Science.gov

Sample records for surface band structure

  1. Surface band structure of Si(111)2×1

    NASA Astrophysics Data System (ADS)

    Chen, B.; Haneman, D.

    1995-02-01

    The surface band structures of the three-bond scission (TBS) model and the Pandey-chain (PC) model have been computed using an ab initio Hartree-Fock program crystal 92. In the case of the bulk energy bands, the method gives the correct shapes and structure but overestimates the valence-band dispersion by about 50%. For the TBS model, the calculated valence-band dispersion came out about 50% wider than measured experimentally. This would suggest that the model is consistent with optical data. In the case of the PC model, the valence-band dispersion was qualitatively similar to those of previous calculations, but the width discrepancy was large. The method overestimates the surface band gap for both TBS and PC models. The significance is discussed.

  2. Electronic band structure of surface-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Ryu, Sae Hee; Sohn, Yeongsup; Kim, Keun Su

    2015-03-01

    There are rapidly growing interests in the study of few-layer black phosphorus owing to its promising device characteristics that may impact our future electronics technology. The low-energy band structure of black phosphorus has been widely predicted to be controllable by external perturbations, such as strain and doping. In this work, we attempt to control the electronic band structure of black phosphorous by in-situ surface deposition of alkali-metal atoms. We found that surface doping induces steep band bending towards the bulk, leading to the emergence of new 2D electronic states that are confined within only few phosphorene layers of black phosphorus. Using angle-resolved photoemission spectroscopy, we directly measured the electronic band structure and its evolution as a function of dopant density. Supported by IBS.

  3. Energy loss of ions at metal surfaces: Band-structure effects

    SciTech Connect

    Alducin, M.; Silkin, V.M.; Juaristi, J.I.; Chulkov, E.V.

    2003-03-01

    We study band-structure effects on the energy loss of protons scattered off the Cu (111) surface. The distance dependent stopping power for a projectile traveling parallel to the surface is calculated within the linear response theory. The self-consistent electronic response of the system is evaluated within the random-phase approximation. In order to characterize the surface band structure, the electronic single-particle wave functions and energies are obtained by solving the Schroedinger equation with a realistic one-dimensional model potential. This potential reproduces the main features of the Cu (111) surface: the energy band gap for electron motion along the surface normal, as well as the binding energy of the occupied surface state and the first image state. Comparison of our results with those obtained within the jellium model allows us to characterize the band-structure effects in the energy loss of protons interacting with the Cu (111) surface.

  4. GaN m -plane: Atomic structure, surface bands, and optical response

    NASA Astrophysics Data System (ADS)

    Landmann, M.; Rauls, E.; Schmidt, W. Â. G.; Neumann, M. Â. D.; Speiser, E.; Esser, N.

    2015-01-01

    Density-functional-theory calculations are combined with many-body perturbation theory in order to elucidate the geometry, electronic, and optical properties of the w z -GaN (1 1 ¯00 ) surface, i.e., the so-called m -plane. The optical absorption and reflection anisotropy related to electronic transitions between surface states are identified by comparison with measured data covering transition energies from 2.4 up to 5.4 eV. Our results show a surface relaxation mechanism consistent with the electron counting rule that causes a moderate buckling of the GaN surface dimers and gives rise to two distinct surface states: The doubly occupied N dangling bonds form a surface band that is resonant with the GaN valence-band edge at the center of the Brillouin zone, whereas the empty Ga dangling bonds occur within the GaN band gap closely following the dispersion of the conduction-band edge. These two states contribute strongly to the formation of surface excitons that redshift the optical absorption with respect to the bulk optical response. The surface optical absorption i.e., the excitonic onset below the bulk band gap followed by a broad absorption band at higher energies related to the dispersion of the surface band structure, is calculated in agreement with the experimental data.

  5. Tuning two-dimensional band structure of Cu(111) surface-state electrons that interplay with artificial supramolecular architectures

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Wang, Weihua; Tan, Liang Z.; Li, Xing Guang; Shi, Zilang; Kuang, Guowen; Liu, Pei Nian; Louie, Steven G.; Lin, Nian

    2013-12-01

    We report on the modulation of two-dimensional (2D) bands of Cu(111) surface-state electrons by three isostructural supramolecular honeycomb architectures with different periodicity or constituent molecules. Using Fourier-transformed scanning tunneling spectroscopy and model calculations, we resolved the 2D band structures and found that the intrinsic surface-state band is split into discrete bands. The band characteristics including band gap, band bottom, and bandwidth are controlled by the network unit cell size and the nature of the molecule-surface interaction. In particular, Dirac cones emerge where the second and third bands meet at the K points of the Brillouin zone of the supramolecular lattice.

  6. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    PubMed

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.

  7. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    PubMed

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed. PMID:27575225

  8. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    SciTech Connect

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-07-15

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed.

  9. Band structure, Fermi surface, superconductivity, and resistivity of actinium under high pressure

    SciTech Connect

    Dakshinamoorthy, M.; Iyakutti, K.

    1984-12-15

    The electronic band structures of fcc actinium (Ac) have been calculated for a wide range of pressures by reducing the unit-cell volume from 1.0V/sub 0/ to 0.5V/sub 0/ with use of the relativistic augmented-plane-wave method. The density of states and Fermi-surface cross sections corresponding to various volumes are obtained. Calculations for the band-structure-related quantities such as electron-phonon mass enhancement factor lambda, superconducting transition temperature T/sub c/, and resistivity rho corresponding to different volumes are performed. It is seen that T/sub c/ increases with pressure, i.e., with decreasing volume. A new empirical relation for the volume dependence of T/sub c/ is proposed and its validity is checked using the T/sub c/ values obtained from the above band-structure results. The resistivity rho first increases with increasing pressure (i.e., with decreasing volume) and then decreases for higher pressures (i.e., for smaller volumes).

  10. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    SciTech Connect

    Zech, E. S.; Chang, A. S.; Martin, A. J.; Canniff, J. C.; Millunchick, J. M.; Lin, Y. H.; Goldman, R. S.

    2013-08-19

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  11. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface.

    PubMed

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-07-20

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  12. Microwave band gap and cavity mode in spoof-insulator-spoof waveguide with multiscale structured surface

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Xiao, Jun Jun; Han, Dezhuan; Qin, Fei Fei; Zhang, Xiao Ming; Yao, Yong

    2015-05-01

    We propose a multiscale spoof-insulator-spoof (SIS) waveguide by introducing periodic geometry modulation in the wavelength scale to a SIS waveguide made of a perfect electric conductor. The MSIS consists of multiple SIS subcells. The dispersion relationship of the fundamental guided mode of the spoof surface plasmon polaritons (SSPPs) is studied analytically within the small gap approximation. It is shown that the multiscale SIS possesses microwave band gap (MBG) due to the Bragg scattering. The ‘gap maps’ in the design parameter space are provided. We demonstrate that the geometry of the subcells can efficiently adjust the effective refraction index of the elementary SIS and therefore further control the width and the position of the MBG. The results are in good agreement with numerical calculations by the finite element method (FEM). For finite-sized MSIS of given geometry in the millimeter scale, FEM calculations show that the first-order symmetric SSPP mode has zero transmission in the MBG within frequency range from 4.29 to 5.1 GHz. A cavity mode is observed inside the gap at 4.58 GHz, which comes from a designer ‘point defect’ in the multiscale SIS waveguide. Furthermore, ultrathin MSIS waveguides are shown to have both symmetric and antisymmetric modes with their own MBGs, respectively. The deep-subwavelength confinement and the great degree of control of the propagation of SSPPs in such structures promise potential applications in miniaturized microwave device.

  13. Band structure and fermi surface of Electron-Doped C{sub 60} Monolayers

    SciTech Connect

    Yang, W.L.; Brouet, V.; Zhou, X.J.; Choi, Hyoung J.; Louie, Steven G.; Cohen, Marvin L.; Kellar, S.A.; Bogdanov, P.V.; Lanzara, A.; Goldoni, A.; Parmigiani, F.; Hussain, Z.; Shen, Z-X.

    2003-11-06

    C60 fullerides are challenging systems because both the electron-phonon and electron-electron interactions are large on the energy scale of the expected narrow band width. We report angle-resolved photoemission data on the band dispersion for an alkali doped C60 monolayer and a detailed comparison with theory. Compared to the maximum bare theoretical band width of 170 meV, the observed 100-meV dispersion is within the range of renormalization by electron-phonon coupling. This dispersion is only a fraction of the integrated peak width, revealing the importance of many-body effects. Additionally, measurements on the Fermi surface indicate the robustness of the Luttinger theorem even for materials with strong interactions.

  14. Electronic structure modification of graphene on d-band metal surfaces and its Raman signature

    NASA Astrophysics Data System (ADS)

    Coh, Sinisa; Zhou, Qin; Zettl, Alex; Cohen, Marvin L.; Louie, Steven G.

    2014-03-01

    We find strong modifications of the graphene electronic structure when it is placed on a platinum surface. Additionally, these modifications strongly depend on the relative orientation of the graphene and platinum lattices. We expect that the same will occur whenever graphene is brought in contact with a surface of a material that has d-orbital close to the Fermi level. We demonstrate experimentally and theoretically that these modifications leave a distinct signature in the Raman spectrum of graphene. Out of two prominent graphene Raman peaks, one is unaffected (the G peak) while the other (the 2D peak) is severely affected, in proportion with the modification of the graphene electronic structure. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  15. Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals

    NASA Astrophysics Data System (ADS)

    Gutiérrez Lezama, Ignacio; Ubaldini, Alberto; Longobardi, Maria; Giannini, Enrico; Renner, Christoph; Kuzmenko, Alexey B.; Morpurgo, Alberto F.

    2014-09-01

    Semiconducting transition metal dichalcogenides (TMDs) have emerged as materials that can be used to realize two-dimensional (2D) crystals possessing rather unique transport and optical properties. Most research has so far focused on sulfur and selenium compounds, while tellurium-based materials have attracted little attention so far. As a first step in the investigation of Te-based semiconducting TMDs in this context, we have studied MoTe2 crystals with thicknesses above 4 nm, focusing on surface transport and a quantitative determination of the gap structure. Using ionic-liquid gated transistors, we show that ambipolar transport at the surface of the material is reproducibly achieved, with hole and electron mobility values between 10 and 30 cm2 V-1s-1 at room temperature. The gap structure is determined through three different techniques: ionic-liquid gated transistors and scanning tunneling spectroscopy, which allow the measurement of the indirect gap (Eind), and optical transmission spectroscopy on crystals of different thickness, which enables the determination of both the direct (Edir) and the indirect gap. We find that at room temperature Eind = 0.88 eV and Edir = 1.02 eV. Our results suggest that thin MoTe2 layers may exhibit a transition to a direct gap before mono-layer thickness. They should also drastically extend the range of direct gaps accessible in 2D semiconducting TMDs.

  16. Valence band structure of PDMS surface and a blend with MWCNTs: A UPS and MIES study of an insulating polymer

    NASA Astrophysics Data System (ADS)

    Schmerl, Natalya M.; Khodakov, Dmitriy A.; Stapleton, Andrew J.; Ellis, Amanda V.; Andersson, Gunther G.

    2015-10-01

    The use of polydimethylsiloxane (PDMS) is increasing with new technologies working toward compact, flexible and transparent devices for use in medical and microfluidic systems. Electronic characterization of PDMS and other insulating materials is difficult due to charging, yet necessary for many applications where the interfacial structure is vital to device function or further modification. The outermost layer in particular is of importance as this is the area where chemical reactions such as surface functionalization will occur. Here, we investigate the valence band structure of the outermost layer and near surface area of PDMS through the use of metastable induced photoelectron spectroscopy (MIES) paired with ultraviolet photoelectron spectroscopy (UPS). The chemical composition of the samples under investigation were measured via X-ray photoelectron spectroscopy (XPS), and the vertical distribution of the polymer was shown with neutral impact collision ion scattering spectroscopy (NICISS). Three separate methods for charge compensation are used for the samples, and their effectiveness is compared.

  17. Electric-field tuning of the surface band structure of topological insulator Sb2Te3 thin films.

    PubMed

    Zhang, Tong; Ha, Jeonghoon; Levy, Niv; Kuk, Young; Stroscio, Joseph

    2013-08-01

    We measured the response of the surface state spectrum of epitaxial Sb(2)Te(3) thin films to applied gate electric fields by low temperature scanning tunneling microscopy. The gate dependent shift of the Fermi level and the screening effect from bulk carriers vary as a function of film thickness. We observed a gap opening at the Dirac point for films thinner than four quintuple layers, due to the coupling of the top and bottom surfaces. Moreover, the top surface state band gap of the three quintuple layer films was found to be tunable by a back gate, indicating the possibility of observing a topological phase transition in this system. Our results are well explained by an effective model of 3D topological insulator thin films with structure inversion asymmetry, indicating that three quintuple layer Sb(2)Te(3) films are topologically nontrivial and belong to the quantum spin Hall insulator class.

  18. Electronic structure of the conduction band upon the formation of ultrathin fullerene films on the germanium oxide surface

    NASA Astrophysics Data System (ADS)

    Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Panina, Yu. A.; Baramygin, A. V.; Zashikhin, G. D.

    2016-06-01

    The results of the investigation of the electronic structure of the conduction band in the energy range 5-25 eV above the Fermi level E F and the interfacial potential barrier upon deposition of aziridinylphenylpyrrolofullerene (APP-C60) and fullerene (C60) films on the surface of the real germanium oxide ((GeO2)Ge) have been presented. The content of the oxide on the (GeO2)Ge surface has been determined using X-ray photoelectron spectroscopy. The electronic properties have been measured using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode. The regularities of the change in the fine structure of total current spectra (FSTCS) with an increase in the thickness of the APP-C60 and C60 coatings to 7 nm have been investigated. A comparison of the structures of the FSTCS maxima for the C60 and APP-C60 films has made it possible to reveal the energy range (6-10 eV above the Fermi level E F) in which the energy states are determined by both the π* and σ* states and the FSTCS spectra have different structures of the maxima for the APP-C60 and unsubstituted C60 films. The formation of the interfacial potential barrier upon deposition of APP-C60 and C60 on the (GeO2)Ge surface is accompanied by an increase in the work function of the surface E vac- E F by the value of 0.2-0.3 eV, which corresponds to the transfer of the electron density from the substrate to the organic films under investigation. The largest changes occur with an increase in the coating thickness to 3 nm, and with further deposition of APP-C60 and C60, the work function of the surface changes only slightly.

  19. Band structure in 113Sn

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2016-07-01

    The structure of collective bands in 113Sn, populated in the reaction 100Mo(19F,p 5 n ) at a beam energy of 105 MeV, has been studied. A new positive-parity sequence of eight states extending up to 7764.9 keV and spin (39 /2+) has been observed. The band is explained as arising from the coupling of the odd valence neutron in the g7 /2 or the d5 /2 orbital to the deformed 2p-2h proton configuration of the neighboring even-A Sn isotope. Lifetimes of six states up to an excitation energy of 9934.9 keV and spin 47 /2-belonging to a Δ I =2 intruder band have been measured for the first time, including an upper limit for the last state, from Doppler-shift-attenuation data. A moderate average quadrupole deformation β2=0.22 ±0.02 is deduced from these results for the five states up to spin 43 /2- . The transition quadrupole moments decrease with increase in rotational frequency, indicating a reduction of collectivity with spin, a feature common for terminating bands. The behavior of the kinematic and dynamic moments of inertia as a function of rotational frequency has been studied and total Routhian surface calculations have been performed in an attempt to obtain an insight into the nature of the states near termination.

  20. Photonic band structure

    SciTech Connect

    Yablonovitch, E.

    1993-05-01

    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  1. Band structures in 99Rh

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, V.; Singh, K.; Sihotra, S.; Singh, N.; Goswamy, J.; Malik, S. S.; Ragnarsson, I.; Trivedi, T.; Singh, R. P.; Muralithar, S.; Kumar, R.; Bhowmik, R. K.; Palit, R.; Bharti, A.; Mehta, D.

    2014-10-01

    Excited states in the 99Rh nucleus were populated using the fusion-evaporation reaction 75As(28Si,2p2n) at {{E}_{lab}}=120\\;MeV and the de-excitations were investigated through in-beam γ-ray spectroscopic techniques using the INGA spectrometer consisting of 18 clover detectors. The observed band structures are discussed in the framework of tilted axis cranking shell-model calculations. Level structures at low energies are identified as resulting from the rotational bands based on the \\pi {{p}_{1/2}} and \\pi {{g}_{9/2}} configurations. The \\Delta I = 1 coupled bands are observed at higher excitation energies and have been interpreted as based on the \\pi {{g}_{9/2}}\\otimes \

  2. Band Spectra and Molecular Structure

    NASA Astrophysics Data System (ADS)

    Kronig, R. De L.

    2011-06-01

    Introduction; Part I. The Energy Levels of Diatomic Molecules and their Classification by Means of Quantum Numbers: 1. General foundations; 2. Wave mechanics of diatomic molecules; 3. Electronic levels; 4. Vibrational levels; 5. Rotational levels; 6. Stark and Zeeman effect; 7. Energy levels of polyatomic molecules; Part II. Fine Structure and Wave Mechanical Properties of the Energy Levels of Diatomic Molecules: 8. The perturbation function; 9. Rotational distortion of spin multiplets; 10. Fine structure; 11. Perturbations and predissociation; 12. Even and odd levels; 13. Symmetrical and antisymmetrical levels; Part III. Selection Rules and Intensities in Diatomic Molecules: 14. General foundations; 15. Electronic bands; 16. Vibrational bands; 17. Rotational bands; 18. Band spectra and nuclear structure; 19. Transitions in the Stark and Zeeman effect; Part IV. Macroscopic Properties of Molecular Gases: 20. Scattering; 21. Dispersion; 22. Kerr and Faraday effect; 23. Dielectric constants; 24. Magnetic susceptibilities; 25. Specific heats; Part V. Molecule Formation and Chemical Binding: 26. Heteropolar molecules; 27. Homopolar molecules. Chemical forces between two H-atoms and two He-atoms; 28. The general theory of homopolar compounds; Bibliography; Subject index.

  3. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Cheng; Fleurence, Antoine; Yamada-Takamura, Yukiko; Ozaki, Taisuke; Friedlein, Rainer

    2014-08-01

    So far, it represents a challenging task to reproduce angle-resolved photoelectron (ARPES) spectra of epitaxial silicene by first-principles calculations. Here, we report on the resolution of the previously controversial issue related to the structural configuration of silicene on the ZrB2(0001) surface and its band structure. In particular, by representing the band structure in a large Brillouin zone associated with a single Si atom, it is found that the imaginary part of the one-particle Green's function follows the spectral weight observed in ARPES spectra. By additionally varying the in-plane lattice constant, the results of density functional theory calculations and ARPES data obtained in a wide energy range converge into the "planarlike" phase and provide the orbital character of electronic states in the vicinity of the Fermi level. It is anticipated that the choice of a smaller commensurate unit cell for the representation of the electronic structure will be useful for the study of epitaxial two-dimensional materials on various substrates in general.

  4. Interband interaction between bulk and surface resonance bands of a Pb-adsorbed Ge(001) surface

    NASA Astrophysics Data System (ADS)

    Sakata, Tomohiro; Takeda, Sakura N.; Kitagawa, Kosuke; Daimon, Hiroshi

    2016-08-01

    We investigated the valence band structure of a Pb-adsorbed Ge(001) surface by angle-resolved photoelectron spectroscopy. Three Ge bands, G1, G2, and G3, were observed in a Ge(001) 2 × 1 clean surface. In addition to these three bands, a fourth band (R band) is found on the surface with 2 ML of Pb. The R band continuously appeared even when the surface superstructure was changed. The position of the R band does not depend on Pb coverage. These results indicate that the R band derives from Ge subsurface states, known as surface resonance states. Furthermore, the effective mass of G3 is significantly reduced when the R band exists. We found that this reduction of G3 effective mass was explained by the interaction of the G3 and R bands. Consequently, the surface resonance band is considered to penetrate into the Ge subsurface region affecting the Ge bulk states. We determine the hybridization energy to be 0.068 eV by fitting the observed bands.

  5. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  6. Effect of the band structure of InGaN/GaN quantum well on the surface plasmon enhanced light-emitting diodes

    SciTech Connect

    Li, Yi; Zhang, Rong E-mail: bliu@nju.edu.cn; Liu, Bin E-mail: bliu@nju.edu.cn; Xie, Zili; Zhang, Guogang; Tao, Tao; Zhuang, Zhe; Zhi, Ting; Zheng, Youdou

    2014-07-07

    The spontaneous emission (SE) of InGaN/GaN quantum well (QW) structure with silver(Ag) coated on the n-GaN layer has been investigated by using six-by-six K-P method taking into account the electron-hole band structures, the photon density of states of surface plasmon polariton (SPP), and the evanescent fields of SPP. The SE into SPP mode can be remarkably enhanced due to the increase of electron-hole pairs near the Ag by modulating the InGaN/GaN QW structure or increasing the carrier injection. However, the ratio between the total SE rates into SPP mode and free space will approach to saturation or slightly decrease for the optimized structures with various distances between Ag film and QW layer at a high injection carrier density. Furthermore, the Ga-face QW structure has a higher SE rate than the N-face QW structure due to the overlap region of electron-hole pairs nearer to the Ag film.

  7. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  8. Electronic structure of the conduction band of the interface region of ultrathin films of substituted perylenedicarboximides and the germanium oxide surface

    NASA Astrophysics Data System (ADS)

    Komolov, A. S.; Lazneva, E. F.; Gerasimova, N. B.; Panina, Yu. A.; Baramygin, A. V.; Pshenichnyuk, S. A.

    2016-09-01

    The results of the investigation of the electronic structure of the conduction band and the interfacial potential barrier during the formation of interfaces of dioctyl-substituted perylenedicarboximide (PTCDI-C8) and diphenyl-substituted perylenedicarboximide (PTCDI-Ph) ultrathin films with the oxidized germanium surface have been presented. The experimental results have been obtained using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode at energies in the range from 5 to 20 eV above the Fermi level E F. The positions of the maxima of the fine structure of total current spectra (FSTCS) of the PTCDI-C8 and PTCDI-Ph films differ significantly in the energy range from 9 to 20 eV above the Fermi level E F, which can be associated with the difference between the substituents of the chosen molecules, dioctyl- and diphenyl-, respectively. At the same time, the positions of the lowenergy maxima in the FSTCS spectra at an energy 6-7 eV above the Fermi level E F for the PTCDI-C8 and PTCDI-Ph films almost coincide with each other. It has been suggested that these maxima are attributed to the electronic states of the perylene core of the molecules under investigation. The process of the formation of interfacial potential barriers of the PTCDI-C8 and PTCDI-Ph films with the oxidized germanium surface has been analyzed. It has been found that the work functions of the surface, E vac- E F, differ little from 4.6 ± 0.1 eV over the entire range of organic coating thicknesses from 0 to 6 nm.

  9. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    NASA Astrophysics Data System (ADS)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K-100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR-visible-UV region up to ˜ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  10. Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr 3 , AlCu 3 , and AlCu 2 Zr: First-principles study

    NASA Astrophysics Data System (ADS)

    Parvin, R.; Parvin, F.; Ali, M. S.; Islam, A. K. M. A.

    2016-08-01

    The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM 3 (M = Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T = 0 K–100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR–visible–UV region up to ∼ 15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.

  11. Band Structure of SnTe Studied by Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Littlewood, P. B.; Mihaila, B.; Schulze, R. K.; Safarik, D. J.; Gubernatis, J. E.; Bostwick, A.; Rotenberg, E.; Opeil, C. P.; Durakiewicz, T.; Smith, J. L.; Lashley, J. C.

    2010-08-01

    We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p bands. Our study reveals the conjectured complex Fermi surface structure near the L points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5 eV below the gap, corresponding to a carrier density of p=1.14×1021cm-3 or 7.2×10-2 holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions.

  12. Band structure of SnTe studied by photoemission spectroscopy.

    PubMed

    Littlewood, P B; Mihaila, B; Schulze, R K; Safarik, D J; Gubernatis, J E; Bostwick, A; Rotenberg, E; Opeil, C P; Durakiewicz, T; Smith, J L; Lashley, J C

    2010-08-20

    We present an angle-resolved photoemission spectroscopy study of the electronic structure of SnTe and compare the experimental results to ab initio band structure calculations as well as a simplified tight-binding model of the p bands. Our study reveals the conjectured complex Fermi surface structure near the L points showing topological changes in the bands from disconnected pockets, to open tubes, and then to cuboids as the binding energy increases, resolving lingering issues about the electronic structure. The chemical potential at the crystal surface is found to be 0.5 eV below the gap, corresponding to a carrier density of p=1.14 × 10(21)  cm(-3) or 7.2 × 10(-2) holes per unit cell. At a temperature below the cubic-rhombohedral structural transition a small shift in spectral energy of the valance band is found, in agreement with model predictions. PMID:20868120

  13. Band structure of W and Mo by empirical pseudopotential method

    NASA Technical Reports Server (NTRS)

    Sridhar, C. G.; Whiting, E. E.

    1977-01-01

    The empirical pseudopotential method (EPM) is used to calculate the band structure of tungsten and molybdenum. Agreement between the calculated reflectivity, density of states, density of states at the Fermi surface and location of the Fermi surface from this study and experimental measurements and previous calculations is good. Also the charge distribution shows the proper topological distribution of charge for a bcc crystal.

  14. Multiple band structures of {sup 131}Cs

    SciTech Connect

    Sihotra, S.; Palit, R.; Naik, Z.; Joshi, P. K.; Deo, A. Y.; Jain, H. C.; Singh, K.; Goswamy, J.; Mehta, D.; Singh, N.; Malik, S. S.; Praharaj, C. R.

    2008-09-15

    Excited states in {sup 131}Cs were investigated through in-beam {gamma}-ray spectroscopic techniques following its population in the {sup 124}Sn({sup 11}B, 4n) fusion-evaporation reaction at a beam energy of 46 MeV. The previously known level scheme has been substantially extended up to {approx}9 MeV excitation energy and 49/2({Dirac_h}/2{pi}) spin with the addition of seven new band structures. The present level scheme consisting of 15 bands exhibits a variety of collective features in this nucleus at intermediate spin. The excitation energies of the observed levels in different bands and the corresponding ratios of transition strengths, i.e., B(M1)/B(E2), have been compared with the results of projected deformed Hartree-Fock calculations based on various quasiparticle configurations. A strongly coupled band has been reassigned a high-K three-quasiparticle {pi}h{sub 11/2} x {nu}(h{sub 11/2}d{sub 3/2}) configuration based on the properties of this band and that of its new coupled side band. The configurations of these bands are also discussed in the framework of tilted-axis cranking model calculations and the systematics of the odd-A Cs isotopes. Additional three energetically closely placed coupled bands have been assigned different unpaired three-quasiparticle configurations. {gamma}-vibrational bands coupled to the {pi}h{sub 11/2} and {pi}g{sub 7/2} single-particle configurations have been reported in this nucleus. Observation of new E1 transitions linking the opposite-parity {pi}h{sub 11/2} and {pi}d{sub 5/2} bands provides fingerprints of possible octupole correlations.

  15. Thermoreflectance investigation of Th band structure

    SciTech Connect

    Colavita, E.; Paolucci, G.; Rosei, R.

    1982-06-15

    Thermoreflectance measurements have been carried out on thorium bulk samples at about 140 K in the 0.5--5-eV photon energy range. The data are interpreted within the framework of existing energy-band calculations. Several critical-point transitions and a Fermi-surface transition have been clearly identified and located in the Brillouin zone.

  16. Nonreciprocal microwave band-gap structures.

    PubMed

    Belov, P A; Tretyakov, S A; Viitanen, A J

    2002-07-01

    An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper, we consider plane electromagnetic waves in this medium and design an analytical model for the material parameters. An analytical solution for plane-wave reflection from a planar interface is also presented. In the proposed material, a new electrically controlled stop band appears for one of the two circularly polarized eigenwaves in a frequency band around the ferrimagnetic resonance frequency. This frequency can be well below the usual lattice band gap, which allows the realization of rather compact structures. The main properties of the material are outlined. PMID:12241501

  17. Unfolding the band structure of non-crystalline photonic band gap materials

    PubMed Central

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  18. Band structure engineering in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-01

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

  19. Band structure engineering in organic semiconductors.

    PubMed

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-17

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043

  20. Complex banded structures in directional solidification processes.

    PubMed

    Korzhenevskii, A L; Rozas, R E; Horbach, J

    2016-01-27

    A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos.

  1. Complex banded structures in directional solidification processes.

    PubMed

    Korzhenevskii, A L; Rozas, R E; Horbach, J

    2016-01-27

    A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos. PMID:26704726

  2. Band structure engineering in topological insulator based heterostructures.

    PubMed

    Menshchikova, T V; Otrokov, M M; Tsirkin, S S; Samorokov, D A; Bebneva, V V; Ernst, A; Kuznetsov, V M; Chulkov, E V

    2013-01-01

    The ability to engineer an electronic band structure of topological insulators would allow the production of topological materials with tailor-made properties. Using ab initio calculations, we show a promising way to control the conducting surface state in topological insulator based heterostructures representing an insulator ultrathin films on the topological insulator substrates. Because of a specific relation between work functions and band gaps of the topological insulator substrate and the insulator ultrathin film overlayer, a sizable shift of the Dirac point occurs resulting in a significant increase in the number of the topological surface state charge carriers as compared to that of the substrate itself. Such an effect can also be realized by applying the external electric field that allows a gradual tuning of the topological surface state. A simultaneous use of both approaches makes it possible to obtain a topological insulator based heterostructure with a highly tunable topological surface state.

  3. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect

    Marsh, Roark A.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  4. The band-gap enhanced photovoltaic structure

    NASA Astrophysics Data System (ADS)

    Tessler, Nir

    2016-05-01

    We critically examine the recently suggested structure that was postulated to potentially add 50% to the photo-conversion efficiency of organic solar cells. We find that the structure could be realized using stepwise increase in the gap as long as the steps are not above 0.1 eV. We also show that the charge extraction is not compromised due to an interplay between the contact's space charge and the energy level modification, which result in a flat energy band at the extracting contact.

  5. Quasiparticle band structure of vanadium dioxide.

    PubMed

    Sakuma, R; Miyake, T; Aryasetiawan, F

    2009-02-11

    Vanadium dioxide is insulating below 340 K in experiments, whereas the band structure calculated in the local density approximation (LDA) is gapless. We study the self-energy effects using the ab initio GW method. We found that the self-energy depends strongly on the energy, and proper treatment of the dynamical effect is essential for getting precise quasiparticle energies. Off-diagonal matrix elements in the Kohn-Sham basis are also important for disentangling bands. Inclusion of the two effects opens up a direct gap. Our results also suggest that one-shot GW on top of LDA is not enough, and the impact of self-consistency is significant.

  6. Band structure of doubly-odd nuclei around mass 130

    SciTech Connect

    Higashiyama, Koji; Yoshinaga, Naotaka

    2011-05-06

    Nuclear structure of the doublet bands in the doubly-odd nuclei with mass A{approx}130 is studied in terms of a pair-truncated shell model. The model reproduces quite well the energy levels of the doublet bands and the electromagnetic transitions. The analysis of the electromagnetic transitions reveals new band structure of the doublet bands.

  7. Flat photonic surface bands pinned between Dirac points.

    PubMed

    Jukić, Dario; Buljan, Hrvoje; Lee, Dung-Hai; Joannopoulos, John D; Soljačić, Marin

    2012-12-15

    We point out that 2D photonic crystals (PhCs) can support surface bands that are pinned to Dirac points. These bands can be made very flat by optimizing the parameters of the system. Surface modes are found at the interface of two different cladding materials: one is a PhC with Dirac linear dispersion for the TE mode, and the other is a PhC that has a broad TE gap at the Dirac frequency. PMID:23258072

  8. Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.

    2001-01-01

    Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.

  9. Elucidating the stop bands of structurally colored systems through recursion

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Vukusic, Peter

    2013-04-01

    Interference is the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics: specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer structure and solve it using recursion relations. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursion. We compare to experimental data for various beetles, whose optical structure resembles the proposed model. Thus, using only the phenomenon of interference and the idea of recursion, we are able to elucidate the concept of band structure in the context of the experimentally observed high reflectance and iridescent appearance of structurally colored beetles.

  10. Measurement of valence band structure in arbitrary dielectric films

    SciTech Connect

    Uhm, Han S.; Choi, Eun H.

    2012-10-15

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  11. Effects of d-band shape on the surface reactivity of transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Xin, Hongliang; Vojvodic, Aleksandra; Voss, Johannes; Nørskov, Jens K.; Abild-Pedersen, Frank

    2014-03-01

    The d-band shape of a metal site, governed by the local geometry and composition of materials, plays an important role in determining trends of the surface reactivity of transition-metal alloys. We discuss this phenomenon using the chemisorption of various adsorbates such as C, N, O, and their hydrogenated species on Pd bimetallic alloys as an example. For many alloys, the d-band center, even with consideration of the d-band width and sp electrons, can not describe variations in reactivity from one surface to another. We investigate the effect of the d-band shape, represented by higher moments of the d band, on the local electronic structure of adsorbates, e.g., energy and filling of adsorbate-metal antibonding states. The upper d-band edge ɛu, defined as the highest peak position of the Hilbert transform of the density of states projected onto d orbitals of an active metal site, is identified as an electronic descriptor for the surface reactivity of transition metals and their alloys, regardless of variations in the d-band shape. The utilization of the upper d-band edge with scaling relations enables a considerable reduction of the parameter space in search of improved alloy catalysts and further extends our understanding of the relationship between the electronic structure and chemical reactivity of metal surfaces.

  12. Electronic band structure and photoemission: A review and projection

    SciTech Connect

    Falicov, L.M.

    1987-09-01

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs.

  13. Segmental structure in banded mongoose calls

    PubMed Central

    2012-01-01

    In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. See research article http://www.biomedcentral.com/1741-7007/10/97 PMID:23206277

  14. Segmental structure in banded mongoose calls.

    PubMed

    Fitch, W Tecumseh

    2012-01-01

    In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. PMID:23206277

  15. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM... Structure of bands. (a) DHS may, after coordination with OPM, establish ranges of basic pay for bands,...

  16. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM... Structure of bands. (a) DHS may, after coordination with OPM, establish ranges of basic pay for bands,...

  17. A Theoretical Structure of High School Concert Band Performance

    ERIC Educational Resources Information Center

    Bergee, Martin J.

    2015-01-01

    This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…

  18. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  19. Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface.

    PubMed

    Yaji, Koichiro; Ohtsubo, Yoshiyuki; Hatta, Shinichiro; Okuyama, Hiroshi; Miyamoto, Koji; Okuda, Taichi; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki; Aruga, Tetsuya

    2010-05-17

    The generation of spin-polarized electrons at room temperature is an essential step in developing semiconductor spintronic applications. To this end, we studied the electronic states of a Ge(111) surface, covered with a lead monolayer at a fractional coverage of 4/3, by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES and first-principles electronic structure calculation. We demonstrate that a metallic surface-state band with a dominant Pb 6p character exhibits a large Rashba spin splitting of 200 meV and an effective mass of 0.028 m(e) at the Fermi level. This finding provides a material basis for the novel field of spin transport/accumulation on semiconductor surfaces. Charge density analysis of the surface state indicated that large spin splitting was induced by asymmetric charge distribution in close proximity to the nuclei of Pb atoms.

  20. Crossed surface flat bands of Weyl semimetal superconductors.

    PubMed

    Lu, Bo; Yada, Keiji; Sato, Masatoshi; Tanaka, Yukio

    2015-03-01

    It has been noted that certain surfaces of Weyl semimetals have bound states forming open Fermi arcs, which are never seen in typical metallic states. We show that the Fermi arcs enable them to support an even more exotic surface state with crossed flat bands in the superconducting state. We clarify the topological origin of the crossed flat bands and the relevant symmetry that stabilizes the cross point. Our symmetry analysis is applicable to known candidate materials of time-reversal breaking Weyl semimetals. We also discuss their possible experimental verification by tunneling spectroscopy. PMID:25793841

  1. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  2. Electronic structures of TiO2-TCNE, -TCNQ, and -2,6-TCNAQ surface complexes studied by ionization potential measurements and DFT calculations: Mechanism of the shift of interfacial charge-transfer bands

    NASA Astrophysics Data System (ADS)

    Fujisawa, Jun-ichi; Hanaya, Minoru

    2016-06-01

    Interfacial charge-transfer (ICT) transitions between inorganic semiconductors and π-conjugated molecules allow direct charge separation without loss of energy. This feature is potentially useful for efficient photovoltaic conversions. Charge-transferred complexes of TiO2 nanoparticles with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its analogues (TCNX) show strong ICT absorption in the visible region. The ICT band was reported to be significantly red-shifted with extension of the π-conjugated system of TCNX. In order to clarify the mechanism of the red-shift, in this work, we systematically study electronic structures of the TiO2-TCNX surface complexes (TCNX; TCNE, TCNQ, 2,6-TCNAQ) by ionization potential measurements and density functional theory (DFT) calculations.

  3. A hybridized basis for simple band structures

    NASA Astrophysics Data System (ADS)

    Spałek, J.; Ray, D. K.; Acquarone, M.

    1985-12-01

    We show that a model Hamiltonian representing a degenerate band composed of d equally hybridized and equivalent narrow subbands can be diagonalized for arbitrary d.A simple transformation removing the hybridization entirely is constructed. It gives both the eigenvalues and the eigen-functions in explicit form. The conditions under which the electron-electron intrasite interactions are invariant under the transformation are discussed..An analogous transformation is constructed also for the band part of the degenerate periodic Anderson model with the component bands mixed to the same extent with the atomic level.

  4. Möbius bands, unstretchable material sheets and developable surfaces

    PubMed Central

    Chen, Yi-chao

    2016-01-01

    A Möbius band can be formed by bending a sufficiently long rectangular unstretchable material sheet and joining the two short ends after twisting by 180°. This process can be modelled by an isometric mapping from a rectangular region to a developable surface in three-dimensional Euclidean space. Attempts have been made to determine the equilibrium shape of a Möbius band by minimizing the bending energy in the class of mappings from the rectangular region to the collection of developable surfaces. In this work, we show that, although a surface obtained from an isometric mapping of a prescribed planar region must be developable, a mapping from a prescribed planar region to a developable surface is not necessarily isometric. Based on this, we demonstrate that the notion of a rectifying developable cannot be used to describe a pure bending of a rectangular region into a Möbius band or a generic ribbon, as has been erroneously done in many publications. Specifically, our analysis shows that the mapping from a prescribed planar region to a rectifying developable surface is isometric only if that surface is cylindrical with the midline being the generator. Towards providing solutions to this issue, we discuss several alternative modelling strategies that respect the distinction between the physical constraint of unstretchability and the geometrical notion of developability.

  5. Möbius bands, unstretchable material sheets and developable surfaces

    PubMed Central

    Chen, Yi-chao

    2016-01-01

    A Möbius band can be formed by bending a sufficiently long rectangular unstretchable material sheet and joining the two short ends after twisting by 180°. This process can be modelled by an isometric mapping from a rectangular region to a developable surface in three-dimensional Euclidean space. Attempts have been made to determine the equilibrium shape of a Möbius band by minimizing the bending energy in the class of mappings from the rectangular region to the collection of developable surfaces. In this work, we show that, although a surface obtained from an isometric mapping of a prescribed planar region must be developable, a mapping from a prescribed planar region to a developable surface is not necessarily isometric. Based on this, we demonstrate that the notion of a rectifying developable cannot be used to describe a pure bending of a rectangular region into a Möbius band or a generic ribbon, as has been erroneously done in many publications. Specifically, our analysis shows that the mapping from a prescribed planar region to a rectifying developable surface is isometric only if that surface is cylindrical with the midline being the generator. Towards providing solutions to this issue, we discuss several alternative modelling strategies that respect the distinction between the physical constraint of unstretchability and the geometrical notion of developability. PMID:27616933

  6. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  7. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  8. Planar electromagnetic band-gap structure based on graphene

    NASA Astrophysics Data System (ADS)

    Dong, Yanfei; Liu, Peiguo; Yin, Wen-Yan; Li, Gaosheng; Yi, Bo

    2015-06-01

    Electromagnetic band-gap structure with slow-wave effect is instrumental in effectively controlling electromagnetic wave propagation. In this paper, we theoretically analyze equivalent circuit model of electromagnetic band-gap structure based on graphene and evaluate its potential applications. Graphene electromagnetic band-gap based on parallel planar waveguide is investigated, which display good characteristics in dynamically adjusting the electromagnetic wave propagation in terahertz range. The same characteristics are retrieved in a spiral shape electromagnetic band-gap based on coplanar waveguide due to tunable conductivity of graphene. Various potential terahertz planar devices are expected to derive from the prototype structures.

  9. Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves

    SciTech Connect

    Sakai, Osamu; Sakaguchi, Takui; Tachibana, Kunihide

    2007-04-01

    Two theoretical approaches appropriate for two-dimensional plasma photonic crystals reveal dispersions of propagating waves including photonic (electromagnetic) band gaps and multiflatbands. A modified plane-wave expansion method yields dispersions of collisional periodical plasmas, and the complex-value solution of a wave equation by a finite difference method enables us to obtain dispersions with structure effects in an individual microplasma. Periodical plasma arrays form band gaps as well as normal photonic crystals, and multiflatbands are present below the electron plasma frequency in the transverse electric field mode. Electron elastic collisions lower the top frequency of the multiflatbands but have little effect on band gap properties. The spatial gradient of the local dielectric constant resulting from an electron density profile widens the frequency region of the multiflatbands, as demonstrated by the change of surface wave distributions. Propagation properties described in dispersions including band gaps and flatbands agree with experimental observations of microplasma arrays.

