Science.gov

Sample records for surface change detection

  1. Detection of light transformations and concomitant changes in surface albedo.

    PubMed

    Gerhard, Holly E; Maloney, Laurence T

    2010-07-16

    We report two experiments demonstrating that (1) observers are sensitive to information about changes in the light field not captured by local scene statistics and that (2) they can use this information to enhance detection of changes in surface albedo. Observers viewed scenes consisting of matte surfaces at many orientations illuminated by a collimated light source. All surfaces were achromatic, all lights neutral. In the first experiment, observers attempted to discriminate small changes in direction of the collimated light source (light transformations) from matched changes in the albedos of all surfaces (non-light transformations). Light changes and non-light changes shared the same local scene statistics and edge ratios, but the latter were not consistent with any change in direction to the collimated source. We found that observers could discriminate light changes as small as 5 degrees with sensitivity d' > 1 and accurately judge the direction of change. In a second experiment, we measured observers' ability to detect a change in the surface albedo of an isolated surface patch during either a light change or a surface change. Observers were more accurate in detecting isolated albedo changes during light changes. Measures of sensitivity d' were more than twice as great.

  2. Change point detection of the Persian Gulf sea surface temperature

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  3. Automatic detection of surface changes on Mars - a status report

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2016-10-01

    Orbiter missions have acquired approximately 500,000 high-resolution visible images of the Martian surface, covering an area approximately 6 times larger than the overall area of Mars. This data abundance allows the scientific community to examine the Martian surface thoroughly and potentially make exciting new discoveries. However, the increased data volume, as well as its complexity, generate problems at the data processing stages, which are mainly related to a number of unresolved issues that batch-mode planetary data processing presents. As a matter of fact, the scientific community is currently struggling to scale the common ("one-at-a-time" processing of incoming products by expert scientists) paradigm to tackle the large volumes of input data. Moreover, expert scientists are more or less forced to use complex software in order to extract input information for their research from raw data, even though they are not data scientists themselves.Our work within the STFC and EU FP7 i-Mars projects aims at developing automated software that will process all of the acquired data, leaving domain expert planetary scientists to focus on their final analysis and interpretation. Moreover, after completing the development of a fully automated pipeline that processes automatically the co-registration of high-resolution NASA images to ESA/DLR HRSC baseline, our main goal has shifted to the automated detection of surface changes on Mars. In particular, we are developing a pipeline that uses as an input multi-instrument image pairs, which are processed by an automated pipeline, in order to identify changes that are correlated with Mars surface dynamic phenomena. The pipeline has currently been tested in anger on 8,000 co-registered images and by the time of DPS/EPSC we expect to have processed many tens of thousands of image pairs, producing a set of change detection results, a subset of which will be shown in the presentation.The research leading to these results has received

  4. Detecting changes in surface moisture and water table position with spectral changes in surface vegetation in northern peatlands

    NASA Astrophysics Data System (ADS)

    Meingast, Karl M.

    Due to warmer and drier conditions, wildland fire has been increasing in extent into peatland ecosystems during recent decades. As such, there is an increasing need for broadly applicable tools to detect surface peat moisture, in order to ascertain the susceptibility of peat burning, and the vulnerability of deep peat consumption in the event of a wildfire. In this thesis, a field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss dominated peatlands. Relationships were developed correlating spectral indices to surface moisture as well as water table position. Spectral convolutions were also applied to the high resolution spectra to represent spectral sensitivity of earth observing sensors. Band ratios previously used to monitor surface moisture with these sensors were assessed. Strong relationships to surface moisture and water table position are evident for both the narrowband indices as well as broadened indices. This study also found a dependence of certain spectral relationships on changes in vegetation cover by leveraging an experimental vegetation manipulation. Results indicate broadened indices employing the 1450-1650 nm region may be less stable under changing vegetation cover than those located in the 1200 nm region.

  5. Intra-rainfall soil surface change detection using close-range photogrammetry

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; James, Michael R.; McShane, Gareth; Quinton, John N.; Strauss, Peter

    2015-04-01

    During precipitation events, the physical properties of soil surfaces change significantly. Such changes influence a large range of processes, e.g. surface runoff, soil erosion, water infiltration, soil-atmosphere interactions and plant growth. It has been proven that successive precipitation events change soil surfaces, but detailed studies on soil surface change within a single rainfall event do, to the best of our knowledge, not exist, due to a lack of suitable methods. However, recent developments in the use of photogrammetry are becoming a common tool in geoscience and can be utilized in soil surface detection. New concepts, developments in hardware and software allow a quick and user friendly calculation of surface models with close-range imagery and processing based on structure from motion (SfM) approaches. In this study we tested the potential of close range photogrammetry for detecting changes in soil surface topography within an artificial rainfall event. We used a photogrammetric approach to capture multiple images of the soil surface on two different soil types (loamy and sandy soil) under laboratory conditions while they were exposed to a 60 minute duration 47(60) mm hr-1 intensity rainfall event from a gravity driven rainfall simulator. The photographs were processed using Photoscan to produce point clouds which were then interpolated to produce DEM surfaces. Of the 126 surfaces produced during the rainfall event 125 were usable and able to demonstrate changes with a resolution of <1 mm in the z dimension and with a xy resolution of <0.5 mm. We demonstrate the potential of photogrammetry for surface detection within a precipitation event. The use of close-range photogrammetry opens new possibilities to monitor soil surfaces and could be developed for a range of other applications. Our results have the potential to lead to better understanding of infiltration, runoff, nutrient transport and soil erosion processes within precipitation event.

  6. Seasonal Change Detection and Attribution of Surface Temperature changes over Interior Peninsular Region of India

    NASA Astrophysics Data System (ADS)

    Pattanayak, Sonali; Nagesh Kumar, Dasika

    2015-04-01

    A good number of studies have investigated recent trends in the observed and simulated hydrometeorological variables across the world. It has been challenging for the research community to address whether the significant change in climate over the course of 2nd half of 20th century is caused either due to natural or manmade effects. Although evidences for an anthropogenic contribution to climatic trends have been accumulated rapidly worldwide, for India these are scarce. Hence the formal efforts have been undertaken to distinguish whether the recent changes in seasonal temperature over India occurred due to natural internal variation of climate system or human influence using rigorous detection and attribution (D&A) procedure. The surface temperature is the most widely cited indicator of climate fluctuation. Hence maximum and minimum temperatures (Tmax & Tmin) which are among the six most commonly used variables for impact assessment studies are analyzed here. Seasonal divisions are based on conventional meteorological seasons: January-February (winter); March-May (pre monsoon); June-September (monsoon); October-December (post monsoon). Time span considered for this study is 1950-2005. Climate Research Unit (Version 3.21) gridded monthly temperature datasets are considered as observed data. Initially TFPW-MK (Trend Free Pre Whitening Mann Kendall) test is used to search the significant trends in the four seasons over all India. Temporal change detection analysis in evapotranspiration (which is one of the key processes in hydrological cycle) is essential for progress in water resources planning and management. Hence along with Tmax and Tmin, potential evapotranspiration (PET) has also been analyzed for the similar conditions. Significant upward trends in Tmax, Tmin and PET are observed over most of the grid points in Interior Peninsula (IP) region over India. Significant correlation was obtained between PET and Tmax compared to PET and Tmin. Trends in Tmin clearly

