Sample records for surface brightness tidal

  1. THE DOMINANCE OF METAL-RICH STREAMS IN STELLAR HALOS: A COMPARISON BETWEEN SUBSTRUCTURE IN M31 AND {lambda}CDM MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Font, Andreea S.; Johnston, Kathryn V.

    2009-08-10

    Extensive photometric and spectroscopic surveys of the Andromeda galaxy (M31) have discovered tidal debris features throughout M31's stellar halo. We present stellar kinematics and metallicities in fields with identified substructure from our on-going SPLASH survey of M31 red giant branch stars with the DEIMOS spectrograph on the Keck II 10 m telescope. Radial velocity criteria are used to isolate members of the kinematically cold substructures. The substructures are shown to be metal-rich relative to the rest of the dynamically hot stellar population in the fields in which they are found. We calculate the mean metallicity and average surface brightness ofmore » the various kinematical components in each field, and show that, on average, higher surface brightness features tend to be more metal-rich than lower surface brightness features. Simulations of stellar halo formation via accretion in a cosmological context are used to illustrate that the observed trend can be explained as a natural consequence of the observed dwarf galaxy mass-metallicity relation. A significant spread in metallicity at a given surface brightness is seen in the data; we show that this is due to time effects, namely, the variation in the time since accretion of the tidal streams' progenitor onto the host halo. We show that in this theoretical framework a relationship between the alpha-enhancement and surface brightness of tidal streams is expected, which arises from the varying times of accretion of the progenitor satellites onto the host halo. Thus, measurements of the alpha-enrichment, metallicity, and surface brightness of tidal debris can be used to reconstruct the luminosity and time of accretion onto the host halo of the progenitors of tidal streams.« less

  2. GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.

    2012-11-20

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 {+-} 0.2 and extends to amore » projected distance of at least {approx}175 kpc ({approx}2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects.« less

  3. DEEP IMAGING OF M51: A NEW VIEW OF THE WHIRLPOOL’S EXTENDED TIDAL DEBRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    We present deep, wide-field imaging of the M51 system using CWRU’s Burrell Schmidt Telescope at KPNO to study the faint tidal features that constrain its interaction history. Our images trace M51's tidal morphology down to a limiting surface brightness of μ{sub B,lim} ∼ 30 mag arcsec{sup −2} and provide accurate colors (σ{sub B−V}<0.1) down to μ{sub B} ∼ 28. We identify two new tidal streams in the system (the south and northeast plumes) with surface brightnesses of μ{sub B} = 29 and luminosities of ∼10{sup 6}L{sub ⊙,B}. While the northeast plume may be a faint outer extension of the tidalmore » “crown” north of NGC 5195 (M51b), the south plume has no analog in any existing M51 simulation and may represent a distinct tidal stream or disrupted dwarf galaxy. We also trace the extremely diffuse northwest plume out to a total extent of 20′ (43 kpc) from NGC 5194 (M51a) and show it to be physically distinct from the overlapping bright tidal streams from M51b. The northwest plume’s morphology and red color (B−V=0.8) instead argue that it originated from tidal stripping of M51a’s extreme outer disk. Finally, we confirm the strong segregation of gas and stars in the southeast tail and do not detect any diffuse stellar component in the H i portion of the tail. Extant simulations of M51 have difficulty matching both the wealth of tidal structure in the system and the lack of stars in the H i tail, motivating new modeling campaigns to study the dynamical evolution of this classic interacting system.« less

  4. Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi

    2012-11-01

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  6. Galaxy Interactions, Tidal Debris, and the Origin of Intracluster Light in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Gregg, Michael

    1999-07-01

    We propose to obtain deep WFPC2 and parallel STIS images of low surface brightness tidal debris that we have recently discovered in the Coma cluster; the material is being stripped from its parent galaxy and added to the general cluster background. These images will enable direct study of the brightest blue and red supergiants, globular clusters, and star forming regions which may be present, or will place strong limits on the numbers of such objects and any recent star formation. We also propose similar observations of the parent spiral, NGC4911, in the core of Coma; it is losing its ISM to the hot cluster gas and as well as the low surface brightness tidal debris. By imaging this galaxy, we will get a high resolution look at the interaction between the galaxy and interstellar medium, as well as any ram-pressure induced star formation. The tidal features in Coma appear to be adding material to the background light and cD galaxy envelopes at a significant rate; determining the nature of the added stellar population and the interactions which produce it are critical to understanding the formation and evolution of cD galaxies and clusters.

  7. Identification of old tidal dwarfs near early-type galaxies from deep imaging and H I observations

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain; Paudel, Sanjaya; McDermid, Richard M.; Cuillandre, Jean-Charles; Serra, Paolo; Bournaud, Frédéric; Cappellari, Michele; Emsellem, Eric

    2014-05-01

    It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group discs of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and H I surveys with the Canada-France-Hawaii Telescope (CFHT) MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic observations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in the same collisional debris, and thus most likely of tidal origin as well. Despite several Gyr of evolution close to their parent galaxies, they kept a large gas reservoir. Their central surface brightness is low and their effective radius much larger than that of typical dwarf galaxies of the same mass. This possibly provides us with criteria to identify tidal objects which can be more easily checked than the traditional ones requiring deep spectroscopic observations. In view of the above, we discuss the survival time of TDGs and question the tidal origin of the DoSs.

  8. Evidence of Absence of Tidal Features in the Outskirts of Ultra Diffuse Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Mowla, Lamiya; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Yagi, Masafumi; Koda, Jin

    2017-12-01

    We study the presence of tidal features associated with ultra diffuse galaxies (UDGs) in galaxy clusters. Specifically, we stack deep Subaru images of UDGs in the Coma cluster to determine whether they show position angle twists at large radii. Selecting galaxies with central surface brightness μ (g,0)> 24 magarcsec-2 and projected half-light radius {r}e> 1.5 {kpc}, we identify 287 UDGs in the Yagi et al. catalog of low surface brightness Coma objects. The UDGs have apparent spheroidal shapes with median Sérsic index < n> =0.8 and median axis ratio < b/a> =0.7. The images are processed by masking all background objects and rotating to align the major axis before stacking them in bins of properties such as axis ratio, angle of major axis with respect to the cluster center, and separation from cluster center. Our image stacks reach further than 7 kpc (≳4r e). Analysis of the isophotes of the stacks reveals that the ellipticity remains constant up to the last measured point, which means that the individual galaxies have a non-varying position angle and axis ratio and show no evidence for tidal disruption out to ˜ 4{r}e. We demonstrate this explicitly by comparing our stacks with stacks of model UDGs with and without tidal features in their outskirts. We infer that the average tidal radius of the Coma UDGs is >7 kpc and estimate that the average dark matter fraction within the tidal radius of the UDGs inhabiting the innermost 0.5 Mpc of Coma is >99%.

  9. A population of faint low surface brightness galaxies in the Perseus cluster core

    NASA Astrophysics Data System (ADS)

    Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James

    2017-09-01

    We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.

  10. Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Chan, Queenie H. S.; Gounelle, Matthieu; Fries, Marc

    2016-01-01

    Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO4•6(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Ceres

  11. Timing of water plume eruptions on Enceladus explained by interior viscosity structure

    NASA Astrophysics Data System (ADS)

    Běhounková, Marie; Tobie, Gabriel; Čadek, Ondřej; Choblet, Gaël; Porco, Carolyn; Nimmo, Francis

    2015-08-01

    At the south pole of Saturn's icy moon Enceladus, eruptions of water vapour and ice emanate from warm tectonic ridges. Observations in the infrared and visible spectra have shown an orbital modulation of the plume brightness, which suggests that the eruption activity is influenced by tidal forces. However, the observed activity seems to be delayed by several hours with respect to predictions based on simple tidal models. Here we simulate the viscoelastic tidal response of Enceladus with a full three-dimensional numerical model and show that the delay in eruption activity may be a natural consequence of the viscosity structure in the south-polar region and the size of the putative subsurface ocean. By systematically comparing simulations of variations in normal stress along faults with plume brightness data, we show that the observed activity is reproduced for two classes of interior models with contrasting thermal histories: a low-viscosity convective region above a polar sea extending about 45°-60° from the south pole at a depth below the surface as small as 30 km, or a convecting ice shell of 60-70 km in thickness above a global ocean. Our analysis further shows that the eruption activity is controlled by the average normal stress applied across the cracks, thus providing a constraint on the eruption mechanism.

  12. The Burrell Schmidt Deep Virgo Survey: Tidal Debris, Galaxy Halos, and Diffuse Intracluster Light in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.; Rudick, Craig; Janowiecki, Steven; Morrison, Heather; Slater, Colin; Watkins, Aaron

    2017-01-01

    We present the results of a deep imaging survey of the Virgo cluster of galaxies, concentrated around the cores of Virgo subclusters A and B. The goal of this survey was to detect and study very low surface brightness features present in Virgo, including discrete tidal features, the faint halos of luminous galaxies, and the diffuse intracluster light (ICL). Our observations span roughly 16 degrees2 in two filters, reaching a 3σ limiting depth of {μ }B = 29.5 and {μ }V = 28.5 mag arcsec-2. At these depths, our limiting systematic uncertainties are astrophysical: variations in faint background sources as well as scattered light from galactic dust. We show that this dust-scattered light is well traced by deep far-infrared imaging, making it possible to separate it from true diffuse light in Virgo. We use our imaging to trace and measure the color of the diffuse tidal streams and ICL in the Virgo core near M87, in fields adjacent to the core including the M86/M84 region, and to the south of the core around M49 and subcluster B, along with the more distant W{}\\prime cloud around NGC 4365. Overall, the bulk of the projected ICL is found in the Virgo core and within the W{}\\prime cloud; we find little evidence for an extensive ICL component in the field around M49. The bulk of the ICL we detect is fairly red in color (B - V = 0.7-0.9), indicative of old, evolved stellar populations. Based on the luminosity of the observed ICL features in the cluster, we estimate a total Virgo ICL fraction of 7%-15%. This value is somewhat smaller than that expected for massive, evolved clusters, suggesting that Virgo is still in the process of growing its extended ICL component. We also trace the shape of M87's extremely boxy outer halo out to ˜150 kpc, and show that the current tidal stripping rate from low luminosity galaxies is insufficient to have built M87's outer halo over a Hubble time. We identify a number of previously unknown low surface brightness structures around galaxies projected close to M86 and M84. The extensive diffuse light seen in the infalling W{}\\prime cloud around NGC 4365 is likely to be subsumed in the general Virgo ICL component once the group enters the cluster, illustrating the importance of group infall in generating ICL. Finally, we also identify another large and extremely low surface brightness ultradiffuse galaxy, likely in the process of being shredded by the cluster tidal field. With the survey complete, the full imaging data set is now available for public release.

  13. A Long-Term Space Astrophysics Research Program. An X-Ray Perspective of the Components and Structure of Galaxies

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.

    1998-01-01

    We present optical and archival X-ray data on the disturbed morphology radio elliptical NGC 1316 (Fornax A) that displays numerous low surface brightness shells, loops and tails. An extended (81x27 min or 9x3 kpc) emission line region (EELR) at a projected distance of 35 kpc from the nucleus has been discovered in a approximately 9Ox35 kpc, approximately 3.Ox1O(solar luminosity(B)) tidal tail. The position and extreme size of the EELR suggest it is related to the merger process. We suggest that the ionization mechanism of the EELR is shock excitation, and the gas is remnant from the merger progenitor. X-ray emission is detected near two tidal tails. Hot, approximately 5 x 10(exp 6)K gas is probably the predominant gas component in the tidal tail ISM. However based on the current tidal tail (cold + warm + hot) gas mass, a large fraction of the tidal tail progenitor gas may already reside in the nucleus of NGC 1316. The numerous and varied tidal tail system suggests that a disk-disk or disk-E merger could have taken place greater than or equal to 1 Gyr ago, whilst a low mass, gas rich galaxy started to merge approximately 0.5 Gyr ago.

  14. Tidal radii of the globular clusters M 5, M 12, M 13, M 15, M 53, NGC 5053 and NGC 5466 from automated star counts.

    NASA Astrophysics Data System (ADS)

    Lehmann, I.; Scholz, R.-D.

    1997-04-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962) we derived the following structural parameters: tidal radius r_t_, core radius r_c_ and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al. 1995).

  15. VizieR Online Data Catalog: Tidal radii of 7 globular clusters (Lehmann+ 1997)

    NASA Astrophysics Data System (ADS)

    Lehmann, I.; Scholz, R.-D.

    1998-02-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962AJ.....67..471K) we derived the following structural parameters: tidal radius rt, core radius rc and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al., 1995AJ....109.2553G). (1 data file).

  16. Recreating the chemical evolution of the Sagittarius dwarf spheroidal from its tidal debris

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sheffield, Allyson; Cunha, Katia M. L.; Smith, Verne V.

    2018-06-01

    We present a detailed chemical analysis of the Sagittarius (Sgr) tidal stream based on high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms of the Sgr stream. We select Sgr tidal stream candidates using a 2MASS+WISE color-color selection, combined with LAMOST radial velocities, allowing us to efficiently select Sgr stream members with little contamination from field stars. Sgr is a recently infallen, currently disrupting dwarf spheroidal galaxy, with roughly 70% of the luminosity of the Sgr system residing in the tidal streams. With this study, we provide a link between the (known) chemical properties in the intact Sgr core and the significant portion of the Sgr system's luminosity that is estimated to currently reside in the streams. In this talk, we focus on abundances of alpha-elements, but we will also analyze neutron-capture (both r- and s-process) and iron-peak species. We compare our chemical abundances to the few existing measurements in the stream as well as the numerous results in the Sgr core.

  17. New Algorithm Identifies Tidal Streams Oriented Along our Line-of-Sight

    NASA Astrophysics Data System (ADS)

    Lin, Ziyi; Newberg, Heidi; Amy, Paul; Martin, Charles Harold; Rockcliffe, Keighley E.

    2018-01-01

    The known dwarf galaxy tidal streams in the Milky Way are primarily oriented perpendicular to our line-of-sight. That is because they are concentrated into an observable higher-surface-brightness feature at a particular distance, or because they tightly cluster in line-of-sight velocity in a particular direction. Streams that are oriented along our line-of-sight are spread over a large range of distances and velocities. However, these distances and velocities are correlated in predicable ways. We used a set of randomly oriented Milky Way orbits to develop a technique that bins stars in combinations of distance and velocity that are likely for tidal streams. We applied this technique to identify previously unknown tidal streams in a set of blue horizontal branch stars in the first quadrant from Data Release 10 of the Sloan Digital Sky Survey (SDSS). This project was supported by NSF grant AST 16-15688, a Rensselaer Presidential Fellowship, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  18. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimmo, Francis; Porco, Carolyn; Mitchell, Colin, E-mail: carolyn@ciclops.org

    2014-09-01

    We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion;more » (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.« less

  19. ARC-1979-A79-7093

    NASA Image and Video Library

    1979-07-09

    Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa was taken by Voyager 2 along the evening terminator, which best shows the surface topography of complex narrow ridges, seen as curved bright streaks, 5 to 10 kilometers wide, and typically 100 kilometers in length. The area shown is about 600 by 800 kilometers, and the smallest features visible are about 4 kilometers in size. Also visable are dark bands, more diffused in character, 20 to 40 kilometers wide and hundreds to thousands of kilometers in length. A few features are suggestive of impact craters but are rare, indication that the surface thought to be dominantly ice is still active, perhaps warmed by tidal heating like Io. The larger icy satellites, Callisto and Ganymede, are evidently colder with much more rigid crusts and ancient impact craters. The complex intersection of dark markings and bright ridges suggest that the surface has been fractured and material from beneath has welled up to fill the cracks.

  20. FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Adam M.; Abraham, Roberto G.; Ferguson, Annette M. N.

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide rawmore » material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.« less

  1. Sublimation in bright spots on (1) Ceres.

    PubMed

    Nathues, A; Hoffmann, M; Schaefer, M; Le Corre, L; Reddy, V; Platz, T; Cloutis, E A; Christensen, U; Kneissl, T; Li, J-Y; Mengel, K; Schmedemann, N; Schaefer, T; Russell, C T; Applin, D M; Buczkowski, D L; Izawa, M R M; Keller, H U; O'Brien, D P; Pieters, C M; Raymond, C A; Ripken, J; Schenk, P M; Schmidt, B E; Sierks, H; Sykes, M V; Thangjam, G S; Vincent, J-B

    2015-12-10

    The dwarf planet (1) Ceres, the largest object in the main asteroid belt with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth-Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity. Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5-7) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager. These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles may explain this haze. We conclude that Ceres must have accreted material from beyond the 'snow line', which is the distance from the Sun at which water molecules condense.

  2. Photographer : JPL Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa was taken by Voyager 2 along the evening terminator, which best shows the surface topography of complex narrow ridges, seen as curved bright streaks, 5 to 10 kilometers wide, and typically 100 kilometers in length. The area shown is about 600 by 800 kilometers, and the smallest features visible are about 4 kilometers in size. Also visable are dark bands, more diffused in character, 20 to 40 kilometers wide and hundreds to thousands of kilometers in length. A few features are suggestive of impact craters but are rare, indication that the surface thought to be dominantly ice is still active, perhaps warmed by tidal heating like Io. The larger icy satellites, Callisto and Ganymede, are evidently colder with much more rigid crusts and ancient impact craters. The complex intersection of dark markings and bright ridges suggest that the surface has been fractured and material from beneath has welled up to fill the cracks.

  3. Chasms on Dione

    NASA Image and Video Library

    2015-08-17

    While not bursting with activity like its sister satellite Enceladus, the surface of Dione is definitely not boring. Some parts of the surface are covered by linear features, called chasmata, which provide dramatic contrast to the round impact craters that typically cover moons. The bright network of fractures on Dione (698 miles or 1123 kilometers across) was seen originally at poor resolution in Voyager images and was labeled as "wispy terrain." The nature of this terrain was unclear until Cassini showed that they weren't surface deposits of frost, as some had suspected, but rather a pattern of bright icy cliffs among myriad fractures. One possibility is that this stress pattern may be related to Dione's orbital evolution and the effect of tidal stresses over time. This view looks toward the trailing hemisphere of Dione. North on Dione is up. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 11, 2015. The view was acquired at a distance of approximately 68,000 miles (110,000 kilometers) from Dione. Image scale is 2,200 feet (660 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18327

  4. Tracing the stellar component of low surface brightness Milky Way dwarf galaxies to their outskirts. I. Sextans

    NASA Astrophysics Data System (ADS)

    Cicuéndez, L.; Battaglia, G.; Irwin, M.; Bermejo-Climent, J. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Conn, A. R.; de Boer, T. J. L.; Gallart, C.; Guglielmo, M.; Ibata, R.; McConnachie, A.; Tolstoy, E.; Fernando, N.

    2018-01-01

    Aims: We present results from deep and very spatially extended CTIO/DECam g and r photometry (reaching out to 2 mag below the oldest main-sequence turn-off and covering 20 deg2) around the Sextans dwarf spheroidal galaxy. We aim to use this dataset to study the structural properties of Sextans overall stellar population and its member stars in different evolutionary phases, as well as to search for possible signs of tidal disturbance from the Milky Way, which would indicate departure from dynamical equilibrium. Methods: We performed the most accurate and quantitative structural analysis to-date of Sextans' stellar components by applying Bayesian Monte Carlo Markov chain methods to the individual stars' positions. Surface density maps are built by statistically decontaminating the sample through a matched filter analysis of the colour-magnitude diagram, and then analysed for departures from axisymmetry. Results: Sextans is found to be significantly less spatially extended and more centrally concentrated than early studies suggested. No statistically significant distortions or signs of tidal disturbances were found down to a surface brightness limit of 31.8 mag/arcsec2 in V-band. We identify an overdensity in the central regions that may correspond to previously reported kinematic substructure(s). In agreement with previous findings, old and metal-poor stars such as Blue Horizontal Branch stars cover a much larger area than stars in other evolutionary phases, and bright Blue Stragglers (BSs) are less spatially extended than faint ones. However, the different spatial distribution of bright and faint BSs appears consistent with the general age and metallicity gradients found in Sextans' stellar component. This is compatible with Sextans BSs having formed by evolution of binaries and not necessarily due to the presence of a central disrupted globular cluster, as suggested in the literature. We provide structural parameters for the various populations analysed and make publicly available the photometric catalogue of point-sources as well as a catalogue of literature spectroscopic measurements with updated membership probabilities. Full Tables 2 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A53

  5. The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.

    2005-12-01

    We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Andreas; Burkert, Andreas; Rich, R. Michael

    We report on the discovery of strong tidal features around a dwarf spheroidal galaxy in the Hydra I galaxy cluster, indicating its ongoing tidal disruption. This very low surface brightness object, HCC-087, was originally classified as an early-type dwarf in the Hydra Cluster Catalogue (HCC), but our re-analysis of the ESO-VLT/FORS images of the HCC unearthed a clear indication of an S-shaped morphology and a large spatial extent. Its shape, luminosity (M{sub V} = -11.6 mag), and physical size (at a half-light radius of 3.1 kpc and a full length of {approx}5.9 kpc) are comparable to the recently discovered NGCmore » 4449B and the Sagittarius dwarf spheroidal, all of which are undergoing clear tidal disruption. Aided by N-body simulations we argue that HCC-087 is currently at its first apocenter, at 150 kpc, around the cluster center and that it is being tidally disrupted by the galaxy cluster's potential itself. An interaction with the nearby (50 kpc) S0 cluster galaxy HCC-005, at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} is rather unlikely, as this constellation requires a significant amount of dynamical friction and thus low relative velocities. The S-shaped morphology and large spatial extent of the satellite would, however, also appear if HCC-087 would orbit the cluster center. These features appear to be characteristic properties of satellites that are seen in the process of being tidally disrupted, independent of the environment of the destruction. An important finding of our simulations is an orientation of the tidal tails perpendicular to the orbit.« less

  7. Three mars years: Viking lander 1 imaging observations

    USGS Publications Warehouse

    Arvidson, R. E.; Guinness, E.A.; Moore, H.J.; Tillman, J.; Wall, S.D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  8. Three Mars years: viking lander 1 imaging observations.

    PubMed

    Arvidson, R E; Guinness, E A; Moore, H J; Tillman, J; Wall, S D

    1983-11-04

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  9. Three Mars years - Viking Lander 1 imaging observations

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Guinness, E. A.; Moore, H. J.; Tillman, J.; Wall, S. D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3.3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohension of the undisturbed surface material.

  10. The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Kleijn, Gijs Verdoes; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; van de Ven, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesús

    2017-12-01

    Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc 23 mag arcsec-2. We classified the objects based on their appearance into galaxies and tidal structures, and perform 2D Sérsic model fitting with GALFIT to measure the properties of those classified as galaxies. We analyzed their radial distribution and orientations with respect of the cluster center, and with respect to the other galaxies in our sample. We also studied their colors and compare the LSB galaxies in Fornax with those in other environments. Results: Our final sample complete in the parameter space of the previously known UDGs, consists of 205 galaxies of which 196 are LSB dwarfs (with Re < 1.5 kpc) and nine are UDGs (Re > 1.5 kpc). We show that the UDGs have (1) g'-r' colors similar to those of LSB dwarfs of the same luminosity; (2) the largest UDGs (Re > 3 kpc) in our sample appear different from the other LSB galaxies, in that they are significantly more elongated and extended; whereas (3) the smaller UDGs differ from the LSB dwarfs only by having slightly larger effective radii; (4) we do not find clear differences between the structural parameters of the UDGs in our sample and those of UDGs in other galaxy environments; (5) we find that the dwarf LSB galaxies in our sample are less concentrated in the cluster center than the galaxies with higher surface brightness, and that their number density drops within 180 kpc from the cluster center. We also compare the LSB dwarfs in Fornax with the LSB dwarfs in the Centaurus group, where data of similar quality to ours is available. (6) We find the smallest LSB dwarfs to have similar colors, sizes and Sérsic profiles regardless of their environment. However, in the Centaurus group the colors become bluer with increasing galaxy magnitudes, an effect which is probably due to smaller mass and hence weaker environmental influence of the Centaurus group. Conclusions: Our findings are consistent with the small UDGs forming the tail of a continuous distribution of less extended LSB galaxies. However, the elongated and distorted shapes of the large UDGs could imply that they are tidally disturbed galaxies. Due to limitations of the automatic detection methods and uncertainty in the classification the objects, it is yet unclear what is the total contribution of the tidally disrupted galaxies in the UDG population.

  11. ARC-1979-A79-7088

    NASA Image and Video Library

    1979-07-10

    P-21760 BW This color image of the Jovian moon Europa, which is the size of our moon, is thought to have a crust of ice perhaps 100 kilometers thick which overlies the silicate crust. The complex array of streaks indicate that the crust has been fractured and filled by materials from the interior. The lack of relief, any visible mountains or craters, on its bright limb is consistent with a thick ice crust. In contrast to its icy neighbors, Ganymede and Callisto, Europa has very few impact craters. One possible candidate is the small feature near the center of this image with radiating rays and a bright circular interior. The relative absence of features and low topography suggests the crust is young and warm a few kilometers below the surface. The tidal heating process suggested for Io also may be heating Europa's interior at a lower rate.

  12. ARC-1979-AC79-7088

    NASA Image and Video Library

    1979-07-10

    P-21760 C This color image of the Jovian moon Europa, which is the size of our moon, is thought to have a crust of ice perhaps 100 kilometers thick which overlies the silicate crust. The complex array of streaks indicate that the crust has been fractured and filled by materials from the interior. The lack of relief, any visible mountains or craters, on its bright limb is consistent with a thick ice crust. In contrast to its icy neighbors, Ganymede and Callisto, Europa has very few impact craters. One possible candidate is the small feature near the center of this image with radiating rays and a bright circular interior. The relative absence of features and low topography suggests the crust is young and warm a few kilometers below the surface. The tidal heating process suggested for Io also may be heating Europa's interior at a lower rate.

  13. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs makemore » a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.« less

  14. Surface evolution of two-component stone/ice bodies in the Jupiter region

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.

    1980-11-01

    Observational and theoretical data converge on the conclusion that planetesimals in Jupiter's region of the solar nebula were initially composed predominantly of a mixture of roughly 39-70% H2O ice by volume, and 30-61% dark stony material resembling carbonaceous chondrites. Recent observations emphasize a division of most asteroid and satellite surfaces in this region into two distinct groups: bright icy material and dark stony material. The present model accounts for these by two main processes: an impact-induced buildup of a dark stony regolith in the absence of surface thermal disturbance, and thermal-disturbance-induced eruption of 'water magmas' that create icy surfaces. 'Thermal disturbances' include tidal and radiative effects caused by nearness of a planet. A correlation of crater density and albedo, Ganymede's dark-ray craters, and other observed phenomena (listed in the summary) appear consistent with the model discussed here.

  15. A PAndAS view of M31 dwarf elliptical satellites: NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Ferguson, A. M. N.; Irwin, M. J.; McConnachie, A. W.; Bernard, E. J.; Fardal, M. A.; Ibata, R. A.; Lewis, G. F.; Martin, N. F.; Navarro, J. F.; Noël, N. E. D.; Pasetto, S.

    2014-12-01

    We exploit data from the Pan-Andromeda Archaeological Survey (PAndAS) to study the extended structures of M31's dwarf elliptical companions, NGC 147 and NGC 185. Our wide-field, homogeneous photometry allows us to construct deep colour-magnitude diagrams which reach down to ˜3 mag below the red giant branch (RGB) tip. We trace the stellar components of the galaxies to surface brightness of μg ˜ 32 mag arcsec-2 and show that they have much larger extents (˜5 kpc radii) than previously recognized. While NGC 185 retains a regular shape in its peripheral regions, NGC 147 exhibits pronounced isophotal twisting due to the emergence of symmetric tidal tails. We fit single Sérsic models to composite surface brightness profiles constructed from diffuse light and star counts and find that NGC 147 has an effective radius almost three times that of NGC 185. In both cases, the effective radii that we calculate are larger by a factor of ˜2 compared to most literature values. We also calculate revised total magnitudes of Mg = -15.36 ± 0.04 for NGC 185 and Mg = -16.36 ± 0.04 for NGC 147. Using photometric metallicities computed for RGB stars, we find NGC 185 to exhibit a metallicity gradient of [Fe/H] ˜ -0.15 dex kpc-1 over the radial range 0.125-0.5 deg. On the other hand, NGC 147 exhibits almost no metallicity gradient, ˜-0.02 dex kpc-1 from 0.2 to 0.6 deg. The differences in the structure and stellar populations in the outskirts of these systems suggest that tidal influences have played an important role in governing the evolution of NGC 147.

  16. Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.

    2017-11-01

    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ˜500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ˜4 (from ˜×100-190 to ˜×25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ˜1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ˜2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.

  17. Tidal-Induced Internal Ocean Waves as an Explanation for Enceladus' Tiger Stripe Pattern and Hotspot Activity

    NASA Astrophysics Data System (ADS)

    Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2014-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in contrast to the thin ocean/thick ice sheet model as anticipated in Fig. 12 of Porco et al. (2014), our lab experiments suggest that attractors are generated most efficiently at aspect ratio O(1), implying that distance between stripes might actually approximately directly represent local ocean depth in a thin ice sheet/thick ocean setting.

  18. Enceladus's crust as a non-uniform thin shell: I tidal deformations

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2018-03-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  19. The sagittarius tidal stream and the shape of the galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Newby, Matthew T.

    The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to be strongly oblate (flattening parameter q=0.53). A catalog of stars consistent with this density profile is produced as a template for matching future disruption models. The results of this analysis favor a description of the Sgr debris system that includes more than one dwarf galaxy progenitor, with the major streams above and below the Galactic disk being separate substructures. Preliminary results for the minor tidal stream characterizations are presented and discussed. Additionally, a more robust characterization of halo turnoff star brightnesses is performed, and it is found that increasing color errors with distance result in a previously unaccounted for incompleteness in star counts as the SDSS magnitude limit is approached. These corrections are currently in the process of being implemented on MilkyWay home.

  20. Star formation properties of Hickson Compact Groups based on deep Hα imaging

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul; Ploeckinger, Sylvia; Verdugo, Miguel; Ziegler, Bodo

    2015-08-01

    We present deep Hα imaging of seven Hickson Compact Groups (HCGs) using the 4.1-m Southern Astrophysics Research (SOAR) Telescope. The high spatial resolution of the observations allows us to study both the integrated star formation properties of the main galaxies as well as the 2D distribution of star-forming knots in the faint tidal arms that form during interactions between the individual galaxies. We derive star formation rates and stellar masses for group members and discuss their position relative to the main sequence of star-forming galaxies. Despite the existence of tidal features within the galaxy groups, we do not find any indication for enhanced star formation in the selected sample of HCGs. We study azimuthally averaged Hα profiles of the galaxy discs and compare them with the g' and r' surface brightness profiles. We do not find any truncated galaxy discs but reveal that more massive galaxies show a higher light concentration in Hα than less massive ones. We also see that galaxies that show a high light concentration in r', show a systematic higher light concentration in Hα. Tidal dwarf galaxy (TDG) candidates have been previously detected in R-band images for two groups in our sample but we find that most of them are likely background objects as they do not show any emission in Hα. We present a new TDG candidate at the tip of the tidal tail in HCG 91.

  1. Europa During Voyager 2 Closest Approach

    NASA Image and Video Library

    1996-09-26

    This color image of the Jovian moon Europa was acquired by NASA Voyager 2 during its close encounter on Jul. 9, 1979. Europa, the size of our moon, is thought to have a crust of ice perhaps 100 kilometers thick which overlies the silicate crust. The complex array of streaks indicate that the crust has been fractured and filled by materials from the interior. The lack of relief, any visible mountains or craters, on its bright limb is consistent with a thick ice crust. In contrast to its icy neighbors, Ganymede and Callisto, Europa has very few impact craters. One possible candidate is the small feature near the center of this image with radiating rays and a bright circular interior. The relative absence of features and low topography suggests the crust is young and warm a few kilometers below the surface. The tidal heating process suggested for Io also may be heating Europa's interior at a lower rate. http://photojournal.jpl.nasa.gov/catalog/PIA00459

  2. V405 ANDROMEDA REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro, T.; Baptista, R.; Kafka, S.

    We present a multi-epoch time-resolved high-resolution optical spectroscopy study of the short-period (P{sub orb} = 11.2 hr) eclipsing M0V+M5V RS CVn binary V405 Andromeda. By means of indirect imaging techniques, namely Doppler imaging, we study the surface activity features of the M0V component of the system. A modified version of a Doppler imaging code, which takes into account the tidal distortion of the surface of the star, is applied to the multi-epoch data set in order to provide indirect images of the stellar surface. The multi-epoch surface brightness distributions show a low intensity 'belt' of spots at latitudes {+-}40{sup 0}more » and a noticeable absence of high latitude features or polar spots on the primary star of V405 Andromeda. They also reveal slow evolution of the spot distribution over {approx}4 yr. An entropy landscape procedure is used in order to find the set of binary parameters that lead to the smoothest surface brightness distributions. As a result, we find M{sub 1} = 0.51 {+-} 0.03 M{sub sun}, M{sub 2} = 0.21 {+-} 0.01 M{sub sun}, R{sub 1} = 0.71 {+-} 0.01 R{sub sun}, and an inclination i = 65{sup 0} {+-} 1{sup 0}. The resulting systemic velocity is distinct for different epochs, raising the possibility of the existence of a third body in the system.« less

  3. Science Measurements for the Io Volcano Observer (IVO)

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Turtle, E. P.; Lorenz, R. D.; Perry, J.; Spencer, J. R.; Kirk, R. L.; Keszthelyi, L. P.; Davies, A. G.; Khurana, K. K.; Jia, X.; Moses, J. I.; Paranicas, C.; Hamilton, C.; Nimmo, F.; Showman, A. P.; Thomas, N.; Wurz, P.; Barabash, S. V.; Wieser, M.; Spohn, T.; Horst, S. M.; Breuer, D.; Iess, L.; Helbert, J.; Heyner, D.; Humm, D. C.; De Pater, I.; Mousis, O.; Bagenal, F.; Sutton, S.; Hibbard, K.; Reynolds, E.; Glassmeier, K. H.

    2015-12-01

    Proposed for Discovery in 2015, IVO would launch in 2021, arrive at Jupiter in early 2026, and perform at least 9 fast flybys of Io. IVO satisfies the key science objectives of the Io Observer concept for New Frontiers. Science instruments include Narrow- and wide-angle cameras (from APL and UA), dual fluxgate magnetometers (UCLA), thermal mapper (DLR-Germany), ion and neutral mass spectrometer (UBE-Switzerland), and plasma ion analyzer (IRF-Sweden). For more on the mission see http://www.lpi.usra.edu/opag/meetings/feb2015/presentations/. Key measurements include: 1. High-resolution (<20 m/pixel) imaging of volcanic landforms and vent structures; 2. Regional surface changes every encounter; 3. Velocities and effusion rates of dynamic processes; 4. Mapping of 150 K to ≥1000 K surfaces at 0.5-20 km/pixel for volcanic history; 5. Peak color temperature of erupting lavas; 6. Melt fraction of the mantle from electromagnetic sounding; 7. Thickness of Io's lithosphere; 8. Constraints on Io's internal magnetic field; 9. Global pattern of endogenic heat flow driven by tidal heating; 10. Regional topographic anomalies; 11. Tidal k2 to constrain mantle rigidity; 12. Topography of tectonic landforms; 13. Structural changes since Voyager and Galileo imaging; 14. Neutral species in Io's atmosphere and exosphere; 15. SO2, OI, and other emissions (in eclipse); 16. Christiansen Frequency (CF) to constrain SiO2 of warm silicate lavas; 17. Surface color variations from 300-1000 nm; 18. Passive background temperatures to model diurnal T variations; 19. Neutral species in Io's vicinity; 20. Remote monitoring of Na cloud and Io Plasma Torus; 21. Variability of plasma and magnetic signatures; 22. Search for plumes on Europa's bright limb at high phase angles; and 23. Monitor Europa's surface color and albedo for changes. In summary, IVO will acquire a broad suite of measurements to understand how tidal heating drives dynamic phenomena on Io and in the Jupiter system.

  4. Tidally generated sea-floor lineations in Bristol Bay, Alaska, USA

    USGS Publications Warehouse

    Marlow, M. S.; Stevenson, A.J.; Chezar, H.; McConnaughey, R.A.

    1999-01-01

    Highly reflective linear features occur in water depths of 20-30 m in northern Bristol Bay (Alaska, USA) and are, in places, over 600 m in length. Their length-to-width ratio is over 100:1. The lineations are usually characterized by large transverse ripples with wavelengths of 1-2 m. The lineations trend about N60??E, and are spaced between 20 and 350 m. Main tidal directions near the lineations are N60??E (flood) and S45??W (ebb), which are parallel to subparallel to the lineations. They suggest that the lineations may be tidally generated. The lineations may be bright sonar reflections from a winnowed lag concentrate of coarse sand.

  5. Relativistic jet activity from the tidal disruption of a star by a massive black hole.

    PubMed

    Burrows, D N; Kennea, J A; Ghisellini, G; Mangano, V; Zhang, B; Page, K L; Eracleous, M; Romano, P; Sakamoto, T; Falcone, A D; Osborne, J P; Campana, S; Beardmore, A P; Breeveld, A A; Chester, M M; Corbet, R; Covino, S; Cummings, J R; D'Avanzo, P; D'Elia, V; Esposito, P; Evans, P A; Fugazza, D; Gelbord, J M; Hiroi, K; Holland, S T; Huang, K Y; Im, M; Israel, G; Jeon, Y; Jeon, Y-B; Jun, H D; Kawai, N; Kim, J H; Krimm, H A; Marshall, F E; P Mészáros; Negoro, H; Omodei, N; Park, W-K; Perkins, J S; Sugizaki, M; Sung, H-I; Tagliaferri, G; Troja, E; Ueda, Y; Urata, Y; Usui, R; Antonelli, L A; Barthelmy, S D; Cusumano, G; Giommi, P; Melandri, A; Perri, M; Racusin, J L; Sbarufatti, B; Siegel, M H; Gehrels, N

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.

  6. Probing the mass assembly of massive nearby galaxies with deep imaging

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Cuillandre, J.-C.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Côté, P.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Emsellem, E.; Ferrarese, L.; Ferriere, E.; Gwyn, S.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Michel-Dansac, L.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Young, L. M.

    2013-07-01

    According to a popular scenario supported by numerical models, the mass assembly and growth of massive galaxies, in particular the Early-Type Galaxies (ETGs), is, below a redshift of 1, mainly due to the accretion of multiple gas-poor satellites. In order to get observational evidence of the role played by minor dry mergers, we are obtaining extremely deep optical images of a complete volume limited sample of nearby ETGs. These observations, done with the CFHT as part of the ATLAS3D, NGVS and MATLAS projects, reach a stunning 28.5 - 29 mag.arcsec-2 surface brightness limit in the g' band. They allow us to detect the relics of past collisions such as faint stellar tidal tails as well as the very extended stellar halos which keep the memory of the last episodes of galactic accretion. Images and preliminary results from this on-going survey are presented, in particular a possible correlation between the fine structure index (which parametrizes the amount of tidal perturbation) of the ETGs, their stellar mass, effective radius and gas content.

  7. Earth Observations

    NASA Image and Video Library

    2010-07-23

    ISS024-E-009404 (23 July 2010) --- This photo taken from the International Space Station on July 23, 2010, shows the Gulf of Mexico oil spill as part of ongoing observations of the region. When this image was taken, three months after the explosion on the Deepwater Horizon oil rig, the leak had been plugged for eight days. Water surfaces appear bright and land surfaces appear dark in the image. The stark contrast is due to sun glint, in which the sun is reflected brilliantly off all water surfaces back towards the astronaut observer on board the station. The sun glint reveals various features in the Gulf of Mexico, especially sheens of oil as packets of long bright streaks seen on the left side of the image. Sediments carried by the Mississippi River have a light-yellow coloration in this image, with distinct margins between plumes that likely mark tidal pulses of river water into the Gulf of Mexico. A boat wake cuts across one of the oil packets at image lower left. Daily National Oceanic and Atmospheric Administration (NOAA) maps of oil distribution show predicted heavier and lighter oil movement near the Gulf coastline. The maps show that on the day this image was taken, the north edge of the ?oiled? zone was expected to bank up against the delta. The observed spread of the surface oil in the approximately 100 days since the explosion highlights the connectivity between the deepwater areas and coastlines of the Gulf of Mexico.

  8. A map of the day-night contrast of the extrasolar planet HD 189733b.

    PubMed

    Knutson, Heather A; Charbonneau, David; Allen, Lori E; Fortney, Jonathan J; Agol, Eric; Cowan, Nicolas B; Showman, Adam P; Cooper, Curtis S; Megeath, S Thomas

    2007-05-10

    'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.

  9. Tidal interactions and infrared-bright QSOs

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.

    1988-01-01

    Deep direct images of five IRAS-selected QSOs with similar IR luminosities and spectral indices have been analyzed. The present objects possess IR luminosities similar to those of the IRAS flux-lined sample of ultraluminous galaxies, but have IR spectral indices similar to those of normal QSOs. Four of the objects are in strong tidal interaction and have blue host galaxies and reddened nuclei. It is suggested that these objects are QSOs and AGN in an intermediate stage of their activity, which lies between that of ultraluminous galaxies and optically selected QSOs.

  10. The tidally-modulated plume of Enceladus: an update

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Porco, C.; Mitchell, C. J.; Van Hoolst, T.; Hedman, M. M.

    2016-12-01

    The brightness of the ice grain plume of Enceladus is observed to vary on a diurnal timescale [1,2], consistent with predictions that the plume's mass is modulated by normal tidal stresses, which open and close cracks that reach the ocean [3]. Here we extend our previous analysis [2] to a larger set of ISS plume observations, including images taken since 2010, extending the temporal baseline by more than a factor of two. The observations were reduced using the same approach as in [2]. Fits were performed as in [2] but now include two different assumptions of how plume brightness responds to stresses [4] plus an updated calculation of the effects of long-period librations [5]. An apparent phase lag of 30-60 degrees between the modelled and observed response is robustly present, irrespective of the data set and assumptions used. This phase lag may be the result of the viscosity structure of the ice shell [2,4], an eruptive delay caused by the hydrodynamics within tidally-pumped cracks [6], or other as yet unknown processes. An earlier suggestion [2], that the phase lag is caused by the additional stresses arising from an 0.8 degree 1:1 physical libration in the moon's ice shell, can be rejected now that this libration has been measured with an amplitude of 0.12 degrees [7]. We also find in ISS images a secular decrease in plume brightness over the ten years of Cassini observations; this decrease may be due to long-period (forced) librations of Enceladus. [1] Hedman et al., Nature 2013 [2] Nimmo et al., Astron. J. 2014 [3] Hurford et al., Nature 2007 [4] Behounkova et al., Nature Geosci. 2015 [5] Yseboodt & Van Hoolst, Fall AGU, 2015 [6] Kite & Rubin, PNAS 2016 [7] Thomas et al., Icarus 2016

  11. A Possible Protogalaxy Near M81

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Stickel, M.; Salzer, J. J.; Hopp, U.; Brouillet, N.; Baudry, A.

    1993-06-01

    CCD images covering the region of a molecular complex east of M 81 show no optical counterpart. This excludes the presence of unembedded massive (>10 M_sun_) stars and an association with a low surface brightness (<=27.0^m^/arcsec^2^ in B for B - R = 1.5^m^) galaxy. The complex is thus quite different from any of the presumably young active dwarfs observed in the vicinity of interacting systems. It is likely the first known `protogalaxy', representing the missing link between tidal HI arms and active star forming regions well displaced from the centers of the associated interacting galaxies. An irregular shaped object of unknown nature (size: 20"; B - R = 1.3^m^) is detected 50" NW of the molecular complex.

  12. Do Low Surface Brightness Galaxies Host Stellar Bars?

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-09-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  13. Do Low Surface Brightness Galaxies Host Stellar Bars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less

  14. Relativistic jet activity from the tidal disruption of a star by a massive black hole [Discovery of the onset of rapid accretion by a dormant massive black hole

    DOE PAGES

    Burrows, D. N.; Kennea, J. A.; Ghisellini, G.; ...

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased inmore » brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. Furthermore, this event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.« less

  15. Sumo Puff: Tidal debris or disturbed ultra-diffuse galaxy?

    NASA Astrophysics Data System (ADS)

    Greco, Johnny P.; Greene, Jenny E.; Price-Whelan, Adrian M.; Leauthaud, Alexie; Huang, Song; Goulding, Andy D.; Strauss, Michael A.; Komiyama, Yutaka; Lupton, Robert H.; Miyazaki, Satoshi; Takada, Masahiro; Tanaka, Masayuki; Usuda, Tomonori

    2018-01-01

    We report the discovery of a diffuse stellar cloud with an angular extent ≳30″, which we term "Sumo Puff", in data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). While we do not have a redshift for this object, it is in close angular proximity to a post-merger galaxy at redshift z = 0.0431 and is projected within a few virial radii (assuming similar redshifts) of two other ˜L⋆ galaxies, which we use to bracket a potential redshift range of 0.0055 < z < 0.0431. The object's light distribution is flat, as characterized by a low Sérsic index (n ˜ 0.3). It has a low central g-band surface brightness of ˜26.4 mag arcsec-2, large effective radius of ˜13″ (˜11 kpc at z = 0.0431 and ˜1.5 kpc at z = 0.0055), and an elongated morphology (b/a ˜ 0.4). Its red color (g - i ˜ 1) is consistent with a passively evolving stellar population and similar to the nearby post-merger galaxy, and we may see tidal material connecting Sumo Puff with this galaxy. We offer two possible interpretations for the nature of this object: (1) it is an extreme, galaxy-sized tidal feature associated with a recent merger event, or (2) it is a foreground dwarf galaxy with properties consistent with a quenched, disturbed, ultra-diffuse galaxy. We present a qualitative comparison with simulations that demonstrates the feasibility of forming a structure similar to this object in a merger event. Follow-up spectroscopy and/or deeper imaging to confirm the presence of the bridge of tidal material will be necessary to reveal the true nature of this object.

  16. Tidal features of classical Milky Way satellites in a Λ cold dark matter universe

    NASA Astrophysics Data System (ADS)

    Wang, M.-Y.; Fattahi, Azadeh; Cooper, Andrew P.; Sawala, Till; Strigari, Louis E.; Frenk, Carlos S.; Navarro, Julio F.; Oman, Kyle; Schaller, Matthieu

    2017-07-01

    We use the APOSTLE (A Project Of Simulating The Local Environment) cosmological hydrodynamic simulations to examine the effects of tidal stripping on cold dark matter subhaloes that host three of the most luminous Milky Way dwarf satellite galaxies: Fornax, Sculptor and Leo I. We identify simulated satellites that match the observed spatial and kinematic distributions of stars in these galaxies, and track their evolution after infall. We find ˜30 per cent of subhaloes hosting satellites with present-day stellar mass 106-108 M⊙ experience >20 per cent stellar mass-loss after infall. Fornax analogues have earlier infall times compared to Sculptor and Leo I analogues. Star formation in Fornax analogues continues for ˜3-6 Gyr after infall, whereas Sculptor and Leo I analogues stop forming stars <2-3 Gyr after infall. Fornax analogues typically show more significant stellar mass-loss and exhibit stellar tidal tails, whereas Sculptor and Leo I analogues, which are more deeply embedded in their host dark matter haloes at infall, do not show substantial mass-loss due to tides. When additionally comparing the orbital motion of the host subaloes to the measured proper motion of Fornax, we find the matching more difficult; host subhaloes tend to have pericentres smaller than that measured for Fornax itself. From the kinematic and orbital data, we estimate that Fornax has lost 10-20 per cent of its infall stellar mass. Our best estimate for the surface brightness of a stellar tidal stream associated with Fornax is Σ ˜ 32.6 mag arcsec-2, which may be detectable with deep imaging surveys such as DES and LSST.

  17. OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul

    2010-09-01

    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's lowmore » surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.« less

  18. The Photometric Properties of a Vast Stellar Substructure in the Outskirts of M33

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.; Ferguson, Annette M. N.; Irwin, Michael J.; Dubinski, John; Widrow, Lawrence M.; Dotter, Aaron; Ibata, Rodrigo; Lewis, Geraint F.

    2010-11-01

    We have surveyed approximately 40 deg2 surrounding M33 with Canada-France-Hawaii Telescope MegaCam/MegaPrime in the g and i filters out to a maximum projected radius from this galaxy of 50 kpc, as part of the Pan-Andromeda Archaeological Survey (PAndAS). Our observations are deep enough to resolve the top ~4 mag of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations of this feature are consistent with an old population with lang[Fe/H]rang ~ -1.6 dex and an interquartile range in metallicity of ~0.5 dex. We construct a surface brightness map of M33 that traces this feature to μ V ~= 33 mag arcsec-2. At these low surface brightness levels, the structure extends to projected radii of ~40 kpc from the center of M33 in both the northwest and southeast quadrants of the galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns with the orientation of the H I disk warp. We calculate a lower limit to the integrated luminosity of the structure of -12.7 ± 0.5 mag, comparable to a bright dwarf galaxy such as Fornax or Andromeda II and slightly less than 1% of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the H I disk that occurs at similar azimuth to the warp in H I. The data also hint at a low-level, extended stellar component at larger radius that may be an M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results and discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.

  19. The Origins of the Ultra Compact Dwarfs in the halos of the central cluster galaxies in Fornax and Virgo

    NASA Astrophysics Data System (ADS)

    Voggel, Karina Theresia

    2015-08-01

    Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos can be constrained.

  20. An Ultraviolet and Near-Infrared View of NGC 4214: A Starbursting Core Embedded in a Low Surface Brightness Disk

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael N.; Waller, William W.; Smith, Denise A.; Freedman, Wendy L.; Madore, Barry; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Bohlin, Ralph; Smith, Andrew M.; Stecher, Theodore P.