  10. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  11. Band structures in Sierpinski triangle fractal porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  12. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  13. Atomic structure of amorphous shear bands in boron carbide.

    PubMed

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  14. New Band Structures in Aapprox110 Neutron-Rich Nuclei

    SciTech Connect

    Zhu, S. J.; Wang, J. G.; Ding, H. B.; Gu, L.; Xu, Q.; Yeoh, E. Y.; Xiao, Z. G.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Liu, S. H.; Li, K.; Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.; Qi, B.; Meng, J.

    2010-05-12

    The high spin states of neutron-rich nuclei in Aapprox110 region have been carefully investigated by measuring prompt gamma-gamma-gamma coincident measurements populated in the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. Many new collective bands have been discovered. In this proceeding paper, we introduce some interesting new band structures recently observed by our cooperative groups, that is, the one-phonon- and two-phonon gamma-vibrational bands in odd-A {sup 103}Nb, {sup 105}Mo and {sup 107}Tc, the chiral doublet bands in even-even {sup 106}Mo, {sup 110}Ru and {sup 112}Ru, and the pseudospin partner bands with in {sup 108}Tc. The characteristics of these band structures have been discussed.

  15. Coupling between Fano and Bragg bands in the photonic band structure of two-dimensional metallic photonic structures

    NASA Astrophysics Data System (ADS)

    Markoš, P.; Kuzmiak, V.

    2016-09-01

    The frequency and transmission spectrum of a two-dimensional array of metallic rods is investigated numerically. Based on the recent analysis of the band structure of two-dimensional photonic crystals with dielectric rods [Phys. Rev. A 92, 043814 (2015), 10.1103/PhysRevA.92.043814], we identify two types of bands in the frequency spectrum: Bragg (P ) bands resulting from a periodicity and Fano (F ) bands which arise from Fano resonances associated with each of the cylinders within the periodic structure. It is shown that the existence of the Fano band in a certain frequency range is manifested by a Fano resonance in the transmittance. In particular, we reexamine the symmetry properties of the H -polarized band structure in the frequency range where the spectrum consists of the localized modes associated with the single-scatterer resonances and we explore the process of formation of Fano bands by identifying individual terms in the expansion of the linear combination of atomic orbitals states. We demonstrate how the interplay between the two scattering mechanisms affects the properties of the resulting band structure when the radius of cylinders is increased. We show that a different character of both kinds of bands is reflected in the spatial distribution of the magnetic field, which displays patterns corresponding to the corresponding irreducible symmetry representations.

  16. Band Structure Controlled by Chiral Imprinting

    NASA Astrophysics Data System (ADS)

    Reyes Cervantes, Adrian; Castro-Garay, P.; Ramos-Garcia, Ruben

    2008-03-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, we find the solution of the boundary--value problem for the reflection and transmission of incident optical waves due to the elastomer. We show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested bandgaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  17. Shell model description of band structure in 48Cr

    SciTech Connect

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-02-12

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements.

  18. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  19. Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111)

    SciTech Connect

    Tsoutsou, D. Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A.

    2013-12-02

    The electronic band structure of monolayer (4 × 4) silicene on Ag(111) is imaged by angle resolved photoelectron spectroscopy. A dominant hybrid surface metallic band is observed to be located near the bulk Ag sp-band which is also faintly visible. The two-dimensional character of the hybrid band has been distinguished against the bulk character of the Ag(111) sp-band by means of photon energy dependence experiments. The surface band exhibits a steep linear dispersion around the K{sup ¯}{sub Ag} point and has a saddle point near the M{sup ¯}{sub Ag} point of Ag(111) resembling the π-band dispersion in graphene.

  20. Correlated surface bands of the prototypical interface Sn/Si(1 1 1)-α- 3

    NASA Astrophysics Data System (ADS)

    Charrier, A.; Pérez, R.; Thibaudau, F.; Debever, J.-M.; Ortega, J.; Flores, F.; Themlin, J.-M.

    2001-05-01

    Using angle-resolved inverse photoemission spectroscopy (KRIPES), we have investigated the unoccupied electronic structure of the model interface Sn/Si(1 1 1)-α- 3 at room temperature. In addition to a "metallic" surface state crossing the Fermi level ( EF) near the overlineK' point, we unambiguously assign a second feature of our KRIPES spectra, located around 1.5 eV above EF, to a second surface state U 2'. We will experimentally show that U 2' is an intrinsic feature of the α- 3 reconstruction which cannot be associated with defects. The existence of these two surface states is not compatible with the ideal T 4 model which would show either a single, half-occupied metallic band crossing EF, or an insulating phase if strong correlation effects, important for these narrow surface bands, are considered. Rather, both U 1' and U 2' receive a natural explanation, once many-body effects are introduced, in the framework of a dynamical fluctuations model, where two kinds of Sn adatoms sites reminiscent of a low-temperature 3×3 phase do persist at room temperature. Correlated surface bands incorporating many-body effects in a non restricted way provide a complete description of the experimental surface bands and their dispersions.

  1. Band structure in Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Bachas, Constantin; Tomaras, Theodore

    2016-05-01

    We show how Yang-Mills theory on S3 × ℝ can exhibit a spectrum with continuous bands if coupled either to a topological 3-form gauge field, or to a dynamical axion with heavy Peccei-Quinn scale. The basic mechanism consists in associating winding histories to a bosonic zero mode whose role is to convert a circle in configuration space into a helix. The zero mode is, respectively, the holonomy of the 3-form field or the axion momentum. In these models different θ sectors coexist and are only mixed by (non-local) volume operators. Our analysis sheds light on, and extends Seiberg's proposal for modifying the topological sums in quantum field theories. It refutes a recent claim that B + L violation at LHC is unsuppressed.

  2. Monolayer-induced band shifts at Si(100) and Si(111) surfaces

    SciTech Connect

    Mäkinen, A. J. Kim, Chul-Soo; Kushto, G. P.

    2014-01-27

    We report our study of the interfacial electronic structure of Si(100) and Si(111) surfaces that have been chemically modified with various organic monolayers, including octadecene and two para-substituted benzene derivatives. X-ray photoelectron spectroscopy reveals an upward band shift, associated with the assembly of these organic monolayers on the Si substrates, that does not correlate with either the dipole moment or the electron withdrawing/donating character of the molecular moieties. This suggests that the nature and quality of the self-assembled monolayer and the intrinsic electronic structure of the semiconductor material define the interfacial electronic structure of the functionalized Si(100) and Si(111) surfaces.

  3. Deep Intermediate-Band Surface Photometry of NGC 5907

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongyuan; Shang, Zhaohui; Su, Hongjun; Burstein, David; Chen, Jiansheng; Deng, Zugan; Byun, Yong-Ik; Chen, Rui; Chen, Wen-Ping; Deng, Licai; Fan, Xiaohui; Fang, Li-Zhi; Hester, J. Jeff; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Sun, Wei-Hsin; Tsay, Wean-Shun; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zheng, Zheng; Zhou, Xu; Zhu, Jin; Zou, Zhenglong; Lu, Phillip

    1999-06-01

    Intrigued by the initial report of an extended luminosity distribution perpendicular to the disk of the edge-on Sc galaxy NGC 5907, we have obtained very deep exposures of this galaxy with a Schmidt telescope, large-format CCD, and intermediate-band filters centered at 6660 Å and 8020 Å. These two filters, part of a 15-filter set, are custom designed to avoid the brightest (and most variable) night skylines. As a result, our images are able to go deeper with lower sky noise than those taken with broadband filters at similar effective wavelengths: e.g., 0.6 e^- arcsec^-2 s^-1 for our observations versus 7.4 e^- arcsec^-2 s^-1 for the R-band measures of Morrison et al. In our assessment of both random and systematic errors, we show that the flux level where the errors of observation reach 1 mag arcsec^-2 are 29.00 mag arcsec^-2 in the 6660 Å image (corresponding to 28.7 in the R band) and 27.4 mag arcsec^-2 in the 8020 Å image (essentially on the I-band system). In a previous paper we have shown that NGC 5907 has a luminous ring around it, most plausibly caused by the tidal disruption of a dwarf spheroidal galaxy by the much more massive spiral. Here we show that, for values fainter than 27 R mag arcsec^-2, the surface brightness around NGC 5907 is strongly asymmetric, being mostly brighter on the northwest (ring) side of the galactic midplane. This asymmetry rules out a halo as the cause of the faint surface brightness we see. We find this asymmetry is likely an artifact resulting from a combination of ring light and residual surface brightness at faint levels from stars that our star-masking procedure cannot completely eliminate. The possible existence of an optical face-on warp in NGC 5907, suggested by our Very Large Array H I observations, is too confused with foreground star contamination to be independently studied. Good agreement with the surface photometry of NGC 5907 by other observers leads us to conclude that their data are similarly affected at faint

  4. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires

    DOE PAGESBeta

    Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel; Kierren, Bertrand; Moreau, Luc; Malterre, Daniel; Cardenas, Luis; Galeotti, Gianluca; Lipton-Duffin, Josh; Rosei, Frederico; et al

    2016-01-04

    We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a function of oligomer length by scanning tunnelling spectroscopy, with Fermi level crossings observed for chains longer than ten phenyl rings. Angle-resolved photoelectron spectroscopy reveals a quasi-one-dimensional valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the organic band-structure, includingmore » the k-dispersion, the gap size and electron charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour. In summary, we have fully characterized the band structure of a carbon-based conducting wire. This model system may be considered as a fingerprint of -conjugation of surface organic frameworks.« less

  5. Analysis and design of triple-band high-impedance surface absorber with periodic diversified impedance

    NASA Astrophysics Data System (ADS)

    Rui Zhang, Guo; Heng Zhou, Pei; Bin Zhang, Hui; Bo Zhang, Lin; Liang Xie, Jian; Jiang Deng, Long

    2013-10-01

    In this paper, a triple-band planar absorber with high-impedance surface (HIS) is designed and fabricated. The absorber structure is composed of polyurethane foam sandwiched between a lossy sheet of frequency selective surfaces (FSS) and a perfect electric conductor. The lossy FSS possesses different resistances in a periodic composite unit as compared with typical HIS absorber. Losses in the FSS are introduced by printing the periodic composite square ring pattern on blank stickers using various resistive inks. Physical mechanism of the HIS absorbers is analyzed by equivalent circuit model and electric field distribution studies. The proposed absorber with periodic composite units offers superimposed triple-band absorption as compared with that of the single units having single- or dual-band absorption characteristics. The reflection loss measurements show that the 90% absorption bandwidth of the HIS absorber is increased by 42% by the proposed composite periodic units.

  6. A Novel Broadband Band-pass Filter Based on Spoof Surface Plasmon Polaritons

    PubMed Central

    Zhao, Lei; Zhang, Xin; Wang, Jun; Yu, Wenhua; Li, Jiandong; Su, Hai; Shen, Xiaopeng

    2016-01-01

    In this paper, we present a novel broadband bandpass filter based on spoof surface plasmon polaritons (SSPPs) in the microwave frequency band. The proposed bandpass filter includes three parts: (1) coplanar waveguide (CPW); (2) matching transition; and (3) coupled structure that is an asymmetric coupled filter constructed by five grooved strips. The proposed bandpass filter realizes excellent low loss performance from 7 to 10 GHz, in which its insertion loss is around 1.5 dB in the same frequency band. Meanwhile, this filter has a good band stop characteristic from 3 to 7 GHz. A simple but accurate transmission line model was proposed to evaluate the proposed broadband SSPPs filter. The measured data, simulated results and the results obtained from the transmission line model have shown a very good agreement. The proposed planar broadband filter plays an important role for filtering surface plasmon polaritons (SPPs) waves in plasmonic circuits and systems. PMID:27796313

  7. Dependence of the band structure of C-60 monolayers on molecularorientations and doping observed by angle resolved photoemission

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Shen, Z.X.

    2008-01-17

    We present angle resolved photoemission studies of C60monolayers deposited on Ag surfaces. The electronic structure of thesemonolayers is derived from the partial filling of the narrow, 6-folddegenerated, C60 conduction band. By comparing the band structure in twomonolayers deposited, respectively, on Ag(111) and Ag(100), we show thatthe molecular degree of freedom, in this case the relative orientationsbetween C60 molecules, is essential to describe the band structure. Wefurther show that the evolution of the band as a function of doping doesnot follow a rigid band-filling picture. Phase separation is observedbetween a metallic and an insulating phase, which might be a result ofstrong correlations.

  8. Band structure of core-shell semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Pistol, Mats-Erik; Pryor, Craig

    2009-03-01

    We present band structures of strained core-shell nanowires composed of zincblende III-V (binary) semiconductors. We consider all combinations of AlN, GaN, InN, and all combinations of AlP, GaP, AlAs, GaAs, InP, InAs, AlSb, GaSb, and InSb. We compute the γ- and X-conduction band minima as well as the valence band maximum, all as functions of the core and shell radii. The calculations were performed using continuum elasticity theory for the strain, eight-band strain-dependent k.p theory for the γ-point energies, and single band approximation for the X-point conduction minima. We identify structures with type-I, type-II and type-III band alignment, as well as systems in which one material becomes metallic due to a negative band-gap. We identify structures that may support exciton crystals with and without photoexcitation. We have also computed the effective masses, from which the confinement energy may be estimated. All the results [Pistol and Pryor, Phys. Rev. B 78, 115319] are available in graphical and tabular form at www.semiconductor.physics.uiowa.edu

  9. Development of X-Band Dielectric-Loaded Accelerating Structures

    SciTech Connect

    Gold, S. H.; Jing, C.; Kanareykin, A.; Gai, W.; Konecny, R.; Power, J. G.; Kinkead, A. K.

    2010-11-04

    This paper presents a progress report on the development and testing of X-band dielectric-loaded accelerating structures. Recent tests on several quartz DLA structures with different inner diameters are reported. Designs for gap-free DLA structures are presented. Also, planned new experiments are discussed, including higher gradient traveling-wave and standing-wave structures and special grooved structures for multipactor suppression.

  10. Millimeter-wave waveguiding using photonic band structures

    NASA Astrophysics Data System (ADS)

    Eliyahu, Danny; Sadovnik, Lev S.; Manasson, Vladimir A.

    2000-07-01

    Current trends in device miniaturization and integration, especially in the development of microwave monolithic integrated circuits, calls for flexible, arbitrarily shaped and curved interconnects. Standard dielectric waveguides and microstrip lines are subject to prohibitive losses and their functionality is limited because of their unflexible structures. The problem is addressed by confining the wave- guiding path in a substrate with a Photonic Band Gap structure in a manner that will result in the guided mode being localized within the band gap. Two devices implementing Photonic Band Structures for millimeter waves confinement are presented. The first waveguide is a linear defect in triangular lattice created in a silicon slab (TE mode). The structure consists of parallel air holes of circular cross sections. The silicon was laser drilled to create the 2D crystal. The second device consists of alumina rods arranged in a triangular lattice, surrounded by air and sandwiched between two parallel metal plates (TM mode). Electromagnetic wave (W-band) confinement was obtained in both devices for straight and bent waveguides. Three branch waveguides (intersecting line defects) was studied as well. Measurements confirmed the lowloss waveguide confinement property of the utilizing Photonic Band Gap structure. This structure can find applications in power combiner/splitter and other millimeter wave devices.

  11. Coexisting Honeycomb and Kagome Characteristics in the Electronic Band Structure of Molecular Graphene.

    PubMed

    Paavilainen, Sami; Ropo, Matti; Nieminen, Jouko; Akola, Jaakko; Räsänen, Esa

    2016-06-01

    We uncover the electronic structure of molecular graphene produced by adsorbed CO molecules on a copper (111) surface by means of first-principles calculations. Our results show that the band structure is fundamentally different from that of conventional graphene, and the unique features of the electronic states arise from coexisting honeycomb and Kagome symmetries. Furthermore, the Dirac cone does not appear at the K-point but at the Γ-point in the reciprocal space and is accompanied by a third, almost flat band. Calculations of the surface structure with Kekulé distortion show a gap opening at the Dirac point in agreement with experiments. Simple tight-binding models are used to support the first-principles results and to explain the physical characteristics behind the electronic band structures.

  12. Band structures in light neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Bohlen, H. G.; von Oertzen, W.; Kalpakchieva, R.; Massey, T. N.; Dorsch, T.; Milin, M.; Schulz, C.; Kokalova, T.; Wheldon, C.

    2008-05-01

    The structure of beryllium isotopes in the mass range A = 8-12 has been investigated using the properties of different bands, which are populated in specific reactions. The different structures are formed in transfer reactions with neutron stripping on 9,10Be or proton pick-up on 12,13,14C. The slope in the linear dependence of the excitation energies on J(J+1), where J is the spin, has been deduced for 13 bands and compared for common systematics. From the measured moments-of-inertia the α - α distance has been deduced for molecular structures.

  13. Effects of orbital composition in a pair of spin-orbit-split surface bands at Tl/Ge(111)

    NASA Astrophysics Data System (ADS)

    Eickholt, Philipp; Krüger, Peter; Stolwijk, Sebastian D.; Schmidt, Anke B.; Donath, Markus

    2016-02-01

    The spin texture of the unoccupied surface electronic structure of the metal-semiconductor hybrid system Tl /Ge (111 )-(1 ×1 ) is investigated by spin- and angle-resolved inverse photoemission as well as quasiparticle band-structure calculations. Spin-polarized surface bands with rotating spin and giant energy splitting are found along Γ ¯K ¯(K¯') , forming valleys with alternating out-of-plane spin polarization at K ¯ and K¯'. This behavior is known from the equivalent hybrid system on Si(111). Along Γ ¯M ¯ , a pair of surface bands appears within a projected bulk band gap, whose equivalent on Tl/Si(111) is a surface resonance because, there, it overlaps with bulk states. Surprisingly, the spin splitting of these bands on Tl/Ge(111) is much smaller than on Tl/Si(111) despite the stronger surface localization and the heavier substrate. Our detailed analysis of the band structure and a tight-binding model including all relevant interactions show that a remarkable interplay between spin-orbit coupling and hybridization is responsible for this unexpected result. The comparison between the two similar hybrid systems demonstrates that the strength of the spin-orbit coupling alone, based on the atomic number of the respective elements, is not sufficient to estimate spin splittings of spin-orbit-influenced surface states.

  14. Band structures and band offsets of high K dielectrics on Si

    NASA Astrophysics Data System (ADS)

    Robertson, J.

    2002-05-01

    Various high dielectric constant oxides will be used as insulator in ferroelectric memories, dynamic random access memories, and as the gate dielectric material in future complementary metal oxide semiconductor (CMOS) technology. These oxides which have moderately wide bandgaps provide a good test of our understanding of Schottky barrier heights and band offsets at semiconductor interfaces. Metal induced gap states (MIGS) are found to give a good description of these interfaces. The electronic structure and band offsets of these oxides are calculated. It is found that Ta 2O 5 and SrTiO 3 have small or vanishing conduction band offsets on Si. La 2O 3, Y 2O 3, ZrO 2, HfO 2, Al 2O 3 and silicates like ZrSiO 4 have offsets over 1.4 eV for both electrons and holes, making them better gate dielectrics.

  15. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    SciTech Connect

    Hossain, Nadir; Sweeney, Stephen; Hosea, Jeff; Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang; Kunert, Bernerdette

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  16. Band structure of hydrogenated silicene on Ag(111): Evidence for half-silicane

    NASA Astrophysics Data System (ADS)

    Wang, W.; Olovsson, W.; Uhrberg, R. I. G.

    2016-02-01

    In the case of graphene, hydrogenation removes the conductivity due to the bands forming the Dirac cone by opening up a band gap. This type of chemical functionalization is of the utmost importance for electronic applications. As predicted by theoretical studies, a similar change in the band structure is expected for silicene, the closest analog to graphene. We here report a study of the atomic and electronic structures of hydrogenated silicene with hydrogen on one side, the so-called half-silicane. The ("2 √{3 }×2 √{3 } ") phase of silicene on Ag(111) was used in this Rapid Communication since it can be formed homogeneously across the entire surface of the Ag substrate. Low-energy electron diffraction and scanning tunneling microscopy data clearly show that hydrogenation changes the structure of silicene on Ag(111) resulting in a (1 × 1) periodicity with respect to the silicene lattice. The hydrogenated silicene also exhibits a quasiregular (2 √{3 }×2 √{3 } )-like arrangement of vacancies. Angle-resolved photoelectron spectroscopy revealed two dispersive bands which can be unambiguously assigned to half-silicane. The common top of these bands is located at ˜0.9 eV below the Fermi level. We find that the experimental bands are closely reproduced by the theoretical band structure of free-standing silicene with H adsorbed on the upper hexagonal sublattice.

  17. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires

    NASA Astrophysics Data System (ADS)

    Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel; Kierren, Bertrand; Moreau, Luc; Malterre, Daniel; Cardenas, Luis; Galeotti, Gianluca; Lipton-Duffin, Josh; Rosei, Federico; di Giovannantonio, Marco; Contini, Giorgio; Le Fèvre, Patrick; Bertran, François; Liang, Liangbo; Meunier, Vincent; Perepichka, Dmitrii F.

    2016-01-01

    On-surface covalent self-assembly of organic molecules is a very promising bottom-up approach for producing atomically controlled nanostructures. Due to their highly tuneable properties, these structures may be used as building blocks in electronic carbon-based molecular devices. Following this idea, here we report on the electronic structure of an ordered array of poly(para-phenylene) nanowires produced by surface-catalysed dehalogenative reaction. By scanning tunnelling spectroscopy we follow the quantization of unoccupied molecular states as a function of oligomer length, with Fermi level crossing observed for long chains. Angle-resolved photoelectron spectroscopy reveals a quasi-1D valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the band structure, including the gap size and charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour.

  18. Complex band structure of topological insulator Bi2Se3.

    PubMed

    Betancourt, J; Li, S; Dang, X; Burton, J D; Tsymbal, E Y; Velev, J P

    2016-10-01

    Topological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators. We compare the CBS of a band insulator and a topological insulator and follow the CBS evolution in both when the spin-orbit interaction is turned on. We find significant differences in the CBS linked to the topological band structure. In particular, our results demonstrate that the evanescent states in Bi2Se3 are non-trivially complex, i.e. contain both the real and imaginary contributions. This explains quantitatively the oscillatory behavior of the band gap obtained from Bi2Se3 (0 0 0 1) slab calculations. PMID:27485021

  19. Complex band structure of topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Betancourt, J.; Li, S.; Dang, X.; Burton, J. D.; Tsymbal, E. Y.; Velev, J. P.

    2016-10-01

    Topological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators. We compare the CBS of a band insulator and a topological insulator and follow the CBS evolution in both when the spin-orbit interaction is turned on. We find significant differences in the CBS linked to the topological band structure. In particular, our results demonstrate that the evanescent states in Bi2Se3 are non-trivially complex, i.e. contain both the real and imaginary contributions. This explains quantitatively the oscillatory behavior of the band gap obtained from Bi2Se3 (0 0 0 1) slab calculations.

  20. Shell model and band structures in 19O

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Milin, M.; Dorsch, T.; Bohlen, H. G.; Krücken, R.; Faestermann, T.; Hertenberger, R.; Kokalova, Tz.; Mahgoub, M.; Wheldon, C.; Wirth, H.-F.

    2010-12-01

    We have studied the reaction ( ^7Li, p) on 13C targets at E lab = 44 MeV, populating states in the oxygen isotope 19O . The experiments were performed at the Tandem Laboratory (Maier-Leibniz Laboratorium) using the high-resolution Q3D magnetic spectrometer. States were populated up to an excitation energy of 21MeV, with an overall energy resolution of 45keV. We discuss shell model states and cluster bands related to the rotational bands in the 18O -isotope, using the weak-coupling approach. Similar to 18O , the broken intrinsic reflection symmetry in these states must give rise to rotational bands as parity doublets, so two K = 3/2 bands (parities, + and - are proposed with large moments of inertia. These are discussed in terms of an underlying cluster structure, ( ^14C ⊗ n ⊗ α) . An extended molecular binding diagram is proposed which includes the 14C -cluster.

  1. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  2. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  3. Band energy control of molybdenum oxide by surface hydration

    SciTech Connect

    Butler, Keith T. Walsh, Aron; Crespo-Otero, Rachel; Buckeridge, John; Scanlon, David O.; Bovill, Edward; Lidzey, David

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  4. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY...

  5. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY...

  6. Tailoring band gaps of insulators by adsorption at surface defects: Benzoic acids on NaCl surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tegenkamp, Christoph; Pfnür, Herbert; Bredow, Thomas

    2009-06-01

    The adsorption of benzoic acid and its OH-substituted derivatives, namely, salicylic acid (SA) and parasalicylic acid on various NaCl surfaces has been investigated by density-functional theory with hybrid exchange-correlation functional. The ideal NaCl(100) surface is chemically inert as evidenced by the low binding energies. The molecular adsorption can be enhanced by both an anion vacancy and a surface step site. The bonding between the surface Na and the carboxylic O atom is of covalent character for all adsorption geometries. Our calculations show that the adsorption of SA has the largest binding energy of all three acids due to the additional interaction between Na and the phenolic O atom. Charge transfer between the molecule and the surface is generally very small, except in the presence of an anion vacancy where the unpaired electron is mostly transferred to the adsorbate. Surface defects generally have a strong influence on the electronic structure of the adsorbed molecules. Specifically, the adsorption of SA at [011]-oriented steps can significantly reduce the effective band gap to 1.6 eV due to the up shift of the Cl3p levels at the undercoordinated step edge. Implications of these results to the contact charging effect between wide-band-gap insulators will be discussed.

  7. Double surface effect causes a peak in band-edge photocurrent spectra: a quantitative model

    NASA Astrophysics Data System (ADS)

    Turkulets, Yury; Bick, Tamar; Shalish, Ilan

    2016-09-01

    Band-edge photocurrent spectra are typically observed in either of two shapes: a peak or a step. In this study, we show that the photocurrent band-edge response of a GaN layer forms a peak, while the same response in GaN nanowires takes the form of a step, and both are red-shifted to the actual band-edge energy. This apparent inconsistency is not limited to GaN. The physics of this phenomenon has been unclear. To understand the physics behind these observations, we propose a model that explains the apparent discrepancy as resulting from a structure-dependent surface effect. To test the model, we experiment with a GaAs layer, showing that we can deliberately switch between a step and a peak. We use GaAs because it is available at a semi-insulating doping level. We demonstrate that using this quantitative model one may obtain the exact band-edge transition energy, regardless of the red-shift variance, as well as the density of the surface state charges that cause the red shift. The model thus adds quantitative features to photocurrent spectroscopy.

  8. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  9. From lattice Hamiltonians to tunable band structures by lithographic design

    NASA Astrophysics Data System (ADS)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  10. Identical band gaps in structurally re-entrant honeycombs.

    PubMed

    Zhu, Zhu-Wei; Deng, Zi-Chen

    2016-08-01

    Structurally re-entrant honeycomb is a sort of artificial lattice material, characterized by star-like unit cells with re-entrant topology, as well as a high connectivity that the number of folded sheets jointing at each vertex is at least six. In-plane elastic wave propagation in this highly connected honeycomb is investigated through the application of the finite element method in conjunction with the Bloch's theorem. Attention is devoted to exploring the band characteristics of two lattice configurations with different star-like unit cells, defined as structurally square re-entrant honeycomb (SSRH) and structurally hexagonal re-entrant honeycomb (SHRH), respectively. Identical band gaps involving their locations and widths, interestingly, are present in the two considered configurations, attributed to the resonance of the sketch folded sheets, the basic component elements for SSRH and SHRH. In addition, the concept of heuristic models is implemented to elucidate the underlying physics of the identical gaps. The phenomenon of the identical bandgaps is not only beneficial for people to further explore the band characteristics of lattice materials, but also provides the structurally re-entrant honeycombs as potential host structures for the design of lattice-based metamaterials of interest for elastic wave control. PMID:27586722

  11. Tunable and sizable band gap in silicene by surface adsorption

    PubMed Central

    Quhe, Ruge; Fei, Ruixiang; Liu, Qihang; Zheng, Jiaxin; Li, Hong; Xu, Chengyong; Ni, Zeyuan; Wang, Yangyang; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing

    2012-01-01

    Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 108. Therefore, a way is paved for silicene as the channel of a high-performance FET. PMID:23152944

  12. Unfolding of collapsed polymers in shear flow: effects of colloid banding structures in confining channels.

    PubMed

    Chen, Hsieh; Alexander-Katz, Alfredo

    2014-03-01

    Using hydrodynamic simulations, we demonstrate that confined colloidal suspensions can greatly enhance the unfolding of collapsed single polymers in flow. When colloids come in direct contact with the polymers due to the flow, the collapsed chains become flattened or elongated on the surface of the colloids, increasing the probability of forming large chain protrusions that the flow can pull out to unfold the polymers. This phenomenon may be suppressed if the colloid size is commensurate with the confining channels, where the colloids form well-defined banding structures. Here, we analyze the colloid banding structures in detail and their relation to the chain unfolding. We find that for colloid volume fractions up to 30%, the confined colloids form simple cubic (sc), hexagonal (hex), or a mixture of sc + hex structures. By directly changing the heights of the confining channels, we show that the collapsed polymers unfold the most in the mixed sc + hex structures. The diffuse (not well-defined) bands in the mixed sc + hex structures provide the highest collision probability for the colloids and the polymers, thus enhancing unfolding the most. Without colloidal suspensions, we show that the confining channels alone do not have an observable effect on the unfolding of collapsed polymers. The well-defined colloid bands also suppress the unfolding of noncollapsed polymers. In fact, the average size for noncollapsed chains is even smaller in the well-defined bands than in a channel without any colloids. The appearance of well-defined bands in this case also indicates that lift forces experienced by the polymers in confinement are negligible compared to those exerted by the colloidal band structures. Our results may be important for understanding the dynamics of mixed colloid polymer solutions.

  13. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.

    PubMed

    Ulstrup, Søren; Čabo, Antonija Grubišić; Miwa, Jill A; Riley, Jonathon M; Grønborg, Signe S; Johannsen, Jens C; Cacho, Cephise; Alexander, Oliver; Chapman, Richard T; Springate, Emma; Bianchi, Marco; Dendzik, Maciej; Lauritsen, Jeppe V; King, Phil D C; Hofmann, Philip

    2016-06-28

    The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure. PMID:27267820

  14. Plasmonic band structure controls single-molecule fluorescence.

    PubMed

    Langguth, Lutz; Punj, Deep; Wenger, Jérôme; Koenderink, A Femius

    2013-10-22

    Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures milled in gold film. We demonstrate that already small lattices enable highly directional and enhanced emission from single fluorescent molecules in the central aperture. Even for clusters just four unit cells across, the directionality is set by the plasmonic crystal band structure, as confirmed by full-wave numerical simulations. This realization of plasmonic phase array antennas driven by single quantum emitters opens a flexible toolbox to engineer fluorescence and its detection.

  15. Bioinspired structured surfaces.

    PubMed

    Bhushan, Bharat

    2012-01-24

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. Various natural objects which provide functionality of commercial interest have been characterized to understand how a natural object provides functionality. We have modeled and fabricated structures in the lab using nature's route and developed optimum structures. Once it is understood how nature does it, optimum structures have been fabricated using smart materials and fabrication techniques. This feature article provides an overview of four topics: Lotus effect, rose petal effect, gecko feet, and shark skin.

  16. Band structures extending to very high spin in Xe126

    NASA Astrophysics Data System (ADS)

    Rønn Hansen, C.; Sletten, G.; Hagemann, G. B.; Herskind, B.; Jensen, D. R.; Bringel, P.; Engelhardt, C.; Hübel, H.; Neußer-Neffgen, A.; Singh, A. K.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Bednarczyk, P.; Byrski, T.; Curien, D.; Benzoni, G.; Bracco, A.; Camera, F.; Leoni, S.; Clark, R. M.; Fallon, P.; Korichi, A.; Roccaz, J.; Maj, A.; Wilson, J. N.; Lisle, J. C.; Steinhardt, T.; Thelen, O.; Ødegård, S. W.

    2007-09-01

    High-spin states in Xe126 have been populated in the Se82(Ca48,4n)Xe126 reaction in two experiments, one at the VIVITRON accelerator in Strasbourg using the Euroball detector array, and a subsequent one with ATLAS at Argonne using the Gammasphere Ge-detector array. Levels and assignments made previously for Xe126 up to I=20 have been confirmed and extended. Four regular bands extending to a spin of almost I=60, which are interpreted as two pairs of signature partners with opposite parity, are identified for the first time. The α = 0 partner of each pair is connected to the lower-lying levels, whereas the two α = 1 partners remain floating. A fractional Doppler shift analysis of transitions in the strongest populated (π,α)=(-,0) band provides a value of 5.20.50.4 b for the transition quadrupole moment, which can be related to a minimum in the potential-energy surface calculated by the ULTIMATE CRANKER cranked shell-model code at ɛ≈0.35 and γ≈5°. The four lowest bands calculated for this minimum compare well with the two signature pairs experimentally observed over a wide spin range. A sharp upbend at ℏω~1170 keV is interpreted as a crossing with a band involving the j15/2 neutron orbital, for which pairing correlations are expected to be totally quenched. The four long bands extend to within ˜5 spin units of a crossing with an yrast line defined by calculated hyperdeformed transitions and will serve as important stepping stones into the spin region beyond 60ħ for future experiments.

  17. Photoelectron spectroscopic study of band alignment of polymer/ZnO photovoltaic device structure

    SciTech Connect

    Nagata, T.; Chikyow, T.; Oh, S.; Wakayama, Y.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K.; Ikeno, N.

    2013-01-28

    Using x-ray photoelectron spectroscopy, we investigated the band alignment of a Ag/poly(3-hexylthiophene-2,5-diyl) (P3HT)/ZnO photovoltaic structure. At the P3HT/ZnO interface, a band bending of P3HT and a short surface depletion layer of ZnO were observed. The offset between the highest occupied molecular orbital of P3HT and the conduction band minimum of ZnO at the interface contributed to the open circuit voltage (Voc) was estimated to be approximately 1.5 {+-} 0.1 eV, which was bigger than that of the electrically measured effective Voc of P3HT/ZnO photovoltaic devices, meaning that the P3HT/ZnO photovoltaic structure has the potential to provide improved photovoltaic properties.

  18. Surface conduction in encapsulated topological gated structures

    NASA Astrophysics Data System (ADS)

    Deshko, Yury; Korzhovska, Inna; Zhao, Lukas; Arefe, Ghidewon; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2015-03-01

    In three-dimensional (3D) topological insulators (TIs), the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy surface charge transport or magnetic response. The subsurface 2D states of bulk origin are vulnerable to bandbending due to surface adatoms, a band modification thought to be responsible for the `ageing' effect. To minimize this effect, we have developed an inert environment mechanical exfoliation technique to fabricate transistor-like gated structures in which prototypical binary TIs as well as ultra-low bulk carrier density ternaries (such as Bi2Te2Se) were encapsulated by thin h-BN layers, with electrical contacts made using exfoliated graphene. The effects of electrostatic tuning by the gate bias voltage on surface conductivity as a function of thickness of the TI layers and the variation with disorder will be presented. Supported by NSF-DMR-1312483, and DOD-W911NF-13-1-0159.

  19. Band to band tunneling in III-V semiconductors: Implications of complex band structure, strain, orientation, and off-zone center contribution

    SciTech Connect

    Majumdar, Kausik

    2014-05-07

    In this paper, we use a tight binding Hamiltonian with spin orbit coupling to study the real and complex band structures of relaxed and strained GaAs. A simple d orbital on-site energy shift coupled with appropriate scaling of the off-diagonal terms is found to correctly reproduce the band-edge shifts with strain. Four different 〈100〉 strain combinations, namely, uniaxial compressive, uniaxial tensile, biaxial compressive, and biaxial tensile strain are studied, revealing rich valence band structure and strong relative orientation dependent tunneling. It is found that complex bands are unable to provide unambiguous tunneling paths away from the Brillouin zone center. Tunneling current density distribution over the Brillouin zone is computed using non-equilibrium Green's function approach elucidating a physical picture of band to band tunneling.

  20. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  1. Collective structures and band termination in {sup 107}Sb

    SciTech Connect

    LaFosse, D. R.; Chiara, C. J.; Fossan, D. B.; Lane, G. J.; Sears, J. M.; Smith, J. F.; Starosta, K.; Boston, A. J.; Paul, E. S.; Semple, A. T.

    2000-07-01

    High-spin states in the near proton-dripline nucleus {sup 107}Sb have been identified, and collectivity in this nucleus has been observed for the first time in the form of two rotational bands. One of the observed rotational structures is a {delta}I=1 band, and is interpreted as based on a {pi}(g{sub 9/2}){sup -1}(multiply-in-circle sign){pi}(g{sub 7/2}d{sub 5/2}){sup 2} proton configuration. A second structure has {delta}I=2 character, and is explained as being based on a {pi}h{sub 11/2}(multiply-in-circle sign)[{pi}(g{sub 9/2}){sup -2}(multiply-in-circle sign){pi}(g{sub 7/2}d{sub 5/2}){sup 2}] proton configuration through comparison with cranked Nilsson-Strutinsky model calculations. The calculations predict that this band terminates at a spin of 79/2 ({Dirac_h}/2{pi}). (c) 2000 The American Physical Society.

  2. Dual-band metamaterial with a windmill-like structure

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Hong, Jing-Song; Jin, Da-Lin

    2013-01-01

    A broadband negative refractive index metamaterial based on a windmill-like structure is proposed, and investigated numerically and experimentally at the microwave frequency range. From the numerical and experimental results, effect media parameters are retrieved, which clearly show that two broad frequency bands exist in which the permittivity and permeability are negative. The two negative bands are from 9.1 GHz to 10.5 GHz and from 12.05 GHz to 14.65 GHz respectively, and the negative bandwidth is 4 GHz. Due to the good bandwidth performance, the metallic cell with double negative property obtained in this paper is suitable for use in the design of multiband or broadband microwave devices.

  3. Valence-band electronic structure of silicon nitride studied with the use of soft-x-ray emission

    NASA Astrophysics Data System (ADS)

    Carson, R. D.; Schnatterly, S. E.

    1986-02-01

    We have studied the valence-band electronic structure of α-phase, β-phase, and amorphous silicon nitride samples, using Si L-x-ray emission. Our results are compared with a recent band-structure calculation and show that Si 3d states are necessary to properly describe the upper-valence-band and lower-conduction-band density of states. A prominent feature is seen above the valence band which is attributed to conduction-band states that are populated by the incident electron beam. By reducing the energy of the electron beam it is possible to enhance the surface emission relative to bulk emission, and such spectra are also presented and discussed.

  4. Collective band structures in the 99Tc nucleus

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Xiao, Z. G.; Zhu, S. J.; Patial, M.; Qi, C.; Cederwall, B.; Zhang, Z.; Wang, R. S.; Yi, H.; Yan, W. H.; Cheng, W. J.; Huang, Y.; Lyu, L. M.; Zhang, Y.; Wu, X. G.; He, C. Y.; Zheng, Y.; Li, G. S.; Li, C. B.; Li, H. W.; Liu, J. J.; Luo, P. W.; Hu, S. P.; Wang, J. L.; Wu, Y. H.

    2015-05-01

    Excited states in 99Tc with energies up to 6 MeV have been populated using the 96Zr(7Li,4 n )99Tc reaction with a laboratory beam energy of 35 MeV. Coincident γ rays from excited nuclei produced in the reactions were detected using an array of coaxial, planar, and clover-type high-purity germanium detectors. A total of 60 new γ -ray transitions and 21 new levels are identified and placed into a new level scheme. Two collective bands assigned to be built on the π g9 /2 [422 ]5 /2 + and π p1 /2 [301 ]1 /2 - Nilsson configurations have been extended with spins up to 35/2 and 33 /2 ℏ , respectively. Backbending and signature inversion have been observed in the yrast band. The large signature splitting of the positive-parity band in 99Tc may be caused by a triaxial deformation, which agrees well with the electromagnetic properties, theoretical calculations based on total Routhian surface, and triaxial particle-rotor model calculations.

  5. Probing surface band bending of surface-engineered metal oxide nanowires.

    PubMed

    Chen, Cheng-Ying; Retamal, Jose Ramon Duran; Wu, I-Wen; Lien, Der-Hsien; Chen, Ming-Wei; Ding, Yong; Chueh, Yu-Lun; Wu, Chih-I; He, Jr-Hau

    2012-11-27

    We in situ probed the surface band bending (SBB) by ultraviolet photoelectron spectroscopy (UPS) in conjunction with field-effect transistor measurements on the incompletely depleted ZnO nanowires (NWs). The diameter range of the NWs is ca. 150-350 nm. Several surface treatments (i.e., heat treatments and Au nanoparticle (NP) decoration) were conducted to assess the impact of the oxygen adsorbates on the SBB. A 100 °C heat treatment leads to the decrease of the SBB to 0.74 ± 0.15 eV with 29.9 ± 3.0 nm width, which is attributed to the removal of most adsorbed oxygen molecules from the ZnO NW surfaces. The SBB of the oxygen-adsorbed ZnO NWs is measured to be 1.53 ± 0.15 eV with 43.2 ± 2.0 nm width. The attachment of Au NPs to the NW surface causes unusually high SBB (2.34 ± 0.15 eV with the wide width of 53.3 ± 1.6 nm) by creating open-circuit nano-Schottky junctions and catalytically enhancing the formation of the charge O(2) adsorbates. These surface-related phenomena should be generic to all metal oxide nanostructures. Our study is greatly beneficial for the NW-based device design of sensor and optoelectronic applications via surface engineering.