  7. Detection of impervious surface change with multitemporal Landsat images in an urban-rural frontier

    PubMed Central

    Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    Mapping and monitoring impervious surface dynamic change in a complex urban-rural frontier with medium or coarse spatial resolution images is a challenge due to the mixed pixel problem and the spectral confusion between impervious surfaces and other non-vegetation land covers. This research selected Lucas do Rio Verde County in Mato Grosso State, Brazil as a case study to improve impervious surface estimation performance by the integrated use of Landsat and QuickBird images and to monitor impervious surface change by analyzing the normalized multitemporal Landsat-derived fractional impervious surfaces. This research demonstrates the importance of two step calibrations. The first step is to calibrate the Landsat-derived fraction impervious surface values through the established regression model based on the QuickBird-derived impervious surface image in 2008. The second step is to conduct the normalization between the calibrated 2008 impervious surface image with other dates of impervious surface images. This research indicates that the per-pixel based method overestimates the impervious surface area in the urban-rural frontier by 50-60%. In order to accurately estimate impervious surface area, it is necessary to map the fractional impervious surface image and further calibrate the estimates with high spatial resolution images. Also normalization of the multitemporal fractional impervious surface images is needed to reduce the impacts from different environmental conditions, in order to effectively detect the impervious surface dynamic change in a complex urban-rural frontier. The procedure developed in this paper for mapping and monitoring impervious surface area is especially valuable in urban-rural frontiers where multitemporal Landsat images are difficult to be used for accurately extracting impervious surface features based on traditional per-pixel based classification methods as they cannot effectively handle the mixed pixel problem. PMID:21552379

  8. Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate

    NASA Astrophysics Data System (ADS)

    Nsubuga, F. W. N.; Botai, Joel O.; Olwoch, Jane M.; Rautenbach, C. J. deW; Kalumba, Ahmed M.; Tsela, Philemon; Adeola, Abiodun M.; Sentongo, Ausi A.; Mearns, Kevin F.

    2017-01-01

    Detection of changes in Earth surface features, for example lakes, is important for understanding the relationships between human and natural phenomena in order to manage better the increasingly scarce natural resources. This work presents a procedure of using modified normalised difference water index (MNDWI) to detect fluctuations of lake surface water area and relate it to a changing climate. The study used radiometrically and geometrically rectified Landsat images for 1986, 1995 and 2010 encompassing the Kyoga Basin lakes of Uganda, in order to investigate the changes in surface water area between the respective years. The standard precipitation index (SPI) and drought severity index (DSI) are applied to show the relationship between variability of surface water area and climate parameters. The present analysis reveals that surface water area fluctuation is linked to rainfall variability. In particular, Lake Kyoga sub-basin lakes experienced an increase in surface water area in 2010 compared to 1986. This work has important implications to water resources management for Lake Kyoga and could be vital to water resource managers across Ugandan lakes.

  9. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    NASA Astrophysics Data System (ADS)

    Saarakkala, Simo; Laasanen, Mikko S.; Jurvelin, Jukka S.; Töyräs, Juha

    2006-10-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair.

  10. A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques

    NASA Astrophysics Data System (ADS)

    Rokni, Komeil; Ahmad, Anuar; Solaimani, Karim; Hazini, Sharifeh

    2015-02-01

    Normally, to detect surface water changes, water features are extracted individually using multi-temporal satellite data, and then analyzed and compared to detect their changes. This study introduced a new approach for surface water change detection, which is based on integration of pixel level image fusion and image classification techniques. The proposed approach has the advantages of producing a pansharpened multispectral image, simultaneously highlighting the changed areas, as well as providing a high accuracy result. In doing so, various fusion techniques including Modified IHS, High Pass Filter, Gram Schmidt, and Wavelet-PC were investigated to merge the multi-temporal Landsat ETM+ 2000 and TM 2010 images to highlight the changes. The suitability of the resulting fused images for change detection was evaluated using edge detection, visual interpretation, and quantitative analysis methods. Subsequently, artificial neural network (ANN), support vector machine (SVM), and maximum likelihood (ML) classification techniques were applied to extract and map the highlighted changes. Furthermore, the applicability of the proposed approach for surface water change detection was evaluated in comparison with some common change detection methods including image differencing, principal components analysis, and post classification comparison. The results indicate that Lake Urmia lost about one third of its surface area in the period 2000-2010. The results illustrate the effectiveness of the proposed approach, especially Gram Schmidt-ANN and Gram Schmidt-SVM for surface water change detection.

  11. Detection and attribution of near surface temperature changes over homogenous temperature zones in India

    NASA Astrophysics Data System (ADS)

    Achutarao, K. M.; R, D.

    2015-12-01

    The IPCC Fifth Assessment Report concluded, "More than half of the observed increase in global mean surface temperature (GMST) from 1951 to 2010 is very likely due to the observed anthropogenic increase in greenhouse gas (GHG) concentrations." Detecting and attributing the changes over regional scales can provide more relevant information to policymakers at the national level but the low signal-to-noise ratios at smaller spatial scales make this a harder problem. In this study, we analyze changes in temperature (annual and seasonal means of mean, minimum, and maximum temperatures) over 7 homogeneous temperature zones of India from 1901 -2005 using models from the CMIP5 database and multiple observational datasets (CRU-3.22, and IITM). We perform Detection and Attribution (D&A) analysis using fingerprint methods by defining a signal that concisely express both spatial and temporal changes found in the model runs with the CMIP5 individual forcing runs; greenhouse (historicalGHG), natural (historicalNat), anthropogenic (historicalAnthro), and anthropogenic aerosols (historicalAA). We are able to detect changes in annual mean temperature over many of the homogenous temperature zones as well as seasonal means in some of the homogenous zones. We quantify the contributions resulting from individual forcings in these cases. Preliminary results indicate large contributions from anthropogenic, forcings with a negligible contribution from natural forcings.

