Sample records for surface capillary waves

  1. Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves

    NASA Astrophysics Data System (ADS)

    Falcon, Eric; Issenmann, Bruno; Laroche, Claude

    2017-11-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.

  2. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  3. Capillary waves with surface viscosity

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  4. Experimental investigation of three-wave interactions of capillary surface-waves

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric

    2014-11-01

    We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.

  5. Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.; Cheng, B.

    1996-01-01

    For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.

  6. Ocean dynamics studies. [of current-wave interactions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Both the theoretical and experimental investigations into current-wave interactions are discussed. The following three problems were studied: (1) the dispersive relation of a random gravity-capillary wave field; (2) the changes of the statistical properties of surface waves under the influence of currents; and (3) the interaction of capillary-gravity with the nonuniform currents. Wave current interaction was measured and the feasibility of using such measurements for remote sensing of surface currents was considered. A laser probe was developed to measure the surface statistics, and the possibility of using current-wave interaction as a means of current measurement was demonstrated.

  7. Transversally periodic solitary gravity–capillary waves

    PubMed Central

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  8. Effect of dispersion forces on the capillary-wave fluctuations of liquid surfaces.

    PubMed

    Chacón, Enrique; Fernández, Eva M; Tarazona, Pedro

    2014-04-01

    We present molecular dynamics evidence for the nonanalytic effects of the long-range dispersion forces on the capillary waves fluctuations of a Lennard-Jones liquid surface. The results of the intrinsic sampling method, for the analysis of the instantaneous interfacial shape, are obtained in large systems for several cut-off distances of the potential tail, and they show good agreement with the theoretical prediction by Napiórkowski and Dietrich, based on a density functional analysis. The enhancement of the capillary waves is quantified to be within 1% for a simple liquid near its triple point.

  9. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  10. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  11. Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    MacDowell, Luis G.

    2017-08-01

    In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.

  12. Surfing with capillary waves: a survival strategy for trapped bees

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Gharib, Morteza

    2017-11-01

    Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  13. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    NASA Astrophysics Data System (ADS)

    MacKenzie Laxague, Nathan Jean

    Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.

  14. Frequencies of gravity-capillary waves on highly curved interfaces with edge constraints

    NASA Astrophysics Data System (ADS)

    Shankar, P. N.

    2007-06-01

    A recently developed technique to calculate the natural frequencies of gravity-capillary waves in a confined liquid mass with a possibly highly curved free surface is extended to the case where the contact line is pinned. The general technique is worked out in detail for the cases of rectangular and cylindrical containers of circular section, the cases for which experimental data are available. The results of the present method are in excellent agreement with all earlier experimental and theoretical data for the flat static interface case [Benjamin and Scott, 1979. Gravity-capillary waves with edge constraints. J. Fluid Mech. 92, 241-267; Graham-Eagle, 1983. A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. Math. Proc. Camb. Phil. Soc. 94, 553-564; Henderson and Miles, 1994. Surface-wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech. 275, 285-299]. However, the present method is applicable even when the contact angle is not π/2 and the static interface is curved. As a consequence we are able to work out the effects of a curved meniscus on the results of Cocciaro et al. [1993. Experimental investigation of capillary effects on surface gravity waves: non-wetting boundary conditions. J. Fluid Mech. 246, 43-66] where the measured contact angle was 62∘. We find that the meniscus does indeed account, as suggested by Cocciaro et al., for the earlier discrepancy between theory and experiment of about 20 mHz and there is now excellent agreement between the two.

  15. Capillary waves in the subcritical nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozyreff, G.

    2010-01-15

    We expand recent results on the nonlinear Schroedinger equation with cubic-quintic nonlinearity to show that some solutions are described by the Bernoulli equation in the presence of surface tension. As a consequence, capillary waves are predicted and found numerically at the interface between regions of large and low amplitude.

  16. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  17. Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid

    2018-02-01

    In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.

  18. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  19. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  20. The elevation, slope, and curvature spectra of a wind roughened sea surface

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.; Stacy, R. A.

    1973-01-01

    The elevation, slope and curvature spectra are defined as a function of wave number and depend on the friction velocity. There are five wave number ranges of definition called the gravity wave-gravity equilibrium range, the isotropic turbulence range, the connecting range due to Leykin Rosenberg, the capillary range, and the viscous cutoff range. The higher wave number ranges are strongly wind speed dependent, and there is no equilibrium (or saturated) capillary range, at least for winds up to 30 meters/sec. Some properties of the angular variation of the spectra are also found. For high wave numbers, especially in the capillary range, the results are shown to be consistent with the Rayleigh-Rice backscattering theory (Bragg scattering), and certain properties of the angular variation are deduced from backscatter measurements.

  1. Capillary waves and the decay of density correlations at liquid surfaces

    NASA Astrophysics Data System (ADS)

    Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro

    2016-12-01

    Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.

  2. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Anderson, R. C.; Reece, A. M.

    1977-01-01

    A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.

  3. Transport equations for linear surface waves with random underlying flows

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume; Chou, Tom

    1999-11-01

    We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.

  4. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  5. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  6. Role of entrapped vapor bubbles during microdroplet evaporation

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.

    2012-08-01

    On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.

  7. Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction

    NASA Astrophysics Data System (ADS)

    Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.

    2017-10-01

    Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.

  8. Cooling rate dependence of the glass transition at free surfaces

    NASA Astrophysics Data System (ADS)

    Streit-Nierobisch, S.; Gutt, C.; Paulus, M.; Tolan, M.

    2008-01-01

    In situ x-ray reflectivity measurements are used to determine the cooling rate dependent freezing of capillary waves on the oligomer poly(propylene glycol). Only above the glass transition temperature TG can the surface roughness σ be described by the capillary wave model for simple liquids, whereas the surface fluctuations are frozen-in at temperatures below TG . As the state of a glass forming liquid strongly depends on its thermal history, this effect occurs for fast cooling rates already at a higher temperature than for slow cooling. For the fastest cooling rates a very large shift of TG up to 240K compared to the bulk value of 196K was observed.

  9. Capillary fluctuations of surface steps: An atomistic simulation study for the model Cu(111) system

    NASA Astrophysics Data System (ADS)

    Freitas, Rodrigo; Frolov, Timofey; Asta, Mark

    2017-10-01

    Molecular dynamics (MD) simulations are employed to investigate the capillary fluctuations of steps on the surface of a model metal system. The fluctuation spectrum, characterized by the wave number (k ) dependence of the mean squared capillary-wave amplitudes and associated relaxation times, is calculated for 〈110 〉 and 〈112 〉 steps on the {111 } surface of elemental copper near the melting temperature of the classical potential model considered. Step stiffnesses are derived from the MD results, yielding values from the largest system sizes of (37 ±1 ) meV/A ˚ for the different line orientations, implying that the stiffness is isotropic within the statistical precision of the calculations. The fluctuation lifetimes are found to vary by approximately four orders of magnitude over the range of wave numbers investigated, displaying a k dependence consistent with kinetics governed by step-edge mediated diffusion. The values for step stiffness derived from these simulations are compared to step free energies for the same system and temperature obtained in a recent MD-based thermodynamic-integration (TI) study [Freitas, Frolov, and Asta, Phys. Rev. B 95, 155444 (2017), 10.1103/PhysRevB.95.155444]. Results from the capillary-fluctuation analysis and TI calculations yield statistically significant differences that are discussed within the framework of statistical-mechanical theories for configurational contributions to step free energies.

  10. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  11. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional

    NASA Astrophysics Data System (ADS)

    Chacón, Enrique; Tarazona, Pedro

    2016-06-01

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.

  12. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.

    PubMed

    Chacón, Enrique; Tarazona, Pedro

    2016-06-22

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.

  13. Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow patterna)

    PubMed Central

    Davoust, Laurent; Fouillet, Yves; Malk, Rachid; Theisen, Johannes

    2013-01-01

    Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz). PMID:24404038

  14. Marangoni effect on small-amplitude capillary waves in viscous fluids

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    We derive a general integro-differential equation for the transient behavior of small-amplitude capillary waves on the planar surface of a viscous fluid in the presence of the Marangoni effect. The equation is solved for an insoluble surfactant solution in concentration below the critical micelle concentration undergoing convective-diffusive surface transport. The special case of a diffusion-driven surfactant is considered near the the critical damping wavelength. The Marangoni effect is shown to contribute to the overall damping mechanism, and a first-order term correction to the critical wavelength with respect to the surfactant concentration difference and the Schmidt number is proposed.

  15. Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Lü, Yong-Jun; Xie, Wen-Jun; Wei, Bing-Bo

    2003-08-01

    The rapid solidification of acoustically levitated drops of Pb-61.9 wt.%Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves. Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.

  16. Doppler spectra of airborne sound backscattered by the free surface of a shallow turbulent water flow.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton; Horoshenkov, Kirill V

    2017-12-01

    Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested.

  17. Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter

    NASA Technical Reports Server (NTRS)

    Atakturk, Serhad S.; Katsaros, Kristina B.

    1993-01-01

    Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.

  18. Damping of short gravity-capillary waves due to oil derivatives film on the water surface

    NASA Astrophysics Data System (ADS)

    Sergievskaya, Irina; Ermakov, Stanislav; Lazareva, Tatyana

    2016-10-01

    In this paper new results of laboratory studies of damping of gravity-capillary waves on the water surface covered by kerosene are presented and compared with our previous analysis of characteristics of crude oil and diesel fuel films. Investigations of kerosene films were carried out in a wide range values of film thicknesses (from some hundreds millimetres to a few millimetres) and in a wide range of surface wave frequencies (from 10 to 27 Hz). The selected frequency range corresponds to the operating wavelengths of microwave, X- to Ka-band radars typically used for the ocean remote sensing. The studied range of film thickness covers typical thicknesses of routine spills in the ocean. It is obtained that characteristics of waves, measured in the presence of oil derivatives films differ from those for crude oil films, in particular, because the volume viscosity of oil derivatives and crude oil is strongly different. To retrieve parameters of kerosene films from the experimental data the surface wave damping was analyzed theoretically in the frame of a model of two-layer fluid. The films are assumed to be soluble, so the elasticity on the upper and lower boundaries is considered as a function of wave frequency. Physical parameters of oil derivative films were estimated when tuning the film parameters to fit theory and experiment. Comparison between wave damping due to crude oil, kerosene and diesel fuel films have shown some capabilities of distinguishing of oil films from remote sensing of short surface waves.

  19. Gravity–capillary waves in finite depth on flows of constant vorticity

    PubMed Central

    Hsu, Hung-Chu; Francius, Marc; Kharif, Christian

    2016-01-01

    This paper considers two-dimensional periodic gravity–capillary waves propagating steadily in finite depth on a linear shear current (constant vorticity). A perturbation series solution for steady periodic waves, accurate up to the third order, is derived using a classical Stokes expansion procedure, which allows us to include surface tension effects in the analysis of wave–current interactions in the presence of constant vorticity. The analytical results are then compared with numerical computations with the full equations. The main results are (i) the phase velocity is strongly dependent on the value of the vorticity; (ii) the singularities (Wilton singularities) in the Stokes expansion in powers of wave amplitude that correspond to a Bond number of 1/2 and 1/3, which are the consequences of the non-uniformity in the ordering of the Fourier coefficients, are found to be influenced by vorticity; (iii) different surface profiles of capillary–gravity waves are computed and the effect of vorticity on those profiles is shown to be important, in particular that the solutions exhibit type-2-like wave features, characterized by a secondary maximum on the surface profile with a trough between the two maxima. PMID:27956873

  20. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.

    1994-01-01

    A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.

  1. Ab initio study of intrinsic profiles of liquid metals and their reflectivity

    NASA Astrophysics Data System (ADS)

    del Rio, B. G.; Souto, J.; Alemany, M. M. G.; González, L. E.

    2017-08-01

    The free surfaces of liquid metals are known to exhibit a stratified profile that, in favourable cases, shows up in experiments as a peak in the ratio between the reflectivity function and that of an ideal step-like profile. This peak is located at a wave-vector related to the distance between the layers of the profile. In fact the surface roughness produced by thermally induced capillary waves causes a depletion of the previous so called intrinsic reflectivity by a damping factor that may hinder the observation of the peak. The behaviour of the intrinsic reflectivity below the layering peak is however far from being universal, with systems as Ga or In where the reflectiviy falls uniformly towards the q → 0 value, others like Sn or Bi where a shoulder appears at intermediate wavevectors, and others like Hg which show a minimum. We have performed extensive ab initio simulations of the free liquid surfaces of Bi, Pb and Hg, that yield direct information on the structure of the profiles and found that the macroscopic capillary wave theory usually employed in order to remove the capillary wave components fails badly in some cases for the typical sample sizes affordable in ab initio simulations. However, a microscopic method for the determination of the intrinsic profile is shown to be succesful in obtaining meaningful intrinsic profiles and corresponding reflectivities which reproduce correctly the qualitative behaviour observed experimentally.

  2. Observation and simulation of flow on soap film induced by concentration gradient

    NASA Astrophysics Data System (ADS)

    Ohnishi, Mitsuru; Yoshihara, Shoichi; Azuma, Hisao

    The behavior of the flow and capillary wave induced on the film surface by the surfactant concentration difference is studied. Flat soap film is used as a model of thin film. The result is applicable to the case of flow by thermal gradient. The Schlieren method is used to observe the flow and the wave on the soap film. It is found that the wave velocities, in the case of a high surface tension difference, are linearly related to the square root of the surface tension difference.

  3. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

    1994-04-12

    A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

  4. Internal waves, Andaman Sea

    NASA Image and Video Library

    1994-09-30

    STS068-236-044 (30 September-11 October 1994) --- These internal waves in the Andaman Sea, west of Burma, were photographed from 115 nautical miles above Earth by the crew of the Space Shuttle Endeavour during the Space Radar Laboratory 2 (SRL-2) mission. The internal waves smooth out some of the capillary waves at the surface in bands and travel along the density discontinuity at the bottom of the mixed layer depth. There is little evidence of the internal waves at the surface. They are visible in the Space Shuttle photography because of sunglint, which reflects off the water.

  5. Does the scatterometer see wind speed or friction velocity?

    NASA Technical Reports Server (NTRS)

    Donelan, M. A.; Pierson, W. J., Jr.

    1984-01-01

    Studies of radar backscatter from the sea surface are referred either to the wind speed, U, or friction velocity, u(sub *). Bragg scattering theory suggests that these variations in backscatter are directly related to the height of the capillary-gravity waves modulated by the larger waves in tilt and by straining of the short wave field. The question then arises as to what characteristic of the wind field is most probably correlated with the wave number spectrum of the capillary-gravity waves. The justification for selecting U as the appropriate meteorological parameter to be associated with backscatter from L-band to Ku-band are reviewed. Both theoretical reasons and experimental evidence are used to demonstrate that the dominant parameter is U/C(lambda) where U is the wind speed at a height of about lambda/2 for waves having a phase speed of C(lambda).

  6. Dispersion and viscous attenuation of capillary waves with finite amplitude

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; Paré, Gounséti; Zaleski, Stéphane

    2017-04-01

    We present a comprehensive study of the dispersion of capillary waves with finite amplitude, based on direct numerical simulations. The presented results show an increase of viscous attenuation and, consequently, a smaller frequency of capillary waves with increasing initial wave amplitude. Interestingly, however, the critical wavenumber as well as the wavenumber at which the maximum frequency is observed remain the same for a given two-phase system, irrespective of the wave amplitude. By devising an empirical correlation that describes the effect of the wave amplitude on the viscous attenuation, the dispersion of capillary waves with finite initial amplitude is shown to be, in very good approximation, self-similar throughout the entire underdamped regime and independent of the fluid properties. The results also shown that analytical solutions for capillary waves with infinitesimal amplitude are applicable with reasonable accuracy for capillary waves with moderate amplitude.

  7. Surface hydrodynamics of viscoelastic fluids and soft solids: Surfing bulk rheology on capillary and Rayleigh waves.

    PubMed

    Monroy, Francisco

    2017-09-01

    From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental results obtained during the three decades of research on this field. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. On the unsteady gravity-capillary wave pattern found behind a slow moving localized pressure distribution

    NASA Astrophysics Data System (ADS)

    Masnadi, N.; Duncan, J. H.

    2013-11-01

    The non-linear response of a water surface to a slow-moving pressure distribution is studied experimentally using a vertically oriented carriage-mounted air-jet tube that is set to translate over the water surface in a long tank. The free surface deformation pattern is measured with a full-field refraction-based method that utilizes a vertically oriented digital movie camera (under the tank) and a random dot pattern (above the water surface). At towing speeds just below the minimum phase speed of gravity-capillary waves (cmin ~ 23 cm/s), an unsteady V-shaped pattern is formed behind the pressure source. Localized depressions are generated near the source and propagate in pairs along the two arms of the V-shaped pattern. These depressions are eventually shed from the tips of the pattern at a frequency of about 1 Hz. It is found that the shape and phase speeds of the first depressions shed in each run are quantitatively similar to the freely-propagating gravity-capillary lumps from potential flow calculations. In the experiments, the amplitudes of the depressions decrease by approximately 60 percent while travelling 12 wavelengths. The depressions shed later in each run behave in a less consistent manner, probably due to their interaction with neighboring depressions.

  9. Capillary waves' dynamics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, Rafael; Chacón, Enrique; Tarazona, Pedro

    2008-12-01

    We study the dynamics of thermally excited capillary waves (CW) at molecular scales, using molecular dynamics simulations of simple liquid slabs. The analysis is based on the Fourier modes of the liquid surface, constructed via the intrinsic sampling method (Chacón and Tarazona 2003 Phys. Rev. Lett. 91 166103). We obtain the time autocorrelation of the Fourier modes to get the frequency and damping rate Γd(q) of each mode, with wavenumber q. Continuum hydrodynamics predicts \\Gamma (q) \\propto q\\gamma (q) and thus provides a dynamic measure of the q-dependent surface tension, γd(q). The dynamical estimation is much more robust than the structural prediction based on the amplitude of the Fourier mode, γs(q). Using the optimal estimation of the intrinsic surface, we obtain quantitative agreement between the structural and dynamic pictures. Quite surprisingly, the hydrodynamic prediction for CW remains valid up to wavelengths of about four molecular diameters. Surface tension hydrodynamics break down at shorter scales, whereby a transition to a molecular diffusion regime is observed.

  10. The Effect of Faraday Waves on Gas Transport

    NASA Astrophysics Data System (ADS)

    Saylor, J. R.; Handler, R. A.

    1996-11-01

    The increase in the rate of gas transport at the onset of capillary wave formation is a frequently observed phenomenon. However, a causal relationship between the presence of capillary waves and enhanced gas transport has not been experimentally demonstrated. Here we present experimental results of CO2 transport rates across Faraday waves. The piston velocity versus wave slope data explicitly demonstrates an enhancement in gas transport due to these waves. The functional relationship between gas flux and wave slope is also obtained. The Faraday wave system permits investigation of capillary waves in the absence of the obfuscating effects of air turbulence, water turbulence, droplets and bubbles, all of which are present in wind/wave tank studies. Hence, our results are solely due to the effects of capillary wave action. Data for wave frequencies varying from 20Hz to 200Hz are presented.

  11. Relationship between wind, waves and radar backscatter

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1991-01-01

    The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altshuler, Gennady; Manor, Ofer, E-mail: manoro@technion.ac.il

    A MHz vibration, or an acoustic wave, propagating in a solid substrate may support the convective spreading of a liquid film. Previous studies uncovered this ability for fully wetting silicon oil films under the excitation of a MHz Rayleigh surface acoustic wave (SAW), propagating in a lithium niobate substrate. Partially wetting de-ionized water films, however, appeared immune to this spreading mechanism. Here, we use both theory and experiment to reconsider this situation and show partially wetting water films may spread under the influence of a propagating MHz vibration. We demonstrate distinct capillary and convective (vibrational/acoustic) spreading regimes that are governedmore » by a balance between convective and capillary mechanisms, manifested in the non-dimensional number θ{sup 3}/We, where θ is the three phase contact angle of the liquid with the solid substrate and We ≡ ρU{sup 2}H/γ; ρ, γ, H, and U are the liquid density, liquid/vapour surface tension, characteristic film thickness, and the characteristic velocity amplitude of the propagating vibration on the solid surface, respectively. Our main finding is that the vibration will support a continuous spreading motion of the liquid film out of a large reservoir if the convective mechanism prevails (θ{sup 3}/We < 1); otherwise (θ{sup 3}/We > 1), the dynamics of the film is governed by the capillary mechanism.« less

  13. Collisional radiative model of an argon atmospheric capillary surface-wave discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2004-12-01

    The characteristics of a microwave surface-wave sustained plasma operated at atmospheric pressure in an open-ended dielectric tube are investigated theoretically as a first step in the development of a self-consistent model for these discharges. The plasma column is sustained in flowing argon. A surface-wave discharge that fills the whole radial cross section of the discharge tube is considered. With experimental electron temperature profiles [Garcia et al., Spectrochim. Acta, Part B 55, 1733 (2000)] the numerical model is used to test the validity of the different approximations and to study the influence of the different kinetic processes and power loss mechanismsmore » on the discharge.« less

  14. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  15. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  16. Capillary jets in normal gravity: Asymptotic stability analysis and excitation using Maxwell and ultrasonic radiation stresses

    NASA Astrophysics Data System (ADS)

    Lonzaga, Joel Barci

    Both modulated ultrasonic radiation pressure and oscillating Maxwell stress from a voltage-modulated ring electrode are employed to excite low-frequency capillary modes of a weakly tapered liquid jet issuing from a nozzle. The capillary modes are waves formed at the surface of the liquid jet. The ultrasound is internally applied to the liquid jet waveguide and is cut off at a location resulting in a significantly enhanced oscillating radiation stress near the cutoff location. Alternatively, the thin electrode can generate a highly localized oscillating Maxwell stress on the jet surface. Experimental evidence shows that a spatially unstable mode with positive group velocity (propagating downstream from the excitation source) and a neutral mode with negative group velocity are both excited. Reflection at the nozzle boundary converts the neutral mode into an unstable one that interferes with the original unstable mode. The interference effect is observed downstream from the source using a laser-based optical extinction technique that detects the surface waves while the modulation frequency is scanned. This technique is very sensitive to small-amplitude disturbances. Existing linear, convective stability analyses on liquid jets accounting for the gravitational effect (i.e. varying radius and velocity) appear to be not applicable to non-slender, slow liquid jets considered here where the gravitational effect is found substantial at low flow rates. The multiple-scales method, asymptotic expansion and WKB approximation are used to derive a dispersion relation for the capillary wave similar to one obtained by Rayleigh but accounting for the gravitational effect. These mathematical tools aided by Langer's transformation are also used to derive a uniformly valid approximation for the acoustic wave propagation in a tapered cylindrical waveguide. The acoustic analytical approximation is validated by finite-element calculations. The jet response is modeled using a hybrid of Fourier analysis and the WKB-type analysis as proposed by Lighthill. The former derives the mode response to a highly localized source while the latter governs the mode propagation in a weakly inhomogeneous jet away from the source.

  17. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  18. Gravity-Capillary Lumps

    NASA Astrophysics Data System (ADS)

    Akylas, Triantaphyllos R.; Kim, Boguk

    2004-11-01

    In dispersive wave systems, it is known that 1-D plane solitary waves can bifurcate from linear sinusoidal wavetrains at particular wave numbers k = k0 where the phase speed c(k) happens to be an extremum (dc/dk| _0=0) and equals the group speed c_g(k_0). Two distinct possibilities thus arise: either the extremum occurs in the long-wave limit (k_0=0) and, as in shallow water, the bifurcating solitary waves are of the KdV type; or k0 ne 0 and the solitary waves are in the form of packets, described by the NLS equation to leading order, as for gravity-capillary waves in deep water. Here it is pointed out that an entirely analogous scenario is valid for the genesis of 2-D solitary waves or `lumps'. Lumps also may bifurcate at extrema of the phase speed and do so when 1-D solitary waves happen to be unstable to transverse perturbations; moreover, they have algebraically decaying tails and are either of the KPI type (e.g. in shallow water in the presence of strong surface tension) or of the wave packet type (e.g. in deep water) and are described by an elliptic-elliptic Davey-Stewartson equation system to leading order. Examples of steady lump profiles are presented and their dynamics is discussed.

  19. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  20. The calming effect of oil on water

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Cordray, Kimberly; Griffin, William; Behroozi, Feredoon

    2007-05-01

    The calming effect of oil on water has been known since ancient times. Benjamin Franklin was the first to investigate the effect, but the underlying mechanism for this striking phenomenon remains elusive. We used a miniature laser interferometer to measure the amplitude of surface waves to a resolution of ±5nm, making it possible to determine the effect of an oil monolayer on the attenuation of capillary waves and the surface dilational modulus of the monolayer. We present attenuation data on pure water, water covered by olive oil, water covered by a fatty acid, and a water-acetone mixture for comparison. From the attenuation data at frequencies between 251 and 551Hz, we conclude that the calming effect of oil on surface waves is principally due to the dissipation of wave energy caused by the Gibbs surface elasticity of the monolayer, with only a secondary contribution from the reduction in surface tension. Our data also indicate that the surface-dilational viscosity of the oil monolayer is negligible and plays an insignificant role in calming the waves.

  1. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  2. Two classes of capillary optical fibers: refractive and photonic

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2008-11-01

    This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.

  3. Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation

    NASA Astrophysics Data System (ADS)

    Irisov, V.

    2012-12-01

    Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we consider modifications of the model equation, which can be done to describe gravity-capillary and capillary waves. An obvious correction is to add viscous dissipation. A little less obvious is a transition from 4-wave to 3-wave interaction. The model allows one to include easily generation of parasitic capillary waves as it was proposed by Kudryavtsev et al. [2003]. A modification of dissipation term can explain an "overshoot" phenomenon observed in JONSWAP spectrum. These examples demonstrate that the proposed model is quite flexible and can be used to account for various physical phenomena. The resulting balance equation is easy to integrate using a personal computer and necessity of its numerical solution is paid by the model flexibility and better physical background compared with empirical spectra. References Hasselmann, K., J. Fluid Mech., 12, pp.481-500, 1962. Hwang, P., and M. Sletten, J. Geophys. Res., 113, doi:10.1029/2007JC004277, 2008. Kudryavtsev, V., et al., J. Geophys. Res., 108 (C3), doi:10.1029/2001JC001003, 2003. Plant, W. J., J. Geophys. Res., vol. 87, pp. 1961-1967, 1982. Zakharov, V., and A. Pushkarev, Nonlinear Processes in Geophysics, 6, pp.1-10, 1999. Zakharov, V., Eur. J. Mech. B/Fluids, 18, pp.327-344, 1999.

  4. The damping of ocean surface waves by a monomolecular film measured by wave staffs and microwave radars

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Jones, W. L.; Lange, P. A.; Richter, K.

    1981-01-01

    Open ocean and wave tank experiments were carried out with the aim of studying the damping of capillary and gravity waves by a monomolecular film. These films of biogenic origin influence air-sea interaction processes and thereby affect the use of remote sensing techniques in oceanography. Measurement was carried out by wave staffs, by a coherent X band microwave scatterometer mounted on a sea-based platform, and by an incoherent K band microwave scatterometer carried by an aircraft under moderate wind conditions. A wave attenuation of about 40-60% is observed in the frequency range between 3.2 and 16 Hz. Tank experiments show that a direct influence of oleyl alcohol surface films on wave damping is confined to frequencies equal to or greater than 2 Hz; a further indirect effect of films on the damping of ocean waves in the frequency range between 0.12 and 0.7 Hz (by modifying the wind input and wave-wave interaction mechanisms) is also indicated

  5. Ripplon laser through stimulated emission mediated by water waves

    NASA Astrophysics Data System (ADS)

    Kaminski, Samuel; Martin, Leopoldo L.; Maayani, Shai; Carmon, Tal

    2016-12-01

    Lasers rely on stimulated electronic transition, a quantum phenomenon in the form of population inversion. In contrast, phonon masers depend on stimulated Raman scattering and are entirely classical. Here we extend Raman lasers to rely on capillary waves, which are unique to the liquid phase of matter and relate to the attraction between intimate fluid particles. We fabricate resonators that co-host capillary and optical modes, control them to operate at their non-resolved sideband and observe stimulated capillary scattering and the coherent excitation of capillary resonances at kilohertz rates (which can be heard in audio files recorded by us). By exchanging energy between electromagnetic and capillary waves, we bridge the interfacial tension phenomena at the liquid phase boundary to optics. This approach may impact optofluidics by allowing optical control, interrogation and cooling of water waves.

  6. On the Physics of Fizziness: How Bubble Bursting Controls Droplets Ejection

    NASA Astrophysics Data System (ADS)

    Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe

    2014-11-01

    Either in a champagne glass or at the oceanic scales, the tiny bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the bubble bursting jet, prelude for these aerosols, we propose a simple scaling for the jet velocity, we unravel experimentally the intricate roles of bubble shape, capillary waves and liquid properties, and we demonstrate that droplets ejection can be tuned by changing the liquid properties. In particular, as capillary waves are shown to always evolve into a self-similar collapsing cavity, faster and smaller droplets can be produced by sheltering this collapse from remnant ripples using damping action of viscosity. These results pave the road to the characterization and control of the bursting bubble aerosols. Applications to champagne aroma diffusion will be discussed.

  7. Star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  8. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  9. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  10. Time and space analysis of turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Mordant, Nicolas; Aubourg, Quentin; Viboud, Samuel; Sommeria, Joel

    2016-11-01

    Wave turbulence is a statistical state made of a very large number of nonlinearly interacting waves. The Weak Turbulence Theory was developed to describe such a situation in the weakly nonlinear regime. Although, oceanic data tend to be compatible with the theory, laboratory data fail to fulfill the theoretical predictions. A space-time resolved measurement of the waves have proven to be especially fruitful to identify the mechanism at play in turbulence of gravity-capillary waves. We developed an image processing algorithm to measure the motion of the surface of water with both space and time resolution. We first seed the surface with slightly buoyant polystyrene particles and use 3 cameras to reconstruct the surface. Our stereoscopic algorithm is coupled to PIV so that to obtain both the surface deformation and the velocity of the water surface. Such a coupling is shown to improve the sensitivity of the measurement by one order of magnitude. We use this technique to probe the existence of weakly nonlinear turbulence excited by two small wedge wavemakers in a 13-m diameter wave flume. We observe a truly weakly nonlinear regime of isotropic wave turbulence. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 647018-WATU).

  11. Discriminating Sea Spikes in Incoherent Radar Measurements of Sea Clutter

    DTIC Science & Technology

    2008-03-01

    het detecteren echter niet te verwachten dat bet gebruik van sea spikes te onderzoeken. Een van deze modellen zal leiden tot een Auteur (s) dergelijk...report I TNO-DV 2008 A067 6/33 Abbreviations CFAR Constant False-Alarm Rate CST Composite Surface Theory FFT Fast Fourier Transform PDF Probability Density...described by the composite surface theory (CST). This theory describes the sea surface as small Bragg-resonant capillary waves riding on top of

  12. Characteristics of fluid flow in the combustion synthesis of TiC from the elements

    NASA Technical Reports Server (NTRS)

    Valone, S. M.; Behrens, R. G.

    1987-01-01

    The results of a numerical investigation of finite reservoir effects on capillary spreading at small reservoir dimensions are presently related to wave propagation phenomena in the combustion synthesis of TiC from its two elemental constituents. It is noted that gravitational forces can affect bubble coalescence by nonbuoyant means under the suitable conditions, although these conditions are expected to be rare in combustion synthesis. Finite-curved reservoirs can drive capillary flow due to surface tension and wall contact forces; these cause the wall and the metal to be completely reconfigured during combustion synthesis.

  13. A poroelastic medium saturated by a two-phase capillary fluid

    NASA Astrophysics Data System (ADS)

    Shelukhin, V. V.

    2014-09-01

    By Landau's approach developed for description of superfluidity of 2He, we derive a mathematical model for a poroelastic medium saturated with a two-phase capillary fluid. The model describes a three-velocity continuum with conservation laws which obey the basic principles of thermodynamics and which are consistent with the Galilean transformations. In contrast to Biot' linear theory, the equations derived allow for finite deformations. As the acoustic analysis reveals, there is one more longitudinal wave in comparison with the poroelastic medium saturated with a one-phase fluid. We prove that such a result is due to surface tension.

  14. Physics on Tap

    ERIC Educational Resources Information Center

    Wheeler, Andrew P. S.