  6. High power experimental studies of hybrid photonic band gap accelerator structures

    NASA Astrophysics Data System (ADS)

    Zhang, JieXi; Munroe, Brian J.; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-08-01

    This paper reports the first high power tests of hybrid photonic band gap (PBG) accelerator structures. Three hybrid PBG (HPBG) structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM02 mode, with suppression of both lower order modes, such as the TM11 mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19 MV /m , corresponding to a surface electric field of 78 MV /m , with a breakdown probability of 5 ×10-1 per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20 MV /m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  7. Birefringence and band structure of CdP2 crystals

    NASA Astrophysics Data System (ADS)

    Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.

    2013-08-01

    The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||сbands. Minimal direct energy intervals correspond to transitions Г1→Г1 for Е||с and Г2→Г1 for Е⊥с. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Г1→Г1 and Г2→Г1 band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5-10 eV and optical functions (n, k, ε1, ε2,d2ε1/dE2 and d2ε2/dE2) were calculated by using Kramers-Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  8. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  9. Band structure and spin texture of Bi2Se3 3 d ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Velev, Julian P.; Dang, Xiaoqian; Tsymbal, Evgeny Y.

    2016-07-01

    The spin-helical surface states in a three-dimensional topological insulator (TI), such as Bi2Se3 , are predicted to have superior efficiency in converting charge current into spin polarization. This property is said to be responsible for the giant spin-orbit torques observed in ferromagnetic metal/TI structures. In this work, using first-principles and model tight-binding calculations, we investigate the interface between the topological insulator Bi2Se3 and 3 d -transition ferromagnetic metals Ni and Co. We find that the difference in the work functions of the topological insulator and the ferromagnetic metals shift the topological surface states down about 0.5 eV below the Fermi energy where the hybridization of these surface states with the metal bands destroys their helical spin structure. The band alignment of Bi2Se3 and Ni (Co) places the Fermi energy far in the conduction band of bulk Bi2Se3 , where the spin of the carriers is aligned with the magnetization in the metal. Our results indicate that the topological surface states are unlikely to be responsible for the huge spin-orbit torque effect observed experimentally in these systems.

  10. The Submesoscale from VIIRS Imagery-Band (375 m) Sea Surface Temperature Fields

    NASA Astrophysics Data System (ADS)

    Cornillon, P. C.; Pan, G.; Schloesser, F.

    2014-12-01

    The Visible-Infrared Imager-Radiometer Suite (VIIRS) carried on the Suomi National Polar-orbiting Partnership (Suomi NPP) spacecraft makes measurements in spectral bands in the infrared at a nadir spatial resolution of 750 m, in what are referred to as the Moderate Resolution Bands (M-Bands), and at a nadir spatial resolution of 375 m in "Imagery Bands" (I-Bands). The spectral coverage of M-Bands allows for the high quality retrieval of sea surface temperature (SST) under cloud-free conditions. In particular, the M-Band suite includes a "split window" in the 10 to 12 micrometer range with which correction for atmospheric water vapor can be made while avoiding issues associated with solar reflection, which afflicts observations in some of the shorter wave-length spectral windows during daylight hours. Unfortunately, there is only one I-Band channel in the 10 to 12 micrometer range precluding the same approach used for M-Band retrievals. In this presentation, we discuss an algorithm developed at the University of Rhode Island that makes use of the atmospheric correction available from M-Band retrieval algorithms together with I-Band radiances to produce a high quality 375 m SST product. The M-Band retrievals used are those from NOAA's Advanced Clear Sky Processor for Oceans (ACSPO) program. In comparisons with ship-borne radiometer SST retrievals, we show that the I-Band retrievals are of similar quality to the underlying M-Band retrievals. We then go on to demonstrate the sub-kilometer scale of the features resolved in the I-Band retrievals as well as how these data may be used to infer near-surface currents on a spatial grid of order 10 kilometers.

  11. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

    NASA Astrophysics Data System (ADS)

    Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.

    2014-09-01

    The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH4OH treatment and an in-situ elevated temperature NH3 plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ˜1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO2, Al2O3, and SiO2) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N2 ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO2, Al2O3, and SiO2 with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.

  12. Band structure and electron-phonon coupling in H3S : A tight-binding model

    NASA Astrophysics Data System (ADS)

    Ortenzi, L.; Cappelluti, E.; Pietronero, L.

    2016-08-01

    We present a robust tight-binding description, based on the Slater-Koster formalism, of the band structure of H3S in the Im3 ¯m structure, stable in the range of pressure P =180 -220 GPa. We show that the interatomic hopping between the 3 s and 3 p orbitals (and partially between the 3 p orbitals themselves) of sulfur is fundamental to capturing the relevant physics associated with the Van Hove singularities close to the Fermi level. Comparing the model so defined with density functional theory calculations we obtain a very good agreement not only of the overall band structure but also of the low-energy states and the Fermi surface properties. The description in terms of Slater-Koster parameters permits us also to evaluate at a microscopic level a hopping-resolved linear electron-lattice coupling which can be employed for further tight-binding analyses also at a local scale.

  13. Nutrient loss in leachate and surface runoff from surface-broadcast and subsurface-banded broiler litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff, compared to the conventional surface broadcast application. Little in situ research has been conducted to determine effects of surface broadcast application and subsurfac...

  14. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    NASA Astrophysics Data System (ADS)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  15. Silicene structures on silver surfaces.

    PubMed

    Enriquez, Hanna; Vizzini, Sébastien; Kara, Abdelkader; Lalmi, Boubekeur; Oughaddou, Hamid

    2012-08-01

    In this paper we report on several structures of silicene, the analog of graphene for silicon, on the silver surfaces Ag(100), Ag(110) and Ag(111). Deposition of Si produces honeycomb structures on these surfaces. In particular, we present an extensive theoretical study of silicene on Ag(111) for which several recent experimental studies have been published. Different silicene structures were obtained only by varying the silicon coverage and/or its atomic arrangement. All the structures studied show that silicene is buckled, with a Si-Si nearest neighbor distance varying between 2.28 and 2.5 Å. Due to the buckling in the silicene sheet, the apparent (lateral) Si-Si distance can be as low as 1.89 Å. We also found that for a given coverage and symmetry, one may observe different scanning tunneling microscopy images corresponding to structures that differ by only a translation.

  16. Manifestation of a Second Dirac Surface State and Bulk Bands in THz Radiation from Topological Insulators

    PubMed Central

    Tu, Chien-Ming; Yeh, Tien-Tien; Tzeng, Wen-Yen; Chen, Yi-Ru; Chen, Hsueh-Ju; Ku, Shin-An; Luo, Chih-Wei; Lin, Jiunn-Yuan; Wu, Kaung-Hsiung; Juang, Jenh-Yih; Kobayashi, Takayoshi; Cheng, Cheng-Maw; Tsuei, Ku-Ding; Berger, Helmuth; Sankar, Raman; Chou, Fang-Cheng

    2015-01-01

    Topological insulators (TIs) are interesting quantum matters that have a narrow bandgap for bulk and a Dirac-cone-like conducting surface state (SS). The recent discovered second Dirac surface state (SS) and bulk bands (BBs) located ~1.5 eV above the first SS are important for optical coupling in TIs. Here, we report on the time-domain measurements of THz radiation generated from TIs n-type Cu0.02Bi2Se3 and p-type Bi2Te3 single crystals by ultrafast optical pulse excitation. The observed polarity-reversal of the THz pulse originated from transient current is unusual, and cannot be reconciled with the photo-Dember effect. The second SS and BBs are found to be indispensable for the explanation of the unusual phenomenon. Thanks to the existence of the second SS and BBs, TIs manifest an effective wide band gap in THz generation. The present study demonstrates that time-domain THz spectroscopy provide rich information of the optical coupling and the electronic structure of TIs. PMID:26370337

  17. Manifestation of a Second Dirac Surface State and Bulk Bands in THz Radiation from Topological Insulators.

    PubMed

    Tu, Chien-Ming; Yeh, Tien-Tien; Tzeng, Wen-Yen; Chen, Yi-Ru; Chen, Hsueh-Ju; Ku, Shin-An; Luo, Chih-Wei; Lin, Jiunn-Yuan; Wu, Kaung-Hsiung; Juang, Jenh-Yih; Kobayashi, Takayoshi; Cheng, Cheng-Maw; Tsuei, Ku-Ding; Berger, Helmuth; Sankar, Raman; Chou, Fang-Cheng

    2015-01-01

    Topological insulators (TIs) are interesting quantum matters that have a narrow bandgap for bulk and a Dirac-cone-like conducting surface state (SS). The recent discovered second Dirac surface state (SS) and bulk bands (BBs) located ~1.5 eV above the first SS are important for optical coupling in TIs. Here, we report on the time-domain measurements of THz radiation generated from TIs n-type Cu(0.02)Bi2Se3 and p-type Bi2Te3 single crystals by ultrafast optical pulse excitation. The observed polarity-reversal of the THz pulse originated from transient current is unusual, and cannot be reconciled with the photo-Dember effect. The second SS and BBs are found to be indispensable for the explanation of the unusual phenomenon. Thanks to the existence of the second SS and BBs, TIs manifest an effective wide band gap in THz generation. The present study demonstrates that time-domain THz spectroscopy provide rich information of the optical coupling and the electronic structure of TIs.

  18. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  19. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations.

    PubMed

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  20. Coral Skeleton Density Banding: Biotic Response to Changes in Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Sivaguru, M.; Fried, G. A.; Fouke, B. W.

    2010-12-01

    Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. Isotopic analysis of these density bands provides a sensitive reconstructive tool for paleoclimatology and paleoecology. However, the detailed biotic mechanisms controlling coral skeleton aragonite nucleation and crystallization events and resulting skeletal growth rate remain uncertain. The coral tissue organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles. Annual mean variation in SST on Curacao range from 29o in mid-September to 26o C in late February. Samples were collected at strategic time periods spanning the 3o C annual variations in SST. Our nanometer-scale optical analyses of skeletal morphology have revealed consistent changes between high- and low-skeletal density bands, resulting in an 11% increase in the volume of aragonite precipitated in high-density skeletal bands. The re-localization and/or change in abundance of mucus, carbonic anhydrase (a molecule that catalyzes the hydration of carbon dioxide), calmodulin (a calcium-binding protein) and the change in density of gastrodermal symbiotic dinoflagellates has permitted estimates of seasonally-fluctuating carbon allocation by the coral holobiont in response to changing environmental conditions. This digital reconstruction of over 2000 images of one-micron-thick histological

  1. Domain structures in nematic liquid crystals on a polycarbonate surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  2. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  3. Domain structures in nematic liquid crystals on a polycarbonate surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  4. Resonant inelastic x-ray scattering as a band structure probe of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kanasz-Nagy, Marton; Shi, Yifei; Klich, Israel; Demler, Eugene

    I will analyze recent resonant inelastic x-ray scattering (RIXS) experimental data on YBa2Cu3O6 + x [Minola et al., Phys. Rev. Lett. 114, 217003 (2015)] within quasi-particle theory. This measurement has been performed with the incoming photon energy detuned at several values from the resonance maximum, and, surprisingly, the data shows much weaker dependence on detuning than expected from recent measurements on a different cuprate superconductor, Bi2Sr2CuO6 + x [Guarise et al., Nat. Commun. 5, 5760 (2014)]. I will demonstrate, that this discrepancy, originally attributed to collective magnetic excitations, can be understood in terms of the differences between the band structures of these materials. We found good agreement between theory and experiment over a large range of dopings [M. Kanasz-Nagy et al., arXiv:1508.06639]. Moreover, I will demonstrate that the RIXS signal depends sensitively on excitations at energies well above the Fermi surface, that are inaccessible to traditionally used band structure probes, such as angle-resolved photoemission spectroscopy. This makes RIXS a powerful probe of band structure, not suffering from surface preparation problems and small sample sizes, making it potentially applicable to a wide range of materials. The work of M. K.-N. was supported by the Harvard-MIT CUA, NSF Grant No. DMR-1308435, AFOSR Quantum Simulation MURI, the ARO-MURI on Atomtronics, and ARO MURI Quism program.

  5. The reflection and transmission properties of a triple band dichroic surface

    NASA Technical Reports Server (NTRS)

    Schneider, S. W.; Munk, B. A.

    1990-01-01

    The development of a triple-band dichroic surface design is detailed that is reflective in the Ka-band from 22.5 to 27.3 GHz and the Ku-band from 13.7 to 15.1 GHz, yet transparent in the S-band from 2.0 to 2.3 GHz, for all planes of incidence, and for all angles of incidence out to eta = 45 deg. The design is comprised of two gangbuster whole-surfaces separated by a distance, d, that is comparable to a fraction of a wavelength in S-band, and enhanced by the addition of a dielectric matching plate. The gangbuster array is comprised of tightly packed straight skewed dipole elements referred to as half-surfaces. Two of these half-surfaces are oriented orthogonal to each other and placed an array separation distance, s, apart to form the gangbuster whole-surface which allows any arbitrary plane of incidence. Results are given for the triple-band design with and without dielectric and conduction losses. The cross polarization properties of the dichroic surface was further investigated. It is shown that the reflection cross polarized component is dominated by the geometry of the front whole surface of the design (particularly the array separation s) and is never more than -22.5 dB in the frequency band 0 to 30 GHz. The transmission cross polarization component is dependent on both whole-surfaces and is never more than -30 dB in the same frequency band.

  6. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  7. A High-Power Test of An X-Band Molybdenum Iris Structure

    SciTech Connect

    Grudiev, A.

    2005-02-18

    In order to achieve accelerating gradients above 150 MV/m, alternative materials to copper are being investigated by the CLIC study. The potential of refractory metals has already been demonstrated in tests in which a tungsten-iris and a molybdenum-iris structure reached 150 and 193 MV/m respectively (30 GHz and a pulse length of 15 ns). In order to extend the investigation to the pulse lengths required for a linear collider, a molybdenum-iris structure scaled to X-band was tested at the Next Linear Collider Test Accelerator (NLCTA). The structure conditioned to only 65 MV/m (100 ns pulse length) in the available testing time and much more slowly than is typical of a copper structure. However the structure showed no sign of saturation and a microscopic inspection of the rf surfaces corroborated that the structure was still at an early stage of conditioning. The X-band and 30 GHz results are compared and what has been learned about material quality, surface preparation and conditioning strategy is discussed.

  8. Surface nanopatterns of two types of banded spherulites in poly(nonamethylene terephthalate) thin films.

    PubMed

    Woo, E M; Nurkhamidah, Siti

    2012-04-26

    Surface nanopatterns of dual ring-banded spherulites in poly(nonamethylene terephthalate) (PNT) were investigated using polarized optical microscopy (POM) and atomic force microscopy (AFM). The surface morphology differs between narrow-spaced single ring bands versus widely spaced double ring bands in spherulites, labeled Type-1 and Type-2, respectively. Ridge and valley consist of two discrete species ranging from nano- to micrometer-sized crystals shaped and oriented differently. Ridges of Type-1 and Type-2 spherulites apparently differ in shapes of the crystal plates. AFM height profile analysis reveals that the ridge of Type-2 ring-banded spherulite is higher than that of Type-1 spherulites. The crystal packing on the ridges and valley of these two types of ring-banded was further compared using high-magnification AFM phase imaging. There exists a transition zone in going from the ridge and valley regions in the Type-2 ring-banded spherulites crystallized at Tc = 75-85 °C; the crystals on the transition zone change gradually in sizes and orientation from those in the ridge to valley. By contrast, Type-1 ring-banded spherulite does not have this kind of transition zone, meaning that crystals in the ridges abruptly submerge into valley in Type-1 ring-banded spherulites. Details of packing of nanosize crystals in forming ridge and valleys of these two ring band types are discussed.

  9. Band bending at ferroelectric surfaces and interfaces investigated by x-ray photoelectron spectroscopy

    SciTech Connect

    Apostol, Nicoleta Georgiana

    2014-11-24

    This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics are covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.

  10. [The study on energy band structure of silicon nanowires with XPS].

    PubMed

    Fu, Zhong; Fu, Yan; Hu, Hui; Shao, Ming-Wang; Pan, Shi-Yan

    2007-09-01

    Silicon nanowires were obtained via oxide-assisted method, which was operated in a high temperature furnace at 1250 degrees C under 1000 Pa for 5 h using Ar as carrier gas. The silicon nanowires were etched with 5% HF aqueous solution for 5 min, and reacted with 1 X 10(-3) mol X L(-1) AuCL3 solution, and Au-modified silicon nanowires were obtained. The crystal structure of the products was characterized with XRD, and both of the patterns of Si and Au were observed. The morphology checked with SEM and TEM indicated large scale uniform silicon nanowires and Au particles on the surface of silicon nanowires. The average diameter of Au nanoparticls was 8 nm. The energy band structures obtained with XPS showed that gold nanoparticles are in negative charge and exist both at donor and acceptor levels. The Fermi level moved towards the top of valence band due to oxygen.

  11. Band structure of topological insulators from noise measurements in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cascales Sandoval, Juan Pedro; Martinez, Isidoro; Guerrero, Ruben; Chang, Cui-Zu; Katmis, Ferhat; Moodera, Jagadeesh; Aliev, Farkhad

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunnelling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunnelling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  12. Analysis of the electronic structure of crystals through band structure unfolding

    NASA Astrophysics Data System (ADS)

    Gordienko, A. B.; Kosobutsky, A. V.

    2016-03-01

    In this work, we consider an alternative implementation of the band structure unfolding method within the framework of the density functional theory, which combines the advantages of the basis of localized functions and plane waves. This approach has been used to analyze the electronic structure of the ordered CuCl x Br1- x copper halide alloys and F 0 center in MgO that enables us to reveal qualitatively the features remaining hidden when using the standard supercell method, because of the complex band structure of systems with defects.

  13. Band structure and optical properties of diglycine nitrate crystal

    NASA Astrophysics Data System (ADS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskólski, Marcin

    2005-07-01

    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN), (NH 2CH 2COOH) 2·HNO 3, in the paraelectric phase ( T=295 K) are presented. Spectral dispersion of light reflection R( E) have been measured in the range of 3-22 eV and the optical functions n( E) and k( E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3. Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal.

  14. Exciton band structure of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Wu, Fengcheng; Qu, Fanyao; MacDonald, Allan

    2015-03-01

    We describe a theory of the momentum-dependent exciton spectrum of monolayer molybdenum disulfide. Low-energy excitons occur both at the Brillouin zone center and at the Brillouin-zone corners. We find that binding energies at the Brillouin-zone center deviate qualitatively from the (n - 1 / 2) - 2 pattern of the two-dimensional hydrogenic model. Moreover, the four 2 p states of A series are lower in energy than the corresponding 2 s states and not degenerate. The two-fold ground-state valley degeneracy is lifted linearly at small momenta by electron-hole exchange processes that establish inter valley coherence. We conclude that atlhough monolayer MoS2 is a direct-gap semiconductor when classified by its quasiparticle band structure it may well be an indirect gap material when classified by its excitation spectra, and speculate on the role of this property in luminescence characteristics.

  15. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    NASA Astrophysics Data System (ADS)

    Engel, Edgar A.; Monserrat, Bartomeu; Needs, Richard J.

    2016-07-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from -1.2 eV for the cubic ice basal surface up to -1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  16. Electronic and structural properties of the (1010) and (1120) ZnO surfaces.

    PubMed

    Marana, N L; Longo, V M; Longo, E; Martins, J B L; Sambrano, J R

    2008-09-25

    The structural and electronic properties of ZnO (1010) and (1120) surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The stability and relaxation effects for both surfaces were analyzed. The electronic and energy band properties were discussed on the basis of band structure as well as density of states. There is a significant relaxation in the (1010) as compared to the (1120) terminated surfaces. The calculated direct gap is 3.09, 2.85, and 3.09 eV for bulk, (1010), and (1120) surfaces, respectively. The band structures for both surfaces are very similar.

  17. Deriving surface albedo measurements from narrow band satellite data

    NASA Technical Reports Server (NTRS)

    Brest, Christopher L.; Goward, Samuel N.

    1987-01-01

    A target calibration procedure for obtaining surface albedo from satellite data is presented. The methodology addresses two key issues, the calibration of remotely-sensed, discrete wavelength, digital data and the derivation of an albedo measurement (defined over the solar short wave spectrum) from spectrally limited observations. Twenty-seven Landsat observations, calibrated with urban targets (building roof-tops and parking lots), are used to derive spatial and seasonal patterns of surface reflectance and albedo for four land cover types: city, suburb, farm and forest.

  18. Structured surfaces on metal optics

    NASA Astrophysics Data System (ADS)

    Steinkopf, Ralf; Hartung, Johannes; Kinast, Jan; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona

    2015-09-01

    Diamond machining of metal optics is a flexible way to manufacture structured elements on different surface geometries. Especially curved substrates such as spheres, aspheres, or freeforms in combination with structured elements enable innovative products like headlights of automobiles or spectrometers in life science or space applications. Using diamond turning, servo turning, milling, and shaping, different technologies for arbitrary geometries are available. The addressed wavelengths are typically in the near- infrared (NIR) and infrared (IR) spectral range. Applying additional finishing processes, diamond machining is also used for optics applicable down to the EUV spectral range. This wide range of applications is represented in the used materials, too. However, one important material group for diamond machining is metal substrates. For diamond machining of structured surfaces, it is important to consider the microstructure of the utilized materials thoroughly. Especially amorphous materials as nickel-phosphorus alloys or fine-grained copper allow the fine structuring of refractive and diffractive structures. The paper analyzes the influence variables for diamond machining of structured surfaces and shows the use of this research for applications in the spectral range from IR to EUV.

  19. Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films

    NASA Astrophysics Data System (ADS)

    Cheng, Yong-Zhi; Nie, Yan; Gong, Rong-Zhou

    2013-10-01

    We present the design of a wide-band metamaterial absorber, based on fractal frequency selective surface and resistive films. The total thickness is only 0.8 mm and shows a polarization-insensitive and wide-angle strong absorption. Due to the multiband resonance properties of the Minkowski fractal loop structure and Ohmic loss properties of resistive films, a strongly absorptive bandwidth of about 19 GHz is demonstrated numerically in the range 6.51-25.42 GHz. This design provides an effective and feasible way to construct a broad-band absorber in stealth technology.

  20. Small-scale-structure of the interstellar medium probed through diffuse band observations.

    PubMed

    Cordiner, Martin A; Fossey, Stephen J; Smith, Arfon M; Sarre, Peter J

    2006-01-01

    The carriers of the diffuse interstellar band spectrum represent an important baryonic component of the interstellar medium (ISM) and it is expected that their identification will contribute significantly to the understanding of the chemistry and physics of interstellar clouds. It is widely held that the carriers are linked to the presence of dust grains on account of the good correlation of their strengths with interstellar reddening, so they offer an important potential route to improving our understanding of the composition and chemistry of grains and grain surfaces. In addition to the challenge of making the spectral assignments, an important current question concerns the spatial distribution and physical state of interstellar material, with recent observational atomic and molecular line absorption studies suggesting that diffuse clouds are more 'clumpy' than previously thought. We describe here high signal-to-noise optical observations made at the Anglo-Australian Telescope using UCLES that were undertaken to investigate the spatial distribution of diffuse band carriers. We describe the first detection of 'small-scale-structure' in the diffuse band carrier distribution in the ISM, and comment on the possibilities that these data hold for contributing to the solution of the diffuse band problem and our understanding of the nature of small-scale-structure in the diffuse ISM.

  1. Structure of the cell surface.

    PubMed

    Singer, S J

    1982-01-01

    The cell surface is the locus for many important biochemical functions of cells and for the interactions of cells with one another and with their environment. The structure of the cell surface may be thought of as three-layered, with a central plasma membrane to which certain macromolecular components are attached on the outer face (the exoskeleton) and other components on the inner face (the membrane cytoskeleton). In the last decade, the basic molecular structure of the plasma membrane has been elucidated and can be represented by the fluid mosaic model as a first approximation. The binding of specific integral proteins of the membrane to individual peripheral proteins outside or inside the cell is most likely the basis for the three-layered structure of the cell surface. Studies of the last several years on the molecular structures of these three-layered cell surfaces of cultured normal fibroblasts and of fibroblasts transformed by oncogenic viruses are beginning to shed light on the molecular mechanisms responsible for changes in cell shape, adhesiveness, and in contact inhibition of motility associated with neoplastic transformation.

  2. Survival of hydrogen anions near atomically flat metal surfaces: Band gap confinement and image state recapture effects

    NASA Astrophysics Data System (ADS)

    Schmitz, Andrew; Shaw, John; Chakraborty, Himadri; Thumm, Uwe

    2010-03-01

    Resonant charge transfer (RCT) between ions and surfaces is a key intermediate step in surface-chemical processes as well as in micro- and nano-fabrications on the surface. The RCT process in the collision of hydrogen anions with metal surfaces is described within a wave packet propagation methodology using Crank-Nicholson algorithm [1]. The ion-survival probability is found to strongly enhance at two different ion velocities perpendicular to the surface. The low velocity enhancement is induced from a dynamical confinement of the ion level inside the band gap, while the high velocity enhancement emerges owing to the recapture from transiently populated image states [2]. These structures are found to be somewhat sensitive to the ion's distance of closest approach to the surface and the choice of inter-atomic potentials between the ion and the surface atoms. [1] Chakraborty et al., Phys. Rev. A 70, 052903 (2004); [2] Schmitz et al., Phys. Rev. A (submitted).

  3. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  4. U-band CCD surface brightness profiles for candidate collapsed-core globular clusters

    NASA Technical Reports Server (NTRS)

    Lugger, Phyllis M.; Cohn, Haldan N.; Grindlay, Jonathan E.; Bailyn, Charles D.; Hertz, Paul L.

    1991-01-01

    We have determined U-band CCD surface brightness profiles for 15 of the 21 globular clusters that have been characterized as having 'collapsed' cores by Djorgovski and King (1986). We have fitted these profiles with two types of seeing-convolved models: single-mass King models and power laws. We find that in many cases the characterization of a profile as being either 'King' or 'cusp' is somewhat subtle. Of the clusters in our sample, 10 appear to have central power-law cusps with either unresolved or marginally resolved cores, three appear to have resolved cores with surrounding power-law structure that is unlike a King model, and two are approximately described by King model fits. The observed power-law cusps are consistent with the predictions of Fokker-Planck models for core-collapse.

  5. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  6. Band-structure analysis from photoreflectance spectroscopy in (Ga,Mn)As

    SciTech Connect

    Yastrubchak, Oksana; Gluba, Lukasz; Zuk, Jerzy; Wosinski, Tadeusz; Andrearczyk, Tomasz; Domagala, Jaroslaw Z.; Sadowski, Janusz

    2013-12-04

    Modulation photoreflectance spectroscopy has been applied to study the band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn content. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap-transition energy in the (Ga,Mn)As layers with increasing Mn content are interpreted in terms of a disordered valence band, extended within the band gap, formed, in highly Mn-doped (Ga,Mn)As, as a result of merging the Mn-related impurity band with the host GaAs valence band.

  7. Flexible metamaterial narrow-band-pass filter based on magnetic resonance coupling between ultra-thin bilayer frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyuan; Zhang, Qing; Ju, Yongfeng; Tao, Guiju; Jiang, Xiongwei; Kang, Ning; Liu, Chengpu; Zhang, Long

    2016-02-01

    A novel flexible metamaterial narrow-band-pass filter is designed and proved to be reliable by both numerical simulations and experimental measurements. The unit cell of the designed structure consists of circle ring resonators on top of a thin dielectric layer backed by a metallic mesh. The investigations on the distribution of the surface current and magnetic field as well as the analysis of the equivalent circuit model reveal that the magnetic resonance response between layers induced by the reverse surface current contributes to the high quality factor band-pass property. Importantly, it is a flexible design with a tunable resonance frequency by just changing the radius of the circle rings and can also be easily extended to have the multi-band-pass property. Moreover, this simplified structure with low duty cycle and ultra-thin thickness is also a symmetric design which is insensitive to the polarization and incident angles. Therefore, such a metamaterial narrow-band-pass filter is of great importance in the practical applications such as filtering and radar stealth, and especially for the conformal structure applications in the infrared and optical window area.

  8. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    SciTech Connect

    Vollmer, B.; Bonnarel, F.; Louys, M.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; Van Driel, W.; Sabatini, S.

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings-typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg{sup 2} in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered {approx}20% more mock LSB galaxies and {approx}40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of

  9. Band structure of ABC-trilayer graphene superlattice

    SciTech Connect

    Uddin, Salah Chan, K. S.

    2014-11-28

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k{sub y} direction for k{sub x} = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case.

  10. Micro-metric electronic patterning of a topological band structure using a photon beam

    PubMed Central

    Frantzeskakis, E.; De Jong, N.; Zwartsenberg, B.; Huang, Y. K.; Bay, T. V.; Pronk, P.; Van Heumen, E.; Wu, D.; Pan, Y.; Radovic, M.; Plumb, N. C.; Xu, N.; Shi, M.; De Visser, A.; Golden, M. S.

    2015-01-01

    In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi2−xSbxTe3−ySey with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi2−xSbxTe3−ySey crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by ‘writing’ micron-sized letters in the Dirac point energy of the system. PMID:26543011

  11. Micro-metric electronic patterning of a topological band structure using a photon beam.

    PubMed

    Frantzeskakis, E; De Jong, N; Zwartsenberg, B; Huang, Y K; Bay, T V; Pronk, P; Van Heumen, E; Wu, D; Pan, Y; Radovic, M; Plumb, N C; Xu, N; Shi, M; De Visser, A; Golden, M S

    2015-01-01

    In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi(2-x)Sb(x)Te(3-y)Se(y) with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi(2-x)Sb(x)Te(3-y)Se(y) crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by 'writing' micron-sized letters in the Dirac point energy of the system. PMID:26543011

  12. Cotton response to poultry litter applied by subsurface banding relative to surface broadcasting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry poultry litter is typically land-applied by surface broadcasting, a practice that exposes certain litter nutrients to volatilization loss. Applying litter with a new, experimental implement that places the litter in narrow bands below the soil surface may reduce or eliminate such losses but has...

  13. Estimation of Soil Moisture for Vegetated Surfaces Using Multi-Temporal L-Band SAR Measurements

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Sun, G.; Hsu, A.; Wang, J.; ONeill, P.; Ranson, J.; Engman, E. T.

    1997-01-01

    This paper demonstrates the technique to estimate ground surface and vegetation scattering components, based on the backscattering model and the radar decomposition theory, under configuration of multi-temporal L-band polarimetric SAR measurement. This technique can be used to estimate soil moisture of vegetated surface.

  14. Tuning surface reactivity by finite size effects: role of orbital symmetry in the d - band model

    NASA Astrophysics Data System (ADS)

    Snijders, Paul; Yin, Xiangshi; Cooper, Valentino; Weitering, Hanno

    Catalytic activity depends sensitively on the strength of the interactions between reactant molecules and catalyst surface: too weak and the catalyst cannot capture enough molecules to react; too strong and the reaction products do not desorb, blocking further reactions. The ability to control the binding strength of molecules to metal surfaces is thus fundamental to the design of efficient and selective catalysts. Catalyst design often relies on increasing the interaction strength on relatively non-reactive materials by introducing active sites. Here, we present a complementary approach: we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time. While bulk Pd(111) is reactive toward oxygen, we find that Pd films thinner than 6 atom layers are surprisingly inert to oxidation. This observation can be explained with the d-band model only when it is applied to the orbitals directly involved in the bonding. The insight into orbital specific contributions to surface reactivity could be useful in the design of catalysts. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  15. Fermi surface topology and the upper critical field in two-band superconductors: application to MgB2.

    PubMed

    Dahm, T; Schopohl, N

    2003-07-01

    Recent measurements of the anisotropy of the upper critical field B(c2) on MgB2 single crystals have shown a puzzling strong temperature dependence. Here, we present a calculation of the upper critical field based on a detailed modeling of band structure calculations that takes into account both the unusual Fermi surface topology and the two gap nature of the superconducting order parameter. Our results show that the strong temperature dependence of the B(c2) anisotropy can be understood as an interplay of the dominating gap on the sigma band, which possesses a small c-axis component of the Fermi velocity, with the induced superconductivity on the pi-band possessing a large c-axis component of the Fermi velocity. We provide analytic formulas for the anisotropy ratio at T=0 and T=T(c) and quantitatively predict the distortion of the vortex lattice based on our calculations.

  16. Surface Structures of Hawaiian Lavas

    NASA Technical Reports Server (NTRS)

    Rowland, S. K.; Walker, G. P. L.

    1985-01-01

    Surface and internal lava structures can be valid indicators of lava viscosity and rheology, provided that care is taken to identify and eliminate structures which are strain-rate-dependent. Here, a spectrum of types among Hawaiian basaltic flows is found ranging from pahoehoe to a'a, that are interpreted as marking a progression in lava viscosity and a change in rheology. The most fluid type in this spectrum is normal pahoehoe that has a smooth but commonly wrinkled or folded (ropy) surface. The next type, distinctly more viscous and probably non-Newtonian in rheology, is spiny pahoehoe which is characterized by a spinose surface and an absence of ropy structures. Preliminary studies on the long lavas of Mauna Loa indicated, perhaps surprisingly, that there is no clear-cut correlation of lava length with type in this spectrum of lavas, indicating that viscosity/yield strength of the basaltic lavas per se are not the primary controls determining flow length. Flowage of the lava through lava tubes, while it may help to account for the long flow distance of some lavas, is not a generally applicable explanation for long flow length.

  17. Pronounced Surface Band Bending of Thin-Film Silicon Revealed by Modeling Core Levels Probed with Hard X-rays.

    PubMed

    Wippler, David; Wilks, Regan G; Pieters, Bart E; van Albada, Sacha J; Gerlach, Dominic; Hüpkes, Jürgen; Bär, Marcus; Rau, Uwe

    2016-07-13

    Enhancing the probing depth of photoemission studies by using hard X-rays allows the investigation of buried interfaces of real-world device structures. However, it also requires the consideration of photoelectron-signal attenuation when evaluating surface effects. Here, we employ a computational model incorporating surface band bending and exponential photoelectron-signal attenuation to model depth-dependent spectral changes of Si 1s and Si 2s core level lines. The data were acquired from hydrogenated boron-doped microcrystalline thin-film silicon, which is applied in silicon-based solar cells. The core level spectra, measured by hard X-ray photoelectron spectroscopy using different excitation energies, reveal the presence of a 0.29 nm thick surface oxide layer. In the silicon film a downward surface band bending of eVbb = -0.65 eV over ∼6 nm obtained via inverse modeling explains the observed core level shifts and line broadening. Moreover, the computational model allows the extraction of the "real" Si 1s and Si 2s bulk core level binding energies as 1839.13 and 150.39 eV, and their natural Lorentzian line widths as 496 and 859 meV, respectively. These values significantly differ from those directly extracted from the measured spectra. Because band bending usually occurs at material surfaces we highly recommend the detailed consideration of signal integration over depth for quantitative statements from depth-dependent measurements.

  18. Gold Nanoparticles with Externally Controlled, Reversible Shifts of Local Surface Plasmon Resonance Bands

    PubMed Central

    Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.

    2010-01-01

    We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619

  19. Band structures in transmission coefficients generated by Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-11-01

    Using the threshold conditions and bound state energies investigated earlier by us as a critical input we systematically study the nature of band formation in the transmission coefficient generated by Dirac comb potentials having equispaced (i) attractive, (ii) repulsive and (iii) alternating attractive and repulsive delta terms having same strength and confined within a fixed range. We find that positions of the peaks of transmission coefficient generated by a combination of one attractive and one repulsive delta terms having same strength and separated by gap a is independent of the potential strength and coincide with the energy eigenvalues of 1D box of range a. We further study analytically and numerically the transmission across Dirac comb potentials containing two or three delta terms and these results are useful in the analysis of the transmission in the general case. In the case of Dirac comb potentials containing Na attractive delta terms we find that the nature of the first band and higher bands of the transmission coefficient are different, and if such a potential generates Nb number of bound states, the first band in the transmission coefficient generated by the potential has NT1 =Na -Nb peaks. In the case of higher bands generated by delta comb potential having N delta terms each band has N - 1 peaks. Further we systematically study the behavior of band gaps and band spread as a function of potential strength and number of terms in the Dirac comb. The results obtained by us provide a relation between bound state spectrum, number of delta terms in the Dirac comb and the band pattern which can be explored for potential applications.

  20. Loss of Linear Band Dispersion and Trigonal Structure in Silicene on Ir(111).

    PubMed

    Wei, Wei; Dai, Ying; Huang, Baibiao; Whangbo, Myung-Hwan; Jacob, Timo

    2015-03-19

    The structure of silicene/Ir(111) was examined on the basis of density functional theory. We have found that Ir(111) preserves the 2D character of silicene but significantly distorts its structure from the trigonal one expected for an isolated silicene. The electronic structure of silicene is strongly hybridized with that of Ir(111) so that silicene on Ir(111) loses its linear band dispersion around the Fermi level, giving rise to a metallic band structure; however, silicene/Ir(111) exhibits a hidden linear-dispersive band, which is related to the linear-dispersive conduction band of an isolated silicene.

  1. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Xu, Juan; Teng, Yiran; Teng, Fei

    2016-09-01

    Both energy band and charge separation and transfer are the crucial affecting factor for a photochemical reaction. Herein, the BiOCl nanosheets without and with surface bismuth vacancy (BOC, V-BOC) are prepared by a simple hydrothermal method. It is found that the new surface defect states caused by bismuth vacancy have greatly up-shifted the valence band and efficiently enhanced the separation and transfer rates of photogenerated electron and hole. It is amazing that the photocatalytic activity of V-BOC is 13.6 times higher than that of BOC for the degradation methyl orange (MO). We can develop an efficient photocatalyst by the introduction of defects.

  2. The surface electronic structure of silicon terminated (100) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Tadich, A.; Sear, M. J.; Qi, D.; Wee, A. T. S.; Stacey, A.; Pakes, C. I.

    2016-07-01

    A combination of synchrotron-based x-ray spectroscopy and contact potential difference measurements have been used to examine the electronic structure of the (3 × 1) silicon terminated (100) diamond surface under ultra high vacuum conditions. An occupied surface state which sits 1.75 eV below the valence band maximum has been identified, and indications of mid-gap unoccupied surface states have been found. Additionally, the pristine silicon terminated surface is shown to possess a negative electron affinity of ‑0.86 ± 0.1 eV.

  3. Vibrational dynamics and band structure of methyl-terminated Ge(111).

    PubMed

    Hund, Zachary M; Nihill, Kevin J; Campi, Davide; Wong, Keith T; Lewis, Nathan S; Bernasconi, M; Benedek, G; Sibener, S J

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD3-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH3-Ge(111) and CH3-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  4. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    SciTech Connect

    Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  5. Metal-to-Insulator Transition in Au Chains on Si(111)-5×2-Au by Band Filling: Infrared Plasmonic Signal and Ab Initio Band Structure Calculation.

    PubMed

    Hötzel, Fabian; Seino, Kaori; Chandola, Sandhya; Speiser, Eugen; Esser, Norbert; Bechstedt, Friedhelm; Pucci, Annemarie

    2015-09-17

    The Si(111)-5×2-Au surface is increasingly of interest because it is one of the rare atomic chain systems with quasi-one-dimensional properties. For the deposition of 0.7 monolayers of Au, these chains are metallic. Upon the evaporation of an additional submonolayer amount of gold, the surface becomes insulating but keeps the 5×2 symmetry. This metal-to-insulator transition was in situ monitored based on the infrared plasmonic signal change with coverage. The phase transition is theoretically explained by total-energy and band-structure calculations. Accordingly, it can be understood in terms of the occupation of the originally half-filled one-dimensional band at the Fermi level. By annealing the system, the additional gold is removed from the surface and the plasmonic signal is recovered, which underlines the stability of the metallic structure. So, recent results on the infrared plasmonic signals of the Si(111)-5 × 2-Au surface are supported. The understanding of potential one-dimensional electrical interconnects is improved.

  6. Large band gaps in radial phononic crystal structure with round mass block

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Jing, Li; Lu, Kuan; Yu, Lie

    2016-06-01

    Using the finite element method, we theoretically study the vibration properties of radial phononic crystal (RPC) structure with round mass block. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Compared to the contrast structure, numerical calculation results show that RPC structure with round mass block can yield several band gaps below 150 kHz. The physical mechanism of band gaps are attributed to the coupling between the longitudinal vibration in round mass block and vibrations in outer frame or coating layer. By changing geometrical dimensions r of round mass block, we can shift the location and width of band gaps. Significantly, as the increase of geometric parameter ratio a1/a2, band width shifts and the more new band gaps appear; the more bands become flat at this moment because of the stronger multiple vibration coupling effect plays a more prominent role in the opening of band gaps. These vibration properties of RPC structure with round mass block can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  7. A PPM-focused klystron at X-band with a traveling-wave output structure

    SciTech Connect

    Eppley, K.R.

    1995-07-05

    We have developed algorithms for designing disk-loaded traveling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a {pi}/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 Ghz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a PPM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. A PPM-focused klystron at X-band with a traveling-wave output structure

    NASA Astrophysics Data System (ADS)

    Eppley, Kenneth R.

    1995-07-01

    We have developed algorithms for designing disk-loaded traveling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a π/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3-D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 Ghz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a PPM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m.