    1997-05-01

    During the Astro-2 Spacelab mission in 1995 March, the Ultraviolet Imaging Telescope (UIT) obtained far-UV (λ = 1500 Å) imagery of the nearby Sm/Im galaxy NGC 4214. The UIT images have a spatial resolution of ~3" and a limiting surface brightness, μ1500 > 25 mag arcsec-2, permitting detailed investigation of the intensity and spatial distribution of the young, high-mass stellar component. These data provide the first far-UV imagery covering the full spatial extent of NGC 4214. Comparison with a corresponding I-band image reveals the presence of a starbursting core embedded in an extensive low surface brightness disk. In the far-UV (FUV), NGC 4214 is resolved into several components: a luminous, central knot; an inner region (r <~ 2.5 kpc) with ~15 resolved sources embedded in bright, diffuse emission; and a population of fainter knots extending to the edge of the optically defined disk (r ~ 5 kpc). The FUV light, which traces recent massive star formation, is observed to be more centrally concentrated than the I-band light, which traces the global stellar population. The FUV radial light profile is remarkably well represented by an R1/4 law, providing evidence that the centrally concentrated massive star formation in NGC 4214 is the result of an interaction, possibly a tidal encounter, with a dwarf companion(s). The brightest FUV source produces ~8% of the global FUV luminosity. This unresolved source, corresponding to the Wolf-Rayet knot described by Sargent & Filippenko, is located at the center of the FUV light distribution, giving NGC 4214 an active galactic nucleus-like morphology. Another strong source is present in the I band, located 19" west, 10" north of the central starburst knot, with no FUV counterpart. The I-band source may be the previously unrecognized nucleus of NGC 4214 or an evolved star cluster with an age greater than ~200 Myr. The global star formation rate derived from the total FUV flux is consistent with rates derived using data at other wavelengths and lends support to the scenario of roughly constant star formation during the last few hundred million years at a level significantly enhanced relative to the lifetime averaged star formation rate. The hybrid disk/starburst-irregular morphology evident in NGC 4214 emphasizes the danger of classifying galaxies based on their high surface brightness components at any particular wavelength.

  1. Substructures and Tidal Distortions in the Magellanic Stellar Periphery

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal; Koposov, Sergey; Da Costa, Gary; Belokurov, Vasily; Erkal, Denis; Kuzma, Pete

    2018-05-01

    We use a new panoramic imaging survey conducted with the Dark Energy Camera to map the stellar fringes of the Large and Small Magellanic Clouds (LMC/SMC) to extremely low surface brightness V ≈ 32 mag arcsec‑2. Our results starkly illustrate the closely interacting nature of the LMC–SMC pair. We show that the outer LMC disk is strongly distorted, exhibiting an irregular shape, evidence for warping, and significant truncation on the side facing the SMC. Large diffuse stellar substructures are present both to the north and south of the LMC, and in the inter-Cloud region. At least one of these features appears as co-spatial with the bridge of RR Lyrae stars that connects the Clouds. The SMC is highly disturbed; we confirm the presence of tidal tails, as well as a large line-of-sight depth on the side closest to the LMC. Young, intermediate-age, and ancient stellar populations in the SMC exhibit strikingly different spatial distributions. In particular, those with ages ∼1.5–4 Gyr exhibit a spheroidal distribution with a centroid offset from that of the oldest stars by several degrees toward the LMC. We speculate that the gravitational influence of the LMC may already have been perturbing the gaseous component of the SMC several Gyr ago. With careful modeling, the variety of substructures and tidal distortions evident in the Magellanic periphery should tightly constrain the interaction history of the Clouds.

  2. Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greekely, Ronald

    2003-01-01

    We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution ( 186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100 - 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.

  3. Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greeley, Ronald

    2002-01-01

    We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution (186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys (1979) are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100- 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.

  4. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  5. Aliased tidal errors in TOPEX/POSEIDON sea surface height data

    NASA Technical Reports Server (NTRS)

    Schlax, Michael G.; Chelton, Dudley B.

    1994-01-01

    Alias periods and wavelengths for the M(sub 2, S(sub 2), N(sub 2), K(sub 1), O(sub 1), and P(sub 1) tidal constituents are calculated for TOPEX/POSEIDON. Alias wavelenghts calculated in previous studies are shown to be in error, and a correct method is presented. With the exception of the K(sub 1) constituent, all of these tidal aliases for TOPEX/POSEIDON have periods shorter than 90 days and are likely to be confounded with long-period sea surface height signals associated with real ocean processes. In particular, the correspondence between the periods and wavelengths of the M(sub 2) alias and annual baroclinic Rossby waves that plagued Geosat sea surface height data is avoided. The potential for aliasing residual tidal errors in smoothed estimates of sea surface height is calculated for the six tidal constituents. The potential for aliasing the lunar tidal constituents M(sub 2), N(sub 2) and O(sub 1) fluctuates with latitude and is different for estimates made at the crossovers of ascending and descending ground tracks than for estimates at points midway between crossovers. The potential for aliasing the solar tidal constituents S(sub 2), K(sub 1) and P(sub 1) varies smoothly with latitude. S(sub 2) is strongly aliased for latitudes within 50 degress of the equator, while K(sub 1) and P(sub 1) are only weakly aliased in that range. A weighted least squares method for estimating and removing residual tidal errors from TOPEX/POSEIDON sea surface height data is presented. A clear understanding of the nature of aliased tidal error in TOPEX/POSEIDON data aids the unambiguous identification of real propagating sea surface height signals. Unequivocal evidence of annual period, westward propagating waves in the North Atlantic is presented.

  6. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li.

    PubMed

    van Velzen, S; Anderson, G E; Stone, N C; Fraser, M; Wevers, T; Metzger, B D; Jonker, P G; van der Horst, A J; Staley, T D; Mendez, A J; Miller-Jones, J C A; Hodgkin, S T; Campbell, H C; Fender, R P

    2016-01-01

    The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection. Copyright © 2016, American Association for the Advancement of Science.

  7. Near-Inertial Surface Currents and their influence on Surface Dispersion in the Northeastern Gulf of Mexico near the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Gough, M.; Reniers, A.; MacMahan, J. H.; Howden, S. D.

    2014-12-01

    The continental shelf along the northeastern Gulf of Mexico is transected by the critical latitude (30°N) for inertial motions. At this latitude the inertial period is 24 hours and diurnal surface current oscillations can amplify due to resonance with diurnal wind and tidal forcing. Tidal amplitudes are relatively small in this region although K1 tidal currents can be strong over the shelf west of the DeSoto Canyon where the K1 tide propagates onshore as a Sverdrup wave. Other sources of diurnal motions include internal tidal currents, Poincaré waves, and basin resonance. It is therefore very difficult to separate inertial wind-driven motions from other diurnal motions. Spatiotemporal surface currents were measured using hourly 6 km resolution HF radar data collected in June 2010 during the Deepwater Horizon oil spill and July 2012 during the Grand Lagrangian Deployment (GLAD). Surface currents were also measured using GLAD GPS-tracked drifters. NDBC buoy wind data were used to determine wind-forcing, and OSU Tidal Inversion Software (OTIS) were used to predict tidal currents. The relative spatiotemporal influence of diurnal wind and tidal forcing on diurnal surface current oscillations is determined through a series of comparative analyses: phase and amplitude of bandpassed timeseries, wavelet analyses, wind-driven inertial oscillation calculations, and tidal current predictions. The wind-driven inertial ocean response is calculated by applying a simple "slab" model where wind-forcing is allowed to excite a layer of low-density water riding over high density water. The spatial variance of diurnal motions are found to be correlated with satellite turbidity imagery indicating that stratification influences the sea surface inertial response to wind-forcing. Surface dispersion is found to be minimized in regions of high diurnal variance suggesting that mean surface transport is restricted in regions of inertial motions associated with stratification.

  8. Dark Matter in Ultra-diffuse Galaxies in the Virgo Cluster from Their Globular Cluster Populations

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Lim, Sungsoon; Peng, Eric; Sales, Laura V.; Guhathakurta, Puragra; Mihos, J. Christopher; Côté, Patrick; Boselli, Alessandro; Cuillandre, Jean-Charles; Ferrarese, Laura; Gwyn, Stephen; Lançon, Ariane; Muñoz, Roberto; Puzia, Thomas

    2018-04-01

    We present Keck/DEIMOS spectroscopy of globular clusters (GCs) around the ultra-diffuse galaxies (UDGs) VLSB‑B, VLSB‑D, and VCC615 located in the central regions of the Virgo cluster. We spectroscopically identify 4, 12, and 7 GC satellites of these UDGs, respectively. We find that the three UDGs have systemic velocities (V sys) consistent with being in the Virgo cluster, and that they span a wide range of velocity dispersions, from ∼16 to ∼47 km s‑1, and high dynamical mass-to-light ratios within the radius that contains half the number of GCs ({407}-407+916, {21}-11+15, {60}-38+65, respectively). VLSB‑D shows possible evidence for rotation along the stellar major axis and its V sys is consistent with that of the massive galaxy M84 and the center of the Virgo cluster itself. These findings, in addition to having a dynamically and spatially (∼1 kpc) off-centered nucleus and being extremely elongated, suggest that VLSB‑D could be tidally perturbed. On the contrary, VLSB‑B and VCC615 show no signs of tidal deformation. Whereas the dynamics of VLSB‑D suggest that it has a less massive dark matter halo than expected for its stellar mass, VLSB‑B and VCC615 are consistent with a ∼1012 M ⊙ dark matter halo. Although our samples of galaxies and GCs are small, these results suggest that UDGs may be a diverse population, with their low surface brightnesses being the result of very early formation, tidal disruption, or a combination of the two.

  9. Sun glitter imaging analysis of submarine sand waves in HJ-1A/B satellite CCD images

    NASA Astrophysics Data System (ADS)

    Zhang, Huaguo; He, Xiekai; Yang, Kang; Fu, Bin; Guan, Weibing

    2014-11-01

    Submarine sand waves are a widespread bed-form in tidal environment. Submarine sand waves induce current convergence and divergence that affect sea surface roughness thus become visible in sun glitter images. These sun glitter images have been employed for mapping sand wave topography. However, there are lots of effect factors in sun glitter imaging of the submarine sand waves, such as the imaging geometry and dynamic environment condition. In this paper, several sun glitter images from HJ-1A/B in the Taiwan Banks are selected. These satellite sun glitter images are used to discuss sun glitter imaging characteristics in different sensor parameters and dynamic environment condition. To interpret the imaging characteristics, calculating the sun glitter radiance and analyzing its spatial characteristics of the sand wave in different images is the best way. In this study, a simulated model based on sun glitter radiation transmission is adopted to certify the imaging analysis in further. Some results are drawn based on the study. Firstly, the sun glitter radiation is mainly determined by sensor view angle. Second, the current is another key factor for the sun glitter. The opposite current direction will cause exchanging of bright stripes and dark stripes. Third, brightness reversal would happen at the critical angle. Therefore, when using sun glitter image to obtain depth inversion, one is advised to take advantage of image properties of sand waves and to pay attention to key dynamic environment condition and brightness reversal.

  10. Seeing the Missing Half

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Mazarico, Erwan

    2009-01-01

    The Moon is our closest planetary neighbor and the only extraterrestrial body to which humans have traveled, yet many questions about its origin and early history remain unanswered. Four papers published in this issue by scientific teams of the Japanese SELENE (Kaguya) mission offer a new global view of the Moon that helps to elucidate how the Moon evolved to its present state. The Moon is lopsided: Its visible nearside (tidally locked to face the Earth) is covered with smooth, dark volcanic mare, whereas the farside mainly consists of more heavily cratered, bright highland material. The differences in crustal thickness and density, apparent surface age, composition, and volcanic activity between the two sides are variously ascribed to external causes (such as a giant impact) or to internal causes (such as core formation, mantle convection, and crustal differentiation). The key to resolving these questions will be better data.

  11. Rapid heating of the atmosphere of an extrasolar planet.

    PubMed

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano

    2009-01-29

    Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

  12. THE PHOTOMETRIC PROPERTIES OF A VAST STELLAR SUBSTRUCTURE IN THE OUTSKIRTS OF M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnachie, Alan W.; Ferguson, Annette M. N.; Irwin, Michael J.

    2010-11-10

    We have surveyed approximately 40 deg{sup 2} surrounding M33 with Canada-France-Hawaii Telescope MegaCam/MegaPrime in the g and i filters out to a maximum projected radius from this galaxy of 50 kpc, as part of the Pan-Andromeda Archaeological Survey (PAndAS). Our observations are deep enough to resolve the top {approx}4 mag of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations ofmore » this feature are consistent with an old population with ([Fe/H]) {approx} -1.6 dex and an interquartile range in metallicity of {approx}0.5 dex. We construct a surface brightness map of M33 that traces this feature to {mu}{sub V} {approx_equal} 33 mag arcsec{sup -2}. At these low surface brightness levels, the structure extends to projected radii of {approx}40 kpc from the center of M33 in both the northwest and southeast quadrants of the galaxy. Overall, the structure has an 'S-shaped' appearance that broadly aligns with the orientation of the H I disk warp. We calculate a lower limit to the integrated luminosity of the structure of -12.7 {+-} 0.5 mag, comparable to a bright dwarf galaxy such as Fornax or Andromeda II and slightly less than 1% of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the H I disk that occurs at similar azimuth to the warp in H I. The data also hint at a low-level, extended stellar component at larger radius that may be an M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results and discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.« less

  13. KDG218, a nearby ultra-diffuse galaxy

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.; Makarova, L. N.; Sharina, M. E.; Karachentseva, V. E.

    2017-10-01

    We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈 D〉 = 5.1 Mpc, 〈 A e 〉 = 4.8 kpc, and 〈 SB B ( e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.

  14. Tidal Response of Europa's Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Comblen, R.; Deleersnijder, E.; Dehant, V. M.

    2010-12-01

    Time-variable tides in the subsurface oceans of icy satellites cause large periodic surface displacements and tidal dissipation can become a major energy source that can affect long-term orbital and internal evolution. In the present study, we investigate the response of the subsurface ocean of Europa to a time-varibale tidal potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities,dissipation and surface displacements will be presented.

  15. External and internal controls of lunar-related reproductive rhythms in fishes.

    PubMed

    Takemura, A; Rahman, M S; Park, Y J

    2010-01-01

    Reproductive activities of many fish species are, to some extent, entrained to cues from the moon. During the spawning season, synchronous spawning is repeated at intervals of c. 1 month (lunar spawning cycle) and 2 weeks (semi-lunar spawning cycle) or daily according to tidal changes (tidal spawning cycle). In species showing lunar-related spawning cycles, oocytes in the ovary develop towards and mature around a specific moon phase for lunar spawners, around spring tides for semi-lunar spawners and at daytime high tides for tidal spawners. The production of sex steroid hormones also changes in accordance with synchronous oocyte development. Since the production of the steroid hormones with lunar-related reproductive periodicity is regulated by gonadotropins, it is considered that the higher parts of the hypothalamus-pituitary-gonad axis play important roles in the perception and regulation of lunar-related periodicity. It is likely that fishes perceive cues from the moon by sensory organs; however, it is still unknown how lunar cues are transduced as an endogenous rhythm exerting lunar-related spawning rhythmicity. Recent research has revealed that melatonin fluctuated according to the brightness at night, magnetic fields and the tidal cycle. In addition, cyclic changes in hydrostatic pressure had an effect on monoamine contents in the brain. These factors may be indirectly related to the exertion of lunar-related periodicity. Molecular approaches have revealed that mRNA expressions of light-sensitive clock genes change with moonlight, suggesting that brightness at night plays a role in phase-shifting or resetting of biological clocks. Some species may have evolved biological clocks in relation to lunar cycles, although it is still not known how lunar periodicities are endogenously regulated in fishes. This review demonstrates that lunar-related periodicity is utilized and incorporated by ecological and physiological mechanisms governing the reproductive success of fishes.

  16. Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell.

    PubMed

    An, Junyeong; Lee, Soo-Jin; Ng, How Yong; Chang, In Seop

    2010-12-01

    We examined the possibility of harvesting electricity from the surface of a tidal mud flat using a cylindrical-type sediment microbial fuel cell (SMFC), a marine mud battery (MMB), which can be applied in a sea environment where the ebb and flow occur due to tidal difference. In addition, we indirectly investigated the influence of ebb and flow in a lab, using aeration, argon gassing, and by agitating the cathodic solution. The MMBs consisted of cylindrical acrylic compartments containing a nylon membrane, an anode, and a cathode in a single body. The MMBs were stuck vertically into an artificial tidal mud flat such that the anode electrode was in direct contact with the tidal mud surface. As a result, the maximum current and power density generated were 35 mA/m(2) and 9 mW/m(2), respectively, thus verifying that it is possible to harvest electricity from the surface of a tidal mud flat using an MMB without burying the anode electrode in the tidal mud. Furthermore, the results of tests using an artificial turbulence flow showed the flow induced by the tidal ebb and flow could allow the performance of MMBs to be enhanced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. How Tidal Forces Cause Ocean Tides in the Equilibrium Theory

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2015-01-01

    We analyse why it is erroneous to think that a tidal bulge is formed by pulling the water surface directly up by a local vertical tidal force. In fact, ocean tides are caused by the global effect of the horizontal components of the tidal forces.

  18. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at themore » location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.« less

  19. Gemini Follow-up of Two Massive H I Clouds Discovered with the Australian Square Kilometer Array Pathfinder

    NASA Astrophysics Data System (ADS)

    Madrid, Juan P.; Lee-Waddell, Karen; Serra, Paolo; Koribalski, Bärbel S.; Schirmer, Mischa; Spekkens, Kristine; Wang, Jing

    2018-02-01

    Using the Gemini Multi Object Spectrograph (GMOS) we search for optical counterparts of two massive (∼109 M ⊙) neutral hydrogen clouds near the spiral galaxy IC 5270, located in the outskirts of the IC 1459 group. These two H I clouds were recently discovered using the Australian Square Kilometer Array Pathfinder (ASKAP). Two low surface brightness optical counterparts to one of these H I clouds are identified in the new Gemini data that reaches down to magnitudes of ∼27.5 mag in the g-band. The observed H I mass-to-light ratio derived with these new data, {M}{{H}{{I}}}/{L}g=242, is among the highest reported to date. We are also able to rule out that the two H I clouds are dwarf companions of IC 5270. Tidal interactions and ram pressure stripping are plausible explanations for the physical origin of these two clouds.

  20. Staging of the Acoustic Response at Laboratory Modelling of Tidal Influence upon Seismicity

    NASA Astrophysics Data System (ADS)

    Saltykov, Vadim; Patonin, Andrey; Kugaenko, Yulia

    2010-05-01

    INTRODUCTION The seismic radiation is varied through the wide range of seismic energy from seismic emission (high-frequency seismic noise, HFSN) to earthquakes. Some features of external influence response on the different scales allow to consider the medium as a single whole seismoactive object. Earth tide is a bright example of external excited field. Tidal topic has long history in seismology. Results obtained by different scientists are contradictory and ambiguous often. We denoted instability of tidal effect manifestation as possible reason of this situation. In view of the aforesaid it is significant, that tidal effects in weak seismicity and HFSN prove more strongly in the stage of large earthquake preparation [Rykunov et al., 1998, Saltykov et al., 2004, 2007]. It is presumed that the metastable medium has more high tidal sensitivity. For example, sources of prepared earthquakes and extensive near-surface zones of micro-fissuring and dilatancy, which appear during source formation and stretch far enough. [Alekseev et all., 2001, Goldin, 2004, 2005]. Common features of observed effects allow to suggest existence of tidal modulation mechanism, which is similar (may be single) for different seismic scales. Modelling of these processes can improve our understanding of tidal effect nature. LABORATORY EXPERIMENT Results of rock sample destruction experiments under controlling are presented. Acoustic emission (AE) pulses act as analogue of seismic events. Tides are simulated by weak long-period variations added to quasi-stationary subcritical loading. The results of tidal modeling confirmed AE intensity synchronization with external periodic influence with large (5-10%) variations of loading are known [Lockner, Beeler, 1999, Ponomarev et al., 2007]. But real (in nature) tidal strain&stress variations are much less and equal to splits of percent. Therefore, investigation of weak modulation influence upon deformed rock is one of main proposed purposes. Used software-programmable electro-hydraulic system INOVA [Patonin, 2006], can provide various procedures of experiment, among them programmable modulatory action. Axial deformation with stable strain rate and additional action of meander with specified period and amplitude was chosen as mode of operation. The relation between background and periodic strains reaches three orders, which corresponds to real relation between maximal tectonic and tidal strains. RESULTS For detection of periodic loading modulation of AE we used procedure based on Rayleigh criteria of uniformity and considered uniformity of AE impulses distribution on time interval, multiple to period of loading. Moreover, the predominant phase of periodical loading, corresponding to maximal AE activity, was calculated in sliding time window. In all experiments we observed instability of modulation effects. So the following stages were distinguished: - synchronization of AE and periodic loading at the initial part of test; - absence of synchronization at the elastic stage; - resumption of synchronization during plastic deformation. Stability of phase corresponding to maximal AE activity was discovered within the initial part and plastic deformation stage. Absolute values of phase for initial loading and during plastic deformation are different. CONCLUSION Now we regard revealed staging of AE response to weak periodical loading as our main result of these experiments. Different stages of AE response are connected with different state of rock samples during loading and destruction. Observed effects of synchronization can be considered as analogue of tidal modulation of HFSN and appearance of "tidal" seismicity in source zone of prepared large earthquake. This investigation was supported by RFBR, grant 08-05-00692.

  1. Pixel Color–Magnitude Diagram Analysis of the Brightest Cluster Galaxies in Dynamically Young and Old Clusters Abell 1139 and Abell 2589

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyeop; Oh, Sree; Jeong, Hyunjin; Yi, Sukyoung K.; Kyeong, Jaemann; Park, Byeong-Gon

    2017-07-01

    As a case study to understand the coevolution of Brightest Cluster Galaxies (BCGs) and their host clusters, we investigate the BCGs in dynamically young and old clusters Abell 1139 (A1139) and Abell 2589 (A2589). We analyze the pixel color–magnitude diagrams (pCMDs) using deep g- and r-band images, obtained from the Canada–France–Hawaii Telescope observations. After masking foreground/background objects and smoothing pixels in consideration of the observational seeing size, detailed pCMD features are compared between the two BCGs. (1) Although the overall shapes of the pCMDs are similar to those of typical early-type galaxies, the A2589-BCG tends to have redder mean pixel color and smaller pixel color deviation at given surface brightness than the A1139-BCG. (2) The mean pixel color distribution as a function of pixel surface brightness (pCMD backbone) indicates that the A2589-BCG formed a larger central body (∼2.0 kpc in radius) via major dry mergers at an early epoch than the A1139-BCG (a central body ∼1.3 kpc in radius), whereas they have grown commonly in subsequent minor mergers. (3) The spatial distributions of the pCMD outliers reveal that the A1139-BCG experienced considerable tidal events more recently than the A2589-BCG, whereas the A2589-BCG has an asymmetric compact core, possibly resulting from a major dry merger at an early epoch. (4) The A2589-BCG shows a very large faint-to-bright pixel number ratio, compared to early-type non-BCGs, whereas the ratio for the A1139-BCG is not distinctively large. These results are consistent with the idea that the BCG in the dynamically older cluster (A2589) formed earlier and is better relaxed.

  2. Dynamical evolution of galaxies in dense cluster environment.

    NASA Astrophysics Data System (ADS)

    Gnedin, O. Y.

    1997-12-01

    I present the results of study of the dynamics of galaxies in clusters of galaxies. The effects of the galaxy environment could be quite dramatic. The time-varying gravitational potential of the cluster subjects the galaxies to strong tidal effects. The tidal density cutoff effectively strips the dark matter halos and leads to highly concentrated structures in the galactic centers. The fast gravitational tidal shocks raise the random motion of stars in the galaxies, transforming the thin disks into the kinematically hot thick configurations. The tidal shocks also cause relaxation of stellar energies that enhances the rate of accretion onto the galactic centers. These effects of the time-varying cluster potential have not been consistently taken into account before. I present numerical N-body simulations of galaxies using the Self-Consistent Field code with 10(7) - 10(8) particles. The code is coupled with the PM code that provides a fully dynamic simulation of the cluster potential. The tidal field of the cluster along the galaxy trajectories is imposed as an external perturbation on the galaxies in the SCF scheme. Recent HST observations show that the high-redshift (z > 0.4) clusters contain numerous bright blue spirals, often with distorted profiles, whereas the nearby clusters are mostly populated by featureless ellipticals. The goal of my study is to understand whether dynamics is responsible for the observed strong evolution of galaxies in clusters.

  3. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.

  4. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  5. Integrating remote sensing and subsurface geological data to characterize a tidally-influenced paleodrainage from the mid-late Holocene succession of the Po Delta Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Giacomelli, Serena; Rossi, Veronica; Amorosi, Alessandro; Bruno, Luigi; Campo, Bruno; Ciampalini, Andrea; Civa, Andrea; de Souza Filho, Roberto Carlos; Sgavetti, Maria

    2017-04-01

    A tidally-influenced, mid-late Holocene paleodrainage system from the Po Delta Plain (N Adriatic Sea, Italy) is reconstructed coupling remote sensing (RS) and subsurface geological data. Optical satellite images, DTM LiDAR, soil reflectance spectral features and core stratigraphy were combined in a GIS environment following a fully integrated methodological approach. The stratigraphic significance of RS-derived data (traces) was defined in terms of both depositional facies and depth, furnishing new insights on the role of RS in reconstructing the recent evolution of paleodrainages in coastal-deltaic settings. Sixteen images from Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Sentinel-2 MSI (Multispectral Instruments), and Hyperion satellites were collected from the USGS and the Scientific Hub ESA-Copernicus on-line databases, and integrated with Google Earth imagery. The visual interpretation of the images, mostly based on the brightness contrast (high and low reflectance values) and aimed to the recognition of traces, has been facilitated by the RGB combinations of the spectral bands most sensitive to lithology and moisture content and supported by a semi-automatic processing, including unsupervised classification and the spectral bands Principal Component Analysis (PCA). Multitemporal analysis of satellite imagery have been also performed. Two main traces, interpreted as meanders, have been analyzed for their sedimentological and stratigraphic characteristics. Following a field survey aimed to describe the morphology, grain-size, colors, and accessory materials of surface deposits, 11 soil samples have been collected for the extraction of the reflectance spectral signature and coring along the traces and in adjacent areas (bright and dark portions). Cores have been sampled for benthic foraminifer/ostracod analysis (42 samples) and stratigraphic cross-sections were constructed transversal to the meandering traces. Nine radiocarbon ages allowed to set the depositional evolution of the two meanders into a definite chronological framework. The integrated, RS-stratigraphic methodological approach revealed a meandering paleodrainage system buried > 2 m below the ground level. Its surface visibility is guided by the spatial distribution of surface moisture, which mainly depends on subsurface stratigraphic architecture and, in particular, on the distribution of organic-rich deposits laterally to the migrating meanders. The formation and activity of the buried paleochannels dates back to the early Holocene highstand (6000-2500 cal yr BP), when a drainage system likely developed under tide-influenced conditions.

  6. Forested wetland habitat

    USGS Publications Warehouse

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  7. Salinization and arsenic contamination of surface water in southwest Bangladesh.

    PubMed

    Ayers, John C; George, Gregory; Fry, David; Benneyworth, Laura; Wilson, Carol; Auerbach, Leslie; Roy, Kushal; Karim, Md Rezaul; Akter, Farjana; Goodbred, Steven

    2017-09-11

    To identify the causes of salinization and arsenic contamination of surface water on an embanked island (i.e., polder) in the tidal delta plain of SW Bangladesh we collected and analyzed water samples in the dry (May) and wet (October) seasons in 2012-2013. Samples were collected from rice paddies (wet season), saltwater ponds used for brine shrimp aquaculture (dry season), freshwater ponds and tidal channels (both wet and dry season), and rainwater collectors. Continuous measurements of salinity from March 2012 to February 2013 show that tidal channel water increases from ~0.15 ppt in the wet season up to ~20 ppt in the dry season. On the polder, surface water exceeds the World Health Organization drinking water guideline of 10 μg As/L in 78% of shrimp ponds and 27% of rice paddies, raising concerns that produced shrimp and rice could have unsafe levels of As. Drinking water sources also often have unsafe As levels, with 83% of tubewell and 43% of freshwater pond samples having >10 μg As/L. Water compositions and field observations are consistent with shrimp pond water being sourced from tidal channels during the dry season, rather than the locally saline groundwater from tubewells. Irrigation water for rice paddies is also obtained from the tidal channels, but during the wet season when surface waters are fresh. Salts become concentrated in irrigation water through evaporation, with average salinity increasing from 0.43 ppt in the tidal channel source to 0.91 ppt in the rice paddies. Our observations suggest that the practice of seasonally alternating rice and shrimp farming in a field has a negligible effect on rice paddy water salinity. Also, shrimp ponds do not significantly affect the salinity of adjacent surface water bodies or subjacent groundwater because impermeable shallow surface deposits of silt and clay mostly isolate surface water bodies from each other and from the shallow groundwater aquifer. Bivariate plots of conservative element concentrations show that all surface water types lie on mixing lines between dry season tidal channel water and rainwater, i.e., all are related by varying degrees of salinization. High As concentrations in dry season tidal channel water and shrimp ponds likely result from groundwater exfiltration and upstream irrigation in the dry season. Arsenic is transferred from tidal channels to rice paddies through irrigation. Including groundwater samples from the same area (Ayers et al. in Geochem Trans 17:1-22, 2016), principal components analysis and correlation analysis reveal that salinization explains most variation in surface water compositions, whereas progressive reduction of buried surface water by dissolved organic carbon is responsible for the nonconservative behavior of S, Fe, and As and changes in Eh and alkalinity of groundwater.

  8. Life and death of a hero - lessons learned from modelling the dwarf spheroidal Hercules: an incorrect orbit?

    NASA Astrophysics Data System (ADS)

    Blaña, M.; Fellhauer, M.; Smith, R.; Candlish, G. N.; Cohen, R.; Farias, J. P.

    2015-01-01

    Hercules is a dwarf spheroidal satellite of the Milky Way, found at a distance of ≈138 kpc, and showing evidence of tidal disruption. It is very elongated and exhibits a velocity gradient of 16 ± 3 km s-1 kpc-1. Using these data a possible orbit of Hercules has previously been deduced in the literature. In this study, we make use of a novel approach to find a best-fitting model that follows the published orbit. Instead of using trial and error, we use a systematic approach in order to find a model that fits multiple observables simultaneously. As such, we investigate a much wider parameter range of initial conditions and ensure we have found the best match possible. Using a dark matter free progenitor that undergoes tidal disruption, our best-fitting model can simultaneously match the observed luminosity, central surface brightness, effective radius, velocity dispersion, and velocity gradient of Hercules. However, we find it is impossible to reproduce the observed elongation and the position angle of Hercules at the same time in our models. This failure persists even when we vary the duration of the simulation significantly, and consider a more cuspy density distribution for the progenitor. We discuss how this suggests that the published orbit of Hercules is very likely to be incorrect.

  9. Evidence of differential tidal effects in the old globular cluster population of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Mackey, A. D.

    2018-04-01

    We present for the first time extended stellar density and/or surface brightness radial profiles for almost all the known Large Magellanic Cloud (LMC) old globular clusters (GCs). These were built from DECam images and reach out to ˜ 4 times the GCs' tidal radii. The background subtracted radial profiles reveal that the GCs located closer than ˜ 5 kpc from the LMC centre contain an excess of stars in their outermost regions with respect to the stellar density expected from a King profile. Such a residual amount of stars - not seen in GCs located farther than ˜ 5 kpc from the LMC centre-, as well as the GCs' dimensions, show a clear dependence with the GCs' positions in the galaxy, in the sense that, the farther the GC from the centre of the LMC, the larger both the excess of stars in its outskirts and size. Although the masses of GCs located inside and outside ˜ 5 kpc are commensurate, the outermost regions of GCs located closer than ˜ 5 kpc from the LMC centre appear to have dynamically evolved more quickly. These outcomes can be fully interpreted in the light of the known GC radial velocity disc-like kinematics, from which GCs have been somehow mostly experiencing the influence of the LMC gravitational field at their respective mean distances from the LMC centre.

  10. Investigation Hydrometeorological Regime of the White Sea Based on Satellite Altimetry Data

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey A.

    2016-08-01

    The White Sea are the seas of the Arctic Ocean. Today complicated hydrodynamic, tidal, ice, and meteorological regimes of these seas may be investigated on the basis of remote sensing data, specifically of satellite altimetry data. Results of calibration and validation of satellite altimetry measurements (sea surface height and sea surface wind speed) and comparison with regional tidal model show that this type of data may be successfully used in scientific research and in monitoring of the environment. Complex analysis of the tidal regime of the White Sea and comparison between global and regional tidal models show advantages of regional tidal model for use in tidal correction of satellite altimetry data. Examples of using the sea level data in studying long-term variability of the Barents and White Seas are presented. Interannual variability of sea ice edge position is estimated on the basis of altimetry data.

  11. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    PubMed

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  12. Two serendipitous low-mass LMC clusters discovered with HST1

    NASA Astrophysics Data System (ADS)

    Santiago, Basilio X.; Elson, Rebecca A. W.; Sigurdsson, Steinn; Gilmore, Gerard F.

    1998-04-01

    We present V and I photometry of two open clusters in the LMC down to V~26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST), as part of the Medium Deep Survey Key Project. Both are low-luminosity (M_V~-3.5), low-mass (M~10^3 Msolar) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness mu_V(0)~20.2 mag arcsec^-2, a half-light radius r_hl~0.9 pc (total visual major diameter D~3 pc) and an estimated mass M~1500 Msolar. From the colour-magnitude diagram and isochrone fits we estimate its age as tau~(2-5)x10^8 yr. Its mass function has a fitted slope of Gamma=Deltalogphi(M)/DeltalogM=-1.8+/-0.7 in the range probed (0.9<~M/Msolar<~4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Gamma=-1.2+/-0.4, and estimate its mass as M~400 Msolar. A derived upper limit for its age is tau<~5x10^8 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Gamma~-1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.

  13. A map of the large day-night temperature gradient of a super-Earth exoplanet

    NASA Astrophysics Data System (ADS)

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-01

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths—exoplanets with masses of one to ten times that of Earth—have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  14. Surface Evolution from Orbital Decay on Phobos

    NASA Astrophysics Data System (ADS)

    Hurford, Terry; Asphaug, Erik; Spitale, Joseph; Hemingway, Douglas; Rhoden, Alyssa; Henning, Wade; Bills, Bruce; Kattenhorn, Simon; Walker, Matthew

    2015-11-01

    Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises, and will suffer tidal disruption before colliding with Mars. We calculate the surface stress field of the de-orbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos’ prominent grooves have an excellent correlation with computed stress orientations. The model predicts an interior that has very low strength on the tidal evolution timescale, overlain by a ~10-100 m exterior shell that has elastic properties similar to lunar regolith.Shortly after the Viking spacecraft obtained the first geomorphic images of Phobos, it was proposed that stresses from orbital decay cause grooves. But, assuming a homogeneous Phobos, it proved impossible to account for the build-up of failure stress in the exterior regardless of the value assumed for Phobos’ rigidity. Hence, the tidal model languished. Here, we revisit the tidal origin of surface fractures with a more detailed treatment that shows the production of significant stress in a surface layer, with a very strong correlation to the geometry of grooves.Our model results applied to surface observations imply that Phobos has a rubble pile interior that is nearly strengthless. A lunar-like cohesive regolith outer layer overlays the rubble pile interior. This outer layer behaves elastically and can experience significant tidal stress at levels able to drive tensile failure. Fissures can develop as the global body deforms due to increasing tides related to orbital decay. Phobos may have an active and evolving surface; an exciting target for further exploration. The interior predictions of this model can be evaluated by future detailed studies performed by an orbiter or lander.

  15. Correction and evaluation of thermal infrared data acquired with two different airborne systems at the Elbe estuary

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn; Jenal, Alexander; Kneer, Caspar; Weber, Immanuel; Bongartz, Jens; Wyrwa, Jens; Schöl, Andreas

    2016-10-01

    This study presents the results from a combined aerial survey performed with a hexacopter and a gyrocopter over a part of the Elbe estuary near Hamburg, Germany. The survey was conducted by the Federal Institute of Hydrology, Germany, and the Fraunhofer Application Center for Multimodal and Airborne Sensors as well as by a contracted engineering company with the aim to acquire spatial thermal infrared (TIR) data of the Hahnöfer Nebenelbe, a branch of the Elbe estuary. Additionally, RGB and NIR data was captured to facilitate the identification of water surfaces and intertidal mudflats. The temperature distribution of the Elbe estuary affects all biological processes and in consequence the oxygen content, which is a key parameter in water quality. The oxygen levels vary in space between the main fairway and side channels. So far, only point measurements are available for monitoring and calibration/validation of water quality models. To better represent this highly dynamic system with a high spatial and temporal variability, tidal streams, heating and cooling, diffusion and mixing processes, spatially distributed data from several points of time within the tidal cycle are necessary. The data acquisition took place during two tidal cycles over two subsequent days in the summer of 2015. While the piloted gyrocopter covered the whole Hahnöfer Nebenelbe seven times, the unmanned hexacopter covered a smaller section of the branch and tidal mudflats with a higher spatial and temporal resolution (16 coverages of the subarea). The gyrocopter data was acquired with a thermal imaging system and processed and georeferenced using the structure from motion algorithm with GPS information from the gyrocopter and optional ground control points. The hexacopter data was referenced based on ground control points and the GPS and position information of the acquisition system. Both datasets from the gyrocopter and the hexacopter are corrected for the effects of the atmosphere and emissivity of the water surface and compared to in situ measurements, taken during the data acquisition. Of particular interest is the effect of the observation angle on the brightness temperature acquired by the wide angle lenses on the platforms, which is up to 40° at the margins of the imagery. Here, both datasets show deviating temperatures, which are probably not due to actual temperature differences. We will discuss the position accuracy achieved over the water areas, the adaptation of atmospheric and emissivity correction to the observation angle and subsequent improvement of the temperature data. With two datasets of the same research area at different resolutions we will investigate the effects of the acquisition platforms, acquisition system and resolutions on the accuracy of the remotely sensed temperatures as well as their ability to represent temperature patterns of tidal currents and mixing processes.

  16. Revealing the Nature of Extreme Coronal-line Emitter SDSS J095209.56+214313.3

    NASA Astrophysics Data System (ADS)

    Palaversa, Lovro; Gezari, Suvi; Sesar, Branimir; Stuart, J. Scott; Wozniak, Przemyslaw; Holl, Berry; Ivezić, Željko

    2016-03-01

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope. The well-sampled, ˜10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ˜10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.

  17. Revealing the nature of extreme coronal-line emitter SDSS J095209.56+214313.3

    DOE PAGES

    Palaversa, Lovro; Gezari, Suvi; Sesar, Branimir; ...

    2016-03-08

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-basedmore » Mercator telescope. The well-sampled, ~10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ~10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. In conclusion, these new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.« less

  18. REVEALING THE NATURE OF EXTREME CORONAL-LINE EMITTER SDSS J095209.56+214313.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaversa, Lovro; Holl, Berry; Gezari, Suvi

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope.more » The well-sampled, ∼10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ∼10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.« less

  19. Revealing the nature of extreme coronal-line emitter SDSS J095209.56+214313.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaversa, Lovro; Gezari, Suvi; Sesar, Branimir

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-basedmore » Mercator telescope. The well-sampled, ~10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ~10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. In conclusion, these new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.« less

  20. Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations

    DTIC Science & Technology

    2016-04-04

    sustainable energy included renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, tidal...energy, including bioftiel and other alternative sources (wind. solar, and geothermal ).27 The SECNAV made security and independence the two energy...Navy’s China Lake geothermal power plant in California is DOD’s largest renewable energy project supplying nearly half of DOD’s renewable energy

  1. X-ray Spectroscopy of a TDE

    NASA Astrophysics Data System (ADS)

    Kochanek, Christopher

    2017-09-01

    Tidal disruption events (TDE), where supermassive black holes destroy stars to produce accretion flares, are of great current observational and theoretical interest. Here we propose a four epoch HRC/LETG X-ray spectroscopic ``movie'' of a TDE spread over the first 40 days of an X-ray bright TDE, including any discovered by our ASAS-SN survey, supported and extended by higher cadence Swift XRT/UVOT observations over the first 100 days. For this next X-ray bright TDE, we will measure the evolution of the X-ray emission (luminosity/temperature) from the hot accretion disk, the emission reprocessed by the debris into UV/optical, and use X-ray absorption (or emission) features to look at the abundances and the evolution of the kinematics and ionization parameter.

  2. A 200-Second Quasi-Periodicity After the Tidal Disruption of a Star by a Dormant Black Hole

    NASA Technical Reports Server (NTRS)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Gueltkinm K.; Maitra, D.; King, A. L.; Strohmayer, T.

    2012-01-01

    Supermassive black holes are known to exist at the center of most galaxies with sufficient stellar mass, In the local Universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, often coming in the form of long term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a approx.200-s X-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local Universe.

  3. WHERE ARE THE FOSSILS OF THE FIRST GALAXIES? II. TRUE FOSSILS, GHOST HALOS, AND THE MISSING BRIGHT SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovill, Mia S.; Ricotti, Massimo, E-mail: msbovill@astro.umd.edu

    We use a new set of cold dark matter simulations of the local universe to investigate the distribution of fossils of primordial dwarf galaxies within and around the Milky Way. Throughout, we build upon previous results showing agreement between the observed stellar properties of a subset of the ultra-faint dwarfs and our simulated fossils. Here, we show that fossils of the first galaxies have galactocentric distributions and cumulative luminosity functions consistent with observations. In our model, we predict {approx}300 luminous satellites orbiting the Milky Way, 50%-70% of which are well-preserved fossils. Within the Milky Way virial radius, the majority ofmore » these fossils have luminosities L{sub V} < 10{sup 6} L{sub sun}. Despite our multidimensional agreement with observations at low masses and luminosities, the primordial model produces an overabundance of bright dwarf satellites (L{sub V} > 10{sup 4} L{sub sun}) with respect to observations where observations are nearly complete. The 'bright satellite problem' is most evident in the outer parts of the Milky Way. We estimate that, although relatively bright, the primordial stellar populations are very diffuse, producing a population with surface brightnesses below surveys' detection limits, and are easily stripped by tidal forces. Although we cannot yet present unmistakable evidence for the existence of the fossils of first galaxies in the Local Group, the results of our studies suggest observational strategies that may demonstrate their existence: (1) the detection of 'ghost halos' of primordial stars around isolated dwarfs would prove that stars formed in minihalos (M < 10{sup 8} M{sub sun}) before reionization and strongly suggest that at least a fraction of the ultra-faint dwarfs are fossils of the first galaxies; and (2) the existence of a yet unknown population of {approx}150 Milky Way ultra-faints with half-light radii r{sub hl} {approx} 100-1000 pc and luminosities L{sub V} < 10{sup 4} L{sub sun}, detectable by future deep surveys. These undetected dwarfs would have the mass-to-light ratios, stellar velocity dispersions, and metallicities predicted in this work.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on amore » small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.« less

  5. Analytical models for the groundwater tidal prism and associated benthic water flux

    USGS Publications Warehouse

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  6. Tidal Disruption of Phobos as the Cause of Surface Fractures

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Asphaug, E.; Spitale, J. N.; Hemingway, D.; Rhoden, A. R.; Henning, W. G.; Bills, B. G.; Kattenhorn, S. A.; Walker, M.

    2016-01-01

    Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises on Mars lagging behind Phobos' orbital position and will suffer tidal disruption before colliding with Mars in a few tens of millions of years. We calculate the surface stress field of the deorbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos' prominent grooves have an excellent correlation with computed stress orientations. The model requires a weak interior that has very low rigidity on the tidal evolution time scale, overlain by an approximately 10-100 m exterior shell that has elastic properties similar to lunar regolith as described by Horvath et al. (1980).

  7. High Resolution Tidal Modelling in the Arctic Ocean: Needs and Upcoming Developments

    NASA Astrophysics Data System (ADS)

    Cancet, M.; Andersen, O.; Stenseng, L.; Lyard, F.; Cotton, D.; Benveniste, J.; Schulz, A.

    2015-12-01

    The Arctic Ocean is a challenging region for tidal modelling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimetres in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge of the tides would improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space are currently working on the development of a regional, high-resolution tidal atlas in the Arctic Ocean. In particular, this atlas will benefit from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites will give the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data will also be used either for assimilation or validation. This paper presents the performances of the available global tidal models in the Arctic Ocean and the on-going development of an improved regional tidal atlas in this region.

  8. High resolution tidal modeling in the Arctic Ocean: needs and upcoming developments

    NASA Astrophysics Data System (ADS)

    Cancet, Mathilde; Baltazar Andersen, Ole; Cotton, David; Lyard, Florent; Benveniste, Jerome

    2015-04-01

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. As a consequence the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission) are impacted. Better knowledge of the tides would improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space are currently working on the development of a regional, high-resolution tidal atlas in the Arctic Ocean. In particular, this atlas will benefit from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat and SARAL/AltiKa data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites will give the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data will also be used either for assimilation or validation. This paper presents the deficiencies and needs of the global tidal models in the Arctic Ocean as identified using the CryoSat altimetry data, and the on-going work to develop an improved regional tidal atlas in this region.

  9. A new high resolution tidal model in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cancet, Mathilde; Andersen, Ole; Lyard, Florent; Cotton, David; Benveniste, Jérôme

    2016-04-01

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. It has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission), but also on the end-users' applications that need accurate tidal information. Better knowledge of the tides will improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have recently developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Oceans (CP4O) project funded by ESA (STSE program). In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including the Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites gives the best possible coverage of altimetry-derived tidal constituents. Tide gauge data have also been used either for assimilation or validation. This paper presents the methodology followed to develop the model and the performances of this new regional tidal model in the Arctic Ocean.

  10. Antennae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 7' x 7' on the sky of the interacting galaxies NGC 4038 and NGC 4039, better known as the Antennae, or Ring Tail galaxies. The two galaxies are engaged in a tug-of-war as they collide. The mutual gravitation between them is working to distort each spiral galaxy's appearance as the two merge. The interaction is evidently impetus for an intense burst of new star formation, as can be seen from the many infrared-bright knots and bright galactic nuclei. Compare the 2MASS view of this system with that obtained by the Hubble Space Telescope in the optical. Many of the same features are seen, although 2MASS is able to peer through much of the dust seen in the galaxies' disks. The galaxy light looks smoother. Also, in the near-infrared the bright knots of star formation are likely highlighted by the light of massive red supergiant stars. The much more extended 'tidal tails,' which give the Antennae their name, are quite faint in the 2MASS image mosaic.

  11. Four Galileo Views of Amalthea

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These four images of Jupiter's moon, Amalthea, were taken by Galileo's solid state imaging system at various times between February and June 1997. North is approximately up in all cases. Amalthea, whose longest dimension is approximately 247 kilometers (154 miles) across, is tidally locked so that the same side of the satellite always points towards Jupiter, similar to how the nearside of our own Moon always points toward Earth. In such a tidally locked state, one side of Amalthea always points in the direction in which Amalthea moves as it orbits about Jupiter. This is called the 'leading side' of the moon and is shown in the top two images. The opposite side of Amalthea, the 'trailing side,' is shown in the bottom pair of images. The Sun illuminates the surface from the left in the top left image and from the right in the bottom left image. Such lighting geometries, similar to taking a picture from a high altitude at sunrise or sunset, are excellent for viewing the topography of the satellite's surface such as impact craters and hills. In the two images on the right, however, the Sun is almost directly behind the spacecraft. This latter geometry, similar to taking a picture from a high altitude at noon, washes out topographic features and emphasizes Amalthea's albedo (light/dark) patterns. It emphasizes the presence of surface materials that are intrinsically brighter or darker than their surroundings. The bright albedo spot that dominates the top right image is located inside a large south polar crater named Gaea.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  12. Tidally driven water column hydro-geochemistry in a remediating acidic wetland

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Keene, Annabelle F.; Bush, Richard T.; Sullivan, Leigh A.; Wong, Vanessa N. L.

    2011-10-01

    SummaryManaged tidal inundation is a newly evolved technique for remediating coastal acid sulphate soil (CASS) wetlands. However, there remains considerable uncertainty regarding the hydro-geochemical pathways and spatiotemporal dynamics of residual H + and metal(loid) mobilisation into the tidal fringe surface waters of these uniquely iron-rich landscapes. Here, we examine the hydrology and water column chemistry across the intertidal slope of a remediating CASS wetland during several tide cycles. There was extreme spatial and temporal dynamism in water column chemistry, with pH fluctuating by ˜3 units (˜3.5-6.5) during a single tide cycle. Acute acidity was spatially confined to the upper intertidal slope, reflecting surface sediment properties, and tidal overtopping is an important pathway for mobilisation of residual H + and Al 3+ to the water column. Marine derived HCO3- was depleted from surface waters migrating across the intertidal slope and a strong gradient in HCO3- was observed from the tidal fringe to the adjacent tributary channel and nearby estuary. Tidal forcing generated oscillating hydraulic gradients in the shallow fringing aquifer, favouring ebb-tide seepage and driving rapid, heterogeneous advection of groundwater on the lower intertidal slope via surface connected macropores. A combination of diffusive and advective flux across the sediment-water interface led to persistent, elevated surface water Fe 2+ (˜10-1000 μM). The geochemical processes associated with Fe 2+ mobilisation displayed distinct spatial zonation, with low pH, proton-promoted desorption occurring on the upper intertidal slope, whilst circum-neutral pH, Fe(III)-reducing processes dominated the lower intertidal slope. Arsenic was also mobilised into surface waters on the lower intertidal slope under moderate pH (˜6.0) conditions and was strongly positively correlated with Fe 2+. Saturation index values for aragonite were substantially depressed (-1 to -5) and significantly negatively correlated with elevation, thereby presenting a barrier to re-colonisation of the upper intertidal slope by calcifying benthic organisms. These findings highlight the spatially complex hydrological and geochemical controls on surface water quality that can occur in tidally inundated acid sulphate soil environments.

  13. Topographic control of mat-surface structures evolution: Examples from modern evaporitic carbonate (Abu Dhabi) and evaporitic siliciclastic (Tunisia) tidal flats.