    2012-01-01

    This article aims to describe how to visualize surface tension effects in liquid jets. A simple experiment is proposed using the liquid jet flow from a mains water tap/faucet. Using a modern digital camera with a high shutter speed, it is possible to visualize the instabilities (capillary waves) that form within the jet due to the action of…

  15. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    PubMed

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  16. Laboratory Study of Water Surface Roughness Generation by Wave-Current Interaction

    NASA Technical Reports Server (NTRS)

    Klinke, Jochen

    2000-01-01

    Within the framework of this project, the blocking of waves by inhomogeneous currents was studied. A laboratory experiment was conducted in collaboration with Steven R. Long at the linear wave tank of the NASA Air-Sea Interaction Facility, Wallops Island, VA during May 1999. Mechanically-generated waves were blocked approximately 3m upstream from the wave paddle by an opposing current. A false bottom was used to obtain a spatially varying flow field in the measurement section of the wave tank. We used an imaging slope gauge, which was mounted directly underneath the sloping section of the false tank bottom to observe the wave field. For a given current speed, the amplitude and the frequency of the waves was adjusted so that the blocking occurred within the observed footprint. Image sequences of up to 600 images at up 100 Hz sampling rate were recorded for an area of approximately 25cm x 25cm. Unlike previous measurements with wave wire gauges, the captured image sequences show the generation of the capillary waves at the blocking point and give detailed insight into the spatial and temporal evolution of the blocking process. The image data were used to study the wave-current interaction for currents from 5 to 25 cm/s and waves with frequencies between 1 and 3 Hz. First the images were calibrated with regard to size and slope. Then standard Fourier techniques as well the empirical mode decomposition method developed by Dr. Norden Huang and Dr. Steven R. Long were employed to quantify the wave number downshift from the gravity to the capillary regime.

  17. A Simple Theory of Capillary-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1995-01-01

    Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.

  18. Nonlinear dynamics of a two-dimensional Wigner solid on superfluid helium

    NASA Astrophysics Data System (ADS)

    Monarkha, Yu. P.

    2018-04-01

    Nonlinear dynamics and transport properties of a 2D Wigner solid (WS) on the free surface of superfluid helium are theoretically studied. The analysis is nonperturbative in the amplitude of the WS velocity. An anomalous nonlinear response of the liquid helium surface to the oscillating motion of the WS is shown to appear when the driving frequency is close to subharmonics of the frequency of a capillary wave (ripplon) whose wave vector coincides with a reciprocal-lattice vector. As a result, the effective mass of surface dimples formed under electrons and the kinetic friction acquire sharp anomalies in the low-frequency range, which affects the mobility and magnetoconductivity of the WS. The results obtained here explain a variety of experimental observations reported previously.

  19. Mixing in Sessile Drops Merging on a Surface

    NASA Astrophysics Data System (ADS)

    Anna, Shelley; Zhang, Ying; Oberdick, Samuel; Garoff, Stephen

    2011-11-01

    We investigate the mixing of two sessile drops that merge on a surface. The drops consist of low viscosity glycerol-water mixtures deposited on a silicone elastomer surface with contact angle near 90°. We observe the shape of the drops and the location of their intersection by placing a fluorescent dye in one drop and using a laser light sheet to image a plane perpendicular to the surface. The initial healing of the meniscus bridge between the merging drops, and the damping of capillary waves appearing on their surfaces occur on timescales comparable to the inertio-capillary relaxation time. However, the interface between the two fluids remains sharp, broadening diffusively over several minutes. The shape of the merged drops and the boundary between them also continues to evolve on a timescale of minutes. This later motion is controlled by gravity, capillary pressure, and viscous stresses. Images of the 3D drop shape indicate that small contact line motions are correlated to the slow relaxation. Although the two drops contain identical liquids except for the presence of the dye, the shape of the interface consistently evolves asymmetrically, assuming a characteristic crescent shape. We note that very tiny surface tension gradients can produce an asymmetric flow like the one observed here. We characterize the long timescale flow as a function of the drop sizes, and we use numerical simulations to aid in elucidating the essential physics.

  20. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  1. Ocean wave-radar modulation transfer functions from the West Coast experiment

    NASA Technical Reports Server (NTRS)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  2. Confinement of surface waves at the air-water interface to control aerosol size and dispersity

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Wilson, Rab; King, Xi; Reboud, Julien; Tassieri, Manlio; Cooper, Jonathan M.

    2017-11-01

    The precise control over the size and dispersity of droplets, produced within aerosols, is of great interest across many manufacturing, food, cosmetic, and medical industries. Amongst these applications, the delivery of new classes of high value drugs to the lungs has recently attracted significant attention from pharmaceutical companies. This is commonly achieved through the mechanical excitation of surface waves at the air liquid interface of a parent liquid volume. Previous studies have established a correlation between the wavelength on the surface of liquid and the final aerosol size. In this work, we show that the droplet size distribution of aerosols can be controlled by constraining the liquid inside micron-sized cavities and coupling surface acoustic waves into different volumes of liquid inside micro-grids. In particular, we show that by reducing the characteristic physical confinement size (i.e., either the initial liquid volume or the cavities' diameters), higher harmonics of capillary waves are revealed with a consequent reduction of both aerosol mean size and dispersity. In doing so, we provide a new method for the generation and fine control of aerosols' sizes distribution.

  3. Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto-capillarity

    PubMed Central

    Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu

    2012-01-01

    Molecular dynamics simulations were carried out to explore the capillary wave propagation induced by the competition between one upper precursor film (PF) on the graphene and one lower PF on the substrate in electro-elasto-capillarity (EEC). During the wave propagation, the graphene was gradually delaminated from the substrate by the lower PF. The physics of the capillary wave was explored by the molecular kinetic theory. Besides, the dispersion relation of the wave was obtained theoretically. The theory showed that the wave was controlled by the driving work difference of the two PFs. Simulating the EEC process under different electric field intensities (E), the wave velocity was found insensitive to E. We hope this research could expand our knowledge on the wetting, electrowetting and EEC. As a potential application, the electrowetting of the PF between the graphene and the substrate is a promising candidate for delaminating graphene from substrate. PMID:23226593

  4. Surfactants non-monotonically modify the onset of Faraday waves

    NASA Astrophysics Data System (ADS)

    Strickland, Stephen; Shearer, Michael; Daniels, Karen

    2017-11-01

    When a water-filled container is vertically vibrated, subharmonic Faraday waves emerge once the driving from the vibrations exceeds viscous dissipation. In the presence of an insoluble surfactant, a viscous boundary layer forms at the contaminated surface to balance the Marangoni and Boussinesq stresses. For linear gravity-capillary waves in an undriven fluid, the surfactant-induced boundary layer increases the amount of viscous dissipation. In our analysis and experiments, we consider whether similar effects occur for nonlinear Faraday (gravity-capillary) waves. Assuming a finite-depth, infinite-breadth, low-viscosity fluid, we derive an analytic expression for the onset acceleration up to second order in ɛ =√{ 1 / Re } . This expression allows us to include fluid depth and driving frequency as parameters, in addition to the Marangoni and Boussinesq numbers. For millimetric fluid depths and driving frequencies of 30 to 120 Hz, our analysis recovers prior numerical results and agrees with our measurements of NBD-PC surfactant on DI water. In both case, the onset acceleration increases non-monotonically as a function of Marangoni and Boussinesq numbers. For shallower systems, our model predicts that surfactants could decrease the onset acceleration. DMS-0968258.

  5. Subsurface Flow and Moisture Dynamics in Response to Swash Motions: Effects of Beach Hydraulic Conductivity and Capillarity

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.

    2017-12-01

    A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.

  6. Global ERS 1 and 2 and NSCAT observations: Upwind/crosswind and upwind/downwind measurements

    NASA Astrophysics Data System (ADS)

    Quilfen, Y.; Chapron, B.; Bentamy, A.; Gourrion, J.; El Fouhaily, T.; Vandemark, D.

    1999-05-01

    This paper presents an analysis of the wind speed dependence of upwind/downwind asymmetry (UDA) and upwind-crosswind anisotropy (UCA) as derived from global C band VV-polarized ERS 1 and 2 and Ku band VV- and HH-polarized NASA scatterometer (NSCAT) data. Interpretation of the results relies on identifying relationships between the differing frequencies and incidence angles that are consistent with Bragg scattering theory from gravity-capillary waves. It is shown that globally derived parameters characterizing UDA and UCA hold information on the wind dependence of short gravity and gravity-capillary wave growth and dissipation. In particular, the UCA behavior is found quadratic for both the C and Ku band, peaking at moderate wind speeds. In addition, the dual-frequency results appear to map out the expected, more rapid adjustment of centimeter-scale (Ku band) waves to the wind direction at light winds. However, as wind increases, the directionality associated with these shorter waves saturates at a lower speed than for the slightly longer waves inferred at C band. It is suggested that this observed phenomenon may be related to increasing wave-drift interactions that can potentially inhibit short-scale surface wave growth along the wind direction. Concerning UDA properties, our present analysis reveals that the NSCAT and ERS 1 and 2 scatterometers give quite different results. Our preliminary interpretation is that C band measurements may be easier to interpret using composite Bragg scattering theory and that upwind/downwind contrasts are mainly supported by short gravity waves.

  7. Experimental Investigations on Microshock Waves and Contact Surfaces

    NASA Astrophysics Data System (ADS)

    Kai, Yun; Garen, Walter; Teubner, Ulrich

    2018-02-01

    The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.

  8. The Dynamics of Glomerular Ultrafiltration in the Rat

    PubMed Central

    Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.

    1971-01-01

    Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578

  9. Model of formation of droplets during electric arc surfacing of functional coatings

    NASA Astrophysics Data System (ADS)

    Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.

    2016-01-01

    The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.

  10. Dynamics of ultra-thin polystyrene with and without a (artificial) dead layer studied by resonance enhanced dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.

    2017-05-01

    Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.

  11. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.

    PubMed

    Chen, Longquan; Bonaccurso, Elmar

    2014-08-01

    In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.

  12. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.

  13. Negative ion mode evolution of potential buildup and mapping of potential gradients within the electrospray emitter.

    PubMed

    Pozniak, Boguslaw P; Cole, Richard B

    2004-12-01

    Differential electrospray emitter potential (DEEP) maps, displaying variations in potential in the electrospray (ES) capillary and in the Taylor cone, have been generated in the negative ion mode of ES operation. In all examples, measured potential was found to be the highest at the points furthest into the Taylor cone, and values descended to zero at distances beyond approximately 15 mm within the ES capillary. In agreement with results obtained previously in the positive ion mode, negative mode data show a strong influence of electrolyte concentration on measured potentials. Weakly conductive solutions exhibited the highest values, and the steepest gradients, at points furthest into the Taylor cone. However, these same low conductivity solutions did not yield nonzero measured potentials to as deep a distance into the ES capillary as was possible from their higher conductivity counterparts. Addition of a readily reducible compound lowered measured potentials at all points near the ES capillary exit, in accordance with the description of the ES device as a controlled-current electrolytic cell. The development of potential inside the ES capillary upon the onset of ES was also studied, and initial results are presented. Potential waves are observed that can require 15 min or longer, to stabilize. The slow drift to steady potentials is evidence of upstream movement of electrochemically-produced species and follow-up reaction products; low conductivity solutions require longer intervals to reach a steady state. Potentials measured along the central ES axis reflect those at the ES capillary surface, although equipotential lines can be considered to be more compressed at the latter surface.

  14. Strait of Gibraltar as seen from STS-58

    NASA Image and Video Library

    1993-10-20

    STS058-73-009 (18 Oct-1 Nov 1993) --- Atlantic water flowing with the tide through the Strait of Gibraltar into the Mediterranean generates internal waves as depicted in this photo. The incoming cool, less dense Atlantic water flows over the warm, more saline Mediterranean water. As the tide moves into the Strait of Gibraltar it encounters the Camarinal Sill, which is like a cliff under water, south of Camarinal Point, Spain. Internal waves are generated at the Sill and travel along the density boundary between the Atlantic water and the Mediterranean water. Internal waves have very little effect on the sea surface, except for gentle slopes and slight differences in roughness. We can see them in the Space Shuttle photos because of sunglint which reflects off the water. Internal waves smooth out some of the capillary waves at the surface in bands. The sun reflects more brightly from these smooth areas showing us the pattern of the underwater waves. The Bay of Cadiz on the southwest coast of Spain, the Rock of Gibraltar, and the Moroccan coast are also visible in this photo.

  15. Studies related to ocean dynamics. Task 3.2: Aircraft Field Test Program to investigate the ability of remote sensing methods to measure current/wind-wave interactions

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Flood, W. A.; Brown, G. S.

    1975-01-01

    The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.

  16. Marangoni instability in a thin film heated from below: Effect of nonmonotonic dependence of surface tension on temperature

    NASA Astrophysics Data System (ADS)

    Sarma, Rajkumar; Mondal, Pranab Kumar

    2018-04-01

    We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling k ˜(Bi) 1 /2 , where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a certain range of the dimensionless parameters, viz., Biot number (Bi ) , Galileo number (Ga ) , and inverse capillary number (Σ ) . Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on the stability of the system and identify the critical values of these parameters above which instability initiates in the liquid layer.

  17. Cavitation in ultrasound and shockwave therapy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  18. Jet dynamics post drop impact on a deep pool

    NASA Astrophysics Data System (ADS)

    Michon, Guy-Jean; Josserand, Christophe; Séon, Thomas

    2017-02-01

    We investigate experimentally the jet formed by the collapse of a cavity created by the impact of a drop on a pool of the same aqueous liquid. We show that jets can emerge with very different shapes and velocities, depending on the impact parameters, thus generating droplets with various initial sizes and velocities. After presenting the jet velocity and top drop radius variation as a function of the impact parameters, we discuss the influence of the liquid parameters on the jet velocity. This allows us to define two different regimes: the singular jet and the cavity jet regimes, where the mechanisms leading to the cavity retraction and subsequent jet dynamics are drastically different. In particular, we demonstrate that in the first regime, a singular capillary wave collapse sparks the whole jet dynamics, making the jet's fast, thin, liquid parameters dependent and barely reproducible. On the contrary, in the cavity jet regime, defined for higher impact Froude numbers, the jets are fat and slow. We show that jet velocity is simply proportional to the capillary velocity √{γ /ρlDd }, where γ is the liquid surface tension, ρl the liquid density, and Dd the impacting drop diameter, and it is in particular independent of viscosity, impact velocity, and gravity, even though the cavity is larger than the capillary length. Finally, we demonstrate that capillary wave collapse and cavity retraction are correlated in the singular regime and decorrelated in the cavity jet regime.

  19. Using Kinect to Measure Wave Spectrum

    NASA Astrophysics Data System (ADS)

    Fong, J.; Loose, B.; Lovely, A.

    2012-12-01

    Gas exchange at the air-sea interface is enhanced by aqueous turbulence generated by capillary-gravity waves, affecting the absorption of atmospheric carbon dioxide by the ocean. The mean squared wave slope of these waves correlates strongly with the gas transfer velocity. To measure the energy in capillary-gravity waves, this project aims to use the Microsoft Xbox Kinect to measure the short period wave spectrum. Kinect is an input device for the Xbox 360 with an infrared laser and camera that can be used to map objects at high frequency and spatial resolution, similar to a LiDAR sensor. For air-sea gas exchange, we are interested in the short period gravity waves with a wavenumber of 40 to 100 radians per meter. We have successfully recorded data from Kinect at a sample rate of 30 Hz with 640x480 pixel resolution, consistent with the manufacturer specifications for its scanning capabilities. At 0.5 m distance from the surface, this yields a nominal resolution of approximately 0.7 mm with a theoretical vertical precision of 0.24 mm and a practical 1 σ noise level of 0.91 mm. We have found that Kinect has some limitations in its ability to detect the air-water interface. Clean water proved to be a weaker reflector for the Kinect IR source, whereas a relatively strong signal can be received for liquids with a high concentration of suspended solids. Colloids such as milk and Ca(OH)2 in water proved more suitable media from which height and wave spectra were detectable. Moreover, we will show results from monochromatic as well as wind-wave laboratory studies. With the wave field measurements from Kinect, gas transfer velocities at the air-sea interface can be determined.

  20. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  1. Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Luo, J. T.; Geraldi, N. R.; Guan, J. H.; McHale, G.; Wells, G. G.; Fu, Y. Q.

    2017-01-01

    On a solid surface, a droplet of liquid will stick due to the capillary adhesion, and this causes low droplet mobility. To reduce contact line pinning, surface chemistry can be coupled to micro- and/or nanostructures to create superhydrophobic surfaces on which a droplet balls up into an almost spherical shape, thus, minimizing the contact area. Recent progress in soft matter has now led to alternative lubricant-impregnated surfaces capable of almost zero contact line pinning and high droplet mobility without causing droplets to ball up and minimize the contact area. Here we report an approach to surface-acoustic-wave- (SAW) actuated droplet transportation enabled using such a surface. These surfaces maintain the contact area required for efficient energy and momentum transfer of the wave energy into the droplet while achieving high droplet mobility and a large footprint, therefore, reducing the threshold power required to induce droplet motion. In our approach, we use a slippery layer of lubricating oil infused into a self-assembled porous hydrophobic layer, which is significantly thinner than the SAW wavelength, and avoid damping of the wave. We find a significant reduction (up to 85%) in the threshold power for droplet transportation compared to that using a conventional surface-treatment method. Moreover, unlike droplets on superhydrophobic surfaces, where interaction with the SAW induces a transition from a Cassie-Baxter state to a Wenzel state, the droplets on our liquid-impregnated surfaces remain in a mobile state after interaction with the SAW.

  2. Using Sound To Study the Effect of Frothers on the Breakaway of Air Bubbles at an Underwater Capillary.

    PubMed

    Chu, Pengbo; Pax, Randolph; Li, Ronghao; Langlois, Ray; Finch, James A

    2017-04-04

    Frothers, a class of surfactants, are widely employed in froth flotation to aid the generation of small bubbles. Their action is commonly explained by their ability to hinder coalescence. There are occasional references suggesting that the frother may also play a role in the initial breakup of the injected air mass. This work investigates the possible effect of the frother on breakup by monitoring air bubbles produced quasi-statically at an underwater capillary. Under this condition, breakup is isolated from coalescence and an impact of frothers on the detached bubble can be ascribed to an impact on breakup. The breakaway process was monitored by an acoustic technique along with high-speed cinematography. The results showed that the presence of frothers did influence the breakaway process and that the acoustic technique was able to detect the impact. It was demonstrated that the acoustic frequency and acoustic damping ratio depend upon the frother type and concentration and that they are associated with a liquid jet, which initially excites the bubble and then decays to form a surface wave. The addition of the frother did not influence the formation of the jet but did increase its decay rate, hence, dampening the surface wave. It is postulated that the action of the frother is related to an effect on the magnitude of surface tension gradients.

  3. Interfacial waves generated by contact line motion through electrowetting

    NASA Astrophysics Data System (ADS)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Bae, Jungmok; Kim, Ho-Young

    2013-11-01

    The contact angle of a liquid-fluid interface can be effectively modulated by EWOD (electrowetting on dielectric). Rapid movement of the contact line, which can be achieved by swift change of voltages at the electrodes, can give rise to interfacial waves under the strong influence of surface tension. Many optofluidic devices employing EWOD actuation, such as lenses, three-dimensional displays and laser radar, use two different liquids in a single cell, implying that the motions of the two liquids should be considered simultaneously to solve the dynamics of interfacial waves. Furthermore, the capillary waves excited by moving contact lines, which inherently involve slipping flows at solid boundaries, pose an interesting problem that has not been treated so far. We perform a perturbation analysis for this novel wave system to find the dispersion relation that relates the wavenumber, and the decay length over which the wave is dissipated by viscous effects. We experimentally corroborate our theory.

  4. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    NASA Astrophysics Data System (ADS)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  5. On the stability of lumps and wave collapse in water waves.

    PubMed

    Akylas, T R; Cho, Yeunwoo

    2008-08-13

    In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.

  6. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  7. Numerical simulation and stability analysis of solutocapillary effect in ultrathin films

    NASA Astrophysics Data System (ADS)

    Gordeeva, V. Yu.; Lyushnin, A. V.

    2017-04-01

    Polar fluids, like water or polydimethylsiloxane, are widely used in technical and medical applications. Capillary effects arising from surface tension gradients can be significant in thin liquid films. The present paper is dedicated to investigation of capillary flow due to a surfactant added to a polar liquid under conditions when intermolecular forces and disjoining pressure play an important role. Evolution equations are formulated for a film profile and the surfactant concentration. Stability analysis shows that the Marangoni effect destabilizes the film, and oscillatory modes appear at slow evaporation rates. We find that the film has four stability modes of at slow evaporation: monotonic stable, monotonic unstable, oscillatory stable, and oscillatory unstable, depending on the wave number of disturbances.

  8. Measurements and modelling of beach groundwater flow in the swash-zone: a review

    NASA Astrophysics Data System (ADS)

    Horn, Diane P.

    2006-04-01

    This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport and beach profile evolution can be successfully modelled. Beach groundwater hydrodynamics are a result of combined forcing from the tide and waves at a range of frequencies, and a large number of observations exist which describe the shape and elevation of the beach watertable in response to tidal forcing at diurnal, semi-diurnal and spring-neap tidal frequencies. Models of beach watertable response to tidal forcing have been successfully validated; however, models of watertable response to wave forcing are less well developed and require verification. Improved predictions of swash zone sediment transport and beach profile evolution cannot be achieved unless the complex fluid and sediment interactions between the surface flow and the beach groundwater are better understood, particularly the sensitivity of sediment transport processes to flow perpendicular to the permeable bed. The presence of a capillary fringe, particularly when it lies just below the sand surface, has influences on beach groundwater dynamics. The presence of a capillary fringe can have a significant effect on the exchange of water between the ocean and the coastal aquifer, particularly in terms of the storage capacity of the aquifer. Field and laboratory observations have also shown that natural groundwater waves usually propagate faster and decay more slowly in aquifers with a capillary fringe, and observations which suggest that horizontal flows may also occur in the capillary zone have been reported. The effects of infiltration and exfiltration are generally invoked to explain why beaches with a low watertable tend to accrete and beaches with a high watertable tend to erode. However, the relative importance of processes such as infiltration losses in the swash, changes in the effective weight of the sediment, and modified shear stress due to boundary layer thinning, are not yet clear. Experimental work on the influence of seepage flows within sediment beds provides conflicting results concerning the effect on bed stability. Both modelling and experimental work indicates that the hydraulic conductivity of the beach is a critical parameter. However, hydraulic conductivity varies both spatially and temporally on beaches, particularly on gravel and mixed sand and gravel beaches. Another important, but poorly understood, consideration in beach groundwater studies is the role of air encapsulation during the wetting of beach sand.

  9. Wave Tank Studies of Phase Velocities of Short Wind Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  10. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  11. Interfacial waves generated by electrowetting-driven contact line motion

    NASA Astrophysics Data System (ADS)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young

    2016-10-01

    The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.

  12. Airborne Lidar Bathymetry Beam Diagnostics Using an Underwater Optical Detector Array

    NASA Astrophysics Data System (ADS)

    Birkebak, Matthew

    The surface geometry of air-water interface is considered as an important factor affecting the performance of Airborne Lidar Bathymetry (ALB), and laser optical communication through the water surface. ALB is a remote sensing technique that utilizes a pulsed green (532 nm) laser mounted to an airborne platform in order to measure water depth. The water surface (i.e., air-water interface) can distort the light beam's ray-path geometry and add uncertainty to range calculation measurements. Previous studies on light refracting through a complex water surface are heavily dependent on theoretical models and simulations. In addition, only very limited work has been conducted to validate these theoretical models using experiments under well-controlled laboratory conditions. The goal of the study is to establish a clear relationship between water-surface conditions and the uncertainty of ALB measurement. This relationship will be determined by conducting more extensive empirical measurements to characterize the changes in beam slant path associated with a variety of short wavelength wind ripples, typically seen in ALB survey conditions. This study will focus on the effects of capillary and gravity-capillary waves with surface wavelengths smaller than the diameter of the laser beam on the water surface. Simulations using Monte-Carlo techniques of the ALB beam footprints and the environmental conditions were used to analyze the ray-path geometries. Based on the simulation results, laboratory experiments were then designed to test key parameters that have the greatest contribution on beam path and direction through the water. The laser beam dispersion experiments were conducted in well-controlled laboratory setting at the University of New Hampshire's Wave and Tow tank. The spatial elevations of the water surface were independently measured using a high resolution wave staff. The refracted laser beam footprint was measured using an underwater optical detector consisting of a 6x6 array of photodiodes. Image processing techniques were used to estimate the laser's incidence angle intercepted by the detector array. Beam patterns that resulted from intersection between the laser beam light field underwater and the detector array were modeled and used to calculate changes in position and orientation for water surface conditions containing wavelengths less than 0.1m. Finally, a total horizontal uncertainty (THU) model was estimated, which can be implemented in total propagated uncertainty (TPU) models for reporting as a measure of the quality of each measurement. The wave refraction error for various sea states and beam characteristics was successfully quantified using both experimental and analytical techniques.

  13. Revealing the physicochemical mechanism for ultrasonic separation of alcohol-water mixtures

    NASA Astrophysics Data System (ADS)

    Kirpalani, D. M.; Toll, F.

    2002-08-01

    The selective separation of ethanol from ethanol-water mixtures by ultrasonic atomization has been reported recently by Sato, Matsuura, and Fujii [J. Chem. Phys. 114, 2382 (2001)]. In that work, experimental data were reported that confirmed the generation of an ethanol-rich droplet mist and attempted to explain the selective separation in terms of parametric decay instability of the capillary wave formed during sonication. In the present work, an alternate mechanism based on the conjunction theory has been postulated for the process of ultrasonic atomization. This mechanism involves the formation of cavitating bubbles in the liquid during sonication and their eventual collapse at the liquid surface into a cloud of microbubbles that moves upwards in a capillary fountain jet. The selective separation of alcohols has been explained as a corollary effect of the physical mechanism resulting in a surface excess of alcohol molecules formed at the surface of the microbubbles. The alcohol molecules vaporize into the microbubbles and release an alcohol-rich mist on their collapse in regions of high accumulation of acoustic energy.

  14. The Effects of Wind and Surfactants on Mechanically Generated Spilling Breakers

    NASA Astrophysics Data System (ADS)

    Liu, X.; Diorio, J. D.; Duncan, J. H.

    2007-11-01

    The effects of both wind and surfactants on mechanically generated weakly spilling breakers are explored in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). A wave maker, which resides at the upwind end of the tank, is used to generate the breakers via a dispersive focusing method with a central wave packet frequency of 1.15 Hz. Low wind speeds (less than 3.0 m/s) are used to minimize the effect of short-wavelength wind-generated waves on the breakers. The profiles of the spilling breakers along the center plane of the tank are measured with an LIF technique that utilizes a high-speed digital movie camera. Measurements are performed with clean water and water mixed with various concentrations of Triton X-100, a soluble surfactant. It is found that the capillary waves/bulge patterns found in the initial stages of spilling breakers are dramatically affected by wind and surfactants. The size of bulge increases with the wind speed while the capillary waves are kept nearly the same. In the presence of surfactants and wind, both the amplitude and number of capillary waves are reduced and the slope of the front face of the wave increases.

  15. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.

    PubMed

    Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo

    2013-09-03

    Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.

  16. Stability limits of unsteady open capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.

    This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.

  17. Impact on floating membranes.

    PubMed

    Vandenberghe, Nicolas; Duchemin, Laurent

    2016-05-01

    When impacted by a rigid body, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. First, a longitudinal wave front, associated with in-plane deformation of the membrane and traveling at constant speed, separates an outward stress-free domain from a stretched domain. Then, in the stretched domain a dispersive transverse wave travels at a speed that depends on the local stretching rate. The dynamics is found to be self-similar in time. Using this property, we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. During wave propagation, we observe the development of a buckling instability that gives rise to radial wrinkles. We address the dynamics of this fluid-body system, including the rapid deceleration of an impactor of finite mass, an issue that may have applications in the domain of absorption of impact energy.

  18. Dispersion of capillary waves in elliptical cylindrical jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-11-01

    In this work motion of a low speed liquid jet issuing from an elliptic orifice through the air is studied. Mathematical solution of viscous free-surface flow for this asymmetric geometry is simplified by using one-dimensional Cosserat (directed curve) equations which can be assumed as a low order form of Navier-Stokes equations for slender jets. Linear solution is performed and temporal and spatial dispersion equations are derived. Growth rate and phase speed of unstable and stable modes under various conditions are presented. The possibility of instability of asymmetric disturbances is studied too. With distance down the jet, major and minor axes are altered and finally jet breaks up due to capillary instability. The effect of jet velocity and viscosity and also orifice ellipticity on axis-switching and breakup is investigated.

  19. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    PubMed

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.

  20. Isolated drops from capillary jets by means of Gaussian wave packets

    NASA Astrophysics Data System (ADS)

    Garcia, Francisco Javier; Gonzalez, Heliodoro; Castrejon-Pita, Alfonso Arturo; Castrejon-Pita, Jose Rafael; Gomez-Aguilar, Francisco Jose

    2017-11-01

    The possibility of obtaining isolated drops from a continuous liquid jet through localized velocity perturbations is explored analytically, numerically and experimentally. We show that Gaussian wave packets are appropriate for this goal. A temporal linear analysis predicts the early evolution of these wave packets and provides an estimate of the breakup length of the jet. Non-linear numerical simulations allow us both to corroborate these results and to obtain the shape of the surface of the jet prior to breakup. Finally, we show experimental evidence that stimulating with a Gaussian wave packet can lead to the formation of an isolated drop without disturbing the rest of the jet. The authors acknowledge support from the Spanish Government under Contract No. FIS2014-25161, the Junta de Andalucia under Contract No. P11-FQM-7919, the EPSRC-UK via the Grant EP/P024173/1, and the Royal Society.

  1. Gas exchange across the air-sea interface

    NASA Astrophysics Data System (ADS)

    Hasse, L.; Liss, P. S.

    1980-10-01

    The physics of gas exchange at the air-sea interface are reviewed. In order to describe the transfer of gases in the liquid near the boundary, a molecular plus eddy diffusivity concept is used, which has been found useful for smooth flow over solid surfaces. From consideration of the boundary conditions, a similar dependence of eddy diffusivity on distance from the interface can be derived for the flow beneath a gas/liquid interface, at least in the absence of waves. The influence of waves is then discussed. It is evident from scale considerations that the effect of gravity waves is small. It is known from wind tunnel work that capillary waves enhance gas transfer considerably. The existing hypotheses are apparently not sufficient to explain the observations. Examination of field data is even more frustrating since the data do not show the expected increase of gas exchange with wind speed.

  2. Surface tension dominates insect flight on fluid interfaces.

    PubMed

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.

  3. A mathematical model of the chevron-like wave pattern on a weld piece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowden, J.; Kapadia, P.

    1996-12-31

    In welding processes in general the surface of a metallic weld displays a chevron-like pattern. Such a pattern is also clearly seen to be present if welding is carried out using a laser beam. In the welding process a laser beam is directed normally on the metal undergoing translation and usually penetrates it to form a keyhole. The keyhole is surrounded by a molten region, the weld pool. Even if a CO{sub 2} laser is used, there are numerous fluctuations and instabilities that occur, so that the keyhole imposes forcing frequencies on the molten weld pool, additional to vibrations attendantmore » on the process of translation. The weld pool in turn responds by supporting a spectrum of waves of different frequencies involving the natural frequency of the weld pool as well as various forcing frequencies. These waves are surface tension-type capillary waves and previous publications have attempted to model their behavior mathematically, although not all aspects of the problem have always been included. The wave pattern that is manifested in the chevron-like pattern seen on the weld piece is, however, not necessarily identical to the wave pattern present in the weld pool. This is because the chevron-like wave pattern forms as a result of several complicating effects that arise as the weld specimen cools on its surface immediately after the weld has been formed. This process involves the waves on the surface of the weld pool freezing to form the chevron-like wave pattern. A feature that is often ignored is the fact that the waves on the weld pool can only be regarded as irrotational if the translation speed is sufficiently low. This paper describes mathematically the formation of the chevron-like wave pattern based on suitable simplifying assumptions to model the process. The mathematical description of the way in which this chevron-like pattern forms is a step toward a more comprehensive understanding of this process.« less

  4. Identification of capillary rarefaction using intracoronary wave intensity analysis with resultant prognostic implications for cardiac allograft patients.