  9. Surface structure determines dynamic wetting

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro; Wang, Jiayu; Do-Quang, Minh; Cannon, James; Yue, Feng; Suzuki, Yuji; Amberg, Gustav

    2014-11-01

    Dynamic wetting, the spontaneous spreading process after droplet contacts a solid surface, is important in various engineering processes, such as in printing, coating, and lubrication. In the recent years, experiments and numerical simulations have greatly progressed the understanding in the dynamic wetting particularly on ``flat'' substrates. To gain further insight into the governing physics of the dynamic wetting, we perform droplet-wetting experiments on microstructured surfaces, just a few micrometers in size, with complementary numerical simulations, and investigate the dependence of the spreading rate on the microstructure geometries and fluid properties. We reveal that the influence of microstructures can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. The systematic study is also of practical importance since structures and roughness are omnipresent and their influence on spreading rate would give us additional degrees of freedom to control the dynamic wetting. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W., J.C., and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A.).

  10. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Gu, Qiang

    2011-11-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility. It is also attractive in beam dynamics in maintaining a high quality electron beam, which is an important factor in the performance of a free electron laser. In this paper, a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility. Throughout the comprehensive simulation, we conclude that the C-band structure is much more competitive.

  11. Optical Transitions and Electronic Band structure of Cuprous Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Lee, Hosun; Park, Jun-Woo; Jang, Hyungkeun; Kim, Sung; Choi, Suk-Ho; Kang, Joongoo; Wei, Su-Huai

    2012-02-01

    Cu2O thin films were grown on Si and SiO2/Si substrates via RF sputtering deposition at various temperatures. The Cu2O thin films had a smooth surface when grown at RT, but developed grain boundaries when grown at 300 ^oC. We observed the high-energy photoluminescence (PL) peaks at 3.18 eV (Ep) and 3.27 eV (Eq). The dielectric functions of the Cu2O thin films were measured using spectroscopic ellipsometry. To estimate the critical point (CP) energies, we applied the standard critical point (SCP) model to the second derivative spectra of the dielectric functions (d^2ɛ/dE^2). We also calculated the electronic band structure of bulk Cu2O by using the screened HSE hybrid density functional. Based on the band structure, the CP was estimated as 2.05 eV (E0A(E0B)), 2.77 eV (E0C(E0D)) at the γ point, 4.17 eV (E1A) and 6.10 eV (E2) at the X point, 4.94 eV (E1B) at the R point. The experimental CP energies are consistent with the HSE results, but are systematically smaller than the calculated values by 0.3-0.8 eV due to large electron-hole interaction in CuO2 that was not included in the simulations. The high-energy peaks in the PL spectra at 3.18 eV (Ep) and 3.27 eV (Eq) were attributed to the quasi-direct transitions between the γ valence band and the M and X conduction bands, respectively. The physical origin of the quasi-direct transitions was attributed to the grain boundaries.

  12. Surface superconductivity of dirty two-band superconductors: applications to MgB2.

    PubMed

    Gorokhov, Denis A

    2005-02-25

    The minimal magnetic field H(c2) destroying superconductivity in the bulk of a superconductor is smaller than the magnetic field H(c3) needed to destroy surface superconductivity if the surface of a superconductor coincides with one of the crystallographic planes and is parallel to the external magnetic field. While for a dirty single-band superconductor the ratio of H(c3) to H(c2) is a universal temperature-independent constant 1.6946, for dirty two-band superconductors this is not the case. I show that in the latter case the interaction of the two bands leads to a novel scenario with the ratio H(c3)/H(c2) varying with temperature and taking values larger and smaller than 1.6946. The results are applied to MgB(2) and compared with recent experiments (A. Rydh, cond-mat/0307445).

  13. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  14. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  15. Spin polarized surface resonance bands in single layer Bi on Ge(1 1 1)

    NASA Astrophysics Data System (ADS)

    Bottegoni, F.; Calloni, A.; Bussetti, G.; Camera, A.; Zucchetti, C.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2016-05-01

    The spin features of surface resonance bands in single layer Bi on Ge(1 1 1) are studied by means of spin- and angle-resolved photoemission spectroscopy and inverse photoemission spectroscopy. We characterize the occupied and empty surface states of Ge(1 1 1) and show that the deposition of one monolayer of Bi on Ge(1 1 1) leads to the appearance of spin-polarized surface resonance bands. In particular, the C 3v symmetry, which Bi adatoms adopt on Ge(1 1 1), allows for the presence of Rashba-like occupied and unoccupied electronic states around the \\overline{\\text{M}} point of the Bi surface Brillouin zone with a giant spin-orbit constant |{α\\text{R}}| =≤ft(1.4+/- 0.1\\right) eV · Å.

  16. Carrier Multiplication in Semiconductor Nanocrystals: Theoretical Screening of Candidate Materials Based on Band-Structure Effects

    SciTech Connect

    Luo, J. W.; Franceschetti, A.; Zunger, A.

    2008-01-01

    Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states {rho}{sub XX}. Here we introduce a DCM 'figure of merit' R{sub 2}(E) which is proportional to the ratio between the biexciton density of states {rho}{sub XX} and the single-exciton density of states {rho}{sub x}, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions. Using R{sub 2}(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states. Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E{sub 0} (the energy at which R{sub 2}(E) becomes {ge}1) is reduced, suggesting improved DCM. However, whether the normalized E{sub 0}/{var_epsilon}{sub g} increases or decreases as the dot size increases depends on dot material.

  17. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  18. Band structures in silicene on monolayer gallium phosphide substrate

    NASA Astrophysics Data System (ADS)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  19. Microbial Communities in the Surface Mucopolysaccharide Layer and the Black Band Microbial Mat of Black Band-Diseased Siderastrea siderea

    PubMed Central

    Sekar, Raju; Mills, DeEtta K.; Remily, Elizabeth R.; Voss, Joshua D.; Richardson, Laurie L.

    2006-01-01

    Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by γ-proteobacteria (53 to 64%), followed by β-proteobacteria (18 to 21%) and α-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by α-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of δ-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals. PMID:16957217

  20. MxF6bius bands, unstretchable material sheets and developable surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Yi-chao; Fried, Eliot

    2016-08-01

    A Möbius band can be formed by bending a sufficiently long rectangular unstretchable material sheet and joining the two short ends after twisting by 180°. This process can be modelled by an isometric mapping from a rectangular region to a developable surface in three-dimensional Euclidean space. Attempts have been made to determine the equilibrium shape of a Möbius band by minimizing the bending energy in the class of mappings from the rectangular region to the collection of developable surfaces. In this work, we show that, although a surface obtained from an isometric mapping of a prescribed planar region must be developable, a mapping from a prescribed planar region to a developable surface is not necessarily isometric. Based on this, we demonstrate that the notion of a rectifying developable cannot be used to describe a pure bending of a rectangular region into a Möbius band or a generic ribbon, as has been erroneously done in many publications. Specifically, our analysis shows that the mapping from a prescribed planar region to a rectifying developable surface is isometric only if that surface is cylindrical with the midline being the generator. Towards providing solutions to this issue, we discuss several alternative modelling strategies that respect the distinction between the physical constraint of unstretchability and the geometrical notion of developability.

  1. Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon

    This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were

  2. The Band Structure of Polymers: Its Calculation and Interpretation. Part 3. Interpretation.

    ERIC Educational Resources Information Center

    Duke, B. J.; O'Leary, Brian

    1988-01-01

    In this article, the third part of a series, the results of ab initio polymer calculations presented in part 2 are discussed. The electronic structure of polymers, symmetry properties of band structure, and generalizations are presented. (CW)

  3. The Electronic Structure of Nonpolar Surfaces in Insulating Metal Oxides

    NASA Astrophysics Data System (ADS)

    Zherebetskyy, Danylo; Wang, Lin-Wang

    2013-03-01

    Understanding the electronic and geometric structures of metal oxide surfaces has a key interest in many technological areas. A randomly chosen crystal surface has a high probability of being polar, unstable and containing in-gap states due to surface dangling bonds. As a result, the surface should be stabilized by passivation or reconstruction. However, do the nonpolar surfaces of ionic crystals of insulating metal oxides need the passivation or reconstruction similar to covalent crystals? We address this question by analyzing the nonpolar surfaces and their electronic structure for the common crystal structures of metal oxides. The study using periodic DFT calculations is performed for following representatives: Cu2O, ZnO, Al2O3, TiO2, V2O5, WO3, CaTiO3, Mg2SiO4. It has been shown that the nonpolar surface can be constructed out of dipole-free, charge-neutral and stoichiometric unit cells for each crystal. We demonstrate that all constructed and relaxed nonpolar surfaces of the metal oxides show a clear band gap. It should be emphasized that the constructed surfaces are neither reconstructed nor passivated. Additionally, we show a correlation between the electronic structure of the relaxed surfaces and Ewald energies calculated for the surface ions.

  4. Electronic transitions in GdN band structure

    SciTech Connect

    Vidyasagar, R. Kita, T.; Sakurai, T.; Ohta, H.

    2014-05-28

    Using the near-infrared (NIR) absorbance spectroscopy, electronic transitions and spin polarization of the GdN epitaxial film have been investigated; and the GdN epitaxial film was grown by a reactive rf sputtering technique. The GdN film exhibited three broad bands in the NIR frequency regimes; and those bands are attributable primarily to the minority and majority spin transitions at the X-point and an indirect transition along the Γ-X symmetric direction of GdN Brillouin zone. We experimentally observe a pronounced red-shift of the indirect band gap when cooling down below the Curie temperature which is ascribed to the orbital-dependent coulomb interactions of Gd-5dxy electrons, which tend to push-up the N-2p bands. On the other hand, we have evaluated the spin polarization of 0.17 (±0.005), which indicates that the GdN epitaxial film has almost 100% spin-polarized carriers. Furthermore, the experimental result of GdN electronic transitions are consistent with the previous reports and are thus well-reproduced. The Arrott plots evidenced that the Curie temperature of GdN film is 36 K and the large spin moment is explained by the nitrogen vacancies and the intra-atomic exchange interaction.

  5. Novel band structures in silicene on monolayer zinc sulfide substrate.

    PubMed

    Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping

    2014-10-01

    Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.

  6. SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes

    NASA Astrophysics Data System (ADS)

    Reul, Nicolas; Tenerelli, Joseph; Chapron, Bertrand; Vandemark, Doug; Quilfen, Yves; Kerr, Yann

    2012-02-01

    The Soil Moisture and Ocean Salinity (SMOS) mission currently provides multiangular L-band (1.4 GHz) brightness temperature images of the Earth. Because upwelling radiation at 1.4 GHz is significantly less affected by rain and atmospheric effects than at higher microwave frequencies, these new SMOS measurements offer unique opportunities to complement existing ocean satellite high wind observations that are often contaminated by heavy rain and clouds. To illustrate this new capability, we present SMOS data over hurricane Igor, a tropical storm that developed to a Saffir-Simpson category 4 hurricane from 11 to 19 September 2010. Thanks to its large spatial swath and frequent revisit time, SMOS observations intercepted the hurricane 9 times during this period. Without correcting for rain effects, L-band wind-induced ocean surface brightness temperatures (TB) were co-located and compared to H*Wind analysis. We find the L-band ocean emissivity dependence with wind speed appears less sensitive to roughness and foam changes than at the higher C-band microwave frequencies. The first Stokes parameter on a ˜50 km spatial scale nevertheless increases quasi-linearly with increasing surface wind speed at a rate of 0.3 K/m s-1 and 0.7 K/m s-1 below and above the hurricane-force wind speed threshold (˜32 m s-1), respectively. Surface wind speeds estimated from SMOS brightness temperature images agree well with the observed and modeled surface wind speed features. In particular, the evolution of the maximum surface wind speed and the radii of 34, 50 and 64 knots surface wind speeds are consistent with GFDL hurricane model solutions and H*Wind analyses. The SMOS sensor is thus closer to a true all-weather satellite ocean wind sensor with the capability to provide quantitative and complementary surface wind information of interest for operational Hurricane intensity forecasts.

  7. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  8. Band structure in two-dimensional fiber-air phononic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Yu, Wei-Dong; Pan, Ning

    2011-02-01

    A two-dimensional phononic crystal (PC) composed of textile fiber and air is initially discussed in this paper, which is different from the previous PCs with rigid inclusions. The plain wave expansion method is used to calculate band structure of different PCs by altering fiber material properties and structure parameters. Numerical results show that the effect of material properties of soft fiber on band structure of phononic crystal can be ignored, while the effect of structural parameters is obvious.

  9. Advances in X-Band TW Accelerator Structures Operating in the 100 MV/M Regime

    SciTech Connect

    Higo, Toshiyasu; Higashi, Yasuo; Matsumoto, Shuji; Yokoyama, Kazue; Adolphsen, Chris; Dolgashev, Valery; Jensen, Aaron; Laurent, Lisa; Tantawi, Sami; Wang, Faya; Wang, Juwen; Dobert, Steffen; Grudiev, Alexej; Riddone, Germana; Wuensch, Walter; Zennaro, Riccardo; /CERN

    2012-07-05

    A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for three years. The major outcome has been the demonstration of stable 100 MV/m gradient operation of a number of CLIC prototype structures. These structures were fabricated using the technology developed from 1994 to 2004 for the GLC/NLC linear collider initiative. One of the goals has been to refine the essential parameters and fabrication procedures needed to realize such a high gradient routinely. Another goal has been to develop structures with stronger dipole mode damping than those for GLC/NLC. The latter requires that the surface temperature rise during the pulse be higher, which may increase the breakdown rate. One structure with heavy damping has been RF processed and another is nearly finished. The breakdown rates of these structures were found to be higher by two orders of magnitude compared to those with equivalent acceleration mode parameters but without the damping features. This paper presents these results together with some of the earlier results from non-damped structures.

  10. Superconducting proximity effect and Majorana flat bands at the surface of a Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Chen, Anffany; Franz, M.

    2016-05-01

    We study the proximity effect between an s -wave superconductor (SC) and the surface states of a Weyl semimetal. An interesting two-dimensional SC forms in such an interface with properties resembling in certain aspects the Fu-Kane superconductor with some notable differences. In a Weyl semimetal with unbroken time-reversal symmetry the interface SC supports completely flat Majorana bands in a linear Josephson junction with a π phase difference. We discuss the stability of these bands against disorder and propose ways in which they can be observed experimentally.

  11. Partitioning of Bacterial Communities between Seawater and Healthy, Black Band Diseased, and Dead Coral Surfaces

    PubMed Central

    Frias-Lopez, Jorge; Zerkle, Aubrey L.; Bonheyo, George T.; Fouke, Bruce W.

    2002-01-01

    Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue. PMID:11976091

  12. Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires.

    PubMed

    Basagni, Andrea; Vasseur, Guillaume; Pignedoli, Carlo A; Vilas-Varela, Manuel; Peña, Diego; Nicolas, Louis; Vitali, Lucia; Lobo-Checa, Jorge; de Oteyza, Dimas G; Sedona, Francesco; Casarin, Maurizio; Ortega, J Enrique; Sambi, Mauro

    2016-02-23

    The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: an ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product's energy level alignment can be tuned without compromising the charge carrier's mobility. PMID:26841052

  13. Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires

    PubMed Central

    2016-01-01

    The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: an ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product’s energy level alignment can be tuned without compromising the charge carrier’s mobility. PMID:26841052

  14. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    SciTech Connect

    Gu, Zhi-Gang; Heinke, Lars Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-02

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

  15. Structure of human chromosomes studied by atomic force microscopy. Part II. Relationship between structure and cytogenetic bands.

    PubMed

    Tamayo, Javier

    2003-03-01

    In the first part of this work, human chromosomes were characterized by atomic force microscopy (AFM) in air and in aqueous solution. The analysis of the images suggests that the last level of organization consists of a radial arrangement of chromatin loops which are anchored to a fiber which is folded giving a pattern of bands which differs in volume. Here the pattern of bands observed by AFM is compared to the cytogenetic map at the 850-band level. Thus thicker and thinner bands are identified as G and R bands, respectively. Finally a model is proposed which links genome sequence, cytogenetics, and chromosome structure. PMID:12648565

  16. Structure of human chromosomes studied by atomic force microscopy. Part II. Relationship between structure and cytogenetic bands.

    PubMed

    Tamayo, Javier

    2003-03-01

    In the first part of this work, human chromosomes were characterized by atomic force microscopy (AFM) in air and in aqueous solution. The analysis of the images suggests that the last level of organization consists of a radial arrangement of chromatin loops which are anchored to a fiber which is folded giving a pattern of bands which differs in volume. Here the pattern of bands observed by AFM is compared to the cytogenetic map at the 850-band level. Thus thicker and thinner bands are identified as G and R bands, respectively. Finally a model is proposed which links genome sequence, cytogenetics, and chromosome structure.

  17. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations.

  18. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations. PMID:27128858

  19. Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER, Herschel-SPIRE

    2016-01-01

    Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.

  20. Calculations of Cleavage Processes, Surface Structures and Electronic Structure of Silicon and Germanium.

    NASA Astrophysics Data System (ADS)

    Chen, Bo.

    The cleavage processes, surface and step structures, and electronic structure of Si and Ge (111)2 x 1 surfaces were studied. The ab initio quantum chemistry programs KGNMOL-89 and DMol were used to study the cleavage of silicon and germanium clusters in the diamond structure. It was found that the potential energy of stretching and shearing glide planes increases much faster than for shuffle planes. The cleavage process is discussed and it is shown how glide -plane cleavage can occur, with consequences for surface structure models. The Keating strain-energy method has been applied to estimate the energies of surface and step structures on Si(111)2 x 1. Two minimum strain-energy TBS (Three -Bond Scission) model structures were obtained. Since angular strains are involved which go beyond the applicability limits of the Keating formula, a correction factor is used, derived by comparing Keating-type calculations of particular surface models of Si(111) with the results of more extensive calculations. The use of a simple correction factor gives results that agree with a calculation for the Pandey ( pi-bonded chain) model and one for the TBS model. Using this factor, a model for a 3-substep structure of the (322) step on Si is found to be quite stable, while the 2-substep structures are moderately stable. The surface band structure of the TBS and Pandey models have been computed using an ab initio HF LCAO program CRYSTAL-92. In the case of the TBS model, the results showed valence band dispersion that could be compatible with experiments. For the Pandey model, the calculated valence band dispersion seemed large. The surface band gap for both TBS and Pandey models was greatly overestimated. The significance is discussed. The surface electron density of states was calculated for the TBS model and the valence band generally matched experimental results from STM (scanning tunneling microscopy). The electron charge density of various surface regions was calculated. The

  1. A Tri-Band Frequency Selective Surface (FSS) to Diplex Widely Separated Bands for Millimeter Wave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha

    2016-10-01

    A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.

  2. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  3. Band structure of germanium carbides for direct bandgap silicon photonics

    NASA Astrophysics Data System (ADS)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  4. Quasiparticle band structures and optical properties of magnesium fluoride

    NASA Astrophysics Data System (ADS)

    Yi, Zhijun; Jia, Ran

    2012-02-01

    The quasiparticle and optical properties of magnesium fluoride (MgF2) are computed within the GW approximation based on many-body perturbation theory (MBPT). The many-body effects appearing in self-energy and electron-hole interactions have an important influence on the electronic and optical properties. The DFT-LDA calculation shows a 6.78 eV band gap. Two methods are employed to evaluate the self-energy within the GW approximation in the present work. The generalized plasmon pole model (GPP) provides a band gap of 12.17 eV, which agrees well with the experimental value of 12.4 eV (Thomas et al 1973 Phys. Status Solidi b 56 163). Another band gap value of 11.30 eV is obtained by using a full frequency-dependent self-energy, which is also not far from the experimental value and is much better than the result from the LDA calculation. The calculated optical spectrum within DFT is significantly different from the experiment. Although the calculated optical absorption threshold within the GW method is close to the experiment, the overall shape of the spectrum is still similar to the case of DFT. However, the overall shape of the spectrum via the Bethe-Salpeter equation (BSE) method agrees well with the experiment.

  5. Quasiparticle band structures and optical properties of magnesium fluoride.

    PubMed

    Yi, Zhijun; Jia, Ran

    2012-02-29

    The quasiparticle and optical properties of magnesium fluoride (MgF(2)) are computed within the GW approximation based on many-body perturbation theory (MBPT). The many-body effects appearing in self-energy and electron-hole interactions have an important influence on the electronic and optical properties. The DFT-LDA calculation shows a 6.78 eV band gap. Two methods are employed to evaluate the self-energy within the GW approximation in the present work. The generalized plasmon pole model (GPP) provides a band gap of 12.17 eV, which agrees well with the experimental value of 12.4 eV (Thomas et al 1973 Phys. Status Solidi b 56 163). Another band gap value of 11.30 eV is obtained by using a full frequency-dependent self-energy, which is also not far from the experimental value and is much better than the result from the LDA calculation. The calculated optical spectrum within DFT is significantly different from the experiment. Although the calculated optical absorption threshold within the GW method is close to the experiment, the overall shape of the spectrum is still similar to the case of DFT. However, the overall shape of the spectrum via the Bethe-Salpeter equation (BSE) method agrees well with the experiment.

  6. A multi-band spoof surface plasmon polariton coupling metasurface based on dispersion engineering

    NASA Astrophysics Data System (ADS)

    Dong, Guoxiang; Shi, Hongyu; Li, Wei; He, Yuchen; Zhang, Anxue; Xu, Zhuo; Wei, Xiaoyong; Xia, Song

    2016-08-01

    We propose a metasurface to achieve multi-band helicity dependent directional spoof surface plasmon polaritons (SPPs) coupling for circular polarized light in the microwave range. Our work shows that the coupling frequencies of spoof SPPs on the gradient metasurface are related to the dispersion relations of the metasurface, which indicate the desired coupling frequency can be manipulated by dispersion engineering. The proposed metasurface has counter-directional phase gradients for different helicity incidents and possesses multiple different dispersion relations by carefully designing the geometric parameters of each unit, which leads to the multi-band helicity-controlled directional spoof SPPs coupling. Both the simulation and experiment show that the multi-band helicity-controlled directional spoof SPPs coupling is achieved with a high efficiency.

  7. Presence of gapped silicene-derived band in the prototypical (3 × 3) silicene phase on silver (111) surfaces.

    PubMed

    Avila, J; De Padova, P; Cho, S; Colambo, I; Lorcy, S; Quaresima, C; Vogt, P; Resta, A; Le Lay, G; Asensio, M C

    2013-07-01

    By mapping the low-energy electronic dynamics using angle resolved photoemission spectroscopy (ARPES), we have shed light on essential electronic characteristics of the (3 × 3) silicene phase on Ag(111) surfaces. In particular, our results show a silicene-derived band with a clear gap and linear energy-momentum dispersion near the Fermi level at the Γ symmetry point of the (3 × 3) phase at several distinctive Brillouin zones. Moreover, we have confirmed that the large buckling of ~0.7 Å of this silicene structure induces the opening of a gap close to the Fermi level higher than at least 0.3 eV, in agreement with recent reported photoemission results. The two-dimensional character of the charge carriers has also been revealed by the photon energy invariance of the gapped silicene band, suggesting a limited silicene-silver hybridization, in disagreement with recent density-functional theory (DFT) predictions.

  8. Structurally Complex Surface of Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a composite of two images of Jupiter's icy moon Europa obtained from a range of 2119 miles (3410 kilometers) by the Galileo spacecraft during its fourth orbit around Jupiter and its first close pass of Europa. The mosaic spans 11 miles by 30 miles (17 km by 49 km) and shows features as small as 230 feet (70 meters) across. This mosaic is the first very high resolution image data obtained of Europa, and has a resolution more than 50 times better than the best Voyager coverage and 500 times better than Voyager coverage in this area. The mosaic shows the surface of Europa to be structurally complex. The sun illuminates the scene from the right, revealing complex overlapping ridges and fractures in the upper and lower portions of the mosaic, and rugged, more chaotic terrain in the center. Lateral faulting is revealed where ridges show offsets along their lengths (upper left of the picture). Missing ridge segments indicate obliteration of pre-existing materials and emplacement of new terrain (center of the mosaic). Only a small number of impact craters can be seen, indicating the surface is not geologically ancient.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  9. Band structure of topological insulators from noise measurements in tunnel junctions

    SciTech Connect

    Cascales, Juan Pedro Martínez, Isidoro; Aliev, Farkhad G.; Katmis, Ferhat; Moodera, Jagadeesh S.; Chang, Cui-Zu; Guerrero, Rubén

    2015-12-21

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al{sub 2}O{sub 3}/Co tunnel junctions with bottom TI electrodes of either Bi{sub 2}Te{sub 3} or Bi{sub 2}Se{sub 3}. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  10. Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure

    NASA Astrophysics Data System (ADS)

    Xu, Kai-kai; Xiao, Zhong-yin; Tang, Jing-yao; Liu, De-jun; Wang, Zi-hua

    2016-07-01

    In the paper, a novel three-layered chiral structure is proposed and investigated, which consists of a split-ring resonator sandwiched between two layers of sub-wavelength gratings. This designed structure can achieve simultaneously asymmetric transmission with an extremely broad bandwidth and high amplitude as well as multi-band 90° polarization rotator with very low dispersion. Numerical simulations adopted two kinds of softwares with different algorithms demonstrate that asymmetric parameter can reach a maximum of 0.99 and over than 0.8 from 4.6 to 16.8 GHz, which exhibit magnitude and bandwidth improvement over previous chiral metamaterials in microwave bands (S, C, X and Ku bands). Specifically, the reason of high amplitude is analyzed in detail based on the Fabry-perot like resonance. Subsequently, the highly efficient polarization conversion with very low dispersion between two orthogonal linearly polarized waves is also analyzed by the optical activity and ellipticity. Finally, the electric fields are also investigated and further demonstrate the correctness of the simulated and calculated results.

  11. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.

    PubMed

    Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao

    2014-12-15

    This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

  12. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane.

    PubMed

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2013-05-14

    We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material

  13. Electron momentum density, band structure, and structural properties of SrS

    SciTech Connect

    Sharma, G.; Munjal, N.; Vyas, V.; Kumar, R.; Sharma, B. K.; Joshi, K. B.

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  14. Investigation the effect of lattice angle on the band structure in 3D phononic crystals with rhombohedral(II) lattice

    NASA Astrophysics Data System (ADS)

    Aryadoust, M.; Salehi, H.

    2014-12-01

    In this paper, the propagation of acoustic waves in the phononic crystals (PC) of 3D with rhombohedral(II) lattice is studied theoretically. The PC are constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of the Brillouin zone (BZ). In this study, we analyze the dependence of the band structures inside (the complete band gap width) and outside the complete band gap (negative refraction of acoustic wave) on the lattice angle in the irreducible part of the first BZ. Also the effect of lattice angle has been analyzed on the band structure of the () and (122) planes. Then, the equifrequency surface is calculated for the high symmetry point in the [111] and [100] directions. The results show that the maximum width of AEBG (0.022) in the irreducible part of the BZ of RHL2 is formed for (105∘) and no AEBG is found for γ > 150∘. Also, the maximum of the first and second AEBG width are 0.1076 and 0.0523 for γ = 133∘ in the () plane and the maximum of the first and second AEBG width are 0.1446 and 0.0998 for γ = 113∘ in the (122) plane. In addition, we have found that frequencies in which negative refraction occurs is constant for all lattice angles.

  15. C-Band Airport Surface Communications System Standards Development, Phase I

    NASA Technical Reports Server (NTRS)

    Hall, Edward; Isaacs, James; Zelkin, Natalie; Henriksen. Steve

    2010-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." The proposed future C-band (5091- to 5150-MHz) airport surface communication system, referred to as the Aeronautical Mobile Airport Communications System (AeroMACS), is anticipated to increase overall air-to-ground data communications systems capacity by using a new spectrum (i.e., not very high frequency (VHF)). Although some critical services could be supported, AeroMACS will also target noncritical services, such as weather advisory and aeronautical information services as part of an airborne System Wide Information Management (SWIM) program. AeroMACS is to be designed and implemented in a manner that will not disrupt other services operating in the C-band. This report defines the AeroMACS concepts of use, high-level system requirements, and architecture; the performance of supporting system analyses; the development of AeroMACS test and demonstration plans; and the establishment of an operational AeroMACS capability in support of C-band aeronautical data communications standards to be advanced in both international (International Civil Aviation Organization, ICAO) and national (RTCA) forums. This includes the development of system parameter profile recommendations for AeroMACS based on existing Institute of Electrical and Electronics Engineering (IEEE) 802.16e- 2009 standards

  16. Characterization of the B/Si surface electronic structures

    SciTech Connect

    Cao, R.; Yang, X.; Pianetta, P.

    1992-11-01

    High resolution angle resolved core level and valence band photoelectron spectroscopy have been used to characterize the electronic structures of the B/Si(111)-({radical}3 x {radical}3) surfaces. The results have been compared with theoretic calculations and other group III metals and Si terminated Si(111) surfaces that share the same type of surface reconstruction. We have observed a structure evolution from B-T{sub 4} to B-S{sub 5} and finally to Si- T{sub 4} as deposited boron atoms diffuse into the substrate with increasing annealing temperature. The chemically shifted component appearing in the Si 2p core level spectrum is attributed to charge transfer from the top layer Si and Si adatoms to the sublayer B-S{sub 5} atoms. For the Si/Si(111)-({radical}3 {times} {radical}3) surface, a newly discovered chemically shifted component is associated with back bond formation between the Si adatoms and the underneath Si atoms. A new emission feature has been observed in the valence band spectra unique to the B/Si(111)-({radical}3 {times} {radical}3) surface with B-S{sub 5} configuration. Thin Ge layer growth on this structure has also been performed, and we found that no epitaxial growth could be achieved and the underneath structure was little disturbed.

  17. Comparative studies on photonic band structures of diamond and hexagonal diamond using the multiple scattering method

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Zhang, Weiyi; Wang, Zhenlin

    2004-02-01

    Photonic band structures are investigated for both diamond and hexagonal diamond crystals composed of dielectric spheres, and absolute photonic band gaps (PBGs) are found in both cases. In agreement with both Karathanos and Moroz's calculations, a large PBG occurs between the eighth and ninth bands in diamond crystal, but a PBG in hexagonal diamond crystal is found to occur between the sixteenth and seventeenth bands because of the doubling of dielectric spheres in the primitive cell. To explore the physical mechanism of how the photonic band gap might be broadened, we have compared the electric field distributions (|E|2) of the 'valence' and 'conduction' band edges. Results show that the field intensity for the 'conduction' band locates in the inner core of the sphere while that of the 'valence' band concentrates in the outer shell. With this motivation, double-layer spheres are designed to enhance the corresponding photonic band gaps; the PBG is increased by 35% for the diamond structure, and 14% for the hexagonal diamond structure.

  18. Formation mechanism of orderly structures in Au films deposited on silicone oil surfaces [rapid communication

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2005-06-01

    An optical microscopy study of ordered structures, namely bands, and self-organized phenomena in a continuous gold film system deposited on silicone oil surfaces is presented. The bands are composed of a large number of parallel keys with different width w but nearly uniform length L; the characteristic length of the bands is of the order of 101 102 μm. After disturbed with an external force, the growth process of the bands is observed directly. The experiment indicates that the formation mechanism of bands can be explained in terms of the relaxation of the compressive stress, which mainly results from the characteristic boundary condition of the nearly free sustained films.

  19. Doppler sidebands in the cross-spectral density of narrow-band reverberation from a dynamic sea surface.

    PubMed

    Gragg, Robert F

    2003-09-01

    Analytic methods are used to formulate the impact of a random dynamic sea surface on the space-frequency characteristics of bistatic reverberation. A narrow-band point source is positioned beneath the time-dependent surface of a range-independent ocean. The small-waveheight perturbative approximation is invoked, and attention is focused on the Doppler sideband contributions to the reverberation cross-spectral density for an arbitrarily placed receiver pair. The new expression that results is identified as an active scattering generalization of the van Cittert-Zernike theorem from classical partial coherence theory. This work is the first to explicitly predict the sideband structure in the cross-spectral density of the field scattered from a realistic moving sea surface. A numerical example is presented for a shallow source and shallow receivers in a homogeneous ocean.

  20. Tunable band-notched coplanar waveguide based on localized spoof surface plasmons.

    PubMed

    Xu, Bingzheng; Li, Zhuo; Liu, Liangliang; Xu, Jia; Chen, Chen; Ning, Pingping; Chen, Xinlei; Gu, Changqing

    2015-10-15

    This Letter proposes a simple band-notched coplanar waveguide (BNCPW), which consists of a coplanar waveguide (CPW) and an ultra-thin periodic corrugated metallic strip that supports spoof surface plasmon polaritons (SSPPs) with defect units on the back of the substrate. By introducing a defect unit or multiple defect units into the strip, a narrow stopband or multiple narrow stopbands would be generated flexibly and conveniently. The band-notch function is based on the idea that a defect mode, which exists in the bandgap between the fundamental and the first higher mode of the SSPPs, can be introduced to form a stopband. Thus, the SSPPs field is localized around the defect units, which is another form of localized spoof surface plasmons (LSSPs). By properly tuning the dimensions of each defect unit, the absorption level and center frequency of the stopband could be adjusted independently. We offer theoretical analysis and experimental results to validate our idea and design. In this framework, a variety of band-notched devices and antennas in the microwave and terahertz (THz) frequencies can be easily designed without additional band-stop filters. PMID:26469594

  1. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide

    SciTech Connect

    Arkhipenko, V. I.; Simonchik, L. V. Usachonak, M. S.; Callegari, Th.; Sokoloff, J.

    2014-09-28

    We demonstrate the ability to develop one-dimensional electromagnetic band gap structure in X-band waveguide solely by using the positive columns of glow discharges in neon at the middle pressure. Plasma inhomogeneities are distributed uniformly along a typical X-band waveguide with cross section of 23×10 mm². It is shown that electron densities larger than 10¹⁴ cm ⁻³ are needed in order to create an effective one-dimensional electromagnetic band gap structure. Some applications for using the one-dimensional electromagnetic band gap structure in waveguide as a control of microwave (broadband filter and device for variation of pulse duration) are demonstrated.

  2. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    SciTech Connect

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  3. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    PubMed

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  4. Visualizing the influence of point defects on the electronic band structure of graphene.

    PubMed

    Farjam, M

    2014-04-16

    The supercell approach enables us to treat the electronic structure of defective crystals, but the calculated energy bands are too complicated to understand or compare with angle-resolved photoemission spectra because of inevitable zone folding. We discuss how to visualize supercell band structures more effectively by incorporating unfolded spectral weights and orbital decompositions into them. We then apply these ideas to gain a better understanding of the band structure of graphene containing various types of point defects, including nitrogen impurity, hydrogen adsorbate, vacancy defects and the Stone-Wales defect.

  5. Bistatic scattering from a contaminated sea surface observed in C, X, and Ku bands

    NASA Astrophysics Data System (ADS)

    Ghanmi, H.; Khenchaf, A.; Comblet, F.

    2014-10-01

    The aim of the work presented in this paper focuses on the study and analysis of variations of the bistatic electromagnetic signature of the sea surface contaminated by pollutants. Therefore, we will start the numerical analyses of the pollutant effect on the geometrical and physical characteristics of sea surface. Then, we will evaluate the electromagnetic (EM) scattering coefficients of the clean and polluted sea surface observed in bistatic configuration by using the numerical Forward-Backward Method (FBM). The obtained numerical results of the electromagnetic scattering coefficients are studied and given as a function of various parameters: sea state, wind velocity, type of pollutant (sea surface polluted by oil emulsion, and sea surface covered by oil layer), incidence and scattering angles, frequencies bands (C, X and Ku) and radar polarization.

  6. Detailed Structure of the Outer Disk Around HD 169142 with Polarized Light in H-band

    NASA Technical Reports Server (NTRS)

    Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Grady, Carol A.; Sitko, Michael L.; Akiyama, Eiji; Currie, Thayne; Follette, Katherine B.; Mayama, Satoshi; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; McElwain, Michael W.

    2015-01-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.''2=r=1.''2, or 29=r=174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 AU and r = 81.2-145 AU respectively show r-3-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r <50 AU) is derived to be =0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.

  7. Optically decomposed near-band-edge structure and excitonic transitions in Ga₂S₃.

    PubMed

    Ho, Ching-Hwa; Chen, Hsin-Hung

    2014-08-21

    The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga₂S₃) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga₂S₃. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga₂S₃. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga₂S₃ crystal is revealed.

  8. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3

    PubMed Central

    Ho, Ching-Hwa; Chen, Hsin-Hung

    2014-01-01

    The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga2S3) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga2S3. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga2S3. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga2S3 crystal is revealed. PMID:25142550

  9. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency.

    PubMed

    Xu, Juan; Teng, Yiran; Teng, Fei

    2016-01-01

    Both energy band and charge separation and transfer are the crucial affecting factor for a photochemical reaction. Herein, the BiOCl nanosheets without and with surface bismuth vacancy (BOC, V-BOC) are prepared by a simple hydrothermal method. It is found that the new surface defect states caused by bismuth vacancy have greatly up-shifted the valence band and efficiently enhanced the separation and transfer rates of photogenerated electron and hole. It is amazing that the photocatalytic activity of V-BOC is 13.6 times higher than that of BOC for the degradation methyl orange (MO). We can develop an efficient photocatalyst by the introduction of defects. PMID:27586149

  10. Effect of Surface Defect States on Valence Band and Charge Separation and Transfer Efficiency

    PubMed Central

    Xu, Juan; Teng, Yiran; Teng, Fei

    2016-01-01

    Both energy band and charge separation and transfer are the crucial affecting factor for a photochemical reaction. Herein, the BiOCl nanosheets without and with surface bismuth vacancy (BOC, V-BOC) are prepared by a simple hydrothermal method. It is found that the new surface defect states caused by bismuth vacancy have greatly up-shifted the valence band and efficiently enhanced the separation and transfer rates of photogenerated electron and hole. It is amazing that the photocatalytic activity of V-BOC is 13.6 times higher than that of BOC for the degradation methyl orange (MO). We can develop an efficient photocatalyst by the introduction of defects. PMID:27586149

  11. Band Structure and Effective Mass in Monolayer MoS2.

    PubMed

    Wu, Ming-Ting; Fan, Jun-Wei; Chen, Kuan-Ting; Chang, Shu-Tong; Lin, Chung-Yi

    2015-11-01

    Monolayer transition-metal dichalcogenide is a very promising two-dimensional material for future transistor technology. Monolayer molybdenum disulfide (MoS2), owing to the unique electronic properties of its atomically thin two-dimensional layered structure, can be made into a high-performance metal-oxide-semiconductor field-effect transistor, or MOSFET. In this work, we focus on band structure and carrier mobility calculations for MoS2. We use the tight-binding method to calculate the band structure, including a consideration of the linear combination of different atomic orbitals, the interaction of neighboring atoms, and spin-orbit coupling for different tight-binding matrices. With information about the band structure, we can obtain the density of states, the effective mass, and other physical quantities. Carrier mobility using the Kubo-Greenwood formula is calculated based on the tight-binding band structure. PMID:26726660

  12. Europium underneath graphene on Ir(111): Intercalation mechanism, magnetism, and band structure

    NASA Astrophysics Data System (ADS)

    Schumacher, Stefan; Huttmann, Felix; Petrović, Marin; Witt, Christian; Förster, Daniel F.; Vo-Van, Chi; Coraux, Johann; Martínez-Galera, Antonio J.; Sessi, Violetta; Vergara, Ignacio; Rückamp, Reinhard; Grüninger, Markus; Schleheck, Nicolas; Meyer zu Heringdorf, Frank; Ohresser, Philippe; Kralj, Marko; Wehling, Tim O.; Michely, Thomas

    2014-12-01

    The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a (2 ×2 ) or a (√{3 }×√{3 }) R 30∘ superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n doping. The hybridization of the Ir surface state S1 with Gr states is lifted, and the moiré superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially, as found by x-ray magnetic circular dichroism. The (2 ×2 ) Eu structure displays plain paramagnetic behavior, whereas for the (√{3 }×√{3 }) R 30∘ structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.

  13. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  14. Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures

    NASA Astrophysics Data System (ADS)

    Puls, Conor

    Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons. Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility. Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and

  15. van der Waals binding and band structure effects in graphene overlayers and graphane multilayers

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rohrer, Jochen

    2011-03-01

    We study graphene formation (by selective Si evaporation) and adhesion on SiC surfaces as well as stacking and binding of graphane multilayers using a number of versions of the van der Waals Density Functional (vdW-DF) method and plane-wave density functional theory calculations. For the graphene/SiC systems and for the graphane multilayers we document that the bonding is entirely dominated by van der Waals (vdW) forces. At the same time we find that dispersive forces acting on the layers produce significant modifications in the graphene and graphane band structure. We interpret the changes and discuss a competition between wave function hybridization and interaction with the charge enhancement (between the layers) that results from density overlap. Supported by Svenska Vetenskapsrådet VR #621-2008-4346.

  16. Surface transport of nutrients from surface broadcast and subsurface-banded broiler litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broiler chicken litter is commonly used as a fertilizer on pastures and cropland in major broiler-producing states. However, phosphorus (P) loss from fields fertilized with broiler litter contributes to eutrophication and growth of toxic algae in surface waters. Recently, to reduce surface transpo...

  17. Edge Majoranas on locally flat surfaces: The cone and the Möbius band

    NASA Astrophysics Data System (ADS)

    Quelle, A.; Smith, C. Morais; Kvorning, T.; Hansson, T. H.

    2016-09-01

    In this paper, we investigate the edge Majorana modes in the simplest possible p x+i py superconductor defined on surfaces with different geometries, the annulus, the cylinder, the Möbius band, and a cone (by cone we mean a cone with the tip cut away so it is topologically equivalent to the annulus and cylinder), and with different configurations of magnetic fluxes threading holes in these surfaces. In particular, we shall address two questions: Given that, in the absence of any flux, the ground state on the annulus does not support Majorana modes while the one on the cylinder does, how is it possible that the conical geometry can interpolate smoothly between the two? Given that in finite geometries edge Majorana modes have to come in pairs, how can a p x+i py state be defined on a Möbius band, which has only one edge? We show that the key to answering these questions is that the ground state depends on the geometry, even though all the surfaces are locally flat. In the case of the truncated cone, there is a nontrivial holonomy, while the nonorientable Möbius band must necessarily support a domain wall.