    NASA Astrophysics Data System (ADS)

    Hafid Bouougri, El; Porada, Hubertus

    2010-05-01

    In terms of optimal light utilization, mat surfaces ideally are flat. In nature, however, flat mat surfaces are observed rarely or in restricted patches only. Rather they are shaped by a variety of linear and subcircular to irregular protrusions at various scales, including overgrown upturned crack margins, bulges (‘petees'), domes (‘blisters' and ‘pustules'), reticulate networks with tufts and pinnacles etc. These features are so characteristic that ‘mat types' have been established according to their prevalence, e.g., film, flat, smooth, crinkle, blister, tufted, cinder, mammilate, pustular and polygonal mats (Kendall and Skipwith, 1969; Logan et al., 1974). Responsible for the development of such mat surface features are environmental (physical and chemical) factors and, in reaction, the opportunistic growth behaviour of the participating bacterial taxa. Theoretically, a ‘juvenile' mat may be assumed as being flat, evolving into various forms with typical surface morphologies according to environmental impacts and respective bacterial reactions. Observations in the Abu Dhabi evaporitic carbonate tidal flats and Tunisian evaporitic siliciclastic tidal flats demonstrate that topography plays a fundamental role, both on the large scale of the tidal flat and on the small scale of mat surface morphology. It controls, together with related factors like, e.g., frequency of tidal flooding; duration of water cover; frequency and duration of subaerial exposure, the spatial distribution and the temporal evolution of mat surface structures. On the tidal flat scale, topographic differences result a priori from its seaward gradient and may arise additionally from physical processes which may modify the substrate surface and produce in the intertidal and lower supratidal zones narrow creeks and shallow depressions meandering perpendicular to the slope. Within a wide tidal flat without local topographic changes in the tidal zones, mat surface structures display a typical shore-parallel zonality. In contrast, in tidal flats with slight changes in topography, the typical shore-parallel zonality appears disturbed mainly along the intertidal and lower supratidal zones. The mat surface structures within each tidal zone show local and lateral transitions but all evolve from an incipient flat or polygonal mat. On the mat scale, microtopographic differences are created by the mats themselves, e.g., in the form of upturned crack margins, bulges and domes. All these are small-scale topographic highs that influence the distribution of microbial activity and mat growth dynamics. In the Abu Dhabi area it is observed that smooth or polygonal mats may grade temporally into mammilate, cinder or pustular and tufted mats along an evolutionary path controlled by preferred growth along bulges and upturned crack margins. A similar temporal evolution appears in the intertidal and supratidal zones in Tunisia where local changes on mat-surface induce a variety of mat-growth struc¬tures on and along upturned crack margins, gas domes and isolated to polygonal bulges and petee ridges. References Kendall C.G.St.C, Skipwith, P.A.d'E. (1968) Recent algal mats of a Persian gulf lagoon. J. Sedim. Res., 38, 1040-1058. Logan B.W. Hoffman P. Gebelein, C.D. (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Mem., 22, 140-194.

  14. Low-mass White Dwarfs with Hydrogen Envelopes as a Missing Link in the Tidal Disruption Menu

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; MacLeod, Morgan; Guillochon, James; Macias, Phillip; Ramirez-Ruiz, Enrico

    2017-06-01

    We construct a menu of objects that can give rise to bright flares when disrupted by massive black holes (BHs), ranging from planets to evolved stars. Through their tidal disruption, main sequence and evolved stars can effectively probe the existence of otherwise quiescent supermassive BHs, and white dwarfs can probe intermediate mass BHs. Many low-mass white dwarfs possess extended hydrogen envelopes, which allow for the production of prompt flares in disruptive encounters with moderately massive BHs of 105-{10}7 {M}⊙ —masses that may constitute the majority of massive BHs by number. These objects are a missing link in two ways: (1) for probing moderately massive BHs and (2) for understanding the hydrodynamics of the disruption of objects with tenuous envelopes. A flare arising from the tidal disruption of a 0.17 {M}⊙ white dwarf by a {10}5 {M}⊙ {BH} reaches a maximum between 0.6 and 11 days, with a peak fallback rate that is usually super-Eddington and results in a flare that is likely brighter than a typical tidal disruption event. Encounters stripping only the envelope can provide hydrogen-only fallback, while encounters disrupting the core evolve from H- to He-rich fallback. While most tidal disruption candidates observed thus far are consistent with the disruptions of main sequence stars, the rapid timescales of nuclear transients such as Dougie and PTF10iya are naturally explained by the disruption of low-mass white dwarfs. As the number of observed flares continues to increase, the menu presented here will be essential for characterizing nuclear BHs and their environments through tidal disruptions.

  15. Thermal Pollution Mathematical Model. Volume 6; Verification of Three-Dimensional Free-Surface Model at Anclote Anchorage; [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1980-01-01

    The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C.

  16. Galaxy Selection and the Surface Brightness Distribution

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  17. Localized tidal deformations and dissipation in Enceladus

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2017-12-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should include lateral variations of shell structure. I solve this problem with a new theory of non-uniform viscoelastic thin shells, allowing for large lateral variations of crustal thickness as well as large 3D variations of crustal rheology. The coupling to tidal forcing takes into account self-gravity, density stratification below the shell, core viscoelasticity, and crustal compressibility. The resulting tidal thin shell equations are two partial differential equations defined on the spherical surface, which can be solved numerically much faster than 3D Finite Element Methods. The error on tidal displacements is less than 5% if the thickness is less than 10% of the radius while the error on the deviatoric stress varies between 0 and 10%. If Enceladus's shell is conductive with isostatic thickness variations, crustal thinning increases surface stresses by 60% at the north pole and by a factor of more than 3 at the south pole. Similarly, the surface flux resulting from crustal dissipation increases by a factor of 3 at the south pole. If dissipation is an order of magnitude higher than predicted by the Maxwell model (as suggested by recent experimental data), the power dissipated in the crust could reach 50% of the total power required to maintain the crust in thermal equilibrium, and most of the surface flux variation could be explained by latitudinal variations of crustal dissipation. In all cases, a large part of the heat budget must be generated below the crust.

  18. Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Toublanc, F.; Ayoub, N. K.; Lyard, F.; Marsaleix, P.; Allain, D. J.

    2018-04-01

    Downscaling physical processes from a large scale to a regional scale 3D model is a recurrent issue in coastal processes studies. The choice of boundary conditions will often greatly influence the solution within the 3D circulation model. In some regions, tides play a key role in coastal dynamics and must be accurately represented. The Bay of Biscay is one of these regions, with highly energetic tides influencing coastal circulation and river plume dynamics. In this study, three strategies are tested to force with barotropic tides a 3D circulation model with a variable horizontal resolution. The tidal forcings, as well as the tidal elevations and currents resulting from the 3D simulations, are compared to tidal harmonics extracted from satellite altimetry and tidal gauges, and tidal currents harmonics obtained from ADCP data. The results show a strong improvement of the M2 solution within the 3D model with a "tailored" tidal forcing generated on the same grid and bathymetry as the 3D configuration, compared to a global tidal atlas forcing. Tidal harmonics obtained from satellite altimetry data are particularly valuable to assess the performance of each simulation. Comparisons between sea surface height time series, a sea surface salinity database, and daily averaged 2D currents also show a better agreement with this tailored forcing.

  19. Shadows and spirals in the protoplanetary disk HD 100453

    NASA Astrophysics Data System (ADS)

    Benisty, M.; Stolker, T.; Pohl, A.; de Boer, J.; Lesur, G.; Dominik, C.; Dullemond, C. P.; Langlois, M.; Min, M.; Wagner, K.; Henning, T.; Juhasz, A.; Pinilla, P.; Facchini, S.; Apai, D.; van Boekel, R.; Garufi, A.; Ginski, C.; Ménard, F.; Pinte, C.; Quanz, S. P.; Zurlo, A.; Boccaletti, A.; Bonnefoy, M.; Beuzit, J. L.; Chauvin, G.; Cudel, M.; Desidera, S.; Feldt, M.; Fontanive, C.; Gratton, R.; Kasper, M.; Lagrange, A.-M.; LeCoroller, H.; Mouillet, D.; Mesa, D.; Sissa, E.; Vigan, A.; Antichi, J.; Buey, T.; Fusco, T.; Gisler, D.; Llored, M.; Magnard, Y.; Moeller-Nilsson, O.; Pragt, J.; Roelfsema, R.; Sauvage, J.-F.; Wildi, F.

    2017-01-01

    Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims: We aim to study the structure of the 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods: We observed HD 100453 in polarized scattered light with VLT/SPHERE at optical (0.6 μm, 0.8 μm) and near-infrared (1.2 μm) wavelengths, reaching an angular resolution of 0.02'', and an inner working angle of 0.09''. Results: We spatially resolve the disk around HD 100453, and detect polarized scattered light up to 0.42'' ( 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of 38° with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by 72°. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions: Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD 100453, and of the spirals, is still unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit. Observations over a few years will allow us to measure the spiral pattern speed, and determine if the shadows are fixed or moving, which may constrain their origin. Based on observations performed with VLT/SPHERE under program ID 096.C-0248(B).

  20. Tidal analysis of surface currents in the Porsanger fjord in northern Norway

    NASA Astrophysics Data System (ADS)

    Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata

    2016-04-01

    In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  1. Assessment of indicator bacteria and Aeromonas spp. in surface and nontraditional irrigation water: a conserve study

    USDA-ARS?s Scientific Manuscript database

    Introduction: The use of surface and nontraditional irrigation water (SNIW) (pond, tidal and non-tidal river water, reclaimed wastewater) is one way to conserve groundwater. However, SNIW may serve as reservoirs and vehicles for under-recognized enteric pathogens, spreading localized contamination d...

  2. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobos, Vera; Turner, Edwin L., E-mail: dobos@konkoly.hu

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than themore » widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.« less

  3. Solo dwarfs I: survey introduction and first results for the Sagittarius dwarf irregular galaxy

    NASA Astrophysics Data System (ADS)

    Higgs, C. R.; McConnachie, A. W.; Irwin, M.; Bate, N. F.; Lewis, G. F.; Walker, M. G.; Côté, P.; Venn, K.; Battaglia, G.

    2016-05-01

    We introduce the Solitary Local dwarfs survey (Solo), a wide-field photometric study targeting every isolated dwarf galaxy within 3 Mpc of the Milky Way. Solo is based on (u)gi multiband imaging from Canada-France-Hawaii Telescope/MegaCam for northern targets, and Magellan/Megacam for southern targets. All galaxies fainter than MV ≃ -18 situated beyond the nominal virial radius of the Milky Way and M31 (≳300 kpc) are included in this volume-limited sample, for a total of 42 targets. In addition to reviewing the survey goals and strategy, we present results for the Sagittarius dwarf irregular galaxy (Sag DIG), one of the most isolated, low-mass galaxies, located at the edge of the Local Group. We analyse its resolved stellar populations and their spatial distributions. We provide updated estimates of its central surface brightness and integrated luminosity, and trace its surface brightness profile to a level fainter than 30 mag arcsec-2. Sag DIG is well described by a highly elliptical (disc-like) system following a single component Sérsic model. However, a low-level distortion is present at the outer edges of the galaxy that, were Sag DIG not so isolated, would likely be attributed to some kind of previous tidal interaction. Further, we find evidence of an extremely low level, extended distribution of stars beyond ˜5 arcmin (>1.5 kpc) that suggests Sag DIG may be embedded in a very low-density stellar halo. We compare the stellar and H I structures of Sag DIG, and discuss results for this galaxy in relation to other isolated, dwarf irregular galaxies in the Local Group.

  4. SDSS IV MaNGA: Discovery of an Hα Blob Associated with a Dry Galaxy Pair—Ejected Gas or a “Dark” Galaxy Candidate?

    NASA Astrophysics Data System (ADS)

    Lin, Lihwai; Lin, Jing-Hua; Hsu, Chin-Hao; Fu, Hai; Huang, Song; Sánchez, Sebastián F.; Gwyn, Stephen; Gelfand, Joseph D.; Cheung, Edmond; Masters, Karen; Peirani, Sébastien; Rujopakarn, Wiphu; Stark, David V.; Belfiore, Francesco; Bothwell, M. S.; Bundy, Kevin; Hagen, Alex; Hao, Lei; Huang, Shan; Law, David; Li, Cheng; Lintott, Chris; Maiolino, Roberto; Roman-Lopes, Alexandre; Wang, Wei-Hao; Xiao, Ting; Yuan, Fangting; Bizyaev, Dmitry; Malanushenko, Elena; Drory, Niv; Fernández-Trincado, J. G.; Pace, Zach; Pan, Kaike; Thomas, Daniel

    2017-03-01

    We report the discovery of a mysterious giant Hα blob that is ˜8 kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, and has been identified in the first-year SDSS-IV MaNGA data. The size of the Hα blob is ˜3-4 kpc in radius, and the Hα distribution is centrally concentrated. However, there is no optical continuum counterpart in the deep broadband images reaching ˜26.9 mag arcsec-2 in surface brightness. We estimate that the masses of the ionized and cold gases are 3.3× {10}5 {M}⊙ and < 1.3× {10}9 {M}⊙ , respectively. The emission-line ratios indicate that the Hα blob is photoionized by a combination of massive young stars and AGNs. Furthermore, the ionization line ratio decreases from MaNGA 1-24145 to the Hα blob, suggesting that the primary ionizing source may come from MaNGA 1-24145, likely a low-activity AGN. Possible explanations for this Hα blob include the AGN outflow, the gas remnant being tidally or ram-pressure stripped from MaNGA 1-24145, or an extremely low surface brightness galaxy. However, the stripping scenario is less favored according to galaxy merger simulations and the morphology of the Hα blob. With the current data, we cannot distinguish whether this Hα blob is ejected gas due to a past AGN outburst, or a special category of “ultra-diffuse galaxy” interacting with MaNGA 1-24145 that further induces the gas inflow to fuel the AGN in MaNGA 1-24145.

  5. THE SPLASH SURVEY: A SPECTROSCOPIC PORTRAIT OF ANDROMEDA'S GIANT SOUTHERN STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Kollipara, Priya

    2009-11-10

    The giant southern stream (GSS) is the most prominent tidal debris feature in M31's stellar halo and covers a significant fraction of its southern quadrant. The GSS is a complex structure composed of a relatively metal-rich, high-surface-brightness 'core' and a lower metallicity, lower-surface-brightness 'envelope'. We present spectroscopy of red giant stars in six fields in the vicinity of M31's GSS (including four new fields and improved spectroscopic reductions for two previously published fields) and one field on stream C, an arc-like feature seen in star-count maps on M31's southeast minor axis at R approx 60 kpc. These data are partmore » of our ongoing Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey of M31 using the DEIMOS instrument on the Keck II 10 m telescope. Several GSS-related findings and measurements are presented here. We present the innermost kinematical detection of the GSS core to date (R = 17 kpc). This field also contains the inner continuation of a second kinematically cold component that was originally seen in a GSS core field at R approx 21 kpc. The velocity gradients of the GSS and the second component in the combined data set are parallel over a range of DELTAR = 7 kpc, suggesting that this may represent a bifurcation in the line-of-sight velocities of GSS stars. We present the first kinematical detection of substructure in the GSS envelope (S quadrant, R approx 58 kpc). Using kinematically identified samples, we show that the envelope debris has a approx0.7 dex lower mean photometric metallicity and possibly higher intrinsic velocity dispersion than the GSS core. The GSS is also identified in the field of the M31 dwarf spheroidal satellite And I; the GSS in this field has a metallicity distribution identical to that of the GSS core. We confirm the previous finding of two kinematically cold components in stream C, and measure intrinsic velocity dispersions of approx10 and approx4 km s{sup -1}. This compilation of the kinematical (mean velocity, intrinsic velocity dispersion) and chemical properties of stars in the GSS core and envelope, coupled with published surface-brightness measurements and wide-area star-count maps, will improve constraints on the orbit and internal structure of the dwarf satellite progenitor.« less

  6. Brightness and transparency in the early visual cortex.

    PubMed

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  7. Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan

    NASA Astrophysics Data System (ADS)

    Yen-Ti, C.; Hwang, C.

    2017-12-01

    Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.

  8. XMM-Newton observations of the Galactic Centre Region - II. The soft-thermal emission

    NASA Astrophysics Data System (ADS)

    Heard, V.; Warwick, R. S.

    2013-09-01

    We have extended our earlier study of the X-ray emission emanating from the central 100 pc × 100 pc region of our Galaxy to an investigation of several features prominent in the soft X-ray (2-4.5 keV) band. We focus on three specific structures: a putative bipolar outflow from the vicinity of Sgr A*; a high surface brightness region located roughly 12 arcmin (25 pc) to the north-east of Sgr A* and a lower surface brightness extended loop feature seen to the south of Sgr A*. We show, unequivocally, that all three structures are thermal in nature and have similar temperatures (kT ≈ 1 keV). The inferred X-ray luminosities lie in the range (2-10) × 1034 erg s-1. In the case of the bipolar feature we suggest that the hot plasma is produced by the shock heating of the winds from massive stars within the Central Cluster, possibly collimated by the Circumnuclear Disc. Alternatively the outflow may be driven by outbursts on Sgr A*, which follow tidal disruption events occurring at a rate of roughly one every 4000 yr. The north-east enhancement is centred on a candidate pulsar wind nebula which has a relatively hard non-thermal X-ray spectrum. We suggest that the coincident soft-thermal emission traces the core of a new thermal-composite supernova remnant, designated as SNR G0.13-0.12. There is no clear evidence for an associated radio shell but such a feature may be masked by the bright emission of the nearby Radio Arc and other filamentary structures. SNR G0.13-0.12 is very likely interacting with the nearby molecular cloud, G0.11-0.11, and linked to the Fermi source, 2FGL J1746.4-2851c. Finally we explore a previous suggestion that the elliptically shaped X-ray loop to the south of Sgr A*, of maximum extent ˜45 pc, represents the shell of a superbubble located in the GC region. Although plausible, the interpretation of this feature in terms a coherent physical structure awaits confirmation.

  9. Tidally Heated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity excursions. Viscoelastic solutions for GJ 876d are typical of extreme short period high eccentricity objects with tidal-convectiveequilibrium heat rates between ˜10,000 to 500,000 terawatts.

  10. Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Lee, T. Y.; Wang, P. L.; Lin, L. H.

    2017-12-01

    Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic methanotrophy could be modulated to reach peak activity once the influence of saline water is reduced to a low level.

  11. The Algorithm Theoretical Basis Document for Tidal Corrections

    NASA Technical Reports Server (NTRS)

    Fricker, Helen A.; Ridgway, Jeff R.; Minster, Jean-Bernard; Yi, Donghui; Bentley, Charles R.`

    2012-01-01

    This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes.

  12. The orbital thermal evolution and global expansion of Ganymede

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Showman, Adam P.; Tobie, Gabriel

    2009-03-01

    The tectonically and cryovolcanically resurfaced terrains of Ganymede attest to the satellite's turbulent geologic history. Yet, the ultimate cause of its geologic violence remains unknown. One plausible scenario suggests that the Galilean satellites passed through one or more Laplace-like resonances before evolving into the current Laplace resonance. Passage through such a resonance can excite Ganymede's eccentricity, leading to tidal dissipation within the ice shell. To evaluate the effects of resonance passage on Ganymede's thermal history we model the coupled orbital-thermal evolution of Ganymede both with and without passage through a Laplace-like resonance. In the absence of tidal dissipation, radiogenic heating alone is capable of creating large internal oceans within Ganymede if the ice grain size is 1 mm or greater. For larger grain sizes, oceans will exist into the present epoch. The inclusion of tidal dissipation significantly alters Ganymede's thermal history, and for some parameters (e.g. ice grain size, tidal Q of Jupiter) a thin ice shell (5 to 20 km) can be maintained throughout the period of resonance passage. The pulse of tidal heating that accompanies Laplace-like resonance capture can cause up to 2.5% volumetric expansion of the satellite and contemporaneous formation of near surface partial melt. The presence of a thin ice shell and high satellite orbital eccentricity would generate moderate diurnal tidal stresses in Ganymede's ice shell. Larger stresses result if the ice shell rotates non-synchronously. The combined effects of satellite expansion, its associated tensile stress, rapid formation of near surface partial melt, and tidal stress due to an eccentric orbit may be responsible for creating Ganymede's unique surface features.

  13. Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies AO2, AO3 and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters AO3

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1998-01-01

    This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.

  14. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  15. Comparative study of icy patches on comet nuclei

    NASA Astrophysics Data System (ADS)

    Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio

    2016-07-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed on comet 67P. Additionally jets rising from the same clustered bright feature were detected visually [4]. We analyzed bright patches on the surface of comets 9P, 103P and 67P using multispectral data obtained by the high-resolution instrument (HRI), medium- resolution instrument (MRI) and OSIRIS NAC using various spectral analysis techniques. Clustered bright features on comet 67P have similar visible spectra to the bright patches on comets 9P and 103P. The comparison of the bright patches includes the published results of the IR spectra. References: [1] Sunshine et al., 2006, Science, 311, 1453 [2] Pommerol et al., 2015, A&A, 583, A25 [3] Filacchione et al., 2016, Nature, 529, 368-372 [4] Oklay et al., 2016, A&A, 586, A80 [5] Sunshine et al. 2012, ACM [6] Keller et al., 2007, Space Sci. Rev., 128, 433 [7] Barucci et al., 2016, COSPAR, B04

  16. Inferring Discharge at River Mouths from Water Surface Height Measurements

    NASA Astrophysics Data System (ADS)

    Branch, R.; Horner-Devine, A.; Chickadel, C. C.

    2016-02-01

    Numerical model results suggest that a relationship exists between river discharge and surface height anomalies near the mouth of rivers, which presents an opportunity to use satellite elevation data to measure discharge remotely. Here we investigate whether such a relationship can be observed in the field using airborne lidar data at the mouth of the Columbia River. Airborne Lidar data were used because current NASA altimeter data does not have high enough spatial resolution to image surface elevation along a river. NASA's Surface Water and Ocean Topography, SWOT, sensor is planned to have a spatial resolution of less than 100 m and maximum height precision of 1 cm. The magnitude and temporal duration of the elevation signal found in the lidar data will be used to determine if SWOT will have the resolution and precision capabilities to measure discharge from space. Lidar data were acquired during a range of tidal conditions and discharge rates from May through September of 2013. Our results suggest that there is a measurable surface height anomaly at the river mouth during part of the tidal cycle. A 0.7 m surface depression was found during ebb tide and a uniform surface tilt was found at slack tide. The variation of the anomaly over the tidal period presents a challenge for decoupling the tidal component from that due to the discharge.

  17. Scratching the surface: A sentinel exploration of sea louse infestations in Cobscook Bay, Maine

    USDA-ARS?s Scientific Manuscript database

    Cobscook Bay is a tidally energetic system (tidal range ~5.7 m and tidal velocities >2 m s-1) comprised of cool waters (annual mean of 10') capable of supporting marine aquaculture. The bay has three active Atlantic salmon Salmo salar farms in close proximity to Passamaquoddy Bay and New Brunswick, ...

  18. Tidal interaction of black holes and Newtonian viscous bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poisson, Eric

    The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations aremore » strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k{sub 2}{tau} of 'Love quantities' that incorporate the details of the body's internal structure; k{sub 2} is the tidal Love number, and {tau} is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k{sub 2}{tau} is of order GM/c{sup 3} for a black hole of mass M; it does not vanish, in spite of the fact that k{sub 2} is known to vanish individually for a nonrotating black hole.« less

  19. Assessment of tidal circulation and tidal current asymmetry in the Iroise sea with specific emphasis on characterization of tidal energy resources around the Ushant Island.

    NASA Astrophysics Data System (ADS)

    Thiébaut, Maxime; Sentchev, Alexei

    2015-04-01

    We use the current velocity time series recorded by High Frequency Radars (HFR) to study circulation in highly energetic tidal basin - the Iroise sea. We focus on the analysis of tidal current pattern around the Ushant Island which is a promising site of tidal energy. The analysis reveals surface current speeds reaching 4 m/s in the North of Ushant Island and in the Fromveur Strait. In these regions 1 m/s is exceeded 60% of time and up to 70% of time in center of Fromveur. This velocity value is particularly interesting because it represents the cut-in-speed of the most of marine turbine devices. Tidal current asymmetry is not always considered in tidal energy site selection. However, this quantity plays an important role in the quantification of hydrokinetic resources. Current velocity times series recorded by HFR highlights the existence of a pronounced asymmetry in current magnitude between the flood and ebb tide ranging from -0.5 to more 2.5. Power output of free-stream devices depends to velocity cubed. Thus a small current asymmetry can generate a significant power output asymmetry. Spatial distribution of asymmetry coefficient shows persistent pattern and fine scale structure which were quantified with high degree of accuracy. The particular asymmetry evolution on both side of Fromveur strait is related to the spatial distribution of the phase lag of the principal semi-diurnal tidal constituent M2 and its higher order harmonics. In Fromveur, the asymmetry is reinforced due to the high velocity magnitude of the sixth-diurnal tidal harmonics. HF radar provides surface velocity speed, however the quantification of hydrokinetic resources has to take into account the decreasing of velocity with depth. In order to highlight this phenomenon, we plot several velocity profiles given by an ADCP which was installed in the HFR study area during the same period. The mean velocity in the water column calculated by using the ADCP data show that it is about 80% of the surface current speed. We consider this value in our calculation of power to make the power estimation of marine turbine devices more realistic. Finally, we demonstrate that in the region of opposing flood-versus ebb-dominated asymmetry occurring over limited spatial scale, it is possible to aggregated free-stream devices to provide balanced power generation over the tidal cycle. Keywords : Tidal circulation, current asymmetry, tidal energy, HF radar, Iroise Sea.

  20. Tidal disruption events seen in the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Saxton, Richard; Komossa, S.; Read, Andrew; Lira, Paulina; Alexander, Kate D.; Steele, Iain

    XMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t -5/3 but vary greatly in the early phase.

  1. A 200-second quasi-periodicity after the tidal disruption of a star by a dormant black hole.

    PubMed

    Reis, R C; Miller, J M; Reynolds, M T; Gültekin, K; Maitra, D; King, A L; Strohmayer, T E

    2012-08-24

    Supermassive black holes (SMBHs; mass is greater than or approximately 10(5) times that of the Sun) are known to exist at the center of most galaxies with sufficient stellar mass. In the local universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, which often comes in the form of long-term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a ~200-second x-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local universe.

  2. Observations of ebb flows on tidal flats: Evidence of dewatering?

    NASA Astrophysics Data System (ADS)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures. Top: (soild) Water depth within the channel and (dashed) tidal flat elevation. Center: Channel surface velocities as measured by an (black) ADCP and (red) a Fourier technique using infrared video. Bottom: Temperatures of (blue) near bed water downstream of the incised channel, (black) channel outflow, and (red) tidal flat sediment at 10 cm depth within the bed.

  3. Exploring the extremely low surface brightness sky: distances to 23 newly discovered objects in Dragonfly fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter

    2016-10-01

    We are obtaining deep, wide field images of nearby galaxies with the Dragonfly Telephoto Array. This telescope is optimized for low surface brightness imaging, and we are finding many low surface brightness objects in the Dragonfly fields. In Cycle 22 we obtained ACS imaging for 7 galaxies that we had discovered in a Dragonfly image of the galaxy M101. Unexpectedly, the ACS data show that only 3 of the galaxies are members of the M101 group, and the other 4 are very large Ultra Diffuse Galaxies (UDGs) at much greater distance. Building on our Cycle 22 program, here we request ACS imaging for 23 newly discovered low surface brightness objects in four Dragonfly fields centered on the galaxies NGC 1052, NGC 1084, NGC 3384, and NGC 4258. The immediate goals are to construct the satellite luminosity functions in these four fields and to constrain the number density of UDGs that are not in rich clusters. More generally, this complete sample of extremely low surface brightness objects provides the first systematic insight into galaxies whose brightness peaks at >25 mag/arcsec^2.

  4. The Barnes-Evans color-surface brightness relation: A preliminary theoretical interpretation

    NASA Technical Reports Server (NTRS)

    Shipman, H. L.

    1980-01-01

    Model atmosphere calculations are used to assess whether an empirically derived relation between V-R and surface brightness is independent of a variety of stellar paramters, including surface gravity. This relationship is used in a variety of applications, including the determination of the distances of Cepheid variables using a method based on the Beade-Wesselink method. It is concluded that the use of a main sequence relation between V-R color and surface brightness in determining radii of giant stars is subject to systematic errors that are smaller than 10% in the determination of a radius or distance for temperature cooler than 12,000 K. The error in white dwarf radii determined from a main sequence color surface brightness relation is roughly 10%.

  5. Sensitivity of tidal characteristics in double inlet systems to momentum dissipation on tidal flats: a perturbation analysis

    NASA Astrophysics Data System (ADS)

    Hepkema, Tjebbe M.; de Swart, Huib E.; Zagaris, Antonios; Duran–Matute, Matias

    2018-05-01

    In a tidal channel with adjacent tidal flats, along-channel momentum is dissipated on the flats during rising tides. This leads to a sink of along-channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along-channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep-Vlie double-inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2 % in M2 amplitudes and an increase of approximately 25 % in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35 %, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep-Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three-dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.

  6. Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Megonigal, P.; Mueller, P.; Jensen, K.

    2014-12-01

    Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.

  7. On the tidal effects in the motion of earth satellites and the love parameters of the earth

    NASA Technical Reports Server (NTRS)

    Musen, P.; Estes, R.

    1972-01-01

    The tidal effects in the motion of artificial satellites are studied to determine the elastic properties of the earth as they are observed from extraterrestrial space. Considering Love numbers, the disturbing potential is obtained as the analytical continuation of the tidal potential from the surface of the earth into-outer space, with parameters which characterize the earth's elastic response to tidal attraction by the moon and the sun. It is concluded that the tidal effects represent a superposition of a large number of periodic terms, and the rotation of the lunar orbital plane produces a term of 18 years period in tidal perturbations of the ascending node of the satellite's orbit.

  8. The implications of tides on the Mimas ocean hypothesis

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan

    2017-02-01

    We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.

  9. Propagation of Tidal and Subtidal Free Surface Oscillations into River Channels from the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Iyer, S. K.; Cloarec, M.; Yankovsky, A. E.

    2014-12-01

    Tidal sea level oscillations propagate from continental shelves into river channels in the form of long gravity waves well beyond the limits of salt intrusion. These dynamics were a focus of numerous recent studies, which led to the development of the "tidal river" concept. Subtidal oscillations in the "weather" frequency band (periods from a few days to a few weeks) can exhibit similar propagation upstream the river channel, but have so far attracted less attention from researchers. In this work, we analyze data obtained from USGS stream gauge stations at several rivers flowing into the South Atlantic Bight along with NOAA tide gauge stations located on the adjacent coastline. Subtidal free surface oscillations in river channels decay at a slower rate than tidal oscillations (referenced to their amplitude on the coast), while their propagation speed is lower than at tidal frequencies. Potential to kinetic energy ratio sufficiently far upstream in the river channel becomes comparable for tidal and subtidal oscillations, as effects of earth's rotation become negligible. The results suggest that a coastal storm surge can cause more severe flooding inland along the river channel than tides with comparable coastal amplitude.

  10. The Implications of Tides on the Mimas Ocean Hypothesis

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan

    2017-01-01

    We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.

  11. NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T; Neary, Vincent S; Stewart, Kevin M

    2012-01-01

    A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2more » (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).« less

  12. Comparative Tectonics of Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Collins, G. C.; Prockter, L. M.; Head, J. W.

    2000-10-01

    Europa and Ganymede are sibling satellites with tectonic similarities and differences. Ganymede's ancient dark terrain is crossed by furrows, probably related to ancient large impacts, and has been normal faulted to various degrees. Bright grooved is pervasively deformed at multiple scales and is locally highly strained, consistent with normal faulting of an ice-rich lithosphere above a ductile asthenosphere, along with minor horizontal shear. Little evidence has been identified for compressional structures. The relative roles of tectonism and icy cryovolcanism in creating bright grooved terrain is an outstanding issue. Some ridge and trough structures within Europa's bands show tectonic similarities to Ganymede's grooved terrain, specifically sawtooth structures resembling normal fault blocks. Small-scale troughs are consistent with widened tension fractures. Shearing has produced transtensional and transpressional structures in Europan bands. Large-scale folds are recognized on Europa, with synclinal small-scale ridges and scarps probably representing folds and/or thrust blocks. Europa's ubiquitous double ridges may have originated as warm ice upwelled along tidally heated fracture zones. The morphological variety of ridges and troughs on Europa imply that care must be taken in inferring their origin. The relative youth of Europa's surface means that the satellite has preserved near-pristine morphologies of many structures, though sputter erosion could have altered the morphology of older topography. Moderate-resolution imaging has revealed lesser apparent diversity in Ganymede's ridge and trough types. Galileo's 28th orbit has brought new 20 m/pixel imaging of Ganymede, allowing direct comparison to Europa's small-scale structures.

  13. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    NASA Astrophysics Data System (ADS)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  14. Coupled Landscape and Channel Dynamics in the Ganges-Brahmaputra Tidal Deltaplain, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Bomer, J.; Wilson, C.; Hale, R. P.

    2017-12-01

    In the Ganges-Brahmaputra Delta (GBD) and other tide-dominated systems, periodic flooding of the land surface during the tidal cycle promotes sediment accretion and surface elevation gain over time. However, over the past several decades, anthropogenic modification of the GBD tidal deltaplain through embankment construction has precluded sediment delivery to catchment areas, leading to widespread channel siltation and subsidence in poldered landscapes. Amongst the current discussion on GBD sustainability, the relationship between tidal inundation period and resultant sedimentation in natural and embanked settings remains unclear. Moreover, an evaluation of how riparian sedimentology and stratigraphic architecture changes across the GBD tidal-fluvial spectrum is notably absent, despite its critical importance in assessing geomorphic change in human-impacted transitional environments. To provide local-scale, longitudinal trends of coupled landscape-channel dynamics, an array of surface elevation tables, groundwater piezometers, and sediment traps deployed in natural and embanked settings have been monitored seasonally over a time span of 4 years. This knowledge base will be extended across the GBD tidal-fluvial transition by collecting sediment cores from carefully selected point bars along the Gorai River. Sediments will be analyzed for lithologic, biostratigraphic, and geochemical properties to provide an integrated framework for discerning depositional zones and associated facies assemblages across this complex transitional environment. Preliminary comparisons of accretion and hydroperiod data suggest that inundation duration strongly governs mass accumulation on the intertidal platform, though other factors such as mass extraction from sediment source and vegetation density may play secondary roles.

  15. Mixing on the Heard Island Plateau during HEOBI

    NASA Astrophysics Data System (ADS)

    Robertson, R.

    2016-12-01

    On the plateau near Heard and McDonald Islands, the water column was nearly always well mixed. Typically, temperature differences between the surface and the bottom, 100-200 m, were less than 0.2oC and often less that 0.1oC. Surface stratification developed through insolation and deep primarily through a combination of upwelling from canyons and over the edge of the plateau and tidal advection. This stratification was primarily removed by a combination of wind and tidal mixing. Persistent winds of 30 knots mixed the upper 20-50 m. Strong wind events, 40-60 knots, mixed the water column to 100-200 m depth, which over the plateau, was often the entire water column. Benthic tidal friction mixed the bottom 30-50 m. Although the water column was unstratified at the two plume sites intensively investigated, tidal velocities were baroclinic, probably due to topographic controls. Tidal advection changed the bottom temperatures by 0.5oC within 8 hours, more than doubling the prior stratification. Wind mixing quickly homogenized the water column, resulting in the surface often showing the deeper upwelling and advective events. Although acoustic plumes with bubbles were observed in the water column, there was no evidence of geothermal vents or geothermal influence on temperatures. Mixing by bubbles rising in the water column was indistinguishable from the wind and tidal mixing, although the strongest upward vertical velocities were observed at the sites of these acoustic/bubble plumes.

  16. Magnetic fields driven by tidal mixing in radiative stars

    NASA Astrophysics Data System (ADS)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  17. Tidal variability in methane and nitrous oxide emissions along a subtropical estuarine gradient

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Werner, Ursula; Grinham, Alistair; Yuan, Zhiguo

    2017-06-01

    This study investigates the tidal variability in methane (CH4) and nitrous oxide (N2O) emissions along a gradient of the subtropical Brisbane River estuary. Sampling was conducted at the upper, middle and lower reaches over two tidal cycles in 2013 and 2014. Methane and N2O emissions varied significantly over tidal cycles at all sites. Methane and N2O emissions measured at all locations and in both campaigns varied substantially in time, with the maximum to minimum flux ratio in a cycle varying between 2.5 - 9 and 1.7-4.7 times, respectively. Methane emissions peaked just before or at slack tides. In comparison, no clear patterns were observed between the N2O emissions and the tidal cycle despite there being large variations in N2O emissions in some cases. Methane concentrations were elevated during low tides whereas N2O concentrations showed no clear pattern over the tidal cycle. Surface water concentrations and tidal currents played important roles in CH4 and N2O emissions, but wind did not. Our findings show that measurements at a single point in time and site would result in significant errors in CH4 and N2O emission estimates. An adequate and careful sampling scheme is required to capture spatial and temporal variations of CH4 and N2O emissions and surface water concentrations which should cover at least one tidal cycle in different estuarine sections.

  18. Inference of dust opacities for the 1977 Martian great dust storms from Viking Lander 1 pressure data

    NASA Technical Reports Server (NTRS)

    Zurek, R. W.

    1981-01-01

    The tidal heating components for the dusty Martian atmosphere are computed based on dust optical parameters estimated from Viking Lander imaging data, and used to compute the variation of the tidal surface pressure components at the Viking Lander sites as a function of season and the total vertical extinction optical depth of the atmosphere. An atmospheric tidal model is used which is based on the inviscid, hydrostatic primitive equations linearized about a motionless basic state the temperature of which varies only with height, and the profiles of the tidal forcing components are computed using a delta-Eddington approximation to the radiative transfer equations. Comparison of the model results with the observed variations of surface pressure and overhead dust opacity at the Viking Lander 1 site reveal that the dust opacities and optical parameters derived from imaging data are roughly representative of the global dust haze necessary to reproduce the observed surface pressure amplitudes, with the exception of the model-inferred asymmetry parameter, which is smaller during the onset of a great storm. The observed preferential enhancement of the semidiurnal tide with respect to the diurnal tide during dust storm onset is shown to be due primarily to the elevation of the tidal heating source in a very dusty atmosphere.

  19. Spatial patterns in salt marsh porewater dissolved organic matter over a spring-neap tidal cycle: insight to the impact of hydrodynamics on lateral carbon fluxes

    NASA Astrophysics Data System (ADS)

    Guimond, J. A.; Yu, X.; Duque, C.; Michael, H. A.

    2016-12-01

    Salt marshes are a hydrologically complex ecosystem. Tides deliver saline surface water to salt marshes via tidal creeks, and freshwater is introduced through lateral groundwater flow and vertical infiltration from precipitation. Locally, sediment heterogeneity, tides, weather, and topography introduce spatial and temporal complexities in groundwater-surface water interactions, which, in turn, can have a large impact on salt marsh biogeochemistry and the lateral fluxes of nutrients and carbon between the marsh platform and tidal creek. In this study, we investigate spatial patterns of porewater fluorescent dissolved organic matter (fDOM) and redox potential over a spring-neap tidal cycle in a mid-latitude tidal salt marsh in Dover, Delaware. Porewater samplers were used in conjunction with a peristaltic pump and YSI EXO Sonde to measure porewater fDOM, electrical conductivity, redox potential and pH from 0.5, 1.0, 1.5, 2.0, and 2.3 meters deep, as well as surface water from the creek and marsh platform. Eh was also measured continuously every 15 minutes with multi-level in-situ redox sensors at 0, 3, and 5m from the tidal creek, and water level and salinity were measured every 15 minutes continuously in 6 wells equipped with data loggers. Preliminary analyses indicate porewater salinity is dependent on the slope of the marsh platform, the elevation of the sample location, and the distance from a tidal creek. Near-creek redox analyses show tidal oscillations up to 300 mV; redox oscillations in the marsh interior show longer timescale changes. The observed redox oscillations coincide with the water level fluctuations at these locations. Therefore, lateral transport of carbon is determined by both hydrologic flow and biogeochemical processes. Results from this study provide insight into the timescales over which salt marsh hydrology impacts porewater biogeochemistry and the mechanisms controlling regional carbon cycling.

  20. The unusual morphology of the intragroup medium in NGC 5171

    NASA Astrophysics Data System (ADS)

    Osmond, J. P. F.; Ponman, Trevor J.; Finoguenov, Alexis

    2004-11-01

    We present the results of a 24-ks XMM-Newton observation of the NGC 5171 group of galaxies. NGC 5171 is unusual in that it is an X-ray bright group (LX > 1042 erg s-1), with irregular contours which are not centred on a bright galaxy. The global spectrum is adequately described by a single-temperature APEC model with TX= 0.96 +/- 0.04 keV and Z= 0.13 +/- 0.02Zsolar, in good agreement with previous ROSAT data. We find that the X-ray contours are centred on a bright ridge of emission stretching from the brightest group galaxy to a nearby galaxy. Spectral mapping reveals this ridge to be both cool (TX~ 1.1 keV) and metallic (Z~ 0.4 Zsolar) in comparison to its surroundings, suggesting it is the result of a tidal interaction between the two galaxies. Optical data reveal the member galaxies to have a high velocity dispersion (σv= 494 +/- 99 km s-1) and a significantly non-Gaussian velocity distribution, suggesting that the group is in the process of merging. A region of hot gas with TX= 1.58 +/- 0.36 keV is found to the west of the bright central ridge, and we interpret this as shock-heating resulting from the merging. A further region of emission to the south-east of the bright central ridge, with TX= 1.14 +/- 0.13 keV, is probably associated with a background group, four times more distant.

  1. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences.

    PubMed

    Zhang, Xiaoying; Hu, Bill X; Ren, Hejun; Zhang, Jin

    2018-08-15

    The gradient distribution of microbial communities has been detected in profiles along many natural environments. In a mangrove seedlings inhabited mudflat, the microbes drive a variety of biogeochemical processes and are associated with a dramatically changed environment across the tidal zones of mudflat. A better understanding of microbial composition, diversity and associated functional profiles in relation to physicochemical influences could provide more insights into the ecological functions of microbes in a coastal mangrove ecosystem. In this study, the variation of microbial community along successive tidal flats inhabited by mangrove seedlings were characterized based on the 16S rDNA gene sequences, and then the factors that shape the bacterial and archaeal communities were determined. Results showed that the tidal cycles strongly influence the distribution of bacterial and archaeal communities. Dissimilarity and gradient distribution of microbial communities were found among high tidal flat, mid-low tidal flat and seawater. Discrepancies were also as well observed from the surface to subsurface layers specifically in the high tidal flat. For example, Alphaproteobacteria displayed an increasing trend from low tidal to high tidal flat and vice versa for Deltaproteobacteria; Cyanobacteria and Thaumarchaeota were more dominant in the surface layer than the subsurface. In addition, by classifying the microorganisms into metabolic functional groups, we were able to identify the biogeochemical pathway that was dominant in each zone. The (oxygenic) photoautotrophy and nitrate reduction were enhanced in the mangrove inhabited mid tidal flat. It revealed the ability of xenobiotic metabolism microbes to degrade, transform, or accumulate environmental hydrocarbon pollutants in seawater, increasing sulfur-related respiration from high tidal to low tidal flat. An opposite distribution was found for major nitrogen cycling processes. The shift of both composition and function of microbial communities were significantly related to light, oxygen availability and total dissolved nitrogen instead of sediment types or salinity. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. THE DISCOVERY OF SEVEN EXTREMELY LOW SURFACE BRIGHTNESS GALAXIES IN THE FIELD OF THE NEARBY SPIRAL GALAXY M101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto, E-mail: allison.merritt@yale.edu

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less

  3. KECK/LRIS SPECTROSCOPIC CONFIRMATION OF COMA CLUSTER DWARF GALAXY MEMBERSHIP ASSIGNMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiboucas, Kristin; Tully, R. Brent; Marzke, Ronald O.

    2010-11-01

    Keck/LRIS multi-object spectroscopy has been carried out on 140 of some of the lowest and highest surface brightness faint (19 < R < 22) dwarf galaxy candidates in the core region of the Coma Cluster. These spectra are used to measure redshifts and establish membership for these faint dwarf populations. The primary goal of the low surface brightness sample is to test our ability to use morphological and surface brightness criteria to distinguish between Coma Cluster members and background galaxies using high resolution Hubble Space Telescope/Advanced Camera for Surveys images. Candidates were rated as expected members, uncertain, or expected background.more » From 93 spectra, 51 dwarf galaxy members and 20 background galaxies are identified. Our morphological membership estimation success rate is {approx}100% for objects expected to be members and better than {approx}90% for galaxies expected to be in the background. We confirm that low surface brightness is a very good indicator of cluster membership. High surface brightness galaxies are almost always background with confusion arising only from the cases of the rare compact elliptical (cE) galaxies. The more problematic cases occur at intermediate surface brightness. Many of these galaxies are given uncertain membership ratings, and these were found to be members about half of the time. Including color information will improve membership determination but will fail for some of the same objects that are already misidentified when using only surface brightness and morphology criteria. cE galaxies with B-V colors {approx}0.2 mag redward of the red sequence in particular require spectroscopic follow up. In a sample of 47 high surface brightness, ultracompact dwarf candidates, 19 objects have redshifts which place them in the Coma Cluster, while another 6 have questionable redshift measurements but may also prove to be members. Redshift measurements are presented and the use of indirect means for establishing cluster membership is discussed.« less

  4. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Withers, P.

    2017-12-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides. Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography. In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time. 2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from "appropriately quiet" Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the pressure measurements from Curiosity in Gale Crater, and assess to what degree the "pure" tidal signatures are muddled by various complicating factors, e.g. topography.

  5. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Christina; Withers, Paul

    2017-10-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides.Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography.In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time.2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from “appropriately quiet” Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the pressure measurements from Curiosity in Gale Crater, and assess to what degree the “pure” tidal signatures are muddled by various complicating factors, e.g. topography.

  6. Surface of TRAPPIST-1f

    NASA Image and Video Library

    2017-02-22

    This artist's concept allows us to imagine what it would be like to stand on the surface of the exoplanet TRAPPIST-1f, located in the TRAPPIST-1 system in the constellation Aquarius. Because this planet is thought to be tidally locked to its star, meaning the same face of the planet is always pointed at the star, there would be a region called the terminator that perpetually divides day and night. If the night side is icy, the day side might give way to liquid water in the area where sufficient starlight hits the surface. One of the unusual features of TRAPPIST-1 planets is how close they are to each other -- so close that other planets could be visible in the sky from the surface of each one. In this view, the planets in the sky correspond to TRAPPIST1e (top left crescent), d (middle crescent) and c (bright dot to the lower right of the crescents). TRAPPIST-1e would appear about the same size as the moon and TRAPPIST1-c is on the far side of the star. The star itself, an ultra-cool dwarf, would appear about three times larger than our own sun does in Earth's skies. The TRAPPIST-1 system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope. http://photojournal.jpl.nasa.gov/catalog/PIA21423

  7. Low Surface Brightness Imaging of the Magellanic System: Imprints of Tidal Interactions between the Clouds in the Stellar Periphery

    NASA Astrophysics Data System (ADS)

    Besla, Gurtina; Martínez-Delgado, David; van der Marel, Roeland P.; Beletsky, Yuri; Seibert, Mark; Schlafly, Edward F.; Grebel, Eva K.; Neyer, Fabian

    2016-07-01

    We present deep optical images of the Large and Small Magellanic Clouds (LMC and SMC) using a low cost telephoto lens with a wide field of view to explore stellar substructure in the outskirts of the stellar disk of the LMC (<10° from the LMC center). These data have higher resolution than existing star count maps, and highlight the existence of stellar arcs and multiple spiral arms in the northern periphery, with no comparable counterparts in the south. We compare these data to detailed simulations of the LMC disk outskirts, following interactions with its low mass companion, the SMC. We consider interaction in isolation and with the inclusion of the Milky Way tidal field. The simulations are used to assess the origin of the northern structures, including also the low density stellar arc recently identified in the Dark Energy Survey data by Mackey et al. at ˜15°. We conclude that repeated close interactions with the SMC are primarily responsible for the asymmetric stellar structures seen in the periphery of the LMC. The orientation and density of these arcs can be used to constrain the LMC’s interaction history with and impact parameter of the SMC. More generally, we find that such asymmetric structures should be ubiquitous about pairs of dwarfs and can persist for 1-2 Gyr even after the secondary merges entirely with the primary. As such, the lack of a companion around a Magellanic Irregular does not disprove the hypothesis that their asymmetric structures are driven by dwarf-dwarf interactions.

  8. Estimates of the dissipative heat and axial torque generated by ocean tides on icy satellites in the outer solar system.

    NASA Astrophysics Data System (ADS)

    Tyler, R.

    2012-09-01

    The tidal flow response generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing a strong tidal response. The fundamental elements of the response are described by the tidal flow and surface fluctuations. Derivative elements of the response include the associated dissipative heat, stress, and forces/torques. The dissipative heat has received much previous attention as it may be important in explaining the heat budget on several of the satellites in the Outer Solar System. While these estimates will be reviewed and compared with the tidal dissipation estimates compiled in Hussman et al. (2010), the primary goal in this presentation is to extend the analysis to consider the tidally generated axial torque on the satellites and the potential consquences for rotation. Interestingly, even a synchronously rotating satellite will, if a global fluid layer is included, experience a complex set of opportunities for torques in both the prograde and retrograde sense. The amplitude and sense of the torque sensitively depends on the ocean parameters controlling the tidal response. This sensitivity, combined with expected feedbacks whereby the tides affect the orbital parameters, suggests that the evolution of the satellite system will experience phases of both prograde and retrograde tidal torques during its evolution. A related point is that parameters of the ocean might be inferred from inferences or observations of torque or rotational deviations. In the panels to the right we show the nondimensional tidal torques associated with obliquity (top) and eccentricity (bottom). The parameters described in the labeling are the fluid density ρ, surface gravity g, ocean surface area A, tidal equilibrium height ηF, dissipation quality factor Q,and c=(gh)1/2, cr=Ωa, with ocean thickness h, rotation rate Ω, and radius a. Torque due to tides forced by obliquity as a function of the parameters c/cr and Q. Retrograde ("Westward") and prograde ("Eastward") components shown in left and right panels, respectively. Log10 scale shown in colorbar.

  9. Contribution to the theory of tidal oscillations of an elastic earth. External tidal potential

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1974-01-01

    The differential equations of the tidal oscillations of the earth were established under the assumption that the interior of the earth is laterally inhomogeneous. The theory was developed using vectorial and dyadic symbolism to shorten the exposition and to reduce the differential equations to a symmetric form convenient for programming and for numerical integration. The formation of tidal buldges on the surfaces of discontinuity and the changes in the internal density produce small periodic variations in the exterior geopotential which are reflected in the motion of artificial satellites. The analoques of Love elastic parameters in the expansion of exterior tidal potential reflect the asymmetric and inhomogeneous structure of the interior of the earth.