  12. Using UAV data for soil surface change detection at a loess field plot

    NASA Astrophysics Data System (ADS)

    Eltner, Anette; Baumgart, Philipp

    2014-05-01

    Application of unmanned aerial vehicles (UAV) denotes an increasing interest in geosciences due to major developments within the last years. Today, UAV are economical, reliable and flexible in usage. They provide a non-invasive method to measure the soil surface and its changes - e.g. due to erosion - with high resolution. Advances in digital photogrammetry and computer vision allow for fast and dense digital surface reconstruction from overlapping images. The study site is located in the Saxonian loess (Germany). The area is fragile due to erodible soils and intense agricultural utilisation. Hence, detectable soil surface changes are expected. The size of the field plot is 20 x 30 meters and the period of investigation lasts from October 2012 till July 2013 at which four surveys were performed. The UAV deployed in this study is equipped with a compact camera which is attached to an active stabilising camera mount. In addition, the micro drone integrates GPS and IMU that enables autonomous surveys with programmed flight patterns. About 100 photos are needed to cover the study site at a minimal flying height of eight metres and 65%/80% image overlap. For multi-temporal comparison a stable local reference system is established. Total station control of the signalised ground control points confirms two mm accuracy for the study period. To estimate the accuracy of the digital surface models (DSM) derived from the UAV images a comparison to DSM from terrestrial laser scanning (TLS) is conducted. The standard deviation of differences amounts five millimetres. To analyse surface changes methods from image processing are applied to the DSM. Erosion rills could be extracted for quantitative and qualitative consideration. Furthermore, volumetric changes are measured. First results indicate levelling processes during the winter season and reveal rill and inter-rill erosion during spring and summer season.

  13. Optimal use of land surface temperature data to detect changes in tropical forest cover

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Thijs T.; Frank, Andrew J.; Jin, Yufang; Smyth, Padhraic; Goulden, Michael L.; van der Werf, Guido R.; Randerson, James T.

    2011-06-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the buildup of atmospheric CO2. Here we examined different ways to use land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05° × 0.05° Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of LST and Program for the Estimation of Deforestation in the Brazilian Amazon (PRODES) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10° × 10° included the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (˜1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pantropical deforestation classifiers. Combined with the normalized difference vegetation index, a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES.

  14. Near surface temperature changes over India - a detection and attribution study.

    NASA Astrophysics Data System (ADS)

    Ravindran, Dileepkumar; AchutaRao, Krishna

    2016-04-01

    The IPCC Fifth Assessment Report concluded, "More than half of the observed increase in global mean surface temperature (GMST) from 1951 to 2010 is very likely due to the observed anthropogenic increase in greenhouse gas (GHG) concentrations." Detecting and attributing the changes over regional scales can provide more relevant information to policymakers at the national level but the low signal-to-noise ratios at smaller spatial scales make this a harder problem. In this study, we analyze annual and seasonal mean changes in minimum (Tmin), maximum (Tmax), and mean (Tmean) temperatures over 7 homogeneous temperature zones of India using models from the CMIP5 database and multiple observational datasets (CRU-3.22, and IITM). We perform Detection and Attribution (D&A) analysis using fingerprint methods by defining a signal that concisely express both spatial and temporal changes found in the model runs with the CMIP5 individual forcing runs; greenhouse (historicalGHG), natural (historicalNat), anthropogenic (historicalAnthro), and anthropogenic aerosols (historicalAA). We use three different combinations of individual forcing patterns (2-pattern, 3-pattern and 5-pattern cases) in our analysis to quantify the contributions resulting from individual forcings. Results indicate warming attributable in most regions to anthropogenic forcings and Greenhouse gases with a negligible contribution from natural forcings using the 2- and 3-pattern analyses for the 1901-2005 and 1956-2005 time periods. The results are sensitive to observational data set used, as these tend to differ at the regional level.

  15. Detection of Changes on and below the Surface in Epithelium Mucosal Tissue Structure using Scattered Light

    NASA Astrophysics Data System (ADS)

    Taslidere, Ezgi

    The aim of this work is to answer the question of whether it is possible to detect changes on and below the surface in epithelium tissue structure using light reflected from the tissue over an area (2-D scan) illuminated by an optical sensor (fiber) emitting light at either one wavelength or with white light. Towards that end we model the 2-D reflected scans using a Stochastic Decomposition Method (SDM). The emphasis in this work is on the novelty of the proposed model and its theoretical pinning and foundation. The model is biologically motivated by the stochastic textural nature of the tissue. We model the textural content (which relates to tissue morphology) that manifests itself in the 2-D scans. Unlike previous works that analyze the scattered signal at one spot at various wavelengths, our method statistically analyzes 2-D scans of light scattering data over an area, and extracts from the data features (SDM parameters) that change with changes in the tissue morphology. The examination of an area rather than a spot not only leads to a more reliable calculation of the extracted parameters using single techniques (e.g. nuclear size distribution), but it also leads to the computation of additional information embedded in the spatial texture that our decomposition technique arrives at by modeling the hidden correlations that are obtained only by interrogating a wide sample area. To the best of our knowledge, this is the first attempt at modeling the scattered light over an area using a stochastic decomposition model that allows for the assessment of correlation and textural characteristics that otherwise could not be revealed when the analysis of the scattering signal is a function of wavelength or angle. We also come up with a segmentation technique to raise a flag on the fly when a transition occurs between different mucosal architectures on the surface. The segmentation is based on a novel difference metric for detecting an abrupt change in the parameters

  16. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry

    USGS Publications Warehouse

    Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R.

    2008-01-01

    Interferometric processing of JERS-1 L-band Synthetic Aperture Radar (SAR) data acquired over south Florida during 1993-1996 reveals detectable surface changes in the Everglades wetlands. Although our study is limited to south Florida it has implication for other large-scale wetlands, because south Florida wetlands have diverse vegetation types and both managed and natural flow environments. Our analysis reveals that interferometric coherence level is sensitive to wetland vegetation type and to the interferogram time span. Interferograms with time spans less than six months maintain phase observations for all wetland types, allowing characterization of water level changes in different wetland environments. The most noticeable changes occur between the managed and the natural flow wetlands. In the managed wetlands, fringes are organized, follow patterns related to some of the managed water control structures and have high fringe-rate. In the natural flow areas, fringes are irregular and have a low fringe-rate. The high fringe rate in managed areas reflects dynamic water topography caused by high flow rate due to gate operation. Although this organized fringe pattern is not characteristic of most large-scale wetlands, the high level of water level change enables accurate estimation of the wetland InSAR technique, which lies in the range of 5-10??cm. The irregular and low rate fringe pattern in the natural flow area reflects uninterrupted flow that diffuses water efficiently and evenly. Most of the interferograms in the natural flow area show an elongated fringe located along the transitional zone between salt- and fresh-water wetlands, reflecting water level changes due to ocean tides. ?? 2007 Elsevier Inc. All rights reserved.

