaces Based on Flight Tests of TanSat Instruments.

    PubMed

    Zhang, Li Li; Yue, Tian Xiang; Wilson, John P; Wang, Ding Yi; Zhao, Na; Liu, Yu; Liu, Dong Dong; Du, Zheng Ping; Wang, Yi Fu; Lin, Chao; Zheng, Yu Quan; Guo, Jian Hong

    2016-11-01

    The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km² and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO₂) surface based on flight test data which measured the near- and short-wave infrared (NIR) reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO₂ in the flight area using the limited flight test data and the approximate surface of XCO₂, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM) platform to fill the gaps where there is no information on XCO₂ in the flight test area, which takes the approximate surface of XCO₂ as its driving field and the XCO₂ observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO₂ were constructed with HASM based on the flight's observations. The results showed that the mean XCO₂ in the flight test area is about 400 ppm and that XCO₂ over urban areas is much higher than in other places. Compared with OCO-2's XCO₂, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO₂ surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  12. Determination of airborne nanoparticles from welding operations.

    PubMed

    Gomes, João Fernando Pereira; Albuquerque, Paula Cristina Silva; Miranda, Rosa Maria Mendes; Vieira, Maria Teresa Freire

    2012-01-01

    The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.

  13. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  14. Effective water surface mapping in macrophyte-covered reservoirs in NE Brazil based on TerraSAR-X time series

    NASA Astrophysics Data System (ADS)

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Waske, Bjoern

    2018-07-01

    Water supplies in northeastern Brazil strongly depend on the numerous surface water reservoirs of various sizes there. However, the seasonal and long-term water surface dynamics of these reservoirs, particularly the large number of small ones, remain inadequately known. Remote sensing techniques have shown great potentials in water bodies mapping. Yet, the widespread presence of macrophytes in most of the reservoirs often impedes the delineation of the effective water surfaces. Knowledge of the dynamics of the effective water surfaces in the reservoirs is essential for understanding, managing, and modelling the local and regional water resources. In this study, a two-year time series of TerraSAR-X (TSX) satellite data was used to monitor the effective water surface areas in nine reservoirs in NE Brazil. Calm open water surfaces were obtained by segmenting the backscattering coefficients of TSX images with minimum error thresholding. Linear unmixing was implemented on the distributions of gray-level co-occurrence matrix (GLCM) variance in the reservoirs to quantify the proportions of sub-populations dominated by different types of scattering along the TSX time series. By referring to the statistics and the seasonal proportions of the GLCM variance sub-populations the GLCM variance was segmented to map the vegetated water surfaces. The effective water surface areas that include the vegetation-covered waters as well as calm open water in the reservoirs were mapped with accuracies >77%. The temporal and spatial change patterns of water surfaces in the nine reservoirs over a period of two consecutive dry and wet seasons were derived. Precipitation-related soil moisture changes, topography and the dense macrophyte canopies are the main sources of errors in the such-derived effective water surfaces. Independent from in-situ data, the approach employed in this study shows great potential in monitoring water surfaces of different complexity and macrophyte coverage. The effective water surface areas obtained for the reservoirs can provide valuable input for efficient water management and improve the hydrological modelling in this region.

  15. Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers (ACFs).

    PubMed

    Balanay, Jo Anne G; Crawford, Shaun A; Lungu, Claudiu T

    2011-10-01

    Activated carbon fiber (ACF) has been demonstrated to be a good adsorbent for the removal of organic vapors in air. Some ACF has a comparable or larger surface area and higher adsorption capacity when compared with granular activated carbon (GAC) commonly used in respiratory protection devices. ACF is an attractive alternative adsorbent to GAC because of its ease of handling, light weight, and decreasing cost. ACF may offer the potential for short-term respiratory protection for first responders and emergency personnel. This study compares the critical bed depths and adsorption capacities for toluene among GAC and ACF of different forms and surface areas. GAC and ACF in cloth (ACFC) and felt (ACFF) forms were challenged in stainless steel chambers with a constant concentration of 500 ppm toluene via conditioned air at 25°C, 50% RH, and constant airflow (7 L/min). Breakthrough data were obtained for each adsorbent using gas chromatography with flame ionization detector. Surface areas of each adsorbent were determined using a physisorption analyzer. Results showed that the critical bed depth of GAC is 275% higher than the average of ACFC but is 55% lower than the average of ACFF. Adsorption capacity of GAC (with a nominal surface area of 1800 m(2)/g) at 50% breakthrough is 25% higher than the average of ACF with surface area of 1000 m(2)/g, while the rest of ACF with surface area of 1500 m(2)/g and higher have 40% higher adsorption capacities than GAC. ACFC with higher surface area has the smallest critical bed depth and highest adsorption capacity, which makes it a good adsorbent for thinner and lighter respirators. We concluded that ACF has great potential for application in respiratory protection considering its higher adsorption capacity and lower critical bed depth in addition to its advantages over GAC, particularly for ACF with higher surface area.

  16. Degradation of surfactant-associated protein B (SP-B) during in vitro conversion of large to small surfactant aggregates.

    PubMed Central

    Veldhuizen, R A; Inchley, K; Hearn, S A; Lewis, J F; Possmayer, F

    1993-01-01

    Pulmonary surfactant obtained from lung lavages can be separated by differential centrifugation into two distinct subfractions known as large surfactant aggregates and small surfactant aggregates. The large-aggregate fraction is the precursor of the small-aggregate fraction. The ratio of the small non-surface-active to large surface-active surfactant aggregates increases after birth and in several types of lung injury. We have utilized an in vitro system, surface area cycling, to study the conversion of large into small aggregates. Small aggregates generated by surface area cycling were separated from large aggregates by centrifugation at 40,000 g for 15 min rather than by the normal sucrose gradient centrifugation. This new separation method was validated by morphological studies. Surface-tension-reducing activity of total surfactant extracts, as measured with a pulsating-bubble surfactometer, was impaired after surface area cycling. This impairment was related to the generation of small aggregates. Immunoblot analysis of large and small aggregates separated by sucrose gradient centrifugation revealed the presence of detectable amounts of surfactant-associated protein B (SP-B) in large aggregates but not in small aggregates. SP-A was detectable in both large and small aggregates. PAGE of cycled and non-cycled surfactant showed a reduction in SP-B after surface area cycling. We conclude that SP-B is degraded during the formation of small aggregates in vitro and that a change in surface area appears to be necessary for exposing SP-B to protease activity. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8216208

  17. Surface EMG crosstalk during phasic involuntary muscle activation in the nociceptive withdrawal reflex.

    PubMed

    Frahm, Ken S; Jensen, Michael B; Farina, Dario; Andersen, Ole K

    2012-08-01

    The human nociceptive withdrawal reflex is typically assessed using surface electromyography (sEMG). Based on sEMG, the reflex receptive field (RRF) can be mapped. However, EMG crosstalk can cause erroneous results in the RRF determination. Single differential (SD) vs. double differential (DD) surface EMG were evaluated. Different electrode areas and inter-electrode-distances (IED) were evaluated. The reflexes were elicited by electrical stimulation of the sole of the foot. EMG was obtained from both tibialis anterior (TA) and soleus (SOL) using both surface and intramuscular EMG (iEMG). The amount of crosstalk was significantly higher in SD recordings than in DD recordings (P < 0.05). Crosstalk increased when electrode measuring area increased (P < 0.05) and when IED increased (P < 0.05). Reflex detection sensitivity decreases with increasing measuring area and increasing IED. These results stress that for determination of RRF and similar tasks, DD recordings should be applied. Copyright © 2012 Wiley Periodicals, Inc.

  18. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    NASA Astrophysics Data System (ADS)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  19. Synthesis of nanocrystalline CeO{sub 2} particles by different emulsion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk, E-mail: somnuk.jar@kmutt.ac.th

    2012-05-15

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 Degree-Sign C to obtain CeO{sub 2}. The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders frommore » the three methods were in the range of 4-10 nm and 5.32-145.73 m{sup 2}/g, respectively. The CeO{sub 2} powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO{sub 2} prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO{sub 2}. - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO{sub 2} prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: Black-Right-Pointing-Pointer Nano-sized CeO{sub 2} was successfully prepared by three different emulsion methods. Black-Right-Pointing-Pointer The colloidal emulsion aphrons method producing CeO{sub 2} with the highest surface area. Black-Right-Pointing-Pointer The surface tensions of a cerium solution have slightly effect on the particle size. Black-Right-Pointing-Pointer The size control could be interpreted in terms of the adsorption of the surfactant.« less

  20. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  1. SSE Web Access Data

    Atmospheric Science Data Center

    2018-04-04

    Description:  Obtain Surface meteorology and Solar Energy (SSE) data Available for locations, global/regional areas, ... Provided for 1° latitude by 1° longitude grid cells over the 22-year period July 1983 through June 2005 ...

  2. Biochar from Coffee Residues: A New Promising Sorbent

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the average size of the pores for the high surface area biochars was 32 A. Finally, the organic carbon content of the produced biochar ranged from 45 to 75%.

  3. Systematic determination of thyroid volume by ultrasound examination from infancy to adolescence in Japan: the Fukushima Health Management Survey.

    PubMed

    Suzuki, Satoru; Midorikawa, Sanae; Fukushima, Toshihiko; Shimura, Hiroki; Ohira, Tetsuya; Ohtsuru, Akira; Abe, Masafumi; Shibata, Yoshisada; Yamashita, Shunichi; Suzuki, Shinichi

    2015-01-01

    Although several reports have defined normal thyroid volume depending on either age or body surface, there are no sequential reference values on childhood thyroid volume evaluated by using ultrasonography and epidemiological analysis in Japan. The aim of the present study was to establish updated reference values for thyroid volume by ultrasound examination and epidemiological analysis in 0-19 year-old Japanese children. It is based on a cross-sectional study conducted from October 9, 2011 to March 31, 2012. The subjects were 38,063 children who were examined by ultrasonography as the initial preliminary survey of the Fukushima Health Management Survey in October 9, 2011 to March 31, 2012. The width, thickness, and height of each lobe were measured and the volume of each lobe was calculated by the mean of the elliptical shape volume formula. The values of thyroid volume at the 2.5 and 97.5 percentiles of age and body surface area for each gender group were obtained from 0-19 year-old children. Positive correlation was observed between thyroid volume and either age or body surface. The right lobe was significantly larger than the left lobe. The thyroid volume in females was larger than that in males after adjusting body surface area. The reference values of childhood thyroid for each age or body surface area were obtained by this extensive survey using ultrasound. These reference values may be used to define the normal size of thyroid gland by echosonography in Japanese children, although thyroid volume may be affected by dimorphic factors such as sex hormones.

  4. Integration of LIDAR Data Into a Municipal GIS to Study Solar Radiation

    NASA Astrophysics Data System (ADS)

    Africani, P.; Bitelli, G.; Lambertini, A.; Minghetti, A.; Paselli, E.

    2013-04-01

    Identifying the right roofs to install solar panels inside a urban area is crucial for both private citizens and the whole local population. The aim is not easy because a lot of consideration must be made: insolation, orientation of the surface, size of the surface, shading due to topography, shading due to taller buildings next the surface, shading due to taller vegetation and other possible problems typical of urban areas like the presence of chimneys. Accuracy of data related to the analyzed surfaces is indeed fundamental, and also the detail of geometric models used to represent buildings and their roofs. The complexity that these roofs can reach is elevated. This work uses LiDAR data to obtain, with a semi-automatic technique, the full geometry of each roof part complementing the pre-existing building data in the municipal cartography. With this data is possible to evaluate the placement of solar panels on roofs of a whole city analyzing the solar potential of each building in detail. Other traditional techniques, like photogrammetry, need strong manual editing effort in order to identify slopes and insert vector on surfaces at the right height. Regarding LiDAR data, in order to perform accurate modelling, it is necessary to obtain an high density point cloud. The method proposed can also be used as a fast and linear workflow process for an area where LiDAR data are available and a municipal cartography already exist: LiDAR data can be furthermore successfully used to cross-check errors in pre-existent digital cartography that can remain otherwise hidden.

  5. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study

    PubMed Central

    Rawashdeh, Nathir A.

    2018-01-01

    Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG) welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only), high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments. PMID:29748520

  6. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study.

    PubMed

    Atieh, Anas M; Rawashdeh, Nathir A; AlHazaa, Abdulaziz N

    2018-05-10

    Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG) welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only), high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments.

  7. Comparison of MTI Satellite-Derived Surface Water Temperatures and In-Situ Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzeja, R.

    2001-07-26

    Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1 percent of the calculated values at the Pacificmore » Ocean site but were 1-2 percent different over the mid-latitude lake.« less

  8. Comparison of Sensible Heat Flux from Eddy Covariance and Scintillometer over different land surface conditions

    NASA Astrophysics Data System (ADS)

    Zeweldi, D. A.; Gebremichael, M.; Summis, T.; Wang, J.; Miller, D.

    2008-12-01

    The large source of uncertainty in satellite-based evapotranspiration algorithm results from the estimation of sensible heat flux H. Traditionally eddy covariance sensors, and recently large-aperture scintillometers, have been used as ground truth to evaluate satellite-based H estimates. The two methods rely on different physical measurement principles, and represent different foot print sizes. In New Mexico, we conducted a field campaign during summer 2008 to compare H estimates obtained from the eddy covariance and scintillometer methods. During this field campaign, we installed sonic anemometers; one propeller eddy covariance (OPEC) equipped with net radiometer and soil heat flux sensors; large aperture scintillometer (LAS); and weather station consisting of wind speed, direction and radiation sensors over three different experimental areas consisting of different roughness conditions (desert, irrigated area and lake). Our results show the similarities and differences in H estimates obtained from these various methods over the different land surface conditions. Further, our results show that the H estimates obtained from the LAS agree with those obtained from the eddy covariance method when high frequency thermocouple temperature, instead of the typical weather station temperature measurements, is used in the LAS analysis.

  9. Parametric evaluation of ball milling of SiC in water

    NASA Technical Reports Server (NTRS)

    Kiser, J. D.; Herbell, T. P.; Freedman, M. R.

    1985-01-01

    A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.

  10. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    PubMed

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (S BET : 3301 m 2 g -1 ), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g -1 at 90 A g -1 for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg -1 or 53 Wh L -1 has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  11. Addition of alkali to the hydrothermal-mechanochemical treatment of Eucalyptus enhances its enzymatic saccharification.

    PubMed

    Ishiguro, Maki; Endo, Takashi

    2014-02-01

    The effects of alkali on hydrothermal-mechanochemical treatment (hydrothermal treatment combined with wet-milling) were examined with the aim of improving pretreatment of lignocellulosic biomass before enzymatic saccharification. After enzymatic saccharification, the highest glucose yield was obtained by autoclaving at 170°C in the presence of 20% NaOH per substrate weight. The wood fiber was unraveled into finer nanofibers by hydrothermal-mechanochemical treatment, thus increasing the specific surface area of the substrate from 11 to 132m(2)/g. Adding 20% NaOH to the treatment further increased the specific surface area of the already fibrillated substrate by 76% (232m(2)/g) due to lignin removal and ester bond cleavage between lignin and hemicellulose. This increase in specific surface area was closely related to the increase in enzymatic digestibility; therefore, NaOH addition may have enhanced the effect of hydrothermal-mechanochemical treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Dynamic laser speckle technique as an alternative tool to determine hygroscopic capacity and specific surface area of microporous zeolites

    NASA Astrophysics Data System (ADS)

    Mojica-Sepulveda, Ruth Dary; Mendoza-Herrera, Luís Joaquín; Grumel, Eduardo; Soria, Delia Beatriz; Cabello, Carmen Inés; Trivi, Marcelo

    2018-07-01

    Adsorption phenomena have several technological applications such as desiccants, catalysts, and separation of gases. Their uses depend on the textural properties of the solid adsorbent and the type of the adsorbed liquid or gas. Therefore, it is important to determine these properties. The most common measurement methods are physicochemical based on adsorption of N2 to determine the surface area and the distribution of pores size. However these techniques present certain limitations for microporous materials. In this paper we propose the use of the Dynamic Laser Speckle (DLS) technique to measure the hygroscopic capacity of a microporous natural zeolite and their modified forms. This new approach based on the adsorption of water by solids allows determine their specific surface area (S). To test the DLS results, we compared the obtained S values to those calculated by different conventional isotherms using the N2 adsorption-desorption method.

  13. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    NASA Astrophysics Data System (ADS)

    Berryman, James G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.

  14. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, J.G.

    1998-02-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye {ital et al.} [J. Appl. Phys. {bold 28}, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that,more » for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well.« less

  15. Airport Surface Delays and Causes: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Chin, David K.; Goldberg, Jay; Tang, Tammy

    1997-01-01

    This report summarizes FAA Program Analysis and Operations Research Service (ASD-400)/Lockheed Martin activities and findings related to airport surface delays and causes, in support of NASA Langley Research Center's Terminal Area Productivity (TAP) Program. The activities described in this report were initiated in June 1995. A preliminary report was published on September 30, 1995. The final report incorporates data collection forms filled out by traffic managers, other FAA staff, and an airline for the New York City area, some updates, data previously requested from various sources to support this analysis, and further quantification and documentation than in the preliminary report. This final report is based on data available as of April 12, 1996. This report incorporates data obtained from review and analysis of data bases and literature, discussions/interviews with engineers, air-traffic staff, other FAA technical personnel, and airline staff, site visits, and a survey on surface delays and causes. It includes analysis of delay statistics; preliminary findings and conclusions on surface movement, surface delay sources and causes, runway occupancy time (ROT), and airport characteristics impacting surface operations and delays; and site-specific data on the New York City area airports, which are the focus airports for this report.

  16. Fusion of radar and optical data for mapping and monitoring of water bodies

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Siok, Katarzyn

    2017-10-01

    Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.

  17. Remote sensing of surface currents with single shipborne high-frequency surface wave radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan

    2016-01-01

    High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.

  18. The influence of concrete mixture’s rheological properties on the quality of formed concrete surfaces

    NASA Astrophysics Data System (ADS)

    Daukšys, M.; Klovas, A.; Venčkauskas, L.

    2017-09-01

    This study mainly lays emphasis on examining the influence of concrete mixture rheological properties on the quality of formed concrete surfaces. Mixture’s fine aggregate change was taken into the consideration. Over the course of concrete mixture preparation the inner ratio of fine aggregate (sand: fraction of 0/1 and 0/4) was changed. The idea was to increase the quantity of fine particles in the total aggregate’s volume therefore quantity of sand (fraction 0/1) was increased. Six different concrete mixture’s compositions were designed as well as three specimens (concrete piles of 1m2 surface area) were casted. Rheological properties of concrete mixtures were analytically obtained and the quality of formed concrete surfaces was evaluated using image analysis method “BetonGUY 2.0”. As can be obtained from the dependence between concrete mixture rheological properties and its formed surface quality, the increase of concrete mixture’s yield stress and plastic viscosity reduces the quantity of air pores on formed concrete surfaces.

  19. A Study of Land Surface Temperature Retrieval and Thermal Environment Distribution Based on Landsat-8 in Jinan City

    NASA Astrophysics Data System (ADS)

    Dong, Fang; Chen, Jian; Yang, Fan

    2018-01-01

    Based on the medium resolution Landsat 8 OLI/TIRS, the temperature distribution in four seasons of urban area in Jinan City was obtained by using atmospheric correction method for the retrieval of land surface temperature. Quantitative analysis of the spatio-temporal distribution characteristics, development trend of urban thermal environment, the seasonal variation and the relationship between surface temperature and normalized difference vegetation index (NDVI) was studied. The results show that the distribution of high temperature areas is concentrated in Jinan, and there is a tendency to expand from east to west, revealing a negative correlation between land surface temperature distribution and NDVI. So as to provide theoretical references and scientific basis of improving the ecological environment of Jinan City, strengthening scientific planning and making overall plan addressing climate change.

  20. Selective Deposition of SiO2 on Ion Conductive Area of Soda-lime Glass Surface

    PubMed Central

    Sakai, Daisuke; Harada, Kenji; Hara, Yuichiro; Ikeda, Hiroshi; Funatsu, Shiro; Uraji, Keiichiro; Suzuki, Toshio; Yamamoto, Yuichi; Yamamoto, Kiyoshi; Ikutame, Naoki; Kawaguchi, Keiga; Kaiju, Hideo; Nishii, Junji

    2016-01-01

    Selective deposition of SiO2 nanoparticles was demonstrated on a soda-lime glass surface with a periodic sodium deficient pattern formed using the electrical nanoimprint. Positively charged SiO2 particles generated using corona discharge in a cyclic siloxane vapor, were selectively deposited depending on the sodium pattern. For such phenomena to occur, the sodium ion migration to the cathode side was indispensable to the electrical charge compensation on the glass surface. Therefore, the deposition proceeded preferentially outside the alkali-deficient area. Periodic SiO2 structures with 424 nm and 180 nm heights were obtained using one-dimensional (6 μm period) and two-dimensional (500 nm period) imprinted patterns. PMID:27291796

  1. Wind-tunnel Tests of the Fowler Variable-area Wing

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Platt, Robert C

    1932-01-01

    The lift, drag, and center of pressure characteristics of a model of the Fowler variable-area wing were measured in the NACA 7 by 10 foot wind tunnel. The Fowler wing consists of a combination of a main wing and an extension surface, also of airfoil section. The extension surface can be entirely retracted within the lower rear portion of the main wing or it can be moved to the rear and downward. The tests were made with the nose of the extension airfoil in various positions near the trailing edge of the main wing and with the surface at various angular deflections. The highest lift coefficient obtained was C(sub L) = 3.17 as compared with 1.27 for the main wing alone.

  2. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  3. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  4. Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process.

    PubMed

    Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang

    2012-11-01

    Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Reflux condensation of pure vapors with and without a noncondensable gas inside plain and enhanced tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelmessih, A.N.; Rabas, T.J.; Panchal, C.B.

    1997-06-01

    Estimates of the surface-area and vapor-release reductions are obtained when commercially available enhanced tubes (spirally ribbed) replace plain tubes in a reflux unit condensing pure organic vapors with different concentrations of a noncondensable gas. This investigation was undertaken because there are no existing data and/or prediction methods that are applicable for these shell-and-tube condensers commonly used in the process industries. To obtain these estimates, existing design methods published in the open literature were used. The major findings are that (1) surface-area reductions can almost approach the single-phase heat transfer enhancement level, and (2) vapor-release reductions can approach a factor ofmore » four. The important implication is that enhanced tubes appear to be very cost effective for addressing the recovery of volatile organic vapors (VOCs), and for a vast number of different reflux-condenser applications.« less

  6. Advances in water resources monitoring from space

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1974-01-01

    Nimbus-5 observations indicate that over the oceans the total precipitable water in a column of atmosphere can be estimated to within + or - 10%, the liquid water content of clouds can be estimated to within + or - 25%, areas of precipitation can be delineated, and broad estimates of the precipitation rate obtained. ERTS-1 observations permit the measurement of snow covered area to within a few percent of drainage basin area and snowline altitudes can be estimated to within 60 meters. Surface water areas as small as 1 hectare can be inventoried over large regions such as playa lakes region of West Texas and Eastern New Mexico. In addition, changes in land use on water-sheds occurring as a result of forest fires, urban development, clear cutting, or strip mining can be rapidly obtained.

  7. Extraction of near-surface properties for a lossy layered medium using the propagator matrix

    USGS Publications Warehouse

    Mehta, K.; Snieder, R.; Graizer, V.

    2007-01-01

    Near-surface properties play an important role in advancing earthquake hazard assessment. Other areas where near-surface properties are crucial include civil engineering and detection and delineation of potable groundwater. From an exploration point of view, near-surface properties are needed for wavefield separation and correcting for the local near-receiver structure. It has been shown that these properties can be estimated for a lossless homogeneous medium using the propagator matrix. To estimate the near-surface properties, we apply deconvolution to passive borehole recordings of waves excited by an earthquake. Deconvolution of these incoherent waveforms recorded by the sensors at different depths in the borehole with the recording at the surface results in waves that propagate upwards and downwards along the array. These waves, obtained by deconvolution, can be used to estimate the P- and S-wave velocities near the surface. As opposed to waves obtained by cross-correlation that represent filtered version of the sum of causal and acausal Green's function between the two receivers, the waves obtained by deconvolution represent the elements of the propagator matrix. Finally, we show analytically the extension of the propagator matrix analysis to a lossy layered medium for a special case of normal incidence. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  8. Satellite microwave observations of soil moisture variations. [by the microwave radiometer on the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Rango, A.; Neff, R.

    1975-01-01

    The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained.

  9. Shuttle ascent and shock impingement aerodynamic heating studies

    NASA Technical Reports Server (NTRS)

    Lanning, W. D.; Hung, F. T.

    1971-01-01

    The collection and analysis of aerodynamic heating data obtained from shock impingement experimental investigation were completed. The data were categorized into four interference areas; fin leading edge, wing/fuselage fin/plate corners, and space shuttle configurations. The effects of shock impingement were found to increase the heating rates 10 to 40 times the undisturbed values. A test program was completed at NASA/Langley Research Center to investigate the magnitudes and surface patterns of the mated shock interference flowfield. A 0.0065 scale thin-skin model of the MDAC 256-20 space shuttle booster mated with a Stycast model of the MDAC Internal tank orbiter was tested in the 20-inch M=6 tunnel, the 31-inch M=10 tunnel, and the 48-inch Unitary Plan Tunnel. The gap region of the ascent configuration was the principal area of interest where both thermocouple and phase-change paint data were obtained. Pressure and heat transfer distributions data on the leeward surface of a 75-degree sweep slab delta wing are presented. The effects of surface roughness on boundary layer transition and aerodynamic heating were investigated.

  10. Human body surface area database and estimation formula.

    PubMed

    Yu, Chi-Yuang; Lin, Ching-Hua; Yang, Yi-Hsueh

    2010-08-01

    This study established human body surface area (BSA) database and estimation formula based on three-dimensional (3D) scanned data. For each gender, 135 subjects were drawn. The sampling was stratified in five stature heights and three body weights according to a previous survey. The 3D body surface shape was measured using an innovated 3D body scanner and a high resolution hand/foot scanner, the total body surface area (BSA) and segmental body surface area (SBSA) were computed based on the summation of every tiny triangular area of triangular meshes of the scanned surface; and the accuracy of BSA measurement is below 1%. The results of BSA and sixteen SBSAs were tabulated in fifteen strata for the Male, the Female and the Total (two genders combined). The %SBSA data was also used to revise new Lund and Browder Charts. The comparison of BSA shows that the BSA of this study is comparable with the Du Bois and Du Bois' but smaller than that of Tikuisis et al. The difference might be attributed to body size difference between the samples. The comparison of SBSA shows that the differences of SBSA between this study and the Lund and Browder Chart range between 0.00% and 2.30%. A new BSA estimation formula, BSA=71.3989 x H(.7437) x W(.4040), was obtained. An accuracy test showed that this formula has smaller estimation error than that of the Du Bois and Du Bois'; and significantly better than other BSA estimation formulae.

  11. A fundamental approach to the sticking of insect residues to aircraft wings

    NASA Technical Reports Server (NTRS)

    Yi, O.; Eiss, N. S.; Wightman, J. P.