  10. Tidal truncation and barotropic convergence in a channel network tidally driven from opposing entrances

    USGS Publications Warehouse

    Warner, J.C.; Schoellhamer, D.; Schladow, G.

    2003-01-01

    Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction. ?? 2003 Elsevier Science B.V. All rights reserved.

  11. Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability

    NASA Astrophysics Data System (ADS)

    Barker, Adrian J.; Braviner, Harry J.; Ogilvie, Gordon I.

    2016-06-01

    We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders ℓ ≤ 5, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when n/Ω ≲ -1, where n and Ω are the orbital and spin angular frequencies, respectively) if the tidal amplitude is sufficiently large. We also explore the instability in a rigid ellipsoidal container, which is found to be quantitatively similar to that with a realistic free surface. Finally, we study the effect of rotation and tidal deformation on mode frequencies. We find that larger rotation rates and larger tidal deformations both decrease the frequencies of the prograde sectoral surface gravity modes. This increases the prospect of their tidal excitation, potentially enhancing the tidal response over expectations from linear theory. In a companion paper, we use our results to interpret global simulations of the elliptical instability.

  12. SAR observation and numerical modeling of tidal current wakes at the East China Sea offshore wind farm

    NASA Astrophysics Data System (ADS)

    Li, XiaoMing; Chi, Lequan; Chen, Xueen; Ren, YongZheng; Lehner, Susanne

    2014-08-01

    A TerraSAR-X (TS-X) Synthetic Aperture Radar (SAR) image acquired at the East China Sea offshore wind farm presents distinct wakes at a kilometer scale on the lee of the wind turbines. The presumption was that these wakes were caused by wind movement around turbine blades. However, wind analysis using spaceborne radiometer data, numerical weather prediction, and in situ measurements suggest that the prevailing wind direction did not align with the wakes. By analyzing measurement at the tidal gauge station and modeling of the tidal current field, these trailing wakes are interpreted to have formed when a strong tidal current impinged on the cylindrical monopiles of the wind turbines. A numerical simulation was further conducted to reproduce the tidal current wake under such conditions. Comparison of the simulated surface velocity in the wake region with the TS-X sea surface backscatter intensity shows a similar trend. Consequently, turbulence intensity (T.I.) of the tidal current wakes over multiple piles is studied using the TS-X observation. It is found that the T.I. has a logarithmic relation with distance. Furthermore, another case study showing wakes due to wind movement around turbine blades is presented to discuss the differences in the tidal current wakes and wind turbine wakes. The conclusion is drawn that small-scale wakes formed by interaction of the tidal current and the turbine piles could be also imaged by SAR when certain conditions are satisfied. The study is anticipated to draw more attentions to the impacts of offshore wind foundations on local hydrodynamic field.

  13. Tidal cycles of total particulate mercury in the Jade Bay, lower Saxonian Wadden Sea, southern North Sea.

    PubMed

    Jin, Huafang; Liebezeit, Gerd

    2013-01-01

    In this study, we evaluate the nature of the relationship between particulate matter and total mercury concentrations. For this purpose, we estimate both of the two values in water column over 12-h tidal cycles of the Jade Bay, southern North Sea. Total particulate mercury in 250 mL water samples was determined by oxygen combustion-gold amalgamation. Mercury contents varied from 63 to 259 ng/g suspended particulate matter (SPM) or 3.5-52.8 ng/L in surface waters. Total particulate mercury content (THg(p)) was positively correlated with (SPM), indicating that mercury in tidal waters is mostly associated with (SPM), and that tidal variations of total particulate mercury are mainly due to changes in (SPM) content throughout the tidal cycle. Maximum values for THg(p) were observed during mid-flood and mid-ebb, while the lowest values were determined at low tide and high tide. These data suggest that there are no mercury point sources in the Jade Bay. Moreover, the THg(p) content at low tide and high tide were significantly lower than the values recorded in the bottom sediment of the sampling site (>200 ng/g DW), while THg(p) content during the mid-flood and mid-ebb were comparable to the THg content in the surface bottom sediments. Therefore, changes in THg(p) content in the water column due to tidal forcing may have resulted from re-suspension of underlying surface sediments with relatively high mercury content.

  14. Partitioning of metals in a degraded acid sulfate soil landscape: influence of tidal re-inundation.

    PubMed

    Claff, Salirian R; Sullivan, Leigh A; Burton, Edward D; Bush, Richard T; Johnston, Scott G

    2011-11-01

    The oxidation and acidification of sulfidic soil materials results in the re-partitioning of metals, generally to more mobile forms. In this study, we examine the partitioning of Fe, Cr, Cu, Mn, Ni and Zn in the acidified surface soil (0-0.1 m) and the unoxidised sub-soil materials (1.3-1.5 m) of an acid sulfate soil landscape. Metal partitioning at this acidic site was then compared to an adjacent site that was previously acidified, but has since been remediated by tidal re-inundation. Differences in metal partitioning were determined using an optimised six-step sequential extraction procedure which targets the "labile", "acid-soluble", "organic", "crystalline oxide", "pyritic" and "residual" fractions. The surficial soil materials of the acidic site had experienced considerable losses of Cr, Cu, Mn and Ni compared to the underlying parent material due to oxidation and acidification, yet only minor losses of Fe and Zn. In general, the metals most depleted from the acidified surface soil materials exhibited the greatest sequestration in the surface soil materials of the tidally remediated site. An exception to this was iron, which accumulated to highly elevated concentrations in the surficial soil materials of the tidally remediated site. The "acid-soluble", "organic" and "pyritic" fractions displayed the greatest increase in metals following tidal remediation. This study demonstrates that prolonged tidal re-inundation of severely acidified acid sulfate soil landscapes leads to the immobilisation of trace metals through the surficial accumulation of iron oxides, organic material and pyrite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO 2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha -1 (range 14-963 Mg OC ha -1 ). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha -1 yr -1 . Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO 2 -equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1 , with a CO 2 -equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO 2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  16. Peculiarities in velocity dispersion and surface density profiles of star clusters

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Kroupa, Pavel; Baumgardt, Holger; Heggie, Douglas C.

    2010-10-01

    Based on our recent work on tidal tails of star clusters we investigate star clusters of a few 104Msolar by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of N-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution. From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50 per cent of the Jacobi radius. Beyond 70 per cent of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from the Newtonian gravity. By fitting templates to about 104 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with three more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10 per cent, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. Moreover, we find that the bulk of a cluster adjusts to the mean tidal field which it experiences and not to the tidal field at perigalacticon as has often been assumed in other investigations, i.e. a fitted tidal radius is a cluster's time average mean tidal radius and not its perigalactic one. Furthermore, we study the tidal debris in the vicinity of the clusters and find it to be well represented by a power law with a slope of -4 to -5. This steep slope we ascribe to the epicyclic motion of escaped stars in the tidal tails. Star clusters close to apogalacticon show a significantly shallower slope of up to -1, however. We suggest that clusters at apogalacticon can be identified by measuring this slope.

  17. 76 FR 65323 - Endangered and Threatened Species; Designation of Critical Habitat for the Southern Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... dispersed by estuarine, tidal, and ocean currents. Larval eulachon may remain in low salinity, surface... fish ascend well beyond the tidal influence (Willson et al., 2006). In the Kemano River, Canada, water...

  18. Removing tidal-period variations from time-series data using low-pass digital filters

    USGS Publications Warehouse

    Walters, Roy A.; Heston, Cynthia

    1982-01-01

    Several low-pass, digital filters are examined for their ability to remove tidal Period Variations from a time-series of water surface elevation for San Francisco Bay. The most efficient filter is the one which is applied to the Fourier coefficients of the transformed data, and the filtered data recovered through an inverse transform. The ability of the filters to remove the tidal components increased in the following order: 1) cosine-Lanczos filter, 2) cosine-Lanczos squared filter; 3) Godin filter; and 4) a transform fitter. The Godin fitter is not sufficiently sharp to prevent severe attenuation of 2–3 day variations in surface elevation resulting from weather events.

  19. Temporal and spatial variabilities in the surface moisture content of a fine-grained beach

    NASA Astrophysics Data System (ADS)

    Namikas, S. L.; Edwards, B. L.; Bitton, M. C. A.; Booth, J. L.; Zhu, Y.

    2010-01-01

    This study examined spatial and temporal variations in the surface moisture content of a fine-grained beach at Padre Island, Texas, USA. Surface moisture measurements were collected on a 27 × 24 m grid that extended from the dune toe to the upper foreshore. The grid was surveyed at 2 to 4 h intervals for two tidal cycles, generating 17 maps of the spatial distribution of surface moisture. Simultaneous measurements of air temperature and humidity, wind speed and direction, tidal elevation, and water table elevation were used to interpret observed changes in surface moisture. It was found that the spatial distribution of surface moisture was broadly characterized by a cross-shore gradient of high to low content moving landward from the swash zone. The distribution of surface moisture was conceptualized in terms of three zones: saturated (> 25%), intermediate or transitional (5-25%), and dry (< 5%). The position of the saturated zone corresponded to the uppermost swash zone and therefore shifted in accordance with tidal elevation. Moisture contents in the intermediate and dry zones were primarily related to variation in water table depth (which was in turn controlled by tidal elevation) and to a lesser extent by evaporation. Signals associated with atmospheric processes such as evaporation were muted by the minimal degree of variation in atmospheric parameters experienced during most of the study period, but were apparent for the last few hours. The observed spatial and temporal variations in moisture content correspond reasonably well with observations of key controlling processes, but more work is needed to fully characterize this process suite.

  20. Implications of Tidally Driven Convection and Lithospheric Arguments on the Topography of Europa

    NASA Astrophysics Data System (ADS)

    Sattler-Cassara, L.; Lyra, W.

    2017-11-01

    We present 3D numerical simulations of tidally driven convection in Europa. By associating the resulting normal stress from plumes with surface weakening and resistance from shallower layers, we successfully reproduce domes and double ridges.

  1. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    NASA Technical Reports Server (NTRS)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  2. Investigation of Tidal Power, Cobscook Bay, Maine. Environmental Appendix.

    DTIC Science & Technology

    1980-08-01

    Peromyscus leucopus Clethrionomys gapperi Microtus pennsylvanicus Ondatra zibethica Synaptomys cooperi Rattus norvegicua Mus musculus Zapus...hanks of si i oanis so I. ii.il it w i I I ant hi« necessary f<> reset , piles from time to t i r.w ilut" to bank...power. Since tidal power varies with the tides, tidal power is often completely out of phase with normal demand patterns. The surface area of the Bay

  3. Report of the NASA workshop on tidal research

    NASA Technical Reports Server (NTRS)

    Parke, M. E. (Editor); Rao, D. B. (Editor)

    1983-01-01

    The state of tidal research and the relationship of tides to altimeter data was discussed. It was decided that tides should be recognized as a separate objective for altimetric research. An altimetric satellite such as TOPEX which is designed for separation of tidal signals in conjunction with surface measurements can significantly improve knowledge of the deep sea tide. Information gained in this way will be directly applicable to all other altimetric satellites.

  4. Erratum - the Lowest Surface Brightness Disc Galaxy Known

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Phillipps, S.; Disney, M. J.

    1988-11-01

    The paper "The lowest surface brightness disc galaxy known' by J.I. Davies, S. Phillipps and M.J. Disney was published in Mon. Not. R. astr. Soc. (1988), 231, 69p. The declination of the object given in section 2 of the paper is incorrect and should be changed to +19^deg^48'23". Thus the object cannot be identified with GP 1444 as in the original paper. To minimize confusion we propose to refer to the low surface brightness galaxy as GP 1444A.

  5. Loki Patera

    NASA Image and Video Library

    1998-06-04

    A huge area of Io's volcanic plains is shown in this Voyager 1 image mosaic. Numerous volcanic calderas and lava flows are visible here. Loki Patera, an active lava lake, is the large shield-shaped black feature. Heat emitted from Loki can be seen through telescopes all the way from Earth. These telescopic observations tell us that Loki has been active continuously (or at least every time astronomers have looked) since the Voyager 1 flyby in March 1979. The composition of Io's volcanic plains and lava flows has not been determined, but they could consist dominantly of sulfur with surface frosts of sulfur dioxide or of silicates (such as basalts) encrusted with sulfur and sulfur dioxide condensates. The bright whitish patches probably consist of freshly deposited SO2 frost. The black spots, including Loki, are probably hot sulfur lava, which may remain molten by intrusions of molten silicate magma, coming up from deeper within Io. The ultimate source of heat that keeps Io active is tidal frictional heating due to the continual flexure of Io by the gravity of Jupiter and Europa, another of Jupiter's satellites. http://photojournal.jpl.nasa.gov/catalog/PIA00320

  6. Applications of HCMM data to soil moisture snow and estuarine current studies. [Cooper River and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.

    1980-01-01

    The author has identified the following significant results. The HCMM thermal data are useful for monitoring estuarine surface thermal patterns. Estuarine thermal patterns, are, under certain conditions, indicative of the surface tidal current circulation patterns. Under optimum conditions, estuaries as small as the Cooper River (i.e., approximately 100 sq km) can be monitored for tidal/thermal circulation patterns by HCMM-type IR sensors.

  7. High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Updyke, T. G.; Dusek, G.; Atkinson, L. P.

    2016-02-01

    Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.

  8. Tides and tidal stress: Applications to Europa

    NASA Astrophysics Data System (ADS)

    Hurford, Terry Anthony, Jr.

    A review of analytical techniques and documentation of previously inaccessible mathematical formulations is applied to study of Jupiter's satellite Europa. Compared with numerical codes that are commonly used to model global tidal effects, analytical models of tidal deformation give deeper insight into the mechanics of tides, and can better reveal the nature of the dependence of observable effects on key parameters. I develop analytical models for tidal deformation of multi-layered bodies. Previous studies of Europa, based on numerical computation, only to show isolated examples from parameter space. My results show a systematic dependence of tidal response on the thicknesses and material parameters of Europa's core, rocky mantle, liquid water ocean, and outer layer of ice. As in the earlier work, I restrict these studies to incompressible materials. Any set of Love numbers h 2 and k 2 which describe a planet's tidal deformation, could be fit by a range of ice thickness values, by adjusting other parameters such as mantle rigidity or core size, an important result for mission planning. Inclusion of compression into multilayer models has been addressed analytically, uncovering several issues that are not explicit in the literature. Full evaluation with compression is here restricted to a uniform sphere. A set of singularities in the classical solution, which correspond to instabilities due to self-gravity has been identified and mapped in parameter space. The analytical models of tidal response yield the stresses anywhere within the body, including on its surface. Crack patterns (such as cycloids) on Europa are probably controlled by these stresses. However, in contrast to previous studies which used a thin shell approximation of the tidal stress, I consider how other tidal models compare with the observed tectonic features. In this way the relationship between Europa's surface tectonics and the global tidal distortion can be constrained. While large-scale tidal deformations probe internal structure deep within a body, small-scale deformations can probe internal structure at shallower depths. I have used photoclinometry to obtain topographic profiles across terrain adjacent to Europan ridges to detect the effects of loading on the lithosphere. Lithospheric thicknesses have been determined and correlated with types and ages of terrain.

  9. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  10. Wave-current interactions in megatidal environment

    NASA Astrophysics Data System (ADS)

    Bennis, A. C.; Pascal, B. D. B.; Feddy, A.; Garnier, V.; Accenti, M.; Dumas, F.; Ardhuin, F.

    2016-12-01

    The strongest tidal current in western Europe (up to 12 knots) occurs in Raz Blanchard (Normandy, France). High winds occur over six months which generate energetic wave conditions with breaking waves, hence the name of `Blanchard'. However, few studies have been conducted on the wave effects on the tidal current at this location because of the lack of measurements. Studies are now required to aid the creation of tidal farms. For this purpose, the 3D fully-coupled model MARS-WW3 is used with three nested ranks which are forced at boundaries by wave spectra from HOMERE database (Boudière et al., 2013) and by sea level from the French Navy (SHOM). The model is tested against ADCP data of IRSN at three locations near Raz Blanchard. Time series of current velocity and of mean sea level are consistent with ADCP data. A rephasing by waves of the tidal current is observed in comparison with simulations without waves, which fits the ADCP data. A strong dependence of the tidal current on bottom roughness is shown as well as the necessity to take into account its spatial heterogeneity. The simulated mean sea level is close to the measured one while it was underestimated for high tide in simulations without wave effects. The vertical shape of the tidal current is especially modified near the surface by waves as expected. Depending on the tidal cycle and wave direction, acceleration or deceleration of the surface current due to waves is observed. Lastly, several hydrodynamical scenarios for Raz Blanchard are carried out for different tidal and wave conditions pending the HYD2M'17 data (ADCP, ADV, drifting wave buoys, HF and VHF and X-Band radars). First results show the impacts of refractive, shoaling and blocking effects on the flood and ebb currents.

  11. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across the fractures suggests that the plumes would be best observed earlier in the orbit (true anomaly ∼120°). Our results indicate that Europa's plumes, if confirmed, differ in many respects from the Enceladean plumes and that either active fractures or volatile sources are rare.

  12. Topographic enhancement of tidal motion in the western Barents Sea

    NASA Technical Reports Server (NTRS)

    Kowalik, Z.; Proshutinsky, A. YU.

    1995-01-01

    A high-resolution numerical lattice is used to study a topographically trapped motion around islands and shallow banks of the western Barents Sea caused both by the semidiurnal and diurnal tidal waves. Observations and model computations in the vicinity of Bear Island show well-developed trapped motion with distinctive tidal oscillatory motion. Numerical investigations demonstrate that one source of the trapped motion is tidal current rectification over shallow topgraphy. Tidal motion supports residual currents of the order of 8 cm/s around Bear Island and shallow Spitsbergenbanken. The structures of enhanced tidal currents for the semidiurnal components are generated in the shallow areas due to topographic amplification. In the diurnal band of oscillations the maximum current is associated with the shelf wave occurrence. Residual currents due to diurnal tides occur at both the shallow areas and the shelf slope in regions of maximum topographic gradients. Surface manifestation of the diurnal current enhancement is the local maximum of tidal amplitude at the shelf break of the order of 5 to 10 cm. Tidal current enhancement and tidally generated residual currents in the Bear Island and Spitsbergenabanken regions cause an increased generation of ice leads, ridges and, trapped motion of the ice floes.

  13. Ultraviolet Spectroscopic Monitoring of a Tidal Disruption Eventd

    NASA Astrophysics Data System (ADS)

    Kochanek, Chris

    2017-08-01

    Tidal disruption events (TDE), where supermassive black holes destroy stars toproduce accretion flares, are of great current observational andtheoretical interest. Here we propose a seven epoch STIS UV spectroscopic movie'' of a UV bright TDE spread over the first 90 days after a rapid TOO trigger. The roughly 15 day cadence is comparable to the expected and observed time scales for kinematic changes in theoptical and UV emission and absorption lines. We will measurethe evolution of UV absorption and emission lines from elements(e.g., C, N, Si) and ionization states/potentials not seen in optical spectra of TDEs, which should help to illuminate theirdynamical evolution. In some cases, the debris from the stellar cores should have significantly enhanced [N/C] abundances due to the CNO cycle, so UV spectra can provide a means of differentiating debris fromthe core and the envelope of the disrupted star. Optically-selectedTDEs are energetically dominated by their UV emission, making itthe wavelength range most needed to understand these fascinatingtransients.

  14. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  15. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  16. The Extended Halo of Centaurus A: Uncovering Satellites, Streams, and Substructures

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Sand, D. J.; Spekkens, K.; Caldwell, N.; Guhathakurta, P.; McLeod, B.; Seth, A.; Simon, J. D.; Strader, J.; Toloba, E.

    2016-05-01

    We present the widest-field resolved stellar map to date of the closest (D˜ 3.8 Mpc) massive elliptical galaxy NGC 5128 (Centaurus A; Cen A), extending out to a projected galactocentric radius of ˜150 kpc. The data set is part of our ongoing Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) utilizing the Magellan/Megacam imager. We resolve a population of old red giant branch (RGB) stars down to ˜1.5 mag below the tip of the RGB, reaching surface brightness limits as low as {μ }V,0˜ 32 mag arcsec-2. The resulting spatial stellar density map highlights a plethora of previously unknown streams, shells, and satellites, including the first tidally disrupting dwarf around Cen A (CenA-MM-Dw3), which underline its active accretion history. We report 13 previously unknown dwarf satellite candidates, of which 9 are confirmed to be at the distance of Cen A (the remaining 4 are not resolved into stars), with magnitudes in the range {M}V=-7.2 to -13.0, central surface brightness values of {μ }V,0=25.4{--}26.9 mag arcsec-2, and half-light radii of {r}h=0.22{--}2.92 {{kpc}}. These values are in line with Local Group dwarfs but also lie at the faint/diffuse end of their distribution; interestingly, CenA-MM-Dw3 has similar properties to the recently discovered ultradiffuse galaxies in Virgo and Coma. Most of the new dwarfs are fainter than the previously known Cen A satellites. The newly discovered dwarfs and halo substructures are discussed in light of their stellar populations, and they are compared to those discovered by the PAndAS survey of M31. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  17. Listening to Shells: Galaxy Masses from Disrupted Satellites

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle; Sanderson, R.

    2014-01-01

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has allowed for mass measurements out to ten effective radii. The extended atomic-gas disks of spiral galaxies allow one to measure rotation curves well beyond the optical disk to a few effective radii; however, such mass measurements are limited to a single plane and can often be confused by warps. As surface-brightness limits have pushed ever deeper, the revealed abundance of disrupted satellites in galaxy halos may present a unique opportunity for determining the enclosed mass at very large radii (more than five effective radii), provided our technology is up to the challenge. Here, we discuss the prospect of using integrated light spectroscopy of tidal shells to measure the masses of individual galaxies at redshifts of up to 0.1. Our study considers the limitations of current and projected instrumentation on 4-, 10-, and 30-meter class telescopes. The observational constraints are indeed very stringent, requiring both high sensitivity (with V-band surface brightness limits below 25 mag per square arsecond) and high spectral resolution (R>10k), whereas spatial resolution is effectively irrelevant. Bigger is not necessarily better for our application because of the limited field-of-view (FOV) of large telescopes, which dramatically limits their total grasp. We find the two most-promising setups are (1) a large FOV (1 square arcminute) integral-field unit (IFU) on a 4-meter class telescope and (2) a multiplexed suite of small FOV (10 square arcseconds) IFUs on a 10- or 30-meter class telescope. Two prospective instruments that may meet these requirements are WEAVE, an instrument currently planned for the William Herschel Telescope at La Palma, and an OPTIMOS-EVE-like instrument on the E-ELT.

  18. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398

  19. Internal solitons in the Andaman Sea: a new look at an old problem

    NASA Astrophysics Data System (ADS)

    da Silva, J. C. B.; Magalhaes, J. M.

    2016-10-01

    When Osborne and Burch [1] reported their observations of large-amplitude, long internal waves in the Andaman Sea that conform with theoretical results from the physics of nonlinear waves, a new research field on ocean waves was immediately set out. They described their findings in the frame of shallow-water solitary waves governed by the K-dV equation, which occur because of a balance between nonlinear cohesive and linear dispersive forces in a fluid. It was concluded that the internal waves in the Andaman Sea were solitons and that they evolved either from an initial waveform (over approximately constant water depth) or by a fission process (over variable water depth). Since then, there has been a great deal of progress in our understanding of Internal Solitary Waves (ISWs), or solitons in the ocean, particularly making use of satellite Synthetic Aperture Radar (SAR) systems. While two layer models such as those used by Osborne and Burch[1] allow for propagation of fundamental mode (i.e. mode-1) ISWs, continuous stratification permits the existence of higher mode internal waves. It happens that the Andaman Sea stratification is characterized by two (or more) maxima in the vertical profile of the buoyancy frequency N(z), i.e. a double pycnocline, hence prone to the existence of mode-2 (or higher) internal waves. In this paper we report solitary-like internal waves with mode-2 vertical structure co-existing with the large well know mode-1 solitons. The mode-2 waves are identified in satellite SAR images (e.g. TerraSAR-X, Envisat, etc.) because of their distinct surface signature. While the SAR image intensity of mode-1 waves is characterized by bright, enhanced backscatter preceding dark reduced backscatter along the nonlinear internal wave propagation direction (in agreement with Alpers, 1985[2]), for mode-2 solitary wave structures, the polarity of the SAR signature is reversed and thus a dark reduced backscatter crest precedes a bright, enhanced backscatter feature in the propagation direction of the wave. The polarity of these mode-2 signatures changes because the location of the surface convergent and divergent zones is reversed in relation to mode-1 ISWs. Mode-2 ISWs are identified in many locations of the Andaman Sea, but here we focus on ISWs along the Ten Degree Channel which occur along-side large mode-1 ISWs. We discuss possible generation locations and mechanisms for both mode-1 and mode-2 ISWs along this stretch of the Andaman Sea, recurring to modeling of the ray pathways of internal tidal energy propagation, and the P. G. Baines[3] barotropic body force, which drives the generation of internal tides near the shallow water areas between the Andaman and Nicobar Islands. We consider three possible explanations for mode-2 solitary wave generation in the Andaman Sea: (1) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (2) nonlinear disintegration of internal tide modes; (3) the lee wave forming mechanism to the west of a ridge during westward tidal flow out of the Andaman Sea (as originally proposed by Osborne and Burch for mode-1 ISWs). SAR evidence is of critical importance for examining those generation mechanisms.

  20. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa’s subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  1. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale and volume of transported material will yield insight on whether such a process may provide fuel to sustain a biosphere in Europa's subsurface ocean, which is relevant to searches for life by a future mission such as a potential Europa Lander.

  2. Modeling tides and their influence on the circulation in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Chao, Yi; Zhang, Hongchun; Farrara, John; Li, Zhijin; Jin, Xin; Park, Kyungeen; Colas, Francois; McWilliams, James C.; Paternostro, Chris; Shum, C. K.; Yi, Yuchan; Schoch, Carl; Olsson, Peter

    2013-07-01

    In the process of developing a real-time data-assimilating coastal ocean forecasting system for Prince William Sound, Alaska, tidal signal was added to a three-domain nested model for the region. The model, which is configured from the Regional Ocean Modeling System (ROMS), has 40 levels in the vertical direction and horizontal resolutions of 10.6km, 3.6km and 1.2km for its three nested domains, respectively. In the present research, the ROMS tidal solution was validated using data from coastal tide gauges, satellite altimeters, high-frequency coastal radars, and Acoustic Doppler Current Profiler (ADCP) current surveys. The error of barotropic tides, as measured by the total root mean square discrepancy of eight major tidal constituents is 5.3cm, or 5.6% of the tidal sea surface height variability in the open ocean. Along the coastal region, the total discrepancy is 9.6cm, or 8.2% of the tidal sea surface height variability. Model tidal currents agree reasonably well with the observations. The influence of tides on the circulation was also investigated using numerical experiments. Besides tides, other types of forcing fields (heat flux, wind stress, evaporation minus precipitation, and freshwater discharge) were also included in the model. Our results indicate that tides play a significant role in shaping the mean circulation of the region. For the summer months, the tidal residual circulation tends to generate a cyclonic gyre in the central Sound. The net transport into the Sound through Hinchinbrook Entrance is reduced. Tides also increase the mixed layer depth in the Sound, especially during the winter months.

  3. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    NASA Astrophysics Data System (ADS)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  4. Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.

    2005-01-01

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  5. A 5-micron-bright spot on Titan: evidence for surface diversity.

    PubMed

    Barnes, Jason W; Brown, Robert H; Turtle, Elizabeth P; McEwen, Alfred S; Lorenz, Ralph D; Janssen, Michael; Schaller, Emily L; Brown, Michael E; Buratti, Bonnie J; Sotin, Christophe; Griffith, Caitlin; Clark, Roger; Perry, Jason; Fussner, Stephanie; Barbara, John; West, Richard; Elachi, Charles; Bouchez, Antonin H; Roe, Henry G; Baines, Kevin H; Bellucci, Giancarlo; Bibring, Jean-Pierre; Capaccioni, Fabrizio; Cerroni, Priscilla; Combes, Michel; Coradini, Angioletta; Cruikshank, Dale P; Drossart, Pierre; Formisano, Vittorio; Jaumann, Ralf; Langevin, Yves; Matson, Dennis L; McCord, Thomas B; Nicholson, Phillip D; Sicardy, Bruno

    2005-10-07

    Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.

  6. On the tidal prism-channel area relations

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Lanzoni, Stefano; Marani, Marco; Rinaldo, Andrea

    2010-03-01

    We verify the broad applicability of tidal prism cross-sectional area relationships, originally proposed to relate the total water volume entering a lagoon during a characteristic tidal cycle (the tidal prism) to the size of its inlet, to arbitrary sheltered cross sections within a tidal network. We suggest, with reasonable approximation defining a statistical tendency rather than a pointwise equivalence, that the regime of tidal channels may be anywhere related to local landscape-forming prisms embedded in a characteristic spring tide oscillation. The importance of the proposed extension stems from its potential for quantitative predictions of the long-term morphological evolution of whole tidal landforms, in response to forcings affecting tidal prisms. This is the case, in particular, for alterations of relative mean sea levels possibly driven by climate change. Various 1-D and 2-D morphodynamic and hydrodynamic models are employed to evaluate peak flow rates, bottom shear stresses, and the ensuing local tidal prisms. One-dimensional morphodynamic models describing both the longitudinal and cross-sectional evolution of tidal channels are used to verify the validity of the relationship for sheltered sections. Relevant hydrodynamic features determined through accurate 2-D numerical models are compared with those obtained through time-invariant equivalents, defining a mean watershed by an energy landscape from averaged free surface gradients. Empirical evidence gathered within the lagoon of Venice (Italy) supports the proposed extension. We conclude that the geomorphic law relating tidal prisms to channel cross-sectional areas anywhere within a tidal landscape is a valuable tool for studies on long-term tidal geomorphology.

  7. The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies

    NASA Astrophysics Data System (ADS)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús

    2018-02-01

    We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.

  8. The X-ray surface brightness distribution and spectral properties of six early-type galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Canizares, C. R.

    1986-01-01

    Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.

  9. Tidal disruption of viscous bodies

    NASA Technical Reports Server (NTRS)

    Sridhar, S.; Tremaine, S.

    1992-01-01

    Tidal disruptions are investigated in viscous-fluid planetesimals whose radius is small relative to the distance of closest (parabolic-orbit) approach to a planet. The planetesimal surface is in these conditions always ellipsoidal, facilitating treatment by coupled ODEs which are solvable with high accuracy. While the disrupted planetesimals evolve into needlelike ellipsoids, their density does not decrease. The validity of viscous fluid treatment holds for solid (ice or rock) planetesimals in cases where tidal stresses are greater than material strength, but integrity is maintained by self-gravity.

  10. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Plewa, T.; Gawryszczak, A.

    2016-11-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a corotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multigrid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here, the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy (1.6 × 1051 erg) and 56Ni mass (0.86 M⊙) are consistent with an SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of Δm15(B) ≈ 0.99. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M⊙ helium secondary and a 0.9 M⊙ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primary's core.

  11. Host Galaxy Properties and Black Hole Mass of Swift J164449.3+573451 from Multi-wavelength Long-term Monitoring and HST Data

    NASA Astrophysics Data System (ADS)

    Yoon, Yongmin; Im, Myungshin; Jeon, Yiseul; Lee, Seong-Kook; Choi, Philip; Gehrels, Neil; Pak, Soojong; Sakamoto, Takanori; Urata, Yuji

    2015-07-01

    We study the host galaxy properties of the tidal disruption object Swift J164449.3+573451 using long-term optical to near-infrared (NIR) data. First, we decompose the galaxy surface brightness distribution and analyze the morphology of the host galaxy using high-resolution Hubble Space Telescope WFC3 images. We conclude that the host galaxy is bulge-dominant and well described by a single Sérsic model with Sérsic index n=3.43+/- 0.05. Adding a disk component, the bulge to total host galaxy flux ratio (B/ T) is 0.83 ± 0.03, which still indicates a bulge-dominant galaxy. Second, we estimate multi-band fluxes of the host galaxy through long-term light curves. Our long-term NIR light curves reveal the pure host galaxy fluxes ˜500 days after the burst. We fit spectral energy distribution models to the multi-band fluxes from the optical to NIR of the host galaxy and determine its properties. The stellar mass, the star formation rate, and the age of the stellar population are {log}({M}\\star /{M}⊙ )={9.14}-0.10+0.13, {0.03}-0.03+0.28 {M}⊙ yr-1, and {0.63}-0.43+0.95 Gyr. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The black hole mass is estimated to be {10}6.7+/- 0.4 {M}⊙ from {M}{BH}-{M}\\star ,{bul} and {M}{BH}-{L}{bul} relations for the K band, although a smaller value of ˜ {10}5 {M}⊙ cannot be excluded convincingly if the host galaxy harbors a pseudobulge.

  12. Determining the Effect of the Lunar Nodal Cycle on Tidal Mixing and North Pacific Climate Variability

    NASA Astrophysics Data System (ADS)

    Ullman, D. J.; Schmittner, A.; Danabasoglu, G.; Norton, N. J.; Müller, M.

    2016-02-01

    Oscillations in the moon's orbit around the earth modulate regional tidal dissipation with a periodicity of 18.6 years. In regions where the diurnal tidal constituents dominate diapycnal mixing, this Lunar Nodal Cycle (LNC) may be significant enough to influence ocean circulation, sea surface temperature, and climate variability. Such periodicity in the LNC as an external forcing may provide a mechanistic source for Pacific decadal variability (i.e. Pacific Decadal Oscillation, PDO) where diurnal tidal constituents are strong. We have introduced three enhancements to the latest version of the Community Earth System Model (CESM) to better simulate tidal-forced mixing. First, we have produced a sub-grid scale bathymetry scheme that better resolves the vertical distribution of the barotropic energy flux in regions where the native CESM grid does not resolve high spatial-scale bathymetric features. Second, we test a number of alternative barotropic tidal constituent energy flux fields that are derived from various satellite altimeter observations and tidal models. Third, we introduce modulations of the individual diurnal and semi-diurnal tidal constituents, ranging from monthly to decadal periods, as derived from the full lunisolar tidal potential. Using both ocean-only and fully-coupled configurations, we test the influence of these enhancements, particularly the LNC modulations, on ocean mixing and bidecadal climate variability in CESM.

  13. Land claim and loss of tidal flats in the Yangtze Estuary.

    PubMed

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world's largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km(2), a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  14. Land claim and loss of tidal flats in the Yangtze Estuary

    PubMed Central

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-01-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics. PMID:27035525

  15. Land claim and loss of tidal flats in the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Dong, Jinwei; Xiao, Xiangming; Zhang, Min; Tian, Bo; Zhou, Yunxuan; Li, Bo; Ma, Zhijun

    2016-04-01

    Tidal flats play a critical role in supporting biodiversity and in providing ecosystem services but are rapidly disappearing because of human activities. The Yangtze Estuary is one of the world’s largest alluvial estuaries and is adjacent to the most developed economic zone in China. Using the Yangtze Estuary as a study region, we developed an automatic algorithm to estimate tidal flat areas based on the Land Surface Water Index and the Normalized Difference Vegetation Index. The total area of tidal flats in the Yangtze Estuary has decreased by 36% over the past three decades, including a 38% reduction in saltmarshes and a 31% reduction in barren mudflats. Meanwhile, land claim has accumulated to 1077 km2, a value that exceeds the area of the remaining tidal flats. We divided the Yangtze Estuary into Shanghai and Jiangsu areas, which differ in riverine sediment supply and tidal flat management patterns. Although land claim has accelerated in both areas, the decline in tidal flat area has been much greater in Jiangsu than in Shanghai because of abundant supplies of sediment and artificial siltation in the latter area. The results highlight the need for better coastal planning and management based on tidal flat dynamics.

  16. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...

  17. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...

  18. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...

  19. The effect of monomolecular surface films on the microwave brightness temperature of the sea surface

    NASA Technical Reports Server (NTRS)

    Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.

    1982-01-01

    It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.

  20. Experiments on topographies lacking tidal conversion

    NASA Astrophysics Data System (ADS)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  1. Visible Color and Photometry of Bright Materials on Vesta

    NASA Technical Reports Server (NTRS)

    Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.

    2012-01-01

    The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].

  2. A New High Resolution Tidal Model in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cancet, M.; Andersen, O.; Lyard, F.; Schulz, A.; Cotton, D.; Benveniste, J.

    2016-08-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products.NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and CryoSat-2 data between 82°N and 88°N. The combination of these satellite altimetry missions gives the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data were also used for data assimilation and validation.This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global tidal models.

  3. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (I.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo cluster, the extended stellar halo around NGC 1399 is characterized by a more diffuse and well-mixed component, including the intracluster light.

  4. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Schauer, Paul V.

    2012-01-01

    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic Engineering Center’s River Analysis System model, and scour depths were calculated using methods recommended by the Federal Highway Administration. Computed contraction-scour depths were greater than 2.0 feet at five bridges and computed pier-scour depths were 4.0 feet or greater at 15 bridges. The potential for streambed scour by both coastal and riverine processes at the bridges considered in this study were evaluated, ranked, and summed to determine a cumulative risk factor for each bridge. Possible factors that could mitigate the scour risks were investigated at 22 bridges that had high individual or cumulative rankings. Mitigating factors such as piers founded in bedrock, deep pier foundations relative to scour depths, and lack of observed scour during field measurements were documented for 13 sites, but additional study and monitoring is needed to better quantify the streambed scour potential for nine sites. Three bridges prone to being affected by storm surges will require more data collection and possibly complex hydrodynamic modeling to accurately quantify the streambed scour potential. Continuous monitoring of water-surface and streambed elevation at one or more piers is needed for two bridges to better understand the tidal and riverine influences on streambed scour.

  5. California State Waters Map Series: Drakes Bay and vicinity, California

    USGS Publications Warehouse

    Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik N.; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.

    2015-01-01

    Sediment transport in the map area largely is controlled by surface waves and tidal currents in the nearshore and, at depths greater than 20 to 30 m, by tidal and subtidal currents. In the map area, nearshore littoral drift of sand and coarse sediment is to the south, owing to the dominant west-northwest swell direction, and scour from large waves and tidal currents removes and redistributes sediment over large areas of the inner shelf. Tidal currents are particularly strong over the shelf in the map area, and they dominate the current regime in the nearshore. Further offshore, bottom currents generally flow to the northwest, distributing finer grained sediment accordingly.

  6. The alfalfa “almost darks” campaign: Pilot VLA HI observations of five high mass-to-light ratio systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, John M.; Martinkus, Charlotte P.; Leisman, Lukas

    We present new Very Large Array (VLA) H i spectral line imaging of five sources discovered by the ALFALFA extragalactic survey. These targets are drawn from a larger sample of systems that were not uniquely identified with optical counterparts during ALFALFA processing, and as such have unusually high H i mass to light ratios. The candidate “Almost Dark” objects fall into four broad categories: (1) objects with nearby H i neighbors that are likely of tidal origin; (2) objects that appear to be part of a system of multiple H i sources, but which may not be tidal in origin;more » (3) objects isolated from nearby ALFALFA H i detections, but located near a gas-poor early type galaxy; (4) apparently isolated sources, with no object of coincident redshift within ∼400 kpc. Roughly 75% of the 200 objects without identified counterparts in the α.40 database (Haynes et al. 2011) fall into category 1 (likely tidal), and were not considered for synthesis follow-up observations. The pilot sample presented here (AGC193953, AGC208602, AGC208399, AGC226178, and AGC233638) contains the first five sources observed as part of a larger effort to characterize H i sources with no readily identifiable optical counterpart at single dish resolution (3.′5). These objects span a range of H i mass [7.41 < log(M{sub Hi}) < 9.51] and H i mass to B-band luminosity ratios (3 < M{sub Hi}/L{sub B} < 9). We compare the H i total intensity and velocity fields to optical imaging drawn from the Sloan Digital Sky Survey and to ultraviolet imaging drawn from archival GALEX observations. Four of the sources with uncertain or no optical counterpart in the ALFALFA data are identified with low surface brightness optical counterparts in Sloan Digital Sky Survey imaging when compared with VLA H i intensity maps, and appear to be galaxies with clear signs of ordered rotation in the H i velocity fields. Three of these are detected in far-ultraviolet GALEX images, a likely indication of star formation within the last few hundred Myrs. One source (AGC208602) is likely tidal in nature, associated with the NGC 3370 group. Consistent with previous efforts, we find no “dark galaxies” in this limited sample. However, the present observations do reveal complex sources with suppressed star formation, highlighting both the observational difficulties and the necessity of synthesis follow-up observations to understand these extreme objects.« less

  7. Tidal Dissipation Within the Jupiter Moon Io - A Numerical Approach

    NASA Astrophysics Data System (ADS)

    Steinke, Teresa; van der Wal, Wouter; Hu, Haiyang; Vermeersen, Bert

    2017-04-01

    Satellite images and recent Earth-based observations of the innermost of the Galilean moons reveal a conspicuous pattern of volcanic hotspots and paterae on its surface. This pattern is associated with the heat flux originating from tidal dissipation in Io's mantle and asthenosphere. As shown by many analytical studies [e.g. Segatz et al. 1988], the local heat flux pattern depends on the rheology and structure of the satellite's interior and therefore could reveal constraints on Io's present interior. However, non-linear processes, different rheologies, and in particular lateral variations arising from the spatial heating pattern are difficult to incorporate in analytical 1D models but might be crucial. This motivates the development of a 3D finite element model of a layered body disturbed by a tidal potential. As a first step of this project we present a 3D finite element model of a spherically stratified body of linear viscoelastic rheology. For validation, we compare the resulting tidal deformation and local heating patterns with the results obtained by analytical models. Numerical errors increase with lower values of the asthenosphere viscosity. Currently, the numerical model allows realistic simulation down to viscosities of 1018 Pa s. Furthermore, we investigate an adequate way to deal with the relaxation of false modes that arise at the onset of the periodic tidal potential series in the numerical approach. Segatz, M., Spohn, T., Ross, M. N., Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2), 187-206.

  8. Strong ocean tidal flow and heating on moons of the outer planets.

    PubMed

    Tyler, Robert H

    2008-12-11

    Data from recent space missions have added strong support for the idea that there are liquid oceans on several moons of the outer planets, with Jupiter's moon Europa having received the most attention. But given the extremely cold surface temperatures and meagre radiogenic heat sources of these moons, it is still unclear how these oceans remain liquid. The prevailing conjecture is that these oceans are heated by tidal forces that flex the solid moon (rock plus ice) during its eccentric orbit, and that this heat entering the ocean does not rapidly escape because of the insulating layer of ice over the ocean surface. Here, however, I describe strong tidal dissipation (and heating) in the liquid oceans; I show that a subdominant and previously unconsidered tidal force due to obliquity (axial tilt of the moon with respect to its orbital plane) has the right form and frequency to resonantly excite large-amplitude Rossby waves in these oceans. In the specific case of Europa, the minimum kinetic energy of the flow associated with this resonance (7.3 x 10(18) J) is two thousand times larger than that of the flow excited by the dominant tidal forces, and dissipation of this energy seems large enough to be a primary ocean heat source.

  9. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts.

    PubMed

    Watson, Elizabeth Burke; Hinojosa Corona, Alejandro

    2017-12-24

    Although saline tidal wetlands cover less than a fraction of one percent of the earth's surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972-2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and source, for five regions of tidal wetlands located on Baja California's Pacific coast. Land-cover change analysis indicates the stability of tidal wetlands relative to anthropogenic and climate change impacts over the past four decades, with most changes resulting from natural coastal processes that are unique to arid environments. The disturbance of wetland soils in this region (to a depth of 50 cm) would liberate 2.55 Tg of organic carbon (C) or 9.36 Tg CO₂eq. Based on stoichiometry and carbon stable isotope ratios, the source of organic carbon in these wetland sediments is derived from a combination of wetland macrophyte, algal, and phytoplankton sources. The reconstruction of natural wetland dynamics in Baja California provides a counterpoint to the history of wetland destruction elsewhere in North America, and measurements provide new insights on the control of carbon sequestration in arid wetlands.

  10. A numerical model for the whole Wadden Sea: results on the hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gräwe, Ulf; Duran-Matute, Matias; Gerkema, Theo; Flöser, Götz; Burchard, Hans

    2015-04-01

    A high-resolution baroclinic three-dimensional numerical model for the entire Wadden Sea of the German Bight in the southern North Sea is first validated against field data for surface elevation, current velocity, temperature and salinity at selected stations and then used to calculate fluxes of volume, heat and salt inside the Wadden Sea and the exchange between the Wadden Sea and the adjacent North Sea through the major tidal inlets. The General Estuarine Transport Model (GETM) is simulating the reference years 2009-2011. The numerical grid has a resolution of 200x200m and 30 adaptive vertical layers. It is the final stage of a multi-nested setup, starting from the North Atlantic. The atmospheric forcing is taken from the operational forecast of the German Weather Service. Additionally, the freshwater discharge of 23 local rivers and creeks are included. For validation, we use observations from a ship of opportunity measuring sea surface properties, tidal gauge stations, high frequency of salinity and volume transport estimates for the Mardiep and Spiekeroog inlet. Finally, the estuarine overturning circulation in three tidal gulleys is quantified. Regional differences between the gullies are assessed and drivers of the estuarine circulation are identified. Moreover, we will give a consistent estimate of the tidal prisms for all tidal inlets in the entire Wadden Sea.

  11. Global simulations and observations of O(1S), O2(1Σ) and OH mesospheric nightglow emissions

    NASA Astrophysics Data System (ADS)

    Yee, Jeng-Hwa; Crowley, G.; Roble, R. G.; Skinner, W. R.; Burrage, M. D.; Hays, P. B.

    1997-09-01

    Despite a large number of observations of mesospheric nightglow emissions in the past, the quantitative comparison between theoretical and experimental brightnesses is rather poor, owing primarily to the short duration of the observations, the strong variability of the tides, and the influence of short-timescale gravity waves. The high-resolution Doppler imager (HRDI) instrument onboard the upper atmosphere research satellite (UARS) provides nearly simultaneous, near-global observations of O(1S) green line, O2(0-1) atmospheric band, and OH Meinel band nightglow emissions. Three days of these observations near the September equinox of 1993 are presented to show the general characteristics of the three emissions, including the emission brightness, peak emission altitude, and their temporal and spatial variabilities. The global distribution of these emissions is simulated on the basis of atmospheric parameters from the recently developed National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). The most striking features revealed by the global simulation are the structuring of the mesospheric nightglow by the diurnal tides and enhancements of the airglow at high latitudes. The model reproduces the inverse relationship observed by HRDI between the nightglow brightness and peak emission altitude. Analysis of our model results shows that the large-scale latitudinal/tidal nightglow brightness variations are a direct result of a complex interplay between mesospheric and lower thermospheric diffusive and advective processes, acting mainly on the atomic oxygen concentrations. The inclination of the UARS spacecraft precluded observations of high latitude nightglow emissions by HRDI. However, our predicted high-latitude brightness enhancements confirm previous limited groundbased observations in the polar region. This work provides an initial validation of the NCAR-TIMEGCM using airglow data.

  12. Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 microns region

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Wiscombe, W. J.

    1994-01-01

    A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.

  13. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  14. Refinement in black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    Black chrome is significant as a solar selective coating because the current extensive use of black chrome in the electroplating industry as a durable decorative finish makes black chrome widely available on a commercial scale and potentially low in cost as a solar selective coating. Black-chrome deposits were modified by underplating with dull nickel or by being plated on rough surfaces. Both of these procedures increased the visible absorptance. There was no change in the infrared reflectance for the dull-nickel - black-chrome combination from that reported for the bright-nickel - black-chrome combination. However, the bright-nickel - black-chrome coating plated on rough surfaces indicated a slight decrease in infrared reflectance. As integrated over the solar spectrum for air mass 2, the reflectance of the dull-nickel - black-chrome coating was 0.077, of the bright-nickel - black-chrome coating plated on a 0.75-micron (30-microinch) surface was 0.070, of the bright-nickel - black-chrome coating plated on a 2.5 micron (100-microinch) surface was 0.064. The corresponding values for the bright-nickel - black-chrome coating on a 0.0125-micron (0.5-microinch) surface, two samples of black nickel, and two samples of Nextrel black paint were 0.132, 0.123, 0.133, and 0.033, respectively.

  15. A flow-simulation model of the tidal Potomac River

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    1987-01-01

    A one-dimensional model capable of simulating flow in a network of interconnected channels has been applied to the tidal Potomac River including its major tributaries and embayments between Washington, D.C., and Indian Head, Md. The model can be used to compute water-surface elevations and flow discharges at any of 66 predetermined locations or at any alternative river cross sections definable within the network of channels. In addition, the model can be used to provide tidal-interchange flow volumes and to evaluate tidal excursions and the flushing properties of the riverine system. Comparisons of model-computed results with measured watersurface elevations and discharges demonstrate the validity and accuracy of the model. Tidal-cycle flow volumes computed by the calibrated model have been verified to be within an accuracy of ? 10 percent. Quantitative characteristics of the hydrodynamics of the tidal river are identified and discussed. The comprehensive flow data provided by the model can be used to better understand the geochemical, biological, and other processes affecting the river's water quality.

  16. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

    NASA Astrophysics Data System (ADS)

    Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang

    2015-04-01

    Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

  17. Long Fading Mid-infrared Emission in Transient Coronal Line Emitters: Dust Echo of a Tidal Disruption Flare

    NASA Astrophysics Data System (ADS)

    Dou, Liming; Wang, Ting-gui; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan

    2016-12-01

    The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4× {10}42 and 2× {10}43 erg s-1 and dust temperature in the range of 570-800 K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decrease with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 1044 erg s-1 and that for warm dust masses to be in the range of 0.05-1.3 {M}⊙ within a few parsecs. Our results suggest that the mid-infrared echo is a general signature of TDE in the gas-rich environment.