  17. Hydrography change detection: the usefulness of surface channels derived From LiDAR DEMs for updating mapped hydrography

    USGS Publications Warehouse

    Poppenga, Sandra K.; Gesch, Dean B.; Worstell, Bruce B.

    2013-01-01

    The 1:24,000-scale high-resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time-relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR-derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.

  18. Satellite microwave detection of contrasting changes in surface inundation across pan-Arctic permafrost zones

    NASA Astrophysics Data System (ADS)

    Watts, J.; Kimball, J. S.; Jones, L. A.; Schroeder, R.; McDonald, K. C.

    2012-12-01

    Surface water inundation in the Arctic is concomitant with soil permafrost and strongly influences land-atmosphere water, energy and carbon (CO2, CH4) exchange, and plant community structure. We examine recent (2003-2010) surface water inundation patterns across the pan-Arctic (≥ 50 deg.N) and within major permafrost zones using satellite passive microwave remote sensing retrievals of fractional open water extent (Fw) derived from Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 18.7 and 23.8 GHz brightness temperatures. The AMSR-E Fw retrievals are insensitive to atmosphere contamination and solar illumination effects, enabling daily Fw monitoring across the Arctic. The Fw retrievals are sensitive to sub-grid scale open water inundation area, including lakes and wetlands, within the relatively coarse (~25-km resolution) satellite footprint. A forward model error sensitivity analysis indicates that total Fw retrieval uncertainty is within ±4.1% (RMSE), and AMSR-E Fw compares favorably (0.71 < R2 < 0.84) with alternative static open water maps derived from finer scale (30-m to 250-m resolution) Landsat, MODIS and SRTM radar-based products. The Fw retrievals also show dynamic seasonal and annual variability in surface inundation that corresponds (0.71 < R < 0.87) with regional wet/dry cycles inferred from basin discharge records, including Yukon, Mackenzie, Ob, Yenisei, and Lena basins. A regional change analysis of the 8-yr AMSR-E record shows no significant trend in pan-Arctic wide Fw, and instead reveals contrasting inundation changes within permafrost zones. Widespread Fw wetting is observed within continuous (92% of grid cells with significant trend show wetting; p < 0.1) and discontinuous (82%) permafrost zones, while areas with sporadic/isolated permafrost show widespread (71%) Fw drying. These results are consistent with previous studies showing evidence of changes in regional surface hydrology influenced by permafrost degradation under recent

  19. Tropospheric Delay Signal in SAR Interferogram and its Correction for Precise Surface Change Detection

    NASA Technical Reports Server (NTRS)

    Fujiwara, Satoshi; Murakami, Makoto; Tobita, Mikio; Nakagawa, Hiroyuki; Rosen, Paul A.

    2000-01-01

    Synthetic Aperture Radar (SAR) interferometry has become an important tool for measuring the surface deformation and mapping topography. The largest error source of the SAR interferometry measurements is differential atmospheric delay of water vapor. It reflects detailed distribution of water vapor in troposphere at data acquisition. We found phase difference associated with atmospheric waves and severe local atmospheric phenomena in interferograms. To distinguish phase difference associated with surface deformation from tropospheric effect, we need several SAR interferograms including the time period of the deformation. Averaging the interferograms is an effective way to reduce the tropospheric delay from horizontal inhomogeneity of the water vapor distribution. Apart from the tropospheric delay of the horizontal water vapor inhomogeneity, we often find the differential phase correlated to the topography (elevation) in interferograms, which might cause error in interpretation of surface deformation. This phase is due to the differential tropospheric delay caused by the topography and vertical change of water vapor between two images in different atmospheric condition. Theoretical calculation shows that the phase difference can be approximated by linear expression of the elevation. We applied a simple and effective correction method that the error is removed by subtracting the DEM (Digital Elevation Model) multiplied a coefficient.

  20. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    NASA Astrophysics Data System (ADS)

    Jones, G. S.; Christidis, N.; Stott, P. A.

    2011-01-01

    Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about +0.25 Wm-2 over the 20th century, compared with +2.52 Wm-2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  1. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    NASA Astrophysics Data System (ADS)

    Jones, G. S.; Christidis, N.; Stott, P. A.

    2010-09-01

    Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by the aerosol's control is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about + 0.25 Wm-2 over the 20th century, compared with a little under + 2.5 Wm-2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 years of the 20th century, although the results are sensitive to a number of analysis choices, and fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from the unscaled simulation. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  2. On-the-fly detection of changes on and below the surface in epithelium mucosal tissue architecture from scattered light.

    PubMed

    Cohen, Fernand S; Taslidere, Ezgi; Murthy, Sreekant

    2011-04-01

    In this paper we present a technique to raise a flag on the fly when a transition occurs between different mucosal architectures on or below the surface. The segmentation is based on a novel difference metric for detecting an abrupt change in the parameters extracted from a Stochastic Decomposition Method (SDM) that models the scattered light reflected from the mucosal tissue structure over an area (2-D scan) illuminated by an optical sensor (fiber) emitting light at either one wavelength or with white light. This work has the potential to enhance the endoscopist's ability to locate and identify abnormal mucosal architectures in particular when the disease is developing below the surface and hence becoming hidden during colonoscopy or endoscopic examination. It also has also potential in helping deciding as to when and where to take biopsies; steps that should lead to improvement in the diagnostic yield.

  3. IDENTIFYING RECENT SURFACE MINING ACTIVITIES USING A NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) CHANGE DETECTION METHOD

    EPA Science Inventory



    Coal mining is a major resource extraction activity on the Appalachian Mountains. The increased size and frequency of a specific type of surface mining, known as mountain top removal-valley fill, has in recent years raised various environmental concerns. During mountainto...

  4. Surface-crack detection by microwave methods

    NASA Technical Reports Server (NTRS)

    Feinstein, L.; Hruby, R.

    1967-01-01

    Microwave surface-crack detection system examines metallic surfaces with a noncontacting probe. The change in the microwave signal reflected from the surface under investigation is an indication of the existence of surface flaws. This technique can detect flaws and scratches as small as 100 microinches.

  5. Detecting Unidentified Changes

    PubMed Central

    Howe, Piers D. L.; Webb, Margaret E.

    2014-01-01

    Does becoming aware of a change to a purely visual stimulus necessarily cause the observer to be able to identify or localise the change or can change detection occur in the absence of identification or localisation? Several theories of visual awareness stress that we are aware of more than just the few objects to which we attend. In particular, it is clear that to some extent we are also aware of the global properties of the scene, such as the mean luminance or the distribution of spatial frequencies. It follows that we may be able to detect a change to a visual scene by detecting a change to one or more of these global properties. However, detecting a change to global property may not supply us with enough information to accurately identify or localise which object in the scene has been changed. Thus, it may be possible to reliably detect the occurrence of changes without being able to identify or localise what has changed. Previous attempts to show that this can occur with natural images have produced mixed results. Here we use a novel analysis technique to provide additional evidence that changes can be detected in natural images without also being identified or localised. It is likely that this occurs by the observers monitoring the global properties of the scene. PMID:24454727

  6. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods

    USGS Publications Warehouse

    Xian, G.; Homer, C.