  18. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    NASA Astrophysics Data System (ADS)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles <30° due to specular reflection from regular surface. At larger incidence angles, the relative non-polarized contribution decreases, but grows again at HH-polarization approaching 0.7-0.8 at 65° for 10 m/s wind speed, suggesting that backscattering from breaking waves dominates HH NRCS at low grazing angles. At high incidence angles (>60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on

  19. Quantitative study of band structure in BaTiO3 particles with vacant ionic sites

    NASA Astrophysics Data System (ADS)

    Oshime, Norihiro; Kano, Jun; Ikeda, Naoshi; Teranishi, Takashi; Fujii, Tatsuo; Ueda, Takeji; Ohkubo, Tomoko

    2016-10-01

    Levels of the conduction band minimum and the valence band maximum in ion-deficient BaTiO3 particles were investigated with optical band gap and ionization energy measurements. Though it is known that the quantification of the band structure in an insulator is difficult, due to the poor electrical conductivity of BaTiO3, systematic variation in the band energy levels was found that correlated with the introduction of vacancies. Photoelectron yield spectroscopy provided direct observation of the occupancy level of electrons, which is altered by the presence of oxygen and barium vacancies. In addition, the conduction band deviation from the vacuum level was determined by optical reflectance spectroscopy. Our results show that: (1) Introduction of oxygen vacancies forms a donor level below the conduction band. (2) The conduction band is shifted to a lower level by a larger number of oxygen vacancies, while the valence band also shifts to a lower level, due to the reduction in the density of O 2p orbitals. (3) Introduction of barium vacancies widens the band gap. Since barium vacancies can induce a small number of oxygen vacancies with accompanying charge compensation, this behavior suppresses any large formation of donor levels in the gap states, indicating that cation vacancies can control the number of both donor and acceptor levels.

  20. Experimental study of X-band dielectric-loaded accelerating structures

    NASA Astrophysics Data System (ADS)

    Jing, Chunguang

    A joint Argonne National Laboratory (ANL)/Naval Research Laboratory (NRL) program is under way to investigate X-band dielectric-loaded accelerating (DLA) structures, using high-power 11.424GHz radiation from the NRL Magnicon facility. As an advanced accelerator concepts, the dielectric-loaded accelerator offers the potential for a simple, inexpensive alternative to high-gradient RF linear accelerators. In this thesis, a comprehensive account of X-band DLA structure design, including theoretical calculation, numerical simulation, fabrication and testing, is presented in detail. Two types of loading dielectrics, alumina and MgxCa1-xTiO 3 (MCT), are investigated. For alumina (with dielectric constant 9.4), no RF breakdown has been observed up to 5 MW of drive power (equivalent to 8MV/m accelerating gradient) in the high power RF testing at NRL, but multipactor was observed to absorb a large fraction of the incident microwave power. Experimental results on suppression of multipactor using TiN coating on the inner surface of the dielectric are also reported. For MCT (with dielectric constant 20), although we did not observe dielectric breakdown in the structures, breakdown did occur at the ceramic joint, where the electric field is greatly enhanced (estimated to be around 100MV/m) due to the micro-scale vacuum gap. In addition, the MCT structure showed significantly less multipactor for the same level of RF field. The thesis also introduced a new design, a multilayered dielectric-loaded accelerating structure, to improve the performance over the conventional one layer DLA structure. Results of analysis for the case of a four layered DLA structure indicate a large reduction of RF power attenuation and an increase of shunt impedance for the structure. Beyond the main contents, the appendices of the thesis present two individual projects prompted by the experimental study of the dielectric-loaded accelerating structure. Appendix A shows a resonant loop technique that can

  1. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Tanaka, Takeshi; Yomogida, Yohei; Sato, Naomichi; Saito, Riichiro; Kataura, Hiromichi

    2016-10-01

    Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed Eii and Eij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate Eij optical transition energies for any (n,m) species.

  2. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    SciTech Connect

    Zhu, Hong; Sun, Wenhao; Ceder, Gerbrand; Armiento, Rickard; Lazic, Predrag

    2014-02-24

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carriers in bulk crystalline semiconductors. The proposed mechanism of orbital interaction on band structure is demonstrated for IV-VI thermoelectric semiconductors. For IV-VI materials, we find that the convergence of multiple carrier pockets not only displays a strong correlation with the s-p and spin-orbit coupling but also coincides with the enhancement of power factor. Our results suggest a useful path to engineer the band structure and an enticing solid-solution design principle to enhance thermoelectric performance.

  3. First-principle study of energy band structure of armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Guo, Zhankui; Xu, Kewei; Chu, Paul K.

    2012-07-01

    First-principle calculation is carried out to study the energy band structure of armchair graphene nanoribbons (AGNRs). Hydrogen passivation is found to be crucial to convert the indirect band gaps into direct ones as a result of enhanced interactions between electrons and nuclei at the edge boundaries, as evidenced from the shortened bond length as well as the increased differential charge density. Ribbon width usually leads to the oscillatory variation of band gaps due to quantum confinement no matter hydrogen passivated or not. Mechanical strain may change the crystal symmetry, reduce the overlapping integral of C-C atoms, and hence modify the band gap further, which depends on the specific ribbon width sensitively. In practical applications, those effects will be hybridized to determine the energy band structure and subsequently the electronic properties of graphene. The results can provide insights into the design of carbon-based devices.

  4. Measuring the band structures of periodic beams using the wave superposition method

    NASA Astrophysics Data System (ADS)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in

  5. Formation of Metal-Semiconductor Interfaces on Mbe-Grown Gallium ARSENIDE(100): Surface Photovoltage, Chemistry and Band Bending

    NASA Astrophysics Data System (ADS)

    Mao, Duli

    1992-01-01

    The chemical, structural and electronic properties of the metal-GaAs interfaces formed on the polar (100) surface are studied using high resolution core level photoemission spectroscopy (PES) and low energy electron diffraction (LEED). The clean (4 x 2)-c(8 x 2) reconstructed GaAs(100) surface, prepared by molecular beam epitaxy and subsequent thermal decapping of an As protective layer, is characterized carefully. Ga 3d and As 3d core levels are analyzed using test square curve fitting. Two Ga surface components are resolved while only one surface component is necessary for As. The assignment of these surface components to different surface atomic arrangements is discussed. The surface Fermi level position with respect to the valence band maximum is also investigated as a function of decapping temperature. Metal (In, Ga, Au)/GaAs(100) interfaces, formed at both room (RT) and low temperature (LT), are studied. The morphology of these interfaces resembles that of metal/GaAs(110) interfaces formed at LT, in that the deposited metal atoms reside at the surface as isolated adatoms rather than as clusters at submonolayer coverage. Metal clustering is only important at coverages higher than a few monolayers and is more prominent at RT than at LT. The GaAs(100) band bending is studied as a function of metal coverage and deposition temperature. At submonolayer metal coverages, In and Ga both cause reduced band bending (~ 0.2eV) on n-type GaAs, a phenomenon similar to the Fermi level overshoot observed at LT-formed metal/p-GaAs(110) interfaces and indicative of formation of adatom-induced donor levels in the upper part of the band gap. With Au, In and Ga, the Fermi level is pinned at 0.4eV, 0.6eV and 0.68eV above the valence band maximum respectively, in good agreement with the results obtained at metal/GaAs(110) interfaces. This contradicts recent claims of near-Schottky limit for these interfaces. Evidence of correlation between pinning and overlayer metallization is

  6. Band edge emission enhancement by quadrupole surface plasmon-exciton coupling using direct-contact Ag/ZnO nanospheres.

    PubMed

    Zang, Yashu; He, Xu; Li, Jing; Yin, Jun; Li, Kongyi; Yue, Chuang; Wu, Zhiming; Wu, Suntao; Kang, Junyong

    2013-01-21

    Periodic Ag nanoball (NB) arrays on ZnO hollow nanosphere (HNS) supporting structures were fabricated in a large area by a laser irradiation method. The optimized laser power and spherical supporting structure of ZnO with a certain size and separation were employed to aggregate a sputtering-deposited Ag nano-film into an ordered, large-area, and two dimensional Ag NB array. A significant band edge (BE) emission enhancement of ZnO HNSs was achieved on this Ag NB/ZnO HNS hybrid structure and the mechanism was revealed by further experimental and theoretical analyses. With successfully fabricating the direct-contact structure of a Ag NB on the top of each ZnO HNS, the highly localized quadrupole mode surface plasmon resonance (SPR), realized on the metal NBs in the ultraviolet region, can effectively improve the BE emission of ZnO through strong coupling with the excitons of ZnO. Compared with the dipole mode SPR, the quadrupole mode SPR is insensitive to the metal nanoparticle's size and has a resonance frequency in the BE region of the wide band gap materials, hence, it can be potentially applied in related optoelectronic devices. PMID:23196786

  7. X-band dielectric loaded RF driven accelerator structures: Theoretical and experimental investigations

    NASA Astrophysics Data System (ADS)

    Zou, Peng

    An important area of application of high-power radio frequency (RF) and microwave sources is particle acceleration. A major challenge for the current worldwide research and development effort in linear accelerator is the search for a compact and affordable very-high-energy accelerator technology for the next generation supercolliders. It has been recognized for sometime that dielectric loaded accelerator structures are attractive candidates for the next generation very-high-energy linear accelerators, because they possess several distinct advantages over conventional metallic iris- loaded accelerator structures. However, some fundamental issues, such as RF breakdown in the dielectric, Joule heating, and vacuum properties of dielectric materials, are still the subjects of intense investigation, requiring the validation by experiments conducted at high power levels. An X-band traveling-wave accelerator based on dielectric-lined waveguide has been designed and constructed. Numerical calculation, bench measurements, and 3-D electromagnetic field simulation of this dielectric loaded accelerator are presented. One critical technical problem in constructing such dielectric loaded accelerator is efficient coupling of RF power into the dielectric-lined circular waveguide. A coupling scheme has been arrived at by empirical methods. Field distribution in this coupling configuration has been studied by numerical simulation. In the conventional iris-loaded accelerator structures, the peak surface electric field E s is in general found to be at least a factor of 2 higher than the axial acceleration field Ea. Because the peak surface electric field causes electric breakdown of the structure, it represents a direct limitation on the maximum acceleration gradient that can be obtained. A novel hybrid dielectric-iris-loaded periodic accelerator structure is proposed to utilize the advantages of both dielectric-lined waveguides and conventional iris-loaded structures. Numerical

  8. Ammonia volatilization from surface-banded and broadcast application of liquid dairy manure on grass forage.

    PubMed

    Pfluke, Paul D; Jokela, William E; Bosworth, Sidney C

    2011-01-01

    Manure can provide valuable nutrients, especially N, for grass forage, but high NH, volatilization losses from standard surface-broadcast application limits N availability and raises environmental concerns. Eight field trials were conducted to evaluate the emission of NH, from liquid dairy manure, either surface broadcast or applied in narrow surface bands with a trailing-foot implement. Manure was applied using both techniques at rates of approximately 25 and 50 m3 ha(-1) on either orchardgrass (Dactylis glomerata L.) on a well-drained silt loam or reed canarygrass (Phalaris arundinacea L.) on a somewhat poorly drained clay soil. Ammonia emission was measured with a dynamic chamber/equilibrium concentration technique. High NH3 emission rates in broadcast treatments, especially at the high rate (2 to 13 kg ha(-1) h(-1)), occurred during the first few hours after spreading, followed by a rapid reduction to low levels (<0.5 kg ha(-1) h(-1) in most cases) by 24 h after spreading and in subsequent days. Band treatments often followed the same pattern but with initial rates substantially lower and with a less dramatic decrease over time. Total estimated NH3 losses from broadcast application, as a percent of total ammoniacal N (TAN) applied, averaged 39% (range of 20 to 59%) from the high manure rate and 25% (range of 9 to 52%) from the low rate. Band spreading reduced total NH3 losses by an average of 52 and 29% for the high and low manure rates, respectively. Results show that the trailing-foot band application method can reduce NH3 losses and conserve N for perennial forage production.

  9. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry

    USGS Publications Warehouse

    Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R.

    2008-01-01

    Interferometric processing of JERS-1 L-band Synthetic Aperture Radar (SAR) data acquired over south Florida during 1993-1996 reveals detectable surface changes in the Everglades wetlands. Although our study is limited to south Florida it has implication for other large-scale wetlands, because south Florida wetlands have diverse vegetation types and both managed and natural flow environments. Our analysis reveals that interferometric coherence level is sensitive to wetland vegetation type and to the interferogram time span. Interferograms with time spans less than six months maintain phase observations for all wetland types, allowing characterization of water level changes in different wetland environments. The most noticeable changes occur between the managed and the natural flow wetlands. In the managed wetlands, fringes are organized, follow patterns related to some of the managed water control structures and have high fringe-rate. In the natural flow areas, fringes are irregular and have a low fringe-rate. The high fringe rate in managed areas reflects dynamic water topography caused by high flow rate due to gate operation. Although this organized fringe pattern is not characteristic of most large-scale wetlands, the high level of water level change enables accurate estimation of the wetland InSAR technique, which lies in the range of 5-10??cm. The irregular and low rate fringe pattern in the natural flow area reflects uninterrupted flow that diffuses water efficiently and evenly. Most of the interferograms in the natural flow area show an elongated fringe located along the transitional zone between salt- and fresh-water wetlands, reflecting water level changes due to ocean tides. ?? 2007 Elsevier Inc. All rights reserved.

  10. Surface structures of lead deposited on Mo(110) surface

    NASA Astrophysics Data System (ADS)

    Jo, S.; Gotoh, Y.; Nishi, T.; Mori, D.; Gonda, T.

    2000-05-01

    The surface structures of lead deposited on an Mo(110) surface were studied by means of reflection high-energy electron diffraction (RHEED) and scanning electron microscopy (SEM). Four kinds of surface structure were observed. Three surface structures appeared at nearly one monolayer of lead coverage at room temperature. All surface structures have large unit cells that coincide with the atomic arrangement of the molybdenum substrate. The growth modes of the Pb/Mo(110) system are the Frank-van der Merwe growth mode at room temperature and the Stranski-Krastanov growth mode at high temperatures. The epitaxial orientation relationship of the Pb/Mo(110) system is [1¯10] Pb‖[001] Mo, (111) Pb‖(110) Mo.

  11. Impact of surface roughness on L-band emissivity of the sea ice

    NASA Astrophysics Data System (ADS)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  12. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  13. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  14. Weak indices and dislocations in general topological band structures

    NASA Astrophysics Data System (ADS)

    Ran, Ying

    2011-03-01

    It has recently been shown that crystalline defects - dislocation lines - in three dimensional topological insulators, can host protected one dimensional modes propagating along their length. We generalize this observation to the case of topological superconductors and other insulators of the Altland Zirnbauer classification, in d=2,3 dimensions. In general, protected dislocation modes are controlled by the topological indices in (d-1) dimensions. This is shown by relating this feature to characteristic properties of surface states of these topological phases. This observation also allows us to constrain these surface states properties, which is illustrated by an addition formula for (d-1) and (d-2) indices of a topological superconductor.

  15. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  16. Polymorphism, band-structure, band-lineup, and alloy energetics of the group II oxides and sulfides MgO, ZnO, CdO, MgS, ZnS, CdS

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2014-03-01

    The group II chalcogenides are an important class of functional semiconductor materials exhibiting a remarkable diversity in terms of structure and properties. In order to aid the materials design, a consistent set of electronic structure calculations is presented, including data on the polymorphic energy ordering, the band-structures, the band-lineups relative to the vacuum level, surface energies, as well as on the alloy energetics. To this end, current state-of-the-art electronic structure tools are employed, which, besides standard density functional theory (DFT), include totalenergy calculation in the random phase approximation and GW quasiparticle energy calculations. The ionization potentials and electron affinities are obtained by combining the results of bulk GW and surface DFT calculations. Considering both octahedral and tetrahedral coordination symmetries, exemplified by the rock-salt and zinc-blende lattices, respectively, this data reveals both the chemical and structural trends within this materials family.

  17. Electron-Hole Recombination Time at TiO2 Single-Crystal Surfaces: Influence of Surface Band Bending.

    PubMed

    Ozawa, Kenichi; Emori, Masato; Yamamoto, Susumu; Yukawa, Ryu; Yamamoto, Shingo; Hobara, Rei; Fujikawa, Kazushi; Sakama, Hiroshi; Matsuda, Iwao

    2014-06-01

    Photocatalytic activity is determined by the transport property of photoexcited carriers from the interior to the surface of photocatalysts. Because the carrier dynamics is influenced by a space charge layer (SCL) in the subsurface region, an understanding of the effect of the potential barrier of the SCL on the carrier behavior is essential. Here we have investigated the relaxation time of the photoexcited carriers on single-crystal anatase and rutile TiO2 surfaces by time-resolved photoelectron spectroscopy and found that carrier recombination, taking a nanosecond time scale at room temperature, is strongly influenced by the barrier height of the SCL. Under the flat-band condition, which is realized in nanometer-sized photocatalysts, the carriers have a longer lifetime on the anatase surface than the rutile one, naturally explaining the higher photocatalytic activity for anatase than rutile.

  18. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  19. Fine structure of the red luminescence band in undoped GaN

    SciTech Connect

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RL band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.

  20. Micro-metric electronic patterning of a topological band structure using a photon beam

    NASA Astrophysics Data System (ADS)

    Golden, Mark; Frantzeskakis, Emmanouil; de Jong, Nick; Huang, Yingkai; Wu, Dong; Pan, Yu; de Visser, Anne; van Heumen, Erik; van Bay, Tran; Zwartsenberg, Berend; Pronk, Pieter; Varier Ramankutty, Shyama; Tytarenko, Alona; Xu, Nan; Plumb, Nick; Shi, Ming; Radovic, Milan; Varkhalov, Andrei

    2015-03-01

    The only states crossing EF in ideal, 3D TIs are topological surface states. Single crystals of Bi2Se3andBi2Te3 are too defective to exhibit bulk-insulating behaviour, and ARPES shows topologically trivial 2DEGs at EF in the surface region due to downward band bending. Ternary & quaternary alloys of Bi /Te /Se /Sb hold promise for obtaining bulk-insulating crystals. Here we report ARPES data from quaternary, bulk-insulating, Bi-based TIs. Shortly after cleavage in UHV, downward band bending pulls the bulk conduction band below EF, once again frustrating the ``topological only'' ambition for the Fermi surface. However, there is light at the end of the tunnel: we show that a super-band-gap photon beam generates a surface photovoltage sufficient to flatten the bands, thereby recovering the ideal, ``topological only'' situation. In our bulk-insulating quaternary TIs, this effect is local in nature, and permits the writing of arbitrary, micron-sized patterns in the topological energy landscape at the surface. Support from FOM, NWO and the EU is gratefully acknowledged.

  1. Conformal coating of highly structured surfaces

    DOEpatents

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  2. Electronic structure of Pt based topological Heusler compounds with C1{sub b} structure and 'zero band gap'

    SciTech Connect

    Ouardi, Siham; Shekhar, Chandra; Fecher, Gerhard H.; Kozina, Xeniya; Stryganyuk, Gregory; Felser, Claudia; Ueda, Shigenori; Kobayashi, Keisuke

    2011-05-23

    Besides of their well-known wide range of properties it was recently shown that many of the heavy Heusler semiconductors with 1:1:1 composition and C1{sub b} structure exhibit a zero band gap behavior and are topological insulators induced by their inverted band structure. In the present study, the electronic structure of the Heusler compounds PtYSb and PtLaBi was investigated by bulk sensitive hard x-ray photoelectron spectroscopy. The measured valence band spectra are clearly resolved and in well agreement to the first-principles calculations of the electronic structure of the compounds. The experimental results give clear evidence for the zero band gap state.

  3. Potential energy surface and vibrational band origins of the triatomic lithium cation

    NASA Astrophysics Data System (ADS)

    Searles, Debra J.; Dunne, Simon J.; von Nagy-Felsobuki, Ellak I.

    The 104 point CISD Li +3 potential energy surface and its analytical representation is reported. The calculations predict the minimum energy geometry to be an equilateral triangle of side RLiLi = 3.0 Å and of energy - 22.20506 E h. A fifth-order Morse—Dunham type analytical force field is used in the Carney—Porter normal co-ordinate vibrational Hamiltonian, the corresponding eigenvalue problem being solved variationally using a 560 configurational finite-element basis set. The predicted assignment of the vibrational band origins is in accord with that reported for H +3. Moreover, for 6Li +3 and 7Li +3 the lowest i.r. accessible band origin is the overlineν0,1,±1 predicted to be at 243.6 and 226.0 cm -1 respectively.

  4. Structure and properties of solid surfaces

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1974-01-01

    Difficulties in experimental studies of crystalline surfaces are related to the fact that surface atoms have an intrinsic tendency to react with their environment. A second problem is connected with the effective thickness of surfaces, which ranges from one to several atom layers. The phenomenology of surface interactions with gases are considered, taking into account physical adsorption, chemisorption, and the oxidation of surfaces. Studies of the surface structure are discussed, giving attention to field emission microscopy, field-ion microscopy, electron diffraction techniques, Auger spectroscopy, scanning electron microscopy, electron probe microanalysis, ion microprobe methods, and low-energy backscattering spectroscopy. Investigations of semiconductor surfaces are also described.

  5. Electron microscopy and x-ray diffraction evidence for two Z-band structural states.

    PubMed

    Perz-Edwards, Robert J; Reedy, Michael K

    2011-08-01

    In vertebrate muscles, Z-bands connect adjacent sarcomeres, incorporate several cell signaling proteins, and may act as strain sensors. Previous electron microscopy (EM) showed Z-bands reversibly switch between a relaxed, "small-square" structure, and an active, "basketweave" structure, but the mechanism of this transition is unknown. Here, we found the ratio of small-square to basketweave in relaxed rabbit psoas muscle varied with temperature, osmotic pressure, or ionic strength, independent of activation. By EM, the A-band and both Z-band lattice spacings varied with temperature and pressure, not ionic strength; however, the basketweave spacing was consistently 10% larger than small-square. We next sought evidence for the two Z-band structures in unfixed muscles using x-ray diffraction, which indicated two Z-reflections whose intensity ratios and spacings correspond closely to the EM measurements for small-square and basketweave if the EM spacings are adjusted for 20% shrinkage due to EM processing. We conclude that the two Z-reflections arise from the small-square and basketweave forms of the Z-band as seen by EM. Regarding the mechanism of transition during activation, the effects of Ca(2+) in the presence of force inhibitors suggested that the interconversion of Z-band forms was correlated with tropomyosin movement on actin. PMID:21806939

  6. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  7. Polar semiconductor heterojunction structure energy band diagram considerations

    NASA Astrophysics Data System (ADS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  8. Analysis of multi-band pyrometry for emissivity and temperature measurements of gray surfaces at ambient temperature

    NASA Astrophysics Data System (ADS)

    Araújo, António

    2016-05-01

    A multi-band pyrometry model is developed to evaluate the potential of measuring temperature and emissivity of assumably gray target surfaces at 300 K. Twelve wavelength bands between 2 and 60 μm are selected to define the spectral characteristics of the pyrometers. The pyrometers are surrounded by an enclosure with known background temperature. Multi-band pyrometry modeling results in an overdetermined system of equations, in which the solution for temperature and emissivity is obtained through an optimization procedure that minimizes the sum of the squared residuals of each system equation. The Monte Carlo technique is applied to estimate the uncertainties of temperature and emissivity, resulting from the propagation of the uncertainties of the pyrometers. Maximum reduction in temperature uncertainty is obtained from dual-band to tri-band systems, a small reduction is obtained from tri-band to quad-band, with a negligible reduction above quad-band systems (a reduction between 6.5% and 12.9% is obtained from dual-band to quad-band systems). However, increasing the number of bands does not always reduce uncertainty, and uncertainty reduction depends on the specific band arrangement, indicating the importance of choosing the most appropriate multi-band spectral arrangement if uncertainty is to be reduced. A reduction in emissivity uncertainty is achieved when the number of spectral bands is increased (a reduction between 6.3% and 12.1% is obtained from dual-band to penta-band systems). Besides, emissivity uncertainty increases for pyrometers with high wavelength spectral arrangements. Temperature and emissivity uncertainties are strongly dependent on the difference between target and background temperatures: uncertainties are low when the background temperature is far from the target temperature, tending to very high values as the background temperature approaches the target temperature.

  9. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  10. Numerical investigation of a microwave-band surface plasmon excited on an overdense plasma cylinder

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ouyang, Ji-Ting

    2016-05-01

    The finite-difference time-domain (FDTD) method was employed to investigate the surface plasmon (SP) of the microwave band excited on an overdense plasma cylinder with various geometric scales. The extinction efficiency was calculated to determine the resonant frequency of the SP. A sequence of angular eigenmodes was observed via field distribution. The effect of plasma frequency and collision rate on the SP was also investigated. The results show that an SP on the cylinder surface can be treated as a standing wave pattern of two surface waves propagating in opposite directions. When the SP is formed around the plasma cylinder, the scatter field can be enhanced significantly. The solid plasma cylinder can be replaced by a hollow one without significant change of the SP’s features, as long as its layer width well exceeds the skin depth.

  11. Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar

    Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations Subrata Kumar Das*, S. M. Deshpande, K. Chakravarty and M. C. R. Kalapureddy Indian Institute of Tropical Meteorology, Pune, India ABSTRACT The Western Ghats (WGs) located parallel to the west coast of India receives a huge amount of rainfall during the Indian summer monsoon (ISM) in which topography plays a huge role in it. To understand the dynamics and microphysics of monsoon precipitating clouds over the WGs, a High Altitude Cloud Physics Laboratory (HACPL) has been setup at Mahabaleshwar (17.92 oN, 73.6 oE, ~1.4 km AMSL) in 2012. As part of this laboratory, a mobile X-band (9.5 GHz) and Ka-band (35.29 GHz) dual-polarization Doppler weather radar system is installed at Mandhardev (18.04 oN, 73.87 oE, ~1.3 km AMSL, at 26 km radial distance from the HACPL). The X-band radar shows the dominant cloud movement is from the western side of the WGs to the eastern side, crossing the HACPL and the radar site. The cloud occurrence statistics show a sudden reduction within a distance of ~30 km on the eastern side of WGs indicates the possibility of a rain shadow area. Further, we investigate the vertical structure of cloud over the HACPL, and identified four cloud modes viz., shallow cumulus mode, congestus mode, deep convective mode, and overshooting convection mode. The frequency distribution of cloud-cell base height (CBH) and cloud-cell top height (CTH) shows most of the clouds with base below 2.5 km and tops usually not exceeding 9 km. This indicates the dominance of warm-rain process in the WGs region. The positive relationships between surface rainfall rates and CTH and 0oC isotherm level have observed. Details will be presented in the upcoming symposium.

  12. The C-Band accelerating structures for SPARC photoinjector energy upgrade

    NASA Astrophysics Data System (ADS)

    Alesini, D.; Boni, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Palumbo, L.; Spizzo, V.; Mostacci, A.; Campogiani, G.; Persichelli, S.; Enomoto, A.; Higo, T.; Kakihara, K.; Kamitani, T.; Matsumoto, S.; Sugimura, T.; Yokoyama, K.; Verdú-Andrés, S.

    2013-05-01

    The use of C-Band structures for electron acceleration and production of high quality beams has been proposed and adopted in several linac projects all over the world. The two main projects that adopted such type of structures are the Japanese Free Electron Laser (FEL) project in Spring-8 and the SwissFEL project at Paul Scherrer Institute (PSI). Also the energy upgrade of the SPARC photo-injector at LNF-INFN (Italy) from 150 to more than 240 MeV will be done by replacing a low gradient S-Band accelerating structure with two C-band structures. The structures are Traveling Wave (TW) and Constant Impedance (CI), have symmetric axial input couplers and have been optimized to work with a SLED RF input pulse. The paper presents the design criteria of the structures, the realization procedure and the low and high power RF test results on a prototype. The high power tests have been carried out by the Frascati INFN Laboratories in close collaboration with the Japanese Laboratory KEK. Experimental results confirmed the feasibility of the operation of the prototype at 50 MV/m with about 10-6 breakdowns per pulse per meter. Such high gradients have not been reached before in C-Band systems and demonstrated the possibility to use C-band accelerators, if needed, at such high field level. The results of the internal inspection of the structure after the high power test are also presented.

  13. Fine-structure enhancement — assessment of a simple method to resolve overlapping bands in spectra

    NASA Astrophysics Data System (ADS)

    Barth, Andreas

    2000-05-01

    A simple mathematical procedure — fine-structure enhancement — has been assessed on its ability to resolve overlapping bands in spectra. Its advantages and limitations have been explored using synthetic and experimental spectra. Fine-structure enhancement involves smoothing the original spectrum, multiplying the smoothed spectrum with a weighting factor and subtracting this spectrum from the original spectrum. As a result, the fine-structure of the original spectrum is enhanced in the processed spectrum and bands that overlap in the original spectrum appear as distinct bands in the processed spectrum. To be resolved by fine-structure enhancement, Lorentzian lines have to be separated by more than their quarter width at half maximum, Gaussian lines by more than their half width at half maximum. A comparison of fine-structure enhancement and Fourier self-deconvolution shows that Fourier self-deconvolution has in theory a higher potential to resolve overlapping bands. However, this depends crucially on the correct choice of the parameters. In practice, when parameters commonly used are chosen for Fourier self-deconvolution, fine-structure enhancement leads to similar results. This is demonstrated at the example of the infrared absorbance spectrum of the protein papain, where the amide I band components could be resolved similarly with both methods. Thus, fine-structure enhancement seems to be a simple alternative to Fourier self-deconvolution that does not require specialised software.

  14. The amazing story of semiconductor surface structures

    NASA Astrophysics Data System (ADS)

    Duke, C. B.

    1995-12-01

    A brief indication of the history of the determination and prediction of the structure of semiconductor surfaces is given. Only clean surfaces are considered, although adsorbate structures exhibit analogous features. Many of these surfaces are reconstructed, i.e., the symmetry of their surface structure is lower than that of the corresponding bulk lattice plane. During the 1980s and 1990s, the detailed atomic geometries of many of these structures were determined. They exhibit a wide variety of atomic motifs, many of which are not familiar from either small molecule geometries or solid state structures. Theoretical predictions exist for a few of the most heavily studied structures, but even in these cases not all the details of the structures are accepted. The enormous literature on this topic can be comprehended by recognizing that the surface regions of semiconductors constitute a new class of two dimensional chemical compounds, restricted by the requirement that they fit epitaxically on the bulk crystalline substrate. Five principles govern the formation of these compounds for clean tetrahedrally coordinated semiconductors, guiding even a novice to a rudimentary understanding of the origin of the observed rich variety of surface structures. In the case of the cleavage surfaces additional scaling laws are satisfied which further buttress the concept that these surfaces are two dimensional compounds governed by coordination chemistry considerations which are distinct from those appropriate for either molecules or bulk solids.

  15. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  16. Berry phase and band structure analysis of the Weyl semimetal NbP

    PubMed Central

    Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius

    2016-01-01

    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase. PMID:27667203

  17. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  18. Probing the graphite band structure with resonant soft-x-ray fluorescence

    SciTech Connect

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A.

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  19. Electronic absorption band broadening and surface roughening of phthalocyanine double layers by saturated solvent vapor treatment

    SciTech Connect

    Kim, Jinhyun; Yim, Sanggyu

    2012-10-15

    Variations in the electronic absorption (EA) and surface morphology of three types of phthalocyanine (Pc) thin film systems, i.e. copper phthalocyanine (CuPc) single layer, zinc phthalocyanine (ZnPc) single layer, and ZnPc on CuPc (CuPc/ZnPc) double layer film, treated with saturated acetone vapor were investigated. For the treated CuPc single layer film, the surface roughness slightly increased and bundles of nanorods were formed, while the EA varied little. In contrast, for the ZnPc single layer film, the relatively high solubility of ZnPc led to a considerable shift in the absorption bands as well as a large increase in the surface roughness and formation of long and wide nano-beams, indicating a part of the ZnPc molecules dissolved in acetone, which altered their molecular stacking. For the CuPc/ZnPc film, the saturated acetone vapor treatment resulted in morphological changes in mainly the upper ZnPc layer due to the significantly low solubility of the underlying CuPc layer. The treatment also broadened the EA band, which involved a combination of unchanged CuPc and changed ZnPc absorption.

  20. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts.

  1. Band structure of solids from clusters SCF potentials

    SciTech Connect

    Nour, S.; Chermette, H.

    1995-01-05

    The possibilities and limits of the molecular orbital theory to deal with the problem of determining electronic structure of solids have been explored. A cluster model based on the charge neutrality in the solid has been used in test calculations on some III-V semiconductors and have given quite satisfactory results. Recommendations are given to widen the field of applications of this procedure. 33 refs., 5 figs., 2 tabs.

  2. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    PubMed

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  3. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    PubMed

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  4. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  5. Photonic band gap characteristics of one-dimensional graphene-dielectric periodic structures

    NASA Astrophysics Data System (ADS)

    Al-sheqefi, F. U. Y.; Belhadj, W.

    2015-12-01

    In this paper, we study theoretically, the transmission properties of a one-dimensional graphene-dielectric periodic structure by using the transfer matrix method. Within the framework of this method, we confirm earlier finding that a periodic structure composed of a stack of monolayer graphene sheets separated by dielectric slabs, possesses photonic band-gap (PBG) properties and supports a series of bandpass and band-stop regions at low-terahertz frequencies. Our calculations showed that the suggested structure possesses in addition to the structural Bragg gaps, a new type of band gap that exhibits a rather versatile behavior with varying angle of incidence. We find this type of band gap is omnidirectional (omni-gap) for both transverse electric (TE) and transverse magnetic (TM) polarizations. Our results show that 1D graphene-dielectric periodic structures are very good candidates for band gap engineering. Specifically, we demonstrate the existence of a band gap region for both polarizations which survives for incident angles as high as 80°. Moreover, we show how our proposed structure can also function as a highly efficient polarization splitter. It is also found that the band gaps can be tuned by tuning the properties of the graphene via a gate voltage. In order to investigate difference between the omni-gap and Bragg PBG, we plot the electromagnetic field profiles for some critical frequencies. The proposed structure is promising and can work as a gate tunable perfect stop filter which completely blocks both polarizations, and may have many other potential applications.

  6. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    PubMed

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications.

  7. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    SciTech Connect

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  8. Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence

    SciTech Connect

    Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui

    2011-05-15

    We study a cold atomic sample coherently driven into the five-level triple-{Lambda} configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-{Lambda} system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.

  9. Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors

    NASA Astrophysics Data System (ADS)

    Tas, M.; Şaşıoǧlu, E.; Galanakis, I.; Friedrich, C.; Blügel, S.

    2016-05-01

    Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the G W approximation within the framework of the FLAPW method, we study the quasiparticle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the s p -electron based semiconductors such as Si and GaAs, in these systems, the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2 eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the s p -chemical element.

  10. Deformation analysis of ferrite/pearlite banded structure under uniaxial tension using digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochuan; Wang, Yong; Yang, Jia; Qiao, Zhixia; Ren, Chunhua; Chen, Cheng

    2016-10-01

    The ferrite/pearlite banded structure causes the anisotropic behavior of steel. In this paper, digital image correlation (DIC) was used to analyze the micro deformation of this microstructure under uniaxial tension. The reliability of DIC for this application was verified by a zero-deformation experiment. The results show that the performance of DIC can satisfy the requirements of the tensile deformation measurement. Then, two uniaxial tensile tests in different directions (longitudinal direction and transverse direction) were carried out and DIC was used to measure the micro deformation of the ferrite/pearlite banded structure. The measured results show that the ferrite bands undergo the main deformation in the transverse tension, which results in the relatively weaker tensile properties in the transverse direction than in the longitudinal direction. This work is useful to guide the modification of the bands morphology and extend the application scope of DIC.

  11. A short remark on the band structure of free-edge platonic crystals

    NASA Astrophysics Data System (ADS)

    Smith, Michael J. A.; Meylan, Michael H.; McPhedran, Ross C.; Poulton, Chris G.

    2014-10-01

    A corrected version of the multipole solution for a thin plate perforated in a doubly periodic fashion is presented. It is assumed that free-edge boundary conditions are imposed at the edge of each cylindrical inclusion. The solution procedure given here exploits a well-known property of Bessel functions to obtain the solution directly, in contrast to the existing incorrect derivation. A series of band diagrams and an updated table of values are given for the resulting system (correcting known publications on the topic), which shows a spectral band at low frequency for the free-edge problem. This is in contrast to clamped-edge boundary conditions for the same biharmonic plate problem, which features a low-frequency band gap. The numerical solution procedure outlined here is also simplified relative to earlier publications, and exploits the spectral properties of complex-valued matrices to determine the band structure of the structured plate.

  12. Curvature effects in the band structure of carbon nanotubes including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Heinze, Dirk; Thanh Duc, Huynh; Schumacher, Stefan; Meier, Torsten

    2015-11-01

    The Kane-Mele model was previously used to describe effective spin-orbit couplings (SOCs) in graphene. Here we extend this model and also incorporate curvature effects to analyze the combined influence of SOC and curvature on the band structure of carbon nanotubes (CNTs). The extended model then reproduces the chirality-dependent asymmetric electron-hole splitting for semiconducting CNTs and in the band structure for metallic CNTs shows an opening of the band gap and a change of the Fermi wave vector with spin. For chiral semiconducting CNTs with large chiral angle we show that the spin-splitting configuration of bands near the Fermi energy depends on the value of \\text{mod}(2n+m,3) .

  13. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    SciTech Connect

    Caro, Miguel A.; Määttä, Jukka; Lopez-Acevedo, Olga; Laurila, Tomi

    2015-01-21

    In this paper, we obtain the energy band positions of amorphous carbon (a–C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp{sup 2} sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  14. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    SciTech Connect

    Wu, Kai; Zhan, Yaohui E-mail: xfli@suda.edu.cn; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng E-mail: xfli@suda.edu.cn

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  15. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    NASA Astrophysics Data System (ADS)

    Caro, Miguel A.; Määttä, Jukka; Lopez-Acevedo, Olga; Laurila, Tomi

    2015-01-01

    In this paper, we obtain the energy band positions of amorphous carbon (a-C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H2/H2O and O2/H2O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp2 sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  16. Band structure of silicene in the tight binding approximation

    SciTech Connect

    Gert, A. V. Nestoklon, M. O.; Yassievich, I. N.

    2015-07-15

    The electronic structure of silicene is simulated by the tight binding method with the basis sp{sup 3}d{sup 5}s*. The results are in good agreement with ab initio calculations. The effective Hamiltonian of silicene in the vicinity of the Dirac point is constructed by the method of invariants. Silicon atoms in silicene are located in two parallel planes displaced perpendicularly to each other by Δ{sub z}; the energy spectrum essentially depends on this displacement. Using the tight binding technique, the coefficients of the effective Hamiltonian are determined for various values of Δ{sub z}.

  17. A new self-filling mechanism of band gap in magnetically doped topological surface states: spin-flipping inelastic scattering

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zheng, Shi-Han; Yang, Mou

    2016-09-01

    We investigate the influence of in-plane spin-exchange interactions on a topological insulator (TI) surface doped with nanomagnets under the second perturbation theory. We propose a novel self-filling mechanism of the surface-state band gap. It is found that when the out-of-plane exchange coupling favors an energy gap around the Dirac point, the in-plane component tends to suppress the induced gap, and even fill it completely. Our theory is based on the spin-flipping inelastic scattering, which creates a complex structure of self-energy, effectively modifying the band gap by renormalizing the magnetic moment and chemical potential. We explicitly analyze the filling effect in the electronic dispersion relation and density of states for different scenarios set by systemic parameters. This self-filling effect induced by spin-exchange coupling itself opens new perspectives for understanding of various magnetically doping phenomena on the TI materials and is expected to mediate the controversy concerning the magnetically doping induced gap.

  18. Two-zone heterogeneous structure within shear bands of a bulk metallic glass

    SciTech Connect

    Shao, Yang; Yao, Kefu; Liu, Xue; Li, Mo

    2013-10-21

    Shear bands, the main plastic strain carrier in metallic glasses, are severely deformed regions often considered as disordered and featureless. Here we report the observations of a sandwich-like heterogeneous structure inside shear bands in Pd{sub 40.5}Ni{sub 40.5}P{sub 19} metallic glass sample after plastic deformation by high-resolution transmission electron microscopy. The experimental results suggest a two-step plastic deformation mechanism with corresponding microstructure evolution at atomic scale, which may intimately connected to the stability of the shear band propagation and the overall plastic deformability.

  19. The LDA+U calculation of electronic band structure of GaAs

    NASA Astrophysics Data System (ADS)

    Bahuguna, B. P.; Sharma, R. O.; Saini, L. K.

    2016-05-01

    We present the electronic band structure of bulk gallium arsenide (GaAs) using first principle approach. A series of calculations has been performed by applying norm-conserving pseudopotentials and ultrasoft non-norm-conserving pseudopotentials within the density functional theory. These calculations yield too small band gap as compare to experiment. Thus, we use semiemperical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U), which is quite effective in order to describe the band gap of GaAs.

  20. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    NASA Astrophysics Data System (ADS)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  1. UV spectral filtering by surface structured multilayer mirrors.