  18. NGC 5523: An isolated product of soft galaxy mergers?

    NASA Astrophysics Data System (ADS)

    Fulmer, Leah M.; Gallagher, John S.; Kotulla, Ralf

    2017-02-01

    Multi-band images of the very isolated spiral galaxy NGC 5523 show a number of unusual features consistent with NGC 5523 having experienced a significant merger. (1) Near-infrared images from the Spitzer Space Telescope (SST) and the WIYN 3.5-m telescope reveal a nucleated bulge-like structure embedded in a spiral disk; (2) the bulge is offset by 1.8 kpc from a brightness minimum at the center of the optically bright inner disk; (3) a tidal stream, possibly associated with an ongoing satellite interaction, extends from the nucleated bulge along the disk. We interpret these properties as the results of one or more non-disruptive mergers between NGC 5523 and companion galaxies or satellites, raising the possibility that some galaxies become isolated because they have merged with former companions. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A119

  19. Macrophyte disturbance alters aquatic surface microlayer structure, metabolism, and fate.

    PubMed

    Seliskar, Denise M; Gallagher, John L

    2014-03-01

    Macrophytes drive the functioning of many salt marsh ecosystem components. We questioned how temporary clearing of the macrophyte community, during restoration, would impact processes at the scale of the aquatic surface microlayer. Development, deposition, and breakup of the tidal creek surface microlayer were followed over tidal cycles seasonally in a cleared "former" Phragmites marsh and an adjacent restored Spartina marsh. Metabolic and physical processes of the mobile surface microlayers and underlying water were compared, along with distribution of organic and inorganic components onto simulated plant stems. In July and October, chlorophyll-a quantities were less on simulated stems in the cleared site than in the restored site. The aquatic microlayer in the cleared site creek exhibited lower photosynthesis and respiration rates, fewer diatoms and green algae, and less chlorophyll-a. There was a lower concentration (250 times) and reduced diversity of fatty acids in the surface microlayer of the cleared site, reflecting a smaller and less diverse microbial community and reduced food resources. Fiddler crab activity was an order of magnitude higher where macrophytes had been cleared. Their consumption of edaphic algae on the mud surface may account for the reduced algae and other organics in the creek surface microlayer, thus representing a redirection of this food resource from creek consumers. Overall, there were less total particulates in the creek surface microlayer at the cleared site, and they dropped out of the surface microlayer sooner in the tidal cycle, resulting in a lower sediment load available for deposit onto marsh surfaces.

  20. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  1. Sedimentation, bioturbation, and sedimentary fabric evolution on a modern mesotidal mudflat: A multi-tracer study of processes, rates, and scales

    NASA Astrophysics Data System (ADS)

    Bentley, Samuel J.; Swales, Andrew; Pyenson, Benjamin; Dawe, Justin

    2014-03-01

    A study of muddy tidal-flat sedimentation and bioturbation was undertaken in the Waitetuna Arm of Raglan Harbor, New Zealand, to evaluate the physical and biological processes that control cycling of sediment between the intertidal seabed and sediment-water interface, and also the formation of tidal flat sedimentary fabric and fine-scale stratigraphy. Cores were collected along an intertidal transect, and analyzed for sedimentary fabric, 210Pb and 7Be radiochemical distributions, and grain size. At the same locations, a new approach for time-series core-X-radiography study was undertaken (spanning 191 days), using magnetite-rich sand as a tracer for sedimentation and bioturbation processes in shallow tidal flat sediments. Sedimentary fabric consists of a shallow stratified layer overlying a deeper zone of intensely bioturbated shelly mud. Bioadvection mixes the deeper zone and contributes fine sediment to the surface stratified layer, via biodeposition. Physical resuspension and deposition of surface muds by wave and tidal flow are also likely contributors to formation of the surficial stratified layer, but physical stratification is not observed below this depth. The deliberate tracer study allowed calculation of bioadvection rates that control strata formation, and can be used to model diagenetic processes. Results suggest that the upper ˜15 cm of seabed can be fully mixed over timescales <1.75 y. Such mixing will erase pre-existing sedimentary fabric and transport buried sediment and chemical compounds back to the tidal-flat surface. Shallow biodiffusion also exists, but produces much slower and shallower mass transport. Best fits for 210Pb profiles using a diagenetic bioadvection/sedimentation model and independently measured tiered bioadvection rates suggest that sediment accumulation rates (SARs) on the tidal flat are ˜0.25 cm/y, near the low end of contemporary New Zealand muddy intertidal SARs. Frequent deposition and erosion of the surface layer demonstrates that long-term sediment accumulation captures only a small fraction of sediment deposited at any one time. Model results also suggest that our magnetite tracer method may slightly underestimate short-term shallow mixing rates (demonstrated by 7Be profiles), and slightly overestimate longer-term, deeper bioturbation rates (demonstrated by 210Pb profiles).

  2. Volcanism on Jupiter's moon Io and its relation to interior processes

    NASA Astrophysics Data System (ADS)

    Hamilton, Christopher

    2013-04-01

    Jupiter's moon Io is the most volcanically active body in the Solar System and offers insight into processes of tidal heating, melt generation, and magma ascent. Investigating these processes contributes to a better understanding of Io's geologic history, internal structure, and tidal dissipation mechanisms, as well as to understanding similar processes operating on other tidally-heated worlds (e.g., Europa, Enceladus, and some exoplanets). Four recent developments provide new observational constraints that prompt re-examination of the relationships between Io's surficial geology and interior structure. These developments include: (1) completion of the first 1:15,000,000 scale geologic map of Io based on a synthesis of Voyager and Galileo data; (2) re-interpretation of Galileo magnetometer data, which suggests that Io has a globally continuous subsurface magma ocean; (3) new global surveys of the power output from volcanic centers on Io; and (4) identification of an offset between volcano concentrations and surface heat flux maxima predicted by solid body tidal heating models. In this study, the spatial distributions of volcanic hotspots and paterae on Io are characterized using distance-based clustering techniques and nearest neighbor statistics. Distance-based clustering results support a dominant role for asthenospheric heating within Io, but show a 30-60° eastward offset in volcano concentrations relative to locations of predicted surface heat flux maxima. The observed asymmetry in volcano concentrations, with respect to the tidal axis, cannot be explained by existing solid body tidal heating models. However, identification of a global magma ocean within Io raises the intriguing possibility that a fluid tidal response—analogous to the heating of icy satellites by fluid tidal dissipation in their liquid oceans—may modify Io's thermal budget and locations of enhanced volcanism. The population density of volcanoes is greatest near the equator, which also agrees with predictions from asthensopheric-dominated tidal heating models, but the nearest neighbor analysis of hotspots (i.e., sites of active volcanism) and paterae (i.e., caldera-like volcano-tectonic depressions) reveals a random to uniform spatial organization. This suggests that Io may have an extensive subsurface magma reservoir with vigorous mantle convection, and/or a deep-mantle heating component, which reduces the amplitude of surface heat flux variations that would otherwise favor clustering. The tendency toward uniformity among volcanic systems may reflect their interaction through a process of magmatic lensing that focuses rising magma and inhibits volcanism in the surrounding capture zone. In summary, the distribution of volcanism on Io generally supports the presence of a globally extensive asthenosphere with local interactions occurring between volcanic systems, but a 30-60° eastward offset in the location of enhanced volcanism relative to predicted surface heat flux maxima cannot be explained by existing solid body tidal heating models. This may imply faster than synchronous rotation, state of stress controls on the locations of magma ascent, and/or a missing component in models of Io's interior, such as fluid tides generated within a globally extensive layer of interconnected partial melt.

  3. Apparent Brightness and Topography Images of Vibidia Crater

    NASA Image and Video Library

    2012-03-09

    The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.

  4. Environmental Effects on Galaxy Evolution. II. Quantifying the Tidal Features in NIR Images of the Cluster Abell 85

    NASA Astrophysics Data System (ADS)

    Venkatapathy, Y.; Bravo-Alfaro, H.; Mayya, Y. D.; Lobo, C.; Durret, F.; Gamez, V.; Valerdi, M.; Granados-Contreras, A. P.; Navarro-Poupard, F.

    2017-12-01

    This work is part of a series of papers devoted to investigating the evolution of cluster galaxies during their infall. In the present article, we image in NIR a selected sample of galaxies throughout the massive cluster Abell 85 (z = 0.055). We obtain (JHK‧) photometry for 68 objects, reaching ˜1 mag arcsec-2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, {α }{An}, which allows us to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large-area objects, finding clear asymmetries in 10 galaxies; most of these are in groups and pairs projected at different clustercentric distances, and some of them are located beyond R 500. Combining information on the H I gas content of blue galaxies and the distribution of substructures across Abell 85 with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environmental mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.

  5. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    USGS Publications Warehouse

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an average temperature rate change of 1% following a variation of 0.04 AU in the solar distance.

  6. EFFECTS OF URBANIZATION ON THE SPATIAL AND TEMPORAL CHEMICAL QUALITY OF THREE TIDAL BAYOUS IN THE GULF OF MEXICO

    EPA Science Inventory

    Water and sediment quality in three tidal bayous located near Pensacola, Florida, were assessed during 1993-1995. The primary objective was to determine the environmental condition of the relatively small urban bayous by comparing the chemical quality of the sediments and surface...

  7. Avian communities in tidal salt marshes of San Francisco Bay: a review of functional groups by foraging guild and habitat association

    USGS Publications Warehouse

    Takekawa, John Y.; Woo, Isa; Gardiner, Rachel J.; Casazza, Michael L.; Ackerman, Joshua T.; Nur, Nadav; Liu, Leonard; Spautz, Hildie; Palaima, Arnas

    2011-01-01

    The San Francisco Bay estuary is highly urbanized, but it supports the largest remaining extent of tidal salt marshes on the west coast of North America as well as a diverse native bird community. San Francisco Bay tidal marshes are occupied by more than 113 bird species that represent 31 families, including five subspecies from three families that we denote as tidal-marsh obligates. To better identify the niche of bird species in tidal marshes, we present a review of functional groups based on foraging guilds and habitat associations. Foraging guilds describe the method by which species obtain food from tidal marshes, while habitat associations describe broad areas within the marsh that have similar environmental conditions. For example, the ubiquitous song sparrows (Alameda Melospiza melodia pusillula, Suisun M. m. maxillaris, and San Pablo M. m. samuelis) are surface-feeding generalists that consume prey from vegetation and the ground, and they are found across the entire marsh plain into the upland–marsh transition. In contrast, surface-feeding California black rails (Laterallus jamaicensis coturniculus) are cryptic, and generally restricted in their distribution to the mid- and high-marsh plain. Although in the same family, the endangered California clapper rail (Rallus longirostris obsoletus) has become highly specialized, foraging primarily on benthic fauna within marsh channels when they are exposed at low tide. Shorebirds such as the black-necked stilt (Himantopus mexicanus) typically probe in mud flats to consume macroinvertebrate prey, and are generally restricted to foraging on salt pans within the marsh plain, in ponds, or on mud flats during transitional stages of marsh evolution. The abundance and distribution of birds varies widely with changing water depths and vegetation colonization during different stages of restoration. Thus, tidal-marsh birds represent a rich and diverse community in bay marshes, with niches that may be distinguished by the food resources they consume and the habitats that they occupy along the tidal gradient.

  8. Tidal, Residual, Intertidal Mudflat (TRIM) Model and its Applications to San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Gartner, J.W.

    1993-01-01

    A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.

  9. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  10. Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data

    NASA Technical Reports Server (NTRS)

    Egbert, G. D.; Ray, R. D.

    2000-01-01

    How and where the ocean tides dissipate their energy are longstanding questions that have consequences ranging from the history of the Moon to the mixing of the oceans. Historically, the principal sink of tidal energy has been thought to be bottom friction in shallow seas. There has long been suggestive however, that tidal dissipation also occurs in the open ocean through the scattering by ocean-bottom topography of surface tides into internal waves, but estimates of the magnitude of this possible sink have varied widely. Here we use satellite altimeter data from Topex/Poseidon to map empirically the tidal energy dissipation. We show that approximately 10(exp 12) watts-that is, 1 TW, representing 25-30% of the total dissipation-occurs in the deep ocean, generally near areas of rough topography. Of the estimated 2 TW of mixing energy required to maintain the large-scale thermohaline circulation of the ocean, one-half could therefore be provided by the tides, with the other half coming from action on the surface of the ocean.

  11. A coupled geomorphic and ecological model of tidal marsh evolution.

    PubMed

    Kirwan, Matthew L; Murray, A Brad

    2007-04-10

    The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.

  12. VEGAS-SSS: A VST Programme to Study the Satellite Stellar Systems around Bright Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; Capaccioli, M.; Napolitano, N.; Grado, A.; Limatola, L.; Paolillo, M.; Iodice, E.; Romanowsky, A. J.; Forbes, D. A.; Raimondo, G.; Spavone, M.; La Barbera, F.; Puzia, T. H.; Schipani, P.

    2015-03-01

    The VEGAS-SSS programme is devoted to studying the properties of small stellar systems (SSSs) in and around bright galaxies, built on the VLT Survey Telescope early-type galaxy survey (VEGAS), an ongoing guaranteed time imaging survey distributed over many semesters (Principal Investigator: Capaccioli). On completion, the VEGAS survey will have collected detailed photometric information of ~ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, surface brightness fluctuations, etc.) and the distribution of clustered light (compact ''small'' stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  13. Stellar populations of bulges in galaxies with a low surface-brightness disc

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  14. Extracting Galaxy Cluster Gas Inhomogeneity from X-Ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2008-11-01

    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.

  15. Hydrology, vegetation, and soils of riverine and tidal floodplain forests of the lower Suwannee River, Florida, and potential impacts of flow reductions

    USGS Publications Warehouse

    Light, Helen M.; Darst, Melanie R.; Lewis, Lori J.; Howell, David A.

    2002-01-01

    A study relating hydrologic conditions, soils, and vegetation of floodplain forests to river flow was conducted in the lower Suwannee River, Florida, from 1996 to 2000. The study was done by the U.S. Geological Survey in cooperation with the Suwannee River Water Management District to help determine the minimum flows and levels required for wetlands protection. The study area included forests within the 10-year floodplain of the Suwannee River from its confluence with the Santa Fe River to the tree line (lower limit of forests) near the Gulf of Mexico, and covered 18,600 hectares (ha) of forests, 75 percent of which were wetlands and 25 percent uplands. The floodplain was divided into three reaches, riverine, upper tidal, and lower tidal, based on changes in hydrology, vegetation, and soils with proximity to the coast. The Suwannee River is the second largest river in Florida in terms of average discharge. Median flow at the confluence of the Suwannee and Santa Fe Rivers is approximately 181 cubic meters per second (m3/s) or 6,480 cubic feet per second (ft3/s) (1933-99). At the upper end of the riverine reach, river stages are unaffected by tides and have a typical annual range of 4.1 meters (m). Tides affect river stages at low and medium flows in the upper tidal reach, and at all flows in the lower tidal reach. Median tidal range at the mouth of the Suwannee River is about 1 m. Salinity of river water in the lower tidal reach increases with decreasing flow and proximity to the Gulf of Mexico. Vertically averaged salinity in the river near the tree line is typically about 5 parts per thousand at medium flow. Land-surface elevation and topographic relief in the floodplain decrease with proximity to the coast. Elevations range from 4.1 to 7.3 m above sea level at the most upstream riverine transect and from 0.3 to 1.3 m above sea level on lower tidal transects. Surface soils in the riverine reach are predominantly mineral and dry soon after floods recede except in swamps. Surface soils in upper and lower tidal reaches are predominantly organic, saturated mucks. In the downstream part of the lower tidal reach, conductivities of surface soils are high enough (greater than 4 milli-mhos per centimeter) to exclude many tree species that are intolerant of salinity. Species richness of canopy and subcanopy plants in wetland forests in the lower Suwannee River is high compared to other river floodplains in North America. A total of 77 tree, shrub, and woody vine species were identified in the canopy and subcanopy of floodplain wetland forests (n = 8,376). Fourteen specific forest types were mapped using digitized aerial photographs, defined from vegetative sampling, and described in terms of plant species composition. For discussion purposes, some specific wetland types were combined, resulting in three general wetland forest types for each reach. Riverine high bottomland hardwoods have higher canopy species richness than all other forest types (40-42 species), with Quercus virginiana the most important canopy tree by basal area. The canopy composition of riverine low bottomland hardwoods is dominated by five species with Quercus laurifolia the most important by basal area. Riverine swamps occur in the lowest and wettest areas with Taxodium distichum the most important canopy species by basal area. Upper tidal bottomland hardwoods are differentiated from riverine forests by the presence of Sabal palmetto in the canopy. Upper tidal mixed forests and swamps are differentiated from riverine forests, in part, by the presence of Fraxinus profunda in the canopy. Nyssa aquatica, the most important canopy species by basal area in upper tidal swamps, is absent from most forests in the lower tidal reach where its distribution is probably restricted by salinity. Hydric hammocks, a wetland type that is rare outside of Florida, are found in the lower tidal reach and are flooded every 1-2 years by either storm surge or river floods. Lowe

  16. Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa

    NASA Technical Reports Server (NTRS)

    Stempel, M. M.; Pappalardo, R. T.; Wahr, J.; Barr, A. C.

    2004-01-01

    To date, modeling of the surface stresses on Europa has considered tidal, nonsynchronous, and polar wander sources of stress. The results of such models can be used to match lineament orientations with candidate stress patterns. We present a rigorous surface stress model for Europa that will facilitate comparison of principal stresses to lineament orientation, and which will be available in the public domain. Nonsynchronous rotation and diurnal motion contribute to a stress pattern that deforms the surface of Europa. Over the 85-hour orbital period, the diurnal stress pattern acts on the surface, with a maximum magnitude of approximately 0.1 MPa. The nonsynchronous stress pattern sweeps over the surface due to differential rotation of the icy shell relative to the tidally locked interior of the moon. Nonsynchronous stress builds cumulatively with approximately 0.1 MPa per degree of shell rotation.

  17. Tidal controls on riverbed denitrification along a tidal freshwater zone

    NASA Astrophysics Data System (ADS)

    Knights, Deon; Sawyer, Audrey H.; Barnes, Rebecca T.; Musial, Cole T.; Bray, Samuel

    2017-01-01

    In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.

  18. Tidal and subtidal exchange flows at an inlet of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.

    2018-03-01

    Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by <5 m shoals. Neap tide observations spanned 36 h in the period May 11-12, 2011, while spring tide measurements exceeded 48 h from May 17 to May 19, 2011. Analysis of observations indicate that frictional effects from bathymetry molded tidal flows. Spatial distributions of semidiurnal tidal current amplitude and phase conform to those predicted by an analytical model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.

  19. The tidally averaged momentum balance in a partially and periodically stratified estuary

    USGS Publications Warehouse

    Stacey, M.T.; Brennan, Matthew L.; Burau, J.R.; Monismith, Stephen G.

    2010-01-01

    Observations of turbulent stresses and mean velocities over an entire spring-neap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this channel is up estuary due to interaction of tidal forcing with the geometry of the larger basin. The depth-variable tidally averaged flow has the form of an estuarine exchange flow (downstream at the surface, upstream at depth) and varies in response to the neap-spring transition. The weakening of the tidally averaged exchange during the spring tides appears to be a result of decreased stratification on the tidal time scale rather than changes in bed stress. The dynamics of the estuarine exchange flow are defined by a balance between the vertical divergence of the tidally averaged turbulent stress and the tidally averaged pressure gradient in the lower water column. In the upper water column, tidal stresses are important contributors, particularly during the neap tides. The usefulness of an effective eddy viscosity in the tidally averaged momentum equation is explored, and it is seen that the effective eddy viscosity on the subtidal time scale would need to be negative to close the momentum balance. This is due to the dominant contribution of tidally varying turbulent momentum fluxes, which have no specific relation to the subtidal circulation. Using a water column model, the validity of an effective eddy viscosity is explored; for periodically stratified water columns, a negative effective viscosity is required. ?? 2010 American Meteorological Society.

  20. Catalog of worldwide tidal bore occurrences and characteristics

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Lynch, David K.

    1988-01-01

    Documentation of tidal bore phenomena occurring throughout the world aids in defining the typical geographical setting of tidal bores and enables prediction of their occurrence in remote areas. Tidal bores are naturally occurring, tidally generated, solitary, moving water waves up to 6 meters in height that form upstream in estuaries with semidiurnal or nearly semidiurnal tide ranges exceeding 4 meters. Estuarine settings that have tidal bores typically include meandering fluvial systems with shallow gradients. Bores are well defined, having amplitudes greater than wind- or turbulence-caused waves, and may be undular or breaking. Formation of a bore is dependent on depth and velocity of the incoming tide and river outflow. Bores may occur in series (in several channels) or in succession (marking each tidal pulse). Tidal bores propagate up tidal estuaries a greater distance than the width of the estuary and most occur within 100 kilometers upstream of the estuary mouth. Because they are dynamic, bores cause difficulties in some shipping ports and are targets for eradication. Tidal bores are known to occur, or to have occurred in the recent past, in at least 67 localities in 16 countries at all latitudes, including every continent except Antarctica. Parts of Argentina, Canada, Central America, China, Mozambique, Madagascar, Northern Europe, North and South Korea, the United Kingdom, and the U.S.S.R. probably have additional undiscovered or unreported tidal bores. In Turnagain Arm estuary in Alaska, bores cause an abrupt increase in salinity, suspended sediment, surface character, and bottom pressure, a decrease in illumination of the water column, and a change in water temperature. Tidal bores occurring in Turnagain Arm, Alaska, have the

  1. Little Bright Spot

    NASA Image and Video Library

    2015-01-12

    A bright spot can be seen on the left side of Rhea in this image. The spot is the crater Inktomi, named for a Lakota spider spirit. Inktomi is believed to be the youngest feature on Rhea (949 miles or 1527 kilometers across). The relative youth of the feature is evident by its brightness. Material that is newly excavated from below the moon's surface and tossed across the surface by a cratering event, appears bright. But as the newly exposed surface is subjected to the harsh space environment, it darkens. This is one technique scientists use to date features on surfaces. This view looks toward the trailing hemisphere of Rhea. North on Rhea is up and rotated 21 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2013. The view was obtained at a distance of approximately 1.0 million miles (1.6 million kilometers) fro http://photojournal.jpl.nasa.gov/catalog/PIA18300

  2. Adjusting the tasseled cap brightness and greenness factors for atmospheric path radiance and absorption on a pixel by pixel basis

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Slater, P. N.; Pinter, P. J. (Principal Investigator)

    1982-01-01

    A radiative transfer model was used to convert ground measured reflectances into the radiance at the top of the atmosphere, for several levels of atmospheric path radiance. The radiance in MSS7 (0.8 to 1.1 m) was multiplied by the transmission fraction for atmospheres having different levels of precipitable water. The radiance values were converted to simulated LANDSAT digital counts for four path radiance levels and four levels of precipitable water. These values were used to calculate the Kauth-Thomas brightness, greenness, yellowness, and nonsuch factors. Brightness was affected by surface conditions and path radiance. Greenness was affected by surface conditions, path radiance, and precipitable water. Yellowness was affected by path radiance and nonsuch by precipitable water, and both factors changed only slightly with surface conditions. Yellowness and nonsuch were used to adjust brightness and greenness to produce factors that were affected only by surface conditions such as soils and vegetation, and not by path radiance and precipitable water.

  3. Patterns of fracture and tidal stresses due to nonsynchronous rotation - Implications for fracturing on Europa

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Parmentier, E. M.

    1985-01-01

    This study considers the global patterns of fracture that would result from nonsynchronous rotation of a tidally distorted planetary body. The incremental horizontal stresses in a thin elastic or viscous shell due to a small displacement of the axis of maximum tidal elongation are derived, and the resulting stress distributions are applied to interpret the observed pattern of fracture lineaments on Europa. The observed pattern of lineaments can be explained by nonsynchronous rotation if these features formed by tension fracturing and dike emplacement. Tension fracturing can occur for a small displacement of the tidal axis, so that the resulting lineaments may be consistent with other evidence suggesting a young age for the surface.

  4. Pele Erupting on Lo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of Jupiter's moon, lo, was taken by the Chandra X-Ray Observatory (CXO). Shown here is the most extreme example of the effect of tidal forces as Lo is being pulled by massive Jupiter on one side and by the outer moons Europa, Callisto, and Ganymede on the other. The opposing tidal forces alternately squeeze and stretch its interior, causing the solid surface to rise and fall by about 100 meters. The enormous amount of heat and pressure generated by the resulting friction creates colossal volcanoes and fractures on the surface of this moon.

  5. Giant Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi

    2018-04-01

    In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.

  6. Titan - a New Laboratory for Oceanography

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2001-12-01

    Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, and quite probably large expanses of liquid hydrocarbons on its surface. The physical processes in these lakes and seas will open new vistas on oceanography and limnology. Although the Voyager-era paradigm of a deep, global ocean is ruled out by radar and infrared data showing that at least part of Titan's surface is icy, the photochemical arguments that originally led to the proposal of hydrocarbon oceans still apply. Even if the methane in the atmosphere is being resupplied by delivery from the interior, the ethane produced by photolysis would still accumulate to form large deposits on the surface. The near-infrared maps of Titan's surface from the Hubble Space Telescope and groundbased adaptive optics consistently show a number of dark (in fact, pitch-black!) regions that are strong candidates for hydrocarbon seas. These could be up to some 500km in extent. Titan promises to be a new laboratory for oceanography. Like in meteorology, many ocean processes are better parameterized than they are understood, and thus the different physical circumstances on Titan may shed new light on them. Titan has a lower gravity and its ocean fluids are of lower density, perhaps of lower viscosity (depending on solutes and suspended material) and probably rather more likely to cavitate. The ratio of atmospheric density to ocean density is much larger on Titan than on Earth, suggesting that liquid motions will be well-coupled to surface winds (although the distance from the sun is such that the energy in such winds is likely to be low.) Titan is also subject to strong tidal forces (the equilibrium tide due to Saturn's gravity is some 400x larger than that of the moon on Earth.) Although the 100m tidal bulge stays almost fixed because Titan rotates synchronously, the eccentricity of Titan's orbit leads to significant libration and variation in the tidal strength. The 500km seas allowed by the IR data may yet have a 2m tidal amplitude. The long period of tidal excitation, however, means that tidal resonances are unlikely to occur. The NASA-ESA Cassini/Huygens mission will arrive in late 2004, and deliver the parachute-borne Huygens probe to Titan's surface in early 2005, taking images during its descent. The Cassini orbiter during its 4 year tour will fly by Titan some 45 times, taking SAR and altimeter data with a multimode radar, and observing the surface with optical and near-IR sensors. Future missions to Titan are already being contemplated, and might involve such platforms as helicopters or blimps.

  7. Jovian ultraviolet auroral activity, 1981-1991

    NASA Technical Reports Server (NTRS)

    Livengood, T. A.; Moos, H. W.; Ballester, G. E.; Prange, R. M.

    1992-01-01

    IUE observations of H2 UV emissions for the 1981-1991 period are presently used to investigate the auroral brightness distribution on the surface of Jupiter. The brightness, which is diagnostic of energy input to the atmosphere as well as of magnetospheric processes, is determined by comparing model-predicted brightnesses against empirical ones. The north and south aurorae appear to be correlated in brightness and in variations of the longitude of peak brightness. There are strong fluctuations in all the parameters of the brightness distribution on much shorter time scales than those of solar maximum-minimum.

  8. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  9. Tidal dynamics in the inter-connected Mediterranean, Marmara, Black and Azov seas

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Bellafiore, Debora; Sannino, Gianmaria; Bajo, Marco; Umgiesser, Georg

    2018-02-01

    In this study we investigated the tidal dynamics in a system of inter-connected land-locked basins formed by the Mediterranean, the Marmara, the Black and the Azov seas (MMBA system). Through the application of an unstructured grid hydrodynamic model to a unique domain representing the whole MMBA system, we simulated the tidal propagation and transformation inside each basin and in the straits connecting them. The model performance was evaluated against amplitudes and phases of major tidal constituents from 77 tidal gauges. The numerical results provided a description of the characteristics of the principal semi-diurnal, diurnal and long-term tides over the entire system. Even if the narrow straits act as a barrier for the tidal sea surface oscillations, our numerical results demonstrated that the along-strait interface slope produces water fluxes between the adjacent basins of the same order of magnitude of the climatological transports estimated by several authors. The long-term tidal modulations of the water exchange between the Mediterranean and the Black seas resulted to be non negligible and may partially explain the monthly and fortnightly flow variability observed in the Dardanelles and Bosphorus straits.

  10. Generalized dark-bright vector soliton solution to the mixed coupled nonlinear Schrödinger equations.

    PubMed

    Manikandan, N; Radhakrishnan, R; Aravinthan, K

    2014-08-01

    We have constructed a dark-bright N-soliton solution with 4N+3 real parameters for the physically interesting system of mixed coupled nonlinear Schrödinger equations. Using this as well as an asymptotic analysis we have investigated the interaction between dark-bright vector solitons. Each colliding dark-bright one-soliton at the asymptotic limits includes more coupling parameters not only in the polarization vector but also in the amplitude part. Our present solution generalizes the dark-bright soliton in the literature with parametric constraints. By exploiting the role of such coupling parameters we are able to control certain interaction effects, namely beating, breathing, bouncing, attraction, jumping, etc., without affecting other soliton parameters. Particularly, the results of the interactions between the bound state dark-bright vector solitons reveal oscillations in their amplitudes under certain parametric choices. A similar kind of effect was also observed experimentally in the BECs. We have also characterized the solutions with complicated structure and nonobvious wrinkle to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation. It is interesting to identify that the polarization vector of the dark-bright one-soliton evolves on a spherical surface instead of a hyperboloid surface as in the bright-bright case of the mixed coupled nonlinear Schrödinger equations.

  11. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  12. The nuclear activity and central structure of the elliptical galaxy NGC 5322

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Knapen, Johan H.; Williams, David R. A.; Beswick, Robert J.; Bendo, George; Baldi, Ranieri D.; Argo, Megan; McHardy, Ian M.; Muxlow, Tom; Westcott, J.

    2018-04-01

    We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with HST and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxy's central structure and its connection to the nuclear activity. We decomposed the composite HST + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The HST images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit Mdef in the spheroid, scoured by SMBH binaries with final mass MBH such that Mdef/MBH ˜ 1.3-3.4. We propose a three-phase formation scenario for NGC 5322, where a few (2-7) `dry' major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly on to the AGN, powering the radio core with a brightness temperature of TB, core ˜ 4.5 × 107 K and the low-power radio jets (Pjets ˜ 7.04 × 1020 W Hz-1), which extend ˜1.6 kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.

  13. K2-155: A Bright Metal-poor M Dwarf with Three Transiting Super-Earths

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Dai, Fei; Livingston, John H.; Fujii, Yuka; Cochran, William D.; Endl, Michael; Gandolfi, Davide; Redfield, Seth; Winn, Joshua N.; Guenther, Eike W.; Prieto-Arranz, Jorge; Albrecht, Simon; Barragan, Oscar; Cabrera, Juan; Cauley, P. Wilson; Csizmadia, Szilard; Deeg, Hans; Eigmüller, Philipp; Erikson, Anders; Fridlund, Malcolm; Fukui, Akihiko; Grziwa, Sascha; Hatzes, Artie P.; Korth, Judith; Narita, Norio; Nespral, David; Niraula, Prajwal; Nowak, Grzegorz; Pätzold, Martin; Palle, Enric; Persson, Carina M.; Rauer, Heike; Ribas, Ignasi; Smith, Alexis M. S.; Van Eylen, Vincent

    2018-03-01

    We report on the discovery of three transiting super-Earths around K2-155 (EPIC 210897587), a relatively bright early M dwarf (V = 12.81 mag) observed during Campaign 13 of the NASA K2 mission. To characterize the system and validate the planet candidates, we conducted speckle imaging and high-dispersion optical spectroscopy, including radial velocity measurements. Based on the K2 light curve and the spectroscopic characterization of the host star, the planet sizes and orbital periods are {1.55}-0.17+0.20 {R}\\oplus and 6.34365 ± 0.00028 days for the inner planet; {1.95}-0.22+0.27 {R}\\oplus and 13.85402 ± 0.00088 days for the middle planet; and {1.64}-0.17+0.18 {R}\\oplus and 40.6835 ± 0.0031 days for the outer planet. The outer planet (K2-155d) is near the habitable zone, with an insolation 1.67 ± 0.38 times that of the Earth. The planet’s radius falls within the range between that of smaller rocky planets and larger gas-rich planets. To assess the habitability of this planet, we present a series of three-dimensional global climate simulations, assuming that K2-155d is tidally locked and has an Earth-like composition and atmosphere. We find that the planet can maintain a moderate surface temperature if the insolation proves to be smaller than ∼1.5 times that of the Earth. Doppler mass measurements, transit spectroscopy, and other follow-up observations should be rewarding, as K2-155 is one of the optically brightest M dwarfs known to harbor transiting planets.

  14. Pinacate-gran Desierto Region, Mexico: SIR-A Data Analysis

    NASA Technical Reports Server (NTRS)

    Christensen, P.; Greeley, R.; Mchone, J.; Asmerom, Y.; Barnett, S.

    1984-01-01

    Radar images (SIR-A) from the Columbia space shuttle were used to assess the radar returns of terrain shaped by volcanic, aeolian, and fluvial processes in northwest Sonora. Field studies and photointerpretation show that sand dunes are poorly imaged by SIR-A, in contrast to SEASAT, evidently a consequence of the greater SIR-A incidence angle; star dunes are visible only as small bright spots representing merging arms at dune apices which may act as corner reflectors. Desert grasses and bushes (approx. 2 m high) have little effect on radar brightness. Only larger trees with woody trunks approx. 0.5 m across are effective radar reflectors; their presence contributes to radar bright zones along some arroyos. The radar brightness of lava flows decreases with surface roughness and presence of mantling windblown sediments and weathering products; however, old uplifted (faulted) flows are of equal brightness to fresh, unmantled aa flows. Maar craters display circular patterns of varying radar brightness which represent a combination of geometry, slope, and distribution of surface materials. Some radar bright rings in the Pinacates resemble craters on radar but are observed to be playas encircled by trees.

  15. InSAR-Detected Tidal Flow in Louisiana's Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Oliver-Cabrera, T.; Wdowinski, S.

    2014-12-01

    The Louisiana coast is among the most productive coastal area in the US and home to the largest coastal wetland area in the nation. However, Louisiana coastal wetlands have been threatened by natural (sea-level rise) and human (infrastructure development) stresses; they constitute the major part of the wetland loss of the country. Monitoring Louisiana's coastal wetlands represent a large challenge for local and federal authorities due to the large amount of area and hostile environment. Insofar, optical remote sensing observations have been used to classify the wetlands, monitor land cover changes, and assess the wetland loss over time. However, optical data is insensitive to surface flow and, hence, unable to detect the width of the tidal zone and changes in this area over time. SAR interferometry can provide useful information and ease the monitoring task. Wetland InSAR is the only application of the InSAR technology that provides information of aquatic surface. It provides useful information on surface water level changes in both inland and coastal wetlands. In this study, we use InSAR and tide gauge observations to detect and compare surface water level changes in response to ocean tide propagation through the Louisiana coastal wetlands. Our data consist of ALOS PALSAR, Radarsat-1 and tide gauge information over the coast of Louisiana. In order to detect water level changes, we used mainly high coherence interferferograms with short temporal baselines (46-92 days for ALOS data and 24-48 days for Radarsat-1). Interferometric processing of the data provides details maps of water level changes in the coastal zone. Preliminary results indicate tidal changes of up 30 cm and that tidal flow is limited to 8-10 km from the open water. Our results also show that the tidal flow is disrupted by various man-made structures as, canals and roads. The high spatial resolution wetland InSAR observations can provide useful constraints for detailed coastal wetland flow models.

  16. Spatial Distribution of Volcanic Hotspots and Paterae on Io: Implications for Tidal Heating Models and Magmatic Pathways

    NASA Technical Reports Server (NTRS)

    Hamilton, C. W.; Beggan, C. D.; Lopes, R.; Williams, D. A.; Radenbaugh, J.

    2011-01-01

    Io, the innermost of Jupiter's Galilean satellites, is the most volcanically active body in the Solar. System. Io's global mean heat flow is approximately 2 W/square m, which is approximately 20 times larger than on Earth. High surface temperatures concentrate within "hotspots" and, to date, 172 Ionian hotspots have been identified by spacecraft and Earth-based telescopes. The Laplace resonance between Io, Europa, and Ganymede maintains these satellites in noncircular orbits and causes displacement of their tidal bulges as the overhead position of Jupiter changes for each moon. Gravitational interactions between Jupiter and Io dominate the orbital evolution of the Laplacian system and generate enormous heat within to as tidal energy is dissipated. If this energy were transferred out of Io at the same rate as it is generated, then the associated surface heat flux would be 2.24 +/- 0.45 W/square m. This estimate is in good agreement with observed global heat flow, but to better constrain tidal dissipation mechanisms and infer how thermal energy is transferred to Io's surface, it is critical to closely examine the spatial distribution of volcanic features. End-member tidal dissipation models either consider that heating occurs completely in the mantle, or completely in the asthenosphere. Mixed models typically favor one-third mantle and two-thirds asthenosphere heating. Recent models also consider the effects of mantle-asthenosphere boundary permeability and asthenospheric instabilities. Deep-mantle heating models predict maximum surface heat flux near the poles, whereas asthenosphere heating models predict maxima near the equator-particularly in the Sub-Jovian and Anti-Jovian hemispheres, with smaller maxima occurring at orbit tangent longitudes. Previous studies have examined the global distribution of Ionian hotspots and patera (i.e., irregular or complex craters with scalloped edges that are generally interpreted to be volcanic calderas), but in this study, we combine a new geospatial analysis technique with an improved hotspot and paterae database .

  17. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  18. Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.

    PubMed

    Johnston, Karina K; Dorsey, John H; Saez, Jose A

    2015-03-01

    Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.

  19. Tidal Disruption Events: From iPTF to ZTF

    NASA Astrophysics Data System (ADS)

    Hung, Tiara; Gezari, Suvi; Cenko, Bradley; Kulkarni, Shri; Blagorodnova, Nadia; Yan, Lin

    2018-01-01

    The biggest challenge to finding tidal disruption events (TDEs) in optical transient sky surveys is to get rid of the numerous interlopers such as AGN and Type Ia supernovae that are at least 100 times more common. We will describe our selection process that led to the prompt discoveries of two TDEs (iPTF16axa and iPTF16fnl) in a 4-month long experiment to study nuclear transients in the intermediate Palomar Transient Factory (iPTF) together with UV and X-ray imaging follow-up from our Swift Cycle 12 Key Project. Subsequent multi-wavelength follow-up observations were triggered in order to study these rare events. We found that most of the optically-bright TDEs share similar peak luminosities, light curves, and temperature evolution except iPTF16fnl, which is the nearest, faintest, and fastest optical TDE ever found. Based on our detection rate in iPTF, we expect to discover ~30 TDEs in the first year of the Zwicky Transient Factory (ZTF), doubling the current TDE sample aggregated over ~7 years of wide-field optical surveys.

  20. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    PubMed

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  1. A catalog of low surface brightness galaxies - List II

    NASA Technical Reports Server (NTRS)

    Schombert, James M.; Bothun, Gregory D.; Schneider, Stephen E.; Mcgaugh, Stacy S.

    1992-01-01

    A list of galaxies characterized by low surface brightness (LSB) is presented which facilitates the recognition of galaxies with brightnesses close to that of the sky. A total of 198 objects and 140 objects are listed in the primary and secondary catalogs respectively, and LSB galaxies are examined by means of H I redshift distributions. LSB disk galaxies are shown to have similar sizes and masses as the high-surface-brightness counterparts, and ellipticals and SOs are rarely encountered. Many LSB spirals have stellarlike nuclei, and most of the galaxies in the present catalog are late-type galaxies in the Sc, Sm, and Im classes. The LSB region of observational parameter space is shown to encompass a spectrum of types as full as that of the Hubble sequence. It is suggested that studies of LSB galaxies can provide important data regarding the formation and star-formation history of all galaxies.

  2. Environmental extremes and biotic interactions facilitate depredation of endangered California Ridgway’s rail in a San Francisco Bay tidal marsh

    USGS Publications Warehouse

    Overton, Cory T.; Bobzien, Steven; Grefsrud, Marcia

    2016-01-01

    On 23 December 2015 while performing a high tide population survey for endangered Ridgway’s rails (Rallus obsoletus obsoletus; formerly known as the California clapper rail) and other rail species at Arrowhead Marsh, Martin Luther King Jr. Regional Shoreline, Oakland, California, the authors observed a series of species interactions resulting in the predation of a Ridgway’s rail by an adult female peregrine falcon (Falco peregrinus). High tide surveys are performed during the highest tides of the year when tidal marsh vegetation at Arrowhead Marsh becomes inundated, concentrating the tidal marsh obligate species into the limited area of emergent vegetation remaining as refuge cover. Annual mean tide level (elevation referenced relative to mean lower low water) at Arrowhead Marsh is 1.10 m, mean higher high water is 2.04 m (NOAA National Ocean Service 2014) and the average elevation of the marsh surface is 1.60 m (Overton et al. 2014). Tidal conditions on the day of the survey were predicted to be 2.42 m. Observed tides at the nearby Alameda Island tide gauge were 8 cm higher than predicted due to a regional low-pressure system and warmer than average sea surface temperatures (NOAA National Ocean Service 2014). The approximately 80 cm deep inundation of the marsh plain was sufficient to completely submerge tidal marsh vegetation and effectively remove 90% of refugia habitats.

  3. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts

    PubMed Central

    Watson, Elizabeth Burke

    2017-01-01

    Although saline tidal wetlands cover less than a fraction of one percent of the earth’s surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972–2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and source, for five regions of tidal wetlands located on Baja California’s Pacific coast. Land-cover change analysis indicates the stability of tidal wetlands relative to anthropogenic and climate change impacts over the past four decades, with most changes resulting from natural coastal processes that are unique to arid environments. The disturbance of wetland soils in this region (to a depth of 50 cm) would liberate 2.55 Tg of organic carbon (C) or 9.36 Tg CO2eq. Based on stoichiometry and carbon stable isotope ratios, the source of organic carbon in these wetland sediments is derived from a combination of wetland macrophyte, algal, and phytoplankton sources. The reconstruction of natural wetland dynamics in Baja California provides a counterpoint to the history of wetland destruction elsewhere in North America, and measurements provide new insights on the control of carbon sequestration in arid wetlands. PMID:29295540

  4. A PAndAS view of the resolved stellar populations in M31 dwarf elliptical satellites

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; PAndAS Collaboration

    We present the first truly global view of the closest elliptical galaxies, the dwarf elliptical (dE) companions of M31 NGC147 and NGC185. We exploit the deep PAndAS photometric dataset in order to investigate the resolved stellar content and structure of these dEs out to larger distances than ever previously probed. From the analysis of their old red giant branch stars, we derive density maps, full surface brightness profiles and metallicity distribution functions. We find that NGC147 shows pronounced tidal tails likely due to its interaction with M31, while NGC185 retains a regular elliptical shape over its entire extent. The two dEs follow a Sersic profile out to ˜5 kpc, and the effective radii derived in this study are a factor of two larger than previous literature values. While NGC185 shows a significant gradient in metallicity (˜-0.05 dex/kpc), this is almost absent in NGC147. The detailed understanding of nearby dEs is crucial for the studies of more distant objects, and we discuss how internal and environmental processes could have influenced the evolution of NGC147 and NGC185 in light of our results.

  5. A New Giant Stellar Structure in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Zucker, Daniel B.; Kniazev, Alexei Y.; Bell, Eric F.; Martínez-Delgado, David; Grebel, Eva K.; Rix, Hans-Walter; Rockosi, Constance M.; Holtzman, Jon A.; Walterbos, Rene A. M.; Ivezić, Željko; Brinkmann, J.; Brewington, Howard; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Lamb, Don Q.; Long, Dan; Newman, Peter R.; Nitta, Atsuko; Snedden, Stephanie A.

    2004-09-01

    The Sloan Digital Sky Survey has revealed an overdensity of luminous red giant stars ~3° (40 projected kpc) to the northeast of M31, which we have called Andromeda NE. The line-of-sight distance to Andromeda NE is within ~50 kpc of M31; Andromeda NE is not a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~-11.6 and a central surface brightness of ~29 mag arcsec-2, making it nearly 2 orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Based on its distance and morphology, Andromeda NE is likely undergoing tidal disruption. Andromeda NE's red giant branch color is unlike that of M31's present-day outer disk or the stellar stream reported by Ibata et al., arguing against a direct link between Andromeda NE and these structures. However, Andromeda NE has a red giant branch color similar to that of the G1 clump; it is possible that these structures are both material torn off of M31's disk in the distant past or that these are both part of one ancient stellar stream.

  6. Color evolution from z = 0 to z = 1

    NASA Technical Reports Server (NTRS)

    Rakos, Karl D.; Schombert, James M.

    1995-01-01

    Rest frame Stroemgren photometry (3500 A, 4100 A, 4750 A, and 5500 A) is presented for 509 galaxies in 17 rich clusters between z = 0 and z = 1 as a test of color evolution. Our observations confirm a strong, rest frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z = 0.4 to 80% at z = 0.9. We also find that a majority of these blue cluster galaxies are composed of normal disk or post-starburst systems based on color criteria. When comparing our colors to the morphological results from Hubble Space Telescope HST imaging, we propose that the blue cluster galaxies are a population of late-type, low surface brightness objects which fade and are then destroyed by the cluster tidal field. After isolating the red objects from Butcher-Oemler objects, we have compared the mean color of these old, non-star-forming objects with spectral energy distribution models in the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single-burst models which predict a mean epoch of galaxy formation at z = 5. Tracing the red envelope for ellipticals places the earliest epoch of galaxy formation at z = 10.

  7. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  8. Small scale patches of suspended matter and phytoplankton in the Elbe River estuary, German Bight and tidal flats

    NASA Technical Reports Server (NTRS)

    Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.

    1989-01-01

    Landsat 5 TM measurements are found suitable for study of small scale features in coastal waters; three independent factors, namely suspended matter concentration, atmospheric scattering, and sea-surface temperature, were extracted from all seven TM channels on the basis of factor analysis. The distribution of suspended matter in near-surface water layer and sea surface temperature is observable with a spatial resolution of at least 120 x 120 sq m. The high correlation between water depth and suspended matter distribution established by ship-gathered data supports the presently hypothesized control by bottom topography and wind-modified tidal currents of eddy and front formation.

  9. Tidal interaction: A possible explanation for geysers and other fluid phenomena in the Neptune-Triton system

    NASA Technical Reports Server (NTRS)

    Kelly, W. D.; Wood, C. L.

    1993-01-01

    Discovery of geyser-like plumes on the surface of Triton was a highlight of Voyager 2's passage through the Neptune planetary system. Remarkable as these observations were, they were not entirely without precedent. Considering the confirmed predictions for the 1979 Voyager Jovian passage, it was logical to consider other solar system bodies beside Io where tidal effects could be a significant factor in surface processes. It was our intuition that the Neptune-Triton gravitational bond acting at high inclination to the Neptune equator and the fact that Neptune was a fluid body was significant oblateness would produce tidal and mechanical forces that could be transformed into thermal energy vented on Triton's surface. Prior to the Voyager flyby, others have noted that capture and evolution of Triton's orbit from extreme eccentricity to near circular state today would have resulted in significant tidal heating, but these analysts disregard current day forces. Our calculations indicate that the time varying forces between Neptune-Triton fall midway between those exerted in the Earth-Moon and Jupiter-Io systems, and considering the low level of other energy inputs, this source of internal energy should not be ignored when seeking an explanation for surface activity. In each planet-satellite case, residual or steady-state eccentricity causes time-varying stresses on internal satellite strata. In the case of Jupiter the residual eccentricity is due largely to Galilean satellite interactions, particularly Io-Europa, but in the case of Neptune-Triton, it is the effect of Triton's inclined orbit about an oblate primary.

  10. Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes

    PubMed Central

    Dibble, Kimberly L.; Meyerson, Laura A.

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration. PMID:23029423

  11. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    PubMed

    Dibble, Kimberly L; Meyerson, Laura A

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.

  12. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    NASA Astrophysics Data System (ADS)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  13. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  14. Pool spacing, channel morphology, and the restoration of tidal forested wetlands of the Columbia River, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Montgomery, David R.

    2008-10-09

    Tidal forested wetlands have sustained substantial areal losses, and restoration practitioners lack a description of many ecosystem structures associated with these late-successional systems in which surface water is a significant controlling factor on the flora and fauna. The roles of large woody debris in terrestrial and riverine ecosystems have been well described compared to functions in tidal areas. This study documents the role of large wood in forcing channel morphology in Picea-sitchensis (Sitka spruce) dominated freshwater tidal wetlands in the floodplain of the Columbia River, U.S.A. near the Pacific coast. The average pool spacing documented in channel surveys of threemore » freshwater tidal forested wetlands near Grays Bay were 2.2 ± 1.3, 2.3 ± 1.2, and 2.5 ± 1.5. There were significantly greater numbers of pools on tidal forested wetland channels than on a nearby restoration site. On the basis of pool spacing and the observed sequences of log jams and pools, the tidal forested wetland channels were classified consistent with a forced step-pool class. Tidal systems, with bidirectional flow, have not previously been classified in this way. The classification provides a useful basis for restoration project design and planning in historically forested tidal freshwater areas, particularly in regard to the use of large wood in restoration actions and the development of pool habitats for aquatic species. Significant modifications by beaver on these sites warrant further investigation to explore the interactions between these animals and restoration actions affecting hydraulics and channel structure in tidal areas.« less

  15. Metre-size bright spots at the surface of comet 67P/Churyumov-Gerasimenko: Interpretation of OSIRIS data using laboratory experiments

    NASA Astrophysics Data System (ADS)

    Pommerol, Antoine; Thomas, Nicolas; Antonella Barucci, M.; Bertaux, Jean-Loup; Davidsson, Björn; Ramy El-Maarry, Mohamed; La Forgia, Fiorengela; Fornasier, Sonia; Gracia, Antonio; Groussin, Olivier; Jost, Bernhard; Keller, Horst Uwe; Kuehrt, Ekkehard; Marschall, Raphael; Massironi, Matteo; Motolla, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Poch, Olivier

    2015-04-01

    Since the beginning of Rosetta's orbital observations, over a hundred small bright spots have been identified in images returned by its OSIRIS NAC camera, in all types of morphological regions on the nucleus. Bright spots are found as clusters of several tens of individuals in the vicinity of cliffs, or isolated without clear structural relation to the surrounding terrain. They are however mostly observed in the areas of the nucleus currently receiving the lowest amount of insolation and some of the best examples appear completely surrounded by shadows. Their typical sizes are of the order of a few metres and they are often observed at the surfaces of boulders of larger dimension. The brightness of these spots is up to ten times the average brightness of the surrounding terrain and multi-spectral analyses show a significantly bluer spectrum over the 0.3-1µm range. Comparisons of images taken in September and November 2014 under similar illumination conditions do not show any significant change of these features. Analysis of the results of past and present laboratory experiments with H2O-ice/dust mixtures provide interesting insights about the nature and origin of the bright spots. In particular, recent sublimation experiments conducted at the University of Bern reproduce the spectro-photometric variability observed at the surface of the nucleus by sequences of formation and ejection of a mantle of refractory organic-rich dust at the surface of the icy material. The formation of hardened layers of ice by sintering/re-condensation below the uppermost dust layer can also have strong implications for both the photometric and mechanical properties of the subsurface layer. Based on the comparison between OSIRIS observations and laboratory results, our favoured interpretation of the observed features is that the bright spots are exposures of water ice, resulting from the removal of the uppermost layer of refractory dust that covers the rest of the nucleus. Some of the observations of clusters of bright spots are very indicative of a formation process, which involves the breakage and collapse of brittle layers of ice to form fields of large boulders, some of them showing bright spots on part of their surface. Some of the isolated spots observed elsewhere on the nucleus might as well have been formed by similar processes and then have been transported over large distances by multiple bounces. These surface exposures of water ice must be more recent than the last passage at perihelion, as they would rapidly sublimate at short heliocentric distance. The hypothesis formulated here will thus easily be tested as the comet approaches the Sun, by checking if and how fast the bright spots vanish and disappear.