    PubMed

    Broyd, Christopher J; Hernández-Pérez, Francisco; Segovia, Javier; Echavarría-Pinto, Mauro; Quirós-Carretero, Alicia; Salas, Clara; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Nombela-Franco, Luis; Salinas, Pablo; Núñez-Gil, Ivan; Del Trigo, Maria; Goicolea, Javier; Alonso-Pulpón, Luis; Fernández-Ortiz, Antonio; Parker, Kim; Hughes, Alun; Mayet, Jamil; Davies, Justin; Escaned, Javier

    2018-05-21

    Techniques for identifying specific microcirculatory structural changes are desirable. As such, capillary rarefaction constitutes one of the earliest changes of cardiac allograft vasculopathy (CAV) in cardiac allograft recipients, but its identification with coronary flow reserve (CFR) or intracoronary resistance measurements is hampered because of non-selective interrogation of the capillary bed. We therefore investigated the potential of wave intensity analysis (WIA) to assess capillary rarefaction and thereby predict CAV. Fifty-two allograft patients with unobstructed coronary arteries and normal left ventricular (LV) function were assessed. Adequate aortic pressure and left anterior descending artery flow measurements at rest and with intracoronary adenosine were obtained in 46 of which 2 were lost to follow-up. In a subgroup of 15 patients, simultaneous RV biopsies were obtained and analysed for capillary density. Patients were followed up with 1-3 yearly screening angiography. A significant relationship with capillary density was noted with CFR (r = 0.52, P = 0.048) and the backward decompression wave (BDW) (r = -0.65, P < 0.01). Over a mean follow-up of 9.3 ± 5.2 years patients with a smaller BDW had an increased risk of developing angiographic CAV (hazard ratio 2.89, 95% CI 1.12-7.39; P = 0.03). Additionally, the index BDW was lower in those who went on to have a clinical CAV-events (P = 0.04) as well as more severe disease (P = 0.01). Within cardiac transplant patients, WIA is able to quantify the earliest histological changes of CAV and can predict clinical and angiographic outcomes. This proof-of-concept for WIA also lends weight to its use in the assessment of other disease processes in which capillary rarefaction is involved.

  5. A model and numerical method for compressible flows with capillary effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr

    2017-04-01

    A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less

  6. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  7. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.

  8. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  9. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.

    PubMed

    Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo

    2015-04-07

    In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.

  10. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  11. Scale-dependent Ocean Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.

    1995-01-01

    Wave turbulence is a common feature of nonlinear wave motions observed when external forcing acts during a long period of time, resulting in developed spectral cascades of energy, momentum, and other conserved integrals. In the ocean, wave turbulence occurs on various scales from capillary ripples, and those of baroclinic inertia-gravity, to Rossby waves. Oceanic wave motions are discussed.

  12. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  13. Strait of Gibraltar as seen from STS-60

    NASA Image and Video Library

    1994-02-09

    STS060-88-070 (3-11 Feb 1994) --- This view shows sunglint in the Strait of Gibralter. In this photograph a high pressure atmospheric system over the Iberian Peninsula has set the conditions for seeing a plankton bloom along the Moroccan coast in the Alboran Sea (Western Mediterranean) coastal counter current as well as illumining the influence of winds in the sunglint pattern near the Strait of Gibraltar. Where the water is ruffled from a wind gust, such as off Cadiz, Spain, the surface is less reflective and thus appears dark. A combination of the effects of the tide and the surface winds through the Strait of Gibraltar have created a unique sunglint pattern at the entrance of the Mediterranean. The Atlantic Ocean waters are flowing with the tide through the Strait of Gibraltar into the Mediterranean Sea and are probably smoothing out some of the smaller waves at the surface. The incoming tide generates internal waves as can be faintly seen in this photograph. The incoming relatively cooler, less dense Atlantic water flows over the warm, more saline Mediterranean water. As the tide moves into the Strait of Gibraltar it encounters the Camarinal Sill, which is like a cliff under the water, south of Camarinal Point, Spain. Internal waves are generated at this sill and they travel along the density boundary between the Atlantic water and the Mediterranean water masses. There is little evidence of the internal waves at the surface of the ocean. We can see them in spacecraft photography because of the sunglint which reflects off the different water layers in differential patterns. The internal waves also smooth out some of the bands of capillary waves at the surface. That is, the sun reflects more brightly from these smooth areas, showing the pattern of the underwater waves more prominently than do the surface waves. The Bay of Cadiz on the southwest coast of Spain, the Rock of Gibraltar, and the Moroccan coast are also beautifully illustrated in this photography. The focus for scientists, however, remains the high clarity and spatial resolution given by sunglint studies to physical phenomena in the ocean.

  14. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    PubMed

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Method of making tapered capillary tips with constant inner diameters

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.

  16. Droplet spreading and capillary imbibition in a porous medium: A coupled IB-VOF method based numerical study

    NASA Astrophysics Data System (ADS)

    Das, Saurish; Patel, H. V.; Milacic, E.; Deen, N. G.; Kuipers, J. A. M.

    2018-01-01

    We investigate the dynamics of a liquid droplet in contact with a surface of a porous structure by means of the pore-scale level, fully resolved numerical simulations. The geometrical details of the solid porous matrix are resolved by a sharp interface immersed boundary method on a Cartesian computational grid, whereas the motion of the gas-liquid interface is tracked by a mass conservative volume of fluid method. The numerical simulations are performed considering a model porous structure that is approximated by a 3D cubical scaffold with cylindrical struts. The effect of the porosity and the equilibrium contact angle (between the gas-liquid interface and the solid struts) on the spreading behavior, liquid imbibition, and apparent contact angle (between the gas-liquid interface and the porous base) are studied. We also perform several simulations for droplet spreading on a flat surface as a reference case. Gas-liquid systems of the Laplace number, La = 45 and La = 144 × 103 are considered neglecting the effect of gravity. We report the time exponent (n) and pre-factor (C) of the power law describing the evolution of the spreading diameter (S = Ctn) for different equilibrium contact angles and porosity. Our simulations reveal that the apparent or macroscopic contact angle varies linearly with the equilibrium contact angle and increases with porosity. Not necessarily for all the wetting porous structures, a continuous capillary drainage occurs, and we find that the rate of the capillary drainage very much depends on the fluid inertia. At La = 144 × 103, numerically we capture the capillary wave induced pinch-off and daughter droplet ejection. We observe that on the porous structure the pinch-off is weak compared to that on a flat plate.

  17. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  18. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves.

    PubMed

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-28

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  19. Predictions of homogeneous nucleation rates for n-alkanes accounting for the diffuse phase interface and capillary waves

    NASA Astrophysics Data System (ADS)

    Planková, Barbora; Vinš, Václav; Hrubý, Jan

    2017-10-01

    Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.

  20. Thermal Performance of Surface Wick Structures.

    NASA Astrophysics Data System (ADS)

    Chen, Yongkang; Tavan, Noel; Baker, John; Melvin, Lawrence; Weislogel, Mark

    2010-03-01

    Microscale surface wick structures that exploit capillary driven flow in interior corners have been designed. In this study we examine the interplay between capillary flow and evaporative heat transfer that effectively reduces the surface temperature. The tests are performed by raising the surface temperature to various levels before the flow is introduced to the surfaces. Certainly heat transfer weakens the capillary driven flow. It is observed, however, the surface temperature can be reduced significantly. The effects of geometric parameters and interconnectivity are to be characterized to identify optimal configurations.

  1. Suppression of thermally excited capillary waves by shear flow.

    PubMed

    Derks, Didi; Aarts, Dirk G A L; Bonn, Daniel; Lekkerkerker, Henk N W; Imhof, Arnout

    2006-07-21

    We investigate the thermal fluctuations of the colloidal gas-liquid interface subjected to a shear flow parallel to the interface. Strikingly, we find that the shear strongly suppresses capillary waves, making the interface smoother. This phenomenon can be described by introducing an effective interfacial tension that increases with the shear rate. The increase of sigma(eff) is a direct consequence of the loss of interfacial entropy caused by the flow, which affects especially the slow fluctuations. This demonstrates that the interfacial tension of fluids results from an intrinsic as well as a fluctuation contribution.

  2. Substructured multibody molecular dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  3. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  4. Analysis of flow dynamics through small diameter gas sampling systems

    NASA Technical Reports Server (NTRS)

    Brown, K. G.

    1984-01-01

    The removal of gas material through a capillary opening in a surface is analyzed. The gas, from which the sample is removed, is moving past the surface at supersonic velocities. A variety of possible conditions of temperature, pressure and composition are discussed in an effort to emulate conditions that might be found at the surface of a vehicle traversing the altitude range 100-50 km, or might exist at the surface of a model in the stream of a high enthalpy wind tunnel. Aspects discussed include: (1) the throughput of the capillary for conditions of different lengths and different L/a (length/radius) ratios; (2) the total throughput when the surface in question contains many hundreds of these capillaries; (3) the effect of the capillaries upon the composition of the analyzed gas; (4) the effect of the capillary or capillaries upon the gas stream itself; and (5) the implications of the calculations upon the possible implementation of this type of device as an inlet for a mass spectrometer to be developed for analyzing the upper atmosphere.

  5. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    NASA Astrophysics Data System (ADS)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  6. Surface dynamics of micellar diblock copolymer films

    NASA Astrophysics Data System (ADS)

    Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh

    2011-03-01

    We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  7. Driving Cell Seeding Using Vibration Induced Surface Waves

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Friend, James; Yeo, Leslie

    2007-11-01

    The ability to load cells into scaffold matrices is an important step in in-vitro cell culturing. Efficient and rapid cell seeding is however difficult and has traditionally been carried out using a static method by allowing gravity to drive the perfusion of the cell suspension into the porous scaffold. Nevertheless, due to the large capillary pressures associated with the small scaffold pore dimensions, the static cell seeding method is both slow and inefficient; the majority of cells are distributed close to the surface of the scaffold due to the inability of the fluid to penetrate deep into the scaffold. By driving the liquid into the scaffold using small amplitude surface vibrations on a piezoelectric substrate, we demonstrate that the cells can be infused much quicker (approximately 10 seconds) than if allowed to perfuse by gravity alone, which requires seeding times in excess of 30 minutes. Greater penetration of the fluid and hence the cells into the scaffold is also achieved with the vibration forcing, thus giving rise to a more uniform cell distribution within the scaffold. Moreover, we have verified that 80% of the yeast cells seeded by the surface waves remained viable.

  8. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  9. Microjet formation in a capillary by laser-induced cavitation

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2010-11-01

    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  10. Effects of Different Waveforms on the Performance of Active Capillary Dielectric Barrier Discharge Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dumlao, Morphy C.; Xiao, Dan; Zhang, Daming; Fletcher, John; Donald, William A.

    2017-04-01

    Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, 2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for 50 h by common 9 V-battery (PP3).

  11. Microexplosions initiated by a microwave capillary torch on a metal surface at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    2015-07-15

    The interaction of the plasma of a microwave capillary argon torch with a metal surface was studied experimentally. It is shown that the interaction of the plasma jet generated by the capillary plasma torch with the metal in atmospheric-pressure air leads to the initiation of microexplosions (sparks) on the metal surface. As a result, the initially smooth surface acquires a relief in the form of microtips and microcraters. The possibility of practical application of the observed phenomenon is discussed.

  12. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions, for both the physical and phenomenological models.

  13. Mathematical and computational studies of equilibrium capillary free surfaces

    NASA Technical Reports Server (NTRS)

    Albright, N.; Chen, N. F.; Concus, P.; Finn, R.

    1977-01-01

    The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated.

  14. Investigation of capillary nanosecond discharges in air at moderate pressure: comparison of experiments and 2D numerical modelling

    NASA Astrophysics Data System (ADS)

    Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.

    2014-09-01

    Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.

  15. Generation of capillary instabilities by external disturbances in a liquid jet. Ph.D. Thesis - State Univ. of N.Y.

    NASA Technical Reports Server (NTRS)

    Leib, S. J.

    1985-01-01

    The receptivity problem in a circular liquid jet is considered. A time harmonic axial pressure gradient is imposed on the steady, parallel flow of a jet of liquid emerging from a circular duct. Using a technique developed in plasma physics a casual solution to the forced problem is obtained over certain ranges of Weber number for a number of mean velocity profiles. This solution contains a term which grows exponentially in the downstream direction and can be identified with a capillary instability wave. Hence, it is found that the externally imposed disturbances can indeed trigger instability waves in a liquid jet. The amplitude of the instability wave generated relative to the amplitude of the forcing is computed numerically for a number of cases.

  16. Faraday wave patterns on a square cell network

    NASA Astrophysics Data System (ADS)

    Peña-Polo, Franklin; Vargas, Carlos A.; Vásquez-González, Benjamín; Medina, Abraham; Trujillo, Leonardo; Klapp, Jaime; Sigalotti, Leonardo Di G.

    2017-05-01

    We present the experimental observations of the Faraday instability when the vibrated liquid is contained in a network of small square cells for exciting frequencies in the range 10≤ F≤ 24 Hz. A sweep of the parameter space has been performed to investigate the amplitudes and frequencies of the driving force for which different patterns form over the network. Regular patterns in the form of square lattices are observed for driving frequencies in the range 10≤ F<14 Hz, while ordered matrices of oscillons are formed for 1423 Hz, disordered periodic patterns appear within individual cells for a small range of amplitudes. In this case, the wave field is dominated by oscillating blobs that interact on the capillary-gravity scale. A Pearson correlation analysis of the recorded videos shows that for all ordered patterns, the surface waves are periodic and correspond to Faraday waves of dominant frequency equal to half the excitation frequency (i.e., f=F/2). In contrast, the oscillons formed for 1423 Hz are not subharmonic and correspond to periodic harmonic waves with f=nF/2 (for n=2,4,\\ldots ). We find that the experimentally determined minimum forcing necessary to destabilize the rest state and generate surface waves is consistent with a recent stability analysis of stationary solutions as derived from a new dispersion relation for time-periodic waves with nonzero forcing and dissipation.

  17. Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten

    2013-03-01

    The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.

  18. Generalized model for laser-induced surface structure in metallic glass

    NASA Astrophysics Data System (ADS)

    Lin-Mao, Ye; Zhen-Wei, Wu; Kai-Xin, Liu; Xiu-Zhang, Tang; Xiang-Ming, Xiong

    2016-06-01

    The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated. We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid. A generalized model is presented to describe the special morphology, which fits the experimental result well. It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples. The greater the viscosity is, the shorter the amplitude and the wavelength are. Project supported by the National Natural Science Foundation of China (Grant Nos. 10572002, 10732010, and 11332002).

  19. Interfacial solvation thermodynamics

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2016-10-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.

  20. Hybrid Phospholipid Bilayer Coatings for Separations of Cationic Proteins in Capillary Zone Electrophoresis

    PubMed Central

    Gallagher, Elyssia S.; Adem, Seid M.; Bright, Leonard K.; Calderon, Isen A. C.; Mansfield, Elisabeth; Aspinwall, Craig A.

    2014-01-01

    Protein separations in capillary zone electrophoresis (CZE) suffer from non-specific adsorption of analytes to the capillary surface. Semi-permanent phospholipid bilayers (PLBs) have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m−2, respectively, compared to 17 ± 1 mJ m−2 for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3 – 1.9 × 10−4 cm2 V−1s−1) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10−4 cm2 V−1s−1, 4.8 ± 0.4 × 10−4 cm2 V−1s−1, and 6.0 ± 0.2 × 10−4 cm2 V−1s−1, respectively), with increased stability compared to PLB coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6 %, n ≥ 6) with separation efficiencies as high as 200,000 plates m−1. PMID:24459085

  1. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1976-01-01

    The crystal growth method described is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. A capillary die is so designed that the bounding edges of the die top are not parallel or concentric with the growing ribbon. The new dies allow a higher melt meniscus with concomitant improvements in surface smoothness and freedom from SiC surface particles, which can degrade perfection.

  2. Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Sasorov, P. V.; Gasilov, V. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Benedetti, C.; Bulanov, S. S.; Gonsalves, A.; Mao, H.-S.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.

    2017-08-01

    One of the most robust methods, demonstrated to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes. In the present work, such simulations are performed using the code MARPLE. First, the process of capillary filling with cold hydrogen before the discharge is fired, through the side supply channels is simulated. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate the effectiveness of the beam coupling with the channeling plasma wave guide and of the electron acceleration, modeling of the laser-plasma interaction was performed with the code INF&RNO.

  3. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    DOEpatents

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  4. Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity

    NASA Technical Reports Server (NTRS)

    Chen, Yi-Ju; Steen, Paul H.

    1996-01-01

    A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).

  5. Surface sampling concentration and reaction probe

    DOEpatents

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  6. Surface sampling concentration and reaction probe with controller to adjust sampling position

    DOEpatents

    Van Berkel, Gary J.; ElNaggar, Mariam S.

    2016-07-19

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  7. CO2/ brine substitution experiments at simulated reservoir conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  8. Experimental study of dual polarized radar return from the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Lavrova, O. Yu.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2017-10-01

    Dual-polarized microwave radars are of particular interest nowadays as perspective tool of ocean remote sensing. Microwave radar backscattering at moderate and large incidence angles according to conventional models is determined by resonance (Bragg) surface waves typically of cm-scale wavelength range. Some recent experiments have indicated, however, that an additional, non Bragg component (NBC) contributes to the radar return. The latter is considered to occur due to wave breaking. At present our understanding of the nature of different components of radar return is still poor. This paper presents results of field experiment using an X-/C-/S-band Doppler radar operating at HH- and VVpolarizations. The intensity and radar Doppler shifts for Bragg and non Bragg components are retrieved from measurements of VV and HH radar returns. Analysis of a ratio of VV and HH radar backscatter - polarization ratio (PR) has demonstrated a significant role of a non Bragg component. NBC contributes significantly to the total radar backscatter, in particular, at moderate incidence angles (about 50-70 deg.) it is 2-3 times smaller than VV Bragg component and several times larger that HH Bragg component. Both NBC and BC depend on azimuth angle, being minimal for cross wind direction, but NBC is more isotropic than BC. It is obtained that velocities of scatterers retrieved from radar Doppler shifts are different for Bragg waves and for non Bragg component; NBC structures are "faster" than Bragg waves particularly for upwind radar observations. Bragg components propagate approximately with phase velocities of linear gravity-capillary waves (when accounting for wind drift). Velocities of NBC scatterers depend on radar band, being the largest for S-band and the smallest at X-band, this means that different structures on the water surface are responsible for non Bragg scattering in a given radar band.

  9. Interfacial gauge methods for incompressible fluid dynamics

    DOE PAGES

    Saye, R.

    2016-06-10

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less

  10. Ocean Wave Studies with Applications to Ocean Modeling and Improvement of Satellite Altimeter Measurements

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1999-01-01

    Combining analysis of satellite data (altimeter, scatterometer, high-resolution visible and infrared images, etc.) with mathematical modeling of non-linear wave processes, we investigate various ocean wave fields (on scales from capillary to planetary), their role in ocean dynamics and turbulent transport (of heat and biogeochemical quantities), and their effects on satellite altimeter measuring accuracy. In 1998 my attention was focused on long internal gravity waves (10 to 1000 km), known also as baroclinic inertia-gravity (BIG) waves. We found these waves to be a major factor of altimeter measurements "noise," resulting in a greater uncertainty [up to 10 cm in terms of sea surface height (SSH) amplitude] in the measured SSH signal than that caused by the sea state bias variations (up to 5 cm or so). This effect still remains largely overlooked by the satellite altimeter community. Our studies of BIG waves address not only their influence on altimeter measurements but also their role in global ocean dynamics and in transport and turbulent diffusion of biogeochemical quantities. In particular, in collaboration with Prof Peter Weichman, Caltech, we developed a theory of turbulent diffusion caused by wave motions of most general nature. Applied to the problem of horizontal turbulent diffusion in the ocean, the theory yielded the effective diffusion coefficient as a function of BIG wave parameters obtainable from satellite altimeter data. This effort, begun in 1997, has been successfully completed in 1998. We also developed a theory that relates spatial fluctuations of scalar fields (such as sea surface temperature, chlorophyll concentration, drifting ice concentration, etc.) to statistical characteristics of BIG waves obtainable from altimeter measurements. A manuscript is in the final stages of preparation. In order to verify the theoretical predictions and apply them to observations, we are now analyzing Sea-viewing Wide Field of view Sensor (SeaWiFS) and Field of view Sensor (SeaWiFS) and Advanced Very High-Resolution Radiometer (AVHRR) data on sea surface temperature (SST) and chlorophyll concentration jointly with TOPEX/POSEIDON data on SSH variations.

  11. Pulmonary microvascular dysfunction and pathological changes induced by blast injury in a rabbit model.

    PubMed

    Wu, Si Yu; Han, Geng Fen; Kang, Jian Yi; Zhang, Liang Chao; Wang, Ai Min; Wang, Jian Min

    2016-09-01

    Vascular leakage has been proven to play a critical role in the incidence and development of explosive pulmonary barotrauma. Quantitatively investigated in the present study was the severity of vascular leakage in a gradient blast injury series, as well as ultrastructural evidence relating to pulmonary vascular leakage. One hundred adult male New Zealand white rabbits were randomly divided into 5 groups according to distance from the detonator (10 cm, 15 cm, 20 cm, 30 cm, and sham control). Value of pulmonary vascular leakage was monitored by a radioactive 125I-albumin labeling method. Pathological changes caused by the blast wave were examined under light and electron microscopes. Transcapillary escape rate of 125I-albumin and residual radioactivity in both lungs increased significantly at the distances of 10 cm, 15 cm, and 20 cm, suggesting increased severity of vascular leakage in these groups. Ultrastructural observation showed swelling of pulmonary capillary endothelial cells and widened gap between endothelial cells in the 10-cm and 15-cm groups. Primary blast wave can result in pulmonary capillary blood leakage. Blast wave can cause swelling of pulmonary capillary endothelial cells and widened gap between endothelial cells, which may be responsible for pulmonary vascular leakage.

  12. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  13. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  14. Rough surface adhesion in the presence of capillary condensation

    DOE PAGES

    DelRio, Frank W.; Dunn, Martin L.; Phinney, Leslie M.; ...

    2007-04-17

    Capillary condensation of water can have a significant effect on rough surface adhesion. Here, to explore this phenomenon between micromachined surfaces, the authors perform microcantilever experiments as a function of surface roughness and relative humidity (RH). Below a threshold RH, the adhesion is mainly due to van der Waals forces across extensive noncontacting areas. Above the threshold RH, the adhesion jumps due to capillary condensation and increases towards the upper limit of Γ=144mJ/m 2. Lastly, a detailed model based on the measured surface topography qualitatively agrees with the experimental data only when the topographic correlations between the upper and lowermore » surfaces are considered.« less

  15. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method.

    PubMed

    Ambler, Michael; Vorselaars, Bart; Allen, Michael P; Quigley, David

    2017-02-21

    We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

  16. Capillary-induced crack healing between surfaces of nanoscale roughness.

    PubMed

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  17. Surface-directed capillary system; theory, experiments and applications.

    PubMed

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques

    2005-08-01

    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  18. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    PubMed

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  19. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    NASA Astrophysics Data System (ADS)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  20. Phase diagram and universality of the Lennard-Jones gas-liquid system.

    PubMed

    Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun

    2012-05-28

    The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.

  1. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Dynamics and Stability of Capillary Surfaces: Liquid Switches at Small Scales

    NASA Technical Reports Server (NTRS)

    Steen, Paul H.; Bhandar, Anand; Vogel, Michael J.; Hirsa, Amir H.

    2004-01-01

    The dynamics and stability of systems of interfaces is central to a range of technologies related to the Human Exploration and Development of Space (HEDS). Our premise is that dramatic shape changes can be manipulated to advantage with minimal input, if the system is near instability. The primary objective is to develop the science base to allow novel approaches to liquid management in low-gravity based on this premise. HEDS requires efficient, reliable and lightweight technologies. Our poster will highlight our progress toward this goal using the capillary switch as an example. A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. For typical liquids (e.g., water) against gas on earth, capillary surfaces occur on the millimeterscale and smaller where shape deformation due to gravity is unimportant. In low gravity, they can occur on the centimeter scale. Capillary surfaces can be combined to make a switch a system with multiple stable states. A capillary switch can generate motion or effect force. To be practical, the energy barriers of such a switch must be tunable, its switching time (kinetics) short and its triggering mechanism reliable. We illustrate these features with a capillary switch that consists of two droplets, coupled by common pressure. As long as contact lines remained pinned, motions are inviscid, even at sub-millimeter scales, with consequent promise of low-power consumption at the device level. Predictions of theory are compared to experiment on i) a soap-film prototype at centimeter scale and ii) a liquid droplet switch at millimeter-scale.

  3. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System

    PubMed Central

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick

    2017-01-01

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored. PMID:28841186

  4. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less

  5. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System

    DOE PAGES

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; ...

    2017-08-25

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less

  6. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System.

    PubMed

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick

    2017-08-25

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.

  7. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  8. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M

    2014-01-01

    Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.

  9. Investigation of the capillary flow through open surface microfluidic structures

    NASA Astrophysics Data System (ADS)

    Taher, Ahmed; Jones, Benjamin; Fiorini, Paolo; Lagae, Liesbet

    2017-02-01

    The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step. An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.

  10. Review of oil spill remote sensing.

    PubMed

    Fingas, Merv; Brown, Carl

    2014-06-15

    Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.

    PubMed

    Keh, Huan J; Ding, Jau M

    2003-07-15

    An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.

  12. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.

    2016-08-15

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  13. Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.

    PubMed

    Asay, David B; Kim, Seong H

    2007-11-20

    The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.

  14. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    NASA Astrophysics Data System (ADS)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  15. Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation

    DOEpatents

    Hall, Aaron C.; Hosking, F. Michael ,; Reece, Mark

    2003-06-24

    A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.

  16. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography.

    PubMed

    Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C

    2014-01-03

    In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination.

    PubMed

    Xiong, Yan; Ye, Zhongbin; Xu, Jing; Liu, Yucheng; Zhang, Hanyin

    2014-04-01

    A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ(ex)/λ(em)), and linearity of 3 × 10(-9)-5 × 10(-6) g mL(-1) BPA, a limit of detection of 1.7 × 10(-9) g mL(-1) BPA (3σ), and a relative standard deviation of 2.4% (n = 5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures.

  18. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  19. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    PubMed

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  20. Capillary Pressure of a Liquid Between Uniform Spheres Arranged in a Square-Packed Layer

    NASA Technical Reports Server (NTRS)

    Alexader, J. Iwan D.; Slobozhanin, Lev A.; Collicott, Steven H.

    2004-01-01

    The capillary pressure in the pores defined by equidimensional close-packed spheres is analyzed numerically. In the absence of gravity the menisci shapes are constructed using Surface Evolver code. This permits calculation the free surface mean curvature and hence the capillary pressure. The dependences of capillary pressure on the liquid volume constructed here for a set of contact angles allow one to determine the evolution of basic capillary characteristics under quasi-static infiltration and drainage. The maximum pressure difference between liquid and gas required for a meniscus passing through a pore is calculated and compared with that for hexagonal packing and with approximate solution given by Mason and Morrow [l]. The lower and upper critical liquid volumes that determine the stability limits for the equilibrium capillary liquid in contact with square packed array of spheres are tabulated for a set of contact angles.

  1. A novel method of creation capillary structures in metal parts based on using selective laser melting methid of 3D printing technology and surface roughness

    NASA Astrophysics Data System (ADS)

    Ivanov, Roman A.; Melkikh, Alexey V.

    2017-09-01

    It has been experimentally proved that it is possible to produce a metal capillary structure with significant capillary action and free shape configuration using selective laser melting. Capillaries are created by dividing the solid detail volume into micro-sized parallel walls with roughness as a result of SLM 3D printing. Experiments are conducted on aluminum powder with particle size in the range of 10-40 µm (,) and distances in 3D model between surfaces incapillary generation zone in the range of 50-200 µm. It is showed that products produced from model with 100 µm gaps have the greatest efficiency of fluid lifting as a result of obtaining stable arrays of capillaries of 20-40 µm in size. Change in the direction of (growing) printingthe product doesn't significantly influence on capillary geometry, but it affects on safety of the structure.

  2. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  3. Capillary pumping independent of the liquid surface energy and viscosity

    NASA Astrophysics Data System (ADS)

    Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter

    2018-03-01

    Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.

  4. Laser-induced spalling of thin metal film from silica substrate followed by inflation of microbump

    NASA Astrophysics Data System (ADS)

    Inogamov, N. A.; Zhakhovsky, V. V.; Migdal, K. P.

    2016-04-01

    Dynamics of a thin gold film on a silica substrate triggered by fast heating with the use of a subpicosecond laser pulse is studied. The pressure waves generated by such heating may result in spalling (delamination) of the film and its flying away from the substrate after an acoustic time defined by the film thickness and speed of sound in metal. Intensity of the heating laser beam has the spatial Gaussian distribution in a cross section. Therefore, the heating of film surface is non-uniform along cylindrical radius measured from the beam axis. As a result of such heating, the velocity distribution in material flying away from the substrate has a maximum at the beam axis. Thus, the separated film has dome-like shape which inflates with time. Volume of an empty cavity between the separated film and the substrate increases during inflation. Typical flight velocities are in the range of 30-200 m/s. The inflation stage can last from few to several tens of nanoseconds if the diffraction-limited micron-sized laser focal spots are used. Capillary forces acting along the warped flying film decelerate the inflation of dome. Capillary deceleration of a bulging dome focuses mass flow along the dome shell in the direction of its axis. This results in formation of an axial jet and droplet in a tip of the dome. Our new simulation results and comparisons with experiments are presented. The results explain appearance of debris in a form of frozen droplets on a surface of an irradiated spot. This is the consequence of the capillary return of a droplet.

  5. The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices.

    PubMed

    Kleinert, Jairus; Srinivasan, Vijay; Rival, Arnaud; Delattre, Cyril; Velev, Orlin D; Pamula, Vamsee K

    2015-05-01

    The operation of digital microfluidic devices with water droplets manipulated by electrowetting is critically dependent on the static and dynamic stability and lubrication properties of the oil films that separate the droplets from the solid surfaces. The factors determining the stability of the films and preventing surface fouling in such systems are not yet thoroughly understood and were experimentally investigated in this study. The experiments were performed using a standard digital microfluidic cartridge in which water droplets enclosed in a thin, oil-filled gap were transported over an array of electrodes. Stable, continuous oil films separated the droplets from the surfaces when the droplets were stationary. During droplet transport, capillary waves formed in the films on the electrode surfaces as the oil menisci receded. The waves evolved into dome-shaped oil lenses. Droplet deformation and oil displacement caused the films at the surface opposite the electrode array to transform into dimples of oil trapped over the centers of the droplets. Lower actuation voltages were associated with slower film thinning and formation of fewer, but larger, oil lenses. Lower ac frequencies induced oscillations in the droplets that caused the films to rupture. Films were also destabilized by addition of surfactants to the oil or droplet phases. Such a comprehensive understanding of the oil film behavior will enable more robust electrowetting-actuated lab-on-a-chip devices through prevention of loss of species from droplets and contamination of surfaces at points where films may break.

  6. The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices

    PubMed Central

    Kleinert, Jairus; Srinivasan, Vijay; Rival, Arnaud; Delattre, Cyril; Velev, Orlin D.; Pamula, Vamsee K.

    2015-01-01

    The operation of digital microfluidic devices with water droplets manipulated by electrowetting is critically dependent on the static and dynamic stability and lubrication properties of the oil films that separate the droplets from the solid surfaces. The factors determining the stability of the films and preventing surface fouling in such systems are not yet thoroughly understood and were experimentally investigated in this study. The experiments were performed using a standard digital microfluidic cartridge in which water droplets enclosed in a thin, oil-filled gap were transported over an array of electrodes. Stable, continuous oil films separated the droplets from the surfaces when the droplets were stationary. During droplet transport, capillary waves formed in the films on the electrode surfaces as the oil menisci receded. The waves evolved into dome-shaped oil lenses. Droplet deformation and oil displacement caused the films at the surface opposite the electrode array to transform into dimples of oil trapped over the centers of the droplets. Lower actuation voltages were associated with slower film thinning and formation of fewer, but larger, oil lenses. Lower ac frequencies induced oscillations in the droplets that caused the films to rupture. Films were also destabilized by addition of surfactants to the oil or droplet phases. Such a comprehensive understanding of the oil film behavior will enable more robust electrowetting-actuated lab-on-a-chip devices through prevention of loss of species from droplets and contamination of surfaces at points where films may break. PMID:26045729

  7. Paramecium swimming in capillary tube

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  8. Effects of aperture variability and wettability on immiscible displacement in fractures

    NASA Astrophysics Data System (ADS)

    Yang, Zhibing; Méheust, Yves; Neuweiler, Insa

    2017-04-01

    Fluid-fluid displacement in porous and fractured media is an important process. Understanding and controlling this process is key to many practical applications, such as hydrocarbon recovery, geological storage of CO2, groundwater remediation, etc. Here, we numerically study fluid-fluid displacement in rough-walled fractures. We focus on the combined effect of wettability and fracture surface topography on displacement patterns and interface growth. We develop a novel numerical model to simulate dynamic fluid invasion under the influence of capillary and viscous forces. The capillary force is calculated using the two principal curvatures (aperture-induced curvature and in-plane curvature) at the fluid-fluid interface, and the viscous force is taken into account by solving the fluid pressure distribution. The aperture field of a fracture is represented by a spatially correlated random field, which is described by a power spectrum for the fracture wall topography and a cutoff wave-length. We numerically produce displacement patterns ranging from stable displacement, capillary fingering, and viscous fingering, as well as the transitions between them. We show that both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. Implications of these results will be discussed.