    PubMed

    Huang, Qiushi; Paardekooper, Daniel Mathijs; Zoethout, Erwin; Medvedev, V V; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; Bijkerk, Fred

    2014-03-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (λ=100-400  nm) and simultaneously a high reflectance of EUV light (λ=13.5  nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but reflective for UV light. The reflected UV is filtered out by blazed diffraction, interference, and absorption. A first demonstration pyramid structure was fabricated on a multilayer by using a straightforward deposition technique. It shows an average suppression of 14 times over the whole UV range and an EUV reflectance of 56.2% at 13.5 nm. This robust scheme can be used as a spectral purity solution for all XUV sources that emit longer wavelength radiation as well. PMID:24690702

  2. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann Y.; ONeill, Peggy E.; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quad-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by the Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well- managed watershed in southwest Oklahoma. Prior to its application for soil moisture inversion, a good agreement was found between the single-scattering IEM simulations and the L band measurements of SIR-C and AIRSAR over a wide range of soil moisture and surface roughness conditions. The sensitivity of soil moisture variation to the co-polarized signals were then examined under the consideration of the calibration accuracy of various components of SAR measurements. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  3. Synthesis, physical properties, and band structure of the layered bismuthide PtBi2

    NASA Astrophysics Data System (ADS)

    Xu, C. Q.; Xing, X. Z.; Xu, Xiaofeng; Li, Bin; Chen, B.; Che, L. Q.; Lu, Xin; Dai, Jianhui; Shi, Z. X.

    2016-10-01

    We report details of single-crystal growth of stoichiometric bismuthide PtBi2 whose structure consists of alternate stacking of a Pt layer and Bi bilayer along the c axis. The compound crystallizes in space group P 3 with a hexagonal unit cell of a =b =6.553 Å,c =6.165 Å . Its T -dependent resistivity is typical of a metal whereas a large anisotropy was observed for the in-plane and interplane electrical transport. The magnetization data show opposite sign for fields parallel and perpendicular to the Pt layers, respectively. The magnetic field response of this material shows clearly two types of charge carriers, consistent with the multiple Fermi surfaces revealed in our band structure calculations. The hydrostatic pressure is shown to suppress the resistivity at high T systematically but has little bearing on its low-T transport. Through calorimetric measurements, the density of states at the Fermi level and the Debye temperature are determined to be 0.94 eV-1 per molecule and 145 K, respectively. In addition, the electronic structures and parity analyses are also presented. We find a minimum value of 0.05 eV gap opening at around 2 eV under the Fermi level by invoking spin-orbit interaction. A slab calculation further indicates a surface Dirac cone appearing in the gap of bulk states. We discuss the possibility of PtBi 2 being a candidate for a bulk topological metal, in analogy to the recently proposed topological superconductor β -PdBi2 .

  4. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  5. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems. PMID:25347594

  6. Predicted band structures of III-V semiconductors in the wurtzite phase

    SciTech Connect

    De, A.; Pryor, Craig E.

    2010-04-15

    While non-nitride III-V semiconductors typically have a zinc-blende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier ab initio calculations, and where experimental results are available (InP, InAs, and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may facilitate the development of spin-based devices.

  7. Observation of Nonlinear Looped Band Structure of Bose-Einstein condensates in an optical lattice

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Elizabeth; Koller, Silvio; Brown, Roger; Wyllie, Robert; Wilson, Ryan; Porto, Trey

    2016-05-01

    We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce ``swallow-tail'' looped band structure. By carefully preparing different initial coherent states and observing their subsequent decay, we observe distinct decay rates, which provide direct evidence for multi-valued band structure. The double well lattice both stabilizes the looped band structure and allows for dynamic preparation of different initial states, including states within the loop structure. We confirm our state preparation procedure with dynamic Gross-Pitaevskii calculations. The excited loop states are found to be more stable than dynamically unstable ground states, but decay faster than expected based on a mean-field stability calculation, indicating the importance of correlations beyond a mean-field description. Now at Georgia Tech Research Institute.

  8. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    SciTech Connect

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  9. Research on the large band gaps in multilayer radial phononic crystal structure

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Guan, Dong

    2016-04-01

    In this paper, we study the band gaps (BGs) of new proposed radial phononic crystal (RPC) structure composed of multilayer sections. The band structure, transmission spectra and eigenmode displacement fields of the multilayer RPC are calculated by using finite element method (FEM). Due to the vibration coupling effects between thin circular plate and intermediate mass, the RPC structure can exhibit large BGs, which can be effectively shifted by changing the different geometry values. This study shows that multilayer RPC can unfold larger and lower BGs than traditional phononic crystals (PCs) and RPC can be composed of single material.

  10. The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation

    NASA Astrophysics Data System (ADS)

    Dolgos, Michelle R.; Paraskos, Alexandra M.; Stoltzfus, Matthew W.; Yarnell, Samantha C.; Woodward, Patrick M.

    2009-07-01

    The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9-1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d-O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( Eg=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1-xBi xVO 4 (0≤ x≤0.5) and Ce 1-xY xVO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals.

  11. [Oligoglycine surface structures: molecular dynamics simulation].

    PubMed

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V

    2010-01-01

    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  12. On the relationship between enamel band complexity and occlusal surface area in Equids (Mammalia, Perissodactyla).

    PubMed

    Famoso, Nicholas A; Davis, Edward Byrd

    2016-01-01

    Enamel patterns on the occlusal surfaces of equid teeth are asserted to have tribal-level differences. The most notable example compares the Equini and Hipparionini, where Equini have higher crowned teeth with less enamel-band complexity and less total occlusal enamel than Hipparionini. Whereas previous work has successfully quantified differences in enamel band shape by dividing the length of enamel band by the square root of the occlusal surface area (Occlusal Enamel Index, OEI), it was clear that OEI only partially removes the effect of body size. Because enamel band length scales allometrically, body size still has an influence on OEI, with larger individuals having relatively longer enamel bands than smaller individuals. Fractal dimensionality (D) can be scaled to any level, so we have used it to quantify occlusal enamel complexity in a way that allows us to get at an accurate representation of the relationship between complexity and body size. To test the hypothesis of tribal-level complexity differences between Equini and Hipparionini, we digitally traced a sample of 98 teeth, one tooth per individual; 31 Hipparionini and 67 Equini. We restricted our sampling to the P3-M2 to reduce the effect of tooth position. After calculating the D of these teeth with the fractal box method which uses the number of boxes of various sizes to calculate the D of a line, we performed a t-test on the individual values of D for each specimen, comparing the means between the two tribes, and a phylogenetically informed generalized least squares regression (PGLS) for each tribe with occlusal surface area as the independent variable and D as the dependent variable. The slopes of both PGLS analyses were compared using a t-test to determine if the same linear relationship existed between the two tribes. The t-test between tribes was significant (p < 0.0001), suggesting different D populations for each lineage. The PGLS for Hipparionini was a positive but not significant (p = 0

  13. On the relationship between enamel band complexity and occlusal surface area in Equids (Mammalia, Perissodactyla)

    PubMed Central

    Davis, Edward Byrd

    2016-01-01

    Enamel patterns on the occlusal surfaces of equid teeth are asserted to have tribal-level differences. The most notable example compares the Equini and Hipparionini, where Equini have higher crowned teeth with less enamel-band complexity and less total occlusal enamel than Hipparionini. Whereas previous work has successfully quantified differences in enamel band shape by dividing the length of enamel band by the square root of the occlusal surface area (Occlusal Enamel Index, OEI), it was clear that OEI only partially removes the effect of body size. Because enamel band length scales allometrically, body size still has an influence on OEI, with larger individuals having relatively longer enamel bands than smaller individuals. Fractal dimensionality (D) can be scaled to any level, so we have used it to quantify occlusal enamel complexity in a way that allows us to get at an accurate representation of the relationship between complexity and body size. To test the hypothesis of tribal-level complexity differences between Equini and Hipparionini, we digitally traced a sample of 98 teeth, one tooth per individual; 31 Hipparionini and 67 Equini. We restricted our sampling to the P3-M2 to reduce the effect of tooth position. After calculating the D of these teeth with the fractal box method which uses the number of boxes of various sizes to calculate the D of a line, we performed a t-test on the individual values of D for each specimen, comparing the means between the two tribes, and a phylogenetically informed generalized least squares regression (PGLS) for each tribe with occlusal surface area as the independent variable and D as the dependent variable. The slopes of both PGLS analyses were compared using a t-test to determine if the same linear relationship existed between the two tribes. The t-test between tribes was significant (p < 0.0001), suggesting different D populations for each lineage. The PGLS for Hipparionini was a positive but not significant (p = 0

  14. On the relationship between enamel band complexity and occlusal surface area in Equids (Mammalia, Perissodactyla).

    PubMed

    Famoso, Nicholas A; Davis, Edward Byrd

    2016-01-01

    Enamel patterns on the occlusal surfaces of equid teeth are asserted to have tribal-level differences. The most notable example compares the Equini and Hipparionini, where Equini have higher crowned teeth with less enamel-band complexity and less total occlusal enamel than Hipparionini. Whereas previous work has successfully quantified differences in enamel band shape by dividing the length of enamel band by the square root of the occlusal surface area (Occlusal Enamel Index, OEI), it was clear that OEI only partially removes the effect of body size. Because enamel band length scales allometrically, body size still has an influence on OEI, with larger individuals having relatively longer enamel bands than smaller individuals. Fractal dimensionality (D) can be scaled to any level, so we have used it to quantify occlusal enamel complexity in a way that allows us to get at an accurate representation of the relationship between complexity and body size. To test the hypothesis of tribal-level complexity differences between Equini and Hipparionini, we digitally traced a sample of 98 teeth, one tooth per individual; 31 Hipparionini and 67 Equini. We restricted our sampling to the P3-M2 to reduce the effect of tooth position. After calculating the D of these teeth with the fractal box method which uses the number of boxes of various sizes to calculate the D of a line, we performed a t-test on the individual values of D for each specimen, comparing the means between the two tribes, and a phylogenetically informed generalized least squares regression (PGLS) for each tribe with occlusal surface area as the independent variable and D as the dependent variable. The slopes of both PGLS analyses were compared using a t-test to determine if the same linear relationship existed between the two tribes. The t-test between tribes was significant (p < 0.0001), suggesting different D populations for each lineage. The PGLS for Hipparionini was a positive but not significant (p = 0

  15. International X-Band Linear Collider Accelerator Structure R&D

    SciTech Connect

    Wang, J.W.; /SLAC

    2009-03-04

    For more than fifteen years before the International Technology Recommendation Panel (ITRP) decision in August, 2004, there were intensive R&D activities and broad international collaboration among the groups at SLAC, KEK, FNAL, LLNL and other labs for the room temperature X-Band accelerator structures. The goal was to provide an optimized design of the main linac structure for the NLC (Next Linear Collider) or GLC (Global Linear Collider). There have been two major challenges in developing X-band accelerator structures for the linear colliders. The first is to demonstrate stable, long-term operation at the high gradient (65 MV/m) that is required to optimize the machine cost. The second is to strongly suppress the beam induced long-range wakefields, which is required to achieve high luminosity. More than thirty X-band accelerator structures with various RF parameters, cavity shapes and coupler types have been fabricated and tested since 1989. A summary of the main achievements and experiences are presented in this talk including the structure design, manufacturing techniques, high power performance, and other structure related issues. Also, the new progress in collaborating with the CLIC, high gradient structures and X-Band structure applications for RF deflectors and others are briefly introduced.

  16. [Structure of human erythrocyte band 3: two-dimensional crystallographic analysis of the membrane domain].

    PubMed

    Hirai, Teruhisa; Yamaguchi, Tomohiro

    2015-07-01

    Band 3 (also known as anion exchanger 1, AE1) is one of the most abundant membrane proteins in human erythrocytes. Band 3 has 911 amino acids and consists of two structurally and functionally distinct domains. One is a 40-kDa N-terminal cytoplasmic domain and the other is a 55-kDa C-terminal membrane domain. The cytoplasmic domain maintains red cell shape through interactions with cytoskeletal proteins, such as protein 4.1, protein 4.2, ankyrin, and spectrin. On the other hand, the membrane domain mediates electroneutral exchange of anions, such as bicarbonate and chloride across the erythrocyte membrane. We reported the three-dimensional structure of the outward-open membrane domain of band 3, which was cross-linked between K539 and K851 with H2DIDS, at 7.5 Å resolution using cryo-electron crystallography. Although the results showed significantly improved resolution as compared with previous structural analyses, we could not assign all α-helices because of low resolution and uncertainty persists regarding the fold of band 3. However, we recognized that band 3 has internal repeats, because the structure exhibited distinctive anti-parallel V-shaped motifs, which protrude from the membrane bilayer on both sides. One of the helices in the motif is very long and highly tilted with respect to the normal structure of the bilayer.

  17. Filling-Enforced Gaplessness in Band Structures of the 230 Space Groups.

    PubMed

    Watanabe, Haruki; Po, Hoi Chun; Zaletel, Michael P; Vishwanath, Ashvin

    2016-08-26

    Nonsymmorphic symmetries like screws and glides produce electron band touchings, obstructing the formation of a band insulator and leading, instead, to metals or nodal semimetals even when the number of electrons in the unit cell is an even integer. Here, we calculate the electron fillings compatible with being a band insulator for all 230 space groups, for noninteracting electrons with time-reversal symmetry. Our bounds are tight-that is, we can rigorously eliminate band insulators at any forbidden filling and produce explicit models for all allowed fillings-and stronger than those recently established for interacting systems. These results provide simple criteria that should help guide the search for topological semimetals and, also, have implications for both the nature and stability of the resulting nodal Fermi surfaces. PMID:27610868

  18. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  19. Widely tunable surface-emitted monochromatic terahertz-wave generation beyond the Reststrahlen band

    NASA Astrophysics Data System (ADS)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2015-01-01

    We proposed a surface-emitted THz-wave generation on the basis of difference frequency mixing in a GaP planar waveguide. By utilizing modal birefringence of fundamental TE and TM modes at telecom wavelengths in the GaP membrane waveguide, phase matching condition for the surface-emitted difference frequency mixing (SE-DFM) can be achieved. THz output power is enhanced near the phonon polariton resonance frequency owing to the strong coupling between the transverse optical (TO) phonon of GaP and THz radiation. The SE-DFM scheme can generate THz waves beyond the Reststrahlen band located between 11 and 12 THz, resulting in widely tunable THz wave generation. Our proposed broadband THz sources can be applicable for optically isotropic nonlinear optical materials such as GaAs and InP as well as GaP.

  20. H-tailored surface conductivity in narrow band gap In(AsN)

    SciTech Connect

    Velichko, A. V. E-mail: anton.velychko@nottingham.ac.uk; Patanè, A. E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.; Capizzi, M.; Polimeni, A.; Sandall, I. C.; Tan, C. H.; Giubertoni, D.; Krier, A.; Zhuang, Q.

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  1. Magnifying narrow-band imaging of surface patterns for diagnosing colorectal cancer.

    PubMed

    Misawa, Masashi; Kudo, Shin-Ei; Wada, Yoshiki; Nakamura, Hiroki; Toyoshima, Naoya; Hayashi, Seiko; Mori, Yuichi; Kudo, Toyoki; Hayashi, Takemasa; Wakamura, Kunihiko; Miyachi, Hideyuki; Yamamura, Fuyuhiko; Hamatani, Shigeharu

    2013-07-01

    Narrow-band imaging (NBI) of surface microvessels of colorectal lesions is useful for differentiating neoplasms from non-neoplasms and for predicting histopathological diagnosis. Furthermore, NBI of surface microstructure, or 'surface pattern', is valuable for predicting histopathology in colorectal cancer. The aim of the present study was to investigate whether surface patterns could be used to predict invasion depth in colorectal cancer, and to compare the accuracy of surface pattern diagnosis in each macroscopic type. Between January 2010 and March 2011, a series of 357 consecutive patients with 378 early colorectal cancers were observed by magnifying NBI and the surface pattern was prospectively evaluated. Surface pattern was classified into 3 types: type I, microstructure was clearly recognised with uniform arrangement and form; type II, microstructure was obscured with heterogeneous arrangement and form; and type III, microstructure was invisible. We also classified the macroscopic type into 3 categories: depressed, protruded and flat elevated. Assuming that type III was an index of massively invasive lesions in the submucosal layer (SMm), the sensitivity, specificity and accuracy were 56.9, 91.7 and 85.7%, respectively. The sensitivity, specificity and accuracy of type III for the diagnosis of SMm in each macroscopic type were: depressed, 88.9, 40.0 and 63.2%, respectively; protruded: 34.8, 96.4 and 90.0%, respectively; and flat elevated, 54.2, 92.7 and 85.0%, respectively. These results suggest that the diagnostic accuracy of surface pattern was insufficient and particularly poor for depressed-type lesions.

  2. Collective band structures in the. gamma. -soft nucleus /sup 135/Nd

    SciTech Connect

    Piel W.F. Jr.; Beausang, C.W.; Fossan, D.B.; Hildingsson, L.; Paul, E.S.

    1987-03-01

    The low-lying band structure of /sup 135/Nd has been extended to higher spins using the /sup 112/Cd(/sup 27/Al,p3n..gamma..)/sup 135/Nd and /sup 116/Sn(/sup 24/Mg,2p3n..gamma..)/sup 135/Nd reactions. Two distinct high-spin structures have been identified. The ..delta..J = 1 band built on the ..nu..h/sub 11/2/(514)(9/2)/sup -/ ground state was observed to have a band crossing at J/sup ..pi../ = (25/2)/sup -/. This band crossing is associated with a loss of the moderate signature splitting found below the backbend. Cranked-shell model calculations suggest that this structure involves the alignment of a pair of h/sub 11/2/ protons and that the loss of signature splitting can be attributed to a shape change from a triaxial shape at low spins to a prolate axial shape above the backbend. A second ..delta..J = 1 band structure with no signature splitting was observed to be built on a J/sup ..pi../ = (17/2)/sup (+)/ state at 1954 keV. Values for the ratios of reduced transition rates B(M1; I ..-->..I-1)/B(E2; I..-->..I-1) and B(M1; I..-->..I-1)/B(E2; I..-->..I-2) have been extracted from transitions in the two bands. Comparisons with theoretical predictions helped in the identification of the structure of the second ..delta..J = 1 band, which is thought to be based on a ..nu..h/sub 11/2/x..pi..h/sub 11/2/x..pi..g/sub 7/2/ three-quasiparticle configuration.

  3. Effect of clustering on the surface plasmon band in thin films of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pereira, Rui M. S.; Borges, Joel; Peres, Filipa C. R.; Pereira, Paulo A. S.; Smirnov, Georgi V.; Vaz, Filipe; Cavaleiro, Albano; Vasilevskiy, Mikhail I.

    2015-01-01

    We theoretically investigate the optical response of ensembles of polarizable metallic nanoparticles (NPs) that form (1) submonolayer films of particles adsorbed on a dielectric substrate, considered as two-dimensional (2-D) systems, and (2) thin three-dimensional (3-D) films, where NPs are embedded in a dielectric matrix. For system (1), the effect of NPs' distance to the substrate is taken into account. In both cases, we find that short-range clustering leads to a broadening and a spectral shift of the absorption band related to the surface plasmon resonance (SPR) in individual NPs. We show that the clustering can help in achieving spectrally broad SPR bands, especially if NPs aggregate into fractal clusters, which can be interesting for some applications such as surface-enhanced Raman scattering. In particular, submonolayer films on NPs generated using the diffusion-limited aggregation algorithm produce sizable and spectrally broad absorption, which can be tuned to the visible range by choosing an appropriate capping and/or substrate material. Calculated results for thin 3-D films are compared with experimental data obtained for Au/TiO2 nanocomposite layers produced by reactive cosputtering.

  4. L-Band Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GigaHertz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  5. Modeling approaches to assimilating L band passive microwave observations over land surfaces

    NASA Astrophysics Data System (ADS)

    Wigneron, Jean-Pierre; Chanzy, André; Calvet, Jean-Christophe; Olioso, Albert; Kerr, Yann

    2002-07-01

    L band passive microwave remotely sensed data have great potential for providing estimates of soil moisture with high temporal sampling and on a regional scale. Several studies have shown the possibility of assessing the hydrological conditions deep down in soil (in the top 1 or 2 m) from these repetitive estimates of surface soil moisture. Water availability for plants, which is related to soil moisture in the root zone, is a key variable for estimating the evapotranspiration fluxes over land surfaces. This estimation is an important issue for meteorological and hydrological modeling, since it is a basic term of land surface forcing in mesoscale atmospheric circulations. However, at the present time the assimilation approach of remotely sensed brightness temperature data for operational use in the fields of meteorology and hydrology is poorly defined and important issues remain to be addressed in order to develop an operational assimilation approach. Two important issues are to identify (1) how vegetation variables describing vegetation development can be accounted for and (2) how the attenuation effects of L band microwave radiation within the canopy layer can be computed on large spatial scales. On the basis of an exhaustive data set including multiangular and dual-polarization passive microwave measurements acquired over a wheat crop during a 3-month period in 1993, two main modeling approaches are tested in this study. The principle of both approaches was based on the use of dual-polarization and multiangular observations to discriminate between the effects of soil and vegetation on the crop microwave signature. For the two approaches, both the initial soil water reservoir R2 (at the beginning of the crop development) and parameterizations of the crop development could be retrieved simultaneously from the assimilation of the passive microwave measurements. From these results, promising assimilation strategies can be expected from the multiangular Soil Moisture

  6. Observation of 'Band' Structures in Spacecraft Observations of Inner Magnetosphere Plasma Electrons

    NASA Astrophysics Data System (ADS)

    Mohan Narasimhan, Kirthika; Fazakerley, Andrew; Milhaljcic, Branislav; Grimald, Sandrine; Dandouras, Iannis; Owen, Chris

    2013-04-01

    In previous studies, several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range of 1-25 keV. These structures have been known as "nose structures", with reference to their appearance in energy-time spectrograms and are known as "bands" if they are observed for extended periods of time. These proton structures have been studied quite extensively with multiple mechanisms proposed for their formation, not all of which apply for electrons. We examine Double-Star TC1 PEACE electron data recorded in the inner magnetosphere (L<15) near the equatorial plane to see if these features are also observed in the electron energy spectra. These "bands" also appear in electron spectrograms, spanning an energy range of 0.2-30 keV, and are shown to occur predominantly towards the dayside and dusk sectors. We also see multiple bands in some instances. We investigate the properties of these multi-banded structures and carry out a statistical survey analysing them as a function of geomagnetic activity, looking at both the Kp and Auroral Indices, in an attempt to explain their presence.

  7. Electron-Phonon Renormalization of Electronic Band Structures of C Allotropes and BN Polymorphs

    NASA Astrophysics Data System (ADS)

    Tutchton, Roxanne M.; Marchbanks, Christopher; Wu, Zhigang

    The effect of lattice vibration on electronic band structures has been mostly neglected in first-principles calculations because the electron-phonon (e-ph) renormalization of quasi-particle energies is often small (< 100 meV). However, in certain materials, such as diamond, the electron-phonon coupling reduces the band gap by nearly 0.5 eV, which is comparable to the many-body corrections of the electronic band structures calculated using the density functional theory (DFT). In this work, we compared two implementations of the Allen-Heine-Cardona theory in the EPW code and the ABINIT package respectively. Our computations of Si and diamond demonstrate that the ABINIT implementation converges much faster. Using this method, the e-ph renormalizations of electronic structures of three C allotropes (diamond, graphite, graphene) and four BN polymorphs (zincblend, wurtzite, mono-layer, and layered-hexagonal) were calculated. Our results suggest that (1) all of the zero-point renormalizations of band gaps in these materials, except for graphene, are larger than 100 meV, and (2) there are large variations in e-ph renormalization of band gaps due to differences in crystal structure. This work was supported by a U.S. DOE Early Career Award (Grant No. DE-SC0006433). Computations were carried out at the Golden Energy Computing Organization at CSM and the National Energy Research Scientific Computing Center (NERSC).

  8. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  9. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    NASA Astrophysics Data System (ADS)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  10. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGESBeta

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; Hozumi, Hideaki; Gao, Yongqian; Eda, Goki; Mattevi, Cecilia; Fujita, Takeshi; Yoshigoe, Akitaka; Ishizuka, Shinji; et al

    2016-04-08

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  11. Direct probing of band-structure Berry phase in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Granada, M.; Lucot, D.; Giraud, R.; Lemaître, A.; Ulysse, C.; Waintal, X.; Faini, G.

    2015-06-01

    We report on experimental evidence of the Berry phase accumulated by the charge-carrier wave function in single-domain nanowires made from a (Ga, Mn)(As, P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should thus be considered a band-structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga, Mn)As appears to be a very interesting test bench for new concepts based on this geometrical phase.

  12. Electronic Band Structures and Native Point Defects of Ultrafine ZnO Nanocrystals.

    PubMed

    Zeng, Yu-Jia; Schouteden, Koen; Amini, Mozhgan N; Ruan, Shuang-Chen; Lu, Yang-Fan; Ye, Zhi-Zhen; Partoens, Bart; Lamoen, Dirk; Van Haesendonck, Chris

    2015-05-20

    Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of ∼1 nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from ∼1.4 nm. With further increase of the thickness to 2 nm, VO-VZn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors. PMID:25923131

  13. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    SciTech Connect

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

  14. Anomalous behavior of group velocity and index of refraction in a defect photonic band gap structure

    NASA Astrophysics Data System (ADS)

    Srivastava, Sanjeev K.; Pandey, G. N.; Ojha, S. P.

    2008-02-01

    In the present paper, we have made an analysis to observe the effect of introduction of defect on dispersion relation, group velocity, and effective group index in a conventional photonic band gap (PBG) structure. The study shows that inside the PBG materials group velocity and effective group index becomes negative in both types (conventional as well as defect PBG structure) of structure at a certain range of frequencies. Also, near the edges of the bands it attains very high values of index of refraction. A defect PBG structure gives a very unique feature that group velocity becomes exactly zero at a particular value of frequency and also becomes several hundred times greater than the velocity of light which is not attainable with the conventional PBG structure. Defect PBG structures with such peculiar characteristics are seen in lasing without inversion, in construction of perfect lens, in trapping of photon and other optical devices.

  15. Band Structure of Helimagnons in MnSi Resolved by Inelastic Neutron Scattering.

    PubMed

    Kugler, M; Brandl, G; Waizner, J; Janoschek, M; Georgii, R; Bauer, A; Seemann, K; Rosch, A; Pfleiderer, C; Böni, P; Garst, M

    2015-08-28

    A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh. Its spin-wave excitations-the helimagnons-experience Bragg scattering off this periodicity, leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering, the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.

  16. Band Structures of Periodic Carbon Nanotube Junctions and Their Symmetries Analyzed by the Effective Mass Approximation

    NASA Astrophysics Data System (ADS)

    Tamura, Ryo; Tsukada, Masaru

    1999-03-01

    The band structures of the periodic nanotube junctions are investigated by the effective mass theory and the tight binding model. The periodic junctions are constructed by introducing pairs of a pentagonal defect and a heptagonal defect periodically in the carbon nanotube. We treat the periodic junctions composed by two kinds of metallic nanotubes with almost same radii, the ratio of which is between 0.7 and 1. The discussed energy region is near the undoped Fermi level. The energy bands are expressed with closed analytical forms by the effective mass theory. They are similar to the dispersion relation of Kronig-Penny model and coincide well with the numerical results by the tight binding model. The width of the gap and the band are in inverse proportion to the length of the unit cell. The degeneracy and repulsion between the two bands are determined only from symmetries.

  17. Subwavelength structured surfaces and their applications

    NASA Technical Reports Server (NTRS)

    Raguin, Daniel H.; Morris, G. Michael

    1993-01-01

    The term subwavelength structured (SWS) surface describes any surface that contains a subwavelength-period grating or gratings. The grating may be of any type provided the period is sufficiently fine so that, unlike conventional gratings, no diffraction orders propagate other than the zeroth orders. Because of the fine periods involved, the fabrication of such surfaces for applications in the visible and infrared portions of the spectral regime have only recently been considered. With refinements in holographic procedures and the push of the semiconductor industry for submicron lithography, production of SWS surfaces is becoming increasingly viable. The topics covered include the following: analytic approaches to analyze SWS surfaces, 1D periodic stratification and effective medium theory, design of waveplates using form birefringence, and 2D binary antireflection structured surfaces.

  18. Elimination of surface band bending on N-polar InN with thin GaN capping

    SciTech Connect

    Kuzmík, J. Haščík, Š.; Kučera, M.; Kúdela, R.; Dobročka, E.; Adikimenakis, A.; Mičušík, M.; Gregor, M.; Plecenik, A.; Georgakilas, A.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is most readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.

  19. Enlarged band gap and electron switch in graphene-based step-barrier structure

    SciTech Connect

    Lu, Wei-Tao Ye, Cheng-Zhi; Li, Wen

    2013-11-04

    We study the transmission through a step-barrier in gapped graphene and propose a method to enlarge the band gap. The step-barrier structure consists of two or more barriers with different strengths. It is found that the band gap could be effectively enlarged and controlled by adjusting the barrier strengths in the light of the mass term. Klein tunneling at oblique incidence is suppressed due to the asymmetry of step-barrier, contrary to the cases in single-barrier and superlattices. Furthermore, a tunable conductance channel could be opened up in the conductance gap, suggesting an application of the structure as an electron switch.

  20. Crystal structure and band gap of AlGaAsN

    NASA Astrophysics Data System (ADS)

    Munich, D. P.; Pierret, R. F.

    1987-09-01

    Quantum dielectric theory is applied to the quaternary alloy Al xGa 1- xAs 1- yN y to predict its electronic properties as a function of Al and N mole fractions. Results are presented for the expected crystal structure, minimum electron energy band gap, and direction in k-space of the band gap minimum for all x and y values. The results suggest that, for a proper choice of x and y, Al xGa 1- xAs 1- yN y could exhibit certain advantages over Al xGa 1- xAs when utilized in field-effect transistor structures.

  1. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    SciTech Connect

    Srinet, Gunjan Kumar, Ravindra Sajal, Vivek

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  2. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  3. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Nand, Mangla; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Shukla, D. K.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Jha, S. N.; Phase, D. M.; Ganguli, Tapas

    2016-04-01

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al2O3 heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al2O3 substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al2O3 substrate. Surface related feature in Ni 2p3/2 core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al2O3 substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al2O3 layers. A type-I band alignment at NiO and Al2O3 heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  4. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann; ONeill, Peggy; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quasi-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well-managed watershed in southwest Oklahoma. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  5. Correlating simulated surface marks with near-surface tornado structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael I.

    Tornadoes often leave behind patterns of debris deposition, or "surface marks", which provide a direct signature of their near surface winds. The intent of this thesis is to investigate what can be learned about near-surface tornado structure and intensity through the properties of surface marks generated by simulated, debris-laden tornadoes. Earlier work showed through numerical simulations that the tornado's structure and intensity is highly sensitive to properties of the near-surface flow and can change rapidly in time for some conditions. The strongest winds often occur within tens of meters of the surface where the threat to human life and property is highest, and factors such as massive debris loadings and asymmetry of the main vortex have proven to be critical complications in some regimes. However, studying this portion of the flow in the field is problematic; while Doppler radar provides the best tornado wind field measurements, it cannot probe below about 20 m, and interpretation of Doppler data requires assumptions about tornado symmetry, steadiness in time, and correlation between scatterer and air velocities that are more uncertain near the surface. As early as 1967, Fujita proposed estimating tornado wind speeds from analysis of aerial photography and ground documentation of surface marks. A handful of studies followed but were limited by difficulties in interpreting physical origins of the marks, and little scientific attention has been paid to them since. Here, Fujita's original idea is revisited in the context of three-dimensional, large-eddy simulations of tornadoes with fully-coupled debris. In this thesis, the origins of the most prominent simulated marks are determined and compared with historical interpretations of real marks. The earlier hypothesis that cycloidal surface marks were directly correlated with the paths of individual vortices (either the main vortex or its secondary vortices, when present) is unsupported by the simulation results

  6. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    SciTech Connect

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.

  7. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    DOE PAGESBeta

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content,more » we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less

  8. The Calculation of the Band Structure in 3D Phononic Crystal with Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Aryadoust, Mahrokh; Salehi, H.

    2015-12-01

    In this article, the propagation of acoustic waves in the phononic crystals (PCs) of three dimensions with the hexagonal (HEX) lattice is studied theoretically. The PCs are constituted of nickel (Ni) spheres embedded in epoxy. The calculations of the band structure and the density of states are performed using the plane wave expansion (PWE) method in the irreducible part of the Brillouin zone (BZ). In this study, we analyse the dependence of the band structures inside (the complete band gap width) on c/a and filling fraction in the irreducible part of the first BZ. Also, we have analysed the band structure of the ALHA and MLHKM planes. The results show that the maximum width of absolute elastic band gap (AEBG) (0.045) in the irreducible part of the BZ of HEX lattice is formed for c/a=6 and filling fraction equal to 0.01. In addition, the maximum of the first and second AEBG widths are 0.0884 and 0.0474, respectively, in the MLHKM plane, and the maximum of the first and second AEBG widths are 0.0851 and 0.0431, respectively, in the ALHA plane.

  9. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites

    PubMed Central

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-01-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013

  10. Surface Fermi level and surface state density in GaAsSb surface intrinsic-n^+ structures by photoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Kuang-I.; Tsai, Jung-Tse; Lee, Ming-Hsun; Chiu, Pei-Chin; Chen, Shu-Han; Chyi, Jen-Inn; Hwang, Jenn-Shyong

    2010-03-01

    The III-V ternary semiconductor GaAsSb has recently attracted considerable attention as the base layer of the high speed heterojunction bipolar transistors (HBT). Performance optimization of the HBT requires a precise determination of the surface state density and the surface Fermi level position of the GaAsSb alloy, but few such determinations have been reported. In this work, photoreflectance is employed to investigate the Fermi level pinning and the surface state density of a GaAs0.65Sb0.35 surface intrinsic-n^+ (SIN^+) structure based on the thermionic emission theory and the current-transport theory by the dependence of surface barrier height on the pump beam intensity. The surface state density is estimated as approximately 1.91 x 10^13 cm-2, and the Fermi level is located 0.63 eV below the conduction band edge at the surface. The high surface state density leads the surface Fermi level to be strongly pinned within the bandgap demonstrated by sequential etching of the intrinsic layer.

  11. Impact of [110]/(001) uniaxial stress on valence band structure and hole effective mass of silicon

    NASA Astrophysics Data System (ADS)

    Jianli, Ma; Heming, Zhang; Jianjun, Song; Guanyu, Wang; Xiaoyan, Wang; Xiaobo, Xu

    2011-02-01

    The valence band structure and hole effective mass of silicon under a uniaxial stress in (001) surface along the [110] direction were detailedly investigated in the framework of the k · p theory. The results demonstrated that the splitting energy between the top band and the second band for uniaxial compressive stress is bigger than that of the tensile one at the same stress magnitude, and of all common used crystallographic direction, such as [110], [001], [1¯10] and [100], the effective mass for the top band along [110] crystallographic direction is lower under uniaxial compressive stress compared with other stresses and crystallographic directions configurations. In view of suppressing the scattering and reducing the effective mass, the [110] crystallographic direction is most favorable to be used as transport direction of the charge carrier to enhancement mobility when a uniaxial compressive stress along [110] direction is applied. The obtained results can provide a theory reference for the design and the selective of optimum stress and crystallorgraphic direction configuration of uniaxial strained silicon devices.

  12. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure

    NASA Astrophysics Data System (ADS)

    Feng, Zhihong; Chen, Buyun; Qian, Shuangbei; Xu, Linyan; Feng, Liefeng; Yu, Yuanyuan; Zhang, Rui; Chen, Jiancui; Li, Qianqian; Li, Quanning; Sun, Chongling; Zhang, Hao; Liu, Jing; Pang, Wei; Zhang, Daihua

    2016-09-01

    We report on a new chemical sensor based on black phosphorus/molybdenum diselenide van der Waals hetero-junctions. Due to the atomically thin nature of two-dimensional (2D) materials, surface adsorption of gas molecules can effectively modulate the band alignment at the junction interface, making the device a highly sensitive detector for chemical adsorptions. Compared to sensors made of homogeneous nanomaterials, the hetero-junction demonstrates considerably lower detection limit and higher sensitivity toward nitrogen dioxide. Kelvin probe force microscopy and finite element simulations have provided experimental and theoretical explanations for the enhanced performance, proving that chemical adsorption can induce significant changes in band alignment and carrier transport behaviors. The study demonstrates the potential of van der Waals hetero-junction as a new platform for sensing applications, and provides more insights into the interaction between gaseous molecules and 2D hetero-structures.

  13. Band gap structures in two-dimensional super porous phononic crystals.

    PubMed

    Liu, Ying; Sun, Xiu-zhan; Chen, Shao-ting

    2013-02-01

    As one kind of new linear cellular alloys (LCAs), Kagome honeycombs, which are constituted by triangular and hexagonal cells, attract great attention due to the excellent performance compared to the ordinary ones. Instead of mechanical investigation, the in-plane elastic wave dispersion in Kagome structures are analyzed in this paper aiming to the multi-functional application of the materials. Firstly, the band structures in the common two-dimensional (2D) porous phononic structures (triangular or hexagonal honeycombs) are discussed. Then, based on these results, the wave dispersion in Kagome honeycombs is given. Through the component cell porosity controlling, the effects of component cells on the whole responses of the structures are investigated. The intrinsic relation between the component cell porosity and the critical porosity of Kagome honeycombs is established. These results will provide an important guidance in the band structure design of super porous phononic crystals.

  14. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  15. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  16. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  17. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  18. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  19. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Kevin Jerome Sutherland

    2001-05-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  20. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    PubMed Central

    Zribi, Mehrez; Pardé, Mickael; Boutin, Jacquline; Fanise, Pascal; Hauser, Daniele; Dechambre, Monique; Kerr, Yann; Leduc-Leballeur, Marion; Reverdin, Gilles; Skou, Niels; Søbjærg, Sten; Albergel, Clement; Calvet, Jean Christophe; Wigneron, Jean Pierre; Lopez-Baeza, Ernesto; Rius, Antonio; Tenerelli, Joseph

    2011-01-01

    The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity. PMID:22346599

  1. Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films.

    PubMed

    Vemuri, R S; Engelhard, M H; Ramana, C V

    2012-03-01

    Nanocrystalline WO(3) thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO(3) films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultramicrostructure was significant on the optical properties of WO(3) films. The XPS analyses indicate the formation of stoichiometric WO(3) with tungsten existing in fully oxidized valence state (W(6+)). However, WO(3) films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations based on isotropic WO(3) film-SiO(2) interface-Si substrate modeling indicate that the density of WO(3) films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with increasing oxygen. The band gap of these films increases from 2.78 to 3.25 eV with increasing oxygen. A direct correlation between the film density and band gap in nanocrystalline WO(3) films is established on the basis of the observed results. PMID:22332637

  2. Correlation between surface chemistry, density and band gap in nanocrystalline WO3 thin films

    SciTech Connect

    Vemuri, Venkata Rama Ses; Engelhard, Mark H.; Ramana, C.V.

    2012-03-01

    Nanocrystalline WO3 thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO3 films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultra-microstructure was significant on the optical properties of WO3 films. The XPS analyses indicate the formation of stoichiometric WO3 with tungsten existing in fully oxidized valence state (W6+). However, WO3 films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations, which are based on isotropic WO3 film - SiO2 interface - Si substrate model, indicate that the density of WO3 films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with the increasing oxygen. The band gap of these films increases from 2.78 eV to 3.25 eV with increasing oxygen. A direct correlation between the film-density and band gap in nanocrystalline WO3 films is established based on the observed results.

  3. Damping Effect Studies for X-band Normal Conducting High Gradient Standing Wave Structures

    SciTech Connect

    Pei, S.; Li, Z.; Tantawi, S.G.; Dolgashev, V.A.; Wang, J.; /SLAC

    2009-08-03

    The Multi-TeV colliders should have the capability to accelerate low emittance beam with high rf efficiency, X-band normal conducting high gradient accelerating structure is one of the promising candidate. However, the long range transverse wake field which can cause beam emittance dilution is one of the critical issues. We examined effectiveness of dipole mode damping in three kinds of X-band, {pi}-mode standing wave structures at 11.424GHz with no detuning considered. They represent three damping schemes: damping with cylindrical iris slot, damping with choke cavity and damping with waveguide coupler. We try to reduce external Q factor below 20 in the first two dipole bands, which usually have very high (R{sub T}/Q){sub T}. The effect of damping on the acceleration mode is also discussed.

  4. Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice

    NASA Astrophysics Data System (ADS)

    Forti, S.; Stöhr, A.; Zakharov, A. A.; Coletti, C.; Emtsev, K. V.; Starke, U.

    2016-09-01

    The electronic band structure of an epitaxial graphene superlattice, generated by intercalating a monolayer of Cu atoms, is directly imaged by angle-resolved photoelectron spectroscopy. The 3.2 nm lateral period of the superlattice is induced by a varying registry between the graphene honeycomb and the Cu atoms as imposed by the heteroepitaxial interface Cu/SiC. The carbon atoms experience a lateral potential across the supercell of an estimated value of about 65 meV. The potential leads to strong energy renormalization in the band structure of the graphene layer and the emergence of mini-Dirac cones. The mini-cones’ band velocity is reduced to about half of graphene's Fermi velocity. Notably, the ordering of the interfacial Cu atoms can be reversibly blocked by mild annealing. The superlattice indeed disappears at ∼220 °C.