    2010-01-01

    A prototype method was developed to update the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 to a nominal date of 2006. NLCD 2001 is widely used as a baseline for national land cover and impervious cover conditions. To enable the updating of this database in an optimal manner, methods are designed to be accomplished by individual Landsat scene. Using conservative change thresholds based on land cover classes, areas of change and no-change were segregated from change vectors calculated from normalized Landsat scenes from 2001 and 2006. By sampling from NLCD 2001 impervious surface in unchanged areas, impervious surface predictions were estimated for changed areas within an urban extent defined by a companion land cover classification. Methods were developed and tested for national application across six study sites containing a variety of urban impervious surface. Results show the vast majority of impervious surface change associated with urban development was captured, with overall RMSE from 6.86 to 13.12% for these areas. Changes of urban development density were also evaluated by characterizing the categories of change by percentile for impervious surface. This prototype method provides a relatively low cost, flexible approach to generate updated impervious surface using NLCD 2001 as the baseline. ?? 2010 Elsevier Inc.

  7. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

    NASA Astrophysics Data System (ADS)

    Sutton, Adrienne J.; Sabine, Christopher L.; Feely, Richard A.; Cai, Wei-Jun; Cronin, Meghan F.; McPhaden, Michael J.; Morell, Julio M.; Newton, Jan A.; Noh, Jae-Hoon; Ólafsdóttir, Sólveig R.; Salisbury, Joseph E.; Send, Uwe; Vandemark, Douglas C.; Weller, Robert A.

    2016-09-01

    One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag < 1.8) and Crassostrea gigas (Ωarag < 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag < 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.

  8. Anticipating land surface change.

    PubMed

    Streeter, Richard; Dugmore, Andrew J

    2013-04-09

    The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify "near misses," close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management.

  9. Anticipating land surface change

    PubMed Central

    Streeter, Richard; Dugmore, Andrew J.

    2013-01-01

    The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify “near misses,” close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management. PMID:23530230

  10. Changes on Titan's surface

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  11. SAR change detection MTI

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven; Lemanski, Christopher; Nichols, Howard; Owirka, Gregory; Minardi, Michael; Hale, Todd

    2006-05-01

    This paper examines the theory, application, and results of using single-channel synthetic aperture radar (SAR) data with Moving Reference Processing (MRP) to focus and geolocate moving targets. Moving targets within a standard SAR imaging scene are defocused, displaced, or completely missing in the final image. Building on previous research at AFRL, the SAR-MRP method focuses and geolocates moving targets by reprocessing the SAR data to focus the movers rather than the stationary clutter. SAR change detection is used so that target detection and focusing is performed more robustly. In the cases where moving target returns possess the same range versus slow-time histories, a geolocation ambiguity results. This ambiguity can be resolved in a number of ways. This paper concludes by applying the SAR-MRP method to high-frequency radar measurements from persistent continuous-dwell SAR observations of a moving target.

  12. Change Detection: Training and Transfer

    PubMed Central

    Gaspar, John G.; Neider, Mark B.; Simons, Daniel J.; McCarley, Jason S.; Kramer, Arthur F.

    2013-01-01

    Observers often fail to notice even dramatic changes to their environment, a phenomenon known as change blindness. If training could enhance change detection performance in general, then it might help to remedy some real-world consequences of change blindness (e.g. failing to detect hazards while driving). We examined whether adaptive training on a simple change detection task could improve the ability to detect changes in untrained tasks for young and older adults. Consistent with an effective training procedure, both young and older adults were better able to detect changes to trained objects following training. However, neither group showed differential improvement on untrained change detection tasks when compared to active control groups. Change detection training led to improvements on the trained task but did not generalize to other change detection tasks. PMID:23840775

  13. Land-cover change detection

    USGS Publications Warehouse

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  14. Electrophysiological correlates of change detection.

    PubMed

    Eimer, Martin; Mazza, Veronica

    2005-05-01

    To identify electrophysiological correlates of change detection, event-related brain potentials (ERPs) were recorded while participants monitored displays containing four faces in order to detect a face identity change across successive displays. Successful change detection was mirrored by an N2pc component at posterior electrodes contralateral to the side of a change, suggesting close links between conscious change detection and attention. ERPs on undetected-change trials differed from detected-change and no-change trials. We suggest that short-latency ERP differences between these trial types reflect trial-by-trial fluctuations in advance task preparation, whereas differences in the P3 time range are due to variations in the duration of perceptual and decision-related processing. Overall, these findings demonstrate that ERPs are a useful tool for dissociating processes underlying change blindness and change detection.

  15. Detection of changes of the surface morphology of the nucleus of comet 67P/Churyumov-Gerasimenko - Implications for the erosion

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe; Groussin, Olivier; El-Maarry, M. R.; Faury, Guillaume; Auger, Anne-Thérèse

    2016-07-01

    Search for morphological changes at the surface of the nucleus of comet 67P/Churyumov-Gerasimenko (67/P C-G) since its perihelion passage in August 2015 has been a major objective of the OSIRIS team in order to understand the erosion processes. At time of writing, the changes detected so far at a distance of 48 km (that is a pixel scale of 90 cm for the OSIRIS Narrow Angle Camera) are subtle even in regions which were the most exposed to solar illumination around perihelion time: Imhotep, Khonsu and Khepry. In this presentation, we will concentrate on the Khepry region where several changes of different kinds have been positively detected: disappearance of several bright spots, localized receding of a large part (roughly 40 x 130 m) of the surface by approximately 12 m (that could result from either erosion or localized collapse), and appearance of several new boulders. As the Rosetta-comet distance will keep decreasing, we hope to report further changes at the COSPAR conference. We will finally confront quantitative estimates of the putative eroded mass with independent evidences coming from in-situ as well as remote-sensing observations carried over several past apparitions.