  9. Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime

    NASA Astrophysics Data System (ADS)

    Gu, Shibo; Wang, Lipo; Hung, David L. S.

    2017-06-01

    For jet flow emanating from noncircular orifices, an unbalanced surface tension force leads to capillary instability, which is independent of influence from the ambient air in the Rayleigh regime. In the present article, the dynamic behavior of incompressible elliptical jets in the Rayleigh regime is investigated. Theoretically, with the consideration of the fluid viscosity, the solution of the Cosserat equation consists of a particular solution and a complementary solution. For the complementary solution the wave number of disturbance modes has two complex conjugate roots, which are responsible for the jet breakup. To match the nonzero particular solution, a spatial wave needs to be introduced, which is independent of external perturbations. Physically, such a spatial wave is interpreted as the axis-switching phenomenon. The predicted features of the axis-switching wavelength and the damping effect from the fluid viscosity have been successfully verified by experimental results. Moreover, the dispersion relations from the present theory suggest that the growth rate of spatial instability is influenced by orifice eccentricity, the Weber number, and the Ohnesorge number.

  10. Instability evolution of the viscous elliptic liquid jet in the Rayleigh regime.

    PubMed

    Gu, Shibo; Wang, Lipo; Hung, David L S

    2017-06-01

    For jet flow emanating from noncircular orifices, an unbalanced surface tension force leads to capillary instability, which is independent of influence from the ambient air in the Rayleigh regime. In the present article, the dynamic behavior of incompressible elliptical jets in the Rayleigh regime is investigated. Theoretically, with the consideration of the fluid viscosity, the solution of the Cosserat equation consists of a particular solution and a complementary solution. For the complementary solution the wave number of disturbance modes has two complex conjugate roots, which are responsible for the jet breakup. To match the nonzero particular solution, a spatial wave needs to be introduced, which is independent of external perturbations. Physically, such a spatial wave is interpreted as the axis-switching phenomenon. The predicted features of the axis-switching wavelength and the damping effect from the fluid viscosity have been successfully verified by experimental results. Moreover, the dispersion relations from the present theory suggest that the growth rate of spatial instability is influenced by orifice eccentricity, the Weber number, and the Ohnesorge number.

  11. Long waves in parallel flow in Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeybek, M.; Yortsos, Y.C.

    1991-09-09

    The evolution of fluid interfaces in parallel flow in Hele-Shaw cells is studied theoretically and experimentally in the limit of large capillary number. It is shown that such interfaces support wave motion, the amplitude of which for long waves is governed by a set of Korteweg--de Vries and Airy equations. Experiments conducted in a long Hele-Shaw cell validate the theory in the symmetric case.

  12. Sound Waves Levitate Substrates

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  13. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We < 0.1, a single wave crest is observed and the minimum film thickness tends to an asymptotic value, which depends on the capillary number, as We → 0. Undulations dampen as the capillary number increases and disappear completely when Ca = 0.5 . When We > 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  14. Novel gas chromatographic detector utilizing the localized surface plasmon resonance of a gold nanoparticle monolayer inside a glass capillary.

    PubMed

    Chen, Fong-Yi; Chang, Wei-Cheng; Jian, Rih-Sheng; Lu, Chia-Jung

    2014-06-03

    This paper presents the design, assembly, and evaluation of a novel gas chromatographic detector intended to measure the absorbance of the localized surface plasmon resonance (LSPR) of a gold nanoparticle monolayer in response to eluted samples from a capillary column. Gold nanoparticles were chemically immobilized on the inner wall of a glass capillary (i.d. 0.8 mm, length = 5-15 cm). The eluted samples flowed through the glass capillary and were adsorbed onto a gold nanoparticle surface, which resulted in changes in the LSPR absorbance. The LSPR probing light source used a green light-emitting diode (LED; λ(center) = 520 nm), and the light traveled through the glass wall of the capillary with multiple total reflections. The changes in the light intensity were measured by a photodiode at the rear of the glass capillary. The sensitivity of this detector can be improved by using a longer spiral glass capillary. The detector is more sensitive when operated at a lower temperature and at a slower carrier velocity. The calibration lines of 8 preliminary test compounds were all linear (R(2) > 0.99). The detection limits (3σ) ranged from 22 ng (n-butanol) to 174 ng (2-pentanone) depending on the volatility of the chemicals and the affinity to the citrate lignads attached to the gold nanoparticle surface. This detector consumed a very low amount of energy and could be operated with an air carrier gas, which makes this detector a promising option for portable GC or μGC.

  15. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the size of a eukaryotic cell or multiple prokaryotic cells) or provide a basis for compounds specific stable isotope analysis of trace biomarkers. The small size and low weight of the system holds future potential for field and / or remote deployment.

  16. Electrode configuration for extreme-UV electrical discharge source

    DOEpatents

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  17. Intense laser pulse propagation in ionizing gases

    NASA Astrophysics Data System (ADS)

    Bian, Zhigang

    2003-10-01

    There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The intensity on the inner wall of the capillary is monitored to assure realistic simulations, consistent with optical breakdown of the waveguide material. Generally speaking the intensity on the wall increases with gas pressure due to the scattering of the lowest order capillary mode. Finally, the high order harmonic generation (HHG) in a capillary is investigated. The phase matching condition is studied to increase the conversion efficiency for high order harmonics generation. The phase matching occurs as a balance of the dispersion of the neutral gas, plasma and the waveguide.

  18. Capillary-wave dynamics and interface structure modulation in binary Bose-Einstein condensate mixtures

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Van Thu, Nguyen; Lin, Chang-You; Phat, Tran Huu

    2018-04-01

    The localized low-energy interfacial excitations, or interfacial Nambu-Goldstone modes, of phase-segregated binary mixtures of Bose-Einstein condensates are investigated analytically. To this end a double-parabola approximation (DPA) is performed on the Lagrangian density in Gross-Pitaevskii theory for a system in a uniform potential. This DPA entails a model in which analytic expressions are obtained for the excitations underlying capillary waves or ripplons for arbitrary strength K (>1 ) of the phase segregation. The dispersion relation ω (k ) ∝k3 /2 is derived directly from the Bogoliubov-de Gennes equations in the limit that the wavelength 2 π /k is much larger than the interface width. The proportionality constant in the dispersion relation provides the static interfacial tension. A correction term in ω (k ) of order k5 /2 is calculated analytically within the DPA model. The combined result is tested against numerical diagonalization of the exact Bogoliubov-de Gennes equations. Satisfactory agreement is obtained in the range of physically relevant wavelengths. The ripplon dispersion relation is relevant to state-of-the-art experiments using (quasi)uniform optical-box traps. Furthermore, within the DPA model explicit expressions are obtained for the structural deformation of the interface due to the passing of the capillary wave. It is found that the amplitude of the wave is enhanced by an amount that is quadratic in the ratio of the phase velocity ω /k to the sound velocity c . For generic mixtures consisting of condensates with unequal healing lengths, an additional modulation is predicted of the common value of the condensate densities at the interface.

  19. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  20. Modification of narrow ablating capillaries under the influence of multiple femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gubin, K. V.; Lotov, K. V.; Trunov, V. I.; Pestryakov, E. V.

    2016-09-01

    Powerful femtosecond laser pulses that propagate through narrow ablating capillaries cause modification of capillary walls, which is studied experimentally and theoretically. At low intensities, the laser-induced periodic surface structures and porous coating composed of sub-micron particles appear on the walls. At higher intensities, the surface is covered by deposited droplets of the size up to 10 μm. In both cases, the ablated material forms a solid plug that completely blocks the capillary after several hundreds or thousands of pulses. The suggested theoretical model indicates that the plug formation is a universal effect. It must take place in any narrow tube subject to ablation under the action of short laser pulses.

  1. Numerical Calculation of Gravity-Capillary Interfacial Waves of Finite Amplitude,

    DTIC Science & Technology

    1980-02-26

    corresponding to n=2. The erical scheme appears to be more efficient than the numerical work of Schwartz and Vanden-Broeck shows Padd table method since the...waves are studied. A generalization of Wilton’s ripples for interfacial waves is presented. I. INTRODUCTION that all variables become dimensionless. We...then recast these series irrotational. Thus, we define stream functions # and as Padd apDroxlmants. High accuracy solutions were 02 and potential

  2. Faraday Wave Turbulence on a Spherical Liquid Shell

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  3. Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro

    2013-01-01

    Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.

  4. Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting.

    PubMed

    Castro, Jasmine O; Ramesan, Shwathy; Rezk, Amgad R; Yeo, Leslie Y

    2018-05-30

    We report a miniaturised platform for continuous production of single or multiple liquid droplets with diameters between 60 and 500 μm by interfacing a capillary-driven self-replenishing liquid feed with pulsed excitation of focussed surface acoustic waves (SAWs). The orifice-free operation circumvents the disadvantages of conventional jetting systems, which are often prone to clogging that eventuates in rapid degradation of the operational performance. Additionally, we show the possibility for flexibly tuning the ejected droplet size through the pulse width duration, thus avoiding the need for a separate device for every different droplet size required, as is the case for systems in which the droplet size is set by nozzles and orifices, as well as preceding ultrasonic jetting platforms where the droplet size is controlled by the operating frequency. Further, we demonstrate that cells can be jetted and hence printed onto substrates with control over the cell density within the droplets down to single cells. Given that the jetting does not lead to significant loss to the cell's viability or ability to proliferate, we envisage that this versatile jetting method can potentially be exploited with further development for cell encapsulation, dispensing and 3D bioprinting applications.

  5. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  6. Capillary assisted deposition of carbon nanotube film for strain sensing

    NASA Astrophysics Data System (ADS)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  7. Capillary bridge stability and dynamics: Active electrostatic stress control and acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    2005-11-01

    In low gravity, the stability of liquid bridges and other systems having free surfaces is affected by the ambient vibration of the spacecraft. Such vibrations are expected to excite capillary modes. The lowest unstable mode of cylindrical liquid bridges, the (2,0) mode, is particularly sensitive to the vibration when the ratio of the bridge length to the diameter approaches pi. In this work, a Plateau tank has been used to simulate the weightless condition. An optical system has been used to detect the (2,0) mode oscillation amplitude and generate an error signal which is determined by the oscillation amplitude. This error signal is used by the feedback system to produce proper voltages on the electrodes which are concentric with the electrically conducting, grounded bridge. A mode-coupled electrostatic stress is thus generated on the surface of the bridge. The feedback system is designed such that the modal force applied by the Maxwell stress can be proportional to the modal amplitude or modal velocity, which is the derivative of the modal amplitude. Experiments done in the Plateau tank demonstrate that the damping of the capillary oscillation can be enhanced by using the electrostatic stress in proportion to the modal velocity. On the other hand, using the electrostatic stress in proportion to the modal amplitude can raise the natural frequency of the bridge oscillation. If a spacecraft vibration frequency is close to a capillary mode frequency, the amplitude gain can be used to shift the mode frequency away from that of the spacecraft and simultaneously add some artificial damping to further reduce the effect of g-jitter. It is found that the decay of a bridge (2,0) mode oscillation is well modeled by a Duffing equation with a small cubic soft-spring term. The nonlinearity of the bridge (3,0) mode is also studied. The experiments reveal the hysteresis of (3,0) mode bridge oscillations, and this behavior is a property of the soft nonlinearity of the bridge. Relevant to acoustical bridge stabilization, the theoretical radiation force on a compressible cylinder in an acoustic standing wave is also investigated.

  8. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    PubMed Central

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  9. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  10. Principles of Nonlinear Optics

    DTIC Science & Technology

    1989-11-01

    modelled by a ring cavity. The nonlinear meterial is between mirrors I and 2. E., E and I r E denote the incident, reflected and transmitted electric...Pasta and S. Ulam, "Studies of Nonlinear Problems I," Los Alamos Rep. LA 1940, 1955. 10. L. F. McGoldrick, "Resonant Interactions among Capillary- gravity ...34 Proc. IEEE, vol. 67, pp. 1442-1443, 1979. 23. P. P. Banerjee, A. Korpel and K. E. Lonngren," Self-refraction of Nonlinear Capillary- gravity Waves

  11. Capillary-tube-based extension of thermoacoustic theory for a random medium

    NASA Astrophysics Data System (ADS)

    Roh, Heui-Seol; Raspet, Richard; Bass, Henry E.

    2005-09-01

    Thermoacoustic theory for a single capillary tube is extended to random bulk medium on the basis of capillary tubes. The characteristics of the porous stack inside the resonator such as the tortuosity, dynamic shape factor, and porosity are introduced for the extension of wave equation by following Attenborough's approach. Separation of the dynamic shape factor for the viscous and thermal effect is adopted and scaling using the dynamic shape factor and tortuosity factor is demonstrated. The theoretical and experimental comparison of thermoviscous functions in reticulated vitreous carbon (RVC) and aluminum foam shows reasonable agreement. The extension is useful for investigations of the properties of a stack with arbitrary shapes of non-parallel pores.

  12. On Capillary Rise and Nucleation

    ERIC Educational Resources Information Center

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  13. Plasmonic fiber-optic vector magnetometer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochuan; Guo, Tuan; Zhang, Xuejun; Xu, Jian; Xie, Wenping; Nie, Ming; Wu, Qiang; Guan, Bai-Ou; Albert, Jacques

    2016-03-01

    A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously.

  14. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  15. Jet atomization and cavitation induced by interactions between focused ultrasound and a water surfacea)

    NASA Astrophysics Data System (ADS)

    Tomita, Y.

    2014-09-01

    Atomization of a jet produced by the interaction of 1 MHz focused ultrasound with a water surface was investigated using high-speed photography. Viewing various aspects of jet behavior, threshold conditions were obtained necessary for water surface elevation and jet breakup, including drop separation and spray formation. In addition, the position of drop atomization, where a single drop separates from the tip of a jet without spraying, showed good correlation with the jet Weber number. For a set of specified conditions, multiple beaded water masses were formed, moving upwards to produce a vigorous jet. Cavitation phenomena occurred near the center of the primary drop-shaped water mass produced at the leading part of the jet; this was accompanied by fine droplets at the neck between the primary and secondary drop-shaped water masses, due to the collapse of capillary waves.

  16. X-Band wave radar system for monitoring and risk management of the coastal infrastructures

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco

    2017-04-01

    The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected waves from the coastal infrastructures, e.g. from the harbor jetties. In fact, the reflected waves may significantly complicate the harbour activities (e.g., berthing operations), as they interfere with the oncoming waves thus creating a confused sea [2]. References [1] G. Ludeno, C. Brandini, C. Lugni, D. Arturi, A. Natale, F. Soldovieri, B. Gozzini, F. Serafino, "Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.7, no.3, pp.3011-3018, July 2014. [2] G. Ludeno, F. Reale, F. Dentale, E. Pugliese Carratelli, A. Natale, F. Soldovieri, F. Serafino "An X-Band Radar System for Bathymetry and Wave Field Analysis in Harbor Area", Sensors, Vol.15, no.1, pp. 1691-1707, January 2015. [3] F. Raffa, G. Ludeno, B. Patti, F. Soldovieri, S. Mazzola, and F. Serafino, "X-band wave radar for coastal upwelling detection off the southern coast of Sicily.", Journal of Atmospheric and Oceanic Technology, January 2017, Vol. 34, No. 1, Published online on 22 Dec 2016.

  17. Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materials.

    DTIC Science & Technology

    1986-03-31

    capillary can be improved for (GC)2 by passing S sulfur dioxide or difluoroethane through the preform and capillary during the fabrication 27 . The...hydration resistance of the glass surface. In fact, it was recently shown that the combined use of sulfur dioxide and * difluoroethane could further

  18. Drop-tower experiments for capillary surfaces in an exotic container

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert; Weislogel, Mark

    1991-01-01

    Low-gravity drop-tower experiments are carried out for an 'exotic' rotationally-symmetric container, which admits an entire continuum of distinct equilibrium symmetric capillary free surfaces. It is found that an initial equilibrium planer interface, a member of the continuum, will reorient toward a non-symmetric interface, as predicted by recent mathematical theory.

  19. Bubbles in an acoustic field: an overview.

    PubMed

    Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz

    2007-04-01

    Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.

  20. A comparison of capillary hydraulic conductivities in postural and locomotor muscle.

    PubMed

    McDonagh, P F; Gore, R W

    1982-09-01

    In a comparative skeletal muscle study Folkow and Halicka (Microvasc. Res. 1: 1-14, 1968) reported that the capillary filtration coefficient (CFC) of postural (red) muscle was two times the CFC of locomotor (white) muscle. It was concluded that the twofold difference in CFC was due solely to a difference in the perfused capillary surface areas (Sf) of red vs. white muscle. However, CFC is the product of capillary hydraulic conductivity (LP) and Sf. Hence their conclusion assumed that the average LP of red muscle capillaries is exactly equal to the average LP of white muscle capillaries. The following study was undertaken to test the validity of this assumption. The microocclusion procedures and analytical model described by Lee et al. (Circ. Res. 28: 358-370, 1971) and Gore [Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H268-H287, 1982] were used to determine LP. Independent measurements of LP were recorded from single capillaries in red, anterior latissimus dorsi (ALD) and white, posterior latissimus dorsi (PLD) muscles of chickens anesthetized with L.A. Thesia. We found that the mean capillary hydraulic conductivity in postural muscle [(LP)ALD = 0.20 +/- 0.06 (SE) micrometers . s-1 . cmH2O-1 (n = 11)] was significantly different from the mean capillary hydraulic conductivity in locomotor muscle [(LP)PLD = 0.061 +/- 0.01 micrometers . s-1 . cmH2O-1 (n = 14)] (P less than 0.05). These results provide direct evidence that observed differences in red vs. white muscle CFC's may not be due solely to different perfused capillary surface areas but may also be due to differences in capillary hydraulic conductivity.

  1. Underwater locomotion in a terrestrial beetle: combination of surface de-wetting and capillary forces

    PubMed Central

    Hosoda, Naoe; Gorb, Stanislav N.

    2012-01-01

    For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces do not contribute to adhesion under water. However, our observations showed that these beetles may use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Beetle adhesion to hydrophilic surfaces under water was lower than that in air, whereas adhesion to hydrophobic surfaces under water was comparable to that in air. Oil-covered hairy pads had a pinning effect, retaining the air bubbles on their feet. Bubbles in contact with the hydrophobic substrate de-wetted the substrate and produced capillary adhesion. Additional capillary forces are generated by the pad's liquid bridges between the foot and the substrate. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties. PMID:22874756

  2. Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry

    PubMed Central

    2016-01-01

    We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533

  3. Ultrasonic monitoring of spontaneous imbibition experiments: Precursory moisture diffusion effects ahead of water front

    NASA Astrophysics Data System (ADS)

    David, Christian; Sarout, Joël.; Dautriat, Jérémie; Pimienta, Lucas; Michée, Marie; Desrues, Mathilde; Barnes, Christophe

    2017-07-01

    Fluid substitution processes have been investigated in the laboratory on 14 carbonate and siliciclastic reservoir rock analogues through spontaneous imbibition experiments on vertical cylindrical specimens with simultaneous ultrasonic monitoring and imaging. The motivation of our study was to identify the seismic attributes of fluid substitution in reservoir rocks and to link them to physical processes. It is shown that (i) the P wave velocity either decreases or increases when the capillary front reaches the Fresnel clearance zone, (ii) the P wave amplitude is systematically impacted earlier than the velocity is, (iii) this precursory amplitude decrease occurs when the imbibition front is located outside of the Fresnel zone, and (iv) the relative variation of the P wave amplitude is always much larger than that of the P wave velocity. These results suggest that moisture diffuses into the pore space ahead of the water front. This postulate is further supported by a quantitative analysis of the time evolution of the observed P wave amplitudes. In a sense, P wave amplitude acts as a precursor of the arrival of the capillary front. This phenomenon is used to estimate the effective diffusivity of moisture in the tested rocks. The effective moisture diffusivity estimated from the ultrasonic data is strongly correlated with permeability: a power law with exponent 0.96 predicts permeability from ultrasonic monitoring within a factor 3 without noticeable bias. When the effective diffusivity is high, moisture diffusion affects ultrasonic P wave attributes even before the imbibition starts and impacts the P wave reflectivity as evidenced by the variations recorded in the waveform coda.

  4. Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul

    2017-11-03

    A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Design of Capillary Flows with Spatially Graded Porous Films

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  6. Simultaneous measurement of X-ray specular reflection and off-specular diffuse scattering from liquid surfaces using a two-dimensional pixel array detector: the liquid-interface reflectometer of BL37XU at SPring-8.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Yamada, Hironari

    2010-07-01

    An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution. The approach is also demonstrated on an aqueous solution of 1-dodecyl-3-methylimidazolium chloride. The monolayer in which the dodecyl chain faces upwards and the Cl(-) anion locates next to the imidazolium ring formed on the water surface was found to be laterally homogeneous. The use of a pixel array detector will be particularly powerful for in situ measurements to investigate both out-of-plane and in-plane structures simultaneously, not only for liquid surfaces but also for other thin films.

  7. Application of Temperature-Dependent Fluorescent Dyes to the Measurement of Millimeter Wave Absorption in Water Applied to Biomedical Experiments

    PubMed Central

    Popenko, Oleksandr

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859

  8. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments.

    PubMed

    Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey

    2014-01-01

    Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.

  9. Laboratory meter-scale seismic monitoring of varying water levels in granular media

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Bodet, L.; Bergamo, P.; Guérin, R.; Martin, R.; Mourgues, R.; Tournat, V.

    2016-12-01

    Laboratory physical modelling and non-contacting ultrasonic techniques are frequently proposed to tackle theoretical and methodological issues related to geophysical prospecting. Following recent developments illustrating the ability of seismic methods to image spatial and/or temporal variations of water content in the vadose zone, we developed laboratory experiments aimed at testing the sensitivity of seismic measurements (i.e., pressure-wave travel times and surface-wave phase velocities) to water saturation variations. Ultrasonic techniques were used to simulate typical seismic acquisitions on small-scale controlled granular media presenting different water levels. Travel times and phase velocity measurements obtained at the dry state were validated with both theoretical models and numerical simulations and serve as reference datasets. The increasing water level clearly affects the recorded wave field in both its phase and amplitude, but the collected data cannot yet be inverted in the absence of a comprehensive theoretical model for such partially saturated and unconsolidated granular media. The differences in travel time and phase velocity observed between the dry and wet models show patterns that are interestingly coincident with the observed water level and depth of the capillary fringe, thus offering attractive perspectives for studying soil water content variations in the field.

  10. Understanding the influence of capillary waves on solvation at the liquid-vapor interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rane, Kaustubh, E-mail: rane@csi.tu-darmstadt.de; Vegt, Nico F. A. van der

    2016-03-21

    This work investigates the question if surface capillary waves (CWs) affect interfacial solvation thermodynamic properties that determine the propensity of small molecules toward the liquid-vapor interface. We focus on (1) the evaluation of these properties from molecular simulations in a practical manner and (2) understanding them from the perspective of theories in solvation thermodynamics, especially solvent reorganization effects. Concerning the former objective, we propose a computational method that exploits the relationship between an external field acting on the liquid-vapor interface and the magnitude of CWs. The system considered contains the solvent, an externally applied field (f) and the solute moleculemore » fixed at a particular location. The magnitude of f is selected to induce changes in CWs. The difference between the solvation free energies computed in the presence and in the absence of f is then shown to quantify the contribution of CWs to interfacial solvation. We describe the implementation of this method in the canonical ensemble by using a Lennard-Jones solvent and a non-ionic solute. Results are shown for three types of solutes that differ in the nature of short-ranged repulsive (hard-core) interactions. Overall, we observe that CWs have a negligible or very small effect on the interfacial solvation free energy of a solute molecule fixed near the liquid-vapor interface for the above systems. We also explain how the effects of pinning or dampening of CWs caused by a fixed solute are effectively compensated and do not contribute to the solvation free energy.« less

  11. A Preliminary Study of the Spreading of AKD in the Presence of Capillary Structures.

    PubMed

    Shen, Wei; Parker, Ian H.

    2001-08-01

    There may be several mechanisms at work in the process of migration or redistribution of alkyl ketene dimers (AKD) on cellulose fiber surfaces during paper sizing and curing. This work is the second part of a continuing investigation of the spreading behavior of AKD on the surfaces of hydrophilic substrates. Paper sheets, single cotton, and cotton lint fibers and smooth cellulose film were used as substrates. These represent samples that have pores, V-shaped grooves, and no capillary structure at all. A very simple and effective testing method for studying the AKD migration behavior through these substrates was designed. AFM was used to study the surface capillary structures of cotton and cotton lint fibers. The results of this study provide hard evidence supporting our finding that capillary structures in the form of either interfiber pores in a paper sheet or V-shaped grooves on the surface of single fibers are essential in order for the spreading of molten AKD on a cellulose substrate to occur. Some preliminary results on the existence and the surface diffusion of an autophobic precursor of AKD are also presented. The results support the conclusion we reached in the first part of this investigation; i.e., the molten AKD wets but does not spread on smooth, capillary-free hydrophilic surfaces such as glass and cellulose. The driving force from interfacial energy alone does not cause spontaneous "flow-like" spreading of molten AKD on these surfaces. This is possibly associated with the formation of an autophobic precursor in front of an AKD droplet. The results in this study do not support the perception that molten AKD forms a single molecular layer on the surface of cellulose fibers by spreading during heat treatment, although the autophobic precursor in front of an AKD droplet could theoretically be of a monolayer thickness and the surface diffusion of this precursor may contribute to the sizing development after heat treatment. Copyright 2001 Academic Press.

  12. On singularities of capillary surfaces in the absence of gravity

    DOE PAGES

    Roytburd, V.

    1983-01-01

    We smore » tudy numerical solutions to the equation of capillary surfaces in trapezoidal domains in the absence of gravity when the boundary contact angle declines from 90 ° to some critical value. We also discuss a result on the behavior of solutions in more general domains that confirms numerical calculations.« less

  13. Quantitative aspects of vibratory mobilization and break-up of non-wetting fluids in porous media

    NASA Astrophysics Data System (ADS)

    Deng, Wen

    Seismic stimulation is a promising technology aimed to mobilize the entrapped non-wetting fluids in the subsurface. The applications include enhanced oil recovery or, alternatively, facilitation of movement of immiscible/partly-miscible gases far into porous media, for example, for CO2 sequestration. This work is devoted to detailed quantitative studies of the two basic pore-scale mechanisms standing behind seismic stimulation: the mobilization of bubbles or drops entrapped in pore constrictions by capillary forces and the break-up of continuous long bubbles or drops. In typical oil-production operations, oil is produced by the natural reservoir-pressure drive during the primary stage and by artificial water flooding at the secondary stage. Capillary forces act to retain a substantial residual fraction of reservoir oil even after water flooding. The seismic stimulation is an unconventional technology that serves to overcome capillary barriers in individual pores and liberate the entrapped oil by adding an oscillatory inertial forcing to the external pressure gradient. According to our study, the effect of seismic stimulation on oil mobilization is highly dependent on the frequencies and amplitudes of the seismic waves. Generally, the lower the frequency and the larger the amplitude, more effective is the mobilization. To describe the mobilization process, we developed two theoretical hydrodynamics-based models and justified both using computational fluid dynamics (CFD). Our theoretical models have a significant advantage over CFD in that they reduce the computational time significantly, while providing correct practical guidance regarding the required field parameters of vibroseismic stimulation, such as the amplitude and frequency of the seismic field. The models also provide important insights into the basic mechanisms governing the vibration-driven two-phase flow in constricted capillaries. In a waterflooded reservoir, oil can be recovered most efficiently by forming continuous streams from isolated droplets. The longer the continuous oil phase under a certain pressure gradient, the more easily it overcomes its capillary barrier. However, surface tension between water and oil causes the typically non-wetting oil, constituting the core phase in the channels, to break up at the pore constriction into isolated beads, which inhibits further motion. The break-up thus counteracts the mobilization. We developed a theoretical model that provides an exact quantitative description of the dynamics of the oil-snap-off process. It also formulates a purely geometric criterion that controls, based on pore geometry only, whether the oil core phase stays continuous or disintegrates into droplets. Both the theoretical model and the break-criterion have been validated against CFD simulations. The work completed elucidates the basic physical mechanisms behind the enhanced oil recovery by seismic waves and vibrations. This creates a theoretical foundation for the further development of corresponding field technologies.

  14. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.

    PubMed

    Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-06

    Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.

  15. Capillary descent.

    PubMed

    Delannoy, Joachim; de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2018-05-31

    A superhydrophobic capillary tube immersed in water and brought in contact with the bath surface will be invaded by air, owing to its aerophilicity. We discuss this phenomenon where the ingredients of classical capillary rise are inverted, which leads to noticeable dynamical features. (1) The main regime of air invasion is linear in time, due to the viscous resistance of water. (2) Menisci in tubes with millimetre-size radii strongly oscillate before reaching their equilibrium depth, a consequence of inertia. On the whole, capillary descent provides a broad variety of dynamics where capillary effects, viscous friction and liquid inertia all play a role.

  16. Stabilization of a capillary bridge far beyond the Rayleigh--Plateau limit using active feedback and acoustic radiation pressure.

    NASA Astrophysics Data System (ADS)

    Marr-Lyon, Mark J.; Thiessen, David B.; Marston, Philip L.

    1997-11-01

    A liquid bridge between two solid surfaces is known as a capillary bridge. For a cylindrical bridge in low gravity of radius R and length L, the slenderness S=L/2R has a natural (Rayleigh--Plateau) limit of π beyond which the bridge breaks. Using the radiation pressure of an ultrasonic standing wave to control the shape of the bridge and an optical sensor to detect the shape of the bridge, an active feedback system was constructed that stabilized bridges significantly beyond the Rayleigh limit in simulated low gravity(Marr--Lyon, M. J., phet al., J. Fluid Mech.), accepted for publication.. The Plateau tank which contained the bridge was a dual frequency ultrasonic resonator and the spatial distribution of the radiation pressure was controlled by adjusting the ultrasonic frequency. Bridges have been extended with S as large as 4.3. To be useful in low gravity, modifications for liquid bridges in air are needed. Acoustic resonators in air having the required property that the sound amplitude can be spatially redistributed rapidly are being investigated using gas-filled soap-film bridges. Work supported by NASA.

  17. Insect flight on fluid interfaces: a chaotic interfacial oscillator

    NASA Astrophysics Data System (ADS)

    Mukundarajan, Haripriya; Prakash, Manu

    2013-11-01

    Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.

  18. Visual detection of multiple genetically modified organisms in a capillary array.

    PubMed

    Shao, Ning; Chen, Jianwei; Hu, Jiaying; Li, Rong; Zhang, Dabing; Guo, Shujuan; Hui, Junhou; Liu, Peng; Yang, Litao; Tao, Sheng-Ce

    2017-01-31

    There is an urgent need for rapid, low-cost multiplex methodologies for the monitoring of genetically modified organisms (GMOs). Here, we report a C[combining low line]apillary A[combining low line]rray-based L[combining low line]oop-mediated isothermal amplification for M[combining low line]ultiplex visual detection of nucleic acids (CALM) platform for the simple and rapid monitoring of GMOs. In CALM, loop-mediated isothermal amplification (LAMP) primer sets are pre-fixed to the inner surface of capillaries. The surface of the capillary array is hydrophobic while the capillaries are hydrophilic, enabling the simultaneous loading and separation of the LAMP reaction mixtures into each capillary by capillary forces. LAMP reactions in the capillaries are then performed in parallel, and the results are visually detected by illumination with a hand-held UV device. Using CALM, we successfully detected seven frequently used transgenic genes/elements and five plant endogenous reference genes with high specificity and sensitivity. Moreover, we found that measurements of real-world blind samples by CALM are consistent with results obtained by independent real-time PCRs. Thus, with an ability to detect multiple nucleic acids in a single easy-to-operate test, we believe that CALM will become a widely applied technology in GMO monitoring.

  19. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, Harbans S.; Quesada, Mark A.; Studier, F. William

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis.

  20. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, H.S.; Quesada, M.A.; Studier, F.W.

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis. 35 figs.

  1. A deformable surface model for real-time water drop animation.

    PubMed

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  2. Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action.

    PubMed

    Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan

    2009-10-26

    We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.

  3. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  5. Studies of rotating liquid floating zones on Skylab IV

    NASA Technical Reports Server (NTRS)

    Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.

    1975-01-01

    Liquid zones of water, soap solution and soap foam were deployed between two aligned circular disks which were free to rotate about the zone axis in the microgravity environment of Skylab IV. Such a configuration is of interest in the containerless handling of melts for possible future space processing crystal growth experiments. Three basic types of zone surface deformation and instability were observed for these rotational conditions; axisymmetric shape changes under single disk rotation, nonaxisymmetric, whirling, C-modes for long zones with equal rotation of both disks, and capillary wave phenomena for short zones with equal rotation of both disks. The sources of these instabilities and the conditions promoting them are analyzed in detail from video tape recordings of the Skylab experiments.