  16. A case study on large-scale dynamical influence on bright band using cloud radar during the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.

    2018-02-01

    The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.

  17. Three-dimensional spatial grouping affects estimates of the illuminant

    NASA Astrophysics Data System (ADS)

    Perkins, Kenneth R.; Schirillo, James A.

    2003-12-01

    The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be ~33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to ~8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.

  18. Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.

    2009-08-01

    We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.

  19. Martian tidal pressure and wind fields obtained from the Mariner 9 infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.; Conrath, B. J.

    1973-01-01

    Using temperature fields derived from the Mariner 9 infrared spectroscopy experiment, the Martian atmospheric tidal pressure and wind fields are calculated. Temperature as a function of local time, latitude, and atmospheric pressure level is obtained by secular and longitudinal averaging of the data. The resulting temperature field is approximated by a spherical harmonic expansion, retaining one symmetric and one asymmetric term for wavenumber zero and wavenumber one. Vertical averaging of the linearized momentum and continuity equations results in an inhomogeneous tidal equation for surface pressure fluctuations with the driving function related to the temperature field through the geopotential function and the hydrostatic equation. Solutions of the tidal equation show a diurnal fractional pressure amplitude approximately equal to one half of the vertically averaged diurnal fractional temperature amplitude.

  20. Martian tidal pressure and wind fields obtained from the Mariner 9 infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.; Conrath, B. J.

    1974-01-01

    Using temperature fields derived from the Mariner 9 infrared spectroscopy experiment, the Martian atmospheric tidal pressure and wind fields are calculated. Temperature as a function of local time, latitude, and atmospheric pressure level is obtained by secular and longitudinal averaging of the data. The resulting temperature field is approximated by a spherical harmonic expansion, retaining one symmetric and one asymmetric term each for wavenumber zero and wavenumber one. Vertical averaging of the linearized momentum and continuity equations results in an inhomogeneous tidal equation for surface pressure fluctuations with the driving function related to the temperature field through the geopotential function and the hydrostatic equation. Solutions of the tidal equation show a diurnal fractional pressure amplitude approximately equal to one-half the vertically averaged diurnal fractional temperature amplitude.

  1. Signatures of Young Planets in the Continuum Emission from Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Turner, Neal J.

    2018-06-01

    Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.

  2. Seasat radar geomorphic applications in coastal and wetland environments, southeastern U.S

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.

    1981-01-01

    The application of Seasat Synthetic Aperture Radar (SAR) to the assessment of terrain conditions in coastal environments is considered. Drainage patterns and plant community spatial relationships can be adequately mapped as is shown by Seasat L-band imagery of the southeastern Gulf Coast and Atlantic Coastal Plain. Anomalously bright radar signatures are identified as characteristic of mangrove and cypress swamps. Marshes have a low radar return, less than that from non-marsh areas and open water in tidal channels. Drainage patterns for coastal plain transition zones can also be determined. Spaceborne imaging radar provides information which complements geomorphic analyses presently obtained with optical sensors.

  3. Relevance of Tidal Heating on Large TNOs

    NASA Technical Reports Server (NTRS)

    Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry A.

    2017-01-01

    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100 s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.

  4. Relevance of tidal heating on large TNOs

    NASA Astrophysics Data System (ADS)

    Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry

    2018-03-01

    We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100‧s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.

  5. The effect of lagoons on Adriatic Sea tidal dynamics

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg

    2017-11-01

    In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.

  6. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  7. Tidal-Induced Ocean Dynamics as Cause of Enceladus' Tiger Stripe Pattern

    NASA Astrophysics Data System (ADS)

    Vermeersen, B. L.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2013-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. The periodic activity of the tiger stripe faults shows a strong correlation with tidal forcing. Jets emanating from specific fault lines seem to be triggered at those places of the faults where tidal-induced stresses are largest immediately following closest orbital approach with Saturn [e.g., Hurford et al., Nature, 447, 292-294, 2007]. Thus jet activity seems to be directly induced by tidal forcing. However, this does not explain the characteristic regular pattern of the stripes themselves. Here we explore the possibility that this pattern is formed and maintained by induced, tidally and rotationally driven, fluid motions in the ocean underneath the icy surface of the tiger-stripe region. The remarkable spatial regularity of Enceladus' SPT fault lines is reminiscent of that observed at the surface of confined density-stratified fluids by the action of induced internal gravity waves. Theoretical analysis, numerical simulations and laboratory water tank experiments all indicate that wave attractors - particular limit orbits to which waves are focused in a fluid basin - naturally emerge in gravitationally (radial salt concentration or temperature differences) or rotationally stratified confined fluids as a function of forcing periodicity and fluid basin geometry [Maas et al., Nature, 338, 557-561, 1997]. We have found that ocean dynamical wave attractors induced by tidal-effective forcing of Enceladus' SPT salty water basin can reproduce the general characteristics of the observed tiger stripe pattern and even offer the possibility of constraining the 3D-form of the salty water basin underlying Enceladus' SPT. Vertical cross section of one of the water tank experiments. The tank is uniformly stratified with salty water and harmonically shaken. Wave attractors impinge at the surface of the tank at A, B and C, which are places where an overlying plate experiences enhanced stress levels. Distances A-B and B-C are not the same due to a sloping floor of the fluid tank. The length of the tank is about 1.5 m. Numbers at the bottom indicate mm.

  8. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  9. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  10. Determining the mean hydraulic gradient of ground water affected by tidal fluctuations

    USGS Publications Warehouse

    Serfes, Michael E.

    1991-01-01

    Tidal fluctuations in surface-water bodies produce progressive pressure waves in adjacent aquifers. As these pressure waves propagate inland, ground-water levels and hydraulic gradients continuously fluctuate, creating a situation where a single set of water-level measurements cannot be used to accurately characterize ground-water flow. For example, a time series of water levels measured in a confined aquifer in Atlantic City, New Jersey, showed that the hydraulic gradient ranged from .01 to .001 with a 22-degree change in direction during a tidal day of approximately 25 hours. At any point where ground water tidally fluctuates, the magnitude and direction of the hydraulic gradient fluctuates about the mean or regional hydraulic gradient. The net effect of these fluctuations on ground-water flow can be determined using the mean hydraulic gradient, which can be calculated by comparing mean ground- and surface-water elevations. Filtering methods traditionally used to determine daily mean sea level can be similarly applied to ground water to determine mean levels. Method (1) uses 71 consecutive hourly water-level observations to accurately determine the mean level. Method (2) approximates the mean level using only 25 consecutive hourly observations; however, there is a small error associated with this method.

  11. Shoemaker-Levy 9 and the tidal disruption of comets

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.

    1994-01-01

    The break-up of Periodic Comet Shoemaker-Levy 9 into multiple pieces following its grazing encounter with Jupiter in July 1992 can be used to study tidally-induced fracture in comets. This spectacular event allows us not only to set limits on the size, strength and density of Shoemaker-Levy 9 itself, but provides invaluable guidance to numerical modeling of such encounters. In an extensive treatment of tidal breakup which assumed self-gravitating, homogeneous, perfectly elastic bodies, Dobrovolskis derived simple analytical expressions for the tidally-induced surface and central stresses. Both can be cast in such a way that Poisson's ratio is the only material dependent constant entering these expressions. Whether both surface and central failure must be initiated as a criterion for breakup, or either one of them is sufficient, remains a subject of disagreement. To resolve this debate, we model the details of cometary breakup using a three-dimensional Smooth Particle Hydrodynamics (SPH) code modified to simulate fracture in small solid objects. At lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution.

  12. Determination of cloud liquid water content using the SSM/I

    NASA Technical Reports Server (NTRS)

    Alishouse, John C.; Snider, Jack B.; Westwater, Ed R.; Swift, Calvin T.; Ruf, Christopher S.

    1990-01-01

    As part of a calibration/validation effort for the special sensor microwave/imager (SSM/I), coincident observations of SSM/I brightness temperatures and surface-based observations of cloud liquid water were obtained. These observations were used to validate initial algorithms and to derive an improved algorithm. The initial algorithms were divided into latitudinal-, seasonal-, and surface-type zones. It was found that these initial algorithms, which were of the D-matrix type, did not yield sufficiently accurate results. The surface-based measurements of channels were investigated; however, the 85V channel was excluded because of excessive noise. It was found that there is no significant correlation between the SSM/I brightness temperatures and the surface-based cloud liquid water determination when the background surface is land or snow. A high correlation was found between brightness temperatures and ground-based measurements over the ocean.

  13. Calculations of microwave brightness temperature of rough soil surfaces: Bare field

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Wang, J. R.

    1985-01-01

    A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.

  14. Shoreface to estuarine sedimentation in the late Paleocene Matanomadh Formation, Kachchh, western India

    NASA Astrophysics Data System (ADS)

    Srivastava, V. K.; Singh, B. P.

    2017-04-01

    Late Paleocene sedimentation in the pericratonic Kachchh Basin marks the initial marine transgression during the Cenozoic era. A 17 m thick sandstone-dominated succession, known as the clastic member (CM) of the Matanomadh Formation (MF), is exposed sporadically in the basin. Three facies associations are reconstructed in the succession in three different sections. Facies association-1 contains matrix-supported pebbly conglomerate facies, horizontally-laminated sandstone-mudstone alternation facies, hummocky- and swaley cross-bedded sandstone facies, wave-rippled sandstone facies and climbing ripple cross-laminated sandstone facies. This facies association developed between shoreface and foreshore zone under the influence of storms on a barrier ridge. Facies association-2 contains sigmoidal cross-bedded sandstone facies, sandstone-mudstone alternation facies, flaser-bedded sandstone facies, herringbone cross-bedded sandstone facies and tangential cross-bedded sandstone facies. This facies association possessing tidal bundles and herringbone cross-beds developed on a tidal flat with strong tidal influence. Facies association-3 comprises pebbly sandstone facies, horizontally-bedded sandstone facies, tangential cross-bedded sandstone facies exhibiting reactivation surfaces and tabular cross-bedded sandstone facies. This facies association represents sedimentation in a river-dominated estuary and reactivation surfaces and herringbone cross-beds indicating tidal influence. The bipolar paleocurrent pattern changes to unipolar up-section because of the change in the depositional currents from tidal to fluvial. The sedimentation took place in an open coast similar to the Korean coast. The presence of neap-spring tidal rhythmites further suggests that a semidiurnal system similar to the modern day Indian Ocean was responsible for the sedimentation. Here, the overall sequence developed during the transgressive phase where barrier ridge succession is succeeded by the tidal flat succession and the latter, in turn, is succeeded by the estuarine succession. This study resolves the most debated issue of initial marine transgression in the Kachchh Basin during the Cenozoic.

  15. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    USGS Publications Warehouse

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring tide. Future deployments will characterize the seasonal variability of these fluxes.

  16. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  17. Sulzberger Ice Shelf Tidal Signal Reconstruction Using InSAR

    NASA Astrophysics Data System (ADS)

    Baek, S.; Shum, C.; Yi, Y.; Kwoun, O.; Lu, Z.; Braun, A.

    2005-12-01

    Synthetic Aperture Radar Interferometry (InSAR) and Differential InSAR (DInSAR) have been demonstrated as useful techniques to detect surface deformation over ice sheet and ice shelves over Antarctica. In this study, we use multiple-pass InSAR from the ERS-1 and ERS-2 data to detect ocean tidal deformation with an attempt towards modeling of tides underneath an ice shelf. High resolution Digital Elevation Model (DEM) from repeat-pass interferometry and ICESat profiles as ground control points is used for topographic correction over the study region in Sulzberger Ice Shelf, West Antarctica. Tidal differences measured by InSAR are obtained by the phase difference between a point on the grounded ice and a point on ice shelf. Comparison with global or regional tide models (including NAO, TPXO, GOT, and CATS) of a selected point shows that the tidal amplitude is consistent with the values predicted from tide models to within 4 cm RMS. Even though the lack of data hinders the effort to readily develop a tide model using longer term data (time series span over years), we suggest a method to reconstruction selected tidal constituents using both vertical deformation from InSAR and the knowledge on aliased tidal frequencies from ERS satellites. Finally, we report the comparison results of tidal deformation observed by InSAR and ICESat altimetry.

  18. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia.

    PubMed

    Savidge, William B; Brink, Jonathan; Blanton, Jackson O

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  19. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia

    NASA Astrophysics Data System (ADS)

    Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  20. Improvement of operational prediction system applied to the oil spill prediction in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Kim, C.; Cho, Y.; Choi, B.; Jung, K.

    2012-12-01

    Multi-nested operational prediction system for the Yellow Sea (YS) has been developed to predict the movement of oil spill. Drifter trajectory simulations were performed to predict the path of the oil spill of the MV Hebei Spirit accident occurred on 7 December 2007. The oil spill trajectories at the surface predicted by numerical model without tidal forcing were remarkably faster than the observation. However the speed of drifters predicted by model considering tide was satisfactorily improved not only for the motion with tidal cycle but also for the motion with subtidal period. The subtidal flow of the simulation with tide was weaker than that without tide due to tidal stress. Tidal stress decelerated the southward subtidal flows driven by northwesterly wind along the Korean coast of the YS in winter. This result provides a substantial implication that tide must be included for accurate prediction of oil spill trajectory not only for variation within a tidal cycle but also for longer time scale advection in tide dominant area.

  1. The paradox of nonmarine ichnofaunas in tidal rhythmites: Integrating sedimentologic and ichnologic data from the late Carboniferous of eastern Kansas, USA

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.; Maples, C.G.; Lanier, Wendy E.

    1997-01-01

    The occurrence of trace fossil assemblages dominated by arthropod trackways and surface grazing trails within Carboniferous tidal rhythmites has puzzled sedimentologists and ichnologists, who interpreted them either as marine or nonmarine. The Virgilian (Stephanian) Tonganoxie Sandstone Member (Stranger Formation) at Buildex Quarry (eastern Kansas) consists, for the most part, of planar-laminated coarse-grained siltstones deposited on an upper tidal flat, close to or at the fluvial-estuarine transition of a macrotidal estuarine paleovalley. Recurrent thickness fluctuations demonstrate the strong influence of tidal processes and provide evidence that these deposits are tidal rhythmites, with thicker strata representing spring tides and thinner ones recording neap tides. The Buildex sequence hosts a moderately diverse ichnofauna composed of arthropod trackways (Dendroidichnites irregulare, Diplichnites gouldi, Diplopodichnus bifurcus, Kouphichnium isp., Mirandaichnium famatinense, Stiallia pilosa, Stiaria intermedia), grazing traces (Gordia indianaensis, Helminthoidichnites tenuis, Helminthopsis hieroglyphica), subsurface feeding traces (Treptichnus bifurcus, T. pollardi, irregular networks), apterygote insect resting and feeding traces (Tonganoxichnus buildexensis, T. ottawensis), fish traces (Undichna britannica, U. simplicitas), and tetrapod trackways. In contrast to trace fossil assemblages from brackish-water estuarine settings, the Buildex ichnofauna is characterized by moderate to relatively high ichnodiversity, ichnotaxa commonly present in terrestrial/freshwater environments, dominance of surface trails and absence of burrows, dominance of temporary structures produced by a mobile deposit-feeder fauna, a mixture of traces belonging to the Scoyenia and Mermia ichnofacies, moderate density of individual ichnotaxa, and absence of monospecific suites. This ichnofauna is thought to record the activity of a typical freshwater/terrestrial benthos. The presence of this mixed freshwater/terrestrial ichnofauna in tidal rhythmites is regarded as indicative of tidal flats that were developed in the most proximal zone of the inner estuary under freshwater conditions, more precisely in a zone between the maximum limit of landward tidal currents and the salinity limit further towards the sea. Although lithofacies distribution in estuarine valleys is mainly salinity-independent, the distribution of benthos is not. Accordingly, ichnologic studies have the potential to provide a high-resolution delineation of fluvio-estuarine transitions.

  2. Brightness masking is modulated by disparity structure.

    PubMed

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effect of the tidal-seismic resonance

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.

    2017-12-01

    For a moon spiraling inward to its planet, the tidal force frequency of a moon is increasing. When the distance of the moon to the planet is close enough, the tidal force frequency can intrude into the frequency range of planet normal modes. Usually the football mode, also known as 0S2, has the lowest frequency. This mode is most likely to be excited and coupled first. When the tidal force has the same frequency with the normal modes, the resonance can happen. The existence of the topography or internal heterogeneities of the planet can have mode coupling. So the energy of gravity force with higher spatial frequencies can be transferred to the low spatial 0S2 mode. The resonant mode 0S2 can exert a negative torque to the rotating moon so its orbit decays. With our 3D numerical boundary element method which takes into account planet surface topography (i.e., Mars as example), we found that the closer the moon is to the planet, the greater falling rate of the moon would be. We applied our method to a planet with equal size of Mars and elastic constants in possible range. The vibration amplitude on the planet surface can reach to the scale of meters when as the moon drop down to about 1.04 radius of the planet to achieve resonance with the 0S2 mode. Our modeling showed that the influence of tidal force caused resonance could not be neglected in the process of moon falling. On the other hand, the resonance may also be able to speed up the accretion of the early forming planet by absorbing the dust of small asteroid nearby by the tidal-seismic resonance.

  4. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  5. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    NASA Astrophysics Data System (ADS)

    White, S. M.; Madsen, E.

    2013-12-01

    Inundation of marsh surfaces by tidal creek flooding has implications for the headward erosion of salt marsh creeks, effect of rising sea levels, biological zonation, and marsh ecosystem services. The hydroperiod; as the frequency, duration, depth and flux of water across the marsh surface; is a key factor in salt marsh ecology, but remains poorly understood due to lack of data at spatial scales relevant to tracking the spatial movement of water across the marsh. This study examines how hydroperiod, drainage networks, and tidal creek geomorphology on the vegetation at Crab Haul Creek. Crab Haul Creek is the farthest landward tidal basin in North Inlet, a bar-built estuary in South Carolina. This study measures the hydroperiod in the headwaters Crab Haul Creek with normal and near-IR photos from a helium balloon Helikite at 75-100 m altitude. Photos provide detail necessary to resolve the waterline and delineate the hydroperiod during half tidal cycles by capturing the waterline hourly from the headwaters to a piezometer transect 260 meters north. The Helikite is an ideal instrument for local investigations of surface hydrology due to its maneuverability, low cost, ability to remain aloft for extended time over a fixed point, and ability to capture high-resolution images. Photographs taken from aircraft do not provide the detail necessary to determine the waterline on the marsh surface. The near-IR images make the waterline more distinct by increasing the difference between wet and dry ground. In the headwaters of Crab Haul Creek, individual crab burrows are detected by automated image classification and the number of crab burrows and their spatial density is tracked from January-August. Crab burrows are associated with the unvegetated region at the creek head, and we relate their change over time to the propagation of the creek farther into the tidal basin. Plant zonation is influenced by the hydroperiod, but also may be affected by salinity, water table depth, and soil water content. These other factors are all directly affected by the hydroperiod, creating a complex system of feedbacks. Inundation frequencies show a pronounced relationship to zonation. Creek bank height and the hydroperiod have a curvilinear relationship at low bank heights such that small decreases in creek bank height can result in large increases in inundation frequency. Biological zonation is not simply a result of bank height and inundation frequency, other contributing factors include species competition, adaptability, and groundwater flow. Vegetation patterns delineated by a ground-based GPS survey and image classification from the aerial photos show that not all changes in eco-zonation are a direct function of elevation. Some asymmetry across the creek is observed in plant habitat, and eliminating topography (and thereby tidal inundation) as a factor, we attribute the remaining variability to groundwater flow.

  6. Channel Capture as a Response to Anthropogenic Modification of a Tidal Landscape: Ganges-Brahmaputra-Meghna Delta, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Bain, R. L.; Goodbred, S. L., Jr.; Hale, R. P.

    2017-12-01

    Studies of tidal channel dynamics frequently emphasize "morphologically short" spatial scales (i.e., settings in which the cross-system tidal propagation time is negligible) or idealized single-channel planforms. In contrast, tides in the Ganges-Brahmaputra-Meghna Delta (GBMD) propagate more than 100 kilometers inland from the coast through a network of interconnected tidal estuaries, producing complex hydrodynamic behavior that remains poorly understood. Intense anthropogenic modification of the GBMD landscape further complicates tidally-driven, natural delta surface maintenance. Analyzing this system is particularly urgent given the current trend of rising sea level and its associated impacts on coastal communities.We present results from an ongoing field investigation of tidal waveform interaction and mass exchange between the Pussur and Shibsa Rivers, two large macrotidal estuaries in the southwestern GBMD. In the 1960s, construction of earthen embankments ("polders") eliminated regular tidal inundation for a vast region of the tidal platform, shrinking the Shibsa and Pussur basins by an estimated 1000 km2 and 700 km2, respectively. Conservation of mass predicts that a reduction in tidal basin area will decrease peak flow velocities and induce channel siltation; indeed, 100 km2 of secondary channels at the distal end of the tidal range have partly or fully closed in recent decades. The Pussur is likewise rapidly shoaling, restricting navigational access along a major shipping route. However, discharge and bathymetric datasets indicate that the adjacent Shibsa conveys three to four times more water than the Pussur and is actively scouring its bed, contrary to its predicted response to polder construction. Our field measurements are consistent with an ongoing channel capture event in which the Shibsa floods and drains a progressively greater portion of the former Pussur basin, allowing the Shibsa to widen and deepen despite the regional trend of channel abandonment. These observations suggest that natural or anthropogenic changes to a tidal basin can drive rapid morphological adjustment of these typically-stable tidal channel systems.

  7. Statistical Investigation and Modeling of Sungrazing Comets Discovered with the Solar and Heliospheric Observatory

    NASA Astrophysics Data System (ADS)

    Sekanina, Zdenek

    2002-02-01

    More than 300 sungrazing comets, most of them discovered with the Solar and Heliospheric Observatory (SOHO) coronagraphs since the beginning of 1996, are known to belong to the Kreutz group or system. Moving about the Sun in similar orbits, they are of indisputably common parentage and represent by far the most extensive data set in the history of investigations of cometary splitting. This study compares the SOHO sungrazers, which always disappear during their approach to the Sun, with the sungrazers detected earlier with the other space-borne coronagraphs (Solwind and Solar Maximum Mission [SMM]) as well as with the bright members of the Kreutz system, discovered from the ground between 1843 and 1970. Collected, summarized, and reviewed information on the sungrazers' light curves indicates that there is a difference of 20 mag (a factor of 108 in brightness) between the brightest sungrazer, C/1882 R1, and the faintest objects detectable with the SOHO instruments. The headless comet C/1887 B1 is suggested to be a transition object between the bright sungrazers and the coronagraphically discovered ones: its physical behavior was similar to that of the latter comets, but it survived the perihelion passage. This study also (1) examines temporal and spatial distributions of the SOHO sungrazers; (2) depicts correlations among their orbital elements; (3) distinguishes among tidally triggered, post-tidal, and terminal fragmentation; (4) reiterates the conclusion made in an earlier paper that post-tidal, secondary fragmentation events are occurring throughout the orbit, including the region of aphelion; (5) determines the relationship between a breakup's location in the orbit and the perturbations of the orbital elements of a fragment caused by the momentum it acquires during the separation from the parent; (6) shows that collisions of the Kreutz system comets with the Sun are clearly possible; (7) finds that minor fragments acquire enough extra momentum during each of the breakup episodes that their motions carry no ``memory'' of these events other than the most recent one; (8) offers a law for simulating the temporal distribution of these events; and (9) proposes a conceptual model scenario for the formation and evolution of the Kreutz system, including the process of progressive fragmentation. It appears that most of the mass is still locked in the major fragments (particularly C/1882 R1) and that therefore this comet system is relatively young. This paper is a first step in a massive investigation of the Kreutz system, which will combine deterministic and Monte Carlo techniques to verify the paradigms of the proposed conceptual model and eventually will develop a specific evolutionary scenario. This approach will account fully for effects of the planetary perturbations, where appropriate, and from time to time the results will be updated as the statistical sample of the SOHO sungrazers continues to grow.

  8. Correlations among the properties of galaxies found in a blind HI survey, which also have SDSS optical data

    NASA Astrophysics Data System (ADS)

    Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.

    2009-03-01

    We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.

  9. Energy transfers in internal tide generation, propagation and dissipation in the deep ocean

    NASA Astrophysics Data System (ADS)

    Floor, J. W.; Auclair, F.; Marsaleix, P.

    The energy transfers associated with internal tide (IT) generation by a semi-diurnal surface tidal wave impinging on a supercritical meridionally uniform deep ocean ridge on the f-plane, and subsequent IT-propagation are analysed using the Boussinesq, free-surface, terrain-following ocean model Symphonie. The energy diagnostics are explicitly based on the numerical formulation of the governing equations, permitting a globally conservative, high-precision analysis of all physical and numerical/artificial energy transfers in a sub-domain with open lateral boundaries. The net primary energy balances are quantified using a moving average of length two tidal periods in a simplified control simulation using a single time-step, minimal diffusion, and a no-slip sea floor. This provides the basis for analysis of enhanced vertical and horizontal diffusion and a free-slip bottom boundary condition. After a four tidal period spin-up, the tidally averaged (net) primary energy balance in the generation region, extending ±20 km from the ridge crest, shows that the surface tidal wave loses approximately C = 720 W/m or 0.3% of the mean surface tidal energy flux (2.506 × 10 5 W/m) in traversing the ridge. This corresponds mainly to the barotropic-to-baroclinic energy conversion due to stratified flow interaction with sloping topography. Combined with a normalised net advective flux of baroclinic potential energy of 0.9 × C this causes a net local baroclinic potential energy gain of 0.72 × C and a conversion into baroclinic kinetic energy through the baroclinic buoyancy term of 1.18 × C. Tidally averaged, about 1.14 × C is radiated into the abyssal ocean through the total baroclinic flux of internal pressure associated with the IT- and background density field. This total baroclinic pressure flux is therefore not only determined by the classic linear surface-to-internal tide conversion, but also by the net advection of baroclinic (background) potential energy, indicating the importance of local processes other than linear IT-motion. In the propagation region (PR), integrated over the areas between 20 and 40 km from the ridge crest, the barotropic and baroclinic tide are decoupled. The net incoming total baroclinic pressure flux is balanced by local potential energy gain and outward baroclinic flux of potential energy associated with the total baroclinic density. The primary net energy balances are robust to changes in the vertical diffusion coefficient, whereas relatively weak horizontal diffusion significantly reduces the outward IT energy flux. Diapycnal mixing due to vertical diffusion causes an available potential energy loss of about 1% of the total domain-averaged potential energy gain, which matches {km-1}/{km}ρ0KVN2 to within 0.5%, for km linearly distributed grid-levels and constant background density ρ0, vertical diffusivity ( KV) and buoyancy frequency ( N).

  10. The nucleus of Comet Borrelly: A study of morphology and surface brightness

    USGS Publications Warehouse

    Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.

    2004-01-01

    Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.

  11. Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al

    2007-01-01

    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.

  12. Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary

    NASA Astrophysics Data System (ADS)

    Westbrook, S. J.; Rayner, J. L.; Davis, G. B.; Clement, T. P.; Bjerg, P. L.; Fisher, S. J.

    2005-02-01

    This paper presents findings from a 2-year field investigation of a dissolved hydrocarbon groundwater plume flowing towards a tidally and seasonally forced estuarine river system in Perth, Western Australia. Samples collected from transects of multiport wells along the riverbank and into the river, enabled mapping of the fine scale (0.5 m) vertical definition of the hydrocarbon plume and its longitudinal extent. Spear probing beneath the river sediments and water table, and transient monitoring of multiport wells (electrical conductivity) was also carried out to define the zone of mixing between river water and groundwater (the hyporheic zone) and its variability. The results showed that groundwater seepage into the estuarine surface sediments occurred in a zone less than 10 m from the high tide mark, and that this distance and the hyporheic transition zone were influenced by tidal fluctuations and infiltration of river water into the sediments. The dissolved BTEXN (benzene, toluene, ethylbenzene, the xylene isomers and naphthalene) distributions indicated the behaviour of the hydrocarbon plume at the groundwater/surface water transition zone to be strongly influenced by edge-focussed discharge. Monitoring programs and risk assessment studies at similar contaminated sites should therefore focus efforts within the intertidal zone where contaminants are likely to impact the surface water and shallow sediment environments.

  13. Structure and Dynamics of the Globular Cluster Palomar 13

    NASA Astrophysics Data System (ADS)

    Bradford, J. D.; Geha, M.; Muñoz, R. R.; Santana, F. A.; Simon, J. D.; Côté, P.; Stetson, P. B.; Kirby, E.; Djorgovski, S. G.

    2011-12-01

    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of σ = 2.2 ± 0.4 km s-1. We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is σ = 0.7+0.6 -0.5 km s-1. Combining our DEIMOS data with literature values, our final velocity dispersion is σ = 0.4+0.4 -0.3 km s-1. We determine a spectroscopic metallicity of [Fe/H] = -1.6 ± 0.1 dex, placing a 1σ upper limit of σ[Fe/H] ~ 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be MV = -2.8 ± 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters (Σvpropr η, η = -2.8 ± 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M 1/2 = 1.3+2: 7 -1.3 × 103 M ⊙ and a mass-to-light ratio of M/LV = 2.4+5.0 -2.4 M ⊙/L ⊙. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither significant dark matter, nor extreme tidal heating, is required to explain the cluster dynamics. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Biogeochemicl and surface elevation controls over tidally influenced freshwater forested wetlands as they transition to marsh

    Treesearch

    William Conner; Ken W. Krauss; Gregory B. Noe; Jamie A. Duberstein; Nicole Cormier; Camille L. Stagg

    2016-01-01

    Many coastal ecosystems along the south Atlantic are transitioning from forested wetlands to marsh due to increasing tidal inundation and saltwater intrusion primarily attributed to global climate change processes. In 2004, we established long-term research sites in Georgia, South Carolina, and Louisiana to understand how climate factors (temperature, precipitation, ...

  15. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    NASA Technical Reports Server (NTRS)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval.

  16. Assessing spatial and temporal variability of phytoplankton communities' composition in the Iroise Sea ecosystem (Brittany, France): A 3D modeling approach. Part 2: Linking summer mesoscale distribution of phenotypic diversity to hydrodynamism

    NASA Astrophysics Data System (ADS)

    Cadier, Mathilde; Sourisseau, Marc; Gorgues, Thomas; Edwards, Christopher A.; Memery, Laurent

    2017-05-01

    Tidal front ecosystems are especially dynamic environments usually characterized by high phytoplankton biomass and high primary production. However, the description of functional microbial diversity occurring in these regions remains only partially documented. In this article, we use a numerical model, simulating a large number of phytoplankton phenotypes to explore the three-dimensional spatial patterns of phytoplankton abundance and diversity in the Iroise Sea (western Brittany). Our results suggest that, in boreal summer, a seasonally marked tidal front shapes the phytoplankton species richness. A diversity maximum is found in the surface mixed layer located slightly west of the tidal front (i.e., not strictly co-localized with high biomass concentrations) which separates tidally mixed from stratified waters. Differences in phenotypic composition between sub-regions with distinct hydrodynamic regimes (defined by vertical mixing, nutrients gradients and light penetration) are discussed. Local growth and/or physical transport of phytoplankton phenotypes are shown to explain our simulated diversity distribution. We find that a large fraction (64%) of phenotypes present during the considered period of September are ubiquitous, found in the frontal area and on both sides of the front (i.e., over the full simulated domain). The frontal area does not exhibit significant differences between its community composition and that of either the well-mixed region or an offshore Deep Chlorophyll Maximum (DCM). Only three phenotypes (out of 77) specifically grow locally and are found at substantial concentration only in the surface diversity maximum. Thus, this diversity maximum is composed of a combination of ubiquitous phenotypes with specific picoplankton deriving from offshore, stratified waters (including specific phenotypes from both the surface and the DCM) and imported through physical transport, completed by a few local phenotypes. These results are discussed in light of the three-dimensional general circulation at frontal interfaces. Processes identified by this study are likely to be common in tidal front environments and may be generalized to other shallow, tidally mixed environments worldwide.

  17. Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, Divya; McNamara, Allen

    2017-04-01

    Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a comprehensive understanding of the temporal variation in the ice-shell thickness due to the addition of heating in the ice.

  18. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  19. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  20. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  1. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...

  2. The spatial distribution of dwarf galaxies in the CfA slice of the universe

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.

    1987-01-01

    A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.

  3. Transport and retention of vertically migrating adult mysid and decapod shrimp in the tidal front on Georges Bank

    USGS Publications Warehouse

    Lough, R. Gregory; Aretxabaleta, Alfredo L.

    2014-01-01

    Vertical profiles of the adult epibenthic shrimp Neomysis americana and Crangon septemspinosus obtained during June 1985 were used to simulate possible rates of ascent from bottom (40 to 50 m) to near surface at night and return by day, and the consequence of these rates on their horizontal distribution. Numerical particles were released at the sampling site using archived model current fields with specified vertical rates (from no swim behavior to 20 mm s(-1)) and tracked for up to 30 d. The best match between observed and modeled vertical profiles was with a vertical swimming speed of 10 mm s(-1) for N. americana and 2 mm s(-1) for C. septemspinosus. Whereas N. americana rapidly swims towards the surface at dusk and descends to bottom by dawn, C. septemspinosus tends to only swim up to the middle of the water column at night. After 16 d, the simulation with 10 mm s(-1) swim speed showed most particles were concentrated in an area centered around the 60 m isobath, where the tidal front was located. At 2 mm s(-1) swim speed particles were concentrated more shoalward onto the western end of Georges Bank. N. americana are expected to be more closely associated with the tidal front, since they spend more time near the front surface convergence, but are more likely to be transported off the bank due to the south-westward-flowing surface tidal jet, whereas C. septemspinosus would be retained primarily on the bank, since they are found deeper in the water column during both day and night.

  4. Tidal and residual circulation in a semi-arid bay: Coquimbo Bay, Chile

    NASA Astrophysics Data System (ADS)

    Valle-Levinson, Arnoldo; Moraga, Julio; Olivares, Jorge; Blanco, José Luis

    2000-11-01

    Velocity profiles and time-series data were combined with conductivity-temperature-depth (CTD) casts to describe the general circulation at tidal and subtidal scales in a bay of semi-arid climate, Coquimbo Bay (˜30°S), Chile. This was the first study that used a towed acoustic Doppler current profiler (ADCP) in coastal Chilean waters and is one of the very few in semi-arid bays. The ADCP was towed for two semi-diurnal tidal cycles in early austral autumn, between March 23 and 24, 1997 along a triangular trajectory that covered most of the bay. Additional data consisted of moored current meters and CTD casts. The observations indicated the presence of a surface layer, above the pycnocline, that showed predominantly diurnal variability forced by the breeze regime and by tides. The tidal circulation in the surface layer featured amplitudes of 10 cm/s within an anticyclonic gyre that occupied most of the bay. The subtidal circulation in the surface was characterized by a pair of counter-rotating gyres. The northernmost three-fourths of the bay showed an anticyclonic gyre, and the observations over the southern fourth implied a cyclonic gyre. The subtidal anticyclonic gyre had a counterpart rotating in opposite direction within a lower layer, underneath the pycnocline. The lower layer showed semidiurnal variability in addition to diurnal variability and was insulated by the pycnocline from heat and momentum fluxes through the air-water interface. Circulations that resemble estuarine and anti-estuarine patterns were found associated with the subtidal gyres. A horizontal divergence related to a 10 cm/s near-surface outflow around Point Tortuga, to the south of the bay entrance, allowed the development of upward motion off the Point, as evidenced by the tilt of the isopycnals at the entrance to the bay.

  5. A “Cosmic Comb” Model of Fast Radio Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing

    2017-02-20

    Recent observations of fast radio bursts (FRBs) indicate a perplexing, inconsistent picture. We propose a unified scenario to interpret diverse FRBs observed. A regular pulsar, otherwise unnoticeable at a cosmological distance, may produce a bright FRB if its magnetosphere is suddenly “combed” by a nearby, strong plasma stream toward the anti-stream direction. If the Earth is to the night side of the stream, the combed magnetic sheath would sweep across the direction of Earth and make a detectable FRB. The stream could be an AGN flare, a GRB or supernova blastwave, a tidal disruption event, or even a stellar flare.more » Since it is the energy flux received by the pulsar rather than the luminosity of the stream origin that defines the properties of the FRB, this model predicts a variety of counterparts of FRBs, including a possible connection between FRB 150418 and an AGN flare, a possible connection between FRB 131104 and a weak GRB, a steady radio nebula associated with the repeating FRB 121102, and probably no bright counterparts for some FRBs.« less

  6. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  7. The Colors of Tethys I

    NASA Image and Video Library

    2015-07-29

    This enhanced-color mosaic of Saturn's icy moon Tethys shows a range of features on the moon's trailing hemisphere. Tethys is tidally locked to Saturn, so the trailing hemisphere is the side of the moon that always faces opposite its direction of motion as it orbits the planet. Images taken using clear, green, infrared and ultraviolet spectral filters were combined to create the view, which highlights subtle color differences across Tethys' surface at wavelengths not visible to human eyes. The moon's surface is fairly uniform in natural color. The color of the surface changes conspicuously across the disk, from yellowish hues to nearly white. These broad color changes are affected by a number of external processes. First, Saturn's diffuse E-ring preferentially bombards Tethys' leading hemisphere, toward the right side of this image, with ice bright ice grains. At the same time, charged particles from Saturn's radiation belt bombard the surface on the trailing side, causing color changes due to chemical alteration of the materials there. The albedo -- a measure of the surface's reflectivity -- drops by 10 to 15 percent from the moon's leading side to the trailing side. Similar global color patterns exist on other Saturnian moons. On a much smaller scale, enigmatic, arc-shaped, reddish streaks also are faintly visible across the heavily-cratered surface, particularly if one enhances color saturation in the image (see PIA19637 for a close-up view of these features). The origin of this localized color contrast is not yet understood. Mountains on the floor of the 280 mile- (450 kilometer-) wide Odysseus impact basin are visible at upper right, around the two o'clock position. This mosaic is an orthographic projection constructed from 52 Cassini images obtained on April 11, 2015 with the Cassini spacecraft narrow-angle camera. Resolution is about 1,000 feet (300 meters) per pixel. The images were obtained at a distance of approximately 33,000 miles (53,000 kilometers) from Tethys. http://photojournal.jpl.nasa.gov/catalog/PIA19636

  8. Rutgers zodiacal light experiment on OSO-6

    NASA Technical Reports Server (NTRS)

    Carroll, B.

    1975-01-01

    A detector was placed in a slowly spinning wheel on OSO-6 whose axis was perpendicular to the line drawn to the sun, to measure the surface brightness and polarization at all elongations from the immediate neighborhood of the sun to the anti-solar point. Different wavelength settings and polarizations were calculated from the known order of magnitude brightness of the zodiacal light. The measuring sequence was arranged to give longer integration times for the regions of lower surface brightness. Three types of analysis to which the data on OSO-6 were subjected are outlined; (1) photometry, (2) colorimetry and (3) polarimetry.

  9. Earth Observations taken by Expedition 26 crewmember

    NASA Image and Video Library

    2010-11-27

    ISS026-E-005121 (27 Nov. 2010) --- Tidal flats and channels on Long Island, Bahamas are featured in this image photographed by an Expedition 26 crew member on the International Space Station. The islands of the Bahamas in the Caribbean Sea are situated on large depositional platforms (the Great and Little Bahama Banks) composed mainly of carbonate sediments ringed by fringing reefs – the islands themselves are only the parts of the platform currently exposed above sea level. The sediments are formed mostly from the skeletal remains of organisms settling to the sea floor; over geologic time, these sediments will consolidate to form carbonate sedimentary rocks such as limestone. This detailed photograph provides a view of tidal flats and tidal channels near Sandy Cay on the western side of Long Island, located along the eastern margin of the Great Bahama Bank. The continually exposed parts of the island have a brown coloration in the image, a result of soil formation and vegetation growth (left). To the north of Sandy Cay an off-white tidal flat composed of carbonate sediments is visible; light blue-green regions indicate shallow water on the tidal flat. Tidal flow of seawater is concentrated through gaps in the anchored land surface, leading to formation of relatively deep tidal channels that cut into the sediments of the tidal flat. The channels, and areas to the south of the island, have a vivid blue coloration that provides a clear indication of deeper water (center).

  10. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  11. Habitable planets around white and brown dwarfs: the perils of a cooling primary.

    PubMed

    Barnes, Rory; Heller, René

    2013-03-01

    White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10(-6). Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 10(4) K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable.

  12. Surface Relief of Mapping

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F.; Almeida, Jose B.

    1989-02-01

    We will describe in this communication a noncont act method of measuring surface profile, it does not require any surface preparation, and it can be used with a very large range of surfaces from highly reflecting to non reflecting ones and as complex as textile surfaces. This method is reasonably immune to dispersion and diffraction, which usually make very difficult the application of non contact profilometry methods to a wide range of materials and situations, namely on quality control systems in industrial production lines. The method is based on the horizontal shift of the bright spot on a horizontal surface when this is illuminated with an oblique beam and moved vertically. in order to make the profilometry the sample is swept by an oblique light beam and the bright spot position is compared with a reference position. The bright spot must be as small as possible, particularly in very irregular surfaces; so the light beam diameter must be as small as possible and the incidence angle must not be too small. The sensivity of a system based on this method will be given, mostly, by the reception optical system.

  13. Pupil size reflects the focus of feature-based attention.

    PubMed

    Binda, Paola; Pereverzeva, Maria; Murray, Scott O

    2014-12-15

    We measured pupil size in adult human subjects while they selectively attended to one of two surfaces, bright and dark, defined by coherently moving dots. The two surfaces were presented at the same location; therefore, subjects could select the cued surface only on the basis of its features. With no luminance change in the stimulus, we find that pupil size was smaller when the bright surface was attended and larger when the dark surface was attended: an effect of feature-based (or surface-based) attention. With the same surfaces at nonoverlapping locations, we find a similar effect of spatial attention. The pupil size modulation cannot be accounted for by differences in eye position and by other variables known to affect pupil size such as task difficulty, accommodation, or the mere anticipation (imagery) of bright/dark stimuli. We conclude that pupil size reflects not just luminance or cognitive state, but the interaction between the two: it reflects which luminance level in the visual scene is relevant for the task at hand. Copyright © 2014 the American Physiological Society.

  14. Phase lag control of tidally reversing mega-ripple geometry and bed stress in tidal inlets

    NASA Astrophysics Data System (ADS)

    Traykovski, P.

    2016-02-01

    Recent observations in the Columbia River Mouth, New River Inlet, and Wasque Shoals have shown that tidally reversing mega-ripples are an ubiquitous bedform morphology in energetic tidal inlets. As the name implies, these bedforms reverse asymmetry and migration direction in each half tidal cycle. With wavelengths of 2 to 5 m and heights of 0.2 to 0.5 m, these bedforms are larger than current formed ripples, but smaller than dunes. Unlike dunes which have a depth dependent geometry, observations indicate the tidally reversing mega-ripples geometry is related to the time dependent tidal flow and independent of depth. Previous empirical relations for predicting the geometry of ripples or dunes do not successfully predict the geometry of these features. A time dependent geometric model was developed that accounts for the reversal of migration and asymmetry to successfully predict bedform geometry. The model requires sufficient sediment transport in each half tidal cycle to reverse the asymmetry before the bedforms begin to grow. Both the observations and model indicate that the complete reversal of asymmetry and development of a steep lee face occurs near or after maximum flow in each half tidal cycle. This phase lag in bedform response to tidal forcing also has important implications for bed stress in tidal inlets. Observations of frictional drag in the Columbia River mouth based on a tidal momentum balance of surface slope over 10 km regressed against quadratic near bed velocity show drag coefficients that fall off as CD U-1.4. Reynolds stress measurements performed using the dual ADV differencing technique show similar relations. The Reynolds stress measurements also show a dramatic asymmetry between accelerating flows and decelerating flows with a factor of 5 increase during deceleration. Pulse coherent Doppler profiles of near bed turbulence indicate that the turbulence is dominated by energetic fluctuations in separation zones downstream of steep lee faces. The phase lag of the bedform evolution, whereby steep lee faces are only present in the decelerating phase of the tidal cycle, provides an explanation for the asymmetry and non-quadratic behavior of the drag coefficients.

  15. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Benjamin T.

    2010-01-01

    Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.

  16. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  17. Characterizing ocean gyres formation within a bay using vorticity and HF radar measurements

    NASA Astrophysics Data System (ADS)

    Ragnoli, E.; Donncha, F. O.; Hartnett, M.

    2012-04-01

    In situations in which wind forcing plays a dominant role in surface currents it becomes important to understand its correlation with parameters that can be used to characterise circulation patterns within a bay. These datasets can then be used in the detection and characterisation of ocean gyres. A network of high frequency radars (NUIG CODAR) is deployed within Galway Bay, on the West Coast of Ireland as a backbone system within an integrated coastal ocean observation system. This system provides real-time synoptic measurements of both ocean surface currents and surface waves across the entire bay. In this work, vorticity is identified as a defining quantity for the characterisation of circulating flow patterns (in particular for the detection of ocean gyres) and it is directly calculated from the measured velocity vectors of NUIG CODAR. A correlation study with wind and tide measurements is then undertaken in order to investigate the dependencies between vorticity and those parameters. A comprehensive NUIG CODAR, weather station and tide gauge monitoring program was conducted over a 30 days period and the data collected analysed for the correlation with the computed vorticity. Tidal information from the FES2004 Global tidal atlas defined surface elevations at the open sea boundaries in the west and in the south. Data from a tide gauge deployed within the bay, which provided real-time tidal data at 6 minute intervals, was used to fine-tune model elevations. A weather station located at National University of Ireland, Galway provided measured wind data for the model. The NUIG CODAR coastal observation system detects strong, non-persistent, gyre formation within Galway Bay. During periods of relatively large tidal ranges (order 4m) and light wind conditions well defined, cyclonic circulation is developed within the bay. The correlation analysis shows that the gyres tend to form soon after high tide and last until the next low water; the gyre structure is transported about the bay with the bulk advection of tidal motion. This is the first time this feature has been observed and the significance of its consequences on water circulation will be the subject of future research.

  18. Discovery of Diffuse Dwarf Galaxy Candidates around M101

    NASA Astrophysics Data System (ADS)

    Bennet, P.; Sand, D. J.; Crnojević, D.; Spekkens, K.; Zaritsky, D.; Karunakaran, A.

    2017-11-01

    We have conducted a search of a 9 deg2 region of the Canada-France-Hawaii-Telescope Legacy Survey around the Milky Way analog M101 (D ˜ 7 Mpc), in order to look for previously unknown low-surface-brightness galaxies. This search has uncovered 38 new low-surface-brightness dwarf candidates, and confirmed 11 previously reported galaxies, all with central surface brightness μ(g, 0) > 23 mag arcsec-2, potentially extending the satellite luminosity function for the M101 group by ˜1.2 mag. The search was conducted using an algorithm that nearly automates the detection of diffuse dwarf galaxies. The candidates’ small sizes and low surface brightnesses mean that the faintest of these objects would likely be missed by traditional visual or computer detection techniques. The dwarf galaxy candidates span a range of -7.1 ≥ M g ≥ -10.2 and half-light radii of 118-540 pc at the distance of M101, and they are well fit by simple Sérsic surface brightness profiles. These properties are consistent with dwarfs in the Local Group, and to match the Local Group luminosity function, ˜10-20 of these candidates should be satellites of M101. Association with a massive host is supported by the lack of detected star formation and the overdensity of candidates around M101 compared to the field. The spatial distribution of the dwarf candidates is highly asymmetric, and concentrated to the northeast of M101, therefore distance measurements will be required to determine if these are genuine members of the M101 group.

  19. Spot distribution and fast surface evolution on Vega

    NASA Astrophysics Data System (ADS)

    Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.

    2017-11-01

    Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.

  20. Evidence of Titan's climate history from evaporite distribution

    NASA Astrophysics Data System (ADS)

    MacKenzie, Shannon M.; Barnes, Jason W.; Sotin, Christophe; Soderblom, Jason M.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Phillip D.; McCord, Thomas B.

    2014-11-01

    Water-ice-poor, 5-μm-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μm-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μm-bright material covers 1% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μm-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μm-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite?

  1. Insert Tidal Here: Finding Stability of Galilean Satellite Interiors

    NASA Astrophysics Data System (ADS)

    Walker, M.; Bills, B. G.; Mitchell, J.; Rhoden, A.

    2017-12-01

    The tidal environment is often hypothesized as a cause of surface expression in the satellites of the outer solar system. In two notable cases, Io's volcanism is thought to be driven by tidal heating of its mantle while the shattered surface of Europa's ice shell is said to be generated by tidal stresses in that ice. Being adjacent moons of Jupiter, these satellites give us a unique opportunity to apply a single set of general coupled models at each body to predict how one model can predict the heat generation and flow, strain and stress states, and structural parameters for each body. We include the effects of interior evolution into the tidal environment in addition to an evolving orbit. We find that the interiors of Io and Europa will evolve, as a consequence of the heat transfer from interior to surface, and stable structural and heat flow conditions are found. Then as their orbits evolve, perturbed by the mutual interactions of the Laplace mean motion resonance, those conditions of structural and heat stability also change. In particular, we find that at current orbital conditions there is sufficient heat to completely melt Io models for which a convecting interior is capped by a conducting lid. This argues for the presence of a non dissipating (or barely dissipating) core below the mantle, which future Io structure models should include. For the Europa model at current orbit, we use a silicate interior under an ocean capped by a two layer ice; convecting below with a conducting surface. We find stability in heat and structure occurs when the lower ice melts and recedes until the shell is roughly 50km thick. We present a variety of plausible structures for these bodies, and track how the stability of those structures trend as the orbit (in particular the orbital eccentricity, mean motion, and obliquity) change. We show how the Love numbers, layer thicknesses, surface heat flow, and orbital parameters are all linked. For Europa, upcoming measurements from Clipper should provide the necessary constraints to tune our model for the present day. This will also allow us to use today's initial conditions so that we can predict the history of the Galilean satellite's evolution as well as the changes we expect for their future.