    1988-01-01

    The aircraft industry is concerned with the increase of drag on planes due to the sticking of insects on critical airfoil areas. The objectives of the present study were to investigate the effects of surface energy and elasticity on the number of insects sticking onto the polymer coatings on a modified aircraft wing and to determine the mechanism by which insects stick onto surfaces during high velocity impact. Analyses including scanning electron microscopy, electron spectroscopy for chemical analysis and contact angle measurements of uncoated and polymer coated aluminum surfaces were performed. A direct relation between the number of insects sticking on a sample and its surface energy was obtained. Since the sticky liquid from a burst open insect will not spread on the low energy surface, it will ball up providing poor adhesion between the insect debris and the surface. The incoming air flow can easily blow off the insect debris and thus reducing the number of insects that remain stuck on the surface. Also a direct relation between the number of insect sticking onto a surface and their modulus of elasticity was obtained.

  12. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  13. Minimal area surfaces dual to Wilson loops and the Mathieu equation

    DOE PAGES

    Huang, Changyu; He, Yifei; Kruczenski, Martin

    2016-08-11

    The AdS/CFT correspondence relates Wilson loops in N=4 SYM to minimal area surfaces in AdS 5 × S 5 space. Recently, a new approach to study minimal area surfaces in AdS 3 c AdS 5 was discussed based on a Schroedinger equation with a periodic potential determined by the Schwarzian derivative of the shape of the Wilson loop. Here we use the Mathieu equation, a standard example of a periodic potential, to obtain a class of Wilson loops such that the area of the dual minimal area surface can be computed analytically in terms of eigenvalues of such equation. Asmore » opposed to previous examples, these minimal surfaces have an umbilical point (where the principal curvatures are equal) and are invariant under λ-deformations. In various limits they reduce to the single and multiple wound circular Wilson loop and to the regular light-like polygons studied by Alday and Maldacena. In this last limit, the periodic potential becomes a series of deep wells each related to a light-like segment. Small corrections are described by a tight-binding approximation. In the circular limit they are well approximated by an expansion developed by A. Dekel. In the particular case of no umbilical points they reduce to a previous solution proposed by J. Toledo. The construction works both in Euclidean and Minkowski signature of AdS 3.« less

  14. Using the conservative nature of fresh leaf surface density to measure foliar area

    NASA Astrophysics Data System (ADS)

    Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita

    2014-10-01

    For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.

  15. Normative morphometric data for cerebral cortical areas over the lifetime of the adult human brain.

    PubMed

    Potvin, Olivier; Dieumegarde, Louis; Duchesne, Simon

    2017-08-01

    Proper normative data of anatomical measurements of cortical regions, allowing to quantify brain abnormalities, are lacking. We developed norms for regional cortical surface areas, thicknesses, and volumes based on cross-sectional MRI scans from 2713 healthy individuals aged 18 to 94 years using 23 samples provided by 21 independent research groups. The segmentation was conducted using FreeSurfer, a widely used and freely available automated segmentation software. Models predicting regional cortical estimates of each hemisphere were produced using age, sex, estimated total intracranial volume (eTIV), scanner manufacturer, magnetic field strength, and interactions as predictors. The explained variance for the left/right cortex was 76%/76% for surface area, 43%/42% for thickness, and 80%/80% for volume. The mean explained variance for all regions was 41% for surface areas, 27% for thicknesses, and 46% for volumes. Age, sex and eTIV predicted most of the explained variance for surface areas and volumes while age was the main predictors for thicknesses. Scanner characteristics generally predicted a limited amount of variance, but this effect was stronger for thicknesses than surface areas and volumes. For new individuals, estimates of their expected surface area, thickness and volume based on their characteristics and the scanner characteristics can be obtained using the derived formulas, as well as Z score effect sizes denoting the extent of the deviation from the normative sample. Models predicting normative values were validated in independent samples of healthy adults, showing satisfactory validation R 2 . Deviations from the normative sample were measured in individuals with mild Alzheimer's disease and schizophrenia and expected patterns of deviations were observed. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Surface-directed capillary system; theory, experiments and applications.

    PubMed

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques

    2005-08-01

    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  17. On the Formation Mechanism of Interference Rings in the Ablation Area on the Condensed Medium Surface under Irradiation with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Bykovskii, N. E.; Senatskii, Yu. V.

    2018-02-01

    The dynamics of Newton interference rings appearing in the ablation area on the surface of various condensed media under irradiation with femtosecond laser pulses is analyzed (according to published data on fs ablation). The data on the refractive index evolution in the expanding material cloud from the metal, semiconductor, and dielectric surface, obtained by interference pattern processing. The mechanism of the concentration of the energy absorbed by a medium from the laser beam in the thin layer under the irradiated sample surface is considered. The appearance of the inner layer with increased energy release explains why the ablation process from the metal, semiconductor, and dielectric surface, despite the differences in their compositions and radiation absorption mechanisms, occurs similarly, i.e., with the formation of a thin shell at the outer ablation cloud boundary, which consists of a condensed medium reflecting radiation and, together with the target surface, forms a structure necessary for interference formation.

  18. Reliable solution processed planar perovskite hybrid solar cells with large-area uniformity by chloroform soaking and spin rinsing induced surface precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chern, Yann-Cherng; Wu, Hung-Ruei; Chen, Yen-Chu

    2015-08-15

    A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area asmore » large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.« less

  19. Munsell color analysis of Landsat color-ratio-composite images of limonitic areas in southwest New Mexico

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.

    1985-01-01

    The causes of color variations in the green areas on Landsat 4/5-4/6-6/7 (red-blue-green) color-ratio-composite (CRC) images, defined as limonitic areas, were investigated by analyzing the CRC images of the Lordsburg, New Mexico area. The red-blue-green additive color system was mathematically transformed into the cylindrical Munsell color coordinates (hue, saturation, and value), and selected areas were digitally analyzed for color variation. The obtained precise color characteristics were then correlated with properties of surface material. The amount of limonite (L) visible to the sensor was found to be the primary cause of the observed color differences. The visible L is, is turn, affected by the amount of L on the material's surface and by within-pixel mixing of limonitic and nonlimonitic materials. The secondary cause of variation was vegetation density, which shifted CRC hues towards yellow-green, decreased saturation, and increased value.

  20. Temporal and spatial trends of total petroleum hydrocarbons and heavy metals in the surface sediment of Caofeidian Sea Area, China from 2011 to 2016

    NASA Astrophysics Data System (ADS)

    Huang, Wei

    2018-05-01

    The temporal and spatial distribution of total petroleum hydrocarbons (TPH) and four heavy metals in the surface sediments of Caofeidian Sea Area during 2011–2016 was investigated. The sediment concentration of TPH, Cu, Zn, Pb and Cd were 10.07-186.4 mg/L, 16.5-84.9 mg/L, 11.1-135 mg/L, 6.8-24.6 mg/L, and 0.07-0.199 mg/L, respectively. The pollution level in Caofeidian sea area is lower than those in other area in China. These results reached the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. In addition, TPH at all stations decreased during 2011-2016. The highest values obtained were at stations near the port areas and estuary region.

  1. Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study.

    PubMed

    Jeong, Ii-Do; Kim, Woong-Chul; Park, Jinyoung; Kim, Chong-Myeong; Kim, Ji-Hwan

    2017-08-01

    This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface ( P <.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns.

  2. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data

    PubMed Central

    Kato, Soushi; Yamaguchi, Yasushi; Liu, Cheng-Chien; Sun, Chen-Yi

    2008-01-01

    The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures. PMID:27873856

  3. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors.

    PubMed

    Yao, Yuechao; Liu, Peng; Li, Xiaoyan; Zeng, Shaozhong; Lan, Tongbin; Huang, Haitao; Zeng, Xierong; Zou, Jizhao

    2018-05-17

    Herein, N-doped graphitic hierarchically porous carbon nanofibers (NGHPCF) were prepared by electrospinning the composite of bimetallic-coordination metal-organic frameworks and polyacrylonitrile, followed by a pyrolysis and acid wash process. Control over the N content, specific surface area, and degree of graphitization of NGHPCF materials has been realized by adjusting the Co/Zn metal coordination content as well as the pyrolysis temperature. The obtained NGHPCF with a high specific surface area (623 m2 g-1) and nitrogen content (13.83 wt%) exhibit a high capacitance of 326 F g-1 at 0.5 A g-1. In addition, the capacitance of 170 F g-1 is still maintained at a high current density (40 A g-1); this indicates a high capacitance retention capability. Furthermore, a superb energy density (9.61 W h kg-1) is obtained with a high power density (62.4 W kg-1) using an organic electrolyte. These results fully illustrate that the prepared NGHPCF binder-free electrodes are promising candidates for high-performance supercapacitors.

  4. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  5. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  6. Synthesis and characterization of high surface area TiO 2/SiO 2 mesostructured nanocomposite

    NASA Astrophysics Data System (ADS)

    Bonne, Magali; Pronier, Stéphane; Can, Fabien; Courtois, Xavier; Valange, Sabine; Tatibouët, Jean-Michel; Royer, Sébastien; Marécot, Patrice; Duprez, Daniel

    2010-06-01

    Recently titania synthesis was reported using various structuration procedures, leading to the production of solid presenting high surface area but exhibiting moderate thermal stability. The study presents the synthesis of TiO 2/SiO 2 nanocomposites, a solid that can advantageously replace bulk titania samples as catalyst support. The silica host support used for the synthesis of the nanocomposite is a SBA-15 type silica, having a well-defined 2D hexagonal pore structure and a large pore size. The control of the impregnation media is important to obtain dispersed titania crystals into the porosity, the best results have been obtained using an impregnation in an excess of solvent. After calcination at low temperature (400 °C), nanocomposites having titania nanodomains (˜2-3 nm) located inside the pores and no external aggregates visible are obtained. This nanocomposite exhibits high specific surface area (close to that of the silica host support, even with a titania loading of 55 wt.%) and a narrow pore size distribution. Surprisingly, the increase in calcination temperature up to 800 °C does not allow to detect the anatase to rutile transition. Even at 800 °C, the hexagonal mesoporous structure of the silica support is maintained, and the anatase crystal domain size is evaluated at ˜10 nm, a size close to that of the silica host support porosity (8.4 nm). Comparison of their physical properties with the results presented in literature for bulk samples evidenced that these TiO 2/SiO 2 solids are promising in term of thermal stability.

  7. Investigation of the low-depression velocity layer in desert area by multichannel analysis of surface-wave method

    USGS Publications Warehouse

    Cheng, S.; Tian, G.; Xia, J.; He, H.; Shi, Z.; ,

    2004-01-01

    The multichannel analysis of surface-wave method (MASW) is a newly development method. The method has been employed in various applications in environmental and engineering geophysics overseas. However, It can only be found a few case studies in China. Most importantly, there is no application of the MASW in desert area in China or abroad. We present a case study of investigating the low-depression velocity in Temple of North Taba Area in Erdos Basin. The MASW method successfully defined the low-depression velocity layer in the desert area. Comparing results obtained by the MASW method with results by refraction seismic method, we discussed efficiency and simplicity of applying the MASW method in the desert area. It is proved that the maximum investigation depth can reach 60m in the study area when the acquisition and procession parameters are carefully chosen. The MASW method can remedy the incompetence of the refraction method and the micro-seismograph log method in low-depression velocity layer's investigation. The MASW method is also a powerful tool in investigation of near-surface complicated materials and possesses many unique advantages.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrichs, D.R.; Cole, C.R.; Arnett, R.C.

    The Hanford Pathline Calculational Program (HPCP) is a numerical model developed to predict the movement of fluid particles from one location to another within the Hanford or similar groundwater systems. As such it can be considered a simple transport model wherein only advective changes are considered. Application of the numerical HPCP to test cases for which semianalytical results are obtainable showed that with reasonable time steps and the grid spacing requirements HPCP give good agreement with the semianalytical solution. The accuracy of the HPCP results is most sensitive in areas near steep or rapidly changing potential gradients and may requiremore » finer grid spacing in those areas than for the groundwater system as a whole. Initial applications of HPCP to the Hanford groundwater flow regime show that significant differences (improvements) in the predictions of fluid particle movement are obtainable with the pathline approach (changing groundwater potential or water table surface) as opposed to the streamline approach (unchanging potential or water table surface) used in past Hanford groundwater analyses. This report documents capability developed for estimating groundwater travel times from the Hanford high-level waste areas to the Columbia River at different water table levels.« less

  9. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method.

    PubMed

    Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias

    2018-03-16

    We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.

  10. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method

    PubMed Central

    Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias

    2018-01-01

    We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166

  11. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  12. Echelon approach to areas of concern in synoptic regional monitoring

    USGS Publications Warehouse

    Myers, Wayne; Patil, Ganapati P.; Joly, Kyle

    1997-01-01

    Echelons provide an objective approach to prospecting for areas of potential concern in synoptic regional monitoring of a surface variable. Echelons can be regarded informally as stacked hill forms. The strategy is to identify regions of the surface which are elevated relative to surroundings (Relative ELEVATIONS or RELEVATIONS). These are areas which would continue to expand as islands with receding (virtual) floodwaters. Levels where islands would merge are critical elevations which delimit echelons in the vertical dimension. Families of echelons consist of surface sectors constituting separate islands for deeper waters that merge as water level declines. Pits which would hold water are disregarded in such a progression, but a complementary analysis of pits is obtained using the surface as a virtual mould to cast a counter-surface (bathymetric analysis). An echelon tree is a family tree of echelons with peaks as terminals and the lowest level as root. An echelon tree thus provides a dendrogram representation of surface topology which enables graph theoretic analysis and comparison of surface structures. Echelon top view maps show echelon cover sectors on the base plane. An echelon table summarizes characteristics of echelons as instances or cases of hill form surface structure. Determination of echelons requires only ordinal strength for the surface variable, and is thus appropriate for environmental indices as well as measurements. Since echelons are inherent in a surface rather than perceptual, they provide a basis for computer-intelligent understanding of surfaces. Echelons are given for broad-scale mammalian species richness in Pennsylvania.

  13. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  14. The Morphological Anatomy of the Menisci of the Knee Joint in Human Fetuses

    PubMed Central

    Koyuncu, Esra; Özgüner, Gülnur; Öztürk, Kenan; Bilkay, Cemil; Dursun, Ahmet; Sulak, Osman

    2017-01-01

    Background: Development of the foetal period of the meniscus has been reported in different studies. Aims: Evaluation of lateral and medial meniscus development, typing and the relationship of the tibia during the foetal period. Study Design: Anatomical dissection. Methods: We evaluated 210 knee menisci obtained from 105 human foetuses ranging in age from 9 to 40 weeks’ gestation. Foetuses were divided into four groups, and the intra-articular structure was exposed. We subsequently acquired images (Samsung WB 100 26X Optical Zoom Wide, Beijing, China) of the intra-articular structures with the aid of a millimetric ruler. The images were digitized for morphometric analyses and analysed by using Netcad 5.1 Software (Ak Mühendislik, Ankara, Turkey). Results: The lateral and medial meniscal areas as well as the lateral and the medial articular surface areas of the tibia increased throughout gestation. We found that the medial articular surface areas were larger than the lateral articular surface areas, and the difference was statistically significant. The ratios of the mean lateral and medial meniscal areas to the lateral and medial articular surface areas, respectively, of the tibia decreased gradually from the first trimester to full term. The most common shape of the medial meniscus was crescentic (50%), and that of the lateral meniscus was C-shaped (61%). Conclusion: This study reveals the development of morphological changes and morphometric measurements of the menisci. PMID:28832324

  15. Optimal graph based segmentation using flow lines with application to airway wall segmentation.

    PubMed

    Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.

  16. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.

    PubMed

    Johnson

    1999-01-01

    The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.

  17. Thermal Band Analysis of Agricultural Land Use and its Effects on Bioclimatic Comfort: The Case of Pasinler

    NASA Astrophysics Data System (ADS)

    Avdan, Uǧur; Demircioglu Yildiz, Nalan; Dagliyar, Ayse; Yigit Avdan, Zehra; Yilmaz, Sevgi

    2014-05-01

    Resolving the problems that arise due to the land use are not suitable for the purpose in the rural and urban areas most suitable for land use of parameters to be determined. Unintended and unplanned developments in the use of agricultural land in our country caused increases the losses by soil erosion. In this study, Thermal Band analysis is made in Pasinler city center with the aim of identifying bioclimatic comfort values of the different agricultural area. Satellite images can be applied for assessing the thermal urban environment as well as for defining heat islands in agricultural areas. In this context, temperature map is tried to be produced with land surface temperature (LST) analysis made on Landsat TM5 satellite image. The Landsat 5 images was obtained from USGS for the study area. Using Landsat bands of the study area was mapped by supervised classification with the maximum likelihood classification algorithm of ERDAS imagine 2011 software. Normalized Difference Vegetation Index (NDVI) image was produced by using Landsat images. The digital number of the Landsat thermal infrared band (10.40 - 12.50 µm) is converted to the spectral radiance. The surface emissivity was calculated by using NDVI. The spatial pattern of land surface temperature in the study area is taken to characterize their local effects on agricultural land. Areas having bioclimatic comfort and ecologically urbanized, are interpreted with different graphical presentation technics. The obtained results are important because they create data bases for sustainable urban planning and provide a direction for planners and governors. As a result of rapid changes in land use, rural ecosystems and quality of life are deteriorated and decreased. In the presence of increased building density, for the comfortable living of people natural and cultural resources should be analyzed in detail. For that reason, optimal land use planning should be made in rural area.

  18. Method of measuring interface area of activated carbons in condensed phase

    NASA Astrophysics Data System (ADS)

    Dmitriyev, D. S.; Agafonov, D. V.; Kiseleva, E. A.; Mikryukova, M. A.

    2018-01-01

    In this work, we investigated the correlation between the heat of wetting of super-capacitor electrode material (activated carbon) with condensed phases (electrolytes based on homologous series of phosphoric acid esters) and the capacity of the supercapacitor. The surface area of the electrode-electrolyte interface was calculated according to the obtained correlations using the conventional formula for calculating the capacitance of a capacitor.

  19. An interdisciplinary analysis of ERTS data for Colorado mountain environments using ADP Techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1972-01-01

    Author identified significant preliminary results from the Ouachita portion of the Texoma frame of data indicate many potentials in the analysis and interpretation of ERTS data. It is believed that one of the more significant aspects of this analysis sequence has been the investigation of a technique to relate ERTS analysis and surface observation analysis. At present a sequence involving (1) preliminary analysis based solely upon the spectral characteristics of the data, followed by (2) a surface observation mission to obtain visual information and oblique photography to particular points of interest in the test site area, appears to provide an extremely efficient technique for obtaining particularly meaningful surface observation data. Following such a procedure permits concentration on particular points of interest in the entire ERTS frame and thereby makes the surface observation data obtained to be particularly significant and meaningful. The analysis of the Texoma frame has also been significant from the standpoint of demonstrating a fast turn around analysis capability. Additionally, the analysis has shown the potential accuracy and degree of complexity of features that can be identified and mapped using ERTS data.

  20. Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.

    PubMed

    Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong

    2013-01-01

    We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.

  1. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  2. [Plastic closure of a bladder wall defect by use of a pedicled auto-alloplastic prosthesis in experiments].

    PubMed

    Sedlarik, K; Stanulla, H; Samohýl, J

    1975-01-01

    The problems of substituting larger areas of the bladder wall are not definitely solved. Experiments on implantation of auto-allografts resulted in complications, which prevented correct epithelization of the interior surface, due to ischemia. In successful experiments on 34 rabbits, the authors obtained sufficient blood supply of the implantate and re-epithelization of the graft's interior surface in a two-stage operation.

  3. Synthesis and characterization of nanoporous silica aerogel beads using cheap industrial grade sodium silacte precursor

    NASA Astrophysics Data System (ADS)

    Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.

    2018-05-01

    We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.

  4. High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.

  5. Numerical investigation of perforated polymer microcantilever sensor for contractile behavior of cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Khoa Nguyen, Trieu; Lee, Dong-Weon; Lee, Bong-Kee

    2017-06-01

    In this study, a numerical investigation of microcantilever sensors for detecting the contractile behavior of cardiomyocytes (CMs) was performed. Recently, a novel surface-patterned perforated SU-8 microcantilever sensor has been developed for the preliminary screening of cardiac toxicity. From the contractile motion of the CMs cultured on the microcantilever surface, a macroscopic bending of the microcantilever was obtained, which is considered to reflect a physiological change. As a continuation of the previous research, a novel numerical method based on a surface traction model was proposed and verified to further understand the bending behavior of the microcantilevers. Effects of various factors, including surface traction magnitude, focal area of CMs, and stiffness of microcantilever, on the bending displacement were investigated. From static and transient analyses, the focal area was found to be the most crucial factor. In addition, the current result can provide a design guideline for various micromechanical devices based on the same principle.

  6. High-resolution liquid patterns via three-dimensional droplet shape control.

    PubMed

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  7. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  8. A simple method for estimation of evapotranspiration using remotely sensed data during vegetation period in Hungary

    NASA Astrophysics Data System (ADS)

    Dunkel, Zoltan; Grob-Szenyán, Ildiko

    The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of the daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ET d-R nd= a+ b( Tc- Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observations trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field ( 1 km×1 km) and a larger, and relatively homogeneous area was scanned, before noon and afternoon. In the western part of the country, a much larger area ( 45 km×45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed. Comparison of model output with data from field experiment has played a crucial role in model development and suggested an evaluation method.

  9. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    PubMed

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  10. A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images Over Complex Surfaces

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Huang, Bo; Sun, Lin; Zhang, Zhaoyang; Wang, Lunche; Bilal, Muhammad

    2017-12-01

    Operational aerosol optical depth (AOD) products are available at coarse spatial resolutions from several to tens of kilometers. These resolutions limit the application of these products for monitoring atmospheric pollutants at the city level. Therefore, a simple, universal, and high-resolution (30 m) Landsat aerosol retrieval algorithm over complex urban surfaces is developed. The surface reflectance is estimated from a combination of top of atmosphere reflectance at short-wave infrared (2.22 μm) and Landsat 4-7 surface reflectance climate data records over densely vegetated areas and bright areas. The aerosol type is determined using the historical aerosol optical properties derived from the local urban Aerosol Robotic Network (AERONET) site (Beijing). AERONET ground-based sun photometer AOD measurements from five sites located in urban and rural areas are obtained to validate the AOD retrievals. Terra MODerate resolution Imaging Spectrometer Collection (C) 6 AOD products (MOD04) including the dark target (DT), the deep blue (DB), and the combined DT and DB (DT&DB) retrievals at 10 km spatial resolution are obtained for comparison purposes. Validation results show that the Landsat AOD retrievals at a 30 m resolution are well correlated with the AERONET AOD measurements (R2 = 0.932) and that approximately 77.46% of the retrievals fall within the expected error with a low mean absolute error of 0.090 and a root-mean-square error of 0.126. Comparison results show that Landsat AOD retrievals are overall better and less biased than MOD04 AOD products, indicating that the new algorithm is robust and performs well in AOD retrieval over complex surfaces. The new algorithm can provide continuous and detailed spatial distributions of AOD during both low and high aerosol loadings.

  11. Report: Independent Sampling Generally Confirms EPA’s Data at the Jones Sanitation Superfund Site in New York

    EPA Pesticide Factsheets

    Report #09-P-0243, September 23, 2009. In April 2008, the OIG obtained groundwater and surface water samples from the Jones Sanitation Superfund Site and nearby areas, and conducted a site inspection.

  12. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    PubMed

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  13. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    NASA Technical Reports Server (NTRS)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  14. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE PAGES

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; ...

    2006-01-01

    Nmore » anoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.« less

  15. Method and system for near-field spectroscopy using targeted deposition of nanoparticles

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2012-01-01

    There is provided in one embodiment of the invention a method for analyzing a sample material using surface enhanced spectroscopy. The method comprises the steps of imaging the sample material with an atomic force microscope (AFM) to select an area of interest for analysis, depositing nanoparticles onto the area of interest with an AFM tip, illuminating the deposited nanoparticles with a spectrometer excitation beam, and disengaging the AFM tip and acquiring a localized surface enhanced spectrum. The method may further comprise the step of using the AFM tip to modulate the spectrometer excitation beam above the deposited nanoparticles to obtain improved sensitivity data and higher spatial resolution data from the sample material. The invention further comprises in one embodiment a system for analyzing a sample material using surface enhanced spectroscopy.

  16. Nonlinear Laser Lithography implementation for both ``normal'' and ``anomalous'' laser induced periodic structuring

    NASA Astrophysics Data System (ADS)

    Pavlov, Ihor; Tokel, Onur; Yavuz, Ozgun; Makey, Ghaith; Ilday, Omer; Omer Ilday Team

    Laser Induced Periodic Surface Structuring (LIPSS) is one of the most prominent directions in laser-material interaction due to both practical and theoretical importance, especially after the discovery of Nonlinear Laser Lithography (NLL), which opens new area for industrial application of LIPSS as an effective tool for controllable, highly ordered large area nanostructuring. LIPSS appear on the surface under laser beam in the form of periodical lines. The LIPSS, that appear perpendicular to laser polarization are called ``normal'', in contrast to ``anomalous'' LIPSS appearing parallel to the polarization. Although, NLL technique was already demonstrated for ``normal'' and ``anomalous'' LIPSS separately, up to now, there is no clear understanding of switching mechanism between these two modes. In presented paper we have shown that the mechanism relies on interplay between two feedbacks: long range, low intensity dipole-like scattering of light along the surface, and short range, high intensity plasmon-polariton wave. For the first time, we are able to create both types of LIPSS on the same surface by controlling these two feedbacks, obtaining highly-ordered large-area structured patterns in both modes.

  17. Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline

    NASA Astrophysics Data System (ADS)

    Bu, Dan; Zhuang, Huisheng

    2013-01-01

    Copper-doped titania (Cu/TiO2) hollow microspheres were fabricated using the rape pollen as biotemplates via an improved sol-gel method and a followed calcinations process. In the fabricated process, a titanium(IV)-isopropoxide-based sol directly coated onto the surface of rape pollen. Subsequently, after calcinations, rape pollen was removed by high temperature and the hollow microsphere structure was retained. The average diameter of as-obtained hollow microspheres is 15-20 μm and the thickness of shell is approximately 0.6 μm. Knowing from XRD results, the main crystal phase of microspheres is anatase, coupled with rutile. The specific surface area varied between 141.80 m2/g and 172.51 m2/g. This hollow sphere photocatalysts with high specific surface area exhibited stronger absorption ability and higher photoactivity, stimulated by visible light. The degradation process of chlortetracycline (CTC) solution had been studied. The degradated results indicate that CTC could be effective degradated by fabricated hollow spherical materials. And the intermediate products formed in the photocatalytic process had been identified.

  18. Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data

    USGS Publications Warehouse

    Chiou, C.T.; Rutherford, D.W.; Manes, M.

    1993-01-01

    Vapor sorption isotherms of ethylene glycol monoethyl ether (EGME) at room temperature and isotherms of N2 gas at liquid nitrogen temperature were determined for various soils and minerals. The N2 monolayer capacities [Qm (N2)] were calculated from the BET equation and used to determine the surface areas. To examine whether EGME is an appropriate adsorbate for determination of surface areas, the apparent EGME monolayer capacities [Qm (EGME)ap] were also obtained by use of the BET equation. For sand, aluminum oxide, kaolinite, hematite, and synthetic hydrous iron oxide, which are relatively free of organic impurity and expanding/solvating minerals, the Qm (EGME)ap values are in good conformity with the corresponding Qm (N2) values and would give surface areas consistent with BET (N2) values. For other samples (Woodburn soil, a natural hydrous iron oxide, illite, and montmorillonite), the Qm (EGME)ap values overestimate the Qm (N2) values from a moderate to a large extent, depending on the sample. A high-organic-content peat shows a very small BET (N2) surface area; the EGME/ peat isotherm is linear and does not yield a calculation of the surface area. Large discrepancies between results of the two methods for some samples are attributed to the high solubility of polar EGME in soil organic matter and/ or to the cation solvation of EGME with solvating clays. The agreement for other samples is illustrative of the consistency of the BET method when different adsorbates are used, so long as they do not exhibit bulk penetration and/or cation solvation. ?? 1993 American Chemical Society.