  6. Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks.

    PubMed

    Lv, Qichao; Li, Zhaomin; Li, Binfei; Husein, Maen; Shi, Dashan; Zhang, Chao; Zhou, Tongke

    2017-07-11

    In this work, wall slipping behavior of foam with nanoparticle-armored bubbles was first studied in a capillary tube and the novel multiphase foam was characterized by a slipping law. A crack model with a cuboid geometry was then used to compare with the foam slipping results from the capillary tube and also to evaluate the flow resistance factor of the foam. The results showed that the slipping friction force F FR in the capillary tube significantly increased by addition of modified SiO 2 nanoparticles, and an appropriate power law exponents by fitting F FR vs. Capillary number, Ca, was 1/2. The modified nanoparticles at the surface were bridged together and formed a dense particle "armor" surrounding the bubble, and the interconnected structures of the "armor" with strong steric integrity made the surface solid-like, which was in agreement with the slip regime associated with rigid surface. Moreover, as confirmed by 3D microscopy, the roughness of the bubble surface increased with nanoparticle concentration, which in turn increased the slipping friction force. Compared with pure SDBS foam, SDBS/SiO 2 foam shows excellent stability and high flow resistance in visual crack. The resistance factor of SiO 2 /SDBS foam increased as the wall surface roughness increased in core cracks.

  7. Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.

    PubMed

    Hayes, J D; Malik, A

    1997-07-18

    A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.

  8. A variational approach to the study of capillary phenomena

    NASA Technical Reports Server (NTRS)

    Emmer, M.; Gonzalez, E.; Tamanini, I.

    1982-01-01

    The problem of determining the free surface of a liquid in a capillary tube, and of a liquid drop, sitting first on a horizontal plane and then on more general surfaces is considered. With some modifications, the method applies to the study of pendent drops and of rotating drops as well. The standard capillary problem, i.e. the determination of the free surface of a liquid in a thin tube of general cross section, which resuls from the simultaneous action of surface tension, boundary adhesion and gravity is discussed. It turns out that in this case the existence of the solution surface depends heavily on the validity of a simple geometric condition about the mean curvature of the boundary curve of the cross section of the capillary tube. Some particular examples of physical interest are also be discussed. Liquid drops sitting on or hanging from a fixed horizontal plane are discussed. The symmetry of the solutions (which can actually be proved, as consequence of a general symmetrization argument) now plays the chief role in deriving both the existence and the regularity of energy-minimizing configurations. When symmetry fails (this is the case, for example, when the contact angle between the drop and the plate is not constant, or when the supporting surface is not itself symmetric), then more sophisticated methods must be used. Extensions in this direction are outlined.

  9. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure

    PubMed Central

    Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara

    2015-01-01

    The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485

  10. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  11. A low-molecular-weight galactofucan from the seaweed, Spatoglossum schröederi, binds fibronectin and inhibits capillary-like tube formation in vitro.

    PubMed

    Menezes, Maira Maria; Nobre, Leonardo Thiago Duarte Barreto; Rossi, Gustavo Rodrigues; Almeida-Lima, Jailma; Melo-Silveira, Raniere Fagundes; Franco, Celia Regina Cavichiolo; Trindade, Edvaldo Silva; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2018-05-01

    A low-molecular-weight (LMW) heterofucan (designated fucan B) was obtained from the brown seaweed, Spatoglossum schröederi, and its activity as an inhibitor of capillary-like tube formation by endothelial cells (ECs) was analyzed. Chemical, infrared and electrophoretic analyses confirmed the identity of fucan B. In contrast to other LMW fucans, fucan B (0.012-0.1 mg/mL) inhibited ECs capillary-like tube formation in a concentration-dependent manner. In addition, fucan B (0.01-0.05 mg/mL) did not affect ECs proliferation. Fucan B also inhibited ECs migration on a fibronectin-coated surface, but not on laminin- or collagen-coated surfaces. Biotinylated fucan B was used as a probe to identify its localization. Confocal microscopy experiments revealed that biotinylated fucan did not bind to the cell surface, but rather only to fibronectin. Our findings suggest that fucan B inhibits ECs capillary-like tube formation and migration by binding directly to fibronectin and blocking fibronectin sites recognized by cell surface ligands. However, further studies are needed to evaluate the in vivo effects of fucan B. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Improved DESI-MS Performance using Edge Sampling and aRotational Sample Stage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    2008-01-01

    The position of the surface to be analyzed relative to the sampling orifice or capillary into the mass spectrometer has been known to dramatically affect the observed signal levels in desorption electrospray ionization mass spectrometry (DESIMS). In analyses of sample spots on planar surfaces, DESI-MS signal intensities as much as five times greater were routinely observed when the bottom of the sampling capillary was appropriately positioned beneath the surface plane ( edge sampling") compared to when the capillary just touched the surface. To take advantage of the optimum "edge sampling" geometry and to maximize the number of samples that couldmore » be analyzed in this configuration, a rotational sample stage was integrated into a typical DESI-MS setup. The rapid quantitative determination of caffeine in two diet sport drinks (Diet Turbo Tea, Speed Stack Grape) spiked with an isotopically labeled internal standard demonstrated the utility of this approach.« less

  13. A Theoretical Analysis of the Influence of Electroosmosis on the Effective Ionic Mobility in Capillary Zone Electrophoresis

    ERIC Educational Resources Information Center

    Hijnen, Hens

    2009-01-01

    A theoretical description of the influence of electroosmosis on the effective mobility of simple ions in capillary zone electrophoresis is presented. The mathematical equations derived from the space-charge model contain the pK[subscript a] value and the density of the weak acid surface groups as parameters characterizing the capillary. It is…

  14. Surfactant effects on contact line alteration of a liquid drop in a capillary tube

    NASA Astrophysics Data System (ADS)

    Yulianti, K.; Marwati, R.

    2018-05-01

    In this paper, the effect of an insoluble surfactant on the moving contact line of an interface between two fluids filling a capillary tube is studied. The governing equations are the incompressible Navier-Stokes equations with the couple of Eulerian fluid variables and Lagrangian interfacial markers. In our model, capillary force plays a role in the fluids motion. Here, we propose that besides lowering the interfacial tension which affects the capillary force, the surfactant also decreases the surface tension between fluids and a solid surface. That condition is applied to the unbalanced Young condition at the contact line. The front-tracking method is used to solve numerically the free boundary motion of the interface. Results show that the surfactant has a significant effect on the motion of the contact line.

  15. On Thermocapillary Mechanism of Spatial Separation of Metal Melts

    NASA Astrophysics Data System (ADS)

    Demin, V. A.; Mizev, A. I.; Petukhov, M. I.

    2018-02-01

    Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.

  16. Vacuum scanning capillary photoemission microscopy.

    PubMed

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Interfacing Capillary-Based Separations to Mass Spectrometry Using Desorption Electrospray Ionization

    PubMed Central

    Barbula, Griffin K.; Safi, Samir; Chingin, Konstantin; Perry, Richard H.; Zare, Richard N.

    2014-01-01

    The powerful hybrid analysis method of capillary-based separations followed by mass spectrometric analysis gives substantial chemical identity and structural information. It is usually carried out using electrospray ionization. However, the salts and detergents used in the mobile phase for electrokinetic separations suppress ionization efficiencies and contaminate the inlet of the mass spectrometer. This report describes a new method that uses desorption electrospray ionization (DESI) to overcome these limitations. Effluent from capillary columns is deposited on a rotating Teflon disk that is covered with paper. As the surface rotates, the temporal separation of the eluting analytes (i.e., the electropherogram) is spatially encoded on the surface. Then, using DESI, surface-deposited analytes are preferentially ionized, reducing the effects of ion suppression and inlet contamination on signal. With the use of this novel approach, two capillary-based separations were performed: a mixture of the rhodamine dyes at milligram/milliliter levels in a 10 mM sodium borate solution was separated by capillary electrophoresis, and a mixture of three cardiac drugs at milligram/milliliter levels in a 12.5 mM sodium borate and 12.5 mM sodium dodecyl sulfate solution was separated by micellar electrokinetic chromatography. In both experiments, the negative effects of detergents and salts on the MS analyses were minimized. PMID:21319740

  18. Primary drainage in geological fractures: Effects of aperture variability and wettability

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Méheust, Y.; Neuweiler, I.

    2017-12-01

    Understanding and controlling fluid-fluid displacement in porous and fractured media is a key asset for many practical applications, such as the geological storage of CO2, hydrocarbon recovery, groundwater remediation, etc. We numerically investigate fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. A model has been developed to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes both capillary and viscous forces into account. Capillary pressures at the fluid-fluid interface are calculated based on the Young-Laplace equation using the two principal curvatures (aperture-induced curvature and in-plane curvature) [1], while viscous forces are calculated by continuously solving the fluid pressure field in the fracture. The aperture field of a fracture is represented by a spatially correlated random field, with a power spectral density of the fracture wall topographies scaling as a power law, and a cutoff wave-length above which the Fourier modes of the two walls are identical [2]. We consider flow scenarios with both rectangular and radial configurations. Results show that the model is able to produce displacement patterns of compact displacement, capillary fingering, and viscous fingering, as well as the transitions between them. Both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) can stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. These results suggest that for geometries typical of geological fractures we can extend the phase diagram in the parameter space of capillary number and mobility ratio by another dimension to take into account the combined effect of wettability and fracture aperture topography. References: [1] Yang, Z. et al. (2012), A generalized approach for estimation of in-plane curvature in invasion percolation models for drainage in fractures. Wat. Resour. Res., 48(9), W09507. [2] Yang, Z. et al. (2016), Fluid trapping during capillary displacement in fractures. Adv. Water Resour., 95, 264-275.

  19. Converging shock wave focusing and interaction with a target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitishinskiy, M.; Efimov, S.; Antonov, O.

    2016-04-15

    Converging shock waves in liquids can be used efficiently in the research of the extreme state of matter and in various applications. In this paper, the recent results related to the interaction of a shock wave with plasma preliminarily formed in the vicinity of the shock wave convergence are presented. The shock wave is produced by the underwater electrical explosion of a spherical wire array. The plasma is generated prior to the shock wave's arrival by a low-pressure gas discharge inside a quartz capillary placed at the equatorial plane of the array. Analysis of the Stark broadening of H{sub α}more » and H{sub β} spectral lines and line-to-continuum ratio, combined with the ratio of the relative intensities of carbon C III/C II and silicon Si III/Si II lines, were used to determine the plasma density and temperature evolution. It was found that during the first ∼200 ns with respect to the beginning of the plasma compression by the shock wave and when the spectral lines are resolved, the plasma density increases from 2 × 10{sup 17 }cm{sup −3} to 5 × 10{sup 17 }cm{sup −3}, while the temperature remains at the same value of 3–4 eV. Further, following the model of an adiabatically imploding capillary, the plasma density increases >10{sup 19 }cm{sup −3}, leading to the continuum spectra obtained experimentally, and the plasma temperature >30 eV at radii of compression of ≤20 μm. The data obtained indicate that the shock wave generated by the underwater electrical explosion of a spherical wire array retains its uniformity during the main part of its convergence.« less

  20. Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs.

    PubMed

    Wang, Ching-Jen; Huang, Hsuan-Ying; Pai, Chun-Hwan

    2002-01-01

    The purpose of the research was to study the phenomenon of neovascularization at the Achilles tendon-bone junction after low-energy shock wave application. The study was performed on eight mongrel dogs. The control specimens were obtained from the medial one-third of the right Achilles tendon-bone unit before shock wave application. Low-energy shock waves of 1000 impulses at 14 kV (equivalent to 0.18 mJ/mm2 energy flux density) were applied to the right Achilles bone-tendon junction. Biopsies were taken from the middle one-third of the Achilles tendon-bone junction at 4 weeks and from the lateral one-third at 8 weeks, respectively, after shock wave application. The features of microscopic examination included the number of new capillaries and muscularized vessels, the presence and arrangements of myofibroblasts, and the changes in bone. New capillary and muscularized vessels were seen in the study specimens which were obtained in 4 weeks and in 8 weeks after shock wave application, but none were seen in the control specimens before shock wave application. There was a considerable geographic variation in the number of new vessels within the same specimen. Myofibroblasts were not seen in the control specimens. Myofibroblasts with haphazard appearance and intermediate orientation fibers were seen in all study specimens obtained at 4 weeks and predominantly intermediate orientation myofibroblast fibers at 8 weeks. There were no changes in bone matrix, osteocyte activity, and vascularization within the bone. Two pathologists reviewed each specimen and concurrence was achieved in all cases. The results of the study suggested that low-energy shock wave enhanced the phenomenon of neovascularization at the bone-tendon junction in dogs.

  1. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

    PubMed

    Safavieh, Roozbeh; Juncker, David

    2013-11-07

    Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.

  2. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  3. Modeling steady state SO2-dependent changes in capillary ATP concentration using novel O2 micro-delivery methods

    PubMed Central

    Ghonaim, Nour W.; Fraser, Graham M.; Ellis, Christopher G.; Yang, Jun; Goldman, Daniel

    2013-01-01

    Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen (O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key regulator in the pathway that mediates micro-vascular response to varying tissue O2 demand. We propose that ATP signaling mainly originates in the capillaries due to the relatively long erythrocyte transit times in the capillary and the short ATP diffusion distance to the electrically coupled endothelium. We have developed a computational model to investigate the effect of delivering or removing O2 to limited areas at the surface of a tissue with an idealized parallel capillary array on total ATP concentration. Simulations were conducted when exposing full surface to perturbations in tissue O2 tension (PO2) or locally using a circular micro-outlet (~100 μm in diameter), a square micro-slit (200 × 200 μm), or a rectangular micro-slit (1000 μm wide × 200 μm long). Results indicated the rectangular micro-slit has the optimal dimensions for altering hemoglobin saturations (SO2) in sufficient number capillaries to generate effective changes in total [ATP]. This suggests a threshold for the minimum number of capillaries that need to be stimulated in vivo by imposed tissue hypoxia to induce a conducted micro-vascular response. SO2 and corresponding [ATP] changes were also modeled in a terminal arteriole (9 μm in diameter) that replaces 4 surface capillaries in the idealized network geometry. Based on the results, the contribution of terminal arterioles to the net change in [ATP] in the micro-vascular network is minimal although they would participate as O2 sources thus influencing the O2 distribution. The modeling data presented here provide important insights into designing a novel micro-delivery device for studying micro-vascular O2 regulation in the capillaries in vivo. PMID:24069001

  4. Exotic containers for capillary surfaces

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  5. Capillary surfaces in a wedge: Differing contact angles

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  6. Preparation of a thermoresponsive polymer grafted polystyrene monolithic capillary for the separation of bioactive compounds.

    PubMed

    Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko

    2016-11-01

    To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bottom-up fabrication of paper-based microchips by blade coating of cellulose microfibers on a patterned surface.

    PubMed

    Gao, Bingbing; Liu, Hong; Gu, Zhongze

    2014-12-23

    We report a method for the bottom-up fabrication of paper-based capillary microchips by the blade coating of cellulose microfibers on a patterned surface. The fabrication process is similar to the paper-making process in which an aqueous suspension of cellulose microfibers is used as the starting material and is blade-coated onto a polypropylene substrate patterned using an inkjet printer. After water evaporation, the cellulose microfibers form a porous, hydrophilic, paperlike pattern that wicks aqueous solution by capillary action. This method enables simple, fast, inexpensive fabrication of paper-based capillary channels with both width and height down to about 10 μm. When this method is used, the capillary microfluidic chip for the colorimetric detection of glucose and total protein is fabricated, and the assay requires only 0.30 μL of sample, which is 240 times smaller than for paper devices fabricated using photolithography.

  8. Study on stair-step liquid triggered capillary valve for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim

    2018-06-01

    In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.

  9. Effect of surfactant on kinetics of thinning of capillary bridges

    NASA Astrophysics Data System (ADS)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark

    2015-11-01

    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We << 1). The tested liquids were aqueous solutions of sodium lauryl ether sulphate (SLES), which is broadly used in personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  10. Geometry-induced phase transition in fluids: Capillary prewetting

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  11. Microwave capillary torch as a means for modifying the electrophysical characteristics of metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artem’ev, K. V.; Davydov, A. M.; Ivanov, V. A.

    2016-07-15

    An experiment layout based on a pulsed capillary microwave torch and making it possible to excite an explosive emission microplasma on a metal surface in open air is implemented for the first time. It is shown that a microrelief in the form of micron-size microcraters forms on the initially smooth surface under the action of microsparks. As a result, the maximum secondary electron emission yield σ{sub max} decreases from ∼2 for the untreated surface to ∼0.4 for the rough treated surface and remains low for a long time when exposed to atmospheric air.

  12. Vibration-type particle separation device with piezoceramic vibrator

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Doi, Akihiro

    2008-12-01

    During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.

  13. Molecular insight into nanoscale water films dewetting on modified silica surfaces.

    PubMed

    Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang

    2015-01-07

    In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.

  14. Periodic structure with a periodicity of 2-3.5 μm on crystalline TiO2 induced by unpolarized KrF excimer lasers

    NASA Astrophysics Data System (ADS)

    He, Rong; Ma, Hongliang; Zheng, Jiahui; Han, Yongmei; Lu, Yuming; Cai, Chuanbing

    2016-08-01

    Laser-induced periodic surface structures (LIPSS) were processed on the TiO2 bulk surface under the irradiation of 248 nm unpolarized KrF excimer laser pulses in air. Spatial LIPSS periods ranging from 2 to 3.5 μm are ascribed to the capillary wave. These microstructures were analyzed at different laser pulse numbers with the laser energy from 192 to 164 mJ. The scanning electron microscopy results indicated eventually stripes that have been disrupted as the increase in the laser pulse numbers, which is reasonably explained by the energy accumulating effect. In addition, investigations were concentrated on the surface modifications at pre-focal plane, focal plane and post-focal plane in the same defocusing amount. Compared with condition at pre-focal plane, in addition to the plasma produced at target, the air was also breakdown for the situation of post-focal plane. So it was reasonable that stripes appeared at pre-focal plane but not at post-focal plane.

  15. π-Conjugated polymer anisotropic organogel nanofibrous assemblies for thermoresponsive photonic switches.

    PubMed

    Narasimha, Karnati; Jayakannan, Manickam

    2014-11-12

    The present work demonstrates one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor-made π-conjugated polymer anisotropic organogel. New semicrystalline segmented π-conjugated polymers are designed with rigid aromatic oligophenylenevinylene π-core and flexible alkyl chain along the polymer backbone. These polymers are found to be self-assembled as semicrystalline or amorphous with respect to the number of carbon atoms in the alkyl units. These semicrystalline polymers produce organogels having nanofibrous morphology of 20 nm thickness with length up to 5 μm. The polymer organogel is aligned in a narrow glass capillary, and this anisotropic gel device is further demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. The λ/4 photonic switching ability is found to be maximum at θ = 45° angle under the cross polarizers. The orthogonal arrangements of the gel capillaries produce dark and bright spots as on-and-off optical switches. Thermoreversibility of the polymer organogel (also its xerogel) was exploited to construct thermoresponsive photonic switches for the temperature window starting from 25 to 160 °C. The organic photonic switch concept can be adapted to large number of other π-conjugated materials for optical communication and storage.

  16. Using Grand Canonical Monte Carlo Simulations to Understand the Role of Interfacial Fluctuations on Solvation at the Water-Vapor Interface.

    PubMed

    Rane, Kaustubh; van der Vegt, Nico F A

    2016-09-15

    The present work investigates the effect of interfacial fluctuations (predominantly capillary wave-like fluctuations) on the solvation free energy (Δμ) of a monatomic solute at the water-vapor interface. We introduce a grand-canonical-ensemble-based simulation approach that quantifies the contribution of interfacial fluctuations to Δμ. This approach is used to understand how the above contribution depends on the strength of dispersive and electrostatic solute-water interactions at the temperature of 400 K. At this temperature, we observe that interfacial fluctuations do play a role in the variation of Δμ with the strength of the electrostatic solute-water interaction. We also use grand canonical simulations to further investigate how interfacial fluctuations affect the propensity of the solute toward the water-vapor interface. To this end, we track a quantity called the interface potential (surface excess free energy) with the number of water molecules. With increasing number of water molecules, the liquid-vapor interface moves across a solute, which is kept at a fixed position in the simulation. Hence, the dependence of the interface potential on the number of waters models the process of moving the solute through the water-vapor interface. We analyze the change of the interface potential with the number of water molecules to explain that solute-induced changes in the interfacial fluctuations, like the pinning of capillary-wave-like undulations, do not play any role in the propensity of solutes toward water-vapor interfaces. The above analysis also shows that the dampening of interfacial fluctuations accompanies the adsorption of any solute at the liquid-vapor interface, irrespective of the chemical nature of the solute and solvent. However, such a correlation does not imply that dampening of fluctuations causes adsorption.

  17. The air bubble entrapped under a drop impacting on a solid surface

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  18. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Capillary reference half-cell

    DOEpatents

    Hall, Stephen H.

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  20. Capillary reference half-cell

    DOEpatents

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  1. Analysis of ripple formation in single crystal spot welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappaz, M.; Corrigan, D.; Boatner, L.A.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{submore » 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.« less

  2. Marangoni-induced symmetry-breaking pattern selection on viscous fluids

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2016-11-01

    Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  3. STS-57 Earth observation of King Sound in northwest Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of King Sound in northwest Australia. Roebuck Bay with the city of Broom on its northern shore is south of King Sound. Sediment in the sound is deposited by the Fitzroy River, which is the major body draining the Kimberley Plateau about 200 miles to the west. The extent of the tidal flats around the Sound is indicated by the large white areas covered with a salty residue. According to NASA scientists studying the STS-57 Earth photos, northwest wind gusts are ruffling areas of the water's surface at the mouth of King Sound and in neighboring Collier Bay. Therefore the water is less reflective and dark. The higher reflectance on the brightest areas is caused by biological oils floating on the surface and reducing the capillary wave action. The scientists point out that the oils take the forms of the currents and eddies in the picture. These eddies indicate that the water offshore is moving at a different speed

  4. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.

    PubMed

    Hsiao, Erik; Marino, Matthew J; Kim, Seong H

    2010-12-15

    This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Diffusion in cementitious materials. 2: Further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngala, V.T.; Page, C.L.; Parrott, L.J.

    1995-05-01

    Steady-state diffusion of dissolved oxygen and chloride ions in hydrated OPC and OPC/30%PFA pastes, hydrated for 2 weeks at 20 C and 10 weeks at 38 C, was studied at water/binder (w/s) ratios 0.4, 0.5, 0.6 and 0.7. Total porosity and a simple measure of capillary porosity, the volume fractions of the water lost in specimens from a saturated surface dry condition to a near-constant weight at 90.7% relative humidity, were also determined. The diffusion rate of chloride ions diminished markedly, to very low values, as the capillary porosity approached zero. For a given w/s ratio or capillary porosity themore » chloride ion diffusion coefficient for OPC/30%PFA pastes was about one order of magnitude smaller than that to OPC pastes. The rate of diffusion of dissolved oxygen also diminished as the capillary porosity reduced but it was still significant as the capillary porosity approached zero. For a given capillary porosity the oxygen diffusion coefficient for OPC/30%PFA pastes was about 30% smaller than that for OPC pastes. The results support the view that chloride ion diffusion in pastes of low capillary porosity is retarded by the surface charge of the hydrated cement gel. In contrast, the hydrated cement gel is much more permeable to the similarly-sized, neutral oxygen molecule.« less

  6. Acoustophoretic particle motion in a square glass capillary

    NASA Astrophysics Data System (ADS)

    Barnkob, Rune; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    Acoustofluidics applications often use complex resonator geometries and complex acoustic actuation, which complicates the prediction of the acoustic resonances and the induced forces from the acoustic radiation and the acoustic streaming. Recently, it was shown that simultaneous actuation of two perpendicular half-wave resonances in a square channel can lead to acoustic streaming that will spiral small particles towards the pressure nodal center (Antfolk, Anal. Chem. 84, 2012). This we investigate in details experimentally by examining a square glass capillary with a 400- μm microchannel acoustically actuated around its 2-MHz half-wave transverse resonance. The acoustic actuation leads to the formation of a half-wave resonance in both the vertical and horizontal direction of the microchannel. Due to viscous and dissipative losses both resonances have finite widths, but are shifted in frequency due to asymmetric actuation and fabrication tolerances making the channel not perfectly square. We determine the resonance widths and shift by measuring the 3D3C trajectories of large particles whose motion is fully dominated by acoustic radiation forces, while the induced acoustic streaming is determined by measuring smaller particles weakly influenced by the acoustic radiation force. DFG KA 1808/16-1.

  7. Fingerprinting postblast explosive residues by portable capillary electrophoresis with contactless conductivity detection.

    PubMed

    Kobrin, Eeva-Gerda; Lees, Heidi; Fomitšenko, Maria; Kubáň, Petr; Kaljurand, Mihkel

    2014-04-01

    A portable capillary electrophoretic system with contactless conductivity detection was used for fingerprint analysis of postblast explosive residues from commercial organic and improvised inorganic explosives on various surfaces (sand, concrete, metal witness plates). Simple extraction methods were developed for each of the surfaces for subsequent simultaneous capillary electrophoretic analysis of anions and cations. Dual-opposite end injection principle was used for fast (<4 min) separation of 10 common anions and cations from postblast residues using an optimized separation electrolyte composed of 20 mM MES, 20 mM l-histidine, 30 μM CTAB and 2 mM 18-crown-6. The concentrations of all ions obtained from the electropherograms were subjected to principal component analysis to classify the tested explosives on all tested surfaces, resulting in distinct cluster formations that could be used to verify (each) type of the explosive. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Necessity of capillary modes in a minimal model of nanoscale hydrophobic solvation

    PubMed Central

    Vaikuntanathan, Suriyanarayanan; Rotskoff, Grant; Hudson, Alexander; Geissler, Phillip L.

    2016-01-01

    Modern theories of the hydrophobic effect highlight its dependence on length scale, emphasizing the importance of interfaces in the vicinity of sizable hydrophobes. We recently showed that a faithful treatment of such nanoscale interfaces requires careful attention to the statistics of capillary waves, with significant quantitative implications for the calculation of solvation thermodynamics. Here, we show that a coarse-grained lattice model like that of Chandler [Chandler D (2005) Nature 437(7059):640–647], when informed by this understanding, can capture a broad range of hydrophobic behaviors with striking accuracy. Specifically, we calculate probability distributions for microscopic density fluctuations that agree very well with results of atomistic simulations, even many SDs from the mean and even for probe volumes in highly heterogeneous environments. This accuracy is achieved without adjustment of free parameters, because the model is fully specified by well-known properties of liquid water. As examples of its utility, we compute the free-energy profile for a solute crossing the air–water interface, as well as the thermodynamic cost of evacuating the space between extended nanoscale surfaces. These calculations suggest that a highly reduced model for aqueous solvation can enable efficient multiscale modeling of spatial organization driven by hydrophobic and interfacial forces. PMID:26957607

  9. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    PubMed

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  10. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, J.C.

    1996-08-27

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.

  11. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, John C.

    1996-01-01

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.

  12. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    NASA Astrophysics Data System (ADS)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  13. Drop Tower Experiments concerning Fluid Management under Microgravity

    NASA Astrophysics Data System (ADS)

    Gaulke, Diana; Dreyer, Michael

    2012-07-01

    Transport and positioning of liquid under microgravity is done utilizing capillary forces. Therefore, capillary transport processes have to be understood for a wide variety of space applications, ranging from propellant management in tanks of space transportation systems to eating and drinking devices for astronauts. There are two types of liquid transportation in microgravity using capillary forces. First, the driven liquid flow in open channels where the capillary forces at free surfaces ensure a gas and vapor free flow. Here it is important to know the limiting flow rate through such an open channel before the free surface collapses and gas is sucked into the channel. A number of different experiments at the drop tower Bremen, on sounding rockets and at the ISS have been conducted to analyse this phenomenon within different geometries. As result a geometry dependent theory for calculating the maximum flow rate has been found. On the other hand liquid positioning and transportation requires the capillary pressure of curved surfaces to achieve a liquid flow to a desired area. Especially for space applications the weight of structure has to be taken into account for development. For example liquid positioning in tanks can be achieved via a complicated set of structure filling the whole tank resulting in heavy devices not reasonable in space applications. Astrium developed in cooperation with ZARM a propellant management device much smaller than the tank volume and ensuring a gas and vapour free supply of propellant to the propulsion system. In the drop tower Bremen a model of this device was tested concerning different microgravity scenarios. To further decrease weight and ensure functionality within different scenarios structure elements are designed as perforated geometries. Capillary transport between perforated plates has been analyzed concerning the influence of geometrical pattern of perforations. The conducted experiments at the drop tower Bremen show the remarkable influence of perforations on the capillary transport capability.

  14. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Computational and Experimental Analysis of Coaxial Intercapillary Positioning Effects on Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J

    A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less

  15. Surface Properties of PEMFC Gas Diffusion Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WoodIII, David L; Rulison, Christopher; Borup, Rodney

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 highermore » than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.« less

  16. Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung.

    PubMed

    Maina, J N

    2007-01-15

    Among the air-breathing vertebrates, the respiratory system of birds, the lung-air sac system, is remarkably complex and singularly efficient. The most perplexing structural property of the avian lung pertains to its exceptional mechanical strength, especially that of the minuscule terminal respiratory units, the air- and the blood capillaries. In different species of birds, the air capillaries range in diameter from 3 to 20 micro m: the blood capillaries are in all cases relatively smaller. Over and above their capacity to withstand enormous surface tension forces at the air-tissue interface, the air capillaries resist mechanical compression (parabronchial distending pressure) as high as 20 cm H(2)O (2 kPa). The blood capillaries tolerate a pulmonary arterial vascular pressure of 24.1 mmHg (3.2 kPa) and vascular resistance of 22.5 mmHg (3 kPa) without distending. The design of the avian respiratory system fundamentally stems from the rigidity (strength) of the lung. The gas exchanger (the lung) is uncoupled from the ventilator (the air sacs), allowing the lung (the paleopulmonic parabronchi) to be ventilated continuously and unidirectionally by synchronized bellows like action of the air sacs. Since during the ventilation of the lung the air capillaries do not have to be distended (dilated), i.e., surface tension force does not have to be overcome (as would be the case if the lung was compliant), extremely intense subdivision of the exchange tissue was possible. Minuscule terminal respiratory units developed, producing a vast respiratory surface area in a limited lung volume. I make a case that a firm (rigid) rib cage, a lung tightly held by the ribs and the horizontal septum, a lung directly attached to the trunk, specially formed and compactly arranged parabronchi, intertwined atrial muscles, and tightly set air capillaries and blood capillaries form an integrated hierarchy of discrete network system of tension and compression, a tensegrity (tensional integrity) array, which absorbs, transmits, and dissipates stress, stabilizing (strengthening) the lung and its various structural components.

  17. Anomalous dispersion due to hydrocarbons: The secret of reservoir geophysics?

    USGS Publications Warehouse

    Brown, R.L.

    2009-01-01

    When P- and S-waves travel through porous sandstone saturated with hydrocarbons, a bit of magic happens to make the velocities of these waves more frequency-dependent (dispersive) than when the formation is saturated with brine. This article explores the utility of the anomalous dispersion in finding more oil and gas, as well as giving a possible explanation about the effect of hydrocarbons upon the capillary forces in the formation. ?? 2009 Society of Exploration Geophysicists.

  18. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    NASA Astrophysics Data System (ADS)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  19. Variable deflection response of sensitive CNT-on-fiber artificial hair sensors from CNT synthesis in high aspect ratio microcavities

    NASA Astrophysics Data System (ADS)

    Slinker, Keith; Maschmann, Matthew R.; Kondash, Corey; Severin, Benjamin; Phillips, David; Dickinson, Benjamin T.; Reich, Gregory; Baur, Jeff

    2015-03-01

    Crickets, locusts, bats, and many other animals detect changes in their environment with distributed arrays of flow-sensitive hairs. Here we discuss the fabrication and characterization of a relatively new class of pore-based, artificial hair sensors that take advantage of the mechanical properties of structural microfibers and the electromechanical properties of self-aligned carbon nanotube arrays to rapidly transduce changes in low speed air flow. The radially aligned nanotubes are able to be synthesized along the length of the fibers inside the high aspect ratio cavity between the fiber surface and the wall of a microcapillary pore. The growth self-positions the fibers within the capillary and forms a conductive path between detection electrodes. As the hair is deflected, nanotubes are compressed to produce a typical resistance change of 1-5% per m/s of air speed which we believe are the highest sensitivities reported for air velocities less than 10 m/s. The quasi-static response of the sensors to point loads is compared to that from the distributed loads of air flow. A plane wave tube is used to measure their dynamic response when perturbed at acoustic frequencies. Correlation of the nanotube height profile inside the capillary to a diffusion transport model suggests that the nanotube arrays can be controllably tapered along the fiber. Like their biological counterparts, many applications can be envisioned for artificial hair sensors by tailoring their individual response and incorporating them into arrays for detecting spatio-temporal flow patterns over rigid surfaces such as aircraft.