  2. A Search for Freshwater in the Saline Aquifers of Coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Peters, C.; Hornberger, G. M.

    2017-12-01

    Can we locate pockets of freshwater amidst brackish groundwater in remote villages in Bangladesh? This study explores what we can infer about local groundwater-surface water (GW-SW) interactions in the polders of coastal Bangladesh. In this underdeveloped region, the shallow groundwater is primarily brackish with unpredictable apportioning of freshwater pockets. We use transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Freshwater is difficult to find due to disparate subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Observations suggest substantial lateral variability in shallow subsurface conductivity profiles as well as tidal pressure signals in piezometers. Nevertheless, active exchange of freshwater may be limited due to low permeability of banks and surface sediments limits. Small scale heterogeneity in delta formation likely caused much of the groundwater salinity variation. Without adequate ground truthing of groundwater quality, the ability to deduce the exact location of freshwater pockets may be restricted.

  3. Simulated recovery of Europa's global shape and tidal Love numbers from altimetry and radio tracking during a dedicated flyby tour

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Genova, Antonio; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2015-05-01

    The fundamental scientific objectives for future spacecraft exploration of Jupiter's moon Europa include confirmation of the existence of subsurface ocean beneath the surface ice shell and constraints on the physical properties of the ocean. Here we conduct a comprehensive simulation of a multiple-flyby mission. We demonstrate that radio tracking data can provide an estimate of the gravitational tidal Love number k2 with sufficient precision to confirm the presence of a liquid layer. We further show that a capable long-range laser altimeter can improve determination of the spacecraft position, improve the k2 determination (<1% error), and enable the estimation of the planetary shape and Love number h2 (3-4% error), which is directly related to the amplitude of the surface tidal deformation. These measurements, in addition to the global shape accurately constrained by the long altimetric profiles, can yield further constraints on the interior structure of Europa.

  4. The night sky brightness at McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  5. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Yang, Yi; Wang, Lifan

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greatermore » than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.« less

  6. Do Europa's Mountains Have Roots? Erosion of Topography at the Ice-Water Interface via the "Ice Pump"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.

  7. Geological Implications of a Physical Libration on Enceladus

    NASA Technical Reports Server (NTRS)

    Hurford, T. A.; Bills, B. G.; Helfenstein, P.; Greenberg, R.; Hoppa, G. V.; Hamilton, D. P.

    2008-01-01

    Given the non-spherical shape of Enceladus (Thomas et al., 2007), the satellite will experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus tidal bulge which, could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus libration amplitude of F < 1.5deg (Porco et al., 2006), smaller amplitudes can still have geologically significant consequences. Here we present the first detailed description of how physical libration affects tidal stresses and how those stresses then might affect geological processes including crack formation and propagation, south polar eruption activity, and tidal heating. Our goal is to provide a framework for testing the hypothesis that geologic features on Enceladus are produced by tidal stresses from diurnal physical and optical librations of the satellite.

  8. The Second Nucleus of NGC 7727: Direct Evidence for the Formation and Evolution of an Ultracompact Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Schweizer, François; Seitzer, Patrick; Whitmore, Bradley C.; Kelson, Daniel D.; Villanueva, Edward V.

    2018-01-01

    We present new observations of the late-stage merger galaxy NGC 7727, including Hubble Space Telescope/WFPC2 images and long-slit spectra obtained with the Clay telescope. NGC 7727 is relatively luminous ({M}V = ‑21.7) and features two unequal tidal tails, various bluish arcs and star clusters, and two bright nuclei 480 pc apart in projection. These two nuclei have nearly identical redshifts, yet are strikingly different. The primary nucleus, hereafter Nucleus 1, fits smoothly into the central luminosity profile of the galaxy and appears—at various wavelengths—“red and dead.” In contrast, Nucleus 2 is very compact, has a tidal radius of 103 pc, and exhibits three signs of recent activity: a post-starburst spectrum, an [O III] emission line, and a central X-ray point source. Its emission-line ratios place it among Seyfert nuclei. A comparison of Nucleus 2 ({M}V = ‑15.5) with ultracompact dwarf galaxies (UCDs) suggests that it may be the best case yet for a massive UCD having formed through tidal stripping of a gas-rich disk galaxy. Evidence for this comes from its extended star formation history, long blue tidal stream, and elevated dynamical-to-stellar-mass ratio. While the majority of its stars formed ≳ 10 {Gyr} ago, ∼1/3 formed during starbursts in the past 2 Gyr. Its weak active galactic nucleus activity is likely driven by a black hole of mass 3× {10}6-8 {M}ȯ . We estimate that the former companion’s initial mass was less than half that of then NGC 7727, implying a minor merger. By now this former companion has been largely shredded, leaving behind Nucleus 2 as a freshly minted UCD that probably moves on a highly eccentric orbit. Based in part on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels

    PubMed Central

    Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209

  10. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels.

    PubMed

    Cadol, Daniel; Elmore, Andrew J; Guinn, Steven M; Engelhardt, Katharina A M; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.

  11. The role of thermal stratification in tidal exchange at the mouth of San Diego Bay

    USGS Publications Warehouse

    Chadwick, D. B.; Largier, J. L.; Cheng, R.T.; Aubrey, D.G.; Friedrichs, C.T.; Aubrey, D.G.; Friedrichs, C.T.

    1996-01-01

    We have examined, from an observational viewpoint, the role of thermal stratification in the tidal exchange process at the mouth of San Diego Bay. In this region, we found that both horizontal and vertical exchange processes appear to be active. The vertical exchange in this case was apparently due to the temperature difference between the'bay water and ocean water. We found that the structure of the outflow and the nature of the tidal exchange process both appear to be influenced by thermal stratification. The tidal outflow was found to lift-off tan the bottom during the initial and later stages of the ebb flow when barotropic forcing was weak. During the peak ebb flow, the mouth section was flooded, and the outflow extended to the bottom. As the ebb flow weakened, a period of two-way exchange occurred, with the surface layer flowing seaward, and the deep layer flowing into the bay. The structure of the tidal-residual flow and the residual transport of a measured tracer were strongly influenced by this vertical exchange. Exchange appeared to occur laterally as well, in a manner consistent with the tidal-pumping mechanism described by Stommel and Farmer [1952]. Tidal cycle variations in shear and stratification were characterized by strong vertical shear and breakdown of stratification during the ebb, and weak vertical shear and build-up of stratification on the flood. Evaluation of multiple tidal-cycles from time-series records of flow and temperature indicated that the vertical variations of the flow and stratification observed during the cross-sectional measurements are a general phenomenon during the summer. Together, these observations suggest that thermal stratification can play an important role in regulating the tidal exchange of low-inflow estuaries.

  12. Tidal Disruption Events Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2017-01-01

    Tidal disruption events (TDEs) of stars by single or binary super-massive black holes illuminate the environment around quiescent black holes in galactic nuclei allowing to probe dorment black holes. We predict the TDE rates expected to be detected by next-generation X-ray surveys. We include events sourced by both single and binary super-massive black holes assuming that 10% of TDEs lead to the formation of relativistic jets and are therefore observable to higher redshifts. Assigning the Eddington luminosity to each event, we show that if the occupation fraction of intermediate black holes is high, more than 90% of the brightest TDE might be associated with merging black holes which are potential sources for eLISA. Next generation telescopes with improved sensitivities should probe dim local TDE events as well as bright events at high redshifts. We show that an instrument which is 50 times more sensitive than the Swift Burst Alert Telescope (BAT) is expected to trigger ~10 times more events than BAT. Majority of these events originate at low redshifts (z<0.5) if the occupation fraction of IMBHs is high and at high-redshift (z>2) if it is low.

  13. Flows of X-ray gas reveal the disruption of a star by a massive black hole.

    PubMed

    Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial

    2015-10-22

    Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.

  14. Geologic Structures in Crater Walls on Vesta

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In one region, there is an apparent angular unconformity between the bright material and the dark material where bright material layers appear to be truncated against the underlying dark layer. One crater within the Rheasilvia basin contains two distinct types of bright materials outcropping on its walls, one like that found elsewhere on Vesta and the other an anomalous block 200 m across. This material has the highest albedo; almost twice that of the vestan average. Unlike all other bright materials, this block has a subdued 1 micron pyroxene absorption band in FC color ratios. These data indicate that this block represents a distinct vestan lithology that is rarely exposed.

  15. Fractures on Europa - Possible response of an ice crust to tidal deformation

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Parmentier, E. M.

    1980-01-01

    The surface of Europa contains a planetwide system of low albedo lineaments which have been interpreted as fractures in an icy crust. The pattern of fractures on the surface consists of radial and concentric fractures having the general appearance of tension cracks within a region near the antipode of the sub-Jupiter point. Outside this region, linear fractures intersect at angles near 60 deg, suggesting that they are conjugate shear fractures. The orientation of this pattern on the surface suggests that a principal axis of the deformation that produced the fractures was approximately radial to Jupiter. Fracturing may thus be consistent with an origin due to cyclical tidal deformation resulting from orbital eccentricity. Orbital eccentricity related to a relatively recent establishment of orbital resonance among the Galilean satellites may explain the presence of fractures in a relatively young, lightly cratered planetary surface.

  16. Can tidal energy farms create temperature fronts in the coastal ocean?

    NASA Astrophysics Data System (ADS)

    Shapiro, G. I.

    2012-04-01

    Although an industrial scale tidal farm comprising a large set of submerged turbines has not been built yet, tidal power is considered to be one of potential sources of renewable energy in the future. For example, India plans to install a 50MW tidal farm in the Gulf of Kutch which could be further expanded to deliver more than 200MW. As tidal stream generators extract kinetic energy from the ocean currents, they change the circulation pattern and hence affect the marine environment. Recent research has shown ( Shapiro, 2011, Neill et al., 2009) that a tidal farm can modify currents and sediment transport outside the farm as far as up to a hundred kilometres. This paper studies the potential effect of a tidal farm on the temperature structure in a shallow sea using a 3D ocean model POLCOMS which was modified to include effects of kinetic energy extraction as detailed in (Shapiro, 2011). The model is set up in the Celtic Sea known for its high levels of tidal energy. The model is driven by 15 tidal constituents and the meteo forcing. Effects of tidal farms of varying sizes and power capacities (from 50 MW to 1500MW) have been studied during summer months. The simulated farms are placed in various locations north of the Cornish coast. It has been shown that even smaller farms can modify temperature distribution as far as a few tens of kilometres from the farm, and sometimes generate localised temperature fronts. This effect is particularly strong during the month of June when the fronts penetrate from surface to the seabed. The fronts are more pronounced during the spring tides, however they are still seen during the neaps. As the seasonal thermocline strengthens towards the end of summer, the fronts are mostly seen in the upper ocean layer, with warmer waters in the area of the farm and cooler waters outside the farm. The physical mechanism of front generation is linked to abrupt changes in the current patterns due to energy extraction from the ocean. The currents inside the farm become weaker, whilst the currents outside the farm ( at a scale comparable to the baroclinic Rossby radius) become stronger. Such stronger currents enhance the mixing of the water column outside the farm, and weaker currents inside the farm reduce turbulent mixing and facilitate formation of a stronger thermocline. The overall effect is generally similar to the formation of fronts between tidally mixed and stratified areas of a shallow sea (Simpson and Hunter, 1974). Effect of geometrically smaller farms is less pronounced as the water particles travel in and out the affected zone during the tidal cycle (over the length of the tidal excursion) and hence are influenced by the above mechanism only during a proportion of the tidal cycle. Reduced vertical mixing within the area of the farm and positive heat balance explains higher temperatures at the surface. In the beginning of summer when thermal stratification is relatively week, the thermocline is significantly altered and the fronts propagate to a greater depth. Development of a stronger thermocline towards the end of summer inhibits the effect of mixing and the fluctuations of the depth of the upper mixed layer due to energy extraction are suppressed .

  17. Dark Lakes on a Bright Landscape

    NASA Image and Video Library

    2013-10-23

    Ultracold hydrocarbon lakes and seas dark shapes near the north pole of Saturn moon Titan can be seen embedded in some kind of bright surface material in this infrared mosaic from NASA Cassini mission.

  18. A statistical examination of Nimbus 7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surfaces wind speed

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Wang, I.; Chang, A. T. C.; Gloersen, P.

    1982-01-01

    Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperature measurements over the global oceans have been examined with the help of statistical and empirical techniques. Such analyses show that zonal averages of brightness temperature measured by SMMR, over the oceans, on a large scale are primarily influenced by the water vapor in the atmosphere. Liquid water in the clouds and rain, which has a much smaller spatial and temporal scale, contributes substantially to the variability of the SMMR measurements within the latitudinal zones. The surface wind not only increases the surface emissivity but through its interactions with the atmosphere produces correlations, in the SMMR brightness temperature data, that have significant meteorological implications. It is found that a simple meteorological model can explain the general characteristics of the SMMR data. With the help of this model methods to infer over the global oceans, the surface temperature, liquid water content in the atmosphere, and surface wind speed are developed. Monthly mean estimates of the sea surface temperature and surface winds are compared with the ship measurements. Estimates of liquid water content in the atmosphere are consistent with earlier satellite measurements.

  19. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  20. On summer stratification and tidal mixing in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Hu, Jianyu; Liu, Zhiyu

    2013-06-01

    On continental shelves, a front that separates the sea into well-mixed and stratified zones is usually formed in warm seasons due to spatial variations of tidal mixing. In this paper, using eight years of in situ hydrographic observations, satellite images of sea surface temperature (SST) and chlorophyll- a (Chl- a) concentration, and results of a tidal model, we investigate summer stratification in the Taiwan Strait and its dependence on tidal mixing, upwelling, and river diluted water plumes. In most regions of the strait the dominant role of tidal mixing in determining the thermohaline structure is confirmed by the correlation between the two; there are some regions, however, where thermohaline structure varies in different ways owing to significant influences of upwelling and river diluted water plumes. The well-mixed regions are mainly distributed on the Taiwan Bank and in the offshore regions off the Dongshan Island, Nanao Island, and Pingtan Island, while the northern and central Taiwan Strait and the region south of the Taiwan Bank are stratified. The critical Simpson-Hunter parameter for the region is estimated to be 1.78.

  1. Satellite accretion on to massive galaxies with central black holes

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Ma, Chung-Pei

    2007-02-01

    Minor mergers of galaxies are expected to be common in a hierarchical cosmology such as Λ cold dark matter. Though less disruptive than major mergers, minor mergers are more frequent and thus have the potential to affect galactic structure significantly. In this paper, we dissect the case-by-case outcome from a set of numerical simulations of a single satellite elliptical galaxy accreting on to a massive elliptical galaxy. We take care to explore cosmologically relevant orbital parameters and to set up realistic initial galaxy models that include all three relevant dynamical components: dark matter haloes, stellar bulges, and central massive black holes (BHs). The effects of several different parameters are considered, including orbital energy and angular momentum, satellite density and inner density profile, satellite-to-host mass ratio, and presence of a BH at the centre of the host. BHs play a crucial role in protecting the shallow stellar cores of the hosts, as satellites merging on to a host with a central BH are more strongly disrupted than those merging on to hosts without BHs. Orbital parameters play an important role in determining the degree of disruption: satellites on less-bound or more-eccentric orbits are more easily destroyed than those on more-bound or more-circular orbits as a result of an increased number of pericentric passages and greater cumulative effects of gravitational shocking and tidal stripping. In addition, satellites with densities typical of faint elliptical galaxies are disrupted relatively easily, while denser satellites can survive much better in the tidal field of the host. Over the range of parameters explored, we find that the accretion of a single satellite elliptical galaxy can result in a broad variety of changes, in both signs, in the surface brightness profile and colour of the central part of an elliptical galaxy. Our results show that detailed properties of the stellar components of merging satellites can strongly affect the properties of the remnants.

  2. Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian Shelf region

    NASA Astrophysics Data System (ADS)

    Katavouta, Anna; Thompson, Keith; Lu, Youyu; Loder, John

    2017-04-01

    In the Gulf of Maine and Scotian Shelf (off the northeastern coast of North America) tides are large and can alter the local hydrographic properties, circulation, and sea surface height through processes such as tidal rectification, mixing, and horizontal advection. Furthermore, the stratification of the water column can influence tidal elevation and currents over the shelves (e.g., baroclinic tides). To investigate this interaction, a newly developed high resolution (1/36 degree) regional circulation model is used (GoMSS model). First, numerical experiments with and without density stratification are used to demonstrate the influence of stratification on the tides. GoMSS model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current which occur over, and to the north of, Georges Bank. An alternating pattern of highs and lows in the summer maximum M2 surface speed in the Gulf of Maine is identified, for the first time, in both the model output and observations by a high frequency coastal radar system. This pattern consists of extended striations in tidal speed aligned with the northern flank of Georges Bank that separates the Gulf of Maine from the North Atlantic. The striations are explained in terms of a linear superposition of the barotropic tide flowing across the northern flank of Georges Bank and the reflected, phase-locked baroclinic tide. The striations have amplitudes of about 0.1 m/s and longitudinal length scales of order 100 km, and are thus of practical significance.

  3. Optical image of a cometary nucleus: 1980 flyby of Comet Encke

    NASA Technical Reports Server (NTRS)

    Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.

    1974-01-01

    The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).

  4. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  5. Characterization and Correction of Aquarius Long Term Calibration Drift Using On-Earth Brightness Temperature Refernces

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Misra, Sidharth

    2013-01-01

    The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.

  6. Modeling the non-grey-body thermal emission from the full moon

    NASA Technical Reports Server (NTRS)

    Vogler, Karl J.; Johnson, Paul E.; Shorthill, Richard W.

    1991-01-01

    The present series of thermophysical computer models for solid-surfaced planetary bodies whose surface roughness is modeled as paraboloidal craters of specified depth/diameter ratio attempts to characterize the nongrey-body brightness temperature spectra of the moon and of the Galilean satellites. This modeling, in which nondiffuse radiation properties and surface roughness are included for rigorous analysis of scattered and reemitted radiation within a crater, explains to first order the behavior of both limb-scans and disk-integrated IR brightness temperature spectra for the full moon. Only negative surface relief can explain lunar thermal emissions' deviation from smooth Lambert-surface expectations.

  7. Earth Core and Inner Core: What Can We Learn From a Bayesian Inversion of Combined Nutation and Surface Gravimetry Data?

    NASA Astrophysics Data System (ADS)

    Lambert, S. B.; Ziegler, Y.; Rosat, S.; Bizouard, C.

    2017-12-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the results of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by several analysis centers affiliated to the International VLBI Service for Geodesy and Astrometry, together with surface gravity data from about 15 SG stations. We address the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting to nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package. New estimates of the resonant periods are proposed and correlations between the parameters are investigated.

  8. Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data

    NASA Astrophysics Data System (ADS)

    Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D.

    2018-01-01

    The tidal Love number h2 is a key geophysical measurement for the characterization of Europa's interior, especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding and stereo imaging data. The measurement principle exploits both delay and Doppler information in the radar surface return in combination with topography from a digital terrain model (DTM). The resulting radar range measurements at cross-over locations can be used in combination with radio science Doppler data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results suggest that the absolute accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget and DTM quality, both dependent on the surface properties of Europa. We estimate that this would unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-science based measurement of the tidal Love number k2, constrain the thickness of Europa's outer ice shell to up to ±15 km.

  9. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  10. Hydrological controls on methylmercury distribution and flux in a tidal marsh

    USGS Publications Warehouse

    Zhang, Hua; Moffett, Kevan B.; Windham-Myers, Lisamarie; Gorelick, Steven M.

    2014-01-01

    The San Francisco Estuary, California, contains mercury (Hg) contamination originating from historical regional gold and Hg mining operations. We measured hydrological and geochemical variables in a tidal marsh of the Palo Alto Baylands Nature Preserve to determine the sources, location, and magnitude of hydrological fluxes of methylmercury (MeHg), a bioavailable Hg species of ecological and health concern. Based on measured concentrations and detailed finite-element simulation of coupled surface water and saturated-unsaturated groundwater flow, we found pore water MeHg was concentrated in unsaturated pockets that persisted over tidal cycles. These pockets, occurring over 16% of the marsh plain area, corresponded to the marsh root zone. Groundwater discharge (e.g., exfiltration) to the tidal channel represented a significant source of MeHg during low tide. We found that nonchannelized flow accounted for up to 20% of the MeHg flux to the estuary. The estimated net flux of filter-passing (0.45 μm) MeHg toward estuary was 10 ± 5 ng m–2 day–1 during a single 12-h tidal cycle, suggesting an annual MeHg load of 1.17 ± 0.58 kg when the estimated flux was applied to present tidal marshes and planned marsh restorations throughout the San Francisco Estuary.

  11. Borehole Tilt Measurements at the Charlevoix Observatory, Quebec.

    DTIC Science & Technology

    1983-01-31

    1q. KEY WORDS (Continue on reverse side it necessary end identify by block number) Borehole tiltmeter Earthquakes Tidal, secular and transient tilts 20...ABSTRACT (Continue on reverse side If necessary and Identify by block number) An array of three Bodenseewerk Gbp borehole tiltmeters has been...established to measure tidal, transient and secular tilting of the Earth’s surface in the Charlevoix region of Quebec. Two of the tiltmeters operate at a

  12. Airborne microwave radar measurements of surface velocity in a tidally-driven inlet

    NASA Astrophysics Data System (ADS)

    Farquharson, G.; Thomson, J. M.

    2012-12-01

    A miniaturized dual-beam along-track interferometric (ATI) synthetic aperture radar (SAR), capable of measuring two components of surface velocity at high resolution, was operated during the 2012 Rivers and Inlets Experiment (RIVET) at the New River Inlet in North Carolina. The inlet is predominantly tidally-driven, with little upstream river discharge. Surface velocities in the inlet and nearshore region were measured during ebb and flood tides during a variety of wind and offshore wave conditions. The radar-derived surface velocities range from around ±2~m~s1 during times of maximum flow. We compare these radar-derived surface velocities with surface velocities measured with drifters. The accuracy of the radar-derived velocities is investigated, especially in areas of large velocity gradients where along-track interferometric SAR can show significant differences with surface velocity. The goal of this research is to characterize errors in along-track interferometric SAR velocity so that ATI SAR measurements can be coupled with data assimilative modeling with the goal of developing the capability to adequately constrain nearshore models using remote sensing measurements.

  13. The effect of precipitation on measuring sea surface salinity from space

    NASA Astrophysics Data System (ADS)

    Jin, Xuchen; Pan, Delu; He, Xianqiang; Wang, Difeng; Zhu, Qiankun; Gong, Fang

    2017-10-01

    The sea surface salinity (SSS) can be measured from space by using L-band (1.4 GHz) microwave radiometers. The L-band has been chosen for its sensitivity of brightness temperature to the change of salinity. However, SSS remote sensing is still challenging due to the low sensitivity of brightness temperature to SSS variation: for the vertical polarization, the sensitivity is about 0.4 to 0.8 K/psu with different incident angles and sea surface temperature; for horizontal polarization, the sensitivity is about 0.2 to 0.6 K/psu. It means that we have to make radiometric measurements with accuracy better than 1K even for the best sensitivity of brightness temperature to SSS. Therefore, in order to retrieve SSS, the measured brightness temperature at the top of atmosphere (TOA) needs to be corrected for many sources of error. One main geophysical source of error comes from atmosphere. Currently, the atmospheric effect at L-band is usually corrected by absorption and emission model, which estimate the radiation absorbed and emitted by atmosphere. However, the radiation scattered by precipitation is neglected in absorption and emission models, which might be significant under heavy precipitation. In this paper, a vector radiative transfer model for coupled atmosphere and ocean systems with a rough surface is developed to simulate the brightness temperature at the TOA under different precipitations. The model is based on the adding-doubling method, which includes oceanic emission and reflection, atmospheric absorption and scattering. For the ocean system with a rough surface, an empirical emission model established by Gabarro and the isotropic Cox-Munk wave model considering shadowing effect are used to simulate the emission and reflection of sea surface. For the atmospheric attenuation, it is divided into two parts: For the rain layer, a Marshall-Palmer distribution is used and the scattering properties of the hydrometeors are calculated by Mie theory (the scattering hydrometeors are assumed to be spherical). For the other atmosphere layers, which are assumed to be clear sky, Liebe's millimeter wave propagation model (MPM93) is used to calculate the absorption coefficients of oxygen, water vapor, and cloud droplets. To simulate the change of brightness temperature caused by different rain rate (0-50 mm/h), we assume a 26-layer precipitation structure corresponding to NCEP FNL data. Our radiative transfer simulations showed that the brightness temperature at TOA can be influenced significantly by the heavy precipitation, the results indicate that the atmospheric attenuation of L-band at incidence angle of 42.5° should be a positive bias, and when rain rate rise up to 50 mm/h, the brightness temperature increases are close to 0.6 K and 0.8 K for horizontally and vertically polarized brightness temperature, respectively. Thus, in the case of heavy precipitation, the current absorption and emission model is not accurate enough to correct atmospheric effect, and a radiative transfer model which considers the effect of radiation scattering should be used.

  14. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    NASA Astrophysics Data System (ADS)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  15. Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu

    2018-04-01

    We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i < 0.64) colors and a wide range of morphologies. Since we focus on extended galaxies (r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.

  16. Spectral analysis of one-way and two-way downscaling applications for a tidally driven coastal ocean forecasting system

    NASA Astrophysics Data System (ADS)

    Solano, Miguel; Gonzalez, Juan; Canals, Miguel; Capella, Jorge; Morell, Julio; Leonardi, Stefano

    2017-04-01

    A prevailing problem for a tidally driven coastal ocean has been the adequate imposition of open boundary conditions. This study aims at assessing the role of open boundary conditions and tidal forcing for one and two way downscaling applications at high resolution. The operational system is based on the Caribbean Coastal Ocean Forecasting System (COFS) that uses the Regional Ocean Modeling System (ROMS), a split-explicit ocean model in which the barotropic (2D) and baroclinic (3D) modes advance separately. This COFS uses a uniform horizontal grid with 1km resolution, but a grid sensitivity analysis is performed for both one and two way downscaling methodologies with horizontal resolutions up to 700m. Initial and lateral boundary conditions are derived from the U.S Naval Oceanographic Office (NAVOCEANO) operational AmSeas model forecast, a 3-km resolution of the regional Navy Coastal Ocean Model (NCOM) that encompasses the Gulf of Mexico and Caribbean Sea. Meteorological conditions are interpolated from the Navy's COAMPS model with the exception of surface stresses, which are computed from a 2-km application of the WRF model used by NCEP's National Digital Forecast Database. Tidal forcing is performed in two different ways: 1) tidal and sub-tidal variability is imposed to the barotropic and baroclinic modes by downscaling from the AmSeas NCOM regional model and 2) tidal variability is imposed using ROMS harmonic tidal forcing from OTPS and sub-tidal conditions are imposed by filtering high frequencies out the NCOM regional solution. Special focus is given to the latter approach, where the nudging time scales and the boundary update frequency play an important role in the evolution of the ocean state for short 3-day forecasts. A spectral analysis of the sea surface height and barotropic velocity is performed via Fourier's transform, continuous 1-D wavelet transforms, and classic harmonic analysis. Tide signals are then reconstructed and removed from the OBC's in 3 ways: 1) using Rich Pawlowicz's t_tide package (classic harmonic analysis), 2) with traditional band-pass filters (e.g. Lanczos) and 3) using Proper Orthogonal Decomposition. The tide filtering approach shows great improvement in the high frequency response of tidal motions at the open boundaries. Results are validated with NOAA tide gauges, Acoustic Doppler Current Profilers, High Frequency Radars (6km and 2km resolution). A floating drifter experiment is performed in coastal zones, in which 12 drifters were deployed at different coastal zones and tracked for several days. The results show an improvement of the forecast skill with the proper implementation of the tide filtering approach by adjusting the nudging time scales and adequately removing the tidal signals. Significant improvement is found in the tracking skill of the floating drifters for the one-way grid and the two-way nested application also shows some improvement over the offline downscaling approach at higher resolutions.

  17. Lunar Laser Ranging: Glorious Past And A Bright Future

    NASA Astrophysics Data System (ADS)

    Shelus, Peter J.

    Lunar Laser Ranging (LLR), a part of the NASA Apollo program, has beenon-going for more than 30 years. It provides the grist for a multi-disciplinarydata analysis mill. Results exist for solid Earth sciences, geodesy and geodynamics,solar system ephemerides, terrestrial and celestial reference frames, lunar physics,general relativity and gravitational theory. Combined with other data, it treatsprecession of the Earth''s spin axis, lunar induced nutation, polar motion/Earthrotation, Earth orbit obliquity to the ecliptic, intersection of the celestial equatorwith the ecliptic, luni-solar solid body tides, lunar tidal deceleration, lunar physicaland free librations, structure of the moon and energy dissipation in the lunar interior.LLR provides input to lunar surface cartography and surveying, Earth station and lunar retroreflector location and motion, mass of the Earth-moon system, lunar and terrestrial gravity harmonics and Love numbers, relativistic geodesic precession, and the equivalence principle of general relativity. With the passive nature of the reflectors and steady improvement in observing equipment and data analysis, LLR continues to provide state-of-the-art results. Gains are steady as the data-base expands. After more than 30 years, LLR remains the only active Apollo experiment. It is important to recognize examples of efficient and cost effective progress of research. LLR is just such an example.

  18. Evidence for dwarf stars at D of about 100 kiloparsecs near the Sextans dwarf spheroidal galaxy

    NASA Technical Reports Server (NTRS)

    Gould, Andrew; Guhathakurta, Puragra; Richstone, Douglas; Flynn, Chris

    1992-01-01

    A method is presented for detecting individual, metal-poor, dwarf stars at distances less than about 150 kpc - a method specifically designed to filter out stars from among the much more numerous faint background field galaxies on the basis of broad-band colors. This technique is applied to two fields at high Galactic latitude, for which there are deep CCD data in four bands ranging from 3600 to 9000 A. The field in Sextans probably contains more than about five dwarf stars with BJ not greater than 25.5. These are consistent with being at a common distance about 100 kpc and lie about 1.7 deg from the newly discovered dwarf galaxy in Sextans whose distance is about 85 +/- 10 kpc. The stars lie near the major axis of the galaxy and are near or beyond the tidal radius. The second field, toward the south Galactic pole, may contain up to about five extra-Galactic stars, but these show no evidence for being at a common distance. Possible applications of this type technique are discussed, and it is shown that even very low surface brightness star clusters or dwarf galaxies may be detected at distances less than about 1 Mpc.

  19. Europa's Habitability follows from Classical Dynamical Astronomy

    NASA Astrophysics Data System (ADS)

    Greenberg, R.

    2001-11-01

    Celestial mechanics is responsible for Jupiter's satellite Europa being a possible site for life in the solar system. The Laplace orbital resonance drives a substantial eccentricity. The mutually dependent relationship between orbital and rotational evolution and tidal processes in turn controls Europa's heating and stress. Heat is likely adequate to maintain a liquid water ocean, and to keep the surface ice thin. Tidal stress can explain characteristic and ubiquitous crack patterns (global and cycloidal), as well as drive observed shear displacement features. The characteristic ridge sets that cover tectonic terrain are likely built by tidal pumping of oceanic fluid and slush through cracks to the surface on a daily basis. Nearly half the surface is chaotic terrain, with morphology and other characteristics indicative of melt-through from below. Formation of both chaotic and tectonic terrains has continually resurfaced the satellite, while connecting the ocean to the surface and providing a variety of evolving environmental niches. As a result of tides, liquid water would daily bathe crustal cracks and surfaces with heat, transporting and mixing substances vertically. Thus a variety of habitable environments likely exist in the crust. Moreover, exposure of the ocean to the surface in the ways described here satisfies a necessary condition for life in the ocean as well, by providing access to oxidants which are available near the surface. These processes were recent, and thus most likely continue today. Longer term changes in environmental conditions in the crust, such as deactivation of individual cracks after thousands of years (due to non-synchronous rotation) and later crustal thawing (releasing any trapped organisms), provided drivers for adaptation, as well as opportunity for evolution. This work is supported by the NASA Planetary Geology and Geophysics Program and the NSF Life in Extreme Environments Program.

  20. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  1. Titan's Surface Brightness Temperatures and H2 Mole Fraction from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; hide

    2008-01-01

    The atmosphere of Titan has a spectral window of low opacity around 530/cm in the thermal infrared where radiation from the surface can be detected from space. The Composite Infrared spectrometer1 (CIRS) uses this window to measure the surface brightness temperature of Titan. By combining all observations from the Cassini tour it is possible to go beyond previous Voyager IRIS studies in latitude mapping of surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, which is close to the 93.65+/-0.25 K value measured at the surface by Huygens HASi. The temperature decreases toward the poles, reaching 91.6+/-0.7 K at 90 S and 90.0+/-1.0 K at 87 N. The temperature distribution is centered in latitude at approximately 12 S, consistent with Titan's season of late northern winter. Near the equator the temperature varies with longitude and is higher in the trailing hemisphere, where the lower albedo may lead to relatively greater surface heating5. Modeling of radiances at 590/cm constrains the atmospheric H2 mole fraction to 0.12+/-0.06 %, in agreement with results from Voyager iris.

  2. Characterisation of the hydrology of an estuarine wetland

    NASA Astrophysics Data System (ADS)

    Hughes, Catherine E.; Binning, Philip; Willgoose, Garry R.

    1998-11-01

    The intertidal zone of estuarine wetlands is characterised by a transition from a saline marine environment to a freshwater environment with increasing distance from tidal streams. An experimental site has been established in an area of mangrove and salt marsh wetland in the Hunter River estuary, Australia, to characterise and provide data for a model of intertidal zone hydrology. The experimental site is designed to monitor water fluxes at a small scale (36 m). A weather station and groundwater monitoring wells have been installed and hydraulic head and tidal levels are monitored over a 10-week period along a short one-dimensional transect covering the transition between the tidal and freshwater systems. Soil properties have been determined in the laboratory and the field. A two-dimensional finite element model of the site was developed using SEEP/W to analyse saturated and unsaturated pore water movement. Modification of the water retention function to model crab hole macropores was found necessary to reproduce the observed aquifer response. Groundwater response to tidal fluctuations was observed to be almost uniform beyond the intertidal zone, due to the presence of highly permeable subsurface sediments below the less permeable surface sediments. Over the 36 m transect, tidal forcing was found to generate incoming fluxes in the order of 0.22 m 3/day per metre width of creek bank during dry periods, partially balanced by evaporative fluxes of about 0.13 m 3/day per metre width. During heavy rainfall periods, rainfall fluxes were about 0.61 m 3/day per metre width, dominating the water balance. Evapotranspiration rates were greater for the salt marsh dominated intertidal zone than the non-tidal zone. Hypersalinity and salt encrustation observed show that evapotranspiration fluxes are very important during non-rainfall periods and are believed to significantly influence salt concentration both in the surface soil matrix and the underlying aquifer.

  3. Subsurface flow and vegetation patterns in tidal environments

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Silvestri, Sonia; Marani, Marco

    2004-05-01

    Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated layer, thereby introducing a strong positive feedback: Pioneer plants on marsh edges have the effect of increasing soil oxygen availability, thus creating the conditions for the further development of other plant communities.

  4. Linking Europa’s Plume Activity to Tides, Tectonics, and Liquid Water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa R.; Hurford, Terry; Roth, Lorenz; Retherford, Kurt

    2014-11-01

    Much of the geologic activity preserved on Europa’s icy surface has been attributed to tidal deformation, mainly due to Europa’s eccentric orbit. Although the surface is geologically young, evidence of ongoing tidally-driven processes has been lacking. However, a recent observation of water vapor near Europa’s south pole suggests that it may be geologically active. Non-detections in previous and follow-up observations indicate a temporal variation in plume visibility and suggests a relationship to Europa’s tidal cycle. Similarly, the Cassini spacecraft has observed plumes emanating from the south pole of Saturn’s moon, Enceladus, and variability in the intensity of eruptions has been linked to its tidal cycle. The inference that a similar mechanism controls plumes at both Europa and Enceladus motivates further analysis of Europa’s plume behavior and the relationship between plumes, tides, and liquid water on these two satellites.We determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa’s orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. In contrast, the addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of the model faults are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across model faults suggests that the plumes would be best observed earlier in Europa’s orbit. Our results indicate that Europa’s plumes, if confirmed, differ in many respects from the Enceladean plumes and that either active fractures or volatile sources are rare.

  5. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.

  6. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  7. Skylab experiment SO73: Gegenschein/zodiacal light. [electrophotometry of surface brightness and polarization

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.

    1976-01-01

    A 10 color photoelectric polarimeter was used to measure the surface brightness and polarization associated with zodiacal light, background starlight, and spacecraft corona during each of the Skylab missions. Fixed position and sky scanning observations were obtained during Skylab missions SL-2 and SL-3 at 10 wavelenghts between 4000A and 8200A. Initial results from the fixed-position data are presented on the spacecraft corona and on the polarized brightness of the zodiacal light. Included among the fixed position regions that were observed are the north celestial pole, south ecliptic pole, two regions near the north galactic pole, and 90 deg from the sun in the ecliptic. The polarized brightness of the zodiacal light was found to have the color of the sun at each of these positions. Because previous observations found the total brightness to have the color of the sun from the near ultraviolet out to 2.4 micrometers, the degree of polarization of the zodiacal light is independent of wavelength from 4000A to 8200A.

  8. Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.

  9. Application of Reflected Global Navigation Satellite System (GNSS-R) Signals in the Estimation of Sea Roughness Effects in Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan

    2010-01-01

    In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.

  10. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    NASA Astrophysics Data System (ADS)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  11. Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site

    USGS Publications Warehouse

    Soderblom, L.A.; Kirk, R.L.; Lunine, J.I.; Anderson, J.A.; Baines, K.H.; Barnes, J.W.; Barrett, J.M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; Elachi, C.; Janssen, M.A.; Jaumann, R.; Karkoschka, E.; Le Mouélic, Stéphane; Lopes, R.M.; Lorenz, R.D.; McCord, T.B.; Nicholson, P.D.; Radebaugh, J.; Rizk, B.; Sotin, Christophe; Stofan, E.R.; Sucharski, T.L.; Tomasko, M.G.; Wall, S.D.

    2007-01-01

    Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as "brown" and "blue" in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3 ??m). In such composites bluer materials exhibit higher reflectance at 1.3 ??m and lower at 1.6 and 2.0 ??m. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001-0.01 ??m/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30 km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR). ?? 2007 Elsevier Ltd. All rights reserved.

  12. An Active Black Hole in a Compact Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new type of galaxy has just been added to the galaxy zoo: a small, compact, and old elliptical galaxy that shows signs of a monster black hole actively accreting material in its center. What can this unusual discovery tell us about how compact elliptical galaxies form?A New Galactic BeastCompact elliptical galaxies are an extremely rare early-type dwarf galaxy. Consistent with their name, compact ellipticals are small, very compact collections of ancient stars; these galaxies exhibit a high surface brightness and arent actively forming stars.Optical view of the ancient compact elliptical galaxy SDSS J085431.18+173730.5 (center of image) in an SDSS color composite image. [Adapted from Paudel et al. 2016]Most compact ellipticals are found in dense environments, particularly around massive galaxies. This has led astronomers to believe that compact ellipticals might form via the tidal stripping of a once-large galaxy in interactions with another, massive galaxy. In this model, once the original galaxys outer layers are stripped away, the compact inner bulge component would be left behind as a compact elliptical galaxy. Recent discoveries of a few isolated compact ellipticals, however, have strained this model.Now a new galaxy has been found to confuse our classification schemes: the first-ever compact elliptical to also display signs of an active galactic nucleus. Led by Sanjaya Paudel (Korea Astronomy and Space Science Institute), a team of scientists discovered SDSS J085431.18+173730.5 serendipitously in Sloan Digital Sky Survey data. The team used SDSS images and spectroscopy in combination with data from the Canada-France-Hawaii Telescope to learn more about this unique galaxy.Puzzling CharacteristicsSDSS J085431.18+173730.5 presents an interesting conundrum. Ancient compact ellipticals are supposed to be devoid of gas, with no fuel left to trigger nuclear activity. Yet SDSS J085431.18+173730.5 clearly shows the emission lines that indicate active accretion onto a supermassive black hole of ~2 million solar masses, according to the authors estimates. Paudel and collaboratorsshow that this mass is consistent with the low-mass extension of the known scaling relation between central black-hole mass and brightness of the host galaxy.Central black hole mass vs. bulge K-band magnitude. SDSS J085431.18+173730.5 (red dot) falls right on the low-mass extension of the observed scaling relation. It has similar properties to M32, another compact elliptical galaxy. [Adapted from Paudel et al. 2016]To add to the mystery, SDSS J085431.18+173730.5 has no nearby neighbors: like the few other isolated compact ellipticals recently discovered, there are no massive galaxies in the immediate vicinity that could have led to its tidal stripping. So how was this puzzling ancient galaxy formed?The authors of this study support a previously proposed flyby scenario: isolated compact ellipticals may simply be tidally stripped systems that ran away from their hosts. Paudel and collaborators suggest that SDSS J085431.18+173730.5 might have long ago interacted with NGC 2672 a galaxy group located a whopping 6.5 million light-years away before being flung out to its current location.Further studies of this unique galaxys emission profile, as well as efforts to learn about its underlying stellar population and central kinematics, will hopefully help us to better understand not only the origins of this galaxy, but how all compact ellipticals form and evolve.CitationSanjaya Paudel et al 2016 ApJ 820 L19. doi:10.3847/2041-8205/820/1/L19

  13. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh

    USGS Publications Warehouse

    Raposa, K.B.; Roman, C.T.

    2001-01-01

    Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.

  14. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelli, Federico; McGaugh, Stacy S.; Schombert, James M., E-mail: federico.lelli@case.edu

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailedmore » mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.« less

  15. Andromeda (M31) optical and infrared disk survey. I. Insights in wide-field near-IR surface photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles

    We present wide-field near-infrared J and K{sub s} images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-targetmore » nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ∼0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.« less

  16. Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.

    2015-07-01

     Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters.  However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es may be more similar than we think: both may have outer halos made largely via minor mergers and the accumulation of tidal debris.  We construct a main-body+cD-halo decomposition that fits both the brightness and dispersion profiles. To fit σ (r), we need to force the component Sérsic indices to be smaller than a minimum-{χ }2 photometric decomposition would suggest. The main body has {M}V≃ -22.8≃ 30% of the total galaxy light. The cD halo has {M}V≃ -23.7, ˜1/2 mag brighter than the brightest galaxy in the Virgo cluster. A mass model based on published cluster dynamics and X-ray observations fits our observations if the tangential dispersion is larger than the radial dispersion at r≃ 20\\prime\\prime -60\\prime\\prime . The cD halo is as enhanced in α element abundances as the main body of NGC 6166. Quenching of star formation in ≲1 Gyr suggests that the center of Abell 2199 has been special for a long time during which dynamical evolution has liberated a large mass of now-intracluster stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  17. Hydrology of flooded and wetland forests

    USGS Publications Warehouse

    Williams, T.M.; Krauss, Ken W.; Okruszko, T.; Amatya, D.; Williams, T.M.; Bren, L.; de Jong, C.

    2016-01-01

    In this chapter we will examine the hydrology of forested areas that are subject to soil saturation by rain, groundwater, or surface flooding. They include mangroves and other tidal forests, the forested portions of peatlands, and tree dominated wetlands defined by the Ramsar Convention (Mathews 1993). They also include estuarine tidal forests, palustrine forested wetlands, and the portion of palustrine scrub-shrub which are made up of immature tree species of the Cowardin et al. (1985) classification. A broad outline of ecology of all wetlands are described in Mitsch and Gosselink (2015), wetlands specifically with tidal influence are described by Tiner (2013), while descriptions of northern and southern forested wetlands can be found in Trettin et al. (1996) and Messina and Conner (1998) respectively.

  18. ARC-1979-A79-7020

    NASA Image and Video Library

    1979-02-28

    Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  19. Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary

    USGS Publications Warehouse

    Carter, V.; Rybicki, N.B.

    1990-01-01

    Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985-1986 growing seasons, light attenuation and chlorophyll a and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophyll a concentration controlled light availability in reaches A and B in 1985, whereas both chlorophyll a and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system. ?? 1990 Estuarine Research Federation.

  20. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  1. Observations of a tidal intrusion front in a tidal channel

    NASA Astrophysics Data System (ADS)

    Lu, Shasha; Xia, Xiaoming; Thompson, Charlie E. L.; Cao, Zhenyi; Liu, Yifei

    2017-11-01

    A visible front indicated by a surface colour change, and sometimes associated with foam or debris lines, was observed in a tidal channel during neap tide. This is an example of a tidal intrusion front occurring in the absence of sudden topographical changes or reversing flows, typically reported to be associated with such fronts. Detailed Acoustic Doppler Current Profiler and conductivity/temperature/depth measurements were taken on repeated transects both with fronts apparent and with fronts absent. The results indicated that the front occurred as a result of stratification, which was sustained by the buoyancy flux and the weak tide-induced mixing during neap ebb tide. The stronger tide-induced mixing during spring tide restrained stratification, leading to the absence of a front. The mechanism of the frontogenesis was the density gradient between the stratified water formed during neap ebb tide, and the more mixed seawater during neap flood tide; thus, the water on the landward (southwestern) side of the front was stratified, and that on the seaward side (northeastern) of the front was vertically well mixed. Gradient Richardson number estimates suggest that the flow between the stratified and mixed water was near the threshold 0.25 for shear instability. Meanwhile, the density gradient would provide an initial baroclinic contribution to velocity convergence, which is indicated by the accumulation of buoyant matter such as foam, grass, and debris into a sharply defined line along the surface. The front migrates with the flood current, with a local maximum towards the eastern side of the channel, leading to an asymmetrical shape with the eastern side of the front driven further into the Tiaozhoumen tidal channel.

  2. Temperature anomalies in the Lower Suwannee River and tidal creeks, Florida, 2005

    USGS Publications Warehouse

    Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta

    2007-01-01

    Temperature anomalies in coastal waters were detected with Thermal Infrared imagery of the Lower Suwannee River (LSR) and nearshore tidal marshes on Florida’s Gulf Coast. Imagery included 1.5-m-resolution day and night Thermal Infrared (TIR) and 0.75-m-resolution Color Infrared (CIR) imagery acquired on 2-3 March 2005. Coincident temperature readings were collected on the ground and used to calibrate the imagery. The Floridan aquifer is at or near the land surface in this area and bears a constant temperature signature of ~ 22 degrees Celsius. This consistent temperature contrasts sharply with ambient temperatures during winter and summer months. Temperature anomalies identified in the imagery during a late-winter cold spell may be correlated with aquifer seeps. Hot spots were identified as those areas exceeding ambient water temperature by 4 degrees Celsius or more. Warm-water plumes were also mapped for both day and night imagery. The plume from Manatee Spring, a first-order magnitude spring, influenced water temperature in the lower river. Numerous temperature anomalies were identified in small tributaries and tidal creeks from Shired Island to Cedar Key and were confirmed with field reconnaissance. Abundant warm-water features were identified along tidal creeks south of the Suwannee River and near Waccasassa Bay. Features were mapped in the tidal creeks north of the river but appear to be less common or have lower associated discharge. The imagery shows considerable promise in mapping coastal-aquifer seeps and understanding the underlying geology of the region. Detection of seep locations may aid research in groundwater/surface-water interactions and water quality, and in the management of coastal habitats.

  3. Study of the model of calibrating differences of brightness temperature from geostationary satellite generated by time zone differences

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Shan, Xinjian; Qu, Chunyan

    2010-11-01

    In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.

  4. Habitability from Tidally Induced Tectonics

    NASA Astrophysics Data System (ADS)

    Valencia, Diana; Tan, Vivian Yun Yan; Zajac, Zachary

    2018-04-01

    The stability of Earth’s climate on geological timescales is enabled by the carbon–silicate cycle that acts as a negative feedback mechanism stabilizing surface temperatures via the intake and outgassing of atmospheric carbon. On Earth, this thermostat is enabled by plate tectonics that sequesters outgassed CO2 back into the mantle via weathering and subduction at convergent margins. Here we propose a separate tectonic mechanism—vertical recycling—that can serve as the vehicle for CO2 outgassing and sequestration over long timescales. The mechanism requires continuous tidal heating, which makes it particularly relevant to planets in the habitable zone of M stars. Dynamical models of this vertical recycling scenario and stability analysis show that temperate climates stable over timescales of billions of years are realized for a variety of initial conditions, even as the M star dims over time. The magnitude of equilibrium surface temperatures depends on the interplay of sea weathering and outgassing, which in turn depends on planetary carbon content, so that planets with lower carbon budgets are favored for temperate conditions. The habitability of planets such as found in the Trappist-1 system may be rooted in tidally driven tectonics.

  5. Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK.

    PubMed

    Spencer, Kate L

    2002-09-01

    Concentrations of major and trace metals were determined in eight sediment cores collected from the inter-tidal zone of the Medway Estuary, Kent, UK. Metal associations and potential sources have been investigated using principal component analysis. These data provide the first detailed geochemical survey of recent sediments in the Medway Estuary. Metal concentrations in surface sediments lie in the mid to lower range for UK estuarine sediments indicating that the Medway receives low but appreciable contaminant inputs. Vertical metal distributions reveal variable redox zonation across the estuary and historically elevated anthropogenic inputs. Peak concentrations of Cu, Pb and Zn can be traced laterally across the estuary and their positions indicate periods of past erosion and/or non-deposition. However, low rates of sediment accumulation do not allow these sub surface maxima to be used as accurate geochemical marker horizons. The salt marshes and inter-tidal mud flats in the Medway Estuary are experiencing erosion, however the erosion of historically contaminated sediments is unlikely to re-release significant amounts of heavy metals to the estuarine system.

  6. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Goddard Ocean Tide model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic tides, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean tide-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period tides; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.