  19. Combining tractography and cortical measures to test system-specific hypotheses in multiple sclerosis

    PubMed Central

    Gorgoraptis, Nikos; Wheeler-Kingshott, Claudia AM; Jenkins, Thomas M; Altmann, Daniel R; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2010-01-01

    The objective was to test three motor system-specific hypotheses in multiple sclerosis patients: (i) corticospinal tract and primary motor cortex imaging measures differ between multiple sclerosis patients and controls; (ii) in patients, these measures correlate with disability; (iii) in patients, corticospinal tract measures correlate with measures of the ipsilateral primary motor cortex. Eleven multiple sclerosis patients with a history of hemiparesis attributable to a lesion within the contralateral corticospinal tract, and 12 controls were studied. We used two advanced imaging techniques: (i) diffusion-based probabilistic tractography, to obtain connectivity and fractional anisotropy of the corticospinal tract; and (ii) FreeSurfer, to measure volume, thickness, surface area, and curvature of precentral and paracentral cortices. Differences in these measures between patients and controls, and relationships between each other and to clinical scores, were investigated. Patients showed lower corticospinal tract fractional anisotropy and smaller volume and surface area of the precentral gyrus than controls. In patients, corticospinal tract connectivity and paracentral cortical volume, surface area, and curvature were lower with increasing disability; lower connectivity of the affected corticospinal tract was associated with greater surface area of the ipsilateral paracentral cortex. Corticospinal tract connectivity and new measures of the primary motor cortex, such as surface area and curvature, reflect the underlying white and grey matter damage that contributes to disability. The correlation between lower connectivity of the affected corticospinal tract and greater surface area of the ipsilateral paracentral cortex suggests the possibility of cortical adaptation. Combining tractography and cortical measures is a useful approach in testing hypotheses which are specific to clinically relevant functional systems in multiple sclerosis, and can be applied to other neurological diseases. PMID:20215478

  20. Resuscitation burn card--a useful tool for burn injury assessment.

    PubMed

    Malic, C C; Karoo, R O S; Austin, O; Phipps, A

    2007-03-01

    It is well recognised that the initial assessment of body surface area affected by a burn is often over estimated in Accident and Emergency Departments. A useful aide-memoir in the acute setting is Wallace's "rule of nines" or using the patients' palmar surface of the hand, which approximates 1% of the total body surface area, as a method of assessment. Unfortunately, as with every system, limitations apply. Factors such as patient size and the interpretation of what is exactly the 'palmar surface' may significantly influence burn size estimations and subsequently fluid resuscitation. Our aim is to develop a simple, quick and easy reproducible method of calculating burn injuries for medical professionals in the acute setting. Worldwide, the dimensions of a credit card are standardized (8.5 cm x 5.3 cm), thus producing a surface area of 45 cm2. We created a resuscitation burn card (RBC) using these exact same proportions, upon which a modified body surface area (BSA) nomogram was printed. Knowing the patient height and weight, we calculated the surface area of the card as percentage of total body surface area (TBSA). On the opposite site of the RBC, a Lund and Browder chart was printed, as well as the Parkland formula and a formula to calculate paediatric burn fluid requirements. The plastic, flexible RBC conformed well to the body contour and was designed for single use. We used the resuscitation burn card in the initial assessment of simulated burns in a Regional Burn Centre and in an Accident and Emergency Department. The information present on the card was found to be clear and straightforward to use. The evaluation of burn extent was found to be more accurately measured than the estimation obtained without the RBC. The resuscitation burn card can be a valuable tool in the hands of less experienced medical professionals for the early assessment and fluid resuscitation of a burn.

  1. Effects of operative conditions on products obtained of starch-oil mixtures by single-screw extrusion.

    PubMed

    Włodarczyk-Stasiak, Marzena; Mazurek, Artur; Jamroz, Jerzy

    2017-01-01

    d. The aim of the study was to evaluate the fat binding and physicochemical properties of the products under conditions of potato starch extrusion containing rapeseed or linseed oil and rapeseed oil with glycerol. The study dealt with the extrudates of potato starch produced with the addition of rape seed or linseed oil and rapeseed oil and glycerol at 22% humidity. The extrudates were obtained at two screw speeds: 80 rpm and 100 rpm. Extrudates containing rapeseed oil and glycerol (R6G) were obtained at a temperature distribution of 115/130/150°C, while those with the participation of rapeseed oil and linseed oil were obtained at 120/135/128°C. Water solubility index (WSI), water absorption index (WAI), specific surface area (SBET) and quantity of fat permanently bound were determined for the products obtained. When oils were added, the solubility of extrudates decreased as compared to the control samples (starch without oil; S). Rapeseed oil added to the starch mixture at the levels of 3 g and 6 g in had no sig- nificant effect on the solubility of the product and amounted to: 80.3–82.6% and 78–79.6%. The largest decrease in solubility (WSI, 55.4–57.1%) was demonstrated for samples with 6% addition of rapeseed oil and 10 g glycerol. For these samples (R6G), a significant increase in the index WAI (376–397%) was recorded. Extrudates obtained with the addition of 3 g of rapeseed oil absorbed slightly more water than those with 6 g of oil added. The specific surface area (SBET 230–256 m2/g) determined from the water vapor adsorption isotherm indicates no statistically significant difference at α = 0.05 for products with rapeseed oil, linseed oil, and controls. A significant increase in the specific surface area (SBET 284–347 m2/g) was observed for samples with 6g rapeseed oil and 10 g glycerol added. For samples with 3 g of rapeseed oil, the amount of bound fat was 1.9–2.1 g/100 g of starch and for 6% the starch percentage was 2.96–3.5 g/100 g. The water solubility of starch extrudates with the addition of oils decreases with an increase   in screw speed. Starch extrudates with linseed oil and rapeseed oil plus added glycerol are characterized by an increase in water-absorption capacity with respect to the control extrudates. The products obtained with the addition of rapeseed oil and glycerol exhibit a significant increase in their specific surface area. The quan- tity of fat permanently bound during extrusion depended on: the oil type, its percentage in the mixture and the screw speed. The linseed oil was the least absorbed in the starch structure, but rapeseed oil binding increased with the increase in its level in the mixture.

  2. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    PubMed

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.« less

  4. Terrain-Moisture Classification Using GPS Surface-Reflected Signals

    NASA Technical Reports Server (NTRS)

    Grant, Michael S.; Acton, Scott T.; Katzberg, Stephen J.

    2006-01-01

    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.

  5. Pressure and heat-transfer distributions in a simulated wing-elevon cove with variable leakage at a free-stream Mach number of 6.9

    NASA Technical Reports Server (NTRS)

    Deveikis, W. D.; Bartlett, W.

    1978-01-01

    An experimental aerodynamic heating investigation was conducted to determine effects of hot boundary-layer ingestion into the cove on the windward surface between a wing and elevon for cove seal leak areas nominally between 0 and 100 percent of cove entrance area. Pressure and heating-rate distributions were obtained on the wing and elevon surfaces and on the cove walls of a full-scale model that represented a section of the cove region on the space shuttle orbiter. Data were obtained for both attached and separated turbulent boundary layers upstream of the unswept cove entrance. Average free-stream Mach number was 6.9, average free-stream unit Reynolds numbers were 1.31 x 10 to the 6th power and 4.40 x 10 to the 6th power per meter (0.40 x 10 to the 6th power and 1.34 x 10 to the 6th power per foot), and average total temperature was 1888 K (3400 R). Cove pressures and heating rates varied as a function of seal leak area independent of leak aspect ratio. Although cove heating rates for attached flow did not appear intolerable, it was postulated that convective heating in the cove may increase with time. For separated flow, the cove environment was considered too severe for unprotected interior structures of control surfaces.

  6. In-situ electrochemically active surface area evaluation of an open-cathode polymer electrolyte membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.

    2016-09-01

    The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.

  7. Geodetic monitoring of subrosion-induced subsidence processes in urban areas

    NASA Astrophysics Data System (ADS)

    Kersten, Tobias; Kobe, Martin; Gabriel, Gerald; Timmen, Ludger; Schön, Steffen; Vogel, Detlef

    2017-03-01

    The research project SIMULTAN applies an advanced combination of geophysical, geodetic, and modelling techniques to gain a better understanding of the evolution and characteristics of sinkholes. Sinkholes are inherently related to surface deformation and, thus, of increasing societal relevance, especially in dense populated urban areas. One work package of SIMULTAN investigates an integrated approach to monitor sinkhole-related mass translations and surface deformations induced by salt dissolution. Datasets from identical and adjacent points are used for a consistent combination of geodetic and geophysical techniques. Monitoring networks are established in Hamburg and Bad Frankenhausen (Thuringia). Levelling surveys indicate subsidence rates of about 4-5 mm per year in the main subsidence areas of Bad Frankenhausen with a local maximum of 10 mm per year around the leaning church tower. Here, the concept of combining geodetic and gravimetric techniques to monitor and characterise geological processes on and below the Earth's surface is exemplary discussed for the focus area Bad Frankenhausen. For the different methods (levelling, GNSS, relative/absolute gravimetry) stable network results at identical points are obtained by the first campaigns, i.e., the results are generally in agreement.

  8. Aerodynamic characteristics of wings designed with a combined-theory method to cruise at a Mach number of 4.5

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1988-01-01

    A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.

  9. Using structured light three-dimensional surface scanning on living individuals: Key considerations and best practice for forensic medicine.

    PubMed

    Shamata, Awatif; Thompson, Tim

    2018-04-01

    Non-contact three-dimensional (3D) surface scanning methods have been applied to forensic medicine to record injuries and to mitigate ordinary photography shortcoming. However, there are no literature concerning practical guidance for 3D surface scanning of live victims. This paper aimed to investigate key 3D scanning issues of the live body to develop a series of scanning principles for future use on injured victims. The Pico Scan 3D surface scanner was used on live test subjects. The work focused on analysing the following concerns: (1) an appropriate 3D scanning technique to scan different body areas, (2) the ideal number of scans, (3) scanning approaches to access various areas of the body and (4) elimination of environmental background noise in the acquired data. Results showed that scanning only a required surface of the body area in the stable manner was more efficient when compared to complete 360°-scanning; therefore, it used as a standard 3D scanning technique. More than three scans were sufficient when trying to obtain an optimal wireframe mode presentation of the result. Three different approaches were suggested to provide access to the various areas of the body. Undertaking scanning using a black background eliminated the background noise. The work demonstrated that the scanner will be promising to reconstruct injuries from different body areas, although the 3D scanning of the live subjects faced some challenges. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  10. A Physically Based Distributed Hydrologic Model with a no-conventional terrain analysis

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Menduni, G.; Rosso, R.

    2003-12-01

    A physically based distributed hydrological model is presented. Starting from a contour-based terrain analysis, the model makes a no-conventional discretization of the terrain. From the maximum slope lines, obtained using the principles of minimum distance and orthogonality, the models obtains a stream tubes structure. The implemented model automatically can find the terrain morphological characteristics, e.g. peaks and saddles, and deal with them respecting the stream flow. Using this type of discretization, the model divides the elements in which the water flows in two classes; the cells, that are mixtilinear polygons where the overland flow is modelled as a sheet flow and channels, obtained by the interception of two or more stream tubes and whenever surface runoff occurs, the surface runoff is channelised. The permanent drainage paths can are calculated using one of the most common methods: threshold area, variable threshold area or curvature. The subsurface flow is modelled using the Simplified Bucket Model. The model considers three type of overland flow, depending on how it is produced:infiltration excess;saturation of superficial layer of the soil and exfiltration of sub-surface flow from upstream. The surface flow and the subsurface flow across a element are routed according with the mono-dimensional equation of the kinematic wave. The also model considers the spatial variability of the channels geometry with the flow. The channels have a rectangular section with length of the base decreasing with the distance from the outlet and depending on a power of the flow. The model was tested on the Rio Gallina and Missiaga catchments and the results showed model good performances.

  11. Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Yalcinkaya, Esref; Alp, Hakan; Ozel, Oguz; Gorgun, Ethem; Martino, Salvatore; Lenti, Luca; Bourdeau, Celine; Bigarre, Pascal; Coccia, Stella

    2016-11-01

    In this study, near-surface geophysical techniques are used to investigate the physical characteristics of the Buyukcekmece landslide (Istanbul, Turkey). The Buyukcekmece landslide has continuous activity at a low velocity and is classified as a complex mechanism. It includes rototranslational parts, several secondary scarps, several landslide terraces, and evidence of two earth flows. It mainly develops in the clayey layers of the Danismen Formation. According to our findings, P-wave velocities ranging from 300 m/s to 2400 m/s do not provide notable discrimination between sliding mass and stable soil. They show variations in blocks reflecting a complex structure. We obtained the S-wave velocity structure of the landslide up to 80 m by combining the analysis of MASW and ReMi. It is clear that S-wave velocities are lower in the landslide compared to those of the stable area. Identical S-wave velocities for the entire area at depths higher than 60 m may point out the maximum thickness of the landslide mass. Resonance frequencies obtained from the H/V analysis of the landslide area are generally higher than those of the stable area. The depths computed by using an empirical relationship between the resonance frequency and the soil thickness point out the failure surfaces from 10 to 50 m moving downslope from the landslide crown area. The resistivity values within the landslide are generally lower than 30 Ω m, i.e., a typical value for remolded clayey debris. The geophysical results reflect an overview of the geological model, but the complexity of the landslide makes it difficult to map the landslide structure in detail.

  12. Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study

    PubMed Central

    Kim, Chong-Myeong

    2017-01-01

    PURPOSE This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. MATERIALS AND METHODS A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). RESULTS The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface (P<.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. CONCLUSION Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns. PMID:28874991

  13. Interaction of Highly Underexpanded Jets with Simulated Lunar Surfaces

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1961-01-01

    Pressure distributions and erosion patterns on simulated lunar surfaces (hard and soft) and interference effects between the surface and two representative lunar vehicles (cylindrical and spherical) were obtained with cold-air jets at various descent heights and nozzle total-pressure ratios up to 288,000. Surface pressure distributions were dependent on both nozzle area ratio and, nozzle contour. Peak pressures obtained with a sonic nozzle agreed closely with those predicted theoretically for a near-sonic jet expanding into a vacuum. Short bell-shaped nozzles gave annular pressure distributions; the low center pressure resulted from the coalescence of shocks that originated within the nozzle. The high surface pressures were contained within a circle whose diameter was about 16 throat diameters, regardless of nozzle area ratio or contour. The peak pressure increased rapidly as the vehicle approached the surface; for example, at a descent height of 40 throat diameters the peak pressure was 0.4 percent of the chamber pressure, but increased to 6 percent at 13 throat diameters. The exhaust jet eroded a circular concave hole in white sand at descent heights from about 200 to 600 throat diameters. The hole diameter was about 225 throat diameters, while the depth was approximately 60 throat diameters. The sand particles, which formed a conical sheet at a semivertex angle of 50 deg, appeared to follow a ballistic trajectory and at no time struck the vehicle. An increase in pressure was measured on the base of the cylindrical lunar vehicle when it approached to within 14 throat diameters of the hard, flat surface. No interference effects were noted between the spherical model and the surface to descent heights as low as 8 throat diameters.

  14. Remote sensing of soils, land forms, and land use in the northern great plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.

  15. Hydrogen generation from water/methanol under visible light using aerogel prepared strontium titanate (SrTiO3) nanomaterials doped with ruthenium and rhodium metals

    NASA Astrophysics Data System (ADS)

    Kuo, Yenting; Klabunde, Kenneth J.

    2012-07-01

    Nanostructured strontium titanate visible-light-driven photocatalysts containing rhodium and ruthenium were synthesized by a modified aerogel synthesis using ruthenium chloride and rhodium nitrate as dopant precursors, and titanium isopropoxide and strontium metal as the metal sources. The well-defined crystalline SrTiO3 structure was confirmed by means of x-ray diffraction. After calcination at 500 °C, diffuse reflectance spectroscopy shows an increase in light absorption at 370 nm due to the presence of Rh3 + ; however an increase of the calcination temperature to 600 °C led to a decrease in intensity, probably due to a loss of surface area. An increase in the rhodium doping level also led to an increase in absorption at 370 nm however, the higher amounts of dopant lowered the photocatalytic activity. The modified aerogel synthesis allows greatly enhanced H2 production performance from an aqueous methanol solution under visible light irradiation compared with lower surface area conventional materials. We believe that this enhanced activity is due to the higher surface areas while high quality nanocrystalline materials are still obtained. Furthermore, the surface properties of these nanocrystalline aerogel materials are different, as exhibited by the higher activities in alkaline solutions, while conventional materials (obtained via high temperature solid-state synthesis methods) only exhibit reasonable hydrogen production in acidic solutions. Moreover, an aerogel synthesis approach gives the possibility of thin-film formation and ease of incorporation into practical solar devices.

  16. Utility of Thermal Infrared Satellite Data For Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Xian, G.; Crane, M.; Granneman, B.

    2006-12-01

    Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.

  17. The influence of lifestyle on airborne particle surface area doses received by different Western populations.

    PubMed

    Pacitto, A; Stabile, L; Moreno, T; Kumar, P; Wierzbicka, A; Morawska, L; Buonanno, G

    2018-01-01

    In the present study, the daily dose in terms of particle surface area received by citizens living in five cities in Western countries, characterized by different lifestyle, culture, climate and built-up environment, was evaluated and compared. For this purpose, the exposure to sub-micron particle concentration levels of the population living in Barcelona (Spain), Cassino (Italy), Guilford (United Kingdom), Lund (Sweden), and Brisbane (Australia) was measured through a direct exposure assessment approach. In particular, measurements of the exposure at a personal scale were performed by volunteers (15 per each population) that used a personal particle counter for different days in order to obtain exposure data in microenvironments/activities they resided/performed. Non-smoking volunteers performing non-industrial jobs were considered in the study. Particle concentration data allowed obtaining the exposure of the population living in each city. Such data were combined in a Monte Carlo method with the time activity pattern data characteristics of each population and inhalation rate to obtain the most probable daily dose in term of particle surface area as a function of the population gender, age, and nationality. The highest daily dose was estimated for citizens living in Cassino and Guilford (>1000 mm 2 ), whereas the lowest value was recognized for Lund citizens (around 100 mm 2 ). Indoor air quality, and in particular cooking and eating activities, was recognized as the main influencing factor in terms of exposure (and thus dose) of the population: then confirming that lifestyle (e.g. time spent in cooking activities) strongly affect the daily dose of the population. On the contrary, a minor or negligible contribution of the outdoor microenvironments was documented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Soil Moisture Content Estimation using GPR Reflection Travel Time

    NASA Astrophysics Data System (ADS)

    Lunt, I. A.; Hubbard, S. S.; Rubin, Y.

    2003-12-01

    Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during four data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennae. GPR reflections were associated with a thin, low permeability clay layer located between 0.8 to 1.3 m below the ground surface that was calibrated with borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 2 percent. We also investigated the estimation of VWC using reflections associated with an advancing water front, and found that estimates of average VWC to the water front could be obtained with similar accuracy. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface or wetting front can be used under natural conditions to obtain estimates of average water content when borehole control is available. The GPR reflection method therefore has potential for monitoring soil water content over large areas and under variable hydrological conditions.

  19. Regeneration of Waste Edible Oil by the Use of Virgin and Calcined Magnesium Hydroxide as Adsorbents.

    PubMed

    Ogata, Fumihiko; Kawasaki, Naohito

    2016-01-01

    In this study, we prepared virgin (S, L) and calcined (S-380, S-1000, L-380, L-1000) magnesium hydroxide for regeneration of waste edible oil. Deterioration of soybean oil, rapeseed oil, and olive oil was achieved by heat and aeration treatment. The properties of the different adsorbents were investigated using specific surface area measurements, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, and surface pH measurement. Moreover, the relationship between the changes in acid value (AV) and carbonyl value (CV) and the adsorbent properties were evaluated. The specific surface areas of S-380 and L-380 were greater than that of other adsorbents. In addition, the XRD results show that S-380 and L-380 contain both magnesium hydroxide and magnesium oxide structures. The decreases in AV and CV using S-380 and L-380 were greater than achieved using other adsorbents. The correlation coefficients between the decrease in AV and CV and specific surface area were 0.947 for soybean oil, 0.649 for rapeseed oil, and 0.773 for olive oil, respectively. The results obtained in this study suggest that a physical property of the adsorbent, namely specific surface area, was primarily responsible for the observed decreases in AV and CV. Overall, the results suggest that S-380 and L-380 are useful for the regeneration of waste edible oil.

  20. Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors.

    PubMed

    Song, Yanfang; Li, Li; Wang, Yonggang; Wang, Congxiao; Guo, Zaipin; Xia, Yongyao

    2014-07-21

    A new nitrogen-doped ordered mesoporous carbon (N-doped OMC) is synthesized by using an organic-inorganic coassembly method, in which resol is used as the carbon precursor, dicyandiamide as the nitrogen precursor, silicate oligomers as the inorganic precursors, and F127 as the soft template. The N-doped OMC possesses a surface area as high as 1374 m(2)  g(-1) and a large pore size of 7.4 nm. As an electrode material for supercapacitors, the obtained carbon exhibits excellent cycling stability and delivers a reversible specific capacitance as high as 308 F g(-1) in 1 mol L(-1) H(2)SO(4) aqueous electrolyte, of which 58 % of the capacity is due to pseudo-capacitance. The large specific capacitance is attributed to proper pore size distributions, large surface area, and high nitrogen content. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

    DOE PAGES

    Luo, Wei; Bommier, Clement; Jian, Zelang; ...

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-offmore » of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  2. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.

    PubMed

    Du, Xuan; Zhao, Wei; Wang, Yi; Wang, Chengyang; Chen, Mingming; Qi, Tao; Hua, Chao; Ma, Mingguo

    2013-12-01

    Activated carbon hollow fibers (ACHFs) with high surface area were prepared from inexpensive, renewable ramie fibers (RFs) by a single-step activation method under lower temperature than that of other reports. The effects of activation conditions on the pore structure and turbostratic structure of ACHFs were investigated systematically. The results show that ACHFs surface area decreased but micropore volume and conductivity increased as the increase of activation temperature and activation time. The electrochemical measurements of supercapacitors fabricated from these ACHFs electrodes reveal that the electrochemical properties improved with the enhancing of activation degree. However, too high activation temperature can make the ion diffusion resistance increase. It suggests that pore structure and conductivity are as important as surface area to decide the electrochemical performances of ACHFs electrode materials. A maximum capacity of 287 F g(-1) at 50 mA g(-1) was obtained for the ACHFs electrode prepared under suitable conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Systematic studies of tannin–formaldehyde aerogels: preparation and properties

    PubMed Central

    Amaral-Labat, Gisele; Szczurek, Andrzej; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2013-01-01

    Gelation of tannin–formaldehyde (TF) solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer–Emmett–Teller (BET) surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g−1, is remarkably high for organic aerogels derived from a natural resource. PMID:27877559

  4. Systematic studies of tannin-formaldehyde aerogels: preparation and properties

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, Gisele; Szczurek, Andrzej; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2013-02-01

    Gelation of tannin-formaldehyde (TF) solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer-Emmett-Teller (BET) surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g-1, is remarkably high for organic aerogels derived from a natural resource.

  5. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks.

    PubMed

    Kuhn, Pierre; Forget, Aurélien; Su, Dangsheng; Thomas, Arne; Antonietti, Markus

    2008-10-08

    High surface area organic materials featuring both micro- and mesopores were synthesized under ionothermal conditions via the formation of polyaryltriazine networks. While the polytrimerization of nitriles in zinc chloride at 400 degrees C produces microporous polymers, higher reaction temperatures induce the formation of additional spherical mesopores with a narrow dispersity. The nitrogen-rich carbonaceous polymer materials thus obtained present surface areas and porosities up to 3300 m(2) g(-1) and 2.4 cm(3) g(-1), respectively. The key point of this synthesis relies on the occurrence of several high temperature polymerization reactions, where irreversible carbonization reactions coupled with the reversible trimerization of nitriles allow the reorganization of the dynamic triazine network. The ZnCl2 molten salt fulfills the requirement of a high temperature solvent, but is also required as catalyst. Thus, this dynamic polymerization system provides not only highly micro- and mesoporous materials, but also allows controlling the pore structure in amorphous organic materials.

  6. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W; Bommier, C; Jian, ZL

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m(2)/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burnoffmore » of sucrose caramel over a wider temperature range. The obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.« less

  7. Surface Texturing of Polyimide Composite by Micro-Ultrasonic Machining

    NASA Astrophysics Data System (ADS)

    Qu, N. S.; Zhang, T.; Chen, X. L.

    2018-03-01

    In this study, micro-dimples were prepared on a polyimide composite surface to obtain the dual benefits of polymer materials and surface texture. Micro-ultrasonic machining is employed for the first time for micro-dimple fabrication on polyimide composite surfaces. Surface textures of simple patterns were fabricated successfully with dimple depths of 150 μm, side lengths of 225-425 μm, and area ratios of 10-30%. The friction coefficient of the micro-dimple surfaces with side lengths of 325 or 425 μm could be increased by up to 100% of that of non-textured surfaces, alongside a significant enhancement of wear resistance. The results show that surface texturing of polyimide composite can be applied successfully to increase the friction coefficient and reduce wear, thereby contributing to a large output torque.

  8. Complex interaction of subsequent surface streamers via deposited charge: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Hoder, T.; Synek, P.; Chorvát, D.; Ráhel', J.; Brandenburg, R.; Černák, M.

    2017-07-01

    The coplanar barrier discharge in synthetic air at 30 kPa pressure was studied by time-correlated single photon counting enhanced optical emission spectroscopy, far-field microscopy enhanced intensified CCD camera and sensitive current measurements. The discharge operated in a regime where two subsequent microdischarges appeared within the same voltage half-period. The electrical analysis of the barrier discharge setup enabled us to quantify charge transfer and the effective electric field development. During the second microdischarge the positive surface streamers follow the interface (triple-line) between the area of deposited charge from the previous one and the area of uncharged dielectric surface. It is shown that additional branching and flashes of surface streamers are responsible for the increased spatial complexity of the deposited surface charges at high overvoltage. A suppressed streamer propagating over the area of deposited surface charge was tracked and the evidence of surface streamer reconnection is presented. A spatiotemporal distribution (resolution of 120 ps and 100 μm) of the reduced electric field strength was obtained for both microdischarges from the recorded luminosities of the molecular nitrogen. The reduced electric field of positive streamers in the first microdischarge reached 1200 Td. For the second one, the electric field values for the streamer at the triple-line are slightly lower than that, while for the suppressed streamers are even higher.

  9. Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition.