  5. The band structure of VO2 measured by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Moreschini, Luca; Chang, Young Jun; Innocenti, Davide; Walter, Andrew L.; Kim, Young Su; Gaines, Geoffrey; Bostwick, Aaron; Denlinger, Jonathan; Rotenberg, Eli

    2011-03-01

    The origin of the 340K metal-insulator transition (MIT) in VO2 is still under debate. the main reason is that no direct experimental verifications of the electronic structure of VO2 exist up to this point. The quality of the available single crystals is not sufficient for ARPES measurements, so that photoemission is limited to angle-integrated mode. New opportunities are offered by oxide films, on which data of equal or even higher quality have been reported (Saeki et al., PRB 2009). WIth the in situ pulsed-laser-deposition (PLD) system available on beamline 7.0.1 at the Advanced Light Source we have grown VO2(001) films on a TiO2 substrate and measured the Fermi surface of the metallic phase. These results will permit a direct comparison with the existing band calculations and open the way to the study of the MIT as a function, e.g., of film thickness or electron doping with Cr. Work supported by U.S. DOE (DE-AC02-05CH11231 for ALS), the Max Planck Society, and the Swiss National Science Foundation (PBELP2-125484).

  6. How membrane surface affects protein structure.

    PubMed

    Bychkova, V E; Basova, L V; Balobanov, V A

    2014-12-01

    The immediate environment of the negatively charged membrane surface is characterized by decreased dielectric constant and pH value. These conditions can be modeled by water-alcohol mixtures at moderately low pH. Several globular proteins were investigated under these conditions, and their conformational behavior in the presence of phospholipid membranes was determined, as well as under conditions modeling the immediate environment of the membrane surface. These proteins underwent conformational transitions from the native to a molten globule-like state. Increased flexibility of the protein structure facilitated protein functioning. Our experimental data allow understanding forces that affect the structure of a protein functioning near the membrane surface (in other words, in the membrane field). Similar conformational states are widely reported in the literature. This indicates that the negatively charged membrane surface can serve as a moderately denaturing agent in the cell. We conclude that the effect of the membrane field on the protein structure must be taken into account.

  7. Electronic structure of CeRhIn5: de Haas-van Alphen and energy band calculations

    NASA Astrophysics Data System (ADS)

    Hall, Donavan; Palm, E. C.; Murphy, T. P.; Tozer, S. W.; Petrovic, C.; Miller-Ricci, Eliza; Peabody, Lydia; Li, Charis Quay Huei; Alver, U.; Goodrich, R. G.; Sarrao, J. L.; Pagliuso, P. G.; Wills, J. M.; Fisk, Z.

    2001-08-01

    The de Haas-van Alphen effect and energy-band calculations are used to study angular-dependent extremal areas and effective masses of the Fermi surface of the highly correlated antiferromagnetic material CeRhIn5. The agreement between experiment and theory is reasonable for the areas measured with the field applied along the (100) axis of the tetragonal structure, but there is disagreement in size for the areas observed with the field applied along the (001) axis where the antiferromagnetic spin alignment is occurring. Detailed comparisons between experiment and theory are given.

  8. Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kishi, Ayaka; Oda, Masato; Shinozuka, Yuzo

    2016-05-01

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp3 tight-binding models. Solving derived quasi-Hamiltonian 24 × 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III-V and II-VI wurtzite alloys: cation-substituted Al1- x Ga x N and Ga1- x In x N and anion-substituted CdS1- x Se x and ZnO1- x S x . The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character.

  9. Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kishi, Ayaka; Oda, Masato; Shinozuka, Yuzo

    2016-05-01

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp3 tight-binding models. Solving derived quasi-Hamiltonian 24 × 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III–V and II–VI wurtzite alloys: cation-substituted Al1‑ x Ga x N and Ga1‑ x In x N and anion-substituted CdS1‑ x Se x and ZnO1‑ x S x . The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character.

  10. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGESBeta

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; Ong, Shyue Ping

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit goodmore » chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  11. Band structures of 182Os studied by GCM based on 3D-CHFB

    NASA Astrophysics Data System (ADS)

    Horibata, Takatoshi; Oi, Makito; Onishi, Naoki; Ansari, Ahmad

    1999-02-01

    Band structure properties of 182Os are investigated through a particle number and angular momentum constrained generator coordinate (GCM) calculation based on self-consistent threedimensional cranking solutions. From the analysis of the wave function of the lowest GCM solution, we confirm that this nucleus shows a tilted rotational motion in its yrast states, at least with the present set of force parameters of the pairing-plus-quadrupole interaction Hamiltonian. A close examination of the behaviour of the other GCM solutions reveals a sign of a possible occurrence of multi-band crossing in the nucleus. We have also found a new potential curve along the prime meridian on the globe of the J = 18 h̷ sphere. Along this new solution the characters of proton and neutron gap parameters get interchanged. Namely, Δ p almost vanishes while Δ n grows to a finite value close to the one corresponding to the principal axis rotation (PAR). A state in the new solution curve at the PAR point turns out to have almost the same characteristic features of an yrare s-band state which is located just above the g-band in our calculation. This fact suggests a new type of seesaw vibrational mode of the proton and the neutron pairing, occurring through a wobbling motion. This mode is considered to bridge the g-band states and the s-band states in the backbending region.

  12. Removing solids improves response of grass to surface-banded dairy manure slurry: a multiyear study.

    PubMed

    Bittman, S; Hunt, D E; Kowalenko, C G; Chantigny, M; Buckley, K; Bounaix, F

    2011-01-01

    Removing solids from slurry manure helps balance nutrients to plant needs and may increase soil infiltration rate toreduce loss of ammonia. The long-term effects of applying the separated liquid fraction (SLF) of dairy slurry with surface banding applicators are not well known. This 6-yr study compared the yield, N recovery, and stand persistence of tall fescue (Festuca arundinacea Schreb.) receiving SLF at 300 (SLF300) and 400 (SLF400) kg ha(-1) yr(-1) of total ammoniacal N (TAN); whole dairy slurry (WS) at 200 (WS200), 300 (WS300), and 400 (WS400) kg TAN ha(-1) yr(-1); and mineral fertilizerat 300 kg N ha(-1) yr(-1). The slurries were applied four times per year by surface banding, a technique that reduces ammonia emission and canopy contamination. Grass yield and N uptake were significantly higher for SLF300 than WS300 atequivalent rates of TAN. At similar total N, yield and N uptake were much greater for SLF than WS (2 Mg DM ha(-1) and 75 kg N ha(-1), respectively). Apparent total N recoverywas 63% greater for SLF300 than WS300 due to less ammonia loss and less immobile N. The apparent recovery of total N was 31% higher for Fert300 than for SLF300. Yield and N uptake for SLF300 and WS300 were similar in Harvests 1 and4, but SLF had higher values under hot and dry conditions in Harvests 2 and 3. Using SLF rather than WS will increase crop yield and allow higher application volumes near barns, whichwill reduce hauling costs.

  13. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization.

    PubMed

    Lentz, Levi C; Kolb, Brian; Kolpak, Alexie M

    2016-05-18

    Layered transition metal phosphates and phosphites (TMPs) are a class of materials composed of layers of 2D sheets bound together via van der Waals interactions and/or hydrogen bonds. Explored primarily for use in proton transfer, their unique chemical tunability also makes TMPs of interest for forming large-scale hybrid materials. Further, unlike many layered materials, TMPs can readily be solution exfoliated to form single 2D sheets or bilayers, making them exciting candidates for a variety of applications. However, the electronic properties of TMPs have largely been unstudied to date. In this work, we use first-principles computations to investigate the atomic and electronic structure of TMPs with a variety of stoichiometries. We demonstrate that there exists a strong linear relationship between the band gap and the ionic radius of the transition metal cation in these materials, and show that this relationship, which opens opportunities for engineering new compositions with a wide range of band gaps, arises from constraints imposed by the phosphorus-oxygen bond geometry. In addition, we find that the energies of the valence and conduction band edges can be systematically tuned over a range of ∼3 eV via modification of the functional group extending from the phosphorus. Based on the Hammett constant of this functional group, we identify a simple, predictive relationship for the ionization potential and electron affinity of layered TMPs. Our results thus provide guidelines for systematic design of TMP-derived functional materials, which may enable new approaches for optimizing charge transfer in electronics, photovoltaics, electrocatalysts, and other applications. PMID:27157509

  14. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization.

    PubMed

    Lentz, Levi C; Kolb, Brian; Kolpak, Alexie M

    2016-05-18

    Layered transition metal phosphates and phosphites (TMPs) are a class of materials composed of layers of 2D sheets bound together via van der Waals interactions and/or hydrogen bonds. Explored primarily for use in proton transfer, their unique chemical tunability also makes TMPs of interest for forming large-scale hybrid materials. Further, unlike many layered materials, TMPs can readily be solution exfoliated to form single 2D sheets or bilayers, making them exciting candidates for a variety of applications. However, the electronic properties of TMPs have largely been unstudied to date. In this work, we use first-principles computations to investigate the atomic and electronic structure of TMPs with a variety of stoichiometries. We demonstrate that there exists a strong linear relationship between the band gap and the ionic radius of the transition metal cation in these materials, and show that this relationship, which opens opportunities for engineering new compositions with a wide range of band gaps, arises from constraints imposed by the phosphorus-oxygen bond geometry. In addition, we find that the energies of the valence and conduction band edges can be systematically tuned over a range of ∼3 eV via modification of the functional group extending from the phosphorus. Based on the Hammett constant of this functional group, we identify a simple, predictive relationship for the ionization potential and electron affinity of layered TMPs. Our results thus provide guidelines for systematic design of TMP-derived functional materials, which may enable new approaches for optimizing charge transfer in electronics, photovoltaics, electrocatalysts, and other applications.

  15. Automatically inferred Markov network models for classification of chromosomal band pattern structures.

    PubMed

    Granum, E; Thomason, M G

    1990-01-01

    A structural pattern recognition approach to the analysis and classification of metaphase chromosome band patterns is presented. An operational method of representing band pattern profiles as sharp edged idealized profiles is outlined. These profiles are nonlinearly scaled to a few, but fixed number of "density" levels. Previous experience has shown that profiles of six levels are appropriate and that the differences between successive bands in these profiles are suitable for classification. String representations, which focuses on the sequences of transitions between local band pattern levels, are derived from such "difference profiles." A method of syntactic analysis of the band transition sequences by dynamic programming for optimal (maximal probability) string-to-network alignments is described. It develops automatic data-driven inference of band pattern models (Markov networks) per class, and uses these models for classification. The method does not use centromere information, but assumes the p-q-orientation of the band pattern profiles to be known a priori. It is experimentally established that the method can build Markov network models, which, when used for classification, show a recognition rate of about 92% on test data. The experiments used 200 samples (chromosome profiles) for each of the 22 autosome chromosome types and are designed to also investigate various classifier design problems. It is found that the use of a priori knowledge of Denver Group assignment only improved classification by 1 or 2%. A scheme for typewise normalization of the class relationship measures prove useful, partly through improvements on average results and partly through a more evenly distributed error pattern. The choice of reference of the p-q-orientation of the band patterns is found to be unimportant, and results of timing of the execution time of the analysis show that recent and efficient implementations can process one cell in less than 1 min on current standard

  16. Valence-band ordering and magneto-optic exciton fine structure in ZnO

    NASA Astrophysics Data System (ADS)

    Lambrecht, Walter R.; Rodina, Anna V.; Limpijumnong, Sukit; Segall, B.; Meyer, Bruno K.

    2002-02-01

    Using first-principles linear muffin-tin orbital density functional band structure calculations, the ordering of the states in the wurtzite ZnO valence-band maximum, split by crystal-field and spin-orbit coupling effects, is found to be Γ7(5)>Γ9(5)>Γ7(1), in which the number in parentheses indicates the parent state without spin-orbit coupling. This results from the negative spin-orbit splitting, which in turn is due to the participation of the Zn 3d band. The result is found to be robust even when effects beyond the local density approximation on the Zn 3d band position are included. Using a Kohn-Luttinger model parametrized by our first-principles calculations, it is furthermore shown that the binding energies of the excitons primarily derived from each valence band differ by less than the valence-band splittings even when interband coupling effects are included. The binding energies of n=2 and n=1 excitons, however, are not in a simple 1/4 ratio. Our results are shown to be in good agreement with the recent magneto-optical experimental data by Reynolds et al. [Phys. Rev. B 60, 2340 (1999)], in spite of the fact that on the basis of these data these authors claimed that the valence-band maximum would have Γ9 symmetry. The differences between our and Reynolds' analysis of the data are discussed and arise from the sign of the Landé g factor for holes, which is here found to be negative for the upper Γ7 band.

  17. Three-Dimensional Structure of Vertebrate Muscle Z-Band: The Small-Square Lattice Z-Band in Rat Cardiac Muscle

    PubMed Central

    Burgoyne, Thomas; Morris, Edward P.; Luther, Pradeep K.

    2015-01-01

    The Z-band in vertebrate striated muscle crosslinks actin filaments of opposite polarity from adjoining sarcomeres and transmits tension along myofibrils during muscular contraction. It is also the location of a number of proteins involved in signalling and myofibrillogenesis; mutations in these proteins lead to myopathies. Understanding the high-resolution structure of the Z-band will help us understand its role in muscle contraction and the role of these proteins in the function of muscle. The appearance of the Z-band in transverse-section electron micrographs typically resembles a small-square lattice or a basketweave appearance. In longitudinal sections, the Z-band width varies more with muscle type than species: slow skeletal and cardiac muscles have wider Z-bands than fast skeletal muscles. As the Z-band is periodic, Fourier methods have previously been used for three-dimensional structural analysis. To cope with variations in the periodic structure of the Z-band, we have used subtomogram averaging of tomograms of rat cardiac muscle in which subtomograms are extracted and compared and similar ones are averaged. We show that the Z-band comprises four to six layers of links, presumably α-actinin, linking antiparallel overlapping ends of the actin filaments from the adjoining sarcomeres. The reconstruction shows that the terminal 5–7 nm of the actin filaments within the Z-band is devoid of any α-actinin links and is likely to be the location of capping protein CapZ. PMID:26362007

  18. Evolution of structural relaxation spectra of glycerol within the gigahertz band

    NASA Astrophysics Data System (ADS)

    Franosch, T.; Göauttze, W.; Mayr, M. R.; Singh, A. P.

    1997-03-01

    The structural relaxation spectra and the crossover from relaxation to oscillation dynamics, as measured by Wuttke et al. [Phys. Rev. Lett. 72, 3052 (1994)] for glycerol within the GHz band by depolarized light scattering, are described by the solutions of a schematic mode coupling theory model. The applicability of scaling laws for the discussion of the model solutions is considered.

  19. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  20. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  1. Doping and strain dependence of the electronic band structure in Ge and GeSn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Gallagher, James; Senaratne, Charutha; Brown, Christopher; Fernando, Nalin; Zollner, Stefan; Kouvetakis, John; Menendez, Jose

    2015-03-01

    A systematic study of the effect of dopants and strain on the electronic structure of Ge and GeSn alloys is presented. Samples were grown by UHV-CVD on Ge-buffered Si using Ge3H8 and SnD4 as the sources of Ge and Sn, and B2H6/P(GeH3)3 as dopants. High-energy critical points in the joint-density of electronic states were studied using spectroscopic ellipsometry, which yields detailed information on the strain and doping dependence of the so-called E1, E1 +Δ1 , E0' and E2 transitions. The corresponding dependencies of the lowest direct band gap E0 and the fundamental indirect band gap Eindwere studied via room-T photoluminescence spectroscopy. Of particular interest for this work were the determination of deformation potentials, band gap renormalization effects, Burstein-Moss shifts due to the presence of carriers at band minima, and the dependence of other critical point parameters, such as amplitudes and phase angles, on the doping concentration. The selective blocking of transitions due to high doping makes it possible to investigate the precise k-space location of critical points. These studies are complemented with detailed band-structure calculations within a full-zone k-dot- p approach. Supported by AFOSR under DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  2. Multiple-Scale Pattern Recognition Applied to Faint Intergranular G-band Structures

    NASA Astrophysics Data System (ADS)

    Bovelet, B.; Wiehr, E.

    2007-07-01

    Small-scale solar magnetic flux concentrations are studied in two-dimensional G-band images at very high spatial resolution and compared with Ca ii H enhancements. Among 970 small-sized G-band intergranular structures (IgS), 45% are co-spatial with isolated locations of Ca ii H excess and thus considered as magnetic (MIgS); they may be even twice as frequent as the known G-band bright points. The IgS are recognized in the G-band image by a new algorithm operating in four steps: (1) A set of equidistant detection levels yields a pattern of primary “cells”; (2) for each cell, the intrinsic intensity profile is normalized to its brightest pixel; (3) the cell sizes are shrunk by a unitary single-intensity clip; (4) features in contact at an appropriate reference level are merged by removal of the respective common dividing lines. Optionally, adjoining structures may be excluded from this merging process ( e.g., chains of segmented IgS), referring to the parameterized number and intensity of those pixels where enveloping feature contours overlap. From the thus recognized IgS pattern, MIgS are then selected by their local Ca ii H contrast and their mean G-band-to-continuum brightness ratio.

  3. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.

  4. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  5. Effects of strain on the band structure of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Janotti, Anderson; Scheffler, Matthias; Van de Walle, Chris G.

    2014-09-01

    We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (202¯1), (303¯1), and (303¯1¯) orientations, our calculated deformation potentials have provided results for polarization ratios in good agreement with the experimental observations, providing further confidence in the accuracy of our values.

  6. Quasiparticle bands and structural phase transition of iron from Gutzwiller density-functional theory

    NASA Astrophysics Data System (ADS)

    Schickling, Tobias; Bünemann, Jörg; Gebhard, Florian; Boeri, Lilia

    2016-05-01

    We use the Gutzwiller density-functional theory to calculate ground-state properties and band structures of iron in its body-centered-cubic (bcc) and hexagonal-close-packed (hcp) phases. For a Hubbard interaction U =9 eV and Hund's-rule coupling J =0.54 eV , we reproduce the lattice parameter, magnetic moment, and bulk modulus of bcc iron. For these parameters, bcc is the ground-state lattice structure at ambient pressure up to a pressure of pc=41 GPa where a transition to the nonmagnetic hcp structure is predicted, in qualitative agreement with experiment (pcexp=10 ,...,15 GPa ) . The calculated band structure for bcc iron is in good agreement with ARPES measurements. The agreement improves when we perturbatively include the spin-orbit coupling.

  7. Nonlinear optical response of semiconductor-nanocrystals-embedded photonic band gap structure

    SciTech Connect

    Liao, Chen; Zhang, Huichao; Tang, Luping; Zhou, Zhiqiang; Lv, Changgui; Cui, Yiping; Zhang, Jiayu

    2014-04-28

    Colloidal CdSe/ZnS core/shell nanocrystals (NCs), which were dispersed in SiO{sub 2} sol, were utilized to fabricate a SiO{sub 2}:NCs/TiO{sub 2} all-dielectric photonic band gap (PBG) structure. The third-order nonlinear refractive index (n{sub 2}) of the PBG structure was nearly triple of that of the SiO{sub 2}:NCs film due to the local field enhancement in the PBG structure. The photoinduced change in refractive index (Δn) could shift the PBG band edge, so the PBG structure would show significant transmission modification, whose transmission change was ∼17 folds of that of the SiO{sub 2}:NCs film. Under excitation of a 30 GW/cm{sup 2} femtosecond laser beam, a transmission decrease of 80% was realized.

  8. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yastrubchak, O.; Sadowski, J.; Gluba, L.; Domagala, J. Z.; Rawski, M.; Żuk, J.; Kulik, M.; Andrearczyk, T.; Wosinski, T.

    2014-08-01

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  9. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    SciTech Connect

    Yastrubchak, O.; Sadowski, J.; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2014-08-18

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  10. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    SciTech Connect

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; Snijders, Paul C.

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observation is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4dxz and 4dyz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.

  11. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    DOE PAGESBeta

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; Snijders, Paul C.

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observationmore » is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4dxz and 4dyz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.« less

  12. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    SciTech Connect

    Lowe, M.; McGrath, R.; Sharma, H. R.; Yadav, T. P.; Fournée, V.; Ledieu, J.

    2015-03-07

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.

  13. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Lowe, M.; Yadav, T. P.; Fournée, V.; Ledieu, J.; McGrath, R.; Sharma, H. R.

    2015-03-01

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe3O4 rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.

  14. Investigation of band structure of {sup 103,105}Rh using microscopic computational technique

    SciTech Connect

    Kumar, Amit; Singh, Suram; Bharti, Arun

    2015-08-28

    The high-spin structure in {sup 61}Cu nucleus is studied in terms of effective two body interaction. In order to take into account the deformed BCS basis, the basis states are expanded in terms of the core eigenfunctions. Yrast band with some other bands havew been obtained and back-bending in moment of inertia has also been calculated and compared with the available experimental data for {sup 61}Cu nucleus. On comparing the available experimental as well as other theoretical data, it is found that the treatment with PSM provides a satisfactory explanation of the available data.

  15. Topological band order, structural, electronic and optical properties of XPdBi (X = Lu, Sc) compounds

    NASA Astrophysics Data System (ADS)

    Narimani, M.; Nourbakhsh, Z.

    2016-05-01

    In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel-Vosco generalized gradient approximations and modified Becke-Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.

  16. B4N and Fe3BN nitrides bands structure and theoretical determination of bulk modulus

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.

    2007-06-01

    With the evolution of material science there was some technological evolution as well as the need of finding new links which could be applied to diverse areas of knowledge. Thus, in this article, we study nitrides bands structures which contain boron, in two different stoichiometries Fe3BN and B4N. The choice of these compounds is meant to plan new links and to understand nitrides fundamental state properties facing these new crystalline structures. In order to resolve the compound band structure we used the method of linear Muffin Tin orbital (LMTO), with atomic sphere approximation (ASA). By using this method we obtained the energy of formation as a function of the lattice parameter as one of the results. We find the equilibrium lattice parameter of 6.9755 a.u., for the Fe3BN nitride, and in B4N, we have 6.8589 a.u. We also discuss in this article the charge transference between sites and the influence of pressure on the compound properties, as well as the Bulk modulus that is 239.82 GPa for Fe3BN and 105.48 GPa for B4N. We show the behaviour of the density of states (DOS) of the new band structure found for the proposed crystalline structure Fe3BN, in which the B atom replace the Fe atom in the corner of the structure γ‧- Fe4N.

  17. Structural characteristic correlated to the electronic band gap in Mo S2

    NASA Astrophysics Data System (ADS)

    Chu, Shengqi; Park, Changyong; Shen, Guoyin

    2016-07-01

    The structural evolution with pressure in bulk Mo S2 has been investigated by high-pressure x-ray diffraction using synchrotron radiation. We found that the out-of-plane S-Mo-S bond angle θ increases and that in in-plane angle ϕ decreases linearly with increasing pressure across the known semiconducting-to-metal phase transition, whereas the Mo-S bond length and the S-Mo-S trilayer thickness display only little change. Extrapolating the experimental result along the in-plane lattice parameter with pressure, both S-Mo-S bond angles trend to those found in monolayer Mo S2 , which manifests as a structural characteristic closely correlating the electronic band gap of Mo S2 to its physical forms and phases, e.g., monolayer as direct band gap semiconductor, multilayer or bulk as indirect band gap semiconductor, and high-pressure (>19 GPa ) bulk form as metal. Combined with the effects of bond strength and van der Waals interlayer interactions, the structural correlations between the characteristic bond angle and electronic band gaps are readily extendible to other transition metal dichalcogenide systems (M X2 , where M =Mo , W and X =S , Se, Te).

  18. Electronic band structure effects in the stopping of protons in copper

    NASA Astrophysics Data System (ADS)

    Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.

    2016-10-01

    We present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v =0.02 -10 a .u . where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results are in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ˜1.5 ) in the velocity range v =0.07 -0.3 a .u . , which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v →0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.

  19. G0W0 band structure of CdWO4.

    PubMed

    Laasner, Raul

    2014-03-26

    The full quasiparticle band structure of CdWO4 is calculated within the single-shot GW (G0W0) approximation using maximally localized Wannier functions, which allows one to assess the validity of the commonly used scissor operator. Calculations are performed using the Godby-Needs plasmon pole model and the accurate contour deformation technique. It is shown that while the two methods yield identical band gap energies, the low-lying states are given inaccurately by the plasmon pole model. We report a band gap energy of 4.94 eV, including spin-orbit interaction at the DFT-LDA (density functional theory-local density approximation) level. Quasiparticle renormalization in CdWO4 is shown to be correlated with localization distance. Electron and hole effective masses are calculated at the DFT and G0W0 levels. PMID:24599225

  20. Exploring the Electronic Band Structure of Organometal Halide Perovskite via Photoluminescence Anisotropy of Individual Nanocrystals.

    PubMed

    Täuber, Daniela; Dobrovolsky, Alexander; Camacho, Rafael; Scheblykin, Ivan G

    2016-08-10

    Understanding electronic processes in organometal halide perovskites, flourishing photovoltaic, and emitting materials requires unraveling the origin of their electronic transitions. Light polarization studies can provide important information regarding transition dipole moment orientations. Investigating individual methylammonium lead triiodide perovskite nanocrystals enabled us to detect the polarization of photoluminescence intensity and photoluminescence excitation, hidden in bulk samples by ensemble averaging. Polarization properties of the crystals were correlated with their photoluminescence spectra and electron microscopy images. We propose that distortion of PbI6 octahedra leads to peculiarities of the electronic band structure close to the band-edge. Namely, the lowest band transition possesses a transition dipole moment along the apical Pb-I-Pb bond resulting in polarized photoluminescence. Excitation of photoluminescence above the bandgap is unpolarized because it involves molecular orbitals delocalized both in the apical and equatorial directions of the perovskite octahedron. Trap-assisted emission at 77 K, rather surprisingly, was polarized similar to the bandgap emission.

  1. Band gap and electronic structure of MgSiN{sub 2}

    SciTech Connect

    Quirk, J. B. Råsander, M.; McGilvery, C. M.; Moram, M. A.; Palgrave, R.

    2014-09-15

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN{sub 2} is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN{sub 2} (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN{sub 2} is 6.2 eV. MgSiN{sub 2} has an additional direct gap of 6.3 eV at the Γ point.

  2. Effects of ultraviolet irradiation on energy band structure and conductivity of polyaniline

    SciTech Connect

    Lin, Y.-J.; Yang, F.-M.; Lin, C.-S.

    2007-11-15

    The effects of ultraviolet (UV) irradiation on the electrical property of polyaniline (PANI) have been researched in this study. Spectroscopic methods [Raman spectroscopy (532 nm excitation) and x-ray photoelectron spectroscopy] and electrical conductivity measurements were used to characterize the conducting polymer PANI with and without UV irradiation. The authors found that UV irradiation could lead to degenerating electrical conductivity of PANI, resulting from an increase in the surface band bending and a reduction in the work function.

  3. Photonic stop bands in quasi-random nanoporous anodic alumina structures

    NASA Astrophysics Data System (ADS)

    Maksymov, Ivan; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2012-10-01

    The existence of photonic stop bands in the self-assembled arrangement of pores in porous anodic alumina structures is investigated by means of rigorous 2D finite-difference time-domain calculations. Self-assembled porous anodic alumina shows a random distribution of domains, each of them with a very definite triangular pattern, constituting a quasi-random structure. The observed stop bands are similar to those of photonic quasicrystals or random structures. As the pores of nanoporous anodic alumina can be infiltrated with noble metals, nonlinear or active media, it makes this material very attractive and cost-effective for applications including inhibition of spontaneous emission, random lasing, LEDs and biosensors.

  4. Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index

    NASA Astrophysics Data System (ADS)

    Arriaga, J.; Saldaña, X. I.

    2006-08-01

    Using the transfer matrix method we calculate the band structure for a one-dimensional photonic crystal consisting of alternating layers of two dielectric materials A and B with refractive indices nA and nB, respectively. The refractive index of layer A is constant and the refractive index for layer B varies according to the envelope of a Gaussian function. We find that under certain circumstances it is possible to obtain a 100% reflectivity for both polarizations (TE and TM) and any value of the incident angle of the electromagnetic waves. The interval of maximum reflectivity coincides with the photonic band gap of the structure. By an adequate selection of the parameters forming the structure, it is possible to tune the interval of frequencies with maximum reflectivity. This could be used in the fabrication of the so-called omnidirectional mirrors.

  5. Band structure and itinerant magnetism in quantum critical NbFe2

    SciTech Connect

    Subedi, A. P.; Singh, David J

    2010-01-01

    We report first-principles calculations of the band structure and magnetic ordering in the C14 Laves phase compound NbFe{sub 2}. The magnetism is itinerant in the sense that the moments are highly dependent on ordering. We find an overestimation of the magnetic tendency within the local spin-density approximation, similar to other metals near magnetic quantum critical points. We also find a competition between different magnetic states due to band-structure effects. These lead to competing magnetic tendencies due to competing interlayer interactions, one favoring a ferrimagnetic solution and the other an antiferromagnetic state. While the structure contains Kagome lattice sheets, which could, in principle, lead to strong magnetic frustration, the calculations do not show dominant nearest-neighbor antiferromagnetic interactions within these sheets. These results are discussed in relation to experimental observations.

  6. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Bin Bin; Wang, Ye Feng; Wei, Dong; Cui, Bin; Chen, Yu; Zeng, Jing Hui

    2016-06-01

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn2+ is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the "loss-in-potential," inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  7. Semianalytical formulation on the scattering of proximity equilibration cell closed ring photonic band gap structures

    NASA Astrophysics Data System (ADS)

    Liu, Yunhong; Alexopoulos, Nicolaos G.

    2007-12-01

    A novel semianalytical methodology is used to analyze a periodic array of printed metallic closed ring elements in a multilayered dielectric structure. This approach is unique in that it is the first methodology capable in modeling structures with resonant implants and interelement dimensions well beyond the effective medium theory. In addition, it yields computational efficiency by 2 orders of magnitude over standard computational methods in computing the scattering parameters for proximity equilibration cell (PEC) closed ring multilayered (electromagnetic band gap and photonic band gap (PBG)) structures. Moreover, it provides physical insight in the implementation of metallic implants for practical applications. This methodology satisfies the Kramers-Kronig relations and causality, and therefore it allows for the development of semianalytical expressions for the composite's wave impedance, index of refraction, as well as the permittivity and permeability parameters accounting for full dispersion. For general artificial multilayered structures (PBG metamaterials) with centrosymmetric scattering matrices, the composite may be replaced by an equivalent homogeneous dispersive magneto-dielectric material and may be used for the design of integrated circuits, filters, and antennas using standard methods. Otherwise, use of the scattering matrix approach to obtain the effective parameters is valid only for semi-infinite structures. The upper band edge is determined by the host material uniquely and the bandwidth is determined by the shunt susceptance for different PEC ring inclusions.

  8. Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON

    NASA Astrophysics Data System (ADS)

    Schwöbel, André; Precht, Ruben; Motzko, Markus; Carrillo Solano, Mercedes A.; Calvet, Wolfram; Hausbrand, René; Jaegermann, Wolfram

    2014-12-01

    Lithium phosphorus oxynitride (LiPON) is a solid state electrolyte commonly used in thin film batteries (TFBs). Advanced TFBs face the issue of detrimental electrode-electrolyte interlayer formation, related to the electronic structure of the interface. In this contribution, we study the valence band structure of LiPON using resonant photoemission and synchrotron photoemission with variable excitation energies. The identification of different valence band features is done according to the known valence band features of meta- and orthophosphates. Additionally we compare our results with partial density of states simulations from literature. We find that the valence band structure is similar to the known metaphosphates with an additional contribution of nitrogen states at the top of the valence band. From the results we conclude that synchrotron X-ray photoemission (XPS) is a useful tool to study the valence band structure of nitridated alkali phosphate glasses.

  9. Surface Relief and Internal Structure in Fatigued Stainless Sanicro 25 Steel

    NASA Astrophysics Data System (ADS)

    Polák, Jaroslav; Mazánová, Veronika; Kuběna, Ivo; Heczko, Milan; Man, Jiří

    2016-05-01

    High-resolution images of persistent slip markings developed on the surface of Sanicro 25 stainless steel during cyclic loading obtained from the FIB-produced surface lamella in TEM simultaneously with the underlying dislocation structure are reported. Extrusions, intrusions, incipient cracks, and the dislocation arrangement corresponding to the bands of intensive cyclic slip are documented and discussed in relation to the models of surface relief formation in cyclic loading.

  10. A ppM-focused klystron at X-band with a travelling-wave output structure

    SciTech Connect

    Eppley, K.R.

    1994-10-01

    We have developed algorithms for designing disk-loaded travelling-wave output structures for X-band klystrons to be used in the SLAC NLC. We use either a four- or five-cell structure in a {pi}/2 mode. The disk radii are tapered to produce an approximately constant gradient. The matching calculation is not performed on the tapered structure, but rather on a coupler whose input and output cells are the same as the final cell of the tapered structure, and whose interior cells are the same as the penultimate cell in the tapered structure. 2-D calculations using CONDOR model the waveguide as a radial transmission line of adjustable impedance. 3-D calculations with MAFIA model the actual rectangular waveguide and coupling slot. A good match is obtained by adjusting the impedance of the final cell. In 3D, this requires varying both the radius of the cell and the width of the aperture. When the output cell with the best match is inserted in the tapered structure, we obtain excellent cold-test agreement between the 2-D and 3-D models. We use hot-test simulations with CONDOR to design a structure with maximum efficiency and minimum surface fields. We have designed circuits at 11.424 GHz for different perveances. At 440 kV, microperveance 1.2, we calculated 81 MW, 53 percent efficiency, with peak surface field 76 MV/m. A microperveance 0.6 design was done using a ppM stack for focusing. At 470 kV, 193 amps, we calculated 58.7 MW, 64.7 percent efficiency, peak surface field 62.3 MV/m. At 500 kV, 212 amps, we calculated 67.1 MW, 63.3 percent efficiency, peak surface field 66.0 MV/m.

  11. Generalized complex structures on Kodaira surfaces

    NASA Astrophysics Data System (ADS)

    Brinzanescu, Vasile; Turcu, Oana Adela

    2010-01-01

    We compute the deformations in the sense of generalized complex structures of the standard classical complex structure on a primary Kodaira surface and we prove that the obtained family of deformations is a smooth locally complete family depending on four complex parameters. This family is the same as the extended deformations (in the sense of Kontsevich and Barannikov) in degree two, obtained by Poon using differential Gerstenhaber algebras.

  12. Multi-use applications of dual-band infrared (DBIR) thermal imaging for detecting obscured structural defects

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.

    1994-05-01

    Precise dual-band infrared (DBIR) thermal imaging provides a useful diagnostic tool for wide-area detection of defects from corrosion damage in metal airframes, heat damage in composite structures and structural damage in concrete bridge decks. We use DBIR image ratios to enhance surface temperature contrast, remove surface emissivity noise and increase signal-to-clutter ratios. We clarify interpretation of hidden defect sites by distinguishing temperature differences at defect sites from emissivity differences at clutter sites. This reduces the probability of false calls associated with misinterpreted image data. For airframe inspections, we map flash-heated defects in metal structures. The surface temperature rise above ambient at corrosion-thinned sites correlates with the percentage of material loss from corrosion thinning. For flash-heated composite structures, we measure the temperature-time history which relates to the depth and extent of heat damage. In preparation for bridge deck inspections, we map the natural day and night temperature variations at known concrete slab delamination sites which heat and coot at different rates than their surroundings. The above-ambient daytime and below-ambient nightime delamination site temperature differences correlate with the volume of replaced concrete at the delamination sites.

  13. The paradox of an insulating contact between a chemisorbed molecule and a wide band gap semiconductor surface.

    PubMed

    Yang, H; Boudrioua, O; Mayne, A J; Comtet, G; Dujardin, G; Kuk, Y; Sonnet, Ph; Stauffer, L; Nagarajan, S; Gourdon, A

    2012-02-01

    Controlling the intrinsic optical and electronic properties of a single molecule adsorbed on a surface requires electronic decoupling of some molecular orbitals from the surface states. Scanning tunneling microscopy experiments and density functional theory calculations are used to study a perylene molecule derivative (DHH-PTCDI), adsorbed on the clean 3 × 3 reconstructed wide band gap silicon carbide surface (SiC(0001)-3 × 3). We find that the LUMO of the adsorbed molecule is invisible in I(V) spectra due to the absence of any surface or bulk states and that the HOMO has a very low saturation current in I(z) spectra. These results present a paradox that the molecular orbitals are electronically isolated from the surface of the wide band gap semiconductor even though strong chemical bonds are formed.

  14. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-01

    Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau

  15. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    PubMed

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  16. Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure

    NASA Astrophysics Data System (ADS)

    Izuani Che Rosid, N. A.; Ahmadi, M. T.; Ismail, Razali

    2016-09-01

    The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. Project supported by the Ministry of Higher Education (MOHE), Malaysia under the Fundamental Research Grant Scheme (FRGS) (Grant No.Q.J130000.7823.4F477). We also thank the Research Management Center (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment.

  17. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    PubMed

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. PMID:27367475

  18. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    NASA Astrophysics Data System (ADS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  19. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    NASA Astrophysics Data System (ADS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  20. The Glacier and Ice Surface Topography Interferometer: UAVSAR's Single-pass Ka-Band Interferometer

    NASA Astrophysics Data System (ADS)

    Moller, D.; Hensley, S.; Sadowy, G.; Wu, X.; Carswell, J.; Fisher, C.; Michel, T.; Lou, Y.

    2012-12-01

    In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year (IPY) activities. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A): a 35.6 GHz single-pass interferometer. Although the technique of using radar interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. The proof-of-concept demonstration was achieved by interfacing Ka-band RF and antenna hardware with the Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR). The GLISTIN-A was implemented as a custom installation of the NASA Dryden Flight Research Center Gulfstream III. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. Processing challenges were encountered in achieving the accuracy requirements on several fronts including, aircraft motion sensitivity, multipath and systematic drifts. However, through a combination of processor optimization, a modified phase-screen and motion-compensation implementations were able to minimize the impact of these systematic error sources. We will present results from the IPY data collections including system performance evaluations and imagery. This includes a large area digital elevation model (DEM) collected over Jakobshavn glacier as an illustrative science data product. Further, by intercomparison with the NASA Wallops Airborne Topographic Mapper (ATM) and calibration targets we quantify the interferometric penetration bias of the Ka-band returns into the snow cover. Following the success of the IPY campaign, we are funded under the Earth Science Techonology Office (ESTO) Airborne Innovative Technology Transition (AITT) program to transition GLISTIN-A to a permanently-available pod-only system compatible with unpressurized operation. In addition

  1. Strong surface Fermi level pinning and surface state density in GaAs0.65Sb0.35 surface intrinsic-n+ structure

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Lin, H. C.; Tsai, J. T.; Cheng, C. S.; Lu, Y. T.; Hwang, J. S.; Chiu, P. C.; Chen, S. H.; Chyi, J. I.; Wang, T. S.

    2009-10-01

    Room-temperature photoreflectance is employed to investigate the Fermi level pinning and surface state density of a GaAs0.65Sb0.35 surface intrinsic-n+ (SIN+) structure. Based on the thermionic emission theory and current-transport theory, the surface Fermi level VF and surface state density are determined experimentally from the dependence of the surface barrier height on the pump beam intensity. The surface state density Ds is estimated as approximately 1.91×1013 cm-2, and the Fermi level is located 0.63 eV below the conduction band edge at the surface. By sequential etching of the intrinsic layer, the Fermi level pinning in GaAs0.65Sb0.35 SIN+ structure is further demonstrated.

  2. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    SciTech Connect

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-15

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  3. Experimental studies of W-band accelerator structures at high field

    NASA Astrophysics Data System (ADS)

    Hill, Marc Edward

    2001-06-01

    A high-gradient electron accelerator is desired for high- energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, higher than any collider. Also presented are the first measurements of the quadrapole component of the monopole accelerating field.

  4. Wide-band-gap wrinkled nanoribbon-like structures in a continuous metallic graphene sheet

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Zhou, Mei; Qiao, Jia-Bin; Duan, Wenhui; He, Lin

    2016-08-01

    To generate a moderate band gap in a graphene monolayer is a very important but rather difficult task. A rare working solution of this problem is to cut it into one-dimensional (1D) nanometer-wide ribbons. Here we show that, instead of cutting the graphene monolayer, a wide band gap can be created in a unique 1D strained structure, i.e., a wrinkled graphene-nanoribbon-like (GNR-like) structure, of a continuous graphene sheet via strong hybridization between the graphene and the metal substrate. The wrinkled GNR-like structures with widths of only a few nanometers are observed in a continuous graphene sheet grown on a Rh foil by using thermal strain engineering. Spatially resolved scanning tunneling spectroscopy revealed a band-gap opening of a few hundred meV in the GNR-like structure in an otherwise continuous metallic graphene sheet, directly demonstrating the realization of a metallic-semiconducting-metallic junction entirely in a graphene monolayer.

  5. Role of band 3 in the erythrocyte membrane structural changes under thermal fluctuations -multi scale modeling considerations.

    PubMed

    Pajic-Lijakovic, Ivana

    2015-12-01

    An attempt was made to discuss and connect various modeling approaches on various time and space scales which have been proposed in the literature in order to shed further light on the erythrocyte membrane rearrangement caused by the cortex-lipid bilayer coupling under thermal fluctuations. Roles of the main membrane constituents: (1) the actin-spectrin cortex, (2) the lipid bilayer, and (3) the trans membrane protein band 3 and their course-consequence relations were considered in the context of the cortex non linear stiffening and corresponding anomalous nature of energy dissipation. The fluctuations induce alternating expansion and compression of the membrane parts in order to ensure surface and volume conservation. The membrane structural changes were considered within two time regimes. The results indicate that the cortex non linear stiffening and corresponding anomalous nature of energy dissipation are related to the spectrin flexibility distribution and the rate of its changes. The spectrin flexibility varies from purely flexible to semi flexible. It is influenced by: (1) the number of band 3 molecules attached to single spectrin filaments, and (2) phosphorylation of the actin-junctions. The rate of spectrin flexibility changes depends on the band 3 molecules rearrangement.