  16. Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran

    NASA Astrophysics Data System (ADS)

    Zareie, Sajad; Khosravi, Hassan; Nasiri, Abouzar; Dastorani, Mostafa

    2016-11-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local to global scales, and it is one of the indicators of environmental quality. Evaluation of the surface temperature distribution and its relation to existing land use types are very important to the investigation of the urban microclimate. In arid and semi-arid regions, understanding the role of land use changes in the formation of urban heat islands is necessary for urban planning to control or reduce surface temperature. The internal factors and environmental conditions of Yazd city have important roles in the formation of special thermal conditions in Iran. In this paper, we used the temperature-emissivity separation (TES) algorithm for LST retrieving from the TIRS (Thermal Infrared Sensor) data of the Landsat Thematic Mapper (TM). The root mean square error (RMSE) and coefficient of determination (R2) were used for validation of retrieved LST values. The RMSE of 0.9 and 0.87 °C and R2 of 0.98 and 0.99 were obtained for the 1998 and 2009 images, respectively. Land use types for the city of Yazd were identified and relationships between land use types, land surface temperature and normalized difference vegetation index (NDVI) were analyzed. The Kappa coefficient and overall accuracy were calculated for accuracy assessment of land use classification. The Kappa coefficient values are 0.96 and 0.95 and the overall accuracy values are 0.97 and 0.95 for the 1998 and 2009 classified images, respectively. The results showed an increase of 1.45 °C in the average surface temperature. The results of this study showed that optical and thermal remote sensing methodologies can be used to research urban environmental parameters. Finally, it was found that special thermal conditions in Yazd were formed by land use changes. Increasing the area of asphalt roads, residential, commercial and industrial land use types and decreasing the area of the parks, green spaces and

  17. Adsorption of virus-like particles on ion exchange surface: Conformational changes at different pH detected by dual polarization interferometry.

    PubMed

    Yang, Yanli; Mengran Yu; Zhang, Songping; Ma, Guanghui; Su, Zhiguo

    2015-08-21

    Disassembling of virus-like particles (VLPs) like hepatitis B virus surface antigen (HB-VLPs) during chromatographic process has been identified as a major cause of loss of antigen activity. In this study, dual polarization interferometry (DPI) measurement, together with chromatography experiments, were performed to study the adsorption and conformational change of HB-VLPs on ion exchange surface at three different pHs. Changes in pH values of buffer solution showed only minimal effect on the HB-VLPs assembly and antigen activity, while significantly different degree of HB-VLPs disassembling was observed after ion exchange chromatography (IEC) at different pHs, indicating the conformational change of HB-VLPs caused mainly by its interactions with the adsorbent surface. By creating an ion exchange surface on chip surface, the conformational changes of HB-VLPs during adsorption to the surface were monitored in real time by DPI for the first time. As pH increased from 7.0 to 9.0, strong electrostatic interactions between oppositely charged HB-VLPs and the ion exchange surface make the HB-VLPs spread thinly or even adsorbed in disassembled formation on the surface as revealed by significant decrease in thickness of the adsorbed layer measured by DPI. Such findings were consistent with the results of IEC experiments operated at different pHs, that more disassembled HB-VLPs were detected in the eluted proteins at pH 9.0. At low pH like pH 5.0, however, possible bi-layer adsorption was involved as evidenced by an adsorbed layer thickness higher than average diameter of the HB-VLPs. The "lateral" protein-protein interactions might be unfavorable and would make additional contribution to the disassembling of HB-VLPs besides the primary mechanism related to the protein-surface interactions; therefore, the lowest antigen activity was observed after IEC at pH 5.0. Such real-time information on conformational change of VLPs is helpful for better understanding the real mechanism

  18. Change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Thonnessen, U.; Hofele, G.; Middelmann, W.

    2005-05-01

    Change detection plays an important role in different military areas as strategic reconnaissance, verification of armament and disarmament control and damage assessment. It is the process of identifying differences in the state of an object or phenomenon by observing it at different times. The availability of spaceborne reconnaissance systems with high spatial resolution, multi spectral capabilities, and short revisit times offer new perspectives for change detection. Before performing any kind of change detection it is necessary to separate changes of interest from changes caused by differences in data acquisition parameters. In these cases it is necessary to perform a pre-processing to correct the data or to normalize it. Image registration and, corresponding to this task, the ortho-rectification of the image data is a further prerequisite for change detection. If feasible, a 1-to-1 geometric correspondence should be aspired for. Change detection on an iconic level with a succeeding interpretation of the changes by the observer is often proposed; nevertheless an automatic knowledge-based analysis delivering the interpretation of the changes on a semantic level should be the aim of the future. We present first results of change detection on a structural level concerning urban areas. After pre-processing, the images are segmented in areas of interest and structural analysis is applied to these regions to extract descriptions of urban infrastructure like buildings, roads and tanks of refineries. These descriptions are matched to detect changes and similarities.

  19. A High Speed Detection Platform Based on Surface-Enhanced Raman Scattering for Monitoring Antibiotic-Induced Chemical Changes in Bacteria Cell Wall

    PubMed Central

    Liu, Ting-Ting; Lin, You-Hsuan; Hung, Chia-Sui; Liu, Tian-Jiun; Chen, Yu; Huang, Yung-Ching; Tsai, Tsung-Heng; Wang, Huai-Hsien; Wang, Da-Wei; Wang, Juen-Kai; Wang, Yuh-Lin; Lin, Chi-Hung

    2009-01-01

    Rapid and accurate diagnosis for pathogens and their antibiotic susceptibility is critical for controlling bacterial infections. Conventional methods for determining bacterium's sensitivity to antibiotic depend mostly on measuring the change of microbial proliferation in response to the drug. Such “biological assay” inevitably takes time, ranging from days for fast-growing bacteria to weeks for slow-growers. Here, a novel tool has been developed to detect the “chemical features” of bacterial cell wall that enables rapid identification of drug resistant bacteria within hours. The surface-enhanced Raman scattering (SERS) technique based on our newly developed SERS-active substrate was applied to assess the fine structures of the bacterial cell wall. The SERS profiles recorded by such a platform are sensitive and stable, that could readily reflect different bacterial cell walls found in Gram-positive, Gram-negative, or mycobacteria groups. Moreover, characteristic changes in SERS profile were noticed in the drug-sensitive bacteria at the early period (i.e., ∼1 hr) of antibiotic exposure, which could be used to differentiate them from the drug-resistant ones. The SERS-based diagnosis could be applied to a single bacterium. The high-speed SERS detection represents a novel approach for microbial diagnostics. The single-bacterium detection capability of SERS makes possible analyses directly on clinical specimen instead of pure cultured bacteria. PMID:19421405

  20. Io Surface Changes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This montage compares similar sides of Io photographed by the Galileo spacecraft in October 1999 (left) and the New Horizons spacecraft on February 27, 2007. The New Horizons image was taken with its Long Range Reconnaissance Imager (LORRI) from a range of 2.7 million kilometers (1.7 million miles).