    PubMed

    Israr, Farrukh; Kim, Duk Kyung; Kim, Yeongmin; Oh, Seung Jin; Ng, Kim Choon; Chun, Wongee

    2016-03-01

    Cu-BTC (BTC=1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m(2)/g was obtained from the crystals taken with the solvent condition of water:DMF=70:30. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A DNS study of the physical mechanisms associated with density ratio influence on turbulent burning velocity in premixed flames

    NASA Astrophysics Data System (ADS)

    Lipatnikov, Andrei N.; Chomiak, Jerzy; Sabelnikov, Vladimir A.; Nishiki, Shinnosuke; Hasegawa, Tatsuya

    2018-01-01

    Data obtained in 3D direct numerical simulations of statistically planar, 1D weakly turbulent flames characterised by different density ratios σ are analysed to study the influence of thermal expansion on flame surface area and burning rate. Results show that, on the one hand, the pressure gradient induced within a flame brush owing to heat release in flamelets significantly accelerates the unburned gas that deeply intrudes into the combustion products in the form of an unburned mixture finger, thus causing large-scale oscillations of the burning rate and flame brush thickness. Under the conditions of the present simulations, the contribution of this mechanism to the creation of the flame surface area is substantial and is increased by σ, thus implying an increase in the burning rate by σ. On the other hand, the total flame surface areas simulated at σ = 7.53 and 2.5 are approximately equal. The apparent inconsistency between these results implies the existence of another thermal expansion effect that reduces the influence of σ on the flame surface area and burning rate. Investigation of the issue shows that the flow acceleration by the combustion-induced pressure gradient not only creates the flame surface area by pushing the finger tip into the products, but also mitigates wrinkling of the flame surface (the side surface of the finger) by turbulent eddies. The latter effect is attributed to the high-speed (at σ = 7.53) axial flow of the unburned gas, which is induced by the axial pressure gradient within the flame brush (and the finger). This axial flow acceleration reduces the residence time of a turbulent eddy in an unburned zone of the flame brush (e.g. within the finger). Therefore, the capability of the eddy for wrinkling the flamelet surface (e.g. the side finger surface) is weakened owing to a shorter residence time.

  11. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    NASA Astrophysics Data System (ADS)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  12. Influence of surface defects on the tensile strength of carbon fibers

    NASA Astrophysics Data System (ADS)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  13. Coherent diffraction surface imaging in reflection geometry.

    PubMed

    Marathe, Shashidhara; Kim, S S; Kim, S N; Kim, Chan; Kang, H C; Nickles, P V; Noh, D Y

    2010-03-29

    We present a reflection based coherent diffraction imaging method which can be used to reconstruct a non periodic surface image from a diffraction amplitude measured in reflection geometry. Using a He-Ne laser, we demonstrated that a surface image can be reconstructed solely from the reflected intensity from a surface without relying on any prior knowledge of the sample object or the object support. The reconstructed phase image of the exit wave is particularly interesting since it can be used to obtain quantitative information of the surface depth profile or the phase change during the reflection process. We believe that this work will broaden the application areas of coherent diffraction imaging techniques using light sources with limited penetration depth.

  14. Comparison Between AQUARIUS and SMOS brightness temperatures for Heterogeneous Land Areas

    NASA Astrophysics Data System (ADS)

    Benlloch, Amparo; Lopez-Baeza, Ernesto; Tenjo, Carolina; Navarro, Enrique

    2016-07-01

    Intercomparison between Aquarius and SMOS brightness temperatures (TBs) over land surfaces is more challenging than over oceans because land footprints are more heterogeneous. In this work we are comparing Aquarius and SMOS TBs under coherente conditions obtained both by considering similar areas, according to land uses and by stratifying by means of TVDI (Temperature Vegetation Dryness Index) that accounts for the dynamics of the vegetation instead of assuming static characteristics as in the previous approches. The area of study was chosen in central Spain where we could get a significant number of matches between both instruments. The study period corresponded to 2012-2014. SMOS level-3 data were obtained from the Centre Aval de Traitement des Données SMOS (CATDS) and Aquarius' from the Physical Oceanography Distributed Active Archive Center (PODAAC). Land uses were obtained from the Spanish SIOSE facility (Sistema de Informacion de Ocupacion del Suelo en España) that uses a scale of 1:25.000 and polygon geometrical structure layer. SIOSE is based on panchromatic and multispectral 2.5 m resolution SPOT-5 images together with Landsat-5 images and orthophotos from the Spanish Nacional Plan of Aerial Orthophotography (PNOA). TVDI values were obtained from MODIS operational products of land surface temperature and NDVI. SMOS ascending TBs were compared to inner-beam Aquarius descending half-orbit TBs coinciding over the study area at 06:00 h. The Aquarius inner beam has an incidence angle of 28,7º and SMOS data were considered for the 27,5º incidence angle. The SMOS products corresponded to version 2.6x (data before 31st Oct 2013) and version 2.7x (data after 1st Jan 2014). Intersections between both footprints were analysed under conditions of similar areas, land uses and TVDI values. For the latter (land uses/TVDI), a linear combination of SMOS land uses/TVDI was obtained to match the larger Aquarius footprint. A more physical approach is also under way including the Aquarius antenna pattern in the aggregation of the SMOS data.

  15. Solution blow spinning of food-grade gelatin nanofibers

    USDA-ARS?s Scientific Manuscript database

    The primary advantage of nanofibers over larger diameter fibers is the larger surface area to volume ratio. This study evaluated solution blow spinning (SBS) processing conditions for obtaining food-grade gelatin nanofibers from mammalian and fishery by-products, such as pork skin gelatins (PGs) and...

  16. Tobacco Stem-Based Activated Carbons for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Liu, Hongbo; Shi, Lei; He, Yuede

    2012-09-01

    Tobacco stem-based activated carbons (TS-ACs) were prepared by simple KOH activation and their application as electrodes in the electrical double layer capacitor (EDLC) performed successfully. The BET surface area, pore volume, and pore size distribution of the TS-ACs were evaluated based on N2 adsorption isotherms at 77 K. The surface area of the obtained activated carbons varies over a wide range (1472.8-3326.7 m2/g) and the mesoporosity was enhanced significantly as the ratio of KOH to tobacco stem (TS) increased. The electrochemical behaviors of series TS-ACs were characterized by means of galvanostatic charging/discharging, cyclic voltammetry, and impedance spectroscopy. The correlation between electrochemical properties and pore structure was investigated. A high specific capacitance value as 190 F/g at 1 mA/cm2 was obtained in 1 M LiPF6-EC/DMC/DEC electrolyte solution. Furthermore, good performance is also achieved even at high current densities. A development of new use for TS into a valuable energy storage material is explored.

  17. Microporous novolac-derived carbon beads/sulfur hybrid cathode for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Choudhury, Soumyadip; Krüner, Benjamin; Massuti-Ballester, Pau; Tolosa, Aura; Prehal, Christian; Grobelsek, Ingrid; Paris, Oskar; Borchardt, Lars; Presser, Volker

    2017-07-01

    Novolac-derived nanoporous carbon beads were used as conductive matrix for lithium-sulfur battery cathodes. We employed a facile self-emulsifying synthesis to obtain sub-micrometer novolac-derived carbon beads with nanopores. After pyrolysis, the carbon beads showed already a specific surface area of 640 m2 g-1 which was increased to 2080 m2 g-1 after physical activation. The non-activated and the activated carbon beads represent nanoporous carbon with a medium and a high surface area, respectively. This allows us to assess the influence of the porosity on the electrochemical performance of lithium-sulfur battery cathodes. The carbon/sulfur hybrids were obtained from two different approaches of sulfur infiltration: melt-infusion of sulfur (annealing) and in situ formation of sulfur from sodium thiosulfate. The best performance (∼880 mAh gsulfur-1 at low charge rate; 5th cycle) and high performance stability (>600 mAh gsulfur-1 after 100 cycles) were found for the activated carbon beads when using melt infusion of sulfur.

  18. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P. A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F. P.

    2012-06-01

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m2/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery.

  19. Synthesis and characterization of binary titania-silica mixed oxides

    NASA Astrophysics Data System (ADS)

    Budhi, Sridhar

    A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.

  20. Synthesis of nanocrystalline TiO 2 in toluene by a solvothermal route

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Tae Chung, Su; Son, Se-Mo

    2003-07-01

    A solvothermal synthetic method to TiO 2 nanoparticles has been investigated in toluene solutions with titanium isopropoxide (TIP) as precursor. Weight ratios of precursor to solvent prepared in the mixture are 5/100, 10/100, 20/100, 30/100 and 40/100. At the weight ratio of 10/100, 20/100 and 30/100, TiO 2 nanocrystalline particles were obtained after synthesis at 250°C for 3 h in an autoclave. X-ray diffraction and tranmission electron microscopy shows that the product has uniform anatase structure with average particle size below 20 nm. As the composition of TIP in the solution increases, the particle size of TiO 2 powder tends to increase. At 5/100 and 40/100, however, pale yellow colloidal solution is obtained after synthesis and crystalline phase of TiO 2 is not produced. The specific surface area of the TiO 2 nanocrystalline powder was also investigated using BET surface area analyzer.

  1. The statistical treatment implemented to obtain the planetary protection bioburdens for the Mars Science Laboratory mission

    NASA Astrophysics Data System (ADS)

    Beaudet, Robert A.

    2013-06-01

    NASA Planetary Protection Policy requires that Category IV missions such as those going to the surface of Mars include detailed assessment and documentation of the bioburden on the spacecraft at launch. In the prior missions to Mars, the approaches used to estimate the bioburden could easily be conservative without penalizing the project because spacecraft elements such as the descent and landing stages had relatively small surface areas and volumes. With the advent of a large spacecraft such as Mars Science Laboratory (MSL), it became necessary for a modified—still conservative but more pragmatic—statistical treatment be used to obtain the standard deviations and the bioburden densities at about the 99.9% confidence limits. This article describes both the Gaussian and Poisson statistics that were implemented to analyze the bioburden data from the MSL spacecraft prior to launch. The standard deviations were weighted by the areas sampled with each swab or wipe. Some typical cases are given and discussed.

  2. Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites.

    PubMed

    Munarin, F; Petrini, P; Gentilini, R; Pillai, R S; Dirè, S; Tanzi, M C; Sglavo, V M

    2015-01-01

    Pectin-based biocomposite hydrogels were produced by internal gelation, using different hydroxyapatite (HA) powders from commercial source or synthesized by the wet chemical method. HA possesses the double functionality of cross-linking agent and inorganic reinforcement. The mineralogical composition, grain size, specific surface area and microstructure of the hydroxyapatite powders are shown to strongly influence the properties of the biocomposites. Specifically, the grain size and specific surface area of the HA powders are strictly correlated to the gelling time and rheological properties of the hydrogels at room temperature. Pectin pH is also significant for the formation of ionic cross-links and therefore for the hydrogels stability at higher temperatures. The obtained results point out that micrometric-size hydroxyapatite can be proposed for applications which require rapid gelling kinetics and improved mechanical properties; conversely the nanometric hydroxyapatite synthesized in the present work seems the best choice to obtain homogeneous hydrogels with more easily controlled gelling kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Industrial inspection of specular surfaces using a new calibration procedure

    NASA Astrophysics Data System (ADS)

    Aswendt, Petra; Hofling, Roland; Gartner, Soren

    2005-06-01

    The methodology of phase encoded reflection measurements has become a valuable tool for the industrial inspection of components with glossy surfaces. The measuring principle provides outstanding sensitivity for tiny variations of surface curvature so that sub-micron waviness and flaws are reliably detected. Quantitative curvature measurements can be obtained from a simple approach if the object is almost flat. 3D-objects with a high aspect ratio require more effort to determine both coordinates and normal direction of a surface point unambiguously. Stereoscopic solutions have been reported using more than one camera for a certain surface area. This paper will describe the combined double camera steady surface approach (DCSS) that is well suited for the implementation in industrial testing stations

  4. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2007-01-01

    In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.

  5. Potential Bone to Implant Contact Area of Short Versus Standard Implants: An In Vitro Micro-Computed Tomography Analysis.

    PubMed

    Quaranta, Alessandro; DʼIsidoro, Orlando; Bambini, Fabrizio; Putignano, Angelo

    2016-02-01

    To compare the available potential bone-implant contact (PBIC) area of standard and short dental implants by micro-computed tomography (μCT) assessment. Three short implants with different diameters (4.5 × 6 mm, 4.1 × 7 mm, and 4.1 × 6 mm) and 2 standard implants (3.5 × 10 mm and 3.3 × 9 mm) with diverse design and surface features were scanned with μCT. Cross-sectional images were obtained. Image data were manually processed to find the plane that corresponds to the most coronal contact point between the crestal bone and implant. The available PBIC was calculated for each sample. Later on, the cross-sectional slices were processed by a 3-dimensional (3D) software, and 3D images of each sample were used for descriptive analysis and display the microtopography and macrotopography. The wide-diameter short implant (4.5 × 6 mm) showed the higher PBIC (210.89 mm) value followed by the standard (178.07 mm and 185.37 mm) and short implants (130.70 mm and 110.70 mm). Wide-diameter short implants show a surface area comparable with standard implants. Micro-CT analysis is a promising technique to evaluate surface area in dental implants with different macrodesign, microdesign, and surface features.

  6. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets.

    PubMed

    Reynolds, Thomas D; Mitchell, Shawn A; Balwinski, Karen M

    2002-04-01

    The purpose of this study was to investigate the influence of tablet surface area/volume (SA/Vol) on drug release from controlled-release matrix tablets containing hydroxypropylmethylcellulose (HPMC). Soluble drugs (promethazine HCl, diphenhydramine HCl, and propranolol HCl) were utilized in this study to give predominantly diffusion-controlled release. Drug release from HPMC matrix tablets with similar values of SA/Vol was comparable within the same tablet shape (i.e., flat-faced round tablets) and among different shapes (i.e., oval, round concave, flat-faced beveled-edge, and flat-faced round tablets). Tablets having the same surface area but different SA/Vol values did not result in similar drug release; tablets with larger SA/Vol values hadfaster release profiles. Utility of SA/Vol to affect drug release was demonstrated by changing drug doses, and altering tablet shape to adjust SA/Vol. When SA/Vol was held constant, similar release profiles were obtained with f2 metric values greater than 70. Thus, surface area/volume is one of the key variables in controlling drug release from HPMC matrix tablets. Proper use of this variable has practical application by formulators who may need to duplicate drug release profiles from tablets of different sizes and different shapes.

  7. Estimation of small reservoir storage capacities in the São Francisco, Limpopo, Bandama and Volta river basins using remotely sensed surface areas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Senzanje, Aidan; Cecchi, Philippe; Liebe, Jens

    2010-05-01

    People living in areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs (SR) are a widely used form of infrastructures to provide people in such areas with water during the dry season, e.g. in the basins of São Francisco, Brazil, Limpopo, Zimbabwe, Bandama, Ivory Coast and Volta, Ghana. In these areas, the available natural flow in the streams is sometimes less than the flow required for water supply or irrigation, however water can be stored in times of surplus, for example, from a wet season to a dry season. Efficient water management and sound reservoir planning are hindered by the lack of information about the functioning of these reservoirs. Reservoirs in these regions were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. Poor record keeping and the lack of appropriate institutional support result in deficiencies of information on the capacity, operation, and maintenance of these structures. Estimating the storage capacity of dams is essential to the responsible management of water diversion. Most of SR in these basins have never been evaluated, possibly because the tools currently used for such measurement are labor-intensive, costly and time-consuming. The objective of this research was to develop methodology to estimate small reservoir capacities as a function of their remotely sensed surface areas in the São Francisco, Limpopo, Bandama and Volta basins, as a way to contribute to improve the water resource management in those catchments. Remote sensing was used to identify, localize and characterize small reservoirs. The surface area of each was calculated from satellite images. A sub-set of reservoirs was selected. For each reservoir in the sub-set, the surface area was estimated from field surveys, and storage capacity was estimated using information on reservoir surface area, depth and shape. Depth was measured using a stadia rod or a manual echosounder. For reservoirs in the sub-set, estimated surface area was used as an input into the triangulated irregular network model. With the surface area and depth, measured volume was calculated. Comparisons were made between estimates of surface area from field surveys and estimates of surface area from remote sensing. A linear regression analysis was carried out to establish the relationship between surface area and storage capacities. Within geomorphologically homogenous regions, one may expect a good correlation between the surface area, which may be determined through satellite observations, and the stored volume. Such a relation depends on the general shape of the slopes (convex, through straight, to concave). The power relationships between remotely sensed surface areas (m^2) and storage capacities of reservoirs (m^3) obtained were - Limpopo basin (Lower Mzingwane sub-catchment): Volume = 0.023083 x Area^1.3272 (R2 = 95%); Bandama basin (North of the basin in Ivory Coast): Volume = 0.00405 x Area^1.4953 (R2 = 88.9%); Volta basin (Upper East region of the Volta Basin in Ghana): Volume = 0.00857 × Area^1.43 (R2 = 97.5%); São Francisco basin (Preto river sub-catchment): Volume = 0.2643 x Area^1.1632 (R2 = 92.1%). Remote sensing was found to be a suitable means to detect small reservoirs and accurately measure their surface areas. The general relationship between measured reservoir volumes and their remotely sensed surface areas showed good accuracy for all four basins. Combining such relationships with periodical satellite-based reservoir area measurements may allow hydrologists and planners to have clear picture of water resource system in the Basins, especially in ungauged sub-basins.

  8. Potential for downward leakage to the Floridan Aquifer, Green Swamp area, central Florida

    USGS Publications Warehouse

    Grubb, H.F.

    1977-01-01

    A qualitative evaluation of the potential for downward leakage from the surficial sand aquifer to the underlying Floridan aquifer was made for the Green Swamp area (about 870 sq mi) in central Florida. Downward leakage, or recharge, is limited under natural conditions owing to the nearness to land surface of the potentiometric surface of both the sand aquifer and the underlying Floridan aquifer. Continuous cores of the unconsolidated section were obtained at 74 sites in the study area and were evaluated for downward leakage potential based on grain-size distribution. Sand percentage was estimated for each interval or bed from microscopic examination of the core samples. The four maps prepared from this data show sand thickness, clay thickness, relative vertical hydraulic conductivity of the confining beds and the relative potential for downward leakage. About 20 percent (178 sq mi) of the area classified has a relatively good potential for downward leakage; almost 50 percent of the area has a relatively poor potential. (Woodard-USGS)

  9. Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium

    NASA Astrophysics Data System (ADS)

    Putz, Ana-Maria; Wang, Kunzhou; Len, Adél; Plocek, Jiri; Bezdicka, Petr; Kopitsa, Gennady P.; Khamova, Tamara V.; Ianăşi, Cătălin; Săcărescu, Liviu; Mitróová, Zuzana; Savii, Cecilia; Yan, Minhao; Almásy, László

    2017-12-01

    Mesoporous silica particles have been synthesized by sol-gel method from tetraethoxysilane (tetraethylorthosilicate, TEOS) and methyltriethoxysilane (MTES), in ethanol and water mixture, at different ratios of the of the silica precursors. Ammonia was used as catalyst at room temperature and hexadecyltrimethylammonium bromide (cetyltrimethylammonium bromide, CTAB) as the structure directing agent. Nitrogen sorption, X-ray diffraction and small-angle neutron scattering gave information on the evolution of the gel structure and pore morphologies in the function of MTES/TEOS molar ratio. Thermogravimetric and differential thermal analysis showed that with addition of MTES the exothermic peak indicating the oxidation of the low molecular weight organic fragments shift to higher temperature. A room-temperature, one-pot synthesis of MCM-41 type materials is presented, in which the variation of the MTES concentration allows to change the hydrophobicity, preserving the specific properties materials, like the ordered pore structure, large specific surface area and high porosity. Specifically, the obtained materials had cylindrical pores, specific surface areas up to 1101 m2/g and total pore volumes up to 0.473 cm3/g. The obtained mesoporous materials are susceptible for further functionalization to improve their selective uptake of guest species in drug delivery applications.

  10. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology.

    PubMed

    Coxson, H O; Hogg, J C; Mayo, J R; Behzad, H; Whittall, K P; Schwartz, D A; Hartley, P G; Galvin, J R; Wilson, J S; Hunninghake, G W

    1997-05-01

    We used computed tomography (CT) and histologic analysis to quantify lung structure in idiopathic pulmonary fibrosis (IPF). CT scans were obtained from IPF and control patients and lung volumes were estimated from measurements of voxel size, and X-ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained from biopsies obtained from diseased and normal CT regions using stereologic methods. CT density was used to calculate the proportion of tissue and air, and this value was used to correct the biopsy specimens to the level of inflation during the CT scan. The data show that IPF is associated with a reduction in airspace volume with no change in tissue volume or weight compared with control lungs. Lung surface area decreased two-thirds (p < 0.001) and mean parenchymal thickness increased tenfold (p < 0.001). An exudate of fluid and cells was present in the airspace of the diseased lung regions and the number of inflammatory cells, collagen, and proteoglycans was increased per 100 g of tissue in IPF. We conclude that IPF reorganized lung tissue content causing a loss of airspace and surface area without increasing the total lung tissue.

  11. Innovative approach to retrieve land surface emissivity and land surface temperature in areas of highly dynamic emissivity changes by using thermal infrared data

    NASA Astrophysics Data System (ADS)

    Heinemann, S.

    2015-12-01

    The land surface temperature (LST) is an extremely significant parameter in order to understand the processes of energetic interactions between Earth's surface and atmosphere. This knowledge is significant for various environmental research questions, particularly with regard to the recent climate change. This study shows an innovative approach to retrieve land surface emissivity (LSE) and LST by using thermal infrared (TIR) data from satellite sensors, such as SEVIRI and AATSR. So far there are no methods to derive LSE/LST particularly in areas of highly dynamic emissivity changes. Therefore especially for regions with large surface temperature amplitude in the diurnal cycle such as bare and uneven soil surfaces but also for regions with seasonal changes in vegetation cover including various surface areas such as grassland, mixed forests or agricultural land different methods were investigated to identify the most appropriate one. The LSE is retrieved by using the day/night Temperature-Independent Spectral Indices (TISI) method, and the Generalised Split-Window (GSW) method is used to retrieve the LST. Nevertheless different GSW algorithms show that equal LSEs lead to large LST differences. Additionally LSE is also measured using a NDVI-based threshold method (NDVITHM) to distinguish between soil, dense vegetation cover and pixel composed of soil and vegetation. The data used for this analysis were derived from MODIS TIR. The analysis is implemented with IDL and an intercomparison is performed to determine the most effective methods. To compensate temperature differences between derived and ground truth data appropriate correction terms by comparing derived LSE/LST data with ground-based measurements are developed. One way to calibrate LST retrievals is by comparing the canopy leaf temperature of conifers derived from TIR data with the surrounding air temperature (e.g. from synoptic stations). Prospectively, the derived LSE/LST data become validated with near infrared data obtained from an UVA with a TIR camera (TIRC) onboard, and also compared with ground-based measurements. This study aims to generate an appropriate method by integrating developed correction terms to eventually obtain a high correlation between all, LSE/LST, TIRC and ground truth data.

  12. Application of 3D Laser Scanning Technology in Inspection and Dynamic Reserves Detection of Open-Pit Mine

    NASA Astrophysics Data System (ADS)

    Hu, Zhumin; Wei, Shiyu; Jiang, Jun

    2017-10-01

    The traditional open-pit mine mining rights verification and dynamic reserve detection means rely on the total station and RTK to collect the results of the turning point coordinates of mining surface contours. It resulted in obtaining the results of low precision and large error in the means that is limited by the traditional measurement equipment accuracy and measurement methods. The three-dimensional scanning technology can obtain the three-dimensional coordinate data of the surface of the measured object in a large area at high resolution. This paper expounds the commonly used application of 3D scanning technology in the inspection and dynamic reserve detection of open mine mining rights.

  13. Measurement accuracy of FBG used as a surface-bonded strain sensor installed by adhesive.

    PubMed

    Xue, Guangzhe; Fang, Xinqiu; Hu, Xiukun; Gong, Libin

    2018-04-10

    Material and dimensional properties of surface-bonded fiber Bragg gratings (FBGs) can distort strain measurement, thereby lowering the measurement accuracy. To accurately assess measurement precision and correct obtained strain, a new model, considering reinforcement effects on adhesive and measured object, is proposed in this study, which is verified to be accurate enough by the numerical method. Meanwhile, a theoretical strain correction factor is obtained, which is demonstrated to be significantly sensitive to recoating material and bonding length, as suggested by numerical and experimental results. It is also concluded that a short grating length as well as a thin but large-area (preferably covering the whole FBG) adhesive can enhance the correction precision.

  14. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1977-01-01

    The ability of SEM/EDAX to determine the physical and chemical composition of very small areas was used to study several diverse types of samples representative of NASA-LaRC technology. More systematic investigation was carried out on differences in the results of grit-blasting Ti 6-4 adherends and the presence of extraneous elements, primarily silicon, in some polymer/HT-S fiber composites. Initial results were obtained from a fractured (ILS) short-beam shear specimen, and from Ti 6-4 alloy, before and after a proprietary Boeing anodizing surface preparation for adhesive bonding. Photomicrographs and EDAX spectra were also obtained from new, fractured lap shear strength specimens that employed PPQ and LARC-13 adhesives.

  15. A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohsin; Khawaja, Mohamad; Notarianni, Marco; Wang, Bei; Goding, Dayle; Gupta, Bharati; Boeckl, John J.; Takshi, Arash; Motta, Nunzio; Saddow, Stephen E.; Iacopi, Francesca

    2015-10-01

    We designed a nickel-assisted process to obtain graphene with sheet resistance as low as 80 Ω square-1 from silicon carbide films on Si wafers with highly enhanced surface area. The silicon carbide film acts as both a template and source of graphitic carbon, while, simultaneously, the nickel induces porosity on the surface of the film by forming silicides during the annealing process which are subsequently removed. As stand-alone electrodes in supercapacitors, these transfer-free graphene-on-chip samples show a typical double-layer supercapacitive behaviour with gravimetric capacitance of up to 65 F g-1. This work is the first attempt to produce graphene with high surface area from silicon carbide thin films for energy storage at the wafer-level and may open numerous opportunities for on-chip integrated energy storage applications.

  16. A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors.

    PubMed

    Ahmed, Mohsin; Khawaja, Mohamad; Notarianni, Marco; Wang, Bei; Goding, Dayle; Gupta, Bharati; Boeckl, John J; Takshi, Arash; Motta, Nunzio; Saddow, Stephen E; Iacopi, Francesca

    2015-10-30

    We designed a nickel-assisted process to obtain graphene with sheet resistance as low as 80 Ω square(-1) from silicon carbide films on Si wafers with highly enhanced surface area. The silicon carbide film acts as both a template and source of graphitic carbon, while, simultaneously, the nickel induces porosity on the surface of the film by forming silicides during the annealing process which are subsequently removed. As stand-alone electrodes in supercapacitors, these transfer-free graphene-on-chip samples show a typical double-layer supercapacitive behaviour with gravimetric capacitance of up to 65 F g(-1). This work is the first attempt to produce graphene with high surface area from silicon carbide thin films for energy storage at the wafer-level and may open numerous opportunities for on-chip integrated energy storage applications.

  17. GC/MS analysis of pesticides in the Ferrara area (Italy) surface water: a chemometric study.

    PubMed

    Pasti, Luisa; Nava, Elisabetta; Morelli, Marco; Bignami, Silvia; Dondi, Francesco

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides--determined by GC-MS on samples from 11 points along the Ferrara area rivers--have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content.