  20. Terrestrial Testing of the CapiBRIC, a Microgravity Optimized Brine Processor

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Callahan, Michael R.; Weislogel, Mark M.

    2016-01-01

    Utilizing geometry based static phase separation exhibited in the radial vaned capillary drying tray, a system was conceived to recover water from brine. This technology has been named the Capillary BRIC; abbreviated CapiBRIC. The CapiBRIC utilizes a capillary drying tray within a drying chamber. Water is recovered from clean water vapor evaporating from the free surface leaving waste brine solids behind. A novel approach of optimizing the containment geometry to support passive capillary flow and static phase separation provides the opportunity for a low power system that is not as susceptible to fouling as membranes or other technologies employing physical barriers across the free brine surface to achieve phase separation in microgravity. Having been optimized for operation in microgravity, full-scale testing of the CapiBRIC as designed cannot be performed on the ground as the force of gravity would dominate over the capillary forces. However, subscale units relevant to full-scale design were used to characterize fill rates, containment stability, and interaction with a variable volume reservoir in the PSU Dryden Drop Tower (DDT) facility. PSU also using tested units scaled such that capillary forces dominated in a 1-g environment to characterize evaporation from a free-surface in 1-g upward, sideways and downward orientations. In order to augment the subscale testing performed by PSU, a full scale 1-g analogue of the CapiBRIC drying unit was initiated to help validate performance predictions regarding expected water recovery ratio, estimated processing time, and interface definitions for inlets, outlets, and internal processes, including vent gas composition. This paper describes the design, development and test of the terrestrial CapiBRIC prototypes.

  1. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls.

    PubMed

    Kuchin, Igor V; Starov, Victor M

    2016-05-31

    A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

  2. Chemical microreactor and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan

    2005-11-01

    A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.

  3. Freeze-tolerant condenser for a closed-loop heat-transfer system

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J. (Inventor); Elkouh, Nabil A. (Inventor)

    2002-01-01

    A freeze tolerant condenser (106) for a two-phase heat transfer system is disclosed. The condenser includes an enclosure (110) and a porous artery (112) located within and extending along the length of the enclosure. A vapor space (116) is defined between the enclosure and the artery, and a liquid space (114) is defined by a central passageway within the artery. The artery includes a plurality of laser-micromachined capillaries (130) extending from the outer surface of the artery to its inner surface such that the vapor space is in fluid communication with the liquid space. In one embodiment of the invention, the capillaries (130) are cylindrical holes having a diameter of no greater than 50 microns. In another embodiment, the capillaries (130') are slots having widths of no greater than 50 microns. A method of making an artery in accordance with the present invention is also disclosed. The method includes providing a solid-walled tube and laser-micromachining a plurality of capillaries into the tube along a longitudinal axis, wherein each capillary has at least one cross-sectional dimension transverse to the longitudinal axis of less than 50 microns.

  4. Cooperative suction by vertical capillary array pump for controlling flow profiles of microfluidic sensor chips.

    PubMed

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-10-18

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  5. Exact Solution for Capillary Bridges Properties by Shooting Method

    NASA Astrophysics Data System (ADS)

    Qiang-Nian, Li; Jia-Qi, Zhang; Feng-Xi, Zhou

    2017-04-01

    The investigation of liquid bridge force acting between wet particles has great significance in many fields. In this article, the exact solution of capillary force between two unequal-sized spherical particles is investigated. Firstly, The Young-Laplace equation with moving boundary is converted into a set of ordinary differential equations with two fix point boundary using variable substitution technique, in which the gravity effects have been neglected. The geometry of the liquid bridge between two particles is solved by shooting method. After that, the gorge method is applied to calculate the capillary-bridge force that is consists of contributions from the capillary suction and surface tension. Finally, the effect of various parameters including distance between two spheres, radii of spheres, and contact angles on the capillary force are investigated. It is shown that the presented approach is an efficient and accurate algorithm for capillary force between two particles in complex situations.

  6. Changes in materials properties explain the effects of humidity on gecko adhesion.

    PubMed

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  7. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  8. Surface tension dominates insect flight on fluid interfaces

    PubMed Central

    Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu

    2016-01-01

    ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  9. WAVE2 is required for directed cell migration and cardiovascular development.

    PubMed

    Yamazaki, Daisuke; Suetsugu, Shiro; Miki, Hiroaki; Kataoka, Yuki; Nishikawa, Shin-Ichi; Fujiwara, Takashi; Yoshida, Nobuaki; Takenawa, Tadaomi

    2003-07-24

    WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.

  10. Supersonic plasma jets in experiments for radiophysical testing of bodies flow

    NASA Astrophysics Data System (ADS)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Lashkov, V. A.; Mashek, I. Ch; Pashchina, A. S.; Petrovskiy, V. P.; Khoronzhuk, R. S.; Dobrovolskaya, A. S.

    2018-01-01

    The action of differently oriented magnetic fields on the parameters of bow shock created in the vicinity of aerodynamic bodies placed into the supersonic gas-plasma flows is studied. For these experiments two types of the high speed plasma jet sources are used—magneto-plasma compressor (MPC) and powerful pulse capillary type discharge. MPC allows to create the plasma jets with gas flow velocity of 10 ± 2 km/s, lifetime 30-50 μs, temperature Te ≈ 3 ± 0.5 eV, electron density about ne ˜ 1016cm-3 and temperature Te ≈ 3 ± 0.5 eV. The jet source based on powerful capillary discharge creates the flows with lifetime 1-20 ms, Mach numbers 3-8, plasma flow velocity 3-10 km/s, vibration and rotation temperatures 9000-14000 and 3800-6000 K respectively. The results of our first experiments show the possibility of using gas-plasma sources based on MPC and powerful capillary discharge for aerodynamic and radiophysical experiments. Comparatively small magnetic field B = 0.23-0.5 T, applied to the obtained bow shocks, essentially modify them. This can lead to a change in shape and an increase in the distance between the detached shock wave and the streamlined body surface if B is parallel to the jet velocity or to decrease this parameter if B is orthogonal to the oncoming flow. Probably, the first case can be useful for reducing the thermal load and aerodynamic drug of streamlined body and the second case can be used to control the radio-transparency of the plasma layer and solving the blackout problem.

  11. Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem

    NASA Astrophysics Data System (ADS)

    Farsoiya, Palas Kumar; Dasgupta, Ratul

    2017-11-01

    When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.

  12. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels

    NASA Technical Reports Server (NTRS)

    Allen, Jeffrey S.

    2005-01-01

    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  13. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  14. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, Steve P.

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  15. Aspects of hysteresis in unsaturated porous media flow

    NASA Astrophysics Data System (ADS)

    van Duijn, Hans

    2016-04-01

    About 20 years ago, Peter Raats and I wrote a technical note related to the horizontal redistribution in unsaturated porous media with hysteresis in the capillary pressure (P.A.C. Raats & C.J. van Duijn, A note on horizontal redistribution with capillary hysteresis, WWR 31, p. 231-232, 1995). In the first part of my presentation, I will revisit the results of that paper. In particular the cases of unconventional flow, where the water flows from the dry region to the wet region. A comparison will be made with results obtained with the current interface area models as introduced by Gray & Hassanizadeh. I will explain and outline the differences. In the second part, travelling wave solutions of Richards equation with gravity and with hysteresis in both the capillary pressure and relative permeability will be discussed. It will be explained why such solutions oscillate in space-time and how they behave as the hysteresis regularization vanishes.

  16. The Calm Methane Northern Seas of Titan from Cassini Radio Science Observations

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; French, Richard G.; Wong, Kwok; Anabtawi, Aseel; Schinder, Paul J.; Cassini Radio Science Team

    2016-10-01

    We report on results from 3 bistatic scattering observations of Titan northern seas conducted by the Cassini spacecraft in 2014 ( flybys T101, T102, and T106). The onboard Radio Science instrument transmits 3 sinusoidal signals of 0.94, 3.6, and 13 cm wavelengths. The spacecraft is continuously maneuvered to point in incidence direction so that mirror-like reflections from Titan's surface are observed at the ground stations of the NASA Deep Space Network. The corresponding ground-track in all 3 cases crossed different regions of Kraken Mare, and in the case of T101 also crossed Ligeia Mare. A nearly pure sinusoidal reflected signal was clearly detectable in the observed echoes spectra over surface regions identified in the Cassini RADAR images as potential liquid regions. Weaker quasi-specular echoes were also evident over some intermediate dry land and near sea shores. Cassini transmits right-circularly-polarized (RCP) signals and both the RCP and LCP echo components are observed. Their spectral shape, bandwidth, and total power are the observables used to infer/constrain physical surface properties. Presented results are limited to the 3.6 cm wavelength signal which has the largest SNR. The remarkably preserved sinusoidal echo spectral shape and the little detectable Doppler broadening strongly suggest surface that is smooth on scales large compared to 3.6 cm. If long wavelength gravity waves are present, they must be very subtle. The measured RCP/LCP echo power ratio provides direct measurement of the surface dielectric constant and is diagnostic of the liquid composition. The power ratio measurements eliminate possible significant ethane contribution and strongly imply predominantly liquid methane and nitrogen composition. Carefully calibrated measurements of the absolute echo power and the inferred dielectric constant constrain the presence of any capillary waves of wavelength << 3.6 cm. The latter affect wave coherence across the Fresnel region, reducing the reflected sinusoidal component power. When detectable, the reduction implies an RMS ripples height of about 2 mm, otherwise the measurements place an upper bound of about 1 mm. The results appear consistent among the two polarized echo components.

  17. All-Optical Micro Motors Based on Moving Gratings in Photosensitive Media

    NASA Technical Reports Server (NTRS)

    Curley, M.; Sarkisov, S. S.; Fields, A.; Smith, C.; Kukhtarev, N.; Kulishov, M. B.; Adamovsky, Grigory

    2001-01-01

    An all-optical micromotor with a rotor driven by a traveling wave of surface deformation of a stator being in contact with the rotor is being studied. Instead of an ultrasonic wave produced by an electrically driven piezoelectric actuator as in ultrasonic motors, the wave is a result of a photo-induced surface deformation of a photosensitive material produced by an incident radiation. A thin piezoelectric polymer will deform more easily LiNbO3 or metal when irradiated with light. The type of photosensitive material studied are piezoelectric polymers with and without coatings for connecting electrodes. In order to be considered as a possible candidate for micromotors, the material should exhibit surface deformation produced by a laser beam of the order of 10 microns. This is compared to the deformations produced by static holographic gratings studied in photorefractive crystals of LiNbO3 using high vertical resolution surface profilometer Dektak 3 and surface interferometer WYKO. An experimental setup showing the oscillations has been developed. The setup uses a chopped beam from an Argon ion laser to produce the deformation while a probe beam is reflected by the thin film into a fiber which is then detected on an oscilloscope. A ramp voltage signal generator will drive the piezoelectric film in another experiment to determine the resonance of the film. A current is generated when light is incident upon the film and this current can be measured. The reverse process has already been demonstrated in other piezoelectric actuators. Changing voltage, polarity, and frequency of the signal can easily generate vibrations similar to those when light is incident on the film. This can be compared to the effects of laser interaction with light absorbing fluids such as solutions of 2,9,16,23-Tetrakis(phenylthio)-29H, 31 H-phthalocyanine in chlorobenzene in capillary tubes, The possibility of using a liquid with the piezoelectric film would be a novel idea for a micromotor since the interaction of a single low power focused laser beam at 633 nm with such fluid produced an intensive circular motion.

  18. Measurement of surface tension and viscosity by open capillary techniques

    DOEpatents

    Rye,Robert R. , Yost,Frederick G.

    1998-01-01

    An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the

  19. A composite smeared finite element for mass transport in capillary systems and biological tissue.

    PubMed

    Kojic, M; Milosevic, M; Simic, V; Koay, E J; Fleming, J B; Nizzero, S; Kojic, N; Ziemys, A; Ferrari, M

    2017-09-01

    One of the key processes in living organisms is mass transport occurring from blood vessels to tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse direction - transport of waste products of cell metabolism to blood vessels. The mass exchange from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process has been investigated experimentally over centuries, and also in the last decades by the use of computational methods. Due to geometrical and functional complexity and heterogeneity of capillary systems, it is however not feasible to model in silico individual capillaries (including transport through the walls and coupling to tissue) within whole organ models. Hence, there is a need for simplified and robust computational models that address mass transport in capillary-tissue systems. We here introduce a smeared modeling concept for gradient-driven mass transport and formulate a new composite smeared finite element (CSFE). The transport from capillary system is first smeared to continuous mass sources within tissue, under the assumption of uniform concentration within capillaries. Here, the fundamental relation between capillary surface area and volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, we formulate the CSFE which relies on the transformation of the one-dimensional (1D) constitutive relations (for transport within capillaries) into the continuum form expressed by Darcy's and diffusion tensors. The introduced CSFE is composed of two volumetric parts - capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and concentration for each of the two domains. The domains are coupled by connectivity elements at each node. The fictitious connectivity elements take into account the surface area of capillary walls which belongs to each node, as well as the wall material properties (permeability and partitioning). The overall FE model contains geometrical and material characteristics of the entire capillary-tissue system, with physiologically measurable parameters assigned to each FE node within the model. The smeared concept is implemented into our implicit-iterative FE scheme and into FE package PAK. The first three examples illustrate accuracy of the CSFE element, while the liver and pancreas models demonstrate robustness of the introduced methodology and its applicability to real physiological conditions.

  20. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    PubMed Central

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  1. Damage-free polymer surface modification employing inward-type plasma

    NASA Astrophysics Data System (ADS)

    Kanou, Ryo; Suga, Hiroshi; Utsumi, Hideyuki; Takahashi, Satoshi; Shirayama, Yuya; Watanabe, Norimichi; Petit, Stèphane; Shimizu, Tetsuo

    2017-08-01

    Inward-type plasmas, which spread upstream against the gas flow in the capillary tube where the gas is discharged, can react with samples placed near the entrance of such a capillary tube. In this study, surface modification of polymer surfaces is conducted using inward plasma. The modification is also done by conventional microplasma jet, and the modified surfaces with two plasma techniques are characterized by contact angle measurement, X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM). Although inward-plasma-treated surfaces are less hydrophilic than conventional plasma-treated ones, they are still sufficiently hydrophilic for surface coatings. In addition, it turns out that the polymer surfaces irradiated with the inward plasma yield much smoother surfaces than those treated with the conventional plasma jet. Thus, the inward plasma treatment is a viable technique when the surface flatness is crucial, such as for the surface coating of plastic lenses.

  2. Ultrasonic monitoring of spontaneous imbibition experiments: Acoustic signature of fluid migration

    NASA Astrophysics Data System (ADS)

    David, Christian; Barnes, Christophe; Desrues, Mathilde; Pimienta, Lucas; Sarout, Joël.; Dautriat, Jérémie

    2017-07-01

    Capillary rise experiments (spontaneous imbibition tests) were conducted in the laboratory with ultrasonic and X-ray monitoring on the Sherwood sandstone and the Majella grainstone. The aim was to provide a direct comparison between the variation in seismic attributes (amplitude, velocity, spectral content, and energy) and the actual fluid distribution in the rock. Two pairs of ultrasonic P wave sensors located at different heights on a cylindrical rock specimen recorded every 5 s the waveforms when capillary forces make water rise up into the rock from the bottom in contact with a water tank. Simultaneously, computerized tomography scan images of a vertical cross section were also recorded. Two important results were found. (i) The amplitude of the first P wave arrival is impacted by the upward moving fluid front before the P wave velocity is, while the fluid front has not yet reached the sensors level. In contrast, the P wave velocity decreases when the fluid front reaches the Fresnel clearance zone. The spectral analysis of the waveforms shows that the peak frequency amplitude is continuously decreasing without noticeable frequency shift. (ii) A methodology based on the calculation of the analytical signal and instantaneous phase was designed to decompose each waveform into discrete wavelets associated with direct or reflected waves. The energy carried by the wavelets is very sensitive to the fluid substitution process: the coda wavelets related to reflections on the bottom end face of the specimen are impacted as soon as imbibition starts and can be used as a precursor for the arriving fluid.

  3. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Ciszek, T. F.; Kran, A.; Yang, K.

    1977-01-01

    The crystal-growth method under investigation is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable dye. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. The configuration of the technique used in our initial studies is shown. The crystal-growth method has been applied to silicon ribbons it was found that substantial improvements in ribbon surface quality could be achieved with a higher melt meniscus than that attainable with the EFG technique.

  4. Bulk- and surface-modified combinable PDMS capillary sensor array as an easy-to-use sensing device with enhanced sensitivity to elevated concentrations of multiple serum sample components.

    PubMed

    Fujii, Yuji; Henares, Terence G; Kawamura, Kunio; Endo, Tatsuro; Hisamoto, Hideaki

    2012-04-21

    To enhance sensitivity and facilitate easy sample introduction into a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor array, PDMS was modified in bulk and on its surface to prepare "black" PDMS coated with a silver layer and self-assembled monolayer (SAM). India ink, a traditional Japanese black ink, was added to the PDMS pre-polymer for bulk modification. The surface was modified by a silver mirror reaction followed by SAM formation using cysteine. These modifications enhanced the fluorescence signals by reflecting them from the surface and reducing background interference. A decrease in the water contact angle led to enhanced sensitivity and easy sample introduction. Furthermore, a CPC sensor array for multiplex detection of serum sample components was prepared that could quantify the analytes glucose, potassium, and alkaline phosphatase (ALP). When serum samples were introduced by capillary action, the CPC sensor array showed fluorescence responses for each analyte and successfully identified the components with elevated concentrations in the serum samples.

  5. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    PubMed

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  6. Analysis of C and Ku band ocean backscatter measurements under low-wind conditions

    NASA Astrophysics Data System (ADS)

    Carswell, James R.; Donnelly, William J.; McIntosh, Robert E.; Donelan, Mark A.; Vandemark, Douglas C.

    1999-09-01

    Airborne ocean backscatter measurements at C and Ku band wavelengths obtained in low to moderate-wind conditions are presented. The differences between the low-wind backscatter data and the CMOD4 and SASS-II models are reported. The measurements show that the upwind/crosswind backscatter ratio is greater than predicted. These large upwind/crosswind backscatter ratios are attributed to a rapid decrease in the crosswind backscatter at low winds. Qualitative agreement with the composite surface model proposed by Donelan and Pierson suggests the rapid decrease in the crosswind backscatter may be caused by viscous dampening of the Bragg-resonant capillary-gravity waves. We show that for larger antenna footprints typical of satellite-based scatterometers, the variability in the observed wind field smooths out the backscatter response such that the rapid decrease in the crosswind direction is not observed.

  7. Detection of oil spills using 13.3 GHz radar scatterometer

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1972-01-01

    The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.

  8. Reclamation of potable water from mixed gas streams

    DOEpatents

    Judkins, Roddie R.; Bischoff, Brian L.; Debusk, Melanie Moses; Narula, Chaitanya

    2016-07-19

    An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

  9. Reclamation of potable water from mixed gas streams

    DOEpatents

    Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya

    2013-08-20

    An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

  10. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  11. Method for forming a chemical microreactor

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA

    2009-05-19

    Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.

  12. Atomization off thin water films generated by high-frequency substrate wave vibrations.

    PubMed

    Collins, David J; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R; Yeo, Leslie Y

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  13. Cerebral capillary velocimetry based on temporal OCT speckle contrast.

    PubMed

    Choi, Woo June; Li, Yuandong; Qin, Wan; Wang, Ruikang K

    2016-12-01

    We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.

  14. Instability of the capillary bridge

    NASA Astrophysics Data System (ADS)

    Pare, Gounseti; Hoepffner, Jerome

    2014-11-01

    Capillary adhesion is a physical mechanism that maintains two bodies in contact by capillarity through a liquid ligament. The capillary bridge is an idealization of this capillary adhesion. In this study we first focus on the classical case of the stability of the capillary bridge. Secondly we study a slightly more complex configuration, imagining a flow in the capillary bridge as in the case of the dynamics of the neck of a liquid ligament, in its withdrawal under the effect of capillarity. Inspired by the experiments on soap films of Plateau, the configuration analyzed consists of an initially axisymmetric, mass of fluid held by surface tension forces between two parallel, coaxial, solid pipes of the same diameter. The results presented are obtained by numerical simulations using the free software, Gerris Flow Solver. We first focus on the capillary Venturi. In the static configuration the stability diagram of the capillary bridge obtained is in perfect agreement with the results of Lev A. Slobozhanin. In the dynamic case we develop a matlab code based on the one dimensional equations of Eggers and Dupont. The comparison of the bifurcation diagram obtained and the numerical simulations shows a good agreement.

  15. Influence of the capillary on the ignition of the transient spark discharge

    NASA Astrophysics Data System (ADS)

    Gerling, T.; Hoder, T.; Brandenburg, R.; Bussiahn, R.; Weltmann, K.-D.

    2013-04-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system.

  16. Solvent jet desorption capillary photoionization-mass spectrometry.

    PubMed

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  17. Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.

    PubMed

    Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren

    2016-03-01

    Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.

  18. Reduced Capillary Length Scale in the Application of Ostwald Ripening Theory to the Coarsening of Charged Colloidal Crystals in Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Rowe, Jeffrey D.; Baird, James K.

    2007-06-01

    A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions with the surrounding solution and develop a net surface charge density and a corresponding double layer. The interfacial tension of the charged surface has contributions arising from: (a) background interfacial tension of the uncharged surface, (b) the entropy associated with the adsorption of ions on the surface, and (c) the polarizing effect of the electrostatic field within the double layer. The adsorption and polarization effects make negative contributions to the surface free energy and serve to reduce the interfacial tension below the value to be expected for the uncharged surface. The diminished interfacial tension leads to a reduced capillary length scale. According to the Ostwald ripening theory of particle coarsening, the reduced capillary length will cause the solute supersaturation to decay more rapidly and the colloidal particles to be smaller in size and greater in number than in the absence of the double layer. Although the length scale for coarsening should be little affected in the case of inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions of protein crystals, such as apoferritin, catalase, and thaumatin.

  19. Free Surface Flows and Extensional Rheology of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  20. Elastocapillarity: When Surface Tension Deforms Elastic Solids

    NASA Astrophysics Data System (ADS)

    Bico, José; Reyssat, Étienne; Roman, Benoît

    2018-01-01

    Although negligible at large scales, capillary forces may become dominant for submillimetric objects. Surface tension is usually associated with the spherical shape of small droplets and bubbles, wetting phenomena, imbibition, or the motion of insects at the surface of water. However, beyond liquid interfaces, capillary forces can also deform solid bodies in their bulk, as observed in recent experiments with very soft gels. Capillary interactions, which are responsible for the cohesion of sandcastles, can also bend slender structures and induce the bundling of arrays of fibers. Thin sheets can spontaneously wrap liquid droplets within the limit of the constraints dictated by differential geometry. This review aims to describe the different scaling parameters and characteristic lengths involved in elastocapillarity. We focus on three main configurations, each characterized by a specific dimension: three-dimensional (3D), deformations induced in bulk solids; 1D, bending and bundling of rod-like structures; and 2D, bending and stretching of thin sheets. Although each configuration deserves a detailed review, we hope our broad description provides a general view of elastocapillarity.

  1. A Concurrent Flow Model for Extraction during Transcapillary Passage

    PubMed Central

    Bassingthwaighte, James B.

    2010-01-01

    A model for capillary-tissue exchange in a uniformly perfused organ with uniform capillary transit times and no diffusional capillary interactions was designed to permit the exploration of the influences of various parameters on the interpretation of indicator-dilution curves obtained at the venous outflow following the simultaneous injection of tracers into the arterial inflow. These parameters include tissue geometric factors, longitudinal diffusion and volumes of distribution of tracers in blood and tissue, hematocrit, volumes of nonexchanging vessels and the sampling system, capillary permeability, P. capillary surface area, S, and flow of blood- or solute-containing fluid, Fs′. An assumption of instantaneous radial diffusion in the extravascular region is appropriate when intercapillary distances are small, as they are in the heart, or permeabilities are low, as they are for lipophobic solutes. Numerical solutions were obtained for dispersed input functions similar to normal intravascular dye-dilution curves. Axial extravascular diffusion showed a negligible influence at low permeabilities. The “instantaneous extraction” of a permeating solute can provide an estimate of PS/Fs′, the ratio of the capillary permeability–surface area product to the flow, when PS/Fs′ lies between approximately 0.05 and 3.0; the limits of the range depend on the extravascular volume of distribution and the influences of intravascular dispersion. The most accurate estimates were obtained when experiments were designed so that PS/Fs′ was between 0.2 and 1.0 or peak extractions were between 0.1 and 0.6. PMID:4608628

  2. Interstitial distribution of charged macromolecules in the dog lung: a kinetic model.

    PubMed

    Parker, J C; Miniati, M; Pitt, R; Taylor, A E

    1987-01-01

    A mathematic model was constructed to investigate conflicting physiologic data concerning the charge effect of continuous capillaries to macromolecules in the lung. We simulated the equilibration kinetics of lactate dehydrogenase (MR 4.2 nM) isozymes LDH 1 (pI = 5.0) and LDH 5 (pI = 7.9) between plasma and lymph using previously measured permeability coefficients, lung tissue distribution volumes (VA) and plasma concentrations (CP) in lung tissue. Our hypothesis is that the fixed anionic charges in interstitium, basement membrane, and cell surfaces determine equilibration rather than charged membrane effects at the capillary barrier, so the same capillary permeability coefficients were used for both isozymes. Capillary filtration rates and protein fluxes were calculated using conventional flux equations. Initial conditions at baseline and increased left atrial pressures (PLA) were those measured in animal studies. Simulated equilibration of isozymes over 30 h in the model at baseline capillary pressures accurately predicted the observed differences in lymph/plasma concentration ratios (CL/CP) between isotopes at 4 h and equilibration of these ratios at 24 h. Quantitative prediction of isozyme CL/CP ratios was also obtained at increased PLA. However, an additional cation selective compartment representing the surface glycocalyx was required to accurately simulate the initial higher transcapillary clearances of cationic LDH 5. Thus experimental data supporting the negative barrier, positive barrier, and no charge barrier hypotheses were accurately reproduced by the model using only the observed differences in interstitial partitioning of isozymes without differences in capillary selectivity.

  3. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    PubMed

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Extraction Optimization for Obtaining Artemisia capillaris Extract with High Anti-Inflammatory Activity in RAW 264.7 Macrophage Cells

    PubMed Central

    Jang, Mi; Jeong, Seung-Weon; Kim, Bum-Keun; Kim, Jong-Chan

    2015-01-01

    Plant extracts have been used as herbal medicines to treat a wide variety of human diseases. We used response surface methodology (RSM) to optimize the Artemisia capillaris Thunb. extraction parameters (extraction temperature, extraction time, and ethanol concentration) for obtaining an extract with high anti-inflammatory activity at the cellular level. The optimum ranges for the extraction parameters were predicted by superimposing 4-dimensional response surface plots of the lipopolysaccharide- (LPS-) induced PGE2 and NO production and by cytotoxicity of A. capillaris Thunb. extracts. The ranges of extraction conditions used for determining the optimal conditions were extraction temperatures of 57–65°C, ethanol concentrations of 45–57%, and extraction times of 5.5–6.8 h. On the basis of the results, a model with a central composite design was considered to be accurate and reliable for predicting the anti-inflammation activity of extracts at the cellular level. These approaches can provide a logical starting point for developing novel anti-inflammatory substances from natural products and will be helpful for the full utilization of A. capillaris Thunb. The crude extract obtained can be used in some A. capillaris Thunb.-related health care products. PMID:26075271

  5. The CE-Way of Thinking: "All Is Relative!".

    PubMed

    Schmitt-Kopplin, Philippe; Fekete, Agnes

    2016-01-01

    Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size-see chapter on semiempirical modelization).

  6. Cardiac-related changes in lung resistivity as a function of frequency and location obtained from EITS images.

    PubMed

    Nopp, P; Zhao, T X; Brown, B H; Wang, W

    1996-11-01

    ECG-gated electrical impedance tomographic spectroscopy (EITS) measurements of the lungs were taken on seven normal subjects in the frequency range 9.6 kHz to 614.4 kHz. The results show that in late systole the resistivity p' relative to the R-wave (i.e. p' = 1 at the R-wave) decreases consistently within the lung. In addition there arises an increase in p' in early systole towards the periphery of the lung. Frequency behaviour of p' changes with location. At all times after the R-wave, in the centre of the lung p' is higher at higher frequency f whereas in the periphery it is lower at higher f. The principal decrease in p' can be explained by increasing pulmonary blood volume due to cardiac contraction. The early systolic increase is presumably due to venous return to the left atrium locally leading blood output from the right ventricle which is delayed by the windkessel effect. Based on a model taking extracapillary and capillary blood volume increase into account, the change in frequency behaviour of p' is explained by regional variations in extracapillary blood vessel size determining the relative contributions of extracapillary blood volume and capillary blood volume change to p' at a certain frequency.

  7. The Texas horned lizard as model for robust capillary structures for passive directional transport of cooling lubricants

    NASA Astrophysics Data System (ADS)

    Comanns, Philipp; Winands, Kai; Pothen, Mario; Bott, Raya A.; Wagner, Hermann; Baumgartner, Werner

    2016-04-01

    Moisture-harvesting lizards, such as the Texas horned lizard Phrynosoma cornutum, have remarkable adaptations for inhabiting arid regions. Special skin structures, in particular capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and to transport it to the snout for ingestion. This fluid transport is passive and directional towards the lizard's snout. The directionality is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, these principles were transferred to technical prototype design and manufacturing. Capillary structures, 50 μm to 300 μm wide and approx. 70 μm deep, were realized by use of a pulsed picosecond laser in hot working tool steel, hardened to 52 HRC. In order to achieve highest functionality, strategies were developed to minimize potential structural inaccuracies, which can occur at the bottom of the capillary structures caused by the laser process. Such inaccuracies are in the range of 10 μm to 15 μm and form sub-capillary structures with greater capillary forces than the main channels. Hence, an Acceleration Compensation Algorithm was developed for the laser process to minimize or even avoid these inaccuracies. The capillary design was also identified to have substantial influence; by a hexagonal capillary network of non-parallel capillaries potential influences of sub-capillaries on the functionality were reduced to realize a robust passive directional capillary transport. Such smart surface structures can lead to improvements of technical systems by decreasing energy consumption and increasing the resource efficiency.

  8. Critical capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.

  9. Insight into the stability of poly(diallydimethylammoniumchloride) and polybrene poly cationic coatings in capillary electrophoresis.

    PubMed

    Pei, Lei; Lucy, Charles A

    2014-10-24

    Polycationic polymers are widely used in capillary electrophoresis (CE) as surface coatings to prevent protein adsorption and control electroosmotic flow (EOF). Such semi-permanent coatings are formed by flushing the capillary with a quaternary amine-based polymer such as poly(diallydimethylammonium chloride) (PDADMAC) or polybrene. Compared to covalent capillary coatings, the claimed advantages of adsorptive polycation coatings are their simple preparation and that they are not limited to the pH 2-8 range as are covalent coatings. However, while the latter is commonly claimed, few studies have demonstrated the stability of polycationic coatings at extreme pH. Herein PDADMAC and polybrene are studied as model cationic coatings. PDADMAC with higher molecular weight (M.W.) demonstrated higher EOF stability at pH 9.5, with PDADMAC of M.W. less than 200,000 being unstable at pH 9.5. X-ray photoelectron spectroscopy (XPS) shows that the quaternary amines of PDADMAC and polybrene were slowly converted to tertiary amines in alkaline solution and more rapidly when adsorbed on a silica surface. The degraded polycation deprotonated at pH >7, resulting in loss of polymer from the surface and diminishing EOF. Successive multiple ionic layer (SMIL) coatings show greater alkaline stability by distancing the polycation from the surface. Separations of inorganic anions at pH 9.5 illustrate the degradation behavior and enhanced stability of higher M.W. polycationic coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    NASA Astrophysics Data System (ADS)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

  11. Ultra-high-stability, pH-resistant sol-gel titania poly(tetrahydrofuran) coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Cabezas, Yaniel; Malik, Abdul

    2009-05-15

    A sol-gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol-gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol-gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol-gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol-gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol-gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions-even after 18h of exposure to 1M HCl (pH approximately 0.0) and 1M NaOH (pH approximately 14.0).

  12. Van der waals forces on thin liquid films in capillary tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdt, G.C.; Swanson, L.W.

    1993-10-01

    A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less

  13. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  14. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  15. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  16. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  17. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME).