  6. Precisely determined the surface displacement by the ionospheric mitigation using the L-band SAR Interferometry over Mt.Baekdu

    NASA Astrophysics Data System (ADS)

    Lee, Won-Jin; Jung, Hyung-Sup; Park, Sun-Cheon; Lee, Duk Kee

    2016-04-01

    Mt. Baekdu (Changbaishan in Chinese) is located on the border between China and North Korea. It has recently attracted the attention of volcanic unrest during 2002-2005. Many researchers have applied geophysical approaches to detect magma system of beneath Mt.Baekdu such as leveling, Global Positioning System (GPS), gases analysis, seismic analysis, etc. Among them, deformation measuring instruments are important tool to evaluate for volcanism. In contrast to GPS or other deformation measuring instruments, Synthetic Aperture Radar Interferometry (InSAR) has provided high resolution of 2-D surface displacement from remote sensed data. However, Mt. Baekdu area has disturbed by decorrelation on interferogram because of wide vegetation coverage. To overcome this limitation, L-band system of long wavelength is more effective to detect surface deformation. In spite of this advantage, L-band can surfer from more severe ionospheric phase distortions than X- or C- band system because ionospheric phase distortions are inverse proportion to the radar frequency. Recently, Multiple Aperture Interferometry (MAI) based ionospheric phase distortions mitigation method have proposed and investigated. We have applied this technique to the Mt.Baekdu area to measure surface deformation precisely using L-band Advanced Land Observing Satellite-1(ALOS-1) Phased Array type L-band Synthetic Aperture Radar(PALSAR) data acquiring from 2006 to 2011.

  7. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  8. Rotational Structure of the Ir/fir Bands of Small Pahs

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Gruet, S.; Vervloet, M.; Goubet, M.; Huet, T. R.; Georges, R.; Soulard, P.; Asselin, P.

    2013-06-01

    Accurate spectroscopic measurements in the laboratory of PAH molecules are required to better understand their excitation/relaxation processes which could be responsible for the Unidentified Infrared Bands observed in various objects in space. In particular very few is known concerning the rotational structure of the IR/FIR bands of PAHs. We used the high resolution Fourier Transform interferometer of the AILES beamline of synchrotron SOLEIL to record the rotationally resolved spectra of several IR/FIR vibrational modes of naphthalene (C_{10}H_{8}) and its derivatives: quinoline (C_9H_7N), isoquinoline (C_9H_7N), azulene (C_{10}H_{8}), quinoxaline (C_8H_6N_2), quinazoline (C_8H_6N_2). Firstly, the intense band associated with the ν_{46} CH bending out of plane mode of naphthalene recorded under jet conditions (Jet-AILES experiment developed on the AILES beamline by the IPR-LADIR-PhLAM consortium) revealed transitions involving low J and Ka rotational quantum numbers. These new data permitted to accurately fit the ground state rotational constants and to improve the ν_{46} band constants. As a second step, we performed the rotational analysis of the low frequency ν_{47} and ν_{48} bands of naphthalene recorded at room-temperature in the long absorption pathlength cell from ISMO. As a last step, the high resolution spectra of several bands of azulene, quinoline, isoquinoline and quinoxaline were recorded at room temperature and analyzed using the same procedure. All the rotational constants fitted in the present work were compared to the results of anharmonic DFT calculations realized at various levels of accuracy. S. Albert, et al.; Faraday Discussions, 150, 51 (2011)

  9. Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering.

    PubMed

    Yuan, Wei; Zhou, Ning; Shi, Lei; Zhang, Ke-Qin

    2015-07-01

    Because structural color is fadeless and dye-free, structurally colored materials have attracted great attention in a wide variety of research fields. In this work, we report the use of a novel structural coloration strategy applied to the fabrication of colorful colloidal fibers. The nanostructured fibers with tunable structural colors were massively produced by colloidal electrospinning. Experimental results and theoretical modeling reveal that the homogeneous and noniridescent structural colors of the electrospun fibers are caused by two phenomena: reflection due to the band gap of photonic structure and Mie scattering of the colloidal spheres. Our unprecedented findings show promise in paving way for the development of revolutionary dye-free technology for the coloration of various fibers. PMID:26066732

  10. Observation of wakefields in a beam-driven photonic band gap accelerating structure.

    SciTech Connect

    Conde, M.; Yusof, Z.; Power, J. G.; Jing, C.; Gao, F.; Antipov, S.; Xu, P.; Zheng, S.; Chen, H.; Tang, C.; Gai, W.; High Energy Physics; Euclid Techlabs LLC; Tsinghua Univ.

    2009-12-01

    Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG) accelerating structure. Major monopole (TM{sub 01}- and TM{sub 02}-like) and dipole (TM{sub 11}- and TM{sub 12}-like) modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be {approx}10 times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to {approx} 30 MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations.

  11. Band structure and optical properties of amber studied by first principles

    NASA Astrophysics Data System (ADS)

    Rao, Zhi-Fan; Zhou, Rong-Feng

    2013-03-01

    The band structure and density of states of amber is studied by the first principles calculation based on density of functional theory. The complex structure of amber has 214 atoms and the band gap is 5.0 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The optical properties' results show that the reflectivity is low, and the refractive index is 1.65 in visible light range. The highest absorption coefficient peak is at 172 nm and another higher peak is at 136 nm. These convince that the amber would have a pretty sheen and that amber is a good and suitable crystal for jewelry and ornaments.

  12. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    PubMed

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  13. Influence of structural parameters on tunable photonic band gaps modulated by liquid crystals

    NASA Astrophysics Data System (ADS)

    Huang, Aiqin; Zheng, Jihong; Jiang, Yanmeng; Zhou, Zengjun; Tang, Pingyu; Zhuang, Songlin

    2011-10-01

    Tunable photonic crystals (PCs), which are infiltrated with nematic liquid crystals (LCs), tune photonic band gap (PBG) by rotating directors of LCs when applied with the external electrical field. Using the plane wave expansion method, we simulated the PBG structure of two-dimensional tunable PCs with a triangular lattice of circular column, square column and hexagon column, respectively. When PCs are composed of LCs and different substrate materials such as germanium (Ge) and silicon (Si), the influence of structural parameters including column shape and packing ration on PBG is discussed separately. Numerical simulations show that absolute PBG can't be found at any conditions, however large tuning range of polarized wave can be achieved by rotating directors of LCs. The simulation results provide theoretical guidance for the fabrication of field-sensitive polarizer with big tunable band range.

  14. Electronic Properties of ZnO: Band Structure and Directional Compton Profiles

    NASA Astrophysics Data System (ADS)

    Sharma, G.; Mishra, M. C.; Dhaka, M. S.; Kothari, R. K.; Joshi, K. B.; Sharma, B. K.

    2013-12-01

    The electronic band structure and directional Compton profiles (DCPs) of ZnO are studied in this work. Calculations are performed considering a set of three schemes based on density functional theory (DFT), the Hartree-Fock (HF) method, and a hybrid scheme. All band structures predict direct bandgaps. The best agreement with experiment is, however, shown by the hybrid scheme. The three schemes are also applied to compute DCPs along [100], [110], and [001] directions. These are compared with measurements made on single crystals of ZnO employing a 59.54 keV gamma-ray Compton spectrometer. Calculations overestimate the momentum density in the low-momentum region while underestimate the anisotropies. Positions of extremes in anisotropies deduced from calculations are well reproduced by the measured anisotropies in some cases. Within the experimental limits, the DCPs from the HF method are in better agreement with the measurements compared with DFT.

  15. Observations of LHR noise with banded structure by the sounding rocket S29 barium-GEOS

    NASA Technical Reports Server (NTRS)

    Koskinen, H. E. J.; Holmgren, G.; Kintner, P. M.

    1983-01-01

    The measurement of electrostatic noise near the lower hybrid frequency made by the sounding rocket S29 barium-GEOS is reported. The noise is related to the spin of the rocket and reaches well below the local lower hybrid resonance frequency. Above the altitude of 300 km the noise shows banded structure roughly organized by the hydrogen cyclotron frequency. Simultaneously with the banded structure a signal near the hydrogen cyclotron frequency is detected. This signal is also spin modulated. The character of the noise strongly suggests that it is locally generated by the rocket payload disturbing the plasma. If this interpretation is correct, plasma wave experiments on other spacecrafts are expected to observe similar phenomena.

  16. Agronomic effects of multi-year surface-banding of dairy slurry on grass.

    PubMed

    Bittman, S; Kowalenko, C G; Forge, T; Hunt, D E; Bounaix, F; Patni, N

    2007-12-01

    Sleigh-foot application of slurry manure is the best method for applying slurry manure on many forage fields. This study was designed to assess agronomic effectiveness of multi-year surface banding of dairy slurry on a sward of tall fescue (Festuca arundinacea Schreb.). Our study showed that with this application technology, crop recovery of total-N from applied manure in the long-term is only about 77% that of mineral fertilizer. Despite relative inefficiency of N uptake from manure, yield response to manure equaled that to fertilizer at equivalent total-N rates although N-recovery was significantly lower. About 26-32% of applied manure-N was stored in soil organic matter and the buildup of soil-N was related to application rate of organic N. At moderate applications rates (approx. 400 kg Nha(-1)a(-1)), soil N accumulated at about 120 kg ha(-1) annually compared to 98 kg ha(-1)a(-1) of unaccounted N, much of that probably volatilized and denitrified. Alternating between manure and fertilizer improved productivity per unit land area without increasing the rate of N non-recovery per unit of feed produced.

  17. Retrieving sea surface salinity with multiangular L-band brightness temperatures: Improvement by spatiotemporal averaging

    NASA Astrophysics Data System (ADS)

    Camps, A.; Vall-Llossera, M.; Batres, L.; Torres, F.; Duffo, N.; Corbella, I.

    2005-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission was selected in May 1999 by the European Space Agency to provide global and frequent soil moisture and sea surface salinity maps. SMOS' single payload is Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), an L band two-dimensional aperture synthesis interferometric radiometer with multiangular observation capabilities. Most geophysical parameter retrieval errors studies have assumed the independence of measurements both in time and space so that the standard deviation of the retrieval errors decreases with the inverse of square root of the number of measurements being averaged. This assumption is especially critical in the case of sea surface salinity (SSS), where spatiotemporal averaging is required to achieve the ultimate goal of 0.1 psu error. This work presents a detailed study of the SSS error reduction by spatiotemporal averaging, using the SMOS end-to-end performance simulator (SEPS), including thermal noise, all instrumental error sources, current error correction and image reconstruction algorithms, and correction of atmospheric and sky noises. The most important error sources are the biases that appear in the brightness temperature images. Three different sources of biases have been identified: errors in the noise injection radiometers, Sun contributions to the antenna temperature, and imaging under aliasing conditions. A calibration technique has been devised to correct these biases prior to the SSS retrieval at each satellite overpass. Simulation results show a retrieved salinity error of 0.2 psu in warm open ocean, and up to 0.7 psu at high latitudes and near the coast, where the external calibration method presents more difficulties.

  18. Type IIIb bursts and their fine structure in frequency band 18-30 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Rucker, H. O.; Konovalenko, A. A.; Shevchuk, N. V.; Abranin, E. P.; Dorovskyy, V. V.; Lecacheux, A.

    2010-01-01

    This paper deals with Type IIIb bursts, which were observed in the frequency band from 18 to 30 MHz. These bursts have fine frequency structures contrary to usual Type III bursts. The main properties of Type IIIb bursts such as number of striae in a burst, their frequency drift rates, durations, frequency widths of stria, emission fluxes are presented. It is also shown that parameters of stria bursts depend on the position of active areas on the solar disk.

  19. Structural Biomass Estimation from L-band Interferometric SAR and Lidar

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Goncalves, F.; Hensley, S.; dos Santos, J. R.; Graca, P. A.; Dutra, L.

    2011-12-01

    After a review of biomass estimation from interferometric SAR (InSAR) at all bands over the last 15 years, and a brief review of lidar biomass estimation, this paper discusses structure and biomass estimation from simultaneously acquired (not repeat-track) InSAR at L-band. We will briefly discuss the history of regression of biomass to InSAR raw observations (coherence and phase) and structural parameters (height, standard deviation, Fourier component). Lidar biomass estimation from functions of the waveform will be discussed. We review our structural and biomass estimation results for C-band InSAR at vertical polarization for 12-14 baselines in La Selva Biological Station, Costa Rica. C-band vertical scales were between 12 and 100 m for structure estimation, but only between 50 and 100 m for biomass estimation, due to phase calibration problems at the shorter vertical wavelengths (larger baselines). Most of the talk will be spent on L-band, simultaneously acquired multibaseline InSAR, also at La Selva, acquired at vertical polarization. Because the vertical interferometric scale is proportional to the radar altitude times the wavelength over the baseline length, the AirSAR aircraft had to be flown very low (1.2 km) to realize vertical scales at L-band of 60 m and higher. Our lidar biomass estimation suggests that vertical scales of 14 m-100 m are optimal for biomass estimation. We will try three different approaches to biomass estimation with the limited high vertical scales we have available: 1) We will regress biomass to Fourier transforms as in the C-band and lidar study, but with 60 m - 100+ m vertical scales we do not expect accuracies to be as high as for the lidar demonstration (58 Mg/ha RMS scatter of estimated about field biomass for biomasses up to 450 Mg/ha), which used Fourier vertical wavelengths of 15 m-20 m. In addition to using Fourier components, 2) we will report the use of the derivative of the InSAR complex coherence with respect to Fourier

  20. Electronic Structures of Hydrogen and Oxygen Adsorbed Tungsten (3, 2, 0) and Tungsten (8, 7, 0) Surfaces

    NASA Astrophysics Data System (ADS)

    Bao, Zhuo; Bostwick, Aaron; Rotenberg, Eli; Kevan, Stephen

    2011-03-01

    The Valence band electronic structues of Hydrogen adsorbed and Oxygen adsorbed Tungsten stepped surfaces, Tungsten (3, 2, 0) and (8, 7, 0) surface are investigated using angular-resolved photoemission techniques and ab-initio electronic structure calculation methods. The band features of surface states at different Hydrogen and Oxygen coverages are experimentally distinguished by using photon-energy scanning method. Quasi-one- dimensional band features are found in the surface states with saturated Oxygen coverages of both stepped surfaces. The effects of adsorbate coverages on dimensionalities of surface electronic states are studied using high-resolution band mapping methods and ab-initio calculation methods. Thanks to Department of Energy for the financial supporting of this project.

  1. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.

    PubMed

    Zhong, C; Zhang, H; Cao, Q P; Wang, X D; Zhang, D X; Ramamurty, U; Jiang, J Z

    2016-01-01

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and "liquid-like" regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested. PMID:27480496

  2. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhong, C.; Zhang, H.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Ramamurty, U.; Jiang, J. Z.

    2016-08-01

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and “liquid-like” regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested.

  3. Efficient evaluation of epitaxial MoS2 on sapphire by direct band structure imaging

    NASA Astrophysics Data System (ADS)

    Kim, Hokwon; Dumcenco, Dumitru; Fregnaux, Mathieu; Benayad, Anass; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier; Lanes Group, Epfl Team; Leti, Cea Team

    The electronic band structure evaluation of two-dimensional metal dichalcogenides is critical as the band structure can be greatly influenced by the film thickness, strain, and substrate. Here, we performed a direct measurement of the band structure of as-grown monolayer MoS2 on single crystalline sapphire by reciprocal-space photoelectron emission microscopy with a conventional laboratory ultra-violet He I light source. Arrays of gold electrodes were deposited onto the sample in order to avoid charging effects due to the insulating substrate. This allowed the high resolution mapping (ΔE = 0.2 eV Δk = 0.05 Å-1) of the valence states in momentum space down to 7 eV below the Fermi level. The high degree of the epitaxial alignment of the single crystalline MoS2 nuclei was verified by the direct momentum space imaging over a large area containing multiple nuclei. The derived values of the hole effective mass were 2.41 +/-0.05 m0 and 0.81 +/-0.05 m0, respectively at Γ and K points, consistent with the theoretical values of the freestanding monolayer MoS2 reported in the literature. HK acknowledges the french CEA Basic Technological Research program (RTB) for funding.

  4. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.

    PubMed

    Men, H; Lee, K Y K; Freund, R M; Peraire, J; Johnson, S G

    2014-09-22

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for robust topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors. PMID:25321732

  5. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study

    PubMed Central

    Zhong, C.; Zhang, H.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Ramamurty, U.; Jiang, J. Z.

    2016-01-01

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and “liquid-like” regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested. PMID:27480496

  6. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.

    PubMed

    Zhong, C; Zhang, H; Cao, Q P; Wang, X D; Zhang, D X; Ramamurty, U; Jiang, J Z

    2016-08-02

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and "liquid-like" regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested.

  7. Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States

    NASA Astrophysics Data System (ADS)

    Eller, Brianna S.; Yang, Jialing; Nemanich, Robert J.

    2014-12-01

    GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent polarization, these materials are also subject to a bound polarization charge, which influences the electronic state configuration. In this study, the surface band bending of N-face GaN, Ga-face GaN, and Ga-face AlGaN was measured with x-ray photoemission spectroscopy after various cleaning steps to investigate the effects of the polarization. Despite the different surface bound charge on these materials, similar band bending was observed regardless of the magnitude or direction of the charge. Specifically, the band bending varied from -0.1 eV to 0.9 eV on these samples, which supported the models of a Fermi level pinning state at ˜0.4 eV to 0.8 eV below the conduction band. Based on available literature, we suggest this pinning state is indirectly evident of a nitrogen vacancy or gallium-dangling bond.

  8. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction.

    PubMed Central

    Girault, J. A.; Labesse, G.; Mornon, J. P.; Callebaut, I.

    1998-01-01

    The band 4.1 domain was first identified in the red blood cell protein band 4.1, and subsequently in ezrin, radixin, and moesin (ERM proteins) and other proteins, including tumor suppressor merlin/schwannomin, talin, unconventional myosins VIIa and X, and protein tyrosine phosphatases. Recently, the presence of a structurally related domain has been demonstrated in the N-terminal region of two groups of tyrosine kinases: the focal adhesion kinases (FAK) and the Janus kinases (JAK). Additional proteins containing the 4.1/JEF (JAK, ERM, FAK) domain include plant kinesin-like calmodulin-binding proteins (KCBP) and a number of uncharacterized open reading frames identified by systematic DNA sequencing. Phylogenetic analysis of amino acid sequences suggests that band 4.1/JEF domains can be grouped in several families that have probably diverged early during evolution. Hydrophobic cluster analysis indicates that the band 4.1/JEF domains might consist of a duplicated module of approximately 140 residues and a central hinge region. A conserved property of the domain is its capacity to bind to the membrane-proximal region of the C-terminal cytoplasmic tail of proteins with a single transmembrane segment. Many proteins with band 4.1/JEF domains undergo regulated intra- or intermolecular homotypic interactions. Additional properties common to band 4.1/JEF domains of several proteins are binding of phosphoinositides and regulation by GTPases of the Rho family. Many proteins with band 4. 1/JEF domains are associated with the actin-based cytoskeleton and are enriched at points of contact with other cells or the extracellular matrix, from which they can exert control over cell growth. Thus, proteins with band 4.1/JEF domain are at the crossroads between cytoskeletal organization and signal transduction in multicellular organisms. Their importance is underlined by the variety of diseases that can result from their mutations. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:9990861

  9. Measurement of valence band structure in boron-zinc-oxide films by making use of ion beams

    SciTech Connect

    Uhm, Han S.; Kwon, Gi C.; Choi, Eun H.

    2011-12-26

    Measurement of valence band structure in the boron-zinc oxide (BZO) films was developed using the secondary electron emission due to the Auger neutralization of ions. The energy distribution profile of the electrons emitted from boron-zinc-oxide films was measured and rescaled so that Auger self-convolution arose; thus, revealing the detailed structure of the valence band and suggesting that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film.

  10. Structurally tuned iridescent surfaces inspired by nature

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Rassart, Marie; Vandenbem, Cédric; Welch, Victoria; Pol Vigneron, Jean; Lucas, Stéphane

    2008-01-01

    Iridescent surfaces exhibit vivid colours which change with the angle of incidence or viewing due to optical wave interference in the multilayer structure present at the wavelength scale underneath the surface. In nature, one can find examples of iridescent Coleoptera for which the hue changes either greatly or slightly with the angle. Because these species typically make these structures from a single biological material (usually chitin) and air or water as the low refractive index component, they have evolved by adjusting the layer thicknesses in order to display quite different iridescent aspects. Taking inspiration from this proven strategy, we have designed and fabricated periodic TiO2/SiO2 multilayer films in order to demonstrate the concept of structurally tuned iridescent surfaces. Titanium or silicon oxide layers were deposited on a glass substrate using dc reactive or RF magnetron sputtering techniques, respectively. Two structures were designed for which the period and the TiO2/SiO2 layer thickness ratio were varied in such a way that the films displayed radically different iridescent aspects: a reddish-to-greenish changing hue and a stable bluish hue. The fabricated samples were characterized through specular reflectance/transmittance measurements. Modelling of transmittance spectra using standard multilayer film theory confirmed the high quality of the twelve-period Bragg reflectors. The chromaticity coordinates, which were calculated from measured reflectance spectra taken at different angles, were in accordance with theoretical predictions.

  11. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe

    SciTech Connect

    Shi, Guangsha; Kioupakis, Emmanouil

    2015-02-14

    We used density functional and many-body perturbation theory to calculate the quasiparticle band structures and electronic transport parameters of p-type SnSe both for the low-temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect band gap of 0.829 eV, while the Cmcm has a direct band gap of 0.464 eV. Both phases exhibit multiple local band extrema within an energy range comparable to the thermal energy of carriers from the global extrema. We calculated the electronic transport coefficients as a function of doping concentration and temperature for single-crystal and polycrystalline materials to understand the previous experimental measurements. The electronic transport coefficients are highly anisotropic and are strongly affected by bipolar transport effects at high temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at high temperature when doped in the 10{sup 19}–10{sup 20 }cm{sup −3} range.

  12. Band Structure of Helimagnons in MnSi Resolved by Inelastic Neutron Scattering.

    PubMed

    Kugler, M; Brandl, G; Waizner, J; Janoschek, M; Georgii, R; Bauer, A; Seemann, K; Rosch, A; Pfleiderer, C; Böni, P; Garst, M

    2015-08-28

    A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh. Its spin-wave excitations-the helimagnons-experience Bragg scattering off this periodicity, leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering, the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter. PMID:26371678

  13. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  14. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE PAGESBeta

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  15. Broad-band ambient noise surface wave tomography: Technique development and application across the United States

    NASA Astrophysics Data System (ADS)

    Bensen, Gregory David

    2007-05-01

    In recent years, it has been shown that surface wave signals can be extracted from high-quality empirical Green functions (EGF) obtained through cross-correlation of long ambient noise timeseries. Early work showed that Rayleigh wave components of EGFs could be created in a narrow period band under certain background noise characteristics. Such Rayleigh wave signals were used to develop shear wave tomography models of several geographic regions with unprecedented high resolution. However, questions remained regarding the robustness of these signals and their range of applicability. My work focuses on two problems. The first is researching the best method for computing, measuring and selecting high-quality EGFs. The second is to use this new technique to create a three-dimensional (3D) velocity model of the continental United States. Testing a variety of temporal and spectral normalization techniques yields an optimal method of creating EGFs. These signals are evaluated for robustness in a variety of noise environments effectively broadening the bandwidth from 7.5-20 s period to 6-100 s period. An automated dispersion measurement technique is presented as well as a preferred method of measurement selection and certain "best practices" are proposed for future study. Applying this method across the continental United States I develop Rayleigh and Love wave group and phase speed dispersion maps from 8-70 s period. The resulting set of dispersion maps possesses unprecedented high resolution and bandwidth for continental scale surface wave investigations and unites diverse tectonic regions into a coherent model. I invert the dispersion maps for a 3D shear velocity model with resolution from the surface to 150 km depth using a two-step procedure. First is a linearized inversion for the best fitting velocity model. Second is a Monte-Carlo re-sampling to develop an ensemble of models of sufficient quality and to generate uncertainty estimates at all points. The resulting

  16. The Glacier and Ice Surface Topography Interferometer: UAVSAR's Single-pass Ka-Band Interferometer

    NASA Astrophysics Data System (ADS)

    Moller, D.; Hensley, S.; Wu, X.; Michel, T.; Muellerschoen, R.; Carswell, J.; Fisher, C.; Miller, T.; Milligan, L.; Sadowy, G.; Sanchez-Barbetty, M.; Lou, Y.

    2013-12-01

    In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year (IPY) activities. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A): a 35.6 GHz single-pass interferometer. The proof-of-concept demonstration was achieved by interfacing Ka-band RF and antenna hardware with the Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR). The GLISTIN-A was implemented as a custom installation of the NASA Dryden Flight Research Center Gulfstream III. Instrument performance indicated swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. Following the success of the IPY campaign, the Earth Science Techonology Office (ESTO) Airborne Innovative Technology Transition (AITT) program funded the upgrade of GLISTIN-A to a permanently-available pod-only system compatible with unpressurized operation. The AITT made three fundamental upgrades to improve system performance: 1. State-of-the-art solid-state power amplifiers (80W peak) were integrated directly on the antenna panel reducing front-end losses; 2. A ping-pong capability was incorporated to effectively double the baseline thereby improving height measurement precision by a factor of two; and 3. A high-fidelity calibration loop was implemented which is critical for routine processing. Upon completion of our engineering flights in February 2013, GLISTIN-A flew a brief campaign to Alaska (4/24-4/27/13). The purpose was to fully demonstrate GLISTIN-A's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Furthermore, the question of the utility of GLISTIN-A for sea-ice mapping, tracking and inventory has received a great deal of interest. To address this GLISTIN-A collected data over sea-ice in the Beaufort sea including an underflight of CryoSAT II. Note that there are

  17. Fracture Induced Sub-Band Absorption as a Precursor to Optical Damage on Fused Silica Surfaces

    SciTech Connect

    Miller, P E; Bude, J D; Suratwala, T I; Shen, N; Laurence, T A; Steele, W A; Menapace, J; Feit, M D; Wong, L L

    2010-03-05

    The optical damage threshold of indentation induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damaged testing, SEM, optical, and photoluminescence microscopy. Localized polishing, chemical etching, and the control of indentation morphology were used to isolate the structural features which limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355nm, 3ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35J/cm{sup 2}. Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.

  18. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  19. Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method

    NASA Astrophysics Data System (ADS)

    Osadchy, A. V.; Volotovskiy, S. G.; Obraztsova, E. D.; Savin, V. V.; Golovashkin, D. L.

    2016-08-01

    In this paper we present the results of band structure computer simulation of GaSe- based nanostructures using the empirical pseudopotential method. Calculations were performed using a specially developed software that allows performing simulations using cluster computing. Application of this method significantly reduces the demands on computing resources compared to traditional approaches based on ab-initio techniques and provides receiving the adequate comparable results. The use of cluster computing allows to obtain information for structures that require an explicit account of a significant number of atoms, such as quantum dots and quantum pillars.

  20. Infrared optical properties and band structure of α-Sn/Ge superlattices on Ge substrates

    NASA Astrophysics Data System (ADS)

    Olajos, J.; Vogl, P.; Wegscheider, W.; Abstreiter, G.

    1991-11-01

    Short-period α-Sn/Ge strained-layer superlattices have been prepared on [001] Ge substrates by low-temperature molecular-beam epitaxy. We have achieved almost-defect-free and thermally stable single-crystalline structures. Photocurrent measurements in a series of Sn1Gem (m>10) superlattices reveal a shift of the fundamental energy gap to smaller energies with decreasing Ge layer thickness m, in good agreement with band-structure calculations. A direct fundamental energy gap is predicted for a slightly increased lateral lattice constant in α-Sn/Ge superlattices.

  1. The properties of photoconductivity of the Ila-type diamond related to the band gap structure

    NASA Astrophysics Data System (ADS)

    Altukhov, A. A.; Feshchenko, V. S.; Shepelev, V. A.; Popov, A. V.

    2016-08-01

    We investigate the properties of the photosensitivity spectra of the UV photodetectors based on natural diamond. The effect of the structural defects associated with nitrogen impurities to the photosensitivity is analyzed. We confirm that the polychrome light bias application enhances the photosensitivity of these detectors in the spectral range 240-340 nm due to the quasi-two-photon absorption which originates due to the complicated structure of the band gap impurity states of a natural diamond. The possibility to influence the photosensitivity spectra in the λ<220 nm spectral range of these detectors by the polychrome light bias application is revealed.

  2. Structure and method for controlling band offset and alignment at a crystalline oxide-on-semiconductor interface

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2003-11-25

    A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.

  3. Theoretical study of influencing factors on the dispersion of bulk band-gap edges and the surface states in topological insulators Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3}

    SciTech Connect

    Rusinov, I. P. Nechaev, I. A.; Chulkov, E. V.

    2013-06-15

    The dispersion of the band-gap edge states in bulk topological insulators Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} is considered within density functional theory. The dependences of this dispersion both on the approximation used for an exchange-correlation functional at fixed unit cell parameters and atomic positions and on these parameters and positions that are obtained upon structural relaxation performed using a certain approximated functional are analyzed. The relative position of the Dirac point of topologically protected surface states and the valence band maximum in the surface electronic structure of the topological insulators is discussed.

  4. Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing

    NASA Astrophysics Data System (ADS)

    Cha, Hyungrae; Lee, Jeongkug; Jordan, Luke R.; Lee, Si Hoon; Oh, Sang-Hyun; Kim, Hyo Jin; Park, Juhun; Hong, Seunghun; Jeon, Heonsu

    2015-02-01

    We report on the conformal surface passivation of photonic crystal (PC) laser devices with an ultrathin dielectric layer. Air-bridge-type Γ-point band-edge lasers (BELs) are fabricated by forming a honeycomb lattice two-dimensional PC structure into an InGaAsP multiple-quantum-well epilayer. Atomic layer deposition (ALD) is employed for conformal deposition of a few-nanometer-thick SiO2 layer over the entire device surface, not only on the top and bottom surfaces of the air-bridge membrane but also on the air-hole sidewalls. Despite its extreme thinness, the ALD passivation layer is found to protect the InGaAsP BEL devices from harsh chemicals. In addition, the ALD-SiO2 is compatible with the silane-based surface chemistry, which allows us to use ALD-passivated BEL devices as label-free biosensors. The standard streptavidin-biotin interaction shifts the BEL lasing wavelength by ~1 nm for the dipole-like Γ-point band-edge mode. A sharp lasing line (<0.2 nm, full width at half-maximum) and a large refractive index sensitivity (~163 nm per RIU) produce a figure of merit as high as ~800 for our BEL biosensor, which is at least an order of magnitude higher than those of more common biosensors that rely on a broad resonance peak, showing that our nanolaser structures are suitable for highly sensitive biosensor applications.

  5. Surface passivation of a photonic crystal band-edge laser by atomic layer deposition of SiO2 and its application for biosensing.

    PubMed

    Cha, Hyungrae; Lee, Jeongkug; Jordan, Luke R; Lee, Si Hoon; Oh, Sang-Hyun; Kim, Hyo Jin; Park, Juhun; Hong, Seunghun; Jeon, Heonsu

    2015-02-28

    We report on the conformal surface passivation of photonic crystal (PC) laser devices with an ultrathin dielectric layer. Air-bridge-type Γ-point band-edge lasers (BELs) are fabricated by forming a honeycomb lattice two-dimensional PC structure into an InGaAsP multiple-quantum-well epilayer. Atomic layer deposition (ALD) is employed for conformal deposition of a few-nanometer-thick SiO2 layer over the entire device surface, not only on the top and bottom surfaces of the air-bridge membrane but also on the air-hole sidewalls. Despite its extreme thinness, the ALD passivation layer is found to protect the InGaAsP BEL devices from harsh chemicals. In addition, the ALD-SiO2 is compatible with the silane-based surface chemistry, which allows us to use ALD-passivated BEL devices as label-free biosensors. The standard streptavidin-biotin interaction shifts the BEL lasing wavelength by ∼1 nm for the dipole-like Γ-point band-edge mode. A sharp lasing line (<0.2 nm, full width at half-maximum) and a large refractive index sensitivity (∼163 nm per RIU) produce a figure of merit as high as ∼800 for our BEL biosensor, which is at least an order of magnitude higher than those of more common biosensors that rely on a broad resonance peak, showing that our nanolaser structures are suitable for highly sensitive biosensor applications.

  6. A Local-Density Band Theory for the Fermi Surface of the Heavy-Electron Compound CeRu2Si2

    NASA Astrophysics Data System (ADS)

    Yamagami, Hiroshi; Hasegawa, Akira

    1993-02-01

    On the basis of the itinerant-electron model for the 4f electrons, the energy band structure and the Fermi surface are calculated for the metamagnetic heavy-electron compound CeRu2Si2 having the low-temperature electronic specific heat coefficient γ of 350 mJ/K2 mol. by a self-consistent symmetrized relativistic APW method with the exchange and correlation potential in a local-density approximation. The main Fermi surface consists of a large closed hole sheet and a complicated electron sheet like a jungle gym. The Fermi surface topology is consistent with the experimental result for the high-field magneto-resistance. By comparison with the electronic structure of LaRu2Si2, effects of the 4f bands on the Bloch states on the Fermi surface in CeRu2Si2 are investigated in detail. Strong evidences for existence of the electron sheet are found in available experimental de Haas-van Alphen frequencies. The enhancement factor for γ is estimated as 38.

  7. Quasi-particle band structure of potassium-doped few-layer black phosphorus with GW approximation

    NASA Astrophysics Data System (ADS)

    Kim, Han-Gyu; Baik, Seung Su; Choi, Hyoung Joon

    We calculate the quasi-particle band structure of pristine and potassium-doped black phosphorus (BP) by using the GW approximation. We obtain band gaps of pristine bulk and few-layer BP and compare them with the result of the density functional calculations and experimental measurements. For potassium-doped cases, we calculate the electronic band structure of potassium-doped few-layer BPs with various doping densities. We obtain the critical doping density for the band-gap closing, and the energy-band dispersions when the band gap is inverted. We discuss Dirac semimetal properties of doped few-layer BPs obtained by the GW approximation. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2015-C3-039).

  8. Surface chemistry and structure of beryllium oxide

    SciTech Connect

    Fuller, E.L. Jr.; Eager, M.H.; Smithwick, R.W. III; Smyrl, N.R.

    1982-02-01

    Detailed examination of nitrogen sorption isotherms related to the surface chemistry and structure of high-purity beryllium oxide and the products of alkali treatment aid in a better understanding of the topochemical problems encountered in the production of ceramic items. Details are corroborated by additional techniques: diffuse reflectance infrared Fourier transform (DRIFT); mercury intrusion porosimetry (MIP); and scanning electron microscopy (SEM). The results correlate well with studies on other oxides when the unique thermophysical properties of this material are considered.

  9. The hybridizations of cobalt 3 d bands with the electron band structure of the graphene/cobalt interface on a tungsten substrate

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoong; Hwang, Choongyu; Chung, Nak-Kwan; N'Diaye, A. D.; Schmid, A. K.; Denlinger, Jonathan

    2016-08-01

    The interface between graphene and a ferromagnetic substrate has attracted recent research interests due to its potential for spintronic applications. We report an angle-resolved photoemission spectroscopy study on the interface between graphene and cobalt epitaxially grown on a tungsten substrate. We find that the electron band structure of the interface exhibits clear discontinuities at the crossing points with cobalt 3 d bands. These observations indicate strong hybridizations between the electronic states in the interface and provide an important clue to understand the intriguing electromagnetic properties of the graphene/ferromagnet interface.

  10. Crustal Structure Beneath Taiwan Using Frequency-band Inversion of Receiver Function Waveforms

    NASA Astrophysics Data System (ADS)

    Tomfohrde, D. A.; Nowack, R. L.

    Receiver function analysis is used to determine local crustal structure beneath Taiwan. We have performed preliminary data processing and polarization analysis for the selection of stations and events and to increase overall data quality. Receiver function analysis is then applied to data from the Taiwan Seismic Network to obtain radial and transverse receiver functions. Due to the limited azimuthal coverage, only the radial receiver functions are analyzed in terms of horizontally layered crustal structure for each station. In order to improve convergence of the receiver function inversion, frequency-band inversion (FBI) is implemented, in which an iterative inversion procedure with sequentially higher low-pass corner frequencies is used to stabilize the waveform inversion. Frequency-band inversion is applied to receiver functions at six stations of the Taiwan Seismic Network. Initial 20-layer crustal models are inverted for using prior tomographic results for the initial models. The resulting 20-1ayer models are then simplified to 4 to 5 layer models and input into an alternating depth and velocity frequency-band inversion. For the six stations investigated, the resulting simplified models provide an average estimate of 38 km for the Moho thickness surrounding the Central Range of Taiwan. Also, the individual station estimates compare well with the recent tomographic model of and the refraction results of Rau and Wu (1995) and the refraction results of Ma and Song (1997).

  11. Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band.

    PubMed

    Bourlier, Christophe

    2006-08-20

    The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method. PMID:16892130

  12. Design optimization of wide-band Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface.

    PubMed

    Saijyou, Kenji; Okuyama, Tomonao

    2010-05-01

    Wide-band Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface has been proposed to improve sonar detection performance in shallow water. This transducer is driven by utilizing two vibration modes, i.e., longitudinal and bending. Consequently, to achieve a wide-band signal transmission by this transducer, the phase difference between signals, which drive the ring-stack and the bending-disk piezoelectric resonators has to be optimized. In this paper, optimization approach of this phase difference in the design process is proposed. The effectiveness of this approach was confirmed by water-pool experiments.

  13. A new algorithm for sea-surface wind-speed retrieval based on the L-band radiometer onboard Aquarius

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Jie; Fan, Chenqing; Wang, Jing

    2015-09-01

    Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However, benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature (TB), the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article, the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented, the algorithm for which is developed and validated using multisource wind speed data, including WindSat microwave radiometer and National Data Buoy Center buoy data, and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes, respectively. Consequently, the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.

  14. Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure

    NASA Astrophysics Data System (ADS)

    Behera, Harihar; Mukhopadhyay, Gautam

    2012-10-01

    We present ab initio calculations which show that the direct-band-gap, effective masses and Fermi velocities of charge carriers in ZnO monolayer (ML-ZnO) in graphene-like honeycomb structure are all tunable by application of in-plane homogeneous biaxial strain. Within our simulated strain limit of ±10%, the band gap remains direct and shows a strong non-linear variation with strain. Moreover, the average Fermi velocity of electrons in unstrained ML-ZnO is of the same order of magnitude as that in graphene. The results promise potential applications of ML-ZnO in mechatronics/straintronics and other nano-devices such as the nano-electromechanical systems (NEMS) and nano-optomechanical systems (NOMS).

  15. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  16. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  17. A novel band-pass filter based on a periodically drilled SIW structure

    NASA Astrophysics Data System (ADS)

    Coves, A.; Torregrosa-Penalva, G.; San-Blas, A. A.; Sánchez-Soriano, M. A.; Martellosio, A.; Bronchalo, E.; Bozzi, M.

    2016-04-01

    The design and fabrication of a band-pass step impedance filter based on high and low dielectric constant sections has been realized on substrate integrated waveguide (SIW) technology. The overall process includes the design of the ideal band-pass prototype filter, where the implementation of the impedance inverters has been carried out by means of waveguide sections of lower permittivity. This can be practically achieved by implementing arrays of air holes along the waveguide. Several SIW structures with and without arrays of air holes have been simulated and fabricated in order to experimentally evaluate their relative permittivity. Additionally, the equivalent filter in SIW technology has been designed and optimized. Finally, a prototype of the designed filter has been fabricated and measured, showing a good agreement between measurements and simulations, which demonstrates the validity of the proposed design approach.

  18. Band gap widening and quantum tunnelling effects of Ag/MgO/p-Si MOS structure

    NASA Astrophysics Data System (ADS)

    Kamarulzaman, Norlida; Badar, Nurhanna; Fadilah Chayed, Nor; Firdaus Kasim, Muhd

    2016-10-01

    MgO films of various thicknesses were fabricated via the pulsed laser deposition method. The MgO thin films obtained have the advantage of high quality mirror finish, good densification and of uniform thickness. The MgO thin films have thicknesses of between 43 to 103 nm. They are polycrystalline in nature with oriented growth mainly in the direction of the [200] and [220] crystal planes. It is observed that the band gap of the thin films increases as the thickness decreases due to quantum effects, however, turn-on voltage has the opposite effect. The decrease of the turn-on as well as the tunnelling voltage of the thinner films, despite their larger band gap, is a direct experimental evidence of quantum tunnelling effects in the thin films. This proves that quantum tunnelling is more prominent in low dimensional structures.

  19. Sound waves induce Volkov-like states, band structure and collimation effect in graphene.

    PubMed

    Oliva-Leyva, M; Naumis, Gerardo G

    2016-01-20

    We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones. This leads to a collimation effect of electron conduction due to strain waves.

  20. Sound waves induce Volkov-like states, band structure and collimation effect in graphene.

    PubMed

    Oliva-Leyva, M; Naumis, Gerardo G

    2016-01-20

    We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones. This leads to a collimation effect of electron conduction due to strain waves. PMID:26682732