  18. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area in A and B horizons was space-dependent, with the range of spatial dependence of about 2.5°. Variogram surfaces showed anisotropy of the specific surface area in both horizons with a trend toward the W to E directions. The smallest fractal dimensions were obtained for W to E directions and the highest values - for S to N directions. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  19. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    NASA Technical Reports Server (NTRS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  20. NLL-Assisted Multilayer Graphene Patterning

    PubMed Central

    2018-01-01

    The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm2/15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics. PMID:29503971

  1. NLL-Assisted Multilayer Graphene Patterning.

    PubMed

    Kovalska, Evgeniya; Pavlov, Ihor; Deminskyi, Petro; Baldycheva, Anna; Ilday, F Ömer; Kocabas, Coskun

    2018-02-28

    The range of applications of diverse graphene-based devices could be limited by insufficient surface reactivity, unsatisfied shaping, or null energy gap of graphene. Engineering the graphene structure by laser techniques can adjust the transport properties and the surface area of graphene, providing devices of different nature with a higher capacitance. Additionally, the created periodic potential and appearance of the active external/inner/edge surface centers determine the multifunctionality of the graphene surface and corresponding devices. Here, we report on the first implementation of nonlinear laser lithography (NLL) for multilayer graphene (MLG) structuring, which offers a low-cost, single-step, and high-speed nanofabrication process. The NLL relies on the employment of a high repetition rate femtosecond Yb fiber laser that provides generation of highly reproducible, robust, uniform, and periodic nanostructures over a large surface area (1 cm 2 /15 s). NLL allows one to obtain clearly predesigned patterned graphene structures without fabrication tolerances, which are caused by contacting mask contamination, polymer residuals, and direct laser exposure of the graphene layers. We represent regularly patterned MLG (p-MLG) obtained by the chemical vapor deposition method on an NLL-structured Ni foil. We also demonstrate tuning of chemical (wettability) and electro-optical (transmittance and sheet resistance) properties of p-MLG by laser power adjustments. In conclusion, we show the great promise of fabricated devices, namely, supercapacitors, and Li-ion batteries by using NLL-assisted graphene patterning. Our approach demonstrates a new avenue to pattern graphene for multifunctional device engineering in optics, photonics, and bioelectronics.

  2. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    NASA Astrophysics Data System (ADS)

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.

    2009-04-01

    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  3. Destructive behavior of iron oxide in projectile impact

    NASA Astrophysics Data System (ADS)

    Shang, Wang; Xiaochen, Wang; Quan, Yang; Zhongde, Shan

    2017-12-01

    The damage strain values of Q235-A surface oxide scale were obtained by scanning electron microscopy (SEM/EDS) and universal tensile testing machine. The finite element simulation was carried out to study the destruction effects of oxidation at different impact rates. The results show that the damage value of the oxide strain is 0.08%. With the increase of the projectile velocity, the damage area of the oxide scale is increased, and the damage area is composed of the direct destruction area and the indirect failure area. The indirect damage area is caused by the stress/strain to the surrounding expansion after the impact of the steel body.

  4. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  5. Surface Temperature Data Analysis

    NASA Technical Reports Server (NTRS)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  6. Correlation between multispectral photography and near-surface turbidities

    NASA Technical Reports Server (NTRS)

    Wertz, D. L.; Mealor, W. T.; Steele, M. L.; Pinson, J. W.

    1976-01-01

    Four-band multispectral photography obtained from an aerial platform at an altitude of about 10,000 feet has been utilized to measure near-surface turbidity at numerous sampling sites in the Ross Barnett Reservoir, Mississippi. Correlation of the photographs with turbidity measurements has been accomplished via an empirical mathematical model which depends upon visual color recognition when the composited photographs are examined on either an I squared S model 600 or a Spectral Data model 65 color-additive viewer. The mathematical model was developed utilizing least-squares, iterative, and standard statistical methods and includes a time-dependent term related to sun angle. This model is consistent with information obtained from two overflights of the target area - July 30, 1973 and October 30, 1973 - and now is being evaluated with regard to information obtained from a third overflight on November 8, 1974.

  7. The polarization phase difference of orchard trees

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Mo, Tsan

    1990-01-01

    An image obtained by the Jet Propulsion Laboratory's airborne L-band polarimeter (SAR) over an agricultural area near Fresno, California, was analyzed for the signatures of polarization phase difference (PPD). The PPD of orchard trees was found to be distinctly different from that of bare fields or fields covered with other crops. Thus the PPD signatures obtained from a polarimeter may be useful in the understanding of the radar remote sensing of the earth's surface.

  8. Surface modification technologies using concentrated solar radiation

    NASA Astrophysics Data System (ADS)

    Pitts, J. Roland; Stanley, J. T.; Tracy, Ed; Fields, C. L.

    Research conducted at the Solar Energy Research Institute (SERI) during the past three years addressed a number of the critical areas and has explored the possibility of using highly concentrated solar radiation to induce beneficial surface transformation. The principal goal is to develop new coatings and processes that improve the performance and lifetime of materials at reduced processing costs. Highly concentrated radiant energy provides a controllable means of delivering large flux densities to solid surfaces, where the resulting thermal energy can cause phase changes, atomic migrations, and chemical reactions on a surface without greatly perturbing the bulk properties; alternatively, the photons may directly interact with species on the surface. These changes may result in improved properties of the materials by making the surface harder, more resistant to corrosion or wear, thermally resistant, or with lower coefficients of friction. In a solar furnace, this flux can be delivered in large quantities over large areas, or it can be tailored to match the demands of a particular process. Furthermore, this occurs without the environmental liability associated with providing power to more conventional light sources. Recent work at SERI has used fluxes in the range from 100 to 250 w/sq cm for inducing such beneficial surface transformations. Significant results have been obtained in the area of phase transformation hardening of steels and melting powders and preapplied coatings to form fully dense, well-bonded coatings on the surface. New directions in coating technology using highly concentrated solar beams to induce chemical vapor deposition processes are described. Application areas that have not been researched in detail but would appear to be good matches to the solar technology are also reviewed.

  9. [Study of the electrical properties of retinal horizontal cell syncytia by the technic of uniform polarization].

    PubMed

    Shura-Bura, T M; Trifonov, Iu A

    1980-01-01

    For uniform polarization of syncytial or cable structures at a large area with current passed via extracellular electrodes the extracellular longitudinal gradient of potential must be proportional to distance from the edge of preparation. In this paper the profile of conducting plate was found analytically which allows to obtain such a distribution of potentials. The profile is formed by hyperbola and its orthogonal asymptotes. Two polarizing electrodes are applied to places where the hyperbola is near to asymptotes. On the surfaces formed by asymptotes the gradient of potential is proportional to distance from intersection of these surfaces. Such a conducting plate was made as cavity in plexiglas filled by Ringer solution in agar. The plate was used for obtaining the voltage-current curves of horizontal cell membrane in gold fish retina. The area of uniform polarization was 4-5 mm long. Measurements inside this area allowed to determine the space constant of horizontal cell layer. The space constant measured in bright light (when resistance of subsynaptic membrane is high) depends on the membrane potential, being high (approximately 1,5 mm) during depolarization and low (0,2-0,4 mm) during hyperpolarization.

  10. Variability in goethite surface site density: evidence from proton and carbonate sorption.

    PubMed

    Villalobos, Mario; Trotz, Maya A; Leckie, James O

    2003-12-15

    Goethite is a representative iron oxide in natural environments due to its abundance and thermodynamic stability and may be responsible for many surface-mediated processes, including ion retention and mobility in aqueous settings. A large variability in morphologies and specific surface areas of goethite crystals exists but little work has been done to compare surface reactivity between them. The present work offers experimental evidence for the existence of an inverse relationship between sorption capacity for protons and carbonate ions and specific surface area of goethite for three synthetic goethite preparations spanning surface area differences by a factor of 2. An explanation for this was found by assuming a variable reactive site density between preparations in direct relationship to their sorption capacity based on congruency of carbonate sorption computed on a per-site basis. Previous evidence of maximum sorption capacities supports this explanation, and site density ratios between the goethites studied here were obtained. Triple layer surface complexation modeling was successful in describing adsorption data for all goethite preparations using equal stoichiometries. A new formulation of standard state for activities of surface species based on a 1.0 mole fraction of sites on the solid allowed transformation of the conventional molar concentration-based affinity constants to values based on site occupancy. In this fashion, by applying the appropriate site density ratios, a single set of affinity constant values was found that described accurately the adsorption data for all preparations.

  11. Characteristics of rapeseed oil cake using nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Sokołowska, Z.; Bowanko, G.; Boguta, P.; Tys, J.; Skiba, K.

    2013-09-01

    Adsorption of nitrogen on the rapeseed oil cake and rapeseed oil cake with wheat meal extrudates was investigated. The results are presented as adsorption-desorption isotherms. The Brunauer-Emmet and Teller equation was used to analyse the experimental sorption data. To obtain estimates of the surface area and surface fractal dimension, the sorption isotherms were analyzed using the Brunauer-Emmet and Teller and Frenkel-Halsey-Hill equations. Mesopore analysis was carried out using the Dollimore and Heal method. The properties and surface characteristic of rapeseed oil cake extrudates are related to different basic properties of particular samples and duration of the extrusion process. Extrusion conditions lead to essential differences in particular products. For all kinds of rapeseed oil cakes the amount of adsorbed nitrogen was different, but for the rapeseed oil cake extrudates a large amount of adsorbed nitrogenwas observed. The average surface area of the rapeseed oil cake extrudates was about 6.5-7.0 m2 g-1, whereas it was equal to about 4.0-6.0 m2 g-1 for rapeseed oil cake with the wheat meal extrudates. In the case of non-extruded rapeseed oil cake and wheat meal, the dominant group included ca. 2 and 5 nmpores. The values of surface fractal dimension suggested that the surface of the extrudates was more homogenous than that of the raw material. Duration of the extrusion process to 80 s resulted in a decrease in the specific surface area, surface fractal dimension, and porosity of the extrudates.

  12. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.

  13. Enhancing pilot situational awareness of the airport surface movement area

    NASA Technical Reports Server (NTRS)

    Jones, D. R.; Young, S. D.

    1994-01-01

    Two studies are being conducted to address airport surface movement area safety and capacity issues by providing enhanced situational awareness information to pilots. One study focuses on obtaining pilot opinion of the Runway Status Light System (RSLS). This system has been designed to reduce the likelihood of runway incursions by informing pilots when a runway is occupied. The second study is a flight demonstration of an rate integrated system consisting of an electronic moving map in the cockpit and display of the aircraft identification to the controller. Taxi route and hold warning information will be sent to the aircraft data link for display on the electronic moving map. This paper describes the plans for the two studies.

  14. HCMM hydrological analysis in Utah

    NASA Technical Reports Server (NTRS)

    Miller, A. W. (Principal Investigator)

    1982-01-01

    The feasibility of applying a linear model to HCMM data in hopes of obtaining an accurate linear correlation was investigated. The relationship among HCMM sensed data surface temperature and red reflectivity on Utah Lake and water quality factors including algae concentrations, algae type, and nutrient and turbidity concentrations was established and evaluated. Correlation (composite) images of day infrared and reflectance imagery were assessed to determine if remote sensing offers the capability of using masses of accurate and comprehensive data in calculating evaporation. The effects of algae on temperature and evaporation were studied and the possibility of using satellite thermal data to locate areas within Utah Lake where significant thermal sources exist and areas of near surface groundwater was examined.

  15. Kinetics of gibbsite dissolution under low ionic strength conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganor, J.; Mogollon, J.L.; Lasaga, A.C.

    1999-06-01

    Experiments measuring synthetic gibbsite dissolution rates were carried out using both a stirred-flow-through reactor and a column reactor at 25 C, and pH range of 2.5--4.1. All experiments were conducted under far from equilibrium conditions ({Delta}G < {minus}1.1 kcal/mole). The experiments were performed with perchloric acid under relatively low (and variable) ionic strength conditions. An excellent agreement was found between the results of the well-mixed flow-through experiments and those of the (nonmixed) column experiments. This agreement shows that the gibbsite dissolution rate is independent of the stirring rate and therefore supports the conclusion of Bloom and Erich (1987) that gibbsitemore » dissolution reaction is surface controlled and not diffusion controlled. The Brunauer-Emmett-Teller (BET) surface area of the gibbsite increased during the flow-through experiments, while in the column experiments no significant change in surface area was observed. The significant differences in the BET surface area between the column experiments and the flow-through experiments, and the excellent agreement between the rates obtained by both methods, enable the authors to justify the substitution of the BET surface area for the reactive surface area. The dissolution rate of gibbsite varied as a function of the perchloric acid concentration. The authors interpret the gibbsite dissolution rate as a result of a combined effect of proton catalysis and perchlorate inhibition. Following the theoretical study of Ganor and Lasaga (1998) they propose specific reaction mechanisms for the gibbsite dissolution in the presence of perchloric acid. The mathematical predictions of two of these reaction mechanisms adequately describe the experimental data.« less

  16. Map showing ground-water conditions in the Kaibito and Tuba City areas, Coconino and Navajo counties, Arizona, 1978

    USGS Publications Warehouse

    Farrar, C.D.

    1978-01-01

    The Kaibito and Tuba City areas include about 2,500 square miles in north-central Arizona. Ground water is obtained from the N aquifer and from alluvium. The N aquifer consists of Navajo Sandstone, Kayenta Formation, Moenave Formation, and the Lukachukai Member of the Wingate Sandstone. The main source of ground water is the Navajo Sandstone. Ground-water development has been slight in the areas. In 1977 the estimated ground-water withdrawals were about 350 acre-feet in the Kaibito area and 650 acre-feet in the Tuba City area. Water levels ranged from flowing at the land surface to 1,360 feet below the land surface. The chemical quality of the water in the N aquifer does not vary greatly in the areas. Dissolved-solids concentrations in the water range from 101 to 669 milligrams per liter but generally are less than 300 milligrams per liter. Along some of the valleys in the Kaibito and Tuba City areas, the alluvium yields water to many shallow dug wells. The water levels generally are from 5 to 15 feet below the land surface. Dissolved-solids concentrations in water from the alluvium usually are less than 600 milligrams per liter. Information shown on the map (scale 1:125,000) includes depth to water, altitude of the water level, and specific conductance and fluoride concentrations. (Woodard-USGS)

  17. Understanding spatial-temporal urban expansion pattern (1990-2009) using impervious surface data and landscape indexes: a case study in Guangzhou (China)

    NASA Astrophysics Data System (ADS)

    Fan, Fenglei; Fan, Wei

    2014-01-01

    A new viewpoint for understanding the urban expansion using impervious surface information, which is obtained using remote sensing imagery is presented. The purpose of this study is to understand and describe the urban expansion pattern with the view of impervious surfaces instead of the conventional view of land use/land cover. Six years' worth of impervious surface data (1990-2009) of Guangzhou are extracted via linear spectral unmixing analysis methods and spatial and temporal characteristics are discussed in detail. The area, density, and gravity centers changes of the impervious surfaces are analyzed to explain internal/external urban expansion. Meanwhile, five landscape indexes, such as patch density, edge density, mean patch size, area-weighted, and fragmentation index, are utilized to describe landscape changes of Guangzhou in past 20 years, which are influenced deeply by the impervious surface expansion. In order to detail landscape changes, two transects corresponding to the two urban expansion directions are designed and five landscape metrics in these two transects are reported. Conclusions can be drawn and shown as following: (1) temporally, the area of impervious surfaces increases from 12,998 to 59,911 ha from 1990 to 2009. The amount of impervious surface varies in different periods. The annual growth rates of impervious surface area during 1990-1995, 1995-1998, and 1998-2000 are 10.16%, 11.61%, and 10.78%, respectively; (2) annual growth rates decrease from 10.78% (1998-2000) to 5.67% (2000-2003). Nevertheless, from 2003-2009, the annual growth rate has a slight increase compared to a former period. The rate is 5.91% (3) spatially, gravity centers of medium and high percentage impervious surfaces migrate slightly; and (4) according to the gradient analysis in the two transects, it can be observed that the high percentage of impervious surface increases gradually in new city districts (from west to east and from south to north).

  18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho

    USGS Publications Warehouse

    Waddell, K.M.; Price, Don

    1972-01-01

    The United States Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Water Rights, began a reconnaissance in 1967 to obtain essential water-quality information for the Bear River basin. The reconnaissance was directed toward defining the chemical quality of the basin’s surface waters, including suitability for specific uses, geology, and general basin hydrology. Emphasis was given to those areas where water-development projects are proposed or being considered.

  19. Surface morphology of ultrathin graphene oxide films obtained by the SAW atomization

    NASA Astrophysics Data System (ADS)

    Balachova, Olga V.; Balashov, Sergey M.; Costa, Carlos A. R.; Pavani Filho, A.

    2015-08-01

    Lately, graphene oxide (GO) thin films have attracted much attention: they can be used as humidity-sensitive coatings in the surface acoustic wave (SAW) sensors; being functionalized, they can be used in optoelectronic or biodevices, etc. In this research we study surface morphology of small-area thin GO films obtained on Si and quartz substrates by deposition of very small amounts of H2O-GO aerosols produced by the SAW atomizer. An important feature of this method is the ability to work with submicrovolumes of liquids during deposition that provides relatively good control over the film thickness and quality, in particular, minimization of the coffee ring effect. The obtained films were examined using AFM and electron microscopy. Image analysis showed that the films consist of GO sheets of different geometry and sizes and may form discrete or continuous coatings at the surface of the substrates with the minimum thickness of 1.0-1.8 nm which corresponds to one or two monolayers of GO. The thickness and quality of the deposited films depend on the parameters of the SAW atomization (number of atomized droplets, a volume of the initial droplet, etc.) and on sample surface preparation (activation in oxygen plasma). We discuss the structure of the obtained films, uniformity and the surface coverage as a function of parameters of the film deposition process and sample preparation. Qualitative analysis of adhesion of GO films is made by rinsing the samples in DI water and subsequent evaluation of morphology of the remained films.

  20. The Thomas-Fermi model in the theory of systems of charged particles above the surface of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.

    2012-10-01

    A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.

  1. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  2. Doughnut-shaped soap bubbles.

    PubMed

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V<αL(3)/6π(2), with α≈0.21, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance.

  3. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  4. The role of surface nonuniformity in controlling the initiation of a galvanic replacement reaction.

    PubMed

    Cobley, Claire M; Zhang, Qiang; Song, Wilbur; Xia, Younan

    2011-06-06

    The use of silver nanocrystals--asymmetrically truncated octahedrons and nanobars--characterized by a nonuniform surface as substrates for a galvanic replacement reaction was investigated. As the surfaces of these nanocrystals contain facets with a variety of different areas, shapes, and atomic arrangements, we were able to examine the roles of these parameters in different stages of the galvanic replacement reaction with HAuCl(4) (e.g., pitting, hollowing, pit closing, and pore formation), and thus obtain a deeper understanding of the reaction mechanism than is possible with silver nanocubes. We found that the most important of these parameters was the atomic arrangement, that is, whether the surface was capped by a {100} or {111} facet, and that the area and shape of the facet had essentially no effect on the initiation of the reaction. Interestingly, through the reaction with asymmetrically truncated octahedrons, we were also able to demonstrate that even when pitting occurred over a large area, this region would be sealed through a combination of atomic diffusion and deposition during the intermediate stages of the reaction. Consequently, even if pitting occurred across a large percentage of the nanocrystal surface, it was still possible to maintain the morphology of the template throughout the reaction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  6. Dissolution process analysis using model-free Noyes-Whitney integral equation.

    PubMed

    Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto

    2013-02-01

    Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Antimicrobial Resistance in Enterococcus spp. Isolated from Environmental Samples in an Area of Intensive Poultry Production

    PubMed Central

    Furtula, Vesna; Jackson, Charlene R.; Farrell, Erin Gwenn; Barrett, John B.; Hiott, Lari M.; Chambers, Patricia A.

    2013-01-01

    Enterococcus spp. from two poultry farms and proximate surface and ground water sites in an area of intensive poultry production were tested for resistance to 16 clinical antibiotics. Resistance patterns were compared to assess trends and possible correlations for specific antimicrobials and levels of resistance. Enterococci were detected at all 12 surface water sites and three of 28 ground water sites. Resistance to lincomycin, tetracycline, penicillin and ciprofloxacin in poultry litter isolates was high (80.3%, 65.3%, 61.1% and 49.6%, respectively). Resistance in the surface water to the same antibiotics was 87.1%, 24.1%, 7.6% and 12.9%, respectively. Overall, 86% of litter isolates, 58% of surface water isolates and 100% of ground water isolates were resistant to more than one antibiotic. Fifty-four different resistance patterns were recognised in isolates obtained from litter and environmental samples and several E. faecium and E. faecalis isolates from litter and environment samples shared the same resistance pattern. Multiple antibiotic resistant (MAR) indices calculated to assess health risks due to the presence of resistant enterococci suggested an increased presence of antibiotics in surface water, likely from poultry sources as no other wastewater contributions in the area were documented. PMID:23481592

  8. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    PubMed

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  9. Spatial scale analysis in geophysics - Integrating surface and borehole geophysics in groundwater studies

    USGS Publications Warehouse

    Paillet, Frederick L.; Singhroy, V.H.; Hansen, D.T.; Pierce, R.R.; Johnson, A.I.

    2002-01-01

    Integration of geophysical data obtained at various scales can bridge the gap between localized data from boreholes and site-wide data from regional survey profiles. Specific approaches to such analysis include: 1) comparing geophysical measurements in boreholes with the same measurement made from the surface; 2) regressing geophysical data obtained in boreholes with water-sample data from screened intervals; 3) using multiple, physically independent measurements in boreholes to develop multivariate response models for surface geophysical surveys; 4) defining subsurface cell geometry for most effective survey inversion methods; and 5) making geophysical measurements in boreholes to serve as independent verification of geophysical interpretations. Integrated analysis of surface electromagnetic surveys and borehole geophysical logs at a study site in south Florida indicates that salinity of water in the surficial aquifers is controlled by a simple wedge of seawater intrusion along the coast and by a complex pattern of upward brine seepage from deeper aquifers throughout the study area. This interpretation was verified by drilling three additional test boreholes in carefully selected locations.

  10. Surface reaction characteristics at low temperature synthesis BaTiO 3 particles by barium hydroxide aqueous solution and titanium tetraisopropoxide

    NASA Astrophysics Data System (ADS)

    Zeng, Min

    2011-05-01

    Well-crystallized cubic phase BaTiO 3 particles were prepared by heating the mixture of barium hydroxide aqueous solution and titania derived from the hydrolysis of titanium isopropoxide (TTIP) at 328 K, 348 K or 368 K for 24 h. The morphology and size of obtained particles depended on the reaction temperature and the Ba(OH) 2/TTIP molar ratio. By the direct hydrolytic reaction of titanium tetraisopropoxide, the high surface area titania (TiO 2) was obtained. The surface adsorption characteristics of the titania particles had been studied with different electric charges OH - ions or H + ions. The formation mechanism and kinetics of BaTiO 3 were examined by measuring the concentration of [Ba 2+] ions in the solution during the heating process. The experimental results showed that the heterogeneous nucleation of BaTiO 3 occurred on the titania surface, according to the Avrami's equation.

  11. Application and Evaluation of ALOS PALSAR Data for Monitoring of Mining Induced Surface Deformations Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang

    2008-11-01

    The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.

  12. Toward Developing a New Occupational Exposure Metric Approach for Characterization of Diesel Aerosols

    PubMed Central

    Cauda, Emanuele G.; Ku, Bon Ki; Miller, Arthur L.; Barone, Teresa L.

    2015-01-01

    The extensive use of diesel-powered equipment in mines makes the exposure to diesel aerosols a serious occupational issue. The exposure metric currently used in U.S. underground noncoal mines is based on the measurement of total carbon (TC) and elemental carbon (EC) mass concentration in the air. Recent toxicological evidence suggests that the measurement of mass concentration is not sufficient to correlate ultrafine aerosol exposure with health effects. This urges the evaluation of alternative measurements. In this study, the current exposure metric and two additional metrics, the surface area and the total number concentration, were evaluated by conducting simultaneous measurements of diesel ultrafine aerosols in a laboratory setting. The results showed that the surface area and total number concentration of the particles per unit of mass varied substantially with the engine operating condition. The specific surface area (SSA) and specific number concentration (SNC) normalized with TC varied two and five times, respectively. This implies that miners, whose exposure is measured only as TC, might be exposed to an unknown variable number concentration of diesel particles and commensurate particle surface area. Taken separately, mass, surface area, and number concentration did not completely characterize the aerosols. A comprehensive assessment of diesel aerosol exposure should include all of these elements, but the use of laboratory instruments in underground mines is generally impracticable. The article proposes a new approach to solve this problem. Using SSA and SNC calculated from field-type measurements, the evaluation of additional physical properties can be obtained by using the proposed approach. PMID:26361400

  13. Assessment of Cottle's areas through the application of a mathematical model deriving from acoustic rhinometry and rhinomanometric data.

    PubMed

    Zambetti, G; Filiaci, F; Romeo, R; Soldo, P; Filiaci, F

    2005-04-01

    Each nasal area, as defined by Cottle, has a different influence on the nasal airflow. The longitudinal distribution of resistances in nasal cavities was calculated by the anterior rhinomanometry and acoustic rhinometry data. Dynamic study of Cottle's areas in normal subjects was carried out by rhinomanometry and acoustic rhinometry. Study by the Department of Otolaryngology of the University of Rome-La Sapienza. Twenty-seven Caucasian adults in local and general healthy conditions took part and completed this study, with a total of 54 nasal cavities included because of negativity at ENT-examination and clinical history, with normal respiratory parameters at the rhinomanometry and acoustic rhinometry. We determined nasal and acoustic resistances, nasal volumes and cross-sectional surface areas, as defined by Cottle, using nasal endoscopy. The longitudinal distribution of nasal resistances was obtained by integrating experimental surface areas using a novel mathematical model. The estimation of the longitudinal nasal resistance variations as a result of a theoretical reduction of the surface areas. The reduction of the 2-3-1 areas (in this order of importance) showed the greatest influence on the nasal resistances with coefficients of determinations greater than 0.98, this being quite different from that of the areas 4 and 5 for quite smaller area reduction percentages. The areas 2-3-1 control the overall nasal resistance so the surgical procedures on these areas greatly influence the dynamics of nasal airflow. The mathematical model developed here gives useful information to nasal functional surgery and may be applied to other schemes of nasal cavity.

  14. How well can regional fluxes be derived from smaller-scale estimates?

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.

    1992-01-01

    Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.