    PubMed

    Alhooshani, Khalid; Kim, Tae-Young; Kabir, Abuzar; Malik, Abdul

    2005-01-07

    A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).

  19. Falling films on flexible inclines

    NASA Astrophysics Data System (ADS)

    Matar, O. K.; Craster, R. V.; Kumar, S.

    2007-11-01

    The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.

  20. A numerical study on swimming micro-organisms inside a capillary tube

    NASA Astrophysics Data System (ADS)

    Zhu, Lailai; Lauga, Eric; Brandt, Luca

    2011-11-01

    The locomotivity of micro-organisms is highly dependent on the surrounding environments such as walls, free surface and neighbouring cells. In our current work, we perform simulations of swimming micro-organisms inside a capillary tube based on boundary element method. We focus on the swimming speed, power consumption and locomotive trajectory of swimming cells for different levels of confinement. For a cell propelling itself by tangential surface deformation, we show that it will swim along a helical trajectory with a specified swimming gait. Such a helical trajectory was observed before by experiments on swimming Paramecium inside a capillary tube. Funding by VR (the Swedish Research Council) and the National Science Foundation (grant CBET-0746285 to E.L.) is gratefully acknowledged. Computer time provided by SNIC (Swedish National Infrastructure for Computing) is also acknowledged.

  1. Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier

    DOEpatents

    Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich

    1998-01-01

    The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.

  2. Wetting-dewetting films: the role of structural forces.

    PubMed

    Nikolov, Alex; Wasan, Darsh

    2014-04-01

    The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin-Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij-Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting-dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting-dewetting phenomena, as well as aid in the development of novel products and technologies. © 2013.

  3. A novel in situ strategy for the preparation of a β-cyclodextrin/polydopamine-coated capillary column for capillary electrochromatography enantioseparations.

    PubMed

    Guo, Heying; Niu, Xiaoying; Pan, Congjie; Yi, Tao; Chen, Hongli; Chen, Xingguo

    2017-06-01

    Inspired by the chiral recognition ability of β-cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β-cyclodextrin/polydopamine composite material coated-capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro-osmotic flow studies indicated that β-cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β-cyclodextrin/polydopamine-coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column-to-column repeatability were in the range of 0.41-1.74, 1.03-4.18, and 1.66-8.24%, respectively. Moreover, the separation efficiency of the β-cyclodextrin/polydopamine-coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    PubMed

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.; Skoulas, Evangelos; Papadopoulos, Antonis; Stratakis, Emmanuel

    2016-08-01

    The significance of the magnitude of the Prandtl number of a fluid in the propagation direction of induced convection rolls is elucidated. Specifically, we report on the physical mechanism to account for the formation and orientation of previously unexplored supra-wavelength periodic surface structures in dielectrics, following melting and subsequent capillary effects induced upon irradiation with ultrashort laser pulses. Counterintuitively, it is found that such structures exhibit periodicities, which are markedly, even multiple times, higher than the laser excitation wavelength. It turns out that the extent to which the hydrothermal waves relax depends upon the laser beam energy, produced electron densities upon excitation with femtosecond pulsed lasers, the magnitude of the induced initial local roll disturbances, and the magnitude of the Prandtl number with direct consequences on the orientation and size of the induced structures. It is envisaged that this elucidation may be useful for the interpretation of similar, albeit large-scale periodic or quasiperiodic structures formed in other natural systems due to thermal gradients, while it can also be of great importance for potential applications in biomimetics.

  6. On/off switching of capillary vessel flow controls mitochondrial and glycolysis pathways for energy production.

    PubMed

    Abo, Toru; Watanabe, Mayumi; Tomiyama, Chikako; Kanda, Yasuhiro

    2014-07-01

    Capillary vessel flow in the base of the fingernail can be observed by microscopy. This flow is switched off under some conditions, such as coldness, surprise, and anger and is switched on again under other conditions, such as warming, relaxation, and mild exercise. In other words, capillary vessels perform two functions: switching flow on and off. It is speculated that the switch-off function is necessary to direct energy production to the glycolysis pathway, while the switch-on function is necessary for the mitochondrial pathway. This is because glycolysis takes place under anaerobic conditions, while oxidative phosphorylation in the mitochondria proceeds under aerobic conditions in the body. To switch off circulation, the negative electric charges on the surface of erythrocytes and the capillary wall may be decreased by stimulation of the sympathetic nerves and secretion of steroid hormones. Negative charge usually acts as repulsive force between erythrocytes and between erythrocytes and the capillary wall. By decreasing the negative charge, erythrocytes can aggregate and also adhere to the capillary wall. These behaviors may be related to the capillary flow switch-off function. Here, it is emphasized that the capillary vessels possess not only a switch-on function but also a switch-off function for circulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  8. Dynamic Effective Mass of Granular Media

    NASA Astrophysics Data System (ADS)

    Hsu, Chaur-Jian; Johnson, David L.; Ingale, Rohit A.; Valenza, John J.; Gland, Nicolas; Makse, Hernán A.

    2009-02-01

    We develop the concept of frequency dependent effective mass, Mtilde (ω), of jammed granular materials which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of normal room condition or controlled humidity. The dominant features of Mtilde (ω) provide signatures of the dissipation of acoustic modes, elasticity, and aging effects in the granular medium. We perform humidity controlled experiments and interpret the data in terms of a continuum model and a “trap” model of thermally activated capillary bridges at the contact points. The results suggest that attenuation of acoustic waves in granular materials can be influenced significantly by the kinetics of capillary condensation between the asperities at the contacts.

  9. An approximate theoretical treatment of ion transfer processes at asymmetric microscopic and nanoscopic liquid-liquid interfaces: Single and double potential pulse techniques

    NASA Astrophysics Data System (ADS)

    Molina, A.; Laborda, E.; Compton, R. G.

    2014-03-01

    Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.

  10. Engineered Multifunctional Surfaces for Fluid Handling

    NASA Technical Reports Server (NTRS)

    Thomas, Chris; Ma, Yonghui; Weislogel, Mark

    2012-01-01

    Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.

  11. A model for wave propagation in a porous solid saturated by a three-phase fluid.

    PubMed

    Santos, Juan E; Savioli, Gabriela B

    2016-02-01

    This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.

  12. A physics link between venous stenosis and multiple sclerosis.

    PubMed

    Tucker, Trevor W

    2011-12-01

    This paper hypothesizes that a stenosis or obstruction at a lower extremity of an internal jugular vein (IJV) would, in accordance with the physics of fluid dynamics, cause a standing pressure wave within the vein. This pressure wave would possess regions of large pressure fluctuations and other regions of relatively little fluctuation which also have substantially lower peak pressure values. If the wavelength of the hypothesized pressure wave is comparable to the distance from the obstruction to the venule end of the capillary bed, then a region of high pressure fluctuation would exist at the venules. Depending on the degree of obstruction, the pressure fluctuations at the venules of the capillary bed would be substantially greater than those that would exist in a healthy unobstructed vein. This increase in blood pressure fluctuation located at the venule end of the capillary bed, which would be equivalent to local hypertension, is predicted to reduce the pressure drop across the bed which, in turn, would reduce blood flow through the bed in accordance with Darcy's Law. Such a reduction in blood flow through the bed would be accompanied by a reduction in the transfer of oxygen, glucose and other nutrients into the brain tissue in accordance with Fick's Principle. The reduction in oxygen levels in the brain tissue (i.e. hypoxia), would, in turn, be associated with increased fatigue and decreased mental acuity in the subject patient. Also the deprivation of oxygen in the brain tissue may result in the death of oligodendrocyte cells, which, in turn would result in the deterioration of the myelin surrounding the brain's neural axons. In addition, the paper also predicts that, in cases of extreme obstruction, the predicted localized hypertension at the venule end of the capillary bed may be sufficiently high to cause a localized disruption in the blood-brain barrier. Such a disruption of the blood-brain barrier could then allow the migration of leukocytes (auto-immune attack cells), from the blood into the brain tissue, enabling them to attack myelin, which has degenerated or deteriorated from the reduction in repair function normally provided by oligodendrocyte cells. Such leukocyte attack on myelin has long been associated with multiple sclerosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Vibration isolation technology: Sensitivity of selected classes of experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1991-01-01

    Work was completed on all aspects of the following tasks: order of magnitude estimates; thermo-capillary convection - two-dimensional (fixed planar surface); thermo-capillary convection - three-dimensional and axisymmetric; liquid bridge/floating zone sensitivity; transport in closed containers; interaction: design and development stages; interaction: testing flight hardware; and reporting. Results are included in the Appendices.

  14. Tapered monocapillary-optics for point source applications

    DOEpatents

    Hirsch, Gregory

    2000-01-01

    A glass or metal wire is precisely etched to form the paraboloidal or ellipsoidal shape of the final desired capillary optic. This shape is created by carefully controlling the withdrawal speed of the wire from an etchant bath. In the case of a complete ellipsoidal capillary, the etching operation is performed twice in opposite directions on adjacent wire segments. The etched wire undergoes a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation. This reflective surface may be a single layer for wideband reflectivity, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The coated wire is built up with a reinforcing layer, typically by a plating operation. The initial wire is removed by either an etching procedure or mechanical force. Prior to removing the wire, the capillary is typically bonded to a support substrate. One option for attaching the wire to the substrate produces a monolithic structure by essentially burying it under a layer of plating which covers both the wire and the substrate. The capillary optic is used for efficiently collecting and redirecting the divergent radiation from a source which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, or some other source of radiation.

  15. Investigation of energy dissipation due to contact angle hysteresis in capillary effect

    NASA Astrophysics Data System (ADS)

    Athukorallage, Bhagya; Iyer, Ram

    2016-06-01

    Capillary action or Capillarity is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to, external forces like gravity. Three effects contribute to capillary action, namely, adhesion of the liquid to the walls of the confining solid; meniscus formation; and low Reynolds number fluid flow. We investigate the dissipation of energy during one cycle of capillary action, when the liquid volume inside a capillary tube first increases and subsequently decreases while assuming quasi-static motion. The quasi-static assumption allows us to focus on the wetting phenomenon of the solid wall by the liquid and the formation of the meniscus. It is well known that the motion of a liquid on an non-ideal surface involves the expenditure of energy due to contact angle hysteresis. In this paper, we derive the equations for the menisci and the flow rules for the change of the contact angles for a liquid column in a capillary tube at a constant temperature and volume by minimizing the Helmholtz free energy using calculus of variations. We describe the numerical solution of these equations and present results from computations for the case of a capillary tube with 1 mm diameter.

  16. Detection of oil spills using a 13.3-GHz radar scatterometer.

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1973-01-01

    This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.

  17. Effect of wave action on near-well zone cleaning

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.

    2017-10-01

    Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.

  18. Myocardial serotonin exchange: negligible uptake by capillary endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B.

    1988-03-01

    The extraction of serotonin from the blood during transorgan passage through the heart was studied using Langendorff-perfused rabbit hearts. Outflow dilution curves of /sup 131/I- or /sup 125/I-labeled albumin, (/sup 14/C)sucrose, and (3H)serotonin injected simultaneously into the inflow were fitted with an axially distributed blood-tissue exchange model to examine the extraction process. The model fits of the albumin and sucrose outflow dilution curves were used to define flow heterogeneity, intravascular dispersion, capillary permeability, and the volume of the interstitial space, which reduced the degrees of freedom in fitting the model to the serotonin curves. Serotonin extractions, measured against albumin, duringmore » single transcapillary passage, ranged from 24 to 64%. The ratio of the capillary permeability-surface area products for serotonin and sucrose, based on the maximum instantaneous extraction, was 1.37 +/- 0.2 (n = 18), very close to the predicted value of 1.39, the ratio of free diffusion coefficients calculated from the molecular weights. This result shows that the observed uptake of serotonin can be accounted for solely on the basis of diffusion between endothelial cells into the interstitial space. Thus it appears that the permeability of the luminal surface of the endothelial cell is negligible in comparison to diffusion through the clefts between endothelial cells. In 18 sets of dilution curves, with and without receptor and transport blockers or competitors (ketanserin, desipramine, imipramine, serotonin), the extractions and estimates of the capillary permeability-surface area product were not reduced, nor were the volumes of distribution. The apparent absence of transporters and receptors in rabbit myocardial capillary endothelium contrasts with their known abundance in the pulmonary vasculature.« less

  19. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  20. The effect of small-wave modulation on the electromagnetic bias

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin; Martin, Jan M.

    1992-01-01

    The effect of the modulation of small ocean waves by large waves on the physical mechanism of the EM bias is examined by conducting a numerical scattering experiment which does not assume the applicability of geometric optics. The modulation effect of the large waves on the small waves is modeled using the principle of conservation of wave action and includes the modulation of gravity-capillary waves. The frequency dependence and magnitude of the EM bias is examined for a simplified ocean spectral model as a function of wind speed. These calculations make it possible to assess the validity of previous assumptions made in the theory of the EM bias, with respect to both scattering and hydrodynamic effects. It is found that the geometric optics approximation is inadequate for predictions of the EM bias at typical radar altimeter frequencies, while the improved scattering calculations provide a frequency dependence of the EM bias which is in qualitative agreement with observation. For typical wind speeds, the EM bias contribution due to small-wave modulation is of the same order as that due to modulation by the nonlinearities of the large-scale waves.

  1. Study on Controls of Fluids in Nanochannel via Hybrid Surface

    NASA Astrophysics Data System (ADS)

    Ye, Ziran

    This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.

  2. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular ringsmore » within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.« less

  3. Physicochemical controls on adsorbed water film thickness in unsaturated geological media

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.

    2011-08-01

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here the problem of adsorbed water film thickness is examined by combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable and showed that pendular rings within drained porous media retain most of the "residual" water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double-layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double-layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (<10 mol m-3) on surfaces with higher-magnitude electrostatic potentials (more negative than ≈-50 mV). Adsorbed water films are predicted to usually range in thickness from ≈1 to 20 nm in drained pores and fractures of unsaturated environments.

  4. Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process

    NASA Technical Reports Server (NTRS)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.

  5. Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varault, S.; Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9; Gabard, B.

    We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiationmore » pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide.« less

  6. Coherent X-ray Scattering from Liquid-Air Interfaces

    NASA Astrophysics Data System (ADS)

    Shpyrko, Oleg

    Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.

  7. Squeezing and de-wetting of a shear thinning fluid drop between plane parallel surfaces: capillary adhesion phenomenon

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2017-11-01

    The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.

  8. Visualizing the shape of soft solid and fluid contacts between two surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan; Schellenberger, Frank; Kappl, Michael; Vollmer, Doris; Butt, Hans-Jürgen

    The soft contact between two surfaces is fundamentally interesting for soft materials and fluid mechanics and relevant for friction and wear. The deformation of soft solid interfaces has received much interest because it interestingly reveals similarities to fluid wetting. We present an experimental route towards visualizing the three-dimensional contact geometry of either liquid-solid (i.e., oil and glass) or solid-solid (i.e., elastomer and glass) interfaces using a home-built combination of confocal microscopy and atomic force microscopy. We monitor the shape of a fluid capillary bridge and the depth of indentation in 3D while simultaneously measuring the force. In agreement with theoretical predictions, the height of the capillary bridge depends on the interfacial tensions. By using a slowly evaporating solvent, we quantify the temporal evolution of the capillary bridge and visualized the influence of pinning points on its shape. The position dependence of the advancing and receding contact angle along the three-phase contact line, particle-liquid-air, is resolved. Extending our system, we explore the contact deformation of soft solids where elasticity, in addition to surface tension, becomes an important factor.

  9. Polymerized phospholipid bilayers as permanent coatings for small amine separations using mixed aqueous/organic capillary zone electrophoresis.

    PubMed

    Pei, Lei; Lucy, Charles A

    2012-12-07

    Phospholipid bilayer (SPB) coatings have been used in capillary electrophoresis to reduce the nonspecific adsorption between the capillary wall and cationic analytes. This paper describes the use of the polymerizable lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (Diyne PC) as a permanent capillary coating. A supported phospholipid bilayer was formed on the capillary walls and polymerization was performed in situ using ultraviolet irradiation. The polymerization reaction was monitored by UV-visible absorbance spectroscopy and atomic force microscopy. The EOF of the polymerized Diyne PC coating was moderately suppressed (2.0×10(-4)cm(2)/Vs) compared to a non-polymerized Diyne PC bilayer (0.3×10(-4)cm(2)/Vs), but the stability was improved significantly. Separations of benzylamine, veratrylamine, phenylethylamine and tolyethylamine using a poly Diyne PC coated capillary yielded efficiency of 220,000-370,000 plates/m and peak asymmetry factor 0.48-1.18. Specifically, the poly(Diyne PC) coating provided improved separation resolution in NACE due to the reduced surface adsorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Pulsed electrothermal thruster

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L. (Inventor); Goldstein, Yeshayahu S. A. (Inventor); Tidman, Derek A. (Inventor); Winsor, Niels K. (Inventor)

    1989-01-01

    A plasma electrothermal thruster includes a capillary passage in which a plasma discharge is formed and directed out of an open end of the passage into a supersonic nozzle. Liquid supplied to the capillary passage becomes partially atomized to cool a confining surface of the passage. The plasma discharge is formed as the atomized liquid flows out of the open end into a supersonic equilibrium nozzle. The discharge can have a duration greater than the two way travel time of acoustic energy in the capillary to cause the plasma to flow continuously through the nozzle during the time of the discharge pulse.

  11. Viscosity of particulate soap films: approaching the jamming of 2D capillary suspensions.

    PubMed

    Timounay, Yousra; Rouyer, Florence

    2017-05-14

    We compute the effective viscosity of particulate soap films thanks to local velocity fields obtained by Particle Image Velocimetry (PIV) during film retraction experiments. We identify the jamming of these 2D capillary suspensions at a critical particle surface fraction (≃0.84) where effective viscosity diverges. Pair correlation function and number of neighbors in contact or close to contact reveal the cohesive nature of this 2D capillary granular media. The experimental 2D dynamic viscosities can be predicted by a model considering viscous dissipation at the liquid interfaces induced by the motion of individual particles.

  12. Optothermally actuated capillary burst valve

    NASA Astrophysics Data System (ADS)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  13. A new structure of permeable pavement for mitigating urban heat island.

    PubMed

    Liu, Yong; Li, Tian; Peng, Hangyu

    2018-09-01

    The urban heat island (UHI) effect has been a great threat to human habitation, and how to mitigate this problem has been a global concern over decades. This paper addresses the cooling effect of a novel permeable pavement called evaporation-enhancing permeable pavement, which has capillary columns in aggregate and a liner at the bottom. To explore the efficiency of mitigating the UHI, bench-scale permeable pavement units with capillary columns were developed and compared with conventional permeable pavement. Criteria of capillary capacities of the column, evaporation rates, and surface temperature of the pavements were monitored under simulated rainfall and Shanghai local weather conditions. Results show the capillary column was important in increasing evaporation by lifting water from the bottom to the surface, and the evaporation-enhancing permeable pavement was cooler than a conventional permeable pavement by as much as 9.4°C during the experimental period. Moreover, the cooling effect of the former pavement could persist more than seven days under the condition of no further rainfall. Statistical analysis result reveals that evaporation-enhancing permeable pavement can mitigate the UHI effect significantly more than a conventional permeable pavement. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Stability analysis for capillary channel flow: 1d and 3d computations

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.

  15. Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.

    PubMed

    Duan, Lian; Cao, Zhen; Yobas, Levent

    2017-09-19

    Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.

  16. Assessment of the capillary zone electrophoretic behavior of proteins in the presence of electroosmotic modifiers: protein-polyamine interaction studied using a polyacrylamide-coated capillary.

    PubMed

    Kubo, K; Hattori, A

    2001-10-01

    The use of polyamines as electroosmotic modifiers has been shown to be effective in enhancing resolution of protein glycoforms in capillary zone electrophoresis (CZE) using a bare capillary tube. In this study, effectiveness was evaluated by using a polyacrylamide-coated capillary tube instead of a bare capillary tube. Electropherograms obtained in the presence of polyamines were inferior to those obtained in their absence with respect to resolution. Electrophoretic mobility of the proteins decreased and their peaks were broadened by polyamines bound to them. This unfavorable effect was dependent on both the species of polyamines and the pH values of the electrolyte buffer. The reduction of resolution caused by polyamines was in the following order: spermidine (SPD) approximately spermidine-tri-hydrochloride (SPD-HCI) > putrescine (PUT) > hexamethonium chloride (HMC). The observed effect can be ascribed to the formation of complexes between the proteins and the polyamines. In addition, for the bare capillary tube the complexes showed interaction with the inner surface, resulting in local suppression of electroosmosis and poor resolution. The high resolution obtained in the coated capillary tube was reduced in the presence of the polyamines. Thus, the use of the polyamines has a negative effect on the analysis of protein microheterogeneity as a result of protein-polyamine interaction.

  17. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle [Theta] that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecularmore » forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan [Theta]=7.48 Ca[sup 1/3] for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca[sup 1/3] dependence occurs only at very low Ca, where the intermolecular forces become more important and tan [Theta] diverges slightly from the above asymptotic behavior toward lower values.« less

  19. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo

    Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less

  20. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    DOE PAGES

    Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; ...

    2018-02-23

    Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less

  1. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  2. Effect of water table dynamics on land surface hydrologic memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  3. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    NASA Technical Reports Server (NTRS)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design & Fabrication (ADF), the NASA Lewis Research Center, and the University of Dayton. The hardware consisted of two experiment modules that each contained an instrumented test loop (idealized capillary-pumped loop), a base unit for power conversion and backlighting, a display unit with 15 LED's (light-emitting diodes) to display temperatures, pressure, heater power, and time, a control unit to select heaters and heater settings, a cooling fan, and associated cables.

  4. Fluid dynamics of two-dimensional pollination in Ruppia maritima

    NASA Astrophysics Data System (ADS)

    Musunuri, Naga; Bunker, Daniel; Pell, Susan; Pell, Fischer; Singh, Pushpendra

    2016-11-01

    The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a water surface: (i) inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; (ii) inflorescences remain below the surface and produce air bubbles which carry their pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can disrupt the pollination process so that the pollen is not transported or captured on the water surface. National Science Foundation.

  5. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    NASA Astrophysics Data System (ADS)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.

  6. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.

    1993-01-01

    We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.

  7. Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis

    PubMed Central

    Nikcevic, Irena; Lee, Se Hwan; Piruska, Aigars; Ahn, Chong H.; Ridgway, Thomas H.; Limbach, Patrick A.; Wehmeyer, K. R.; Heineman, William R.; Seliskar, Carl J.

    2009-01-01

    Injection molded poly(methylmethacrylate) (IM-PMMA), chips were evaluated as potential candidates for capillary electrophoresis disposable chip applications. Mass production and usage of plastic microchips depends on chip-to-chip reproducibility and on analysis accuracy. Several important properties of IM-PMMA chips were considered: fabrication quality evaluated by environmental scanning electron microscope imaging, surface quality measurements, selected thermal/electrical properties as indicated by measurement of the current versus applied voltage (I–V) characteristic, and the influence of channel surface treatments. Electroosmotic flow was also evaluated for untreated and O2 reactive ion etching (RIE) treated surface microchips. The performance characteristics of single lane plastic microchip capillary electrophoresis (MCE) separations were evaluated using a mixture of two dyes - fluorescein (FL) and fluorescein isothiocyanate (FITC). To overcome non-wettability of the native IM-PMMA surface, a modifier, polyethylene oxide was added to the buffer as a dynamic coating. Chip performance reproducibility was studied for chips with and without surface modification via the process of RIE with O2 and by varying the hole position for the reservoir in the cover plate or on the pattern side of the chip. Additionally, the importance of reconditioning steps to achieve optimal performance reproducibility was also examined. It was found that more reproducible quantitative results were obtained when normalized values of migration time, peak area and peak height of FL and FITC were used instead of actual measured parameters PMID:17477932

  8. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  9. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  10. Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures

    NASA Astrophysics Data System (ADS)

    Zhao, Hangbo; Hart, A. John

    2015-11-01

    We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.

  11. Method and apparatus for optimized sampling of volatilizable target substances

    DOEpatents

    Lindgren, Eric R.; Phelan, James M.

    2002-01-01

    An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include 1) a conventional solid-phase microextraction (SPME) fiber, 2) a SPME fiber suspended in a capillary tube (with means provided for moving gases through the capillary tube so that the gases come into close proximity to the suspended fiber), and 3) a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.

  12. Scanning mass spectrometry with integrated constant distance positioning

    NASA Astrophysics Data System (ADS)

    Li, Nan; Eckhard, Kathrin; Aßmann, Jens; Hagen, Volker; Otto, Horst; Chen, Xingxing; Schuhmann, Wolfgang; Muhler, Martin

    2006-08-01

    Scanning mass spectrometry is of growing importance for the characterization of catalytically active surfaces. The instrument presented here is capable of measuring catalytic activity spatially resolved by means of two concentric capillaries. The outer one is used for cofeeding reactants such as ethene and hydrogen to the sample surface, whereas the inner one is pumping off the product mixture as inlet to a quadrupole mass spectrometer. Three-dimensional measurements under stagnant-point flow conditions become possible based on a home-built capillary positioning unit. Step-motor driven positioning stages exhibiting a minimum step width of 2.5μm̸half step are used for the x, y positioning, and the step motor in z direction has a resolution of 1μm̸half step. The system is additionally equipped with a feedback loop for following the topography of the sample throughout scanning. Hence, the obtained catalytic data are unimpaired by signal changes caused by the morphology of the investigated structure. For distance control the argon ion current is used originating from externally fed argon diffusing into the confined space between the accurately positioned capillaries and the sample surface. A well-defined microchannel flow field with 400μm wide channels and 200μm wide mounds was chosen to evaluate the developed method. The catalytic activity of a Pt catalyst deposited on glassy carbon was successfully visualized in constant probe to sample distance. Simultaneously, the topography of the sample was recorded derived from the z positioning of the capillaries.

  13. Surface roughness effects on contact line motion with small capillary number

    NASA Astrophysics Data System (ADS)

    Yang, Feng-Chao; Chen, Xiao-Peng; Yue, Pengtao

    2018-01-01

    In this work, we investigate how surface roughness influences contact line dynamics by simulating forced wetting in a capillary tube. The tube wall is decorated with microgrooves and is intrinsically hydrophilic. A phase-field method is used to capture the fluid interface and the moving contact line. According to the numerical results, a criterion is proposed to judge whether the grooves are entirely wetted or not at vanishing capillary numbers. When the contact line moves over a train of grooves, the apparent contact angle exhibits a periodic nature, no matter whether the Cassie-Baxter or the Wenzel state is achieved. The oscillation amplitude of apparent contact angle is analyzed and found to be inversely proportional to the interface area. The contact line motion can be characterized as stick-jump-slip in the Cassie-Baxter state and stick-slip in the Wenzel state. By comparing to the contact line dynamics on smooth surfaces, equivalent microscopic contact angles and slip lengths are obtained. The equivalent slip length in the Cassie-Baxter state agrees well with the theoretical model in the literature. The equivalent contact angles are, however, much greater than the predictions of the Cassie-Baxter model and the Wenzel model for equilibrium stable states. Our results reveal that the pinning of the contact line at surface defects effectively enhances the hydrophobicity of rough surfaces, even when the surface material is intrinsically hydrophilic and the flow is under the Wenzel state.

  14. Pulse wave myelopathy: An update of an hypothesis highlighting the similarities between syringomyelia and normal pressure hydrocephalus.

    PubMed

    Bateman, Grant A

    2015-12-01

    Most hypotheses trying to explain the pathophysiology of idiopathic syringomyelia involve mechanisms whereby CSF is pumped against a pressure gradient, from the subarachnoid space into the cord parenchyma. On review, these theories have universally failed to explain the disease process. A few papers have suggested that the syrinx fluid may originate from the cord capillary bed itself. However, in these papers, the fluid is said to accumulate due to impaired fluid drainage out of the cord. Again, there is little evidence to substantiate this. This proffered hypothesis looks at the problem from the perspective that syringomyelia and normal pressure hydrocephalus are almost identical in their manifestations but only differ in their site of effect within the neuraxis. It is suggested that the primary trigger for syringomyelia is a reduction in the compliance of the veins draining the spinal cord. This reduces the efficiency of the pulse wave dampening, occurring within the cord parenchyma, increasing arteriolar and capillary pulse pressure. The increased capillary pulse pressure opens the blood-spinal cord barrier due to a direct effect upon the wall integrity and interstitial fluid accumulates due to an increased secretion rate. An increase in arteriolar pulse pressure increases the kinetic energy within the cord parenchyma and this disrupts the cytoarchitecture allowing the fluid to accumulate into small cystic regions in the cord. With time the cystic regions coalesce to form one large cavity which continues to increase in size due to the ongoing interstitial fluid secretion and the hyperdynamic cord vasculature. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    NASA Astrophysics Data System (ADS)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  16. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    NASA Astrophysics Data System (ADS)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  17. Characterization for capillary barriers effects in a sand box test using time-lapsed GPR measurements

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; Ishii, N.; Morii, T.

    2017-12-01

    Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.

  18. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.

  19. Focused analyte spray emission apparatus and process for mass spectrometric analysis

    DOEpatents

    Roach, Patrick J [Kennewick, WA; Laskin, Julia [Richland, WA; Laskin, Alexander [Richland, WA

    2012-01-17

    An apparatus and process are disclosed that deliver an analyte deposited on a substrate to a mass spectrometer that provides for trace analysis of complex organic analytes. Analytes are probed using a small droplet of solvent that is formed at the junction between two capillaries. A supply capillary maintains the droplet of solvent on the substrate; a collection capillary collects analyte desorbed from the surface and emits analyte ions as a focused spray to the inlet of a mass spectrometer for analysis. The invention enables efficient separation of desorption and ionization events, providing enhanced control over transport and ionization of the analyte.

  20. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  1. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  2. On the performance of capillary barriers as landfill cover

    NASA Astrophysics Data System (ADS)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  3. Investigation of the Hydraulic Characteristics of Capillary Elements of the Injector Head of Jet Engines under Conditions of Isothermal Flow of A Liquid

    NASA Astrophysics Data System (ADS)

    Nigodjuk, V. E.; Sulinov, A. V.

    2018-01-01

    The article presents the results of an experimental study of the hydraulic characteristics of capillary elements of the injector head of jet engines in isothermal fluid flow and the proposed method of their calculation. The main geometric dimensions of the capillaries in the experiment were changed in the following range: Inner diameter from 0.16 to 0.36 mm, length from 4.3 to 158 mm and relative length from 25 to 614 and the inlet edge of the capillaries: sharp or smooth the leading edge. As the working fluid during the tests were distilled water, acetone and ethyl alcohol. Based on the results of a study of the dependences for calculation of ultimate losses in laminar and turbulent flow regimes in capillary tubes with smooth and sharp edges input. The influence of surface tension forces on loss of input on a sharp cutting edge. Experimentally confirmed the possibility of calculating the linear coefficient of hydraulic resistance of capillary tubes with a diameter of 0.16-0.36 mm in isothermal stable during the known dependencies that are valid for hydrodynamically smooth round tube.

  4. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  5. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries

    PubMed Central

    Brownbill, Paul; Janáček, Jiří; Jirkovská, Marie; Kubínová, Lucie; Chernyavsky, Igor L.; Jensen, Oliver E.

    2016-01-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations. PMID:27788214

  6. Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong

    2017-01-01

    Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  7. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  8. Surface-enhanced Raman spectroscopic monitor of triglyceride hydrolysis in a skin pore phantom

    NASA Astrophysics Data System (ADS)

    Weldon, Millicent K.; Morris, Michael D.

    1999-04-01

    Bacterial hydrolysis of triglycerides is followed in a sebum probe phantom by microprobe surface-enhanced Raman scattering (SERS) spectroscopy. The phantom consists of a purpose-built syringe pump operating at physiological flow rates connected to a 300 micron i.d. capillary. We employ silicon substrate SERS microprobes to monitor the hydrolysis products. The silicon support allows some tip flexibility that makes these probes ideal for insertion into small structures. Propionibacterium acnes are immobilized on the inner surface of the capillary. These bacteria hydrolyze the triglycerides in a model sebum emulsion flowing through the capillary. The transformation is followed in vitro as changes in the SERS caused by hydrolysis of triglyceride to fatty acid. The breakdown products consists of a mixture of mono- and diglycerides and their parent long chain fatty acids. The fatty acids adsorb as their carboxylates and can be readily identified by their characteristic spectra. The technique can also confirm the presence of bacteria by detection of short chain carboxylic acids released as products of glucose fermentation during the growth cycle of these cells. Co-adsorption of propionate is observed. Spatial localization of the bacteria is obtained by ex-situ line imaging of the probe.