    Most features on Io have changed little in the seven-plus years between these images, despite continued intense volcanic activity. The largest visible feature is the dark oval composed of deposits from the Pele volcano, nearly 1,200 kilometers (750 miles) across its longest dimension. At high northern latitudes, the volcano Dazhbog is prominent as a dark spot in the New Horizons image, near the edge of the disk at the 11 o'clock position. This volcano is much less conspicuous in the Galileo image. This darkening happened after this 1999 Galileo image but before Galileo took its last images of Io in 2001.

    A more recent change, discovered by New Horizons, can be seen in the southern hemisphere (circled). A new volcanic eruption near 55 degrees south, 290 degrees west has created a roughly circular deposit nearly 500 kilometers (300 miles) in diameter that was not seen by Galileo. Other New Horizons images show that the plume that created this deposit is still active.

    The New Horizons image is centered at Io coordinates 8 degrees south, 269 degrees west.

  1. Modeling for Standoff Surface Detection

    DTIC Science & Technology

    2013-11-01

    Raphael P. Moon Steven D. Christesen RESEARCH AND TECHNOLOGY DIRECTORATE Kevin Hung HUNG TECHNOLOGY SOLUTIONS, LLC Baltimore, MD 21234...Surface Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Moon, Raphael P.; Christesen, Steven D. (ECBC...include area code) U U U UU 70 (410) 436-7545 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 ii Blank iii PREFACE The

  2. Sensor for detection of liquid spills on surfaces

    DOEpatents

    Davis, Brent C.; Gayle, Tom M.

    1989-07-04

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  3. Rail Defect Detection Using Ultrasonic Surface Waves

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Jian, X.; Fan, Y.; Dixon, S.

    2006-03-01

    Current testing of the rail network is limited in terms of both speed of testing and accuracy of detecting surface defects such as gauge corner cracking. By using ultrasonic surface waves generated and detected in a pitch-catch manner we can detect such defects with a much higher accuracy. We use electro-magnetic acoustic transducers (EMATs) to generate and detect the ultrasound. These have the advantage of being non-contact and require no couplant. It is not sufficient to merely detect the presence of a defect; hence accurate calibration of the system is required. We present measurements on calibration samples giving the response of the system to defects of different depths. Further experiments have been performed on rail samples containing real and manufactured defects, both longitudinal and transverse. Using the change in signal amplitude and frequency content we are able to give a depth and position for these defects, and these are compared with more established measurement methods. An enhancement of the signal when the receive EMAT is close to the defect is also discussed.

  4. Changes in B Cell Populations and Merozoite Surface Protein-1-Specific Memory B Cell Responses after Prolonged Absence of Detectable P. falciparum Infection.

    PubMed

    Ayieko, Cyrus; Maue, Alexander C; Jura, Walter G Z O; Noland, Gregory S; Ayodo, George; Rochford, Rosemary; John, Chandy C

    2013-01-01

    Clinical immunity to malaria declines in the absence of repeated parasite exposure. However, little is known about how B cell populations and antigen-specific memory B cells change in the absence of P. falciparum infection. A successful indoor residual insecticide spraying campaign in a highland area of western Kenya, led to an absence of blood-stage P. falciparum infection between March 2007 and April 2008. We assessed memory B cell responses in 45 adults at the beginning (April 2008) and end (April 2009) of a subsequent 12-month period during which none of the adults had evidence of asymptomatic parasitemia or clinical disease. Antibodies and memory B cells to the 42-kDa portion of the merozoite surface protein-1 (MSP-142) were measured using ELISA and ELISPOT assays, respectively. B cell populations were characterized by flow cytometry. From 2008 to 2009, the prevalence of MSP-142-specific memory B cells (45% vs. 55%, respectively, P = 0.32) or antibodies (91% vs. 82%, respectively, P = 0.32) did not differ significantly, although specific individuals did change from positive to negative and vice versa, particularly for memory B cells, suggesting possible low-level undetected parasitemia may have occurred in some individuals. The magnitude of MSP-142-specific memory B cells and levels of antibodies to MSP-142 also did not differ from 2008 to 2009 (P>0.10 for both). However, from 2008 to 2009 the proportions of both class-switched atypical (CD19+IgD-CD27-CD21-IgM-) and class-switched activated (CD19+IgD-CD27+CD21-IgM-) memory B cells decreased (both P<0.001). In contrast, class-switched resting classical memory B cells (CD19+IgD-CD27+CD21+IgM-) increased (P<0.001). In this area of seasonal malaria transmission, a one- year absence of detectable P. falciparum infection was not associated with changes in the prevalence or level of MSP-142 specific memory B cells, but was associated with major changes in overall memory B cell subsets.

  5. SAR Object Change Detection Study.

    DTIC Science & Technology

    1980-03-01

    based techniques when applied to Synthetic Aperature Radar (SAR imagery. DOUGLA 3. PRASKA, 2LT, USAF Project Engineer viii Section 1 INTRODUCTION AND...to assess the applicability of three region-based change-detection methods to synthetic aperture radar imagery. I/ Ac .0ion For K:CTAB [ ft i . i...Section 2, the algorithms developed were applied to synthetic -aperture radar image data furnished by RADC. Some preprocessing of all images was required

  6. Surface Changes in Chryse Planitia

    NASA Technical Reports Server (NTRS)

    1979-01-01

    At the conclusion of the Viking Continuation Mission (May to November, 1978), all four cameras on the Viking Landers - two on each spacecraft - continued to function normally. During the two and one-half years since the landers touched down on Mars, images totaled 2,255 for Viking Lander 1 and 2,016 for Viking Lander 2. The surface around the landers was completely photographed by the end of 1976; subsequent images acquired during 1977-1978 have concentrated on searching for changes in the scene - changes which can be used to infer both the types of erosive processes which modify the landscape around the landers and the rates at which these processes may occur. The major surface changes have included the water-ice snow seen by Lander 2 during the winter at Utopia Planitia, and a thin dust layer deposited at both sites during the dust storms of 1977. The most recently identified change occurred at Chryse Planitia between VL-1 sols 767 (Sept. 16, 1978) and 771 (Sept. 20, 1978) as seen in the lower photo. Picture at top, selected to show similar lighting conditions, was taken during sol 25 (August 15, 1976). The change (A) appears as a small circle-like formation on the side of a drift in the lee, or downwind, side of Whale Rock. This is believed to have been a small-scale landslide of an unstable dust layer which had accumulated behind the rock. Interpretation of this feature would be difficult without an earlier change (B) near Big Joe, a slump which occurred between sols 74 and 183. The new slump is approximately 25- 35 meters from the lander, and just under a meter across. The slumping probably was initiated by the daily heating and cooling of the surface by solar radiation. More importantly, it is now believed that, based on the repeated occurrence of such slumping features, a dust layer which overlies the surface may in fact be redistributed fairly regularly during periods of high wind activity. There are no obvious indications of fossil slump features

  7. Surface property detection apparatus and method

    DOEpatents

    Martens, Jon S.; Ginley, David S.; Hietala, Vincent M.; Sorensen, Neil R.