  15. Synergic Effect between Adsorption and Photocatalysis of Metal-Free g-C3N4 Derived from Different Precursors

    PubMed Central

    Xu, Huan-Yan; Wu, Li-Cheng; Zhao, Hang; Jin, Li-Guo; Qi, Shu-Yan

    2015-01-01

    Graphitic carbon nitride (g-C3N4) used in this work was obtained by heating dicyandiamide and melamine, respectively, at different temperatures. The differences of g-C3N4 derived from different precursors in phase composition, functional group, surface morphology, microstructure, surface property, band gap and specific surface area were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflection spectroscopy and BET surface area analyzer, respectively. The photocatalytic discoloration of an active cationic dye, Methylene Blue (MB) under visible-light irradiation indicated that g-C3N4 derived from melamine at 500°C (CN-M500) had higher adsorption capacity and better photocatalytic activity than that from dicyandiamide at 500°C (CN-D500), which was attributed to the larger surface area of CN-M500. MB discoloration ratio over CN-M500 was affected by initial MB concentration and photocatalyst dosage. After 120 min reaction time, the blue color of MB solution disappeared completely. Subsequently, based on the measurement of the surface Zeta potentials of CN-M500 at different pHs, an active anionic dye, Methyl Orange (MO) was selected as the contrastive target pollutant with MB to reveal the synergic effect between adsorption and photocatalysis. Finally, the photocatalytic mechanism was discussed. PMID:26565712

  16. Preparation and characterization of pitch-based nanoporous carbons for improving CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seul-Yi; Yoo, Hye-Min; Park, Sang Wook

    2014-07-01

    Pitch is considered a promising low-cost carbon precursor. However, when pitch is pyrolyzed, it forms polycrystalline graphite, which is non-porous, and therefore, not useful for CO{sub 2} adsorption. In this work, pitch was chemically activated to obtain a large specific surface area and micropore volume. Varying weight ratios of KOH (i.e., 0, 1, 2, and 3) were used as the activating agent. The characteristics of the samples were investigated using scanning electron microscopy (SEM), N{sub 2}/77 K adsorption isotherms, and X-ray diffraction (XRD). The CO{sub 2} adsorption performance was studied by isothermal adsorption/desorption measurements. The results showed that an increasemore » in specific surface areas and total pore volumes of pitch-based nanoporous carbons, resulted in an enhancement of CO{sub 2} adsorption capacity. - Graphical abstract: This is the surface morphologies of pitch precursor and pitch-derived activated carbon (AC-2). - Highlights: • Pitch is considered a promising low-cost carbon precursor. • Specific surface area: 1442 m{sup 2}/g and micropore volume: 0.504 cm{sup 3}/g. • CO{sub 2} adsorption capacity showed 203 mg/g (@ RT/1 bar)« less

  17. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.

  18. On the reconstruction of the surface structure of the spotted stars

    NASA Astrophysics Data System (ADS)

    Kolbin, A. I.; Shimansky, V. V.; Sakhibullin, N. A.

    2013-07-01

    We have developed and tested a light-curve inversion technique for photometric mapping of spotted stars. The surface of a spotted star is partitioned into small area elements, over which a search is carried out for the intensity distribution providing the best agreement between the observed and model light curves within a specified uncertainty. We have tested mapping techniques based on the use of both a single light curve and several light curves obtained in different photometric bands. Surface reconstruction artifacts due to the ill-posed nature of the problem have been identified.

  19. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  20. Octopus-like suction cups: from natural to artificial solutions.

    PubMed

    Tramacere, F; Follador, M; Pugno, N M; Mazzolai, B

    2015-05-13

    Octopus suckers are able to attach to all nonporous surfaces and generate a very strong attachment force. The well-known attachment features of this animal result from the softness of the sucker tissues and the surface morphology of the portion of the sucker that is in contact with objects or substrates. Unlike artificial suction cups, octopus suckers are characterized by a series of radial grooves that increase the area subjected to pressure reduction during attachment. In this study, we constructed artificial suction cups with different surface geometries and tested their attachment performances using a pull-off setup. First, smooth suction cups were obtained for casting; then, sucker surfaces were engraved with a laser cutter. As expected, for all the tested cases, the engraving treatment enhanced the attachment performance of the elastomeric suction cups compared with that of the smooth versions. Moreover, the results indicated that the surface geometry with the best attachment performance was the geometry most similar to octopus sucker morphology. The results obtained in this work can be utilized to design artificial suction cups with higher wet attachment performance.

  1. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  2. Permittivity estimation over Mars by using SHARAD data: the Cerberus Palus area

    NASA Astrophysics Data System (ADS)

    Alberti, Giovanni; Castaldo, Luigi; Orosei, Roberto; Frigeri, Alessandro; Cirillo, Giuseppe

    2012-09-01

    Cerberus Palus is a thoroughly studied region of Mars, characterized by evident platy textures that were interpreted either as evidence for a frozen sea close to Mars' equator or as being resultant of lava, mud or ice-flows coming from Cerberus Fossae through Athabasca Valles. Radargrams provided by radar sounder SHARAD clearly show the presence of subsurface layers in the area. By exploiting the great amount of available data, authors have performed an accurate quantitative analysis aimed to estimate electromagnetic properties of surface and subsurface layers, in terms of permittivity and attenuation. To this aim, a simplified electromagnetic approach has been used, but taking into account effects of scattering due to surface roughness, for avoiding overestimated results. This has been done by using theory of electromagnetic scattering from fractal surfaces and by estimating needed parameters from topographic data provided by MOLA. Three distinct geologic formations have been analyzed, namely a part of Zephyria Planum, the Cerberus plains and the bedrock beneath the plains. The retrieved electromagnetic parameters have been also modeled as a mixture of volcanic rocks with either ice or air. The Zephyria Planum material was found to be significantly porous [50-60%] with an attenuation more likely compatible with empty pores. Ambiguous results were obtained for the plains material, being the resulting porosity high in both the cases of empty [40-50%] and of ice-filled [80%] pores. The obtained results do not allow for evidence of a frozen sea on Cerberus Palus area.

  3. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn; Duy, Nguyen Van; Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxidemore » (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.« less

  4. Modeling of microclimatic characteristics of highland area

    NASA Astrophysics Data System (ADS)

    Sitdikova, Iuliia; Rusin, Igor

    2013-04-01

    Microclimatic characteristics of highlands may vary considerably over distances of a few meters depending on slope and aspect. There is a problem of estimation of components of surface energy balance based on observation of single stations for description of microclimate highlands. The aim of this paper is to develop a method that would restore microclimatic characteristics of terrain, based on observations of the single station, by physical extrapolation. The input parameters to obtain the microclimatic characteristics are as follows: air temperature, relative humidity, and wind speed on two vertical levels, air pressure, surface temperature, direct and diffused solar radiation and surface albedo. The recent version of the Meteorological Radiation Model (MRM) has been used to calculate a solar radiation over the area and to estimate an influence of cloudiness amounts. The height, slope and aspect were accounted at each point with using a digital elevation model. Have been supposed that air temperature and specific humidity vary with altitude only. Net radiation was calculated at all points of the area. Supposed that the difference between the surface temperature and the air temperature is a linear function of net radiation. The empirical coefficient, which depends on wind speed with adjustment of given area. Latent and sensible fluxes are calculated by using the modified Bowen ratio, which varies on the area. Method was tested on field research in Krasnodar region (RF). The meteorological observations were made every three hour on actinometric and gradient sites. The editional gradient site with different orientation of the slope was organized from 400 meters of the main site. Topographic survey of area was made 1x1,3 km in size for a digital elevation model constructing. At all points of the area of radiation and heat balance were calculated. The results of researches are the maps of surface temperature, net radiation, latent and sensible fluxes. The calculations showed that the average value of components of heat balance by area differ significantly from the data observed on meteorological station.

  5. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  6. Monitoring of hourly variations in coastal water turbidity using the geostationary ocean color imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ryu, J.

    2011-12-01

    Temporal variations of suspended sediment concentration (SSC) in coastal water are the key to understanding the pattern of sediment movement within coastal area, in particular, such as in the west coast of the Korean Peninsula which is influenced by semi-diurnal tides. Remote sensing techniques can effectively monitor the distribution and dynamic changes in seawater properties across wide areas. Thus, SSC on the sea surface has been investigated using various types of satellite-based sensors. An advantage of Geostationary Ocean Color Imager (GOCI), the world's first geostationary ocean color observation satellite, over other ocean color satellite images is that it can obtain data every hour during the day and makes it possible to monitor the ocean in real time. In this study, hourly variations in turbidity on the coastal waters were estimated quantitatively using GOCI. Thirty three water samples were obtained on the coastal water surface in southern Gyeonggi Bay, located on the west coast of Korea. Water samples were filtered using 25-mm glass fiber filters (GF/F) for the estimation of SSC. The radiometric characteristics of the surface water, such as the total water-leaving radiance (LwT, W/m2/nm/sr), the sky radiance (Lsky, W/m2/nm/sr) and the downwelling irradiance, were also measured at each sampling location. In situ optical properties of the surface water were converted into remote sensing reflectance (Rrs) and then were used to develop an algorithm to generate SSC images in the study area. GOCI images acquired on the same day as the samples acquisition were used to generate the map of turbidity and to estimate the difference in SSC displayed in each image. The estimation of the time-series variation in SSC in a coastal, shallow-water area affected by tides was successfully achieved using GOCI data that had been acquired at hourly intervals during the daytime.

  7. Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry

    NASA Astrophysics Data System (ADS)

    Balaguer-Puig, Matilde; Marqués-Mateu, Ángel; Lerma, José Luis; Ibáñez-Asensio, Sara

    2017-10-01

    The quantitative estimation of changes in terrain surfaces caused by water erosion can be carried out from precise descriptions of surfaces given by means of digital elevation models (DEMs). Some stages of water erosion research efforts are conducted in the laboratory using rainfall simulators and soil boxes with areas less than 1 m2. Under these conditions, erosive processes can lead to very small surface variations and high precision DEMs are needed to account for differences measured in millimetres. In this paper, we used a photogrammetric Structure from Motion (SfM) technique to build DEMs of a 0.5 m2 soil box to monitor several simulated rainfall episodes in the laboratory. The technique of DEM of difference (DoD) was then applied using GIS tools to compute estimates of volumetric changes between each pair of rainfall episodes. The aim was to classify the soil surface into three classes: erosion areas, deposition areas, and unchanged or neutral areas, and quantify the volume of soil that was eroded and deposited. We used a thresholding criterion of changes based on the estimated error of the difference of DEMs, which in turn was obtained from the root mean square error of the individual DEMs. Experimental tests showed that the choice of different threshold values in the DoD can lead to volume differences as large as 60% when compared to the direct volumetric difference. It turns out that the choice of that threshold was a key point in this method. In parallel to photogrammetric work, we collected sediments from each rain episode and obtained a series of corresponding measured sediment yields. The comparison between computed and measured sediment yields was significantly correlated, especially when considering the accumulated value of the five simulations. The computed sediment yield was 13% greater than the measured sediment yield. The procedure presented in this paper proved to be suitable for the determination of sediment yields in rainfall-driven soil erosion experiments conducted in the laboratory.

  8. Water indicators based on SPOT 6 satellite images in irrigated area at the Paracatu River Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Leivas, Janice F.; de C. Teixeira, Antônio Heriberto; Bayma-Silva, Gustavo; Monteiro Garçon, Edlene A.; Ronquim, Carlos Cesar

    2017-10-01

    The Paracatu River is the largest affluent of the São Francisco River, Brazil. The main water use in the Paracatu river basin is irrigation, which occupies an area of 37,150 ha. The objective in this study was to obtain water indicators at irrigated areas using the SAFER (Simple Algorithm For Evapotranspiration Retrieving) and the Penman-Monteith models with images of SPOT 6 satellite (without the thermal band). The parameters obtained are evapotranspiration (ET), albedo (α), biomass (BIO), surface temperature (Tsup) and water productivity (PA) in irrigated areas of Paracatu River Basin. We used 2 satellite images by the sensor SPOT6 (by Astrium Company) with a spatial resolution of 6 m (August 8, 2014 and August 23, 2015) and data from meteorological stations. In irrigated areas, the NDVI reached values higher than 0.76, due the response of vegetation to irrigation. The daily average albedo was 0.18 ± 0.01 and 0.02 ± 0.17 respectively. In the analysis of the surface temperature (Tsup), it can be observed that in the image of 2015, mean values higher than those observed in the image of 2014 (303.03 +/- 1.97 K and 299.34 +/- 3.47 K, respectively). In 2015, due to increased atmospheric evaporative demand, ET reached values higher than those seen in the scene in 2014. The average daily evapotranspiration rate in Paracatu for 2014 scene was of 0.81+/-1.49 mm, with a maximum value of 8.96 mm at the irrigated areas. In image of 2015 the average evapotranspiration (ET) values was 1.87+/-1.27 mm. The results obtained in this study may assist in the monitoring of irrigated agriculture to face a trend of scarcity of water resources and of increasing conflicts over water use as occurs in the Paracatu River Basin.

  9. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  10. Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning.

    PubMed

    Jain, Tushar; Boland, Todd; Lilov, Asparouh; Burnina, Irina; Brown, Michael; Xu, Yingda; Vásquez, Maximiliano

    2017-12-01

    The hydrophobicity of a monoclonal antibody is an important biophysical property relevant for its developability into a therapeutic. In addition to characterizing heterogeneity, Hydrophobic Interaction Chromatography (HIC) is an assay that is often used to quantify the hydrophobicity of an antibody to assess downstream risks. Earlier studies have shown that retention times in this assay can be correlated to amino-acid or atomic propensities weighted by the surface areas obtained from protein 3-dimensional structures. The goal of this study is to develop models to enable prediction of delayed HIC retention times directly from sequence. We utilize the randomforest machine learning approach to estimate the surface exposure of amino-acid side-chains in the variable region directly from the antibody sequence. We obtain mean-absolute errors of 4.6% for the prediction of surface exposure. Using experimental HIC data along with the estimated surface areas, we derive an amino-acid propensity scale that enables prediction of antibodies likely to have delayed retention times in the assay. We achieve a cross-validation Area Under Curve of 0.85 for the Receiver Operating Characteristic curve of our model. The low computational expense and high accuracy of this approach enables real-time assessment of hydrophobic character to enable prioritization of antibodies during the discovery process and rational engineering to reduce hydrophobic liabilities. Structure data, aligned sequences, experimental data and prediction scores for test-cases, and R scripts used in this work are provided as part of the Supplementary Material. tushar.jain@adimab.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Soil water erosion processes in mountain forest catchment - analysis by using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław

    2013-04-01

    The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser scanning shows that anthropogenic activities in the form of forest management and their effects in the form of dense network of forest roads and skid trails and obtaining wood diminish correct functioning of a forest or even increase the phenomenon of erosion. Submit the results of the analysis consider the problem of dynamics and intensity of erosion processes in mountain areas, and show the effectiveness of the methodology of research.

  12. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    USGS Publications Warehouse

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  13. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-12-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area. Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH. Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil. As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  14. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    PubMed

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2)-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.

  15. Groundwater recharge in suburban areas of Hanoi, Vietnam: effect of decreasing surface-water bodies and land-use change

    NASA Astrophysics Data System (ADS)

    Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi

    2017-05-01

    Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  16. Epitaxial strain relaxation by provoking edge dislocation dipoles

    NASA Astrophysics Data System (ADS)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  17. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging

    PubMed Central

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S.; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-01-01

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400–1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557–701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce. PMID:26610510

  18. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-11-20

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.

  19. Results of the AFRSI detailed-environment test of the 0.035-scale SSV pressure-loads model 84-0 in the Ames 11x11 ft. TWT and the Lewis 8x6 ft. and 10x10 ft. SWT (OA-310A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Marshall, B. A.; Marroquin, J.

    1984-01-01

    Detailed orbiter aerodynamic and aeroacoustic pressure data were obtained in a three-part experimental investigation (OA-310A, B and C). The tests were conducted in three NASA facilities: OA-310A in the Ames 11x11-foot Transonic Wind Tunnel; OA-310B in the Lewis 8x6-foot Supersonic Wind Tunnel; and OA-310C in the Lewis 10x10-foot Supersonic Wind Tunnel. Test data were obtained to support analysis of the Space Transportation System (STS)-6 advanced flexible reusable surface insulation (AFRSI) anomaly using the 0.035-scale space shuttle vehicle pressure-loads Model 84-0. Data were obtained in the areas of the orbiter where AFRSI is to be applied to OV-099 and OV-103. Emphasis was placed on acquiring detailed aeroacoustic data and time-averaged pressure distributions on five affected areas: (1) canopy; (2) side of fuselage; (3) upper surface of wing; (4) OMS pods; and (5) vertical tail. Data were obtained at nominal ascent and entry atmospheric flight trajectory conditions between M=0.6 through M-3.5. Sample plotted data are given. aba M.G.

  20. Geology and ground-water resources of the Rawlins area, Carbon County, Wyoming

    USGS Publications Warehouse

    Berry, Delmar W.

    1960-01-01

    The Rawlins area in west-central Carbon County, south-central Wyoming includes approximately 634 square miles of plains and valleys grading into relatively rugged uplifts. The climate is characterized by low precipitation, rapid evaporation, and a wide range of temperature. Railroading and ranching are the principal occupations in the area. The exposed rocks in the area range in age from Precambrian through Recent. The older formations are exposed in the uplifted parts, the oldest being exposed along the apex of the Rawlins uplift. The formations dip sharply away from the anticlines and other uplifts and occur in the subsurface throughout the remainder of the area. The Cambrian rocks (undifferentiated), Madison limestone, Tensleep sandstone, Sun dance formation, Cloverly formation, Frontier formation, and Miocene and Pliocene rocks (undifferentiated) yield water to domestic and stock wells in the area. In the vicinity of the Rawlins uplift, the rocks of Cambrian age, Madison limestone, and Tensleep sandstone yield water to a few public-supply wells. The Cloverly formation yields water to public-supply wells in the Miller Hill and Sage Creek basin area. Wells that tap the Madison limestone, Tensleep sandstone, and Cloverly formation yield water under sufficient artesian pressure to flow at the land surface. The Browns Park formation yields water to springs that supply most of the Rawlins city water and supply water for domestic and stock use. Included on the geologic map are location of wells and test wells, depths to water below land surface, and location of springs. Depths to water range from zero in the unconsolidated deposits along the valley of Sugar Creek at the southern end of the Rawlins uplift to as much as 129 feet below the land surface in the Tertiary sedimentary rocks along the Continental Divide in the southern part of the area. The aquifers are recharged principally by precipitation that falls upon the area, by percolation from streams and ponds, and by movement of ground water from adjacent areas. Water is discharged from the ground-water reservoir by evaporation and transpiration, by seeps and springs, through wells, and by underflow out of the area. Although most water supplies in the area are obtained from springs, some domestic, stock, and public supplies are obtained from drilled wells, many yielding water under artesian pressure, and some flowing. Dissolved solids in the water from several geologic sources, ranging from 181 to 6,660 parts per million (ppm), indicate the varied chemical quality of ground water in the Rawlins area. Water from the Cambrian rocks, Tensleep sandstone, Cloverly formation, Frontier formation, Browns Park formation, and Miocene and Pliocene rocks is generally suitable for domestic and stock use. However, water yielded to the only well sampled in the lower part of the Frontier formation contained a high concentration of fluoride. Water from the rocks mentioned above contains less than 1,000 ppm of dissolved solids but in some places may contain iron in troublesome amounts. Water from the Madison limestone and Tensleep sandstone combined, Permian rocks, and Sundance formation contains more than 1,000 ppm of dissolved solids. Water in the Sundance, Cloverly, and Frontier :formations is very soft. More ground water can be obtained in the Rawlins area than is now being used. Many springs are undeveloped, and water can be obtained from additional wells without unduly lowering ground-water levels.

  1. Oceanic gamefish/Skylab project field operating plan for operations 4, 5 August. [in Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The operation plans are presented for the oceanic Gamefish/Skylab Experiment 240, which was conducted to obtain fish catch data for the northeast area of the Gulf of Mexico. The plans for surface measurements, aerial observations, and communications are included.

  2. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    USDA-ARS?s Scientific Manuscript database

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  3. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  4. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  5. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  6. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  7. 40 CFR 799.9748 - TSCA metabolism and pharmacokinetics

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (TSCA). (1) Testing of the disposition of a test substance is designed to obtain adequate information on... test substance. The usefulness of a particular study design depends upon the biological activity of a... thin and uniform film. The same nominal treatment surface area must be used for all dermal test groups...

  8. Evaluation of a Three-Dimensional Stereophotogrammetric Method to Identify and Measure the Palatal Surface Area in Children With Unilateral Cleft Lip and Palate.

    PubMed

    De Menezes, Marcio; Cerón-Zapata, Ana Maria; López-Palacio, Ana Maria; Mapelli, Andrea; Pisoni, Luca; Sforza, Chiarella

    2016-01-01

    To assess a three-dimensional (3D) stereophotogrammetric method for area delimitation and evaluation of the dental arches of children with unilateral cleft lip and palate (UCLP). Obtained data were also used to assess the 3D changes occurring in the maxillary arch with the use of orthopedic therapy prior to rhinocheiloplasty and before the first year of life. Within the collaboration between the Università degli Studi di Milano (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with UCLP were analyzed using a 3D stereophotogrammetric imaging system. The area of the minor and greater cleft segments on the digital dental cast surface were delineated by the visualization tool of the stereophotogrammetric software and then examined. "Trueness" of the measurements, as well as systematic and random errors between operators' tracings ("precision") were calculated. The method gave area measurements close to true values (errors lower than 2%), without systematic measurement errors for tracings by both interoperators and intraoperators (P > .05). Statistically significant differences (P < .05) were noted for alveolar segment and time. Maxillary segments have the potential for growth during presurgical orthopedic treatment in the early neonatal period. The cleft segment delimitation on digital dental casts and area measurements by the 3D stereophotogrammetric system revealed an accurate (true and precise) method for evaluating the stone casts of newborn patients with UCLP.

  9. Evaluation of drug-carrier interactions in quaternary powder mixtures containing perindopril tert-butylamine and indapamide.

    PubMed

    Voelkel, Adam; Milczewska, Kasylda; Teżyk, Michał; Milanowski, Bartłomiej; Lulek, Janina

    2016-04-30

    Interactions occurring between components in the quaternary powder mixtures consisting of perindopril tert-butylamine, indapamide (active pharmaceutical ingredients), carrier substance and hydrophobic colloidal silica were examined. Two grades of lactose monohydrate: Spherolac(®) 100 and Granulac(®) 200 and two types of microcrystalline cellulose: M101D+ and Vivapur(®) 102 were used as carriers. We determined the size distribution (laser diffraction method), morphology (scanning electron microscopy) and a specific surface area of the powder particles (by nitrogen adsorption-desorption). For the determination of the surface energy of powder mixtures the method of inverse gas chromatography was applied. Investigated mixtures were characterized by surface parameters (dispersive component of surface energy, specific interactions parameters, specific surface area), work of adhesion and cohesion as well as Flory-Huggins parameter χ23('). Results obtained for all quaternary powder mixtures indicate existence of interactions between components. The strongest interactions occur for both blends with different types of microcrystalline cellulose (PM-1 and PM-4) while much weaker ones for powder mixtures with various types of lactose (PM-2 and PM-3). Published by Elsevier B.V.

  10. Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.

    2018-04-01

    Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.

  11. Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2

    NASA Astrophysics Data System (ADS)

    Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.

    2006-06-01

    Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonisation temperature and the ZnCl 2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N 2 at -196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m 2 g -1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.

  12. Multiscale geomorphometric modeling of Mercury

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.

    2018-02-01

    Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.

  13. Aerosol Optical Depth Determinations for BOREAS

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)

    1994-01-01

    Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10:30 local time and cleared fully by 11:30. Heavy smoke characterized the rest of the IFC in both study areas.

  14. An overview of surface radiance and biology studies in FIFE

    NASA Astrophysics Data System (ADS)

    Blad, B. L.; Schimel, D. S.

    1992-11-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurement of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability of spectral reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and PAR relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  15. Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.

  16. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    NASA Astrophysics Data System (ADS)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  17. Musculoaponeurotic Area of the Hip and Clinicophotographic Scaling System

    PubMed Central

    Mena-Chávez, J. Alejandro

    2015-01-01

    Background: With the evolution of body contouring, few innovative alternatives have been developed for cosmetic treatment in the hip area. Methods: A multicenter controlled study was conducted, including a prior review of the literature regarding the hip area. Dissections were performed on 4 male cadavers, outlining the “musculoaponeurotic area of the hip.” The area was subdivided into anterior and posterior surfaces. A clinical study was conducted in 79 patients, obtaining a scale by using the most prominent points on the sides of both thighs as the main reference. With the lines marked on photographs and the measurements, a “clinicophotographic scaling system” was designed. Results: The anterior surface corresponds to the tensor fasciae latae and its tendon as well as to the aponeurosis of the gluteus medius. The posterior surface corresponds with the iliotibial tract and the tendon insertions of the gluteus maximus. The average dimensions of the cadaver “musculoaponeurotic area of the hip” are as follows: length, 17.5 cm, and width, 11.5 cm. Using the “clinicophotographic scaling system,” the dimensions are as follows: length, 14.9 cm, and width, 10.3 cm. Conclusions: The “musculoaponeurotic area of the hip” was defined involving muscles, tendons, aponeurosis, fascia, subcutaneous cellular tissue, and skin. The borders were established using important anatomical points that determine the length and width of the area. The “clinicophotographic scaling system” was used to clinically calculate the length and width of the area. By examination and palpation, the borders and dimensions of this area could be determined. PMID:26180724

  18. Gasification Characteristics of Coal/Biomass Mixed Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Reginald

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less

  19. Conformational changes of a calix[8]arene derivative at the air-water interface.

    PubMed

    de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2005-03-10

    The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.

  20. Preparation and Characterization of Graphite Waste/CeO2 Composites

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Utami, C. S.; Nasruddin; Prasetyanto, E. A.; Bawono, Aji A.

    2018-03-01

    In this research, the chemical modification of graphite waste with CeO2 was developed and characterized. Graphite waste was pretreated with mechanical to obtain the size 200 mesh (75 μm), and thermal methods at 110°C oven for 6 hours. Here, we demonstrate final properties of graphite before modification (GBM), activated graphite (GA) and graphite/CeO2 composite with variation of 0.5, 1 and 2 g of CeO2 (G0.5; G1; G2). The effect of CeO2 concentration was observed. The presence of cerium in modified graphite samples (G0.5; G1; G2) were analyzed using SEM-EDX. The results show that the best surface area was found in G2 is 26.82 m2/g. The presence of CeO2 onto graphite surface does not significantly increase the surface area of composites.

  1. Activated carbon from leather shaving wastes and its application in removal of toxic materials.

    PubMed

    Kantarli, Ismail Cem; Yanik, Jale

    2010-07-15

    In this study, utilization of a solid waste as raw material for activated carbon production was investigated. For this purpose, activated carbons were produced from chromium and vegetable tanned leather shaving wastes by physical and chemical activation methods. A detailed analysis of the surface properties of the activated carbons including acidity, total surface area, extent of microporosity and mesoporosity was presented. The activated carbon produced from vegetable tanned leather shaving waste produced has a higher surface area and micropore volume than the activated carbon produced from chromium tanned leather shaving waste. The potential application of activated carbons obtained from vegetable tanned shavings as adsorbent for removal of water pollutants have been checked for phenol, methylene blue, and Cr(VI). Adsorption capacities of activated carbons were found to be comparable to that of activated carbons derived from biomass. 2010 Elsevier B.V. All rights reserved.

  2. Vs30 mapping at selected sites within the Greater Accra Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina

    2018-06-01

    A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.

  3. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  4. Studies of cartilaginous tissue using Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Timchenko, Pavel E.; Timchenko, Elena V.; Volova, Larisa T.; Dolgyshkin, Dmitry A.; Markova, Maria D.; Kylabyhova, A. Y.; Kornilin, Dmitriy V.

    2016-10-01

    The work presents the results of studies of samples of human articular surface of the knee joint, obtained by Raman spectroscopy implementedduring endoprosthesis replacement surgery . The main spectral characteristics of articular surface areas with varying degrees of cartilage damage were detected at 956 cm-1, 1066 cm-1 wavenumbers, corresponding to phosphate and carbonate, and at 1660 cm-1, 1271 cm-1 wavenumbers, corresponding to amide I and amide III. Criteria allowing to identify the degree of articular hyaline cartilage damage were introduced.

  5. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity.