  9. Dropwise condensation on hydrophobic bumps and dimples

    NASA Astrophysics Data System (ADS)

    Yao, Yuehan; Aizenberg, Joanna; Park, Kyoo-Chul

    2018-04-01

    Surface topography plays an important role in promoting or suppressing localized condensation. In this work, we study the growth of water droplets on hydrophobic convex surface textures such as bumps and concave surface textures such as dimples with a millimeter scale radius of curvature. We analyze the spatio-temporal droplet size distribution under a supersaturation condition created by keeping the uniform surface temperature below the dew point and show its relationship with the sign and magnitude of the surface curvature. In particular, in contrast to the well-known capillary condensation effect, we report an unexpectedly less favorable condensation on smaller, millimeter-scale dimples where the capillary condensation effect is negligible. To explain these experimental results, we numerically calculated the diffusion flux of water vapor around the surface textures, showing that its magnitude is higher on bumps and lower on dimples compared to a flat surface. We envision that our understanding of millimetric surface topography can be applied to improve the energy efficiency of condensation in applications such as water harvesting, heating, ventilation, and air conditioning systems for buildings and transportation, heat exchangers, thermal desalination plants, and fuel processing systems.

  10. Ray Methods for Acoustic Scattering, Optics Of Bubbles, Diffraction Catastrophes, and Nonlinear Acoustics.

    DTIC Science & Technology

    1992-11-24

    15 Code I: Internal Reports ................................................................. 19 Code M : Oral...experiments. 13. S. M . Baumer: completed M.S. thesis in 1988 on light scattering. 14. C. E. Dean: completed Ph.D. dissertation in 1989 on light...novel oscillation induced flow instabilities. 18. J. M . Winey: awarded M.S. degree in 1990 with project on capillary wave experiments. He

  11. Self-assembly of triangular particles via capillary interactions

    NASA Astrophysics Data System (ADS)

    Bedi, Deshpreet; Zhou, Shangnan; Ferrar, Joseph; Solomon, Michael; Mao, Xiaoming

    Colloidal particles adsorbed to a fluid interface deform the interface around them, resulting in either attractive or repulsive forces mediated by the interface. In particular, particle shape and surface roughness can produce an undulating contact line, such that the particles will assume energetically-favorable relative orientations and inter-particle distances to minimize the excess interfacial surface area. By expediently selecting specific particle shapes and associated design parameters, capillary interactions can be utilized to promote self-assembly of these particles into extended regular open structures, such as the kagome lattice, which have novel mechanical properties. We present the results of numerical simulations of equilateral triangle microprisms at an interface, including individually and in pairs. We show how particle bowing can yield two distinct binding events and connect it to theory in terms of a capillary multipole expansion and also to experiment, as presented in an accompanying talk. We also discuss and suggest design principles that can be used to create desirable open structures.

  12. Interfacial layering and capillary roughness in immiscible liquids.

    PubMed

    Geysermans, P; Pontikis, V

    2010-08-21

    The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.

  13. Foam on troubled water: Capillary induced finite-time arrest of sloshing waves

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François

    2016-09-01

    Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.

  14. Electro-Optical Platform for the Manipulation of Live Cells

    DTIC Science & Technology

    2002-10-02

    system, other physical forces may play a significant role. In particular, electroosmotic forces that cause fluid movement relative to a surface can...occur due to the mobility of ions in solution. Electroosmotic forces are commonly utilized in capillary electrophoretic separa- tion, where the capillary...fluid motion that acts to entrain particles to be separated.46 Thus, in the chamber presented here, the patterned anode can induce electroosmotic flow

  15. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, Stephen R.

    1990-01-01

    A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.

  16. Breakup Behavior of a Capillary Bridge on a Hydrophobic Stripe Separating Two Hydrophilic Stripes

    NASA Astrophysics Data System (ADS)

    Hartmann, Maximilian; Hardt, Steffen

    2017-11-01

    The breakup dynamics of a capillary bridge on a hydrophobic area between two liquid filaments occupying two parallel hydrophilic stripes is studied experimentally. In addition calculations with the finite-element software Surface Evolver are performed to obtain the corresponding stable minimal surfaces. Droplets of de-ionized water are placed on substrates with alternating hydrophilic and hydrophobic stripes of different width. Their volume decreases by evaporation. This results in a droplet shaped as the letter ``H'' covering two hydrophilic stripes separated by one hydrophobic stripe. The width of the capillary bridge d(t) on the hydrophobic stripe during the breakup process is observed using a high-speed camera mounted on a bright-field microscope. The results of the experiments and the numerical studies show that the critical width dcrit, indicating the point where the capillary bridge becomes unstable, mainly depends on the width ratio of the hydrophilic and hydrophobic stripes. It is found that the time derivative of d(t) first decreases after dcrit has been reached. The final breakup dynamics then follows a t 2 / 3 scaling. We kindly acknowledge the financial support by the German Research Foundation (DFG) within the Collaborative Research Centre 1194 ``Interaction of Transport and Wetting Processes'', Project A02a.

  17. Surface tension-driven self-alignment.

    PubMed

    Mastrangeli, Massimo; Zhou, Quan; Sariola, Veikko; Lambert, Pierre

    2017-01-04

    Surface tension-driven self-alignment is a passive and highly-accurate positioning mechanism that can significantly simplify and enhance the construction of advanced microsystems. After years of research, demonstrations and developments, the surface engineering and manufacturing technology enabling capillary self-alignment has achieved a degree of maturity conducive to a successful transfer to industrial practice. In view of this transition, a broad and accessible review of the physics, material science and applications of capillary self-alignment is presented. Statics and dynamics of the self-aligning action of deformed liquid bridges are explained through simple models and experiments, and all fundamental aspects of surface patterning and conditioning, of choice, deposition and confinement of liquids, and of component feeding and interconnection to substrates are illustrated through relevant applications in micro- and nanotechnology. A final outline addresses remaining challenges and additional extensions envisioned to further spread the use and fully exploit the potential of the technique.

  18. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  19. Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, O.; Efimov, S.; Gurovich, V. Tz.

    The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple methodmore » of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.« less

  20. Partial coalescence of drops at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Blanchette, François; Bigioni, Terry P.

    2006-04-01

    When two separate masses of the same fluid are brought gently into contact, they are expected to fully merge into a single larger mass to minimize surface energy. However, when a stationary drop coalesces with an underlying reservoir of identical fluid, merging does not always proceed to completion. Occasionally, a drop in the process of merging apparently defies surface tension by `pinching off' before total coalescence occurs, leaving behind a smaller daughter droplet. Moreover, this process can repeat itself for subsequent generations of daughter droplets, resulting in a cascade of self-similar events. Such partial coalescence behaviour has implications for the dynamics of a variety of systems, including the droplets in clouds, ocean mist and airborne salt particles, emulsions, and the generation of vortices near an interface. Although it was first observed almost half a century ago, little is known about its precise mechanism. Here, we combine high-speed video imaging with numerical simulations to determine the conditions under which partial coalescence occurs, and to reveal a dynamic pinch-off mechanism. This mechanism is critically dependent on the ability of capillary waves to vertically stretch the drop by focusing energy on its summit.

  1. The discrimination between crude-oil spills and monomolecular sea slicks by an airborne lidar

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Garrett, W. D.; Hoge, F. E.

    1986-01-01

    Airborne lidar measurements were performed over a deployed monomolecular oleyl alcohol surface film ('slick'), the physicochemical characteristics of which are known to be similar to biogenic organic compounds secreted by plankton and fish, and adjacent 'clean' sea surfaces in the North Sea. In the presence of the slick, the suppression of the Raman backscatter at 381 nm and of two spectral bands indicative of water column fluorescent organic material at 414 and 482 nm were observed. This effect is explained by two possible mechanisms giving rise to a modification of the transmission or coupling of the laser beam into the water column: (1) the damping of capillary and short gravity water waves by the oleyl alcohol slick, and (2) the modification of the uppermost water layer by the oleyl alcohol film. The results obtained in the presence of a slick are compared with data measured over a Murban crude-oil spill with the same lidar system off the coast of the U.S.A. The consequences of the lidar-monomolecular film experiments with regard to the remote detection of crude-oil spills and oil-thickness measurements with an airborne laser fluorosensing system will be discussed.

  2. Identification of Microorganisms by Modern Analytical Techniques.

    PubMed

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  3. Capillary condenser/evaporator

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  4. GPR monitoring for non-uniform infiltration through a high permeable gravel layer in the test sand box

    NASA Astrophysics Data System (ADS)

    Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro

    2017-04-01

    Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.

  5. Collective motion of macroscopic spheres floating on capillary ripples: Dynamic heterogeneity and dynamic criticality

    NASA Astrophysics Data System (ADS)

    Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj

    2014-09-01

    When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.

  6. Collective motion of macroscopic spheres floating on capillary ripples: dynamic heterogeneity and dynamic criticality.

    PubMed

    Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj

    2014-09-01

    When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.

  7. Surface elastic wave detectors

    NASA Technical Reports Server (NTRS)

    Lawson, R. L.

    1971-01-01

    The potential applications of acoustic surface wave technology to multiplex communication systems such as data-bus, are examined. The goals are primarily to characterize certain aspects of surface wave trapped delay lines, surface wave modulation techniques, and surface wave applications that are relevant to the evaluation of surface wave devices in multiplex systems. The results indicate that there is a potential for the application of surface wave technology in data-bus type systems.

  8. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  9. Microfluidic Investigation Reveals Distinct Roles for Actin Cytoskeleton and Myosin II Activity in Capillary Leukocyte Trafficking

    PubMed Central

    Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier

    2009-01-01

    Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501

  10. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Fabrication of powdery polymer aerogel as the stationary phase for high-resolution gas chromatographic separation.

    PubMed

    Zheng, Juan; Lu, Cuiming; Huang, Junlong; Chen, Luyi; Ni, Chuyi; Xie, Xintong; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2018-08-15

    Novel powdery polymer aerogel (PPA) prepared via the (micro)emulsion polymerization and the following hyper crosslinking reaction was fabricated as stationary phase of capillary column for the first time. Due to its powdery morphology, unique 3D nano-network structure, high surface area and good thermostability, the PPA-coated capillary column demonstrated high-resolution chromatographic separation towards nonpolar and weakly polar organic compounds, including benzene series, n-alkanes, ketone mixtures and trichlorobenzenes. Moreover, the reproducibility, quantitative analysis ability and thermostability of PPA-coated capillary column were also evaluated. The relative standard deviations for three replicate determinations of selected analytes were 0.02-0.11%, 0.12-0.26% and 1.2-3.6% for run-to-run, day-to-day and column-to-column analyses, respectively. The PPA demonstrated good thermostability, and the PPA-coated capillary column was proved to be heat-resistant (270 °C). The results of this study show PPA is an excellent candidate to be employed as stationary phase for gas chromatography capillary. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Subtle exchange model of flow depended on the blood cell shape to enhance the micro-circulation in capillary

    NASA Astrophysics Data System (ADS)

    Chan, Iatneng

    2012-02-01

    In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.

  13. Micromodel observations of evaporative drying and salt deposition in porous media

    NASA Astrophysics Data System (ADS)

    Rufai, Ayorinde; Crawshaw, John

    2017-12-01

    Most evaporation experiments using artificial porous media have focused on single capillaries or sand packs. We have carried out, for the first time, evaporation studies on a 2.5D micromodel based on a thin section of a sucrosic dolomite rock. This allowed direct visual observation of pore-scale processes in a network of pores. NaCl solutions from 0 wt. % (de-ionized water) to 36 wt. % (saturated brine) were evaporated by passing dry air through a channel in front of the micromodel matrix. For de-ionized water, we observed the three classical periods of evaporation: the constant rate period (CRP) in which liquid remains connected to the matrix surface, the falling rate period, and the receding front period, in which the capillary connection is broken and water transport becomes dominated by vapour diffusion. However, when brine was dried in the micromodel, we observed that the length of the CRP decreased with increasing brine concentration and became almost non-existent for the saturated brine. In the experiments with brine, the mass lost by evaporation became linear with the square root of time after the short CRP. However, this is unlikely to be due to capillary disconnection from the surface of the matrix, as salt crystals continued to be deposited in the channel above the matrix. We propose that this is due to salt deposition at the matrix surface progressively impeding hydraulic connectivity to the evaporating surface.

  14. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.

    PubMed

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  15. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    DOE PAGES

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...

    2017-07-27

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  16. Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels.

    PubMed

    Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik

    2011-01-01

    We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction

    NASA Astrophysics Data System (ADS)

    Gao, S. Q.; Zhang, X. Y.; Zhou, Y. H.

    2018-06-01

    The capillary interaction induced by a tilted cylinder and interface is the basic configuration of many complex systems, such as micro-pillar arrays clustering, super-hydrophobicity of hairy surface, water-walking insects, and fiber aggregation. We systematically analyzed the scaling laws of tilt angle, contact angle, and cylinder radius on the contact line shape by SE simulation and experiment. The following in-depth analysis of the characteristic parameters (shift, stretch and distortion) of the deformed contact lines reveals the self-similar shape of contact line. Then a general capillary force scaling law is proposed to incredibly grasp all the simulated and experimental data by a quite straightforward ellipse approximation approach.

  18. Cfd Simulation of Capillary Rise of Liquid in Cylindrical Container with Lateral Vanes

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Huang, Yiyong; Li, Guangyu

    2016-06-01

    Orbit refueling is one of the most significant technologies, which has vital strategic meaning. It can enhance the flexibility and prolong the lifetime of the spacecrafts. Space propellant management is one of the key technologies in orbit refueling. Based on the background of space propellant management, CFD simulations of capillary rise of liquid in Cylindrical container with lateral vanes in space condition were carried out in this paper. The influence of the size and the number of the vanes to the capillary flow were analyzed too. The results can be useful to the design and optimization of the propellant management device in the vane type surface tension tank.

  19. Simulation of the dynamical transmission of several-hundred-keV protons through a conical capillary

    NASA Astrophysics Data System (ADS)

    Yang, A. X.; Zhu, B. H.; Niu, S. T.; Pan, P.; Han, C. Z.; Song, H. Y.; Shao, J. X.; Chen, X. M.

    2018-05-01

    The time evolution of the trajectories, angular distributions, and two-dimensional images of intermediate-energy protons being transmitted through a conical capillary was simulated. The simulation results indicate that the charge deposited in the capillary significantly enhances the probability of surface specular scattering and thus greatly enhances the transmission rate. Furthermore, this deposited-charge-assisted specular reflection causes the transmission rate to exhibit an energy dependence proportional to E-1, which is very consistent with the experimental data. After transmission at nonzero tilt angles, the angular distribution of several-hundred-keV protons is far from symmetric, unlike in the case of keV protons.

  20. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOEpatents

    Springston, S.R.

    1990-10-30

    A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.

  1. SE-FIT

    NASA Technical Reports Server (NTRS)

    Chen, Yongkang; Weislogel, Mark; Schaeffer, Ben; Semerjian, Ben; Yang, Lihong; Zimmerli, Gregory

    2012-01-01

    The mathematical theory of capillary surfaces has developed steadily over the centuries, but it was not until the last few decades that new technologies have put a more urgent demand on a substantially more qualitative and quantitative understanding of phenomena relating to capillarity in general. So far, the new theory development successfully predicts the behavior of capillary surfaces for special cases. However, an efficient quantitative mathematical prediction of capillary phenomena related to the shape and stability of geometrically complex equilibrium capillary surfaces remains a significant challenge. As one of many numerical tools, the open-source Surface Evolver (SE) algorithm has played an important role over the last two decades. The current effort was undertaken to provide a front-end to enhance the accessibility of SE for the purposes of design and analysis. Like SE, the new code is open-source and will remain under development for the foreseeable future. The ultimate goal of the current Surface Evolver Fluid Interface Tool (SEFIT) development is to build a fully integrated front-end with a set of graphical user interface (GUI) elements. Such a front-end enables the access to functionalities that are developed along with the GUIs to deal with pre-processing, convergence computation operation, and post-processing. In other words, SE-FIT is not just a GUI front-end, but an integrated environment that can perform sophisticated computational tasks, e.g. importing industry standard file formats and employing parameter sweep functions, which are both lacking in SE, and require minimal interaction by the user. These functions are created using a mixture of Visual Basic and the SE script language. These form the foundation for a high-performance front-end that substantially simplifies use without sacrificing the proven capabilities of SE. The real power of SE-FIT lies in its automated pre-processing, pre-defined geometries, convergence computation operation, computational diagnostic tools, and crash-handling capabilities to sustain extensive computations. SE-FIT performance is enabled by its so-called file-layer mechanism. During the early stages of SE-FIT development, it became necessary to modify the original SE code to enable capabilities required for an enhanced and synchronized communication. To this end, a file-layer was created that serves as a command buffer to ensure a continuous and sequential execution of commands sent from the front-end to SE. It also establishes a proper means for handling crashes. The file layer logs input commands and SE output; it also supports user interruption requests, back and forward operation (i.e. undo and redo), and others. It especially enables the batch mode computation of a series of equilibrium surfaces and the searching of critical parameter values in studying the stability of capillary surfaces. In this way, the modified SE significantly extends the capabilities of the original SE.

  2. Interaction of the Radar Waves with the Capillary Waves on the Ocean.

    DTIC Science & Technology

    1983-05-01

    30 1 I | I I , . ’ , 3 4 6 8 10 15 20 30 40506070 Wind Speed ( m/see) Figure 3.1: Comparison between theoretical and measured for vertical and...wind speed cases, say, between 8 and 10 m/sec, one would not expect such a high value of standard deviation. Figure 8.6a illustrates a sample set of...1979 - 10 o -20 -30U -40 1 U-1’AIId 11111 1 0 10 20 30 40 50 60 70 80 20 - ~downwindf 10 - W polaizan -~ frequency1 - 150Hz - 24 Sept 979 Ma 0- - 10 -2 1

  3. Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: Mathematical modeling.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Bég, O Anwar

    2017-01-01

    Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Coso, Dusan

    The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. Smaller pores are used to generate high capillary suction, while larger microchannels are used to alleviate flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat fluxes of 277.0 (+/- 9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (+/- 103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots. In pool boiling systems that are encountered in immersion cooling applications, the heat transfer coefficient (HTC) is governed by the bubble nucleation site density and the agitation in the liquid/vapor flow these bubbles produce when they detach from the surface. The nucleation site density and release rate is usually determined by the surface morphology. Another important parameter in pool boiling systems is the maximum heat flux (CHF) that can safely be dissipated. In practice, this quantity is about two orders of magnitude smaller than limitations suggested by kinetic theory. For essentially infinite, smooth, well wetted surfaces, hydrodynamic instability theories capturing liquid/vapor interactions away from the heated surface have been successful in predicting CHF. On finite micro and nano structured surfaces where applying the hydrodynamic theory formulation is not easily justified, other effects may contribute to phase change heat transfer characteristics. Here, we also present a pool boiling study on biporous microstructured surfaces used in capillary wick experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ˜2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies. In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and durability. Here, we report on a full cycle molecular solar thermal (MOST) microfluidic system based on a bis(1,1-dimethyltridecyl) substituted derivative of FvRu2 that allows for long term solar energy storage (110 J/g), and "on demand" energy release upon exposure to a catalyst. The microfluidic systems developed here are excellent for photoconversion characterization and scrutinizing potential catalysts and can be extended to studying many other molecular systems. The objective of the work presented here is to demonstrate that "on demand" solar energy storage and release in MOST systems is viable and motivate future research on other photochromic organometallic systems.

  5. A replaceable dual-enzyme capillary microreactor using magnetic beads and its application for simultaneous detection of acetaldehyde and pyruvate.

    PubMed

    Shi, Jing; Zhao, Wenwen; Chen, Yuanfang; Guo, Liping; Yang, Li

    2012-07-01

    A novel replaceable dual-enzyme capillary microreactor was developed and evaluated using magnetic fields to immobilize the alcohol dehydrogenase (ADH)- and lactate dehydrogenase (LDH)-coated magnetic beads at desired positions in the capillary. The dual-enzyme assay was achieved by measuring the two consumption peaks of the coenzyme β-nicotinamide adenine dinucleotide (NADH), which were related to the ADH reaction and LDH reaction. The dual-enzyme capillary microreactor was constructed using magnetic beads without any modification of the inner surface of the capillary, and showed great stability and reproducibility. The electrophoretic resolution for different analytes can be easily controlled by altering the relative distance of different enzyme-coated magnetic beads. The apparent K(m) values for acetaldehyde with ADH-catalyzed reaction and for pyruvate with LDH-catalyzed reaction were determined. The detection limits for acetaldehyde and pyruvate determination are 0.01 and 0.016 mM (S/N = 3), respectively. The proposed method was successfully applied to simultaneously determine the acetaldehyde and pyruvate contents in beer samples. The results indicated that combing magnetic beads with CE is of great value to perform replaceable and controllable multienzyme capillary microreactor for investigation of a series of enzyme reactions and determination of multisubstrates. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fine structure of the pecten oculi in the great horned owl (Bubo virginianus).

    PubMed

    Braekevelt, C R

    1993-01-01

    The pecten oculi of the great horned owl (Bubo virginianus) has been examined by light and electron microscopy. The pecten in this species is of the pleated type and is small in comparison to the size of the eyeball. It consists of 7-8 accordion folds which are joined apically by a pigmented bridge of tissue. Within each fold are numerous capillaries, larger supply and drainage vessels and plentiful pleomorphic melanocytes. The capillaries are extremely specialized vessels, most of which display plentiful microfolds on both their luminal and abluminal surfaces although some capillaries show but a few microfolds. The endothelial cell bodies are extremely thin with most organelles located near the nucleus. All capillaries are surrounded by a thick fibrillar basal lamina which is felt to be structurally important. Pericytes are a common feature within these thickened basal laminae. The numerous melanocytes form an incomplete sheath around the capillaries and are also presumed to be fulfilling a structural role. While the morphology of the pecten in the great horned owl is certainly indicative of a heavy involvement in transport, when compared to the pecten in species that are more visually oriented it is smaller, displays fewer folds and a reduced number of microfolds within the capillaries.

  7. Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Hsieh, K. C.

    1998-01-01

    The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.

  8. Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends.

    PubMed

    Zhang, Chunsun; Xing, Da; Li, Yuyuan

    2007-01-01

    This review surveys the advances of microvalves, micropumps, and micromixers within PCR microfluidic chips over the past ten years. First, the types of microvalves in PCR chips are discussed, including active and passive microvalves. The active microvalves are subdivided into mechanical (thermopneumatic and shape memory alloy), non-mechanical (hydrogel, sol-gel, paraffin, and ice), and external (modular built-in, pneumatic, and non-pneumatic) microvalves. The passive microvalves also include mechanical (in-line polymerized gel and passive plug) and non-mechanical (hydrophobic) microvalves. The review then discusses mechanical (piezoelectric, pneumatic, and thermopneumatic) and non-mechanical (electrokinetic, magnetohydrodynamic, electrochemical, acoustic-wave, surface tension and capillary, and ferrofluidic magnetic) micropumps in PCR chips. Next, different micromixers within PCR chips are presented, including passive (Y/T-type flow, recirculation flow, and drop) and active (electrokinetically-driven, acoustically-driven, magnetohydrodynamical-driven, microvalves/pumps) micromixers. Finally, general discussions on microvalves, micropumps, and micromixers for PCR chips are given. The microvalve/micropump/micromixers allow high levels of PCR chip integration and analytical throughput.

  9. Coastal pollution hazards in southern California observed by SAR imagery: stormwater plumes, wastewater plumes, and natural hydrocarbon seeps

    NASA Technical Reports Server (NTRS)

    Digiacomo, Paul M.; Washburn, Libe; Holt, Benjamin; Jones, Burton H.

    2004-01-01

    Stormwater runoff plumes, municipal wastewater plumes, and natural hydrocarbon seeps are important pollution hazards for the heavily populated Southern California Bight (SCB). Due to their small size, dynamic and episodic nature, these hazards are difficult to sample adequately using traditional in situ oceanographic methods. Complex coastal circulation and persistent cloud cover can further complicate detection and monitoring of these hazards. We use imagery from space-borne synthetic aperture radar (SAR), complemented by field measurements, to examine these hazards in the SCB. The hazards are detectable in SAR imagery because they deposit surfactants on the sea surface, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with the surrounding ocean. We suggest that high-resolution SAR, which obtains useful data regardless of darkness or cloud cover, could be an important observational tool for assessment and monitoring of coastal marine pollution hazards in the SCB and other urbanized coastal regions.

  10. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin

    2018-03-01

    High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.

  11. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  12. Steady displacement of long gas bubbles in channels and tubes filled by a Bingham fluid

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James B.

    2018-01-01

    Bingham fluids behave like solids below a von Mises stress threshold, the yield stress, while above it they behave like Newtonian fluids. They are characterized by a dimensionless parameter, Bingham number (Bn), which is the ratio of the yield stress to a characteristic viscous stress. In this study, the noninertial steady motion of a finite-size gas bubble in both a plane two-dimensional (2D) channel and an axisymmetric tube filled by a Bingham fluid has been studied numerically. The Bingham number, Bn, is in the range 0 ≤Bn ≤3 , where Bn =0 is the Newtonian case, while the capillary number, which is the ratio of a characteristic viscous force to the surface tension, has values Ca =0.05 ,0.10 , and 0.25. The volume of all axisymmetric and 2D bubbles has been chosen to be identical for all parameter choices and large enough for the bubbles to be long compared to the channel, tube height, and diameter. The Bingham fluid constitutive equation is approximated by a regularized equation. During the motion, the bubble interface is separated from the wall by a static liquid film. The film thickness scaled by the tube radius (axisymmetric) and half of the channel height (2D) is the dimensionless film thickness, h . The results show that increasing Bn initially leads to an increase in h ; however, the profile h versus Bn can be monotonic or nonmonotonic depending on Ca values and 2D or axisymmetric configurations. The yield stress also alters the shape of the front and rear of the bubble and suppresses the capillary waves at the rear of the bubble. The yield stress increases the magnitude of the wall shear stress and its gradient and therefore increases the potential for epithelial cell injuries in applications to lung airway mucus plugs. The topology of the yield surfaces as well as the flow pattern in the bubble frame of reference varies significantly by Ca and Bn.

  13. A Method to Calculate the Surface Tension of a Cylindrical Droplet

    ERIC Educational Resources Information Center

    Wang, Xiaosong; Zhu, Ruzeng

    2010-01-01

    The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…

  14. Surface-Wave Pulse Routing around Sharp Right Angles

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.

    2018-04-01

    Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.

  15. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  16. Capillary Driven Flows Along Differentially Wetted Interior Corners

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L. (Technical Monitor); Nardin, C. L.; Weislogel, M. M.

    2005-01-01

    Closed-form analytic solutions useful for the design of capillary flows in a variety of containers possessing interior corners were recently collected and reviewed. Low-g drop tower and aircraft experiments performed at NASA to date show excellent agreement between theory and experiment for perfectly wetting fluids. The analytical expressions are general in terms of contact angle, but do not account for variations in contact angle between the various surfaces within the system. Such conditions may be desirable for capillary containment or to compute the behavior of capillary corner flows in containers consisting of different materials with widely varying wetting characteristics. A simple coordinate rotation is employed to recast the governing system of equations for flows in containers with interior corners with differing contact angles on the faces of the corner. The result is that a large number of capillary driven corner flows may be predicted with only slightly modified geometric functions dependent on corner angle and the two (or more) contact angles of the system. A numerical solution is employed to verify the new problem formulation. The benchmarked computations support the use of the existing theoretical approach to geometries with variable wettability. Simple experiments to confirm the theoretical findings are recommended. Favorable agreement between such experiments and the present theory may argue well for the extension of the analytic results to predict fluid performance in future large length scale capillary fluid systems for spacecraft as well as for small scale capillary systems on Earth.

  17. Scanning Electron Microscopic Structure of the Lingual Papillae of the Common Opossum (Didelphis marsupialis)

    NASA Astrophysics Data System (ADS)

    Okada, Shigenori; Schraufnagel, Dean E.

    2005-08-01

    The mammalian tongue has evolved for specialized functions in different species. The structure of its papillae tells about the animal's diet, habit, and taxonomy. The opossum has four kinds of lingual papillae (filiform, conical, fungiform, vallate). Scanning electron microscopy of the external features, connective tissue cores, and corrosion casts of the microvasculature show the filiform papillae have a spearhead-like main process and spiny accessory processes around the apical part of the main process. The shape and number of both processes depend on their position on the tongue. On the apex, the main processes have shovel-like capillary networks and the accessory processes have small conical networks. On the lingual radix, the processes have small capillary loops. In the patch region, conical papillae have capillaries arranged as a full sail curving posteriorly. The fungiform papillae are scattered among the filiform papillae and have capillary baskets beneath each taste bud. Giant fungiform papillae on the tongue tip are three to four times larger than the ones on the lingual body. Capillaries of giant papillae form a fan-shaped network. The opossum has three vallate papillae arranged in a triangle. Their tops have secondary capillary loops but not their lateral surfaces. Mucosal folds on the posterolateral border have irregular, fingerlike projections with cylindrical capillary networks. These findings and the structure of the rest of the masticatory apparatus suggest the lingual papillae of opossum have kept their ancestral carnivorous features but also developed the herbivore characteristics of other marsupials.

  18. Scanning electron microscopic structure of the lingual papillae of the common opossum (Didelphis marsupialis).

    PubMed

    Okada, Shigenori; Schraufnagel, Dean E

    2005-08-01

    The mammalian tongue has evolved for specialized functions in different species. The structure of its papillae tells about the animal's diet, habit, and taxonomy. The opossum has four kinds of lingual papillae (filiform, conical, fungiform, vallate). Scanning electron microscopy of the external features, connective tissue cores, and corrosion casts of the microvasculature show the filiform papillae have a spearhead-like main process and spiny accessory processes around the apical part of the main process. The shape and number of both processes depend on their position on the tongue. On the apex, the main processes have shovel-like capillary networks and the accessory processes have small conical networks. On the lingual radix, the processes have small capillary loops. In the patch region, conical papillae have capillaries arranged as a full sail curving posteriorly. The fungiform papillae are scattered among the filiform papillae and have capillary baskets beneath each taste bud. Giant fungiform papillae on the tongue tip are three to four times larger than the ones on the lingual body. Capillaries of giant papillae form a fan-shaped network. The opossum has three vallate papillae arranged in a triangle. Their tops have secondary capillary loops but not their lateral surfaces. Mucosal folds on the posterolateral border have irregular, fingerlike projections with cylindrical capillary networks. These findings and the structure of the rest of the masticatory apparatus suggest the lingual papillae of opossum have kept their ancestral carnivorous features but also developed the herbivore characteristics of other marsupials.

  19. Fine structure of the pecten oculi of the barred owl (Strix varia).

    PubMed

    Smith, B J; Smith, S A; Braekevelt, C R

    1996-01-01

    The pecten oculi of the barred owl (Strix varia) has been examined by light and transmission electron microscopy. The pecten in this species is of the pleated type and is small in comparison to the size of the ocular globe. The pecten consists of 8-10 accordion-like folds that are linked apically by a pigmented tissue bridge. Each fold contains numerous capillaries, larger supply and drainage vessels, and abundant pleomorphic melanocytes. Most of these capillaries are extremely specialized vessels that possess plentiful microfolds on both the luminal and abluminal surfaces. Some capillaries however display only a few microfolds. The endothelial cell bodies are extremely attenuated, with most organelles located near the nucleus. All capillaries are surrounded by a very thick fibrillar basal lamina, which is thought to provide structural support to these small vessels. Pericytes are commonly found within these thickened basal laminae. Numerous melanocytes are also present, with processes that form an incomplete sheath around the capillaries. These processes are also presumed to provide structural support for the capillaries. As in other avian species, the morphology of the barred owl pecten is indicative of extensive involvement in substance transport. When compared to the pecten of more visually-oriented species, this pecten is smaller, has fewer folds, and displays a reduced number of microfolds within the capillaries. In these and other features, the barred owl pecten is similar to the pecten of the great horned owl (Bubo virginianus).

  20. A novel model for simulating the racing effect in capillary-driven underfill process in flip chip

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhui; Wang, Kanglun; Wang, Yan

    2018-04-01

    Underfill is typically applied in flip chips to increase the reliability of the electronic packagings. In this paper, the evolution of the melt-front shape of the capillary-driven underfill flow is studied through 3D numerical analysis. Two different models, the prevailing surface force model and the capillary model based on the wetted wall boundary condition, are introduced to test their applicability, where level set method is used to track the interface of the two phase flow. The comparison between the simulation results and experimental data indicates that, the surface force model produces better prediction on the melt-front shape, especially in the central area of the flip chip. Nevertheless, the two above models cannot simulate properly the racing effect phenomenon that appears during underfill encapsulation. A novel ‘dynamic pressure boundary condition’ method is proposed based on the validated surface force model. Utilizing this approach, the racing effect phenomenon is simulated with high precision. In addition, a linear relationship is derived from this model between the flow front location at the edge of the flip chip and the filling time. Using the proposed approach, the impact of the underfill-dispensing length on the melt-front shape is also studied.

Top