    1995-01-01

    Apparatus and method for detecting, determining, and imaging surface resistance corrosion, thin film growth, and oxide formation on the surface of conductors or other electrical surface modification. The invention comprises a modified confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor, conductor, dielectric, or semiconductor.

  8. Surface property detection apparatus and method

    DOEpatents

    Martens, J.S.; Ginley, D.S.; Hietala, V.M.; Sorensen, N.R.

    1995-08-08

    Apparatus and method for detecting, determining, and imaging surface resistance corrosion, thin film growth, and oxide formation on the surface of conductors or other electrical surface modification. The invention comprises a modified confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor, conductor, dielectric, or semiconductor. 4 figs.

  9. On Radar Resolution in Coherent Change Detection.

    SciTech Connect

    Bickel, Douglas L.

    2015-11-01

    It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

  10. Changes in the Extent of Surface Mining and Reclamation in the Central Appalachians Detected Using a 1976-2006 Landsat Time Series

    NASA Technical Reports Server (NTRS)

    Townsend, Philip A.; Helmers, David P.; Kingdon, Clayton C.; McNeil, Brenden E.; de Beurs, Kirsten M.; Eshleman, Keith N.

    2009-01-01

    Surface mining and reclamation is the dominant driver of land cover land use change (LCLUC) in the Central Appalachian Mountain region of the Eastern U.S. Accurate quantification of the extent of mining activities is important for assessing how this LCLUC affects ecosystem services such as aesthetics, biodiversity, and mitigation of flooding.We used Landsat imagery from 1976, 1987, 1999 and 2006 to map the extent of surface mines and mine reclamation for eight large watersheds in the Central Appalachian region of West Virginia, Maryland and Pennsylvania. We employed standard image processing techniques in conjunction with a temporal decision tree and GIS maps of mine permits and wetlands to map active and reclaimed mines and track changes through time. For the entire study area, active surface mine extent was highest in 1976, prior to implementation of the Surface Mine Control and Reclamation Act in 1977, with 1.76% of the study area in active mines, declining to 0.44% in 2006. The most extensively mined watershed, Georges Creek in Maryland, was 5.45% active mines in 1976, declining to 1.83% in 2006. For the entire study area, the area of reclaimed mines increased from 1.35% to 4.99% from 1976 to 2006, and from 4.71% to 15.42% in Georges Creek. Land cover conversion to mines and then reclaimed mines after 1976 was almost exclusively from forest. Accuracy levels for mined and reclaimed cover was above 85% for all time periods, and was generally above 80% for mapping active and reclaimed mines separately, especially for the later time periods in which good accuracy assessment data were available. Among other implications, the mapped patterns of LCLUC are likely to significantly affect watershed hydrology, as mined and reclaimed areas have lower infiltration capacity and thus more rapid runoff than unmined forest watersheds, leading to greater potential for extreme flooding during heavy rainfall events.

  11. Detection limits of confocal surface plasmon microscopy

    PubMed Central

    Pechprasarn, Suejit; Somekh, Michael G.

    2014-01-01

    This paper applies rigorous diffraction theory to evaluate the minimum mass sensitivity of a confocal optical microscope designed to excite and detect surface plasmons operating on a planar metallic substrate. The diffraction model is compared with an intuitive ray picture which gives remarkably similar predictions. The combination of focusing the surface plasmons and accurate phase measurement mean that under favorable but achievable conditions detection of small numbers of molecules is possible, however, we argue that reliable detection of single molecules will benefit from the use of structured surfaces. System configurations needed to optimize performance are discussed. PMID:24940537

  12. UAS-Borne Photogrammetry for Surface Topographic Characterization: A Ground-Truth Baseline for Future Change Detection and Refinement of Scaled Remotely-Sensed Datasets

    NASA Astrophysics Data System (ADS)

    Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.

    2015-12-01

    While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect

  13. Nationwide Hybrid Change Detection of Buildings

    NASA Astrophysics Data System (ADS)

    Hron, V.; Halounova, L.

    2016-06-01

    The Fundamental Base of Geographic Data of the Czech Republic (hereinafter FBGD) is a national 2D geodatabase at a 1:10,000 scale with more than 100 geographic objects. This paper describes the design of the permanent updating mechanism of buildings in FBGD. The proposed procedure belongs to the category of hybrid change detection (HCD) techniques which combine pixel-based and object-based evaluation. The main sources of information for HCD are cadastral information and bi-temporal vertical digital aerial photographs. These photographs have great information potential because they contain multispectral, position and also elevation information. Elevation information represents a digital surface model (DSM) which can be obtained using the image matching technique. Pixel-based evaluation of bi-temporal DSMs enables fast localization of places with potential building changes. These coarse results are subsequently classified through the object-based image analysis (OBIA) using spectral, textural and contextual features and GIS tools. The advantage of the two-stage evaluation is the pre-selection of locations where image segmentation (a computationally demanding part of OBIA) is performed. It is not necessary to apply image segmentation to the entire scene, but only to the surroundings of detected changes, which contributes to significantly faster processing and lower hardware requirements. The created technology is based on open-source software solutions that allow easy portability on multiple computers and parallelization of processing. This leads to significant savings of financial resources which can be expended on the further development of FBGD.

  14. Anxiety, conscious awareness and change detection.

    PubMed

    Gregory, Sally M; Lambert, Anthony

    2012-03-01

    Attentional scanning was studied in anxious and non-anxious participants, using a modified change detection paradigm. Participants detected changes in pairs of emotional scenes separated by two task irrelevant slides, which contained an emotionally valenced scene (the 'distractor scene') and a visual mask. In agreement with attentional control theory, change detection latencies were slower overall for anxious participants. Change detection in anxious, but not non-anxious, participants was influenced by the emotional valence and exposure duration of distractor scenes. When negative distractor scenes were presented at subliminal exposure durations, anxious participants detected changes more rapidly than when supraliminal negative scenes or subliminal positive scenes were presented. We propose that for anxious participants, subliminal presentation of emotionally negative distractor scenes stimulated attention into a dynamic state in the absence of attentional engagement. Presentation of the same scenes at longer exposure times was accompanied by conscious awareness, attentional engagement, and slower change detection.

  15. Anomalous change detection in imagery

    DOEpatents

    Theiler, James P.; Perkins, Simon J.

    2011-05-31

    A distribution-based anomaly detection platform is described that identifies a non-flat background that is specified in terms of the distribution of the data. A resampling approach is also disclosed employing scrambled resampling of the