    PubMed

    Gnilitskyi, Iaroslav; Derrien, Thibault J-Y; Levy, Yoann; Bulgakova, Nadezhda M; Mocek, Tomáš; Orazi, Leonardo

    2017-08-16

    Highly regular laser-induced periodic surface structures (HR-LIPSS) have been fabricated on surfaces of Mo, steel alloy and Ti at a record processing speed on large areas and with a record regularity in the obtained sub-wavelength structures. The physical mechanisms governing LIPSS regularity are identified and linked with the decay length (i.e. the mean free path) of the excited surface electromagnetic waves (SEWs). The dispersion of the LIPSS orientation angle well correlates with the SEWs decay length: the shorter this length, the more regular are the LIPSS. A material dependent criterion for obtaining HR-LIPSS is proposed for a large variety of metallic materials. It has been found that decreasing the spot size close to the SEW decay length is a key for covering several cm 2 of material surface by HR-LIPSS in a few seconds. Theoretical predictions suggest that reducing the laser wavelength can provide the possibility of HR-LIPSS production on principally any metal. This new achievement in the unprecedented level of control over the laser-induced periodic structure formation makes this laser-writing technology to be flexible, robust and, hence, highly competitive for advanced industrial applications based on surface nanostructuring.

  6. Measuring surface salinity in the N. Atlantic subtropical gyre. The SPURS-MIDAS cruise, spring 2013

    NASA Astrophysics Data System (ADS)

    Font, Jordi; Ward, Brian; Emelianov, Mikhail; Morisset, Simon; Salvador, Joaquin; Busecke, Julius

    2014-05-01

    SPURS-MIDAS (March-April 2013) on board the Spanish R/V Sarmiento de Gamboa was a contribution to SPURS (Salinity Processes in the Upper ocean Regional Study) focused on the processes responsible for the formation and maintenance of the salinity maximum associated to the North Atlantic subtropical gyre. Scientists from Spain, Ireland, France and US sampled the mesoscale and submesoscale structures in the surface layer (fixed points and towed undulating CTD, underway near surface TSG) and deployed operational and experimental drifters and vertical profilers, plus additional ocean and atmospheric data collection. Validation of salinity maps obtained from the SMOS satellite was one of the objectives of the cruise. The cruise included a joint workplan and coordinated sampling with the US R/V Endeavor, with contribution from SPURS teams on land in real time data and analysis exchange. We present here an overview of the different kinds of measurements made during the cruise, as well as a first comparison between SMOS-derived sea surface salinity products and salinity maps obtained from near-surface sampling in the SPURS-MIDAS area and from surface drifters released during the cruise.

  7. Influence of Surface Roughness on Strong Light-Matter Interaction of a Quantum Emitter-Metallic Nanoparticle System.

    PubMed

    Lu, Yu-Wei; Li, Ling-Yan; Liu, Jing-Feng

    2018-05-08

    We investigate the quantum optical properties of strong light-matter interaction between a quantum emitter and a metallic nanoparticle beyond idealized structures with a smooth surface. Based on the local coupling strength and macroscopic Green's function, we derived an exact quantum optics approach to obtain the field enhancement and light-emission spectrum of a quantum emitter. Numerical simulations show that the surface roughness has a greater effect on the near-field than on the far-field, and slightly increases the vacuum Rabi splitting on average. Further, we verified that the near-field enhancement is mainly determined by the surface features of hot-spot area.

  8. Cleansing and surface modifying agents on implants: fixation and related aspects of aesthetics.

    PubMed

    Ling, B C; Gillings, B R

    1995-01-01

    With the prognosis of dental implant replacement of missing teeth becoming better each year, practitioners are focusing their attention on the aesthetic aspects of implantology. However, improvement in aesthetics is only possible with the improvement in implant technology, surgical techniques and prosthodontic procedures. This study aimed at evaluating the effects of various physical and chemical agents on the implant surface; with the view of obtaining increased surface area and biocompatibility. The study found that the treatment of air-aluminum oxide blasted implants using a mixture of 30% HNO3-5% HF acids produced a surface which meets the consideration of aesthetics for implants placed in the anterior maxillary region.

  9. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; hide

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  10. A method for diagnosing surface parameters using geostationary satellite imagery and a boundary-layer model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Polansky, A. C.

    1982-01-01

    A method for diagnosing surface parameters on a regional scale via geosynchronous satellite imagery is presented. Moisture availability, thermal inertia, atmospheric heat flux, and total evaporation are determined from three infrared images obtained from the Geostationary Operational Environmental Satellite (GOES). Three GOES images (early morning, midafternoon, and night) are obtained from computer tape. Two temperature-difference images are then created. The boundary-layer model is run, and its output is inverted via cubic regression equations. The satellite imagery is efficiently converted into output-variable fields. All computations are executed on a PDP 11/34 minicomputer. Output fields can be produced within one hour of the availability of aligned satellite subimages of a target area.

  11. Estimation of Areal Distribution of Evapotranspiration Using Remotely Sensed Data During Vegetation Period in Hungary

    NASA Astrophysics Data System (ADS)

    Dunkel, Z.; Szenyán, I. G.

    The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of calculation of daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ETd-Rnd = a + b (Tc-Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA/AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observation trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field (1 km × 1 km) was scanned before noon and afternoon. In the western part of the country, a much larger area (45 km × 45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed too. Comparison of model output with data from field experiment has played a crucial role in model development and suggested evaluation method

  12. An interferometric study of the dissolution kinetics of anorthite: The role of reactive surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luettge, A.; Bolton, E.W.; Lasaga, A.C.

    1999-07-01

    An optical interferometry system has been used to study the dynamics of the dissolution of anorthite (010) cleavage surfaces. With this technique, it is possible to measure directly the surface retreat of alumino-silicates as a function of time and thereby the dissolution rate using a new application of interferometry. The dissolution experiments are carried out in a flow-through cell system with a near endmember anorthite (An{sub 98}) from Miyake-Jima, Tokyo, Japan, Perchloric acid solutions (pH 3) were used at a constant temperature of 25 C. After having measured the topography of the original pristine anorthite surface, measurements of the surfacemore » normal retreat were taken after 48,84,120, and 168 hrs of run duration at 15 different regions on the surface. An internal-reference technique allows absolute measurements of the changes in surface height for the very first time. From these measurements, an average bulk rate for dissolution of the (010) anorthite surface is calculated to be 5.7 x 10{sup {minus}13} [moles/cm{sub 2}/sec]. Finally, their directly determined bulk rate for the (010) face is compared with the bulk rates calculated from the rate law obtained from powder experiments and using the BET or total surface area.« less

  13. Preliminary Geotechnical Investigation of Two Basaltic Landslide Sites in Mauritius, Offshore Africa

    NASA Astrophysics Data System (ADS)

    Bhoopendra, D.; Fukuoka, H.; Kuwano, T.; Ichikawa, K.

    2016-12-01

    Landslide hazards in developing areas in Mauritius became a great challenge as well as a fundamental concern for the government and the citizen of the country. In recent years, landslide disasters have caused losses of both public and private properties. In 2005, a large-scale landslide at Chitrakoot affected 54 houses and infrastructures, and it was reactivated in 2006, damaging another 14 houses. Vallee Pitot landslide is frequently reactivated in these years and threatening several houses in the densely-populated zone. Being of volcanic origin, Mauritius has observed dramatic and quick weathering of the soil which may partly contribute to creating landslide-prone geo-environment. This study focuses on the preliminary geotechnical investigation of the two basaltic landslide areas in Mauritius. A recent investigation was conducted jointly by JICA (Japan International Cooperation Agency) and Ministry of Public Infrastructure and Land Transport of Government of Mauritius on both sites from 2012 to 2015 to survey the landslide surface and to implement countermeasures works.Both sites are located in the highly populated area in the capital city of Mauritius.The geological features of the sites were studied with the borehole core logging data obtained from 6 boreholes and it was found that possible sliding surface was observed in the colluvium layer consisting of gravels and stiff silty-clays, at depths from 6 to 10 m below the ground surface. The rate of landslide movement during heavy rainfall amount exceeding 100 mm/hr was elaborated with past records of extensometers installed on these sites. Colluvium samples from both sites of the same characteristics with the sliding surface were tested in the ring shear apparatus in Japan under different normal stresses reducing from 300 kPa to 50 kPa step-wise at a shear velocity of 0.02 mm/min under drained condition to obtain the residual friction angle (φ) and the cohesion (c). Obtained residual friction angle and cohesion of the Chitrakoot sample can explain why the landslide has been reactivated at extreme rainfall events. The shear strength values of the colluvium have been carefully evaluated to assess the critical ground water level and precipitation on those two basaltic areas in Mauritius as well as a method of issuing the early warning for evacuation of the citizens.

  14. Analysis of passive microwave signatures over snow-covered mountainous area

    NASA Astrophysics Data System (ADS)

    Kim, R. S.; Durand, M. T.

    2015-12-01

    Accurate knowledge of snow distribution over mountainous area is critical for climate studies and the passive microwave(PM) measurements have been widely used and invested in order to obtain information about snowpack properties. Understanding and analyzing the signatures for the explicit inversion of the remote sensing data from land surfaces is required for successful using of passive microwave sensors but this task is often ambiguous due to the large variability of physical conditions and object types. In this paper, we discuss the pattern of measured brightness temperatures and emissivities at vertical and horizontal polarization over the frequency range of 10.7 to 89 GHz of land surfaces under various snow and vegetation conditions. The Multiband polarimetric Scanning Radiometer(PSR) imagery is used over NASA Cold Land Processes Field Experiment(CLPX) study area with ground-based measurements of snow depth and snow properties. Classification of snow under various conditions in mountainous area is implemented based on different patterns of microwave signatures.

  15. Surface-emitting circular DFB, disk- and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study.

    PubMed

    Sun, Xiankai; Yariv, Amnon

    2008-06-09

    We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.

  16. Validation of HF Radar ocean surface currents in the Ibiza Channel using lagrangian drifters, moored current meter and underwater gliders

    NASA Astrophysics Data System (ADS)

    Lana, Arancha; Fernández, Vicente; Orfila, Alejandro; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    SOCIB High Frequency (HF) radar is one component of a multi-platform system located in the Balearic Islands and made up of Lagrangian platforms (profilers and drifting buoys), fixed stations (sea-level, weather, mooring and coastal), beach monitoring (camera), gliders, a research vessel as well as an ocean forecast system (waves and hydrodynamics). The HF radar system overlooks the Ibiza Channel, known as a 'choke point" where Atlantic and Mediterranean water masses interact and where meridional exchanges of water mass properties between the Balearic and the Algerian sub-basins take place. In order to determine the reliability of surface velocity measurements in this area, a quality assessment of the HF Radar is essential. We present the results of several validation experiments performed in the Ibiza Channel in 2013 and 2014. Of particular interest is an experiment started in September 2014 when a set of 13 surface drifters with different shapes and drogue lengths were released in the area covered by the HF radar. The drifter trajectories can be examined following the SOCIB Deployment Application (DAPP): http://apps.socib.es/dapp. Additionally, a 1-year long time series of surface currents obtained from a moored surface current-meter located in the Ibiza Channel, inside the area covered by the HF radar, was also used as a useful complementary validation exercise. Direct comparison between both radial surface currents from each radar station and total derived velocities against drifters and moored current meter velocities provides an assessment of the HF radar data quality at different temporal periods and geographical areas. Statistics from these comparisons give good correlation and low root-mean-square deviation. The results will be discussed for different months, geographical areas and types of surface drifters and wind exposure. Moreover, autonomous underwater glider constitutes an additional source of information for the validation of the observed velocity structures and some statistics will be presented.

  17. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  18. A study on the preparation of floating photocatalyst supported by hollow TiO2 and its performance

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; He, Bin; Kong, Xiang Z.

    2015-02-01

    This research used hollow glass microspheres (HGMS) as carrier and polystyrene (PSt) as template. PSt was loaded on HGMS surface through the modification by silane coupler. Next, amorphous titanium dioxide (TiO2) produced through tetrabutyl titanate (TBT) hydrolysis precipitated on PSt surface, forming HGMS/PSt/TiO2 particles. Lastly, using the calcinations method, this research obtained anatase TiO2, eliminated PSt, and ultimately acquired composite particles with hollow TiO2 loaded on HGMS surface (HGMSHT). SEM results presented that hollow TiO2 was compact on HGMS surface and a multilayer network structure was formed. The specific surface area of HGMSHT particles was 26 m2/g, which was much larger than that of HGMS/TiO2 (HGMST) composite particles (5.6 m2/g) through direct TBT hydrolysis. Results of catalytic degradation experiment with Rhodamine B and phenol under UV light and sunlight demonstrated that due to larger TiO2 load capacity and specific surface area, the catalytic activity of HGMSHT composite particles was significantly more desirable than that of HGMST, and the catalyst presented satisfactory stability.

  19. Recent surface displacements in the Upper Rhine Graben — Preliminary results from geodetic networks

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Thomas; Heck, Bernhard; Knöpfler, Andreas; Masson, Frédéric; Mayer, Michael; Ulrich, Patrice; Westerhaus, Malte; Zippelt, Karl

    2013-08-01

    Datasets of the GNSS Upper Rhine Graben Network (GURN) and the national levelling networks in Germany, France and Switzerland are investigated with respect to current surface displacements in the Upper Rhine Graben (URG) area. GURN consists of about 80 permanent GNSS (Global Navigation Satellite Systems) stations. The terrestrial levelling network comprises 1st and 2nd order levelling lines that have been remeasured at intervals of roughly 25 years, starting in 1922. Compared to earlier studies national institutions and private companies made available raw data, allowing for consistent solutions for the URG region. We focussed on the southern and eastern parts of the investigation area. Our preliminary results show that the levelling and GNSS datasets are sensitive to resolve small surface displacement rates down to an order of magnitude of 0.2 mm/a and 0.4 mm/a, respectively. The observed horizontal velocity components for a test region south of Strasbourg, obtained from GNSS coordinate time series, vary around 0.5 mm/a. The results are in general agreement with interseismic strain built-up in a sinistral strike-slip regime. Since the accuracy of the GNSS derived vertical component is insufficient, data of precise levelling networks is used to determine vertical displacement rates. More than 75% of the vertical rates obtained from a kinematic adjustment of 1st order levelling lines in the eastern part of URG vary between - 0.2 mm/a and + 0.2 mm/a, indicating that this region behaves stable. Higher rates up to 0.5 mm/a in a limited region south of Freiburg are in general agreement with active faulting. We conclude that both networks deliver stable results that reflect real surface movements in the URG area. We note, however, that geodetically observed surface displacements generally result from a superposition of different effects, and that a separation in tectonic and non-tectonic processes needs additional information and expertise.

  20. Interrelationship between TiO2 nanoparticle size and kind/size of dyes in the mechanism and conversion efficiency of dye sensitized solar cells.

    PubMed

    Tahay, Pooya; Babapour Gol Afshani, Meisam; Alavi, Ali; Parsa, Zahra; Safari, Nasser

    2017-05-10

    In order to provide a comprehensive investigation of TiO 2 nanoparticle size in relation with different dye types in DSSCs, three sizes of TiO 2 nanoparticles and two different dye types including a porphyrin dye (T2) and a ruthenium dye (N3) were synthesized. Steady state current-voltage (J-V) characteristics were investigated for the fabricated DSSCs and the results demonstrated that the optimum TiO 2 nanoparticle size changed with the dye type. The obtained J-V data were interpreted by cyclic voltammetry, UV-visible absorption spectroscopy, BET measurement, DFT calculation, IPCE measurement and impedance spectroscopy. The results for the N3 dye show that the surface area of the TiO 2 nanoparticles is a key factor for the N3 cells, which is restricted by TiO 2 pore diameter and surface state traps. In contrast, the density of localized states of the TiO 2 film under the LUMO state of the porphyrin dyes is the dominating factor for the performance of the solar cells, which is restricted by the surface area of the TiO 2 nanoparticles. These obtained results represent a significant advance in the development of porphyrin, ruthenium and even solid electrolyte DSSCs.

  1. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Simin; Cai, Yijin; Zhao, Xiao; Liang, Yeru; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Jiang, Sanping; Liu, Yingliang; Xiao, Yong

    2017-08-01

    Development of facile and scalable synthesis process for the fabrication of nanoporous carbon materials with large specific surface areas, well-defined nanostructure, and high electrochemical activity is critical for the high performance energy storage applications. The key issue is the dedicated balance between the ultrahigh surface area and highly porous but interconnected nanostructure. Here, we demonstrate the fabrication of new sulfur doped nanoporous carbon sphere (S-NCS) with the ultrahigh surface area up to 3357 m2 g-1 via a high-temperature hydrothermal carbonization and subsequent KOH activation process. The as-prepared S-NCS which integrates the advantages of ultrahigh porous structure, well-defined nanospherical and modification of heteroatom displays excellent electrochemical performance. The best performance is obtained on S-NCS prepared by the hydrothermal carbonization of sublimed sulfur and glucose, S-NCS-4, reaching a high specific capacitance (405 F g-1 at a current density of 0.5 A g-1) and outstanding cycle stability. Moreover, the symmetric supercapacitor is assembled by S-NCS-4 displays a superior energy density of 53.5 Wh kg-1 at the power density of 74.2 W kg-1 in 1.0 M LiPF6 EC/DEC. The synthesis method is simple and scalable, providing a new route to prepare highly porous and heteroatom-doped nanoporous carbon spheres for high performance energy storage applications.

  3. Adsorption of dyes using different types of clay: a review

    NASA Astrophysics Data System (ADS)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  4. Efficient gaussian density formulation of volume and surface areas of macromolecules on graphical processing units.

    PubMed

    Zhang, Baofeng; Kilburg, Denise; Eastman, Peter; Pande, Vijay S; Gallicchio, Emilio

    2017-04-15

    We present an algorithm to efficiently compute accurate volumes and surface areas of macromolecules on graphical processing unit (GPU) devices using an analytic model which represents atomic volumes by continuous Gaussian densities. The volume of the molecule is expressed by means of the inclusion-exclusion formula, which is based on the summation of overlap integrals among multiple atomic densities. The surface area of the molecule is obtained by differentiation of the molecular volume with respect to atomic radii. The many-body nature of the model makes a port to GPU devices challenging. To our knowledge, this is the first reported full implementation of this model on GPU hardware. To accomplish this, we have used recursive strategies to construct the tree of overlaps and to accumulate volumes and their gradients on the tree data structures so as to minimize memory contention. The algorithm is used in the formulation of a surface area-based non-polar implicit solvent model implemented as an open source plug-in (named GaussVol) for the popular OpenMM library for molecular mechanics modeling. GaussVol is 50 to 100 times faster than our best optimized implementation for the CPUs, achieving speeds in excess of 100 ns/day with 1 fs time-step for protein-sized systems on commodity GPUs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Dual membrane hollow fiber fuel cell and method of operating same

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Lawson, D. D. (Inventor)

    1978-01-01

    A gaseous fuel cell is described which includes a pair of electrodes formed by open-ended, ion-exchange hollow fibers, each having a layer of metal catalyst deposited on the inner surface and large surface area current collectors such as braided metal mesh in contact with the metal catalyst layer. A fuel cell results when the electrodes are immersed in electrolytes and electrically connected. As hydrogen and oxygen flow through the bore of the fibers, oxidation and reduction reactions develop an electrical potential. Since the hollow fiber configuration provides large electrode area per unit volume and intimate contact between fuel and oxidizer at the interface, and due to the low internal resistance of the electrolyte, high power densities can be obtained.

  6. Self-assembled spongy-like MnO2 electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Dong, Meng; Zhang, Yu Xin; Song, Hong Fang; Qiu, Xin; Hao, Xiao Dong; Liu, Chuan Pu; Yuan, Yuan; Li, Xin Lu; Huang, Jia Mu

    2012-08-01

    Mesoporous spongy-like MnO2 has been synthesized via a facile and biphasic wet method, accompanied with tetraoctylammonium bromide (TOAB) as a soft template under ambient condition. A well-defined spongy morphology of MnO2 with uniform filament diameters 10-20 nm have been observed by FESEM, TEM, HRTEM, XRD, FT-IR,TGA-DSC studies. Further physical characterizations revealed that MnO2 sponges owned a large surface area of 155 m2 g-1 with typical mesoporous appearance. A specific capacitance value as high as 336 F g-1 was obtained. This improved capacitive behavior was attributed to the large surface area, morphology nature of nano-MnO2, and its broad pore size distribution.

  7. Vacuum insulation of the high energy negative ion source for fusion application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Inoue, T.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less

  8. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [Everglades agricultural area and the west north central peninsula

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Surface temperatures derived from HCMM data were compared with to those obtained by GOES satellite and the apparent thermal inertia (ATI) calculated. For two dates, the HCMM temperatures appear to be about 5 C lower than the GOES temperatures. The ATI for excessively-drained to well-drained mineral soils was greater than for drained organic soils possibly because of long periods of low rainfall during late 1980 and early 1981. Organic soils cropped to sugar cane showed lower ATI after a severe killing freeze. With dead leaves, there was less transpiration and more solar radiation probably reached the dark soil surface. This would explain the larger diurnal temperature amplitude observed.

  9. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin

    2017-11-01

    Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.

  10. Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Wang, Qi; Mao, Guoming; Liu, Hao; Yu, Rongdi; Ren, Xiaomin

    2018-04-01

    Periodic Ag nanocluster arrays for surface enhanced Raman spectroscopy (SERS) were fabricated through magnetron sputtering Ag over a large-area monolayer template which is based on silica (SiO2) nanospheres. High-density nanogaps between the adjacent Ag nanoclusters acted as "hot-spots", making a dominant contribution to the high-performance SERS detection. Moreover, the nanospheres and Ag nanoclusters effectively increased the surface roughness and also enlarged the surface area of as-obtained SERS substrate, which resulted in a further enhancement in Raman signals. As-prepared SERS substrates showed very high sensitivity with the enhancement factor (EF) value of 4.1 × 1012 for Rhodamine 6G (R6G), allowing the corresponding detection limit as low as 10-16 M. Additionally, SERS signal of melamine was still strong even though its concentration was lowered to 10-7 M. Our results show that preparing highly sensitive SERS substrate with periodic Ag nanoclusters over SiO2 nanosphere template is a convenient and promising pathway for chemical and biologic sensing.

  11. A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye.

    PubMed

    Gül, S; Eren, O; Kır, S; Onal, Y

    2012-01-01

    The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption. The highest BET surface area carbon (1,275 m(2)/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.

  12. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  13. Intraoperative optical coherence tomography of the cerebral cortex using a 7 degree-of freedom robotic arm

    NASA Astrophysics Data System (ADS)

    Reyes Perez, Robnier; Jivraj, Jamil; Yang, Victor X. D.

    2017-02-01

    Optical Coherence Tomography (OCT) provides a high-resolution imaging technique with limited depth penetration. The current use of OCT is limited to relatively small areas of tissue for anatomical structure diagnosis or minimally invasive guided surgery. In this study, we propose to image a large area of the surface of the cerebral cortex. This experiment aims to evaluate the potential difficulties encountered when applying OCT imaging to large and irregular surface areas. The current state-of-the-art OCT imaging technology uses scanning systems with at most 3 degrees-of-freedom (DOF) to obtain a 3D image representation of the sample tissue. We propose the use of a 7 DOF industrial robotic arm to increase the scanning capabilities of our OCT. Such system will be capable of acquiring data from large samples of tissue that are too irregular for conventional methods. Advantages and disadvantages of our system are discussed.

  14. A computer procedure to analyze seismic data to estimate outcome probabilities in oil exploration, with an initial application in the tabasco region of southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Berlanga, Juan M.; Harbaugh, John W.

    The Tabasco region contains a number of major oilfields, including some of the emerging "giant" oil fields which have received extensive publicity. Fields in the Tabasco region are associated with large geologic structures which are detected readily by seismic surveys. The structures seem to be associated with deepseated movement of salt, and they are complexly faulted. Some structures have as much as 1000 milliseconds relief of seismic lines. A study, interpreting the structure of the area, used initially only a fraction of the total seismic lines That part of Tabasco region that has been studied was surveyed with a close-spaced rectilinear network of seismic lines. A, interpreting the structure of the area, used initially only a fraction of the total seismic data available. The purpose was to compare "predictions" of reflection time based on widely spaced seismic lines, with "results" obtained along more closely spaced lines. This process of comparison simulates the sequence of events in which a reconnaissance network of seismic lines is used to guide a succession of progressively more closely spaced lines. A square gridwork was established with lines spaced at 10 km intervals, and using machine contour maps, compared the results with those obtained with seismic grids employing spacings of 5 and 2.5 km respectively. The comparisons of predictions based on widely spaced lines with observations along closely spaced lines provide information by which an error function can be established. The error at any point can be defined as the difference between the predicted value for that point, and the subsequently observed value at that point. Residuals obtained by fitting third-degree polynomial trend surfaces were used for comparison. The root mean square of the error measurement, (expressed in seconds or milliseconds reflection time) was found to increase more or less linearly with distance from the nearest seismic point. Oil-occurrence probabilities were established on the basis of frequency distributions of trend-surface residuals obtained by fitting and subtracting polynomial trend surfaces from the machine-contoured reflection time maps. We found that there is a strong preferential relationship between the occurrence of petroleum (i.e. its presence versus absence) and particular ranges of trend-surface residual values. An estimate of the probability of oil occurring at any particular geographic point can be calculated on the basis of the estimated trend-surface residual value. This estimate, however, must be tempered by the probable error in the estimate of the residual value provided by the error function. The result, we believe, is a simple but effective procedure for estimating exploration outcome probabilities where seismic data provide the principal form of information in advance of drilling. Implicit in this approach is the comparison between a maturely explored area, for which both seismic and production data are available, and which serves as a statistical "training area", with the "target" area which is undergoing exploration and for which probability forecasts are to be calculated.

  15. Clay mineralogy in different geomorphic surfaces in sugarcane areas

    NASA Astrophysics Data System (ADS)

    Camargo, L.; Marques, J., Jr.

    2012-04-01

    The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment conditions of each surface. The rate goethite/(goethite+hematite) decreases the surface I to III this result is the variation of the source material that has an increase of clay which is characteristic of sandstone rock (Adamantine Formation) in the surface III. The rate kaolinite/(kaolinite+gibbsite) also shows a decrease of the surface I to the surface III. The spatial distribution pattern of mineralogy influenced the pattern of physical and chemical properties. On the surface III (with higher iron and gibbsite) had the best physical condition (lower density, higher porosity and aggregates) and greater phosphorus sorption. In this sense, the identification and mapping of the GSs, allowed a better understanding of cause and effect of the distribution of soils in the area, and the recognition of areas of controlled variability of soil attributes. These areas can be considered specific areas of management, useful for planning and management practices in the culture of sugarcane. Besides, suggesting criteria for the recognition of map units that would be equivalent to the future series of soils of the Brazilian System of Soil Classification.