  7. Tidal interactions of a Maclaurin spheroid - II. Resonant excitation of modes by a close, misaligned orbit

    NASA Astrophysics Data System (ADS)

    Braviner, Harry J.; Ogilvie, Gordon I.

    2015-02-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ≤ 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ≈ 3) and rotational deformations that are typical of giant planets (e ≈ 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ≈ 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.

  8. Dynamical significance of tides over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Bhagawati, Chirantan; Pandey, Suchita; Dandapat, Sumit; Chakraborty, Arun

    2018-06-01

    Tides play a significant role in the ocean surface circulations and vertical mixing thereby influencing the Sea Surface Temperatures (SST) as well. This, in turn, plays an important role in the global circulation when used as a lower boundary condition in a global atmospheric general circulation model. Therefore in the present study, the dynamics of tides over the Bay of Bengal (BoB) is investigated through numerical simulations using a high resolution (1/12°) Regional Ocean Modeling System (ROMS). Based on statistical analysis it is observed that incorporation of explicit tidal forcing improves the model performance in simulating the basin averaged monthly surface circulation features by 64% compared to the simulation without tides. The model simulates also Mixed Layer Depth (MLD) and SST realistically. The energy exchange between tidal oscillations and eddies leads to redistribution of surface kinetic energy density with a net decrease of 0.012 J m-3 in the western Bay and a net increase of 0.007 J m-3 in the eastern Bay. The tidal forcing also affects the potential energy anomaly and vertical mixing thereby leading to a fall in monthly MLD over the BoB. The mixing due to tides leads to a subsequent reduction in monthly SST and a corresponding reduction in surface heat exchange. These results from the numerical simulation using ROMS reveal that tides have a significant influence over the air-sea heat exchange which is the most important parameter for prediction of Tropical Cyclone frequency and its future variability over the BoB.

  9. Is the zodiacal light intensity steady. [cloud surface brightness and polarization from OSO-5 data

    NASA Technical Reports Server (NTRS)

    Burnett, G. B.; Sparrow, J. G.; Ney, E. P.

    1974-01-01

    It is pointed out that conclusions reported by Sparrow and Ney (1972, 1973) could be confirmed in an investigation involving the refinement of OSO-5 data on zodiacal light. It had been found by Sparrow and Ney that the absolute value of both the surface brightness and polarization of the zodiacal cloud varied by less than 10% over the 4-yr period from January 1969 to January 1973.

  10. Measurements of the dielectric properties of sea water at 1.43 GHz

    NASA Technical Reports Server (NTRS)

    Ho, W. W.; Love, A. W.; Vanmelle, M. J.

    1974-01-01

    Salinity and temperature of water surfaces of estuaries and bay regions are determined to accuracies of 1 ppt salinity and 0.3 kelvin surface temperature. L-band and S-band radiometers are used in combination as brightness temperature detectors. The determination of the brightness temperature versus salinity, with the water surface temperature as a parameter for 1.4 GHz, is performed with a capillary tube inserted into a resonance cavity. Detailed analysis of the results indicates that the measured values are accurate to better than 0.2 percent in the electric property epsilon' and 0.4 percent in epsilon''. The calculated brightness temperature as a function of temperature and salinity is better than 0.2 kelvin. Thus it is possible to reduce the measured data obtained with the two-frequency radiometer system with 1 ppt accuracy to values in the salinity range 5 to 40 ppt.

  11. Low-temperature transonic cooling flows in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Burns, Jack O.; Norman, Michael L.

    1989-01-01

    Calculations are presented which demonstrate that cooling flow models with large sonic radii may be consistent with observed cluster gas properties. It is found that plausible cluster parameters and cooling flow mass accretion rates can produce sonic radii of 10-20 kpc for sonic point temperatures of 1-3 x 10 to the 6th K. The numerical calculations match these cooling flows to hydrostatic atmosphere solutions for the cluster gas beyond the cooling flow region. The cooling flows produce no appreciable 'holes' in the surface brightness toward the cluster center, and the model can be made to match the observed X-ray surface brightness of three clusters in which cooling flows had been believed to be absent. It is suggested that clusters with low velocity dispersion may be the natural location for such 'cool' cooling flows, and fits of these models to the X-ray surface brightness profiles for three clusters are presented.

  12. Near-IR High-Resolution Imaging Polarimetry of the SU Aur Disk: Clues for Tidal Tails?

    NASA Technical Reports Server (NTRS)

    De Leon, Jerome; Michihiro, Takami; Karr, Jennifer; Hashimoto, Jun; Kudo, Tomoyuki; Sitko, Michael; Mayama, Satoshi; Kusakabe, Nobuyuki; Grady, Carol A.; McElwain, Michael W.

    2015-01-01

    We present new high-resolution (approximately 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (approximately 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of approximately 90 AU, an inclination of approximately 35 deg from the plane of the sky, and an approximate PA of 15 deg for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2. 5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1 (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.

  13. Tsunami damage along the Andaman Islands coasts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Among the first places to be affected by the massive tidal wave that ripped across the Indian Ocean on December 26, 2004, were the Andaman Islands. Located approximately 850 kilometers north of the epicenter of the earthquake that triggered the tsunami, the islands were not only among the first land masses to be swept under the wave, they have also been rattled by a series of aftershocks. Administrated by the Indian government, about 300,000 people live on the remote island chain, including several indigenous tribes. As of January 3, over 6,000 were confirmed dead or missing in the Andaman Islands. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows the Andaman Islands on January 3, 2005. Compared to previous images of the islands, the beaches along the west side of the islands have been stripped bare, leaving a strip of bright tan land along the coast. The change is most notable on North Sentinel Island, home of the Sentinelese aboriginals, and on Interview Island, where the formerly green coastline has been replaced with an abnormally bright ring of bare sand. The large image reveals additional damage along all the islands of the Andaman chain.

  14. The outskirts of the Coma cluster

    NASA Astrophysics Data System (ADS)

    Gavazzi, Giuseppe

    Evolved Coma-like clusters of galaxies are constituted of relaxed cores composed of ''old'' early-type galaxies, embedded in large-scale structures, mostly constituted of unevolved (late-type) systems. According to the hierarchical theory of cluster formation the central regions are being fed with unevolved, low-mass systems infalling from the surroundings that are gradually transformed into elliptical/S0 galaxies by tidal galaxy-galaxy and galaxy-cluster interactions, taking place at some boundary distance. The Coma cluster, the most studied of all local clusters, provides us with the ideal test-bed for such an evolutionary study because of the completeness of the photometric and kinematic information already at hands. The field of view of the planned GALEX observations is not big enough to include the boundary interface where most transformations processes are expected to take place, including the truncation of the current star formation. We propose to complete the outskirt of Coma with an additional corona of 11 GALEX imaging fields of 1500 sec exposure each, matching the deepness (UV_{AB}=23.5 mag) of the fields observed in guarantee time. Given the priority of the target, we also propose one optional Central pointing that includes one bright star marginally exceeding the detector brightness limit.

  15. The Fundamental Plane and the Surface Brightness Test for the Expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Kjaergaard, Per; Jorgensen, Inger; Moles, Mariano

    1993-12-01

    We have determined the Petrosian radius, rη , and the enclosed mean surface brightness within the Petrosian radius, <μ>η, for 33 elliptical and S0 galaxies in the Coma cluster from new accurate CCD surface photometry. For the Petrosian parameter η = 1.39, rη and <μ>η are compared with the effective radius, re, and the effective mean surface brightness, <μ>e derived from fitting a de Vaucouleurs law. The fundamental plane (FP) expressed using rη and <μ>η is the same as the FP found by Jørgensen, Franx, & Kjaergaard (1993) using re and <μ>e. The FP can be used to predict the mean surface brightness within the effective radius or the corresponding Petrosian radius (η = 1.39) with an uncertainty of ±0.14 mag for Coma cluster ellipticals. Thus the FP, applied to clusters, appears to be a suitable tool for performing the surface brightness test (SBT) for the expansion of the universe. We suggest that instead of correcting individual galaxies to some standard conditions, e.g., the same metric radius, the fundamental plane itself should be considered the standard. It is argued that the metric size enclosing around 75% of the total light represents a reasonable compromise between resolution and faint level detection when performing the SBT. This radius could be derived as the Petrosian radius corresponding to η = 2.0 or from a global fit to that part of the observed profile which encompasses 75% of the total light. In case both small and large galaxies are well described by a de Vaucouleurs law the global fit can be performed on a smaller central part of the brightness profile. The use of the FP involves the time consuming determinations of velocity dispersions. We find that <μ>η (η = 1.39) can be predicted from the log rη alone with an accuracy of 0.3 mag for the Coma cluster ellipticals. Our discussion of the various error contributions to the predicted mean surface brightness for faint cluster ellipticals at redshifts z < 0.5 shows that the final error is probably dominated by extra scatter due to, e.g., environmental and evolutionary effects. Thus it might be possible that the use of velocity dispersions are not necessary. To get significant results for the SBT, clusters out to a redshift of approximately z = 0.3 have to be observed. For the most distant galaxies light levels down to about 25-26 mag arcsec-2 in the red and sizes as small as approximately 2" have to be accurately measured. We outline an observational program which will allow the control of the different sources of scatter, including cosmic evolution, producing conclusive results about the expansion of the universe.

  16. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  17. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  18. Spaceborne radar interferometry for coastal DEM construction

    USGS Publications Warehouse

    Hong, S.-H.; Lee, C.-W.; Won, J.-S.; Kwoun, Oh-Ig; Lu, Z.

    2005-01-01

    Topographic features in coastal regions including tidal flats change more significantly than landmass, and are characterized by extremely low slopes. High precision DEMs are required to monitor dynamic changes in coastal topography. It is difficult to obtain coherent interferometric SAR pairs especially over tidal flats mainly because of variation of tidal conditions. Here we focus on i) coherence of multi-pass ERS SAR interferometric pairs and ii) DEM construction from ERS-ENVISAT pairs. Coherences of multi-pass ERS interferograms were good enough to construct DEM under favorable tidal conditions. Coherence in sand dominant area was generally higher than that in muddy surface. The coarse grained coastal areas are favorable for multi-pass interferometry. Utilization of ERS-ENVISAT interferometric pairs is taken a growing interest. We carried out investigation using a cross-interferometric pair with a normal baseline of about 1.3 km, a 30 minutes temporal separation and the height sensitivity of about 6 meters. Preliminary results of ERS-ENVISAT interferometry were not successful due to baseline and unfavorable scattering conditions. ?? 2005 IEEE.

  19. The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change

    PubMed Central

    Keeling, Charles D.; Whorf, Timothy P.

    2000-01-01

    Variations in solar irradiance are widely believed to explain climatic change on 20,000- to 100,000-year time-scales in accordance with the Milankovitch theory of the ice ages, but there is no conclusive evidence that variable irradiance can be the cause of abrupt fluctuations in climate on time-scales as short as 1,000 years. We propose that such abrupt millennial changes, seen in ice and sedimentary core records, were produced in part by well characterized, almost periodic variations in the strength of the global oceanic tide-raising forces caused by resonances in the periodic motions of the earth and moon. A well defined 1,800-year tidal cycle is associated with gradually shifting lunar declination from one episode of maximum tidal forcing on the centennial time-scale to the next. An amplitude modulation of this cycle occurs with an average period of about 5,000 years, associated with gradually shifting separation-intervals between perihelion and syzygy at maxima of the 1,800-year cycle. We propose that strong tidal forcing causes cooling at the sea surface by increasing vertical mixing in the oceans. On the millennial time-scale, this tidal hypothesis is supported by findings, from sedimentary records of ice-rafting debris, that ocean waters cooled close to the times predicted for strong tidal forcing. PMID:10725399

  20. Tidally averaged water and salt transport velocities and their distributions in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Shouxian; Sheng, Jinyu; Ji, Xiaomei

    2016-09-01

    Tidally averaged transports of water and substance are important physical quantities over estuarine, coastal, and shelf waters, but they have been indistinguishably expressed in terms of the Eulerian residual current (ERC) or Lagrangian residual current (LRC) in many previous studies. In this study, the tidally averaged transport velocities for water (TA-WTV) and substance (TA-STV) are considered based on residual fluxes. The main advantage of these newly defined transport velocities is that they can be used to quantify differences in amplitude and direction between the tidally averaged water and substance transports. The two-dimensional TA-STV is interpreted as the transport due to the residual flow of water, tidal pumping, and vertical shear. The three-dimensional TA-STV includes transports from the residual flow of water and tidal pumping. Numerical results of sea surface elevations, currents, and salinity produced by a triply nested coastal ocean model for the Pearl River Estuary (PRE) are used to calculate the TA-WTV and TA-STV for salt (TA-STVsa). The general features of the TA-WTV and TA-STVsa are similar over the most part of the PRE but differ significantly in amplitude and direction over the salinity frontal zone. The ERC and LRC calculated from model results are also significantly different from the TA-STVsa over the salinity frontal zone.

  1. The Colors of Tethys II

    NASA Image and Video Library

    2015-07-29

    This enhanced-color mosaic of Saturn's icy moon Tethys shows a range of features on the moon's trailing hemisphere. Tethys is tidally locked to Saturn, so the trailing hemisphere is the side of the moon that always faces opposite its direction of motion as it orbits the planet. This view was obtained about two and a half hours earlier than PIA19636 and shows terrain slightly farther to the west and south of that view. Two versions of the mosaic are presented here: one with standard image processing (Figure 1), and one that strongly enhances the relief of craters and other surface features (Figure 2). Images taken using clear, green, infrared and ultraviolet spectral filters were combined to create the view, which highlights subtle color differences across Tethys' surface at wavelengths not visible to human eyes. The moon's surface is fairly uniform in natural color. The color of the surface can be seen to change across the disk, from yellowish hues to nearly white. These broad color changes are affected by a number of external processes. First, Saturn's diffuse E-ring preferentially bombards Tethys' leading hemisphere, toward the right side in this image, with ice bright ice grains. At the same time, charged particles from Saturn's radiation belt bombard the surface on the trailing side, causing color changes due to chemical alteration of the materials there. The albedo -- a measure of the surface's reflectivity -- drops by 10 to 15 percent from the moon's leading side to the trailing side. Similar global color patterns exist on other Saturnian moons. On a much smaller scale, enigmatic, arc-shaped reddish streaks are faintly visible across the heavily-cratered surface, particularly in the upper right quarter of the image (see PIA19637 for a close-up view of these features). The origin of this localized color contrast is not yet understood. This mosaic is an orthographic projection constructed from 52 Cassini images obtained on April 11, 2015 with the Cassini spacecraft narrow-angle camera. Image scale is about 1,000 feet (300 meters) per pixel. The images were obtained at a distance of approximately 33,000 miles (53,000 kilometers) from Tethys. http://photojournal.jpl.nasa.gov/catalog/PIA19638

  2. Nearest neighbor: The low-mass Milky Way satellite Tucana III

    DOE PAGES

    Simon, J. D.; Li, T. S.; Drlica-Wagner, A.; ...

    2017-03-17

    Here, we present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Tucana III (Tuc III). We identify 26 member stars in Tuc III from which we measure a mean radial velocity of v hel = -102.3 ± 0.4 (stat.) ± 2.0 (sys.)more » $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, a velocity dispersion of $${0.1}_{-0.1}^{+0.7}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, and a mean metallicity of $${\\rm{[Fe/H]}}=-{2.42}_{-0.08}^{+0.07}$$. The upper limit on the velocity dispersion is σ < 1.5 $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ at 95.5% confidence, and the corresponding upper limit on the mass within the half-light radius of Tuc III is 9.0 × 10 4 M ⊙. We cannot rule out mass-to-light ratios as large as 240 M ⊙/L ⊙ for Tuc III, but much lower mass-to-light ratios that would leave the system baryon-dominated are also allowed. We measure an upper limit on the metallicity spread of the stars in Tuc III of 0.19 dex at 95.5% confidence. Tuc III has a smaller metallicity dispersion and likely a smaller velocity dispersion than any known dwarf galaxy, but a larger size and lower surface brightness than any known globular cluster. Its metallicity is also much lower than those of the clusters with similar luminosity. We therefore tentatively suggest that Tuc III is the tidally stripped remnant of a dark matter-dominated dwarf galaxy, but additional precise velocity and metallicity measurements will be necessary for a definitive classification. If Tuc III is indeed a dwarf galaxy, it is one of the closest external galaxies to the Sun. Because of its proximity, the most luminous stars in Tuc III are quite bright, including one star at V = 15.7 that is the brightest known member star of an ultra-faint satellite.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, J. D.; Li, T. S.; Drlica-Wagner, A.

    Here, we present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Tucana III (Tuc III). We identify 26 member stars in Tuc III from which we measure a mean radial velocity of v hel = -102.3 ± 0.4 (stat.) ± 2.0 (sys.)more » $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, a velocity dispersion of $${0.1}_{-0.1}^{+0.7}$$ $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$, and a mean metallicity of $${\\rm{[Fe/H]}}=-{2.42}_{-0.08}^{+0.07}$$. The upper limit on the velocity dispersion is σ < 1.5 $$\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ at 95.5% confidence, and the corresponding upper limit on the mass within the half-light radius of Tuc III is 9.0 × 10 4 M ⊙. We cannot rule out mass-to-light ratios as large as 240 M ⊙/L ⊙ for Tuc III, but much lower mass-to-light ratios that would leave the system baryon-dominated are also allowed. We measure an upper limit on the metallicity spread of the stars in Tuc III of 0.19 dex at 95.5% confidence. Tuc III has a smaller metallicity dispersion and likely a smaller velocity dispersion than any known dwarf galaxy, but a larger size and lower surface brightness than any known globular cluster. Its metallicity is also much lower than those of the clusters with similar luminosity. We therefore tentatively suggest that Tuc III is the tidally stripped remnant of a dark matter-dominated dwarf galaxy, but additional precise velocity and metallicity measurements will be necessary for a definitive classification. If Tuc III is indeed a dwarf galaxy, it is one of the closest external galaxies to the Sun. Because of its proximity, the most luminous stars in Tuc III are quite bright, including one star at V = 15.7 that is the brightest known member star of an ultra-faint satellite.« less

  4. The Undergraduate ALFALFA Groups Project: Properties of the Galaxy Group MKW 11

    NASA Astrophysics Data System (ADS)

    Manglitz, Scott; Russell, P.; Turner, J.; Crone, M.

    2009-01-01

    The Undergraduate ALFALFA team is an NSF-funded collaboration of 14 institutions that supports undergraduate research using data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. As part of this project, we are examining MKW 11, a galaxy group with an unusual, irregular X-ray distribution centered on what appears to be an X-ray bright tidal filament. Its optical velocity distribution is large and non-Gaussian, suggesting that it is in the process of merging. Here we present the position and velocity structure of MKW 11 using the radio sources in the blind ALFALFA survey. Besides a complicated structure, our results suggest a deficiency of HI gas in galaxies that are near the center of the group.

  5. Modeling pesticide fate in a small tidal estuary

    USGS Publications Warehouse

    McCarthy, A.M.; Bales, J.D.; Cope, W.G.; Shea, D.

    2007-01-01

    The exposure analysis modeling system (EXAMS), a pesticide fate model developed by the U.S. Environmental Protection Agency, was modified to model the fate of the herbicides atrazine and metolachlor in a small tidally dominated estuary (Bath Creek) in North Carolina, USA where freshwater inflow accounts for only 3% of the total flow. The modifications simulated the changes that occur during the tidal cycle in the estuary, scenarios that are not possible with the original EXAMS model. Two models were created within EXAMS, a steady-state model and a time-variant tidally driven model. The steady-state model accounted for tidal flushing by simply altering freshwater input to yield an estuary residence time equal to that measured in Bath Creek. The tidal EXAMS model explicitly incorporated tidal flushing by modifying the EXAMS code to allow for temporal changes in estuary physical attributes (e.g., volume). The models were validated with empirical measurements of atrazine and metolachlor concentrations in the estuary shortly after herbicide application in nearby fields and immediately following a rain event. Both models provided excellent agreement with measured concentrations. The steady-state EXAMS model accurately predicted atrazine concentrations in the middle of the estuary over the first 3 days and under-predicted metolachlor by a factor of 2-3. The time-variant, tidally driven EXAMS model accurately predicted the rise and plateau of both herbicides over the 6-day measurement period. We have demonstrated the ability of these modified EXAMS models to be useful in predicting pesticide fate and exposure in small tidal estuaries. This is a significant improvement and expansion of the application of EXAMS, and given the wide use of EXAMS for surface water quality modeling by both researchers and regulators and the ability of EXAMS to interface with terrestrial models (e.g., pesticide root zone model) and bioaccumulation models, we now have an easily-accessible and widely accepted means of modeling chemical fate in estuaries. ?? 2006 Elsevier B.V. All rights reserved.

  6. Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary

    PubMed Central

    Heller, René

    2013-01-01

    Abstract White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10−6. Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 104 K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone—Tides—Exoplanets. Astrobiology 13, 279–291. PMID:23537137

  7. The Origin of Regional Dust Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.

    1985-01-01

    Recently, additional evidence was derived from the Viking Infrared Thermal Mapper observations that allows a more complete model for the formation of Low Thermal inertia-high Albedo regions to be proposed. The first observation is that dust appears to be currently accumulating in the low thermal inertia regions. Following each global dust storm a thin layer of dust is deposited globally, as evidenced by an increase in surface albedo seen from orbit and from the Viking Lander sites. During the period following the storm, the bright dust fallout is subsequently removed from low albedo regions, as indicated by the post-storm darkening of these surfaces and by an increase in the atmospheric dust content over dark regions relative to the bright, low thermal inertia regions. Thus, the fine dust storm material is removed from dark regions but not from the bright regions, resulting in a net accumulation within the bright, low thermal inertia regions. Once deposition has begun, the covering of exposed rocks and sand and the accumulation of fine material on the surface make removal of material increasingly difficult, thereby enhancing the likelihood that material will accumulate within the low thermal inertia regions.

  8. Use of UUVs to Evaluate and Improve Model Performance Within a Tidally-Dominated Bay

    DTIC Science & Technology

    2008-09-30

    Sequim Bay Road Sequim , WA 98382 Phone: (360) 681-3616 Fax: (360) 681-3699 Email: lyle.hibler@pnl.gov Grant Number: N00014-07-1-1113 LONG-TERM...releasing rhodamine dye on the surface of Sequim Bay ( Sequim , Washington) from an anchored vessel in 2006. Concurrently collected data from the...advective transport from a point release in Sequim Bay , Washington. Tidal, wind-driven and density-driven circulation were accounted for in the model. The

  9. Tropospheric - Stratospheric Tidal Investigations. Part 2. The Vertical Structure of Atmospheric Oscillations Formulated by Classical Tidal Theory

    DTIC Science & Technology

    1981-02-28

    in a form that may be applied to a numerical integracion scheme (Lindzen, 1968). It is now possible to express the upward energy flux at x >X L in...from tre setting up of a dependence on multiple reflexions between tiorizontal surfaces at different heights which are critically dependent on basic...longer horizontal and by integratJiw of the non-classical equations multiple reflexions and resuLtinr sensitivities are found to oe largely removed

  10. Lunar surface gravimeter experiment

    NASA Technical Reports Server (NTRS)

    Giganti, J. J.; Larson, J. V.; Richard, J. P.; Tobias, R. L.; Weber, J.

    1977-01-01

    The lunar surface gravimeter used the moon as an instrumented antenna to search for gravitational waves predicted by Einstein's general theory of relativity. Tidal deformation of the moon was measured. Gravitational radiation is a channel that is capable of giving information about the structure and evolution of the universe.

  11. The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.

    PubMed

    Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R

    2012-06-01

    Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ∼30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ∼55% of the surface habitable.

  12. Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera

    NASA Technical Reports Server (NTRS)

    Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.; hide

    2012-01-01

    The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.

  13. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  14. The ATLAS3D project - IX. The merger origin of a fast- and a slow-rotating early-type galaxy revealed with deep optical imaging: first results

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain; Cuillandre, Jean-Charles; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-10-01

    The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby early-type galaxies (ETGs) selected from the ATLAS3D sample, NGC 680 and 5557. Our ultra-deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag arcsec-2 in the g band. They reveal very low surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long, narrow, tail east of NGC 5557 hosts three gas-rich star-forming objects, previously detected in H I with the Westerbork Synthesis Radio Telescope and in UV with GALEX. NGC 680 exhibits two major diffuse plumes apparently connected to extended H I tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galaxies, we argue that the LSB features are tidal debris and that each of these two ETGs was assembled during a relatively recent, major wet merger, which most likely occurred after the redshift z ≃ 0.5 epoch. Had these mergers been older, the tidal features should have already fallen back or be destroyed by more recent accretion events. However, the absence of molecular gas and of a prominent young stellar population in the core region of the galaxies indicates that the merger is at least 1-2 Gyr old: the memory of any merger-triggered nuclear starburst has indeed been lost. The star-forming objects found towards the collisional debris of NGC 5557 are then likely tidal dwarf galaxies. Such recycled galaxies here appear to be long-lived and continue to form stars while any star formation activity has stopped in their parent galaxy. The inner kinematics of NGC 680 is typical for fast rotators which make the bulk of nearby ETGs in the ATLAS3D sample. On the other hand, NGC 5557 belongs to the poorly populated class of massive, round, slow rotators that are predicted by semi-analytic models and cosmological simulations to be the end-product of a complex mass accretion history, involving ancient major mergers and more recent minor mergers. Our observations suggest that under specific circumstances a single binary merger may dominate the formation history of such objects and thus that at least some massive ETGs may form at relatively low redshift. Whether the two galaxies studied here are representative of their own sub-class of ETGs is still an open question that will be addressed by an on-going deep optical survey of ATLAS3D galaxies.

  15. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    NASA Astrophysics Data System (ADS)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  16. Influence of Tidal Forces on the Triggering of Seismic Events

    NASA Astrophysics Data System (ADS)

    Varga, Péter; Grafarend, Erik

    2018-05-01

    Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297-356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900-1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0-1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1-30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207-237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its immediate vicinity.

  17. Influence of Tidal Forces on the Triggering of Seismic Events

    NASA Astrophysics Data System (ADS)

    Varga, Péter; Grafarend, Erik

    2017-05-01

    Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297-356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900-1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0-1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1-30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207-237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its immediate vicinity.

  18. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the Searching for the Galactic Halo project using the CFHT, organized by the Korea Astronomy and Space Science Institute.

  19. Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.

  20. Results of soil moisture flights during April 1974

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Blanchard, B. J.; Burke, W. J.; Paris, J. F.; Swang, J. R.

    1976-01-01

    The results presented here are derived from measurements made during the April 5 and 6, 1974 flights of the NASA P-3A aircraft over the Phoenix, Arizona agricultural test site. The purpose of the mission was to study the use of microwave techniques for the remote sensing of soil moisture. These results include infrared (10-to 12 micrometers) 2.8-cm and 21-cm brightness temperatures for approximately 90 bare fields. These brightness temperatures are compared with surface measurements of the soil moisture made at the time of the overflights. These data indicate that the combination of the sum and difference of the vertically and the horizontally polarized brightness temperatures yield information on both the soil moisture and surface roughness conditions.

  1. Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James

    2012-12-01

    Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.

  2. XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components

    NASA Astrophysics Data System (ADS)

    Saxton, R. D.; Read, A. M.; Komossa, S.; Lira, P.; Alexander, K. D.; Wieringa, M. H.

    2017-02-01

    Aims: We study X-ray bright tidal disruption events (TDE), close to the peak of their emission, with the intention of understanding the evolution of their light curves and spectra. Methods: Candidate TDE are identified by searching for soft X-ray flares from non-active galaxies in recent XMM-Newton slew data. Results: In April 2014, X-ray emission was detected from the galaxy XMMSL1 J074008.2-853927 (a.k.a. 2MASX 07400785-8539307), a factor 20 times higher than an upper limit from 20 years earlier. Both the X-ray and UV flux subsequently fell, by factors of 70 and 12 respectively. The bolometric luminosity peaked at Lbol 2 × 1044 ergs s-1 with a spectrum that may be modelled with thermal emission in the UV band, a power-law with Γ 2 dominating in the X-ray band above 2 keV and a soft X-ray excess with an effective temperature of 86 eV. Rapid variability locates the X-ray emission to within <73 Rg of the nuclear black hole. Radio emission of flux density 1 mJy, peaking at 1.5 GHz was detected 21 months after discovery. Optical spectra indicate that the galaxy, at a distance of 73 Mpc (z = 0.0173), underwent a starburst 2 Gyr ago and is now quiescent. We consider a tidal disruption event to be the most likely cause of the flare. If this proves to be correct then this is a very clean example of a disruption exhibiting both thermal and non-thermal radiation. Data for this object are available within the Open TDE Catalog at http://https://tde.space/tde/XMMSL1 J0740-85

  3. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott; hide

    2012-01-01

    We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  4. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas

    2012-01-01

    We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  5. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Implications for Spectral Line Intensity Mapping at Millimeter Wavelengths and CMB Spectral Distortions

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.

    2016-12-01

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  6. Interferometric Constraints on Surface Brightness Asymmetries in Long-Period Variable Stars: A Threat to Accurate Gaia Parallaxes

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Pasquato, E.; Chiavassa, A.; Spang, A.; Rabbia, Y.; Chesneau, O.

    2011-09-01

    A monitoring of surface brightness asymmetries in evolved giants and supergiants is necessary to estimate the threat that they represent to accurate Gaia parallaxes. Closure-phase measurements obtained with AMBER/VISA in a 3-telescope configuration are fitted by a simple model to constrain the photocenter displacement. The results for the C-type star TX Psc show a large deviation of the photocenter displacement that could bias the Gaia parallax.

  7. Evaluation and Analysis of Seasat a Scanning Multichannel Microwave Radiometer (SMMR) Antenna Pattern Correction (APC) Algorithm

    NASA Technical Reports Server (NTRS)

    Kitzis, S. N.; Kitzis, J. L.

    1979-01-01

    The accuracy of the SEASAT-A SMMR antenna pattern correction (APC) algorithm was assessed. Interim APC brightness temperature measurements for the SMMR 6.6 GHz channels are compared with surface truth derived sea surface temperatures. Plots and associated statistics are presented for SEASAT-A SMMR data acquired for the Gulf of Alaska experiment. The cross-track gradients observed in the 6.6 GHz brightness temperature data are discussed.

  8. Simulating a slow bar in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Spekkens, Kristine; Widrow, Lawrence M.; Gilhuly, Colleen

    2016-12-01

    We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a `slow' bar with a ratio of corotation radius to bar length of R ≡ R_c/a_b ˜ 2. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self-gravity for bar modes to grow. After bar formation, there is significant mass redistribution, creating a baryon-dominated inner and dark matter-dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter dominated everywhere. Our model nonetheless implies that UGC 628 falls on the same relationship between dark matter fraction and rotation velocity found for high surface brightness galaxies, and lends credence to the argument that the disc mass fraction measured at the location where its contribution to the potential peaks is not a reliable indicator of its dynamical importance at all radii.

  9. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  10. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  11. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. The planned installation, consisting of a vertical axis turbine with the generator above water, mounted to a floating platform, and underwater instrumentation will be outlined. Supported by NSF-IIP 1430260

  12. Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Choudhury, B. J.

    1980-01-01

    A simple method of estimating moisture content (W) of a bare soil from the observed brightness temperature (T sub B) at 1.4 GHz is discussed. The method is based on a radiative transfer model calculation, which has been successfully used in the past to account for many observational results, with some modifications to take into account the effect of surface roughness. Besides the measured T sub B's, the three additional inputs required by the method are the effective soil thermodynamic temperature, the precise relation between W and the smooth field brightness temperature T sub B and a parameter specifying the surface roughness characteristics. The soil effective temperature can be readily measured and the procedures of estimating surface roughness parameter and obtaining the relation between W and smooth field brightness temperature are discussed in detail. Dual polarized radiometric measurements at an off-nadir incident angle are sufficient to estimate both surface roughness parameter and W, provided that the relation between W and smooth field brightness temperature at the same angle is known. The method of W estimate is demonstrated with two sets of experimental data, one from a controlled field experiment by a mobile tower and the other, from aircraft overflight. The results from both data sets are encouraging when the estimated W's are compared with the acquired ground truth of W's in the top 2 cm layer. An offset between the estimated and the measured W's exists in the results of the analyses, but that can be accounted for by the presently poor knowledge of the relationship between W and smooth field brightness temperature for various types of soils. An approach to quantify this relationship for different soils and thus improve the method of W estimate is suggested.

  13. The Diverse Surface Compositions of the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2002-01-01

    The galilean satellites represent a diverse collection, ranging from the volcanic moon Io, with a surface that is changing yearly, to Callisto, with a dark, ancient surface overlying ice. The composition of these surfaces are also quite different due to a variety of processes and influences, including tidal heating, radiolysis, gardening, a magnetic field (Ganymede), and meteoritic infall. Io's surface contains large quantities of sulfur dioxide (SO2) and colorful sulfur allotropes, both originating in plumes and flows from the tidally driven volcanoes. A broad, 1-micron band is found at high latitudes and may be due to absorption by long-chain sulfur polymers produced by SO2 radiolysis, although iron and iron sulfide compounds are candidates. An unidentified 3.15 micron absorber is equatorially distributed while a 4.62 micron band, perhaps due to a sulfate compound, exhibits a non-uniform distribution. Hot spots are generally dark, and some exhibit negative reflectance slopes (i.e., blue). The composition of these lavas has not been established spectroscopically, but the high temperatures of some volcanoes suggest ultramafic silicates or perhaps more refractory material such as oxides.

  14. Secular Stellar Dynamics near a Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie; Hopman, Clovis; Levin, Yuri

    2011-09-01

    The angular momentum evolution of stars close to massive black holes (MBHs) is driven by secular torques. In contrast to two-body relaxation, where interactions between stars are incoherent, the resulting resonant relaxation (RR) process is characterized by coherence times of hundreds of orbital periods. In this paper, we show that all the statistical properties of RR can be reproduced in an autoregressive moving average (ARMA) model. We use the ARMA model, calibrated with extensive N-body simulations, to analyze the long-term evolution of stellar systems around MBHs with Monte Carlo simulations. We show that for a single-mass system in steady state, a depression is carved out near an MBH as a result of tidal disruptions. Using Galactic center parameters, the extent of the depression is about 0.1 pc, of similar order to but less than the size of the observed "hole" in the distribution of bright late-type stars. We also find that the velocity vectors of stars around an MBH are locally not isotropic. In a second application, we evolve the highly eccentric orbits that result from the tidal disruption of binary stars, which are considered to be plausible precursors of the "S-stars" in the Galactic center. We find that RR predicts more highly eccentric (e > 0.9) S-star orbits than have been observed to date.

  15. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  16. WASP-92b, WASP-93b and WASP-118b: three new transiting close-in giant planets

    NASA Astrophysics Data System (ADS)

    Hay, K. L.; Collier-Cameron, A.; Doyle, A. P.; Hébrard, G.; Skillen, I.; Anderson, D. R.; Barros, S. C. C.; Brown, D. J. A.; Bouchy, F.; Busuttil, R.; Delorme, P.; Delrez, L.; Demangeon, O.; Díaz, R. F.; Gillon, M.; Gómez Maqueo Chew, Y.; Gonzàlez, E.; Hellier, C.; Holmes, S.; Jarvis, J. F.; Jehin, E.; Joshi, Y. C.; Kolb, U.; Lendl, M.; Maxted, P. F. L.; McCormac, J.; Miller, G. R. M.; Mortier, A.; Pallé, E.; Pollacco, D.; Prieto-Arranz, J.; Queloz, D.; Ségransan, D.; Simpson, E. K.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; Vanhuysse, M.; West, R. G.; Wilson, P. A.

    2016-12-01

    We present the discovery of three new transiting giant planets, first detected with the WASP telescopes, and establish their planetary nature with follow up spectroscopy and ground-based photometric light curves. WASP-92 is an F7 star, with a moderately inflated planet orbiting with a period of 2.17 d, which has Rp = 1.461 ± 0.077RJ and Mp = 0.805 ± 0.068MJ. WASP-93b orbits its F4 host star every 2.73 d and has Rp = 1.597 ± 0.077RJ and Mp = 1.47 ± 0.029MJ. WASP-118b also has a hot host star (F6) and is moderately inflated, where Rp = 1.440 ± 0.036RJ and Mp = 0.514 ± 0.020MJ and the planet has an orbital period of 4.05 d. They are bright targets (V = 13.18, 10.97 and 11.07, respectively) ideal for further characterization work, particularly WASP-118b, which is being observed by K2 as part of campaign 8. The WASP-93 system has sufficient angular momentum to be tidally migrating outwards if the system is near spin-orbit alignment, which is divergent from the tidal behaviour of the majority of hot Jupiters discovered.

  17. Tidal reorientation and the fracturing of Jupiter's moon Europa

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1986-01-01

    The lineaments on Europa are discussed in terms of the orientation of the lineaments relative to the tensile stress trajectories due to tidal distortions and to nonsynchronous rotation. The cracks are noticeable by their darker albedo compared to the presumed water ice surrounding them. The stress trajectories for tidal distortion of a thin elastic shell are superimposed on Mercator projection maps of the lineaments. It is shown that the lineaments are mainly oriented at high angles to the tensile stress trajectories that would be expected for regularly occurring nonsynchronous rotation, i.e., extensional fractures would appear. The reorientation motions which would cause the fractures are estimated. It is suggested that the fractures occur episodically to release stresses built up on the tensile surface of the crust during the continuous nonsynchronous rotation of Europa.

  18. Applications of HCMM data to soil moisture snow and estuarine current studies. [soil moisture in Minnesota and water circulation in the Delaware Bay and Potomac River

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.

    1979-01-01

    The author has identified the following significant results. Additional analyses of Luverne, Minnesota ground data revealed that soil moisture variations are independent of elevation effects. Tidal fluctuations in the Potomac River and Delaware Bay were examined as a function of surface temperature. Preliminary findings suggest that temperature boundaries are sufficient to detect various stages of the tidal cycle in Delaware Bay, but are as yet uncertain for prediction in the Potomac River. At least three additional cases are needed to completely evaluate the tidal cycle. An alphanumeric printout at a scale of 1:1,000,000 compares closely with a 1:1,000,000 scale DMD image of the Chesapeake Bay region.

  19. Flow convergence caused by a salinity minimum in a tidal channel

    USGS Publications Warehouse

    Warner, John C.; Schoellhamer, David H.; Burau, Jon R.; Schladow, S. Geoffrey

    2006-01-01

    Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.

  20. The response of the SSM/I to the marine environment. I - An analytic model for the atmospheric component of observed brightness temperatures

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1992-01-01

    A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.

  1. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination

    NASA Astrophysics Data System (ADS)

    Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2018-03-01

    The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.

  2. A radar image of Venus.

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Rumsey, H. C.

    1972-01-01

    Radar scans of Venus have yielded a brightness map of a large portion of the surface. The bright area in the south (alpha) and the twin such areas in the north (beta and delta) were first discovered by spectral analysis of radar echos. When range-gating is also applied, their shapes are revealed, and they are seen to be roundish and about 1000 km across. Although radar brightness can be the result of either intrinsic reflectivity or surface roughness, polarization studies show these features to be rough (to the scale of the wavelength, 12.5 cm). Dark, circular areas can also be seen, many with bright central spots. The dark areas are probably smooth. The blurring of the equatorial strip is an artifact of the range-Doppler geometry; all resolution disappears at the equator. Another artifact of the method is the 'ghost', in the south, of the images of beta and delta. Such ghosts appear only at the eastern and western extremes of the map.

  3. First direct visualization of spillover species emitted from pt nanoparticles.

    PubMed

    Takakusagi, Satoru; Fukui, Ken-ichi; Tero, Ryugo; Asakura, Kiyotaka; Iwasawa, Yasuhiro

    2010-11-02

    We studied the methanol adsorption behavior of Pt nanoparticles that were vacuum-deposited on a TiO(2)(110) surface at room temperature by using an ultrahigh vacuum (UHV) scanning tunneling microscope (STM). A large number of bright spots were observed on fivefold-coordinated Ti (Ti(5c)) rows of the TiO(2)(110) surface after exposure of the Pt/TiO(2)(110) to methanol vapor. We assigned the bright spots to methoxy species. These were mobile and were found to hop along the Ti(5c) rows. In situ time-resolved STM observations of the formation and migration of the bright spots on the Pt/TiO(2)(110) were carried out in the presence of methanol. The bright spots were produced at the periphery of the Pt nanoparticles and migrated to the substrate Ti(5c) rows. We discuss the spillover process and behavior of the methoxy species on the Pt/TiO(2)(110).

  4. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets

    PubMed Central

    Mao, Hsiaoyin C.; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana

    2010-01-01

    Human CD56bright natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-γ (IFN-γ) production, but little cytotoxicity. CD56dim NK cells have high KIR expression, produce little IFN-γ, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56bright to a CD56dim phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94highCD56dim NK cells express CD62L, CD2, and KIR at levels between CD56bright and CD94lowCD56dim NK cells. CD94highCD56dim NK cells produce less monokine-induced IFN-γ than CD56bright NK cells but much more than CD94lowCD56dim NK cells because of differential interleukin-12–mediated STAT4 phosphorylation. CD94highCD56dim NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56bright NK cells but lower than CD94lowCD56dim NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56dim NK cells identifies a functional and likely developmental intermediary between CD56bright and CD94lowCD56dim NK cells. This supports the notion that, in vivo, human CD56bright NK cells progress through a continuum of differentiation that ends with a CD94lowCD56dim phenotype. PMID:19897577

  5. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets.

    PubMed

    Yu, Jianhua; Mao, Hsiaoyin C; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana; Caligiuri, Michael A

    2010-01-14

    Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.

  6. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    PubMed

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  7. Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa

    2015-01-01

    Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).

  8. Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys

    NASA Astrophysics Data System (ADS)

    Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie

    2018-03-01

    We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.

  9. The lunar semidiurnal air pressure tide in in-situ data and ECMWF reanalyses

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-04-01

    A gridded empirical model of the lunar semidiurnal air pressure tide L2 is deduced through multiquadric interpolation of more than 2000 globally distributed tidal estimates from land barometers and moored buoys. The resulting climatology serves as an independent standard to validate the barometric L2 oscillations that are present in ECMWF's (European Centre for Medium-Range Weather Forecasts) global atmospheric reanalyses despite the omission of gravitational forcing mechanisms in the involved forecast routines. Inconsistencies between numerical and empirical L2 solutions are found to be small even though the reanalysis models typically underestimate equatorial peak pressures by 10-20% and produce slightly deficient tidal phases in latitudes south of 30°N. Through using a time-invariant reference surface over both land and water and assimilating marine pressure data without accounting for vertical sensor movements due to the M2 ocean tide, ECMWF-based tidal solutions are also prone to strong local artifacts. Additionally, the dependency of the lunar tidal oscillation in atmospheric analysis systems on the meteorological input data is demonstrated based on a recent ECMWF twentieth-century reanalysis (ERA-20C) which draws its all of its observational constraints from in-situ registrations of pressure and surface winds. The L2 signature prior to 1950 is particularly indicative of distinct observing system changes, such as the paucity of marine data during both World Wars or the opening of the Panama Canal in 1914 and the associated adjustment of commercial shipping routes.

  10. Winds and tides of Ligeia Mare, with application to the drift of the proposed time TiME (Titan Mare Explorer) capsule

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Tokano, Tetsuya; Newman, Claire E.

    2012-01-01

    We use two independent General Circulation Models (GCMs) to estimate surface winds at Titan’s Ligeia Mare (78° N, 250° W), motivated by a proposed mission to land a floating capsule in this ∼500 km hydrocarbon sea. The models agree on the overall magnitude (∼0.5-1 m/s) and seasonal variation (strongest in summer) of windspeeds, but details of seasonal and diurnal variation of windspeed and direction differ somewhat, with the role of surface exchanges being more significant than that of gravitational tides in the atmosphere. We also investigate the tidal dynamics in the sea using a numerical ocean dynamics model: assuming a rigid lithosphere, the tidal amplitude is up to ∼0.8 m. Tidal currents are overall proportional to the reciprocal of depth-with an assumed central depth of 300 m, the characteristic tidal currents are ∼1 cm/s, with notable motions being a slosh between Ligeia’s eastern and western lobes, and a clockwise flow pattern. We find that a capsule will drift at approximately one tenth of the windspeed, unless measures are adopted to augment the drag areas above or below the waterline. Thus motion of a floating capsule is dominated by the wind, and is likely to be several km per Earth day, a rate that will be readily measured from Earth by radio navigation methods. In some instances, the wind vector rotates diurnally such that the drift trajectory is epicyclic.

  11. Surface-induced brightness temperature variations and their effects on detecting thin cirrus clouds using IR emission channels in the 8-12 micrometer region

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Wiscombe, W. J.

    1993-01-01

    A method for detecting cirrus clouds in terms of brightness temperature differences between narrow bands at 8, 11, and 12 mu m has been proposed by Ackerman et al. (1990). In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria (1992), we have found that the brightness temperature differences between the 8 and 11 mu m bands for soils, rocks and minerals, and dry vegetation can vary between approximately -8 K and +8 K due solely to surface emissivity variations. We conclude that although the method of Ackerman et al. is useful for detecting cirrus clouds over areas covered by green vegetation, water, and ice, it is less effective for detecting cirrus clouds over areas covered by bare soils, rocks and minerals, and dry vegetation. In addition, we recommend that in future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.

  12. The estimation of the propagation delay through the troposphere from microwave radiometer data. [very long base interferometry

    NASA Technical Reports Server (NTRS)

    Moran, J. M.; Rosen, B. R.

    1980-01-01

    The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.

  13. Forward-Looking Infrared Cameras for Micrometeorological Applications within Vineyards

    PubMed Central

    Katurji, Marwan; Zawar-Reza, Peyman

    2016-01-01

    We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature (spectrum bandwidth of 7.5 to 14 μm) at a relatively high temporal rate of 10 s. The temporal surface brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted by periods of turbulent heat flux surges, was shown to be related to the observed meteorological measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability. The infrared raster images were collected and the resultant self-organized spatial cluster provided the meteorological context when compared to in situ data. The spatial brightness temperature pattern was explained in terms of the presence or absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as demonstrated in this research provides positive evidence behind the application of thermal infrared cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent eddy interactions with the surface. PMID:27649208

  14. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  15. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  16. Tidal and atmospheric forcing of the upper ocean in the Gulf of California. 2: Surface heat flux

    NASA Technical Reports Server (NTRS)

    Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.

    1993-01-01

    Satellite infrared imagery and coastal meteorological data for March 1984 through February 1985 are used to estimate the net annual surface heat flux for the northern Gulf of California. The average annual surface heat flux for the area north of Guaymas and Santa Rosalia is estimated to be +74 W/sq m for the 1984-1985 time period. This is comparable to the +20-50 W/sq m previously obtained from heat and freshwater transport estimates made with hydrographic surveys from different years and months. The spatial distribution of the net surface heat flux shows a net gain of heat over the whole northern gulf. Except for a local maximum near San Esteban Island, the largest heat gain (+110-120 W/sq m) occurs in the Ballenas and Salsipuedes channels, where strong tidal mixing produces anomalously cold sea surface temperatures (SSTs) over much of the year. The lowest heat gain occurs in the Guayamas Basin (+40-50 W/sq m), where SSTs are consistently warmer. In the relatively shallow northern basin the net surface heat flux is farily uniform, with a net annual gain of approxmately +70 W/sq m. A local minimum in heat gain (approximately +60 W/sq m) is observed over the shelf in the northwest, where spring and summer surface temperatures are particularly high. A similar minimum in heat gain over the shelf was observed in a separate study in which historical SSTs and 7 years (1979-1986) of meteorological data from Puerto Penasco were used to estimate the net surface heat flux for the northern basin. In that study, however, the heat fluxes were higher, with a gain of +100 W/sq m over the shelf and +114 W/sq m in the northern basin. These larger values are directly attributable to the higher humidities in the 1979-1986 study compared to the 1984-1985 satellite study. High humidities reduce evaporation and the associated latent heat loss, promoting a net annual heat gain. In the norther Gulf of California, however, tidal mixing appears to play a key role in the observed gain of heat. Deep mixing in the island region produces a persistent pool of cold water which is mixed horizontally by the large-scale circulation, lowering surface temperatures over most of the northern gulf. These cold SSTs decrease evaporation by reducing the saturation vapor pressure of the overlying air. As a result, heat loss is substantially reduced, even when humidities are low. By removing heat from the surface, tidal mixing alters the time scale of air-sea interaction and reduces or possibly even inhibits the formation of deep water masses via convection.

  17. Monitoring the tidal response of a sea levee with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Planès, Thomas; Rittgers, Justin B.; Mooney, Michael A.; Kanning, Wim; Draganov, Deyan

    2017-03-01

    Internal erosion, a major cause of failure of earthen dams and levees, is often difficult to detect at early stages using traditional visual inspection. The passive seismic-interferometry technique could enable the early detection of internal changes taking place within these structures. We test this technique on a portion of the sea levee of Colijnsplaat, Netherlands, which presents signs of concentrated seepage in the form of sandboils. Applying seismic interferometry to ambient noise collected over a 12-hour period, we retrieve surface waves propagating along the levee. We identify the contribution of two dominant ambient seismic noise sources: the traffic on the Zeeland bridge and a nearby wind turbine. Here, the sea-wave action does not constitute a suitable noise source for seismic interferometry. Using the retrieved surface waves, we compute time-lapse variations of the surface-wave group velocities during the 12-hour tidal cycle for different frequency bands, i.e., for different depth ranges. The estimated group-velocity variations correlate with variations in on-site pore-water pressure measurements that respond to tidal loading. We present lateral profiles of these group-velocity variations along a 180-meter section of the levee, at four different depth ranges (0m-40m). On these profiles, we observe some spatially localized relative group-velocity variations of up to 5% that might be related to concentrated seepage.

  18. Near-Surface Geologic Units Exposed Along Ares Vallis and in Adjacent Areas: A Potential Source of Sediment at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1997-01-01

    A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.

  19. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.

  20. ARC-1979-AC79-7090

    NASA Image and Video Library

    1979-07-10

    P-21762 C This color picture of Ganymede in the region 30° S 180° W shows features as small as 6 kilometers (3.7 miles) across. Shown is a bright halo impact crater that shows the fresh material thrown out of the crater. In the background is bright grooved terrain that may be the result of shearing of the surface materials along fault planes. The dark background material is the ancient heavily cratered terrain--the oldest material preserved on the Ganymede surface.

Top