  16. Preliminary study of near surface detections at geothermal field using optic and SAR imageries

    NASA Astrophysics Data System (ADS)

    Kurniawahidayati, Beta; Agoes Nugroho, Indra; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Current remote sensing technologies shows that surface manifestation of geothermal system could be detected with optical and SAR remote sensing, but to assess target beneath near the surface layer with the surficial method needs a further study. This study conducts a preliminary result using Optic and SAR remote sensing imagery to detect near surface geothermal manifestation at and around Mt. Papandayan, West Java, Indonesia. The data used in this study were Landsat-8 OLI/TIRS for delineating geothermal manifestation prospect area and an Advanced Land Observing Satellite(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) level 1.1 for extracting lineaments and their density. An assumption was raised that the lineaments correlated with near surface structures due to long L-band wavelength about 23.6 cm. Near surface manifestation prospect area are delineated using visual comparison between Landsat 8 RGB True Colour Composite band 4,3,2 (TCC), False Colour Composite band 5,6,7 (FCC), and lineament density map of ALOS PALSAR. Visual properties of ground object were distinguished from interaction of the electromagnetic radiation and object whether it reflect, scatter, absorb, or and emit electromagnetic radiation based on characteristic of their molecular composition and their macroscopic scale and geometry. TCC and FCC composite bands produced 6 and 7 surface manifestation zones according to its visual classification, respectively. Classified images were then compared to a Normalized Different Vegetation Index (NDVI) to obtain the influence of vegetation at the ground surface to the image. Geothermal area were classified based on vegetation index from NDVI. TCC image is more sensitive to the vegetation than FCC image. The later composite produced a better result for identifying visually geothermal manifestation showed by detail-detected zones. According to lineament density analysis high density area located on the peak of Papandayan overlaid with zone 1 and 2 of FCC. Comparing to the extracted lineament density, we interpreted that the near surface manifestation is located at zone 1 and 2 of FCC image.

  17. Formation of polycrystalline-silicon films with hemispherical grains for capacitor structures with increased capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, A. V., E-mail: novak-andrei@mail.ru

    2014-12-15

    The effect of formation conditions on the morphology of silicon films with hemispherical grains (HSG-Si) obtained by the method of low-pressure chemical vapor deposition (LPCVD) is investigated by atomic-force microscopy. The formation conditions for HSG-Si films with a large surface area are found. The obtained HSG-Si films make it possible to fabricate capacitor structures, the electric capacitance of which is twice as large in comparison to that of capacitors with “smooth” electrodes from polycrystalline silicon.

  18. Development of a software-hardware complex for studying the process of grinding by a pendulum deformer

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.

  19. Evapotranspiration using a satellite-based surface energy balance with standardized ground control

    NASA Astrophysics Data System (ADS)

    Trezza, Ricardo

    This study evaluated the potential of using the S&barbelow;urface E&barbelow;nergy Ḇalance A&barbelow;lgorithm for Ḻand (SEBAL) as a means for estimating evapotranspiration (ET) for local and regional scales in Southern Idaho. The original SEBAL model was refined during this study to provide better estimation of ET in agricultural areas and to make more reliable estimates of ET from other surfaces as well, including mountainous terrain. The modified version of SEBAL used in this study, termed as SEBALID (ID stands for Idaho) includes standardization of the two SEBAL "anchor" pixels, the use of a water balance model to track top soil moisture, adaptation of components of SEBAL for better prediction of the surface energy balance in mountains and sloping terrain, and use of the ratio between actual ET and alfalfa reference evapotranspiration (ET r) as a means for obtaining the temporal integration of instantaneous ET to daily and seasonal values. Validation of the SEBALID model at a local scale was performed by comparing lysimeter ET measurements from the USDA-ARS facility at Kimberly, Idaho, with ET predictions by SEBAL using Landsat 5 TM imagery. Comparison of measured and predicted ET values was challenging due to the resolution of the Landsat thermal band (120m x 120m) and the relatively small size of the lysimeter fields. In the cases where thermal information was adequate, SEBALID predictions were close to the measured values of ET in the lysimeters. Application of SEBALID at a regional scale was performed using Landsat 7 ETM+ and Landsat 5 TM imagery for the Eastern Snake Plain Aquifer (ESPA) region in Idaho during 2000. The results indicated that SEBALID performed well for predicting daily and seasonal ET for agricultural areas. Some unreasonable results were obtained for desert and basalt areas, due to uncertainties of the prediction of surface parameters. In mountains, even though validation of results was not possible, the values of ET obtained reflected the progress produced by the refinements made to the original SEBAL algorithm.

  20. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-04-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel.

  1. Automatic Large-Scalae 3d Building Shape Refinement Using Conditional Generative Adversarial Networks

    NASA Astrophysics Data System (ADS)

    Bittner, K.; d'Angelo, P.; Körner, M.; Reinartz, P.

    2018-05-01

    Three-dimensional building reconstruction from remote sensing imagery is one of the most difficult and important 3D modeling problems for complex urban environments. The main data sources provided the digital representation of the Earths surface and related natural, cultural, and man-made objects of the urban areas in remote sensing are the digital surface models (DSMs). The DSMs can be obtained either by light detection and ranging (LIDAR), SAR interferometry or from stereo images. Our approach relies on automatic global 3D building shape refinement from stereo DSMs using deep learning techniques. This refinement is necessary as the DSMs, which are extracted from image matching point clouds, suffer from occlusions, outliers, and noise. Though most previous works have shown promising results for building modeling, this topic remains an open research area. We present a new methodology which not only generates images with continuous values representing the elevation models but, at the same time, enhances the 3D object shapes, buildings in our case. Mainly, we train a conditional generative adversarial network (cGAN) to generate accurate LIDAR-like DSM height images from the noisy stereo DSM input. The obtained results demonstrate the strong potential of creating large areas remote sensing depth images where the buildings exhibit better-quality shapes and roof forms.

  2. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Air Force Plant 38, Porter, New York

    DTIC Science & Technology

    1988-04-01

    drainageways collect surface runoff at the plant and channel the water off plant property. These are: the Central Drain- age Ditch, the Magazine Ditch, and...past, this drain- age system collected test area deluge waters , small spills from test- ing areas, and drainage from around the flush and maintenance...Drain- age Ditch Table 4-2 shows the results of the analyses of two water samples and one soil/sediment sample that were obtained from the drainage from

  3. How Spherical Are the Archimedean Solids and Their Duals?

    ERIC Educational Resources Information Center

    Aravind, P. K.

    2011-01-01

    The Isoperimetric Quotient, or IQ, introduced by G. Polya, characterizes the degree of sphericity of a convex solid. This paper obtains closed form expressions for the surface area and volume of any Archimedean polyhedron in terms of the integers specifying the type and number of regular polygons occurring around each vertex. Similar results are…

  4. Process for electrospinning chitin fibers from chitinous biomass solution

    DOEpatents

    Swatloski, Richard P.; Barber, Patrick S.; Opichka, Terrance; Bonner, Jonathan R.; Gurau, Gabriela; Griggs, Christopher Scott; Rogers, Robin D.

    2017-06-20

    Disclosed are methods for electrospinning chitinous biomass solution to form chitin fibers, using ionic liquids or other ion-containing liquids as solvent. Chitin fibers produced thereby and articles containing such chitin fibers are also disclosed. The chitin fiber thus obtained has very high surface area and improved strength over currently commercially available chitin materials.

  5. Variable porosity in siliceous skeletons: Determination and importance

    USGS Publications Warehouse

    Hurd, D.C.; Wenkam, C.; Pankratz, H.S.; Fugate, J.

    1979-01-01

    Gas adsorption data were used to obtain the specific surface area and specific pore volume for a variety of biogenically precipitated silica semples. The results suggest that this material is finely divided and porous. This interp tation was corroborated by the use of transmission electron microscopy at magnifications up to 180,000. Copyright ?? 1979 AAAS.

  6. 10 CFR 60.121 - Requirements for ownership and control of interests in land.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... postclosure controlled area. DOE shall exercise any jurisdiction and control over surface and subsurface... interests, servitudes, or withdrawals from location or patent under the general mining laws. (c) Water rights. (1) DOE shall also have obtained such water rights as may be needed to accomplish the purpose of...

  7. 10 CFR 60.121 - Requirements for ownership and control of interests in land.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... postclosure controlled area. DOE shall exercise any jurisdiction and control over surface and subsurface... interests, servitudes, or withdrawals from location or patent under the general mining laws. (c) Water rights. (1) DOE shall also have obtained such water rights as may be needed to accomplish the purpose of...

  8. 10 CFR 60.121 - Requirements for ownership and control of interests in land.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... postclosure controlled area. DOE shall exercise any jurisdiction and control over surface and subsurface... interests, servitudes, or withdrawals from location or patent under the general mining laws. (c) Water rights. (1) DOE shall also have obtained such water rights as may be needed to accomplish the purpose of...

  9. Facile and rapid auto-combustion synthesis of nano-porous γ-Al2O3 by application of hexamethylenetetramine in fuel composition

    NASA Astrophysics Data System (ADS)

    Salem, Shiva; Salem, Amin; Parni, Mohammad Hosein; Jafarizad, Abbas

    2018-06-01

    In this article, urea, glycine and hexamethylenetetramine were blended in accordance with the mixture design algorithm to prepare γ-Al2O3 by auto-combustion technique. Aluminum nitrate was then mixed with the stoichiometric contents of prepared fuel solutions to obtain gel systems. The gels exhibited a typical self-propagating combustion behavior at low temperature, directly resulting amorphous materials. The precursors were calcined at various temperatures ranging from 700 to 900 °C. The treated powders were evaluated by determining the methylene blue (MB) adsorption efficiency. The production condition to obtain γ-Al2O3 with maximum surface area depends on fuel composition and calcination temperature. The alumina powder fabricated by this procedure was uniformly distributed and contains nano-sized secondary particles with diameter about 10-30 nm in which the average pore size is 3.2 nm induced large surface area, 240 m2g-1. The employment of hexamethylenetetramine provides a potential for synthesis of γ-Al2O3 at lower temperature, 700 °C, with maximum MB removal efficiency.

  10. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Nguyen, Dongthanh; Wang, Wei; Long, Haibo; Ru, Hongqiang

    2016-03-01

    Mesoporous titania (meso-TiO2) has received extensive attention owing to its versatile potential applications. This paper reports a low-temperature templating approach for the fabrication of meso-TiO2 using the peroxo titanic acid (PTA) sol as precursor and Pluronic P123 as nonionic template. The TGA, XRD, N2 sorption, FE-SEM and HRTEM were used to characterize the obtained samples. The results showed that meso-TiO2 with high surface area up to 163 m2·g-1 and large pore volume of 0.65 cm3·g-1 can be obtained. The mesopore sizes can be varied between 13 and 20 nm via this synthesis approach. The amount of P123 and the calcination conditions were found to have great influence on the mesoporous and crystalline structures of meso-TiO2. The photocatalytic activity testing clearly shows that the high surface area and bi-crystallinity phases of meso-TiO2 play important roles in enhancing photocatalytic properties of meso-TiO2 in photo-decomposing Rhodamine B in water.

  11. Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics.

    PubMed

    Prakash Kumar, B G; Shivakamy, K; Miranda, Lima Rose; Velan, M

    2006-08-25

    Activated carbon was produced from a biowaste product, rubberwood sawdust (RWSD) using steam in a high temperature fluidized bed reactor. Experiments were carried out to investigate the influence of various process parameters such as activation time, activation temperature, particle size and fluidising velocity on the quality of the activated carbon. The activated carbon was characterized based on its iodine number, methylene blue number, Brauner Emmet Teller (BET) surface area and surface area obtained using the ethylene glycol mono ethyl ether (EGME) retention method. The best quality activated carbon was obtained at an activation time and temperature of 1h and 750 degrees C for an average particle size of 0.46 mm. The adsorption kinetics shows that pseudo-second-order rate fitted the adsorption kinetics better than pseudo-first-order rate equation. The adsorption capacity of carbon produced from RWSD was found to be 1250 mg g(-1) for the Bismark Brown dye. The rate constant and diffusion coefficient for intraparticle transport were determined for steam activated carbon. The characteristic of the prepared activated carbon was found comparable to the commercial activated carbon.

  12. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    PubMed Central

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-01-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time. PMID:28429740

  13. Tribology behavior on scratch tests: Effects of yield strength

    DOE PAGES

    Feng, Biao

    2017-03-07

    In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less

  14. Tribology behavior on scratch tests: Effects of yield strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Biao

    In this paper, a three-dimensional (3D) scratch model is proposed to investigate the effects of yield strength of both coatings and substrates. With the help of combined Coulomb and plastic friction, the obtained results comprehensively interpret the experimental phenomena in most metals that with the growth of hardness after heat treatment the scratch friction coefficient (SFC) increases. This interpretation could not be done before. Scratch tests on the surface with or without the coating are discussed. Without the coating the SFC increases due to the decrease of the area with plastic slippage and/or the increase of friction stress during themore » increase of the yield strength in the material. With a softer substrate the friction stress decreases but the SFC increases, which is caused by the growth of the entire contact area and surface deformation. Conversely, with a stronger substrate the SFC decreases due to an intensified plastic slippage In conclusion, the obtained results pave a new way to understanding the effects of yield strength on scratch tests, interpret experimental phenomena, and should be helpful for an optimum design in experiments.« less

  15. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    NASA Astrophysics Data System (ADS)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  16. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane.

    PubMed

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-21

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  17. Land surface phenology of Northeast China during 2000-2015: temporal changes and relationships with climate changes.

    PubMed

    Zhang, Yue; Li, Lin; Wang, Hongbin; Zhang, Yao; Wang, Naijia; Chen, Junpeng

    2017-10-01

    As an important crop growing area, Northeast China (NEC) plays a vital role in China's food security, which has been severely affected by climate change in recent years. Vegetation phenology in this region is sensitive to climate change, and currently, the relationship between the phenology of NEC and climate change remains unclear. In this study, we used a satellite-derived normalized difference vegetation index (NDVI) to obtain the temporal patterns of the land surface phenology in NEC from 2000 to 2015 and validated the results using ground phenology observations. We then explored the relationships among land surface phenology, temperature, precipitation, and sunshine hours for relevant periods. Our results showed that the NEC experienced great phenological changes in terms of spatial heterogeneity during 2000-2015. The spatial patterns of land surface phenology mainly changed with altitude and land cover type. In most regions of NEC, the start date of land surface phenology had advanced by approximately 1.0 days year -1 , and the length of land surface phenology had been prolonged by approximately 1.0 days year -1 except for the needle-leaf and cropland areas, due to the warm conditions. We found that a distinct inter-annual variation in land surface phenology related to climate variables, even if some areas presented non-significant trends. Land surface phenology was coupled with climate variables and distinct responses at different combinations of temperature, precipitation, sunshine hours, altitude, and anthropogenic influence. These findings suggest that remote sensing and our phenology extracting methods hold great potential for helping to understand how land surface phenology is sensitive to global climate change.

  18. Evaluation of rayon swab surface sample collection method for Bacillus spores from nonporous surfaces.

    PubMed

    Brown, G S; Betty, R G; Brockmann, J E; Lucero, D A; Souza, C A; Walsh, K S; Boucher, R M; Tezak, M S; Wilson, M C; Rudolph, T; Lindquist, H D A; Martinez, K F

    2007-10-01

    To evaluate US Centers for Disease Control and Prevention recommended swab surface sample collection method for recovery efficiency and limit of detection for powdered Bacillus spores from nonporous surfaces. Stainless steel and painted wallboard surface coupons were seeded with dry aerosolized Bacillus atrophaeus spores and surface concentrations determined. The observed mean rayon swab recovery efficiency from stainless steel was 0.41 with a standard deviation (SD) of +/-0.17 and for painted wallboard was 0.41 with an SD of +/-0.23. Evaluation of a sonication extraction method for the rayon swabs produced a mean extraction efficiency of 0.76 with an SD of +/-0.12. Swab recovery quantitative limits of detection were estimated at 25 colony forming units (CFU) per sample area for both stainless steel and painted wallboard. The swab sample collection method may be appropriate for small area sampling (10 -25 cm2) with a high agent concentration, but has limited value for large surface areas with a low agent concentration. The results of this study provide information necessary for the interpretation of swab environmental sample collection data, that is, positive swab samples are indicative of high surface concentrations and may imply a potential for exposure, whereas negative swab samples do not assure that organisms are absent from the surfaces sampled and may not assure the absence of the potential for exposure. It is critical from a public health perspective that the information obtained is accurate and reproducible. The consequence of an inappropriate public health response founded on information gathered using an ineffective or unreliable sample collection method has the potential for undesired social and economic impact.

  19. Stress distribution and topography of Tellus Regio, Venus

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Greeley, Ronald

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.

  20. Impact of MODIS Sensor Calibration Updates on Greenland Ice Sheet Surface Reflectance and Albedo Trends

    NASA Technical Reports Server (NTRS)

    Casey, Kimberly A.; Polashenski, Chris M.; Chen, Justin; Tedesco, Marco

    2017-01-01

    We evaluate Greenland Ice Sheet (GrIS) surface reflectance and albedo trends using the newly released Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) products over the period 2001-2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5). Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry) and elevation (i.e., 500-2000 m, 2000 m and greater) conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.

  1. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    NASA Astrophysics Data System (ADS)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  2. Sonic-boom ground-pressure measurements from Apollo 15

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Mckinney, R.

    1972-01-01

    Sonic boom pressure signatures recorded during the launch and reentry phases of the Apollo 15 mission are presented. The measurements were obtained along the vehicle ground track at 87 km and 970 km downrange from the launch site during ascent; and at 500 km, 55.6 km, and 12.9 km from the splashdown point during reentry. Tracings of the measured signatures are included along with values of the overpressure, impulse, time duration, and rise times. Also included are brief descriptions of the launch and recovery test areas in which the measurements were obtained, the sonic boom instrumentation deployment, flight profiles and operating conditions for the launch vehicle and spacecraft, surface weather information at the measuring sites, and high altitude weather information for the general measurement areas.

  3. Total pollution effect of urban surface runoff.

    PubMed

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  4. Assessment of Potential Location of High Arsenic Contamination Using Fuzzy Overlay and Spatial Anisotropy Approach in Iron Mine Surrounding Area

    PubMed Central

    Wirojanagud, Wanpen; Srisatit, Thares

    2014-01-01

    Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest. PMID:25110751

  5. Microclimatic modeling of the desert in the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, A.K.; Abdrabboh, M.A.; Kamel, K.A.

    1996-10-01

    The present study is concerned with the prediction of the weather parameters in the microclimate layer (less than 2 m above the ground surface) in the desert and sparsely vegetated areas in the United Arab Emirates. A survey was made of the weather data in these regions including solar radiation, wind speed, screen temperatures and relative humidity. Additionally, wind speed data were obtained at heights below two meters and surface albedo was recorded for various soil and vegetation conditions. A survey was also carried out for the different plant species in various areas of the U.A.E. Data on soil andmore » surface temperature were then analyzed. An energy balance model was formulated including incident short- and long-wave length radiation between earth and sky, convective heat transfer to/from earth surface, surface reflection of solar radiation and soil/plant evapotranspiration. An explicit one dimensional finite difference scheme was adapted to solve the resulting algebraic finite difference equations. The equation for surface nodes included thermal radiation as well as convection effects. The heat transfer coefficient was evaluated on the basis of wind speed and surface roughness at the site where the energy balance was set. Theoretical predictions of air and soil temperatures were accordingly compared to experimental measurements in selected sites, where reasonable agreements were observed.« less

  6. Operational Monitoring of Mines by COSMO-SkyMed PSP SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Miniati, Federico; de Assis, Luciano Mozer

    2016-08-01

    Synthetic aperture radar (SAR) interferometry is a powerful technology for detection and monitoring of slow ground surface movements. Monitoring of ground deformations in mining structures is an important application, particularly difficult because the scene changes with time. The persistent scatterer pair (PSP) approach, recently proposed to overcome some limitations of standard persistent scatter interferometry, proved to be effective also for mine monitoring. In this work, after resuming the main ideas of the PSP method, we describe the PSP measurements obtained from high- resolution X-band COSMO-SkyMed data over a large mining area in Minas Gerais state, Brazil. The outcomes demonstrate that dense and accurate ground deformation measurements can be obtained on the mining area and its structures (such as open pits, waste dumps, conveyor belts, water and tailings dams, etc.), achieving a consistent global view including also areas where field instruments are not installed.

  7. Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.

    2014-05-12

    We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.

  8. Evidence for asymmetric edge-on Langmuir monolayer: Application to surface potential measurements

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Ionov, R.; Goldmann, M.; Fontaine, P.; Billard, J.; Peretti, P.

    2001-10-01

    We show, using surface pressure vs. molecular area isotherm measurements and synchrotron grazing X-ray diffraction, that 4BCD12 molecules, which consist of a central flexible bowl-like core to which eight long lateral hydrocarbon chains are bound, form a stable edge-on monolayer. Experimental data indicate that six lateral hydrocarbon chains orient upwards to form a quasi-rectangular lattice of 43° tilted hydrocarbon chains. The obtained axially asymmetric phase, which we label edge26-on, allows using surface potential measurements, for the validation of literature electric models of a single monolayer spread at the air-water interface.

  9. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team.

    PubMed

    McCord, T B; Hansen, G B; Fanale, F P; Carlson, R W; Matson, D L; Johnson, T V; Smythe, W D; Crowley, J K; Martin, P D; Ocampo, A; Hibbitts, C A; Granahan, J C

    1998-05-22

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  10. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.D.; Crowley, J.K.; Martin, P.D.; Ocampo, A.; Hibbitts, C.A.; Granahan, J.C.

    1998-01-01

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  11. How Well Can We Estimate Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission in an Atlantic Coastal Area?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department ofmore » Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.« less

  12. Novel Approach to Evaluation of Charging on Semiconductor Surface by Noncontact, Electrode-Free Capacitance/Voltage Measurement

    NASA Astrophysics Data System (ADS)

    Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa

    1994-04-01

    This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.

  13. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    NASA Astrophysics Data System (ADS)

    Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru

    2017-08-01

    The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be extended to the water balance study of the whole Heihe River basin.

  14. Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area.

    PubMed

    Christensson, M; Welander, T

    2004-01-01

    An activated sludge/biofilm hybrid process treating municipal wastewater was studied in pilot plant trials. A new type of suspended carrier, with large effective surface area, was employed in the process with the aim of enhancing nitrification. The pilot plant was operated for 1.5 years in five different configurations including pre-denitrification in all five and enhanced biological phosphorus removal in the final two. The wastewater temperature ranged between 11 degrees C and 20 degrees C, and the nominal dissolved oxygen (DO) level was 5-6 mg/L. The nitrification rate obtained on the new carrier within the hybrid stage was in the range of 0.9-1.2 g NH4-N/m2/d corresponding to a volumetric rate of 19-23 g NH4-N/m3/h (total nitrification including nitrification in the suspended solids). More than 80% of the total nitrification took place on the carrier (and the remainder in the suspended solids). The nitrification rate was shown to correlate with DO, decreasing when the DO was decreased. The results supported the idea of using the new carrier as a tool to upgrade plants not having nitrification today or improve nitrification in activated sludge processes not reaching necessary discharge levels. The large surface area present for nitrification makes it possible to obtain high nitrification rates within limited volumes. The possibility to keep the total suspended solid content low (< 3 g/L) and avoiding problems with the filament Microthrix parvicella, are other beneficial properties of the hybrid process.

  15. Soil moisture content estimation using ground-penetrating radar reflection data

    NASA Astrophysics Data System (ADS)

    Lunt, I. A.; Hubbard, S. S.; Rubin, Y.

    2005-06-01

    Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during three data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennas. GPR reflections were associated with a thin, low permeability clay layer located 0.8-1.3 m below the ground surface that was identified from borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at the borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 0.018 m 3 m -3. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface could be used under natural conditions to obtain estimates of average water content when borehole control is available and the reflection strength is sufficient. The GPR reflection method therefore, has potential for monitoring soil water content over large areas and under variable hydrological conditions.

  16. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging

    NASA Astrophysics Data System (ADS)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2016-12-01

    The classification of erythrocytes plays an important role in the field of hematological diagnosis, specifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the discrimination power of these features against 2-D features with a neural network classifier. The 3-D features include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius, elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experimental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features. Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection technique, which yields better discrimination results. We believe that the final feature set evaluated with a neural network classification strategy can improve the RBC classification accuracy.

  17. Preparation of Pd-loaded La-doped TiO2 nanotubes and investigation of their photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Wang, Xiaodong; Yang, Jianjun

    2013-11-01

    Orthorhombic titanic acid nanotubes (TAN) have large BET surface area and small-diameter one-dimensional nanotubular morphology, so they can work as a good supporter and a precursor of TiO2. However, in our former research, we found that calcination of TAN to anatase TiO2 would destroy the nanotubular structure and decrease the BET surface area sharply. In this work, we utilized the pillar effect of the foreign nanoparticles (La2O3) to keep the nanotubular morphology of TiO2, and obtained the anatase TiO2 nanotubes with large BET surface area. For improving the photocatalytic activity, Pd nanoparticles were loaded as the electron traps on the surface of La-doped TiO2 by photo-deposition method. The photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance spectra, and N2 adsorption-desorption isotherms measurement. Their photocatalytic activities were evaluated by the removal of propylene under visible light irradiation ( λ ≥ 420 nm). The results showed that the photocatalytic activity of Pd-loaded La-doped TiO2 nanotubes improved effectively compared with that of La-doped TiO2 and pure TiO2.

  18. Nanoporous activated carbon derived from Lapsi (Choerospondias axillaris) seed stone for the removal of arsenic from water.

    PubMed

    Rajbhandari, Rinita; Shrestha, Lok Kumar; Pradhananga, Raja Ram

    2012-09-01

    Activated carbons were prepared from Lapsi (Choerospondias axillaris) seed stone by zinc chloride (ZnCl2) activation at three different Lapsi seed powder (LSP):ZnCl2 ratios: 1:0.5 (AC-0.5), 1:1 (AC-1), and 1:2 (AC-2). The properties of these activated carbons (ACs), including effective surface areas, pore volumes, and pore size distributions were characterized from N2 adsorption-desorption isotherms. The ACs obtained were essentially nanoporous (including both micro- and mesoporous) with effective surface area ranging from 1167 to 1328 m2/g. Fourier-transform infrared (FTIR) spectroscopy showed the presence of functional groups on the surface of ACs. Scanning electron microscopy (SEM) images showed a high pore development in the ACs. X-ray diffraction (XRD) patterns showed that, in addition to the amorphous structure, ACs contains crystalline ZnO formed during the carbonization. Presence of amorphous carbon is further confirmed by Raman scattering, where we observed only D and G bands. Iron impregnated nanoporous AC has been found to be very effective for arsenic removal from ground water; amount of arsenic is decreased from ca. 200 ppb to 10 ppb. These experimental results indicate the potential use of Lapsi seed as a precursor material for the preparation of high surface area nanoporous activated carbons.

  19. Block Copolymer as a Surface Modifier to Monodisperse Patchy Silica Nanoparticles for Superhydrophobic Surfaces.

    PubMed

    Lou, Shuo; Wang, Junzheng; Yin, Xiaohong; Qu, Wenxiu; Song, Yuexiao; Xin, Feng; Qaraah, Fahim Abdo Ali

    2018-06-18

    Monodisperse patchy silica nanoparticles (PSNPs) less than 100 nm are prepared based on the seed-regrowth method using a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO-type block copolymer as a surface modifier. Well-defined patches are controllably synthesized through area-selective deposition of silica onto the surface of seeds. After colloidal PSNPs are further modified with trimethylchlorosilane, the advancing and receding contact angles of water for PSNPs are 168 ± 2° and 167 ± 2°, respectively. The superhydrophobic and transparent coatings on the various types of substrates are obtained by a simple drop-casting procedure. Additionally, almost the same superhydrophobicity can be achieved by using colloidal PSNPs via redispersing the powder of superhydrophobic PSNPs in ethanol.

  20. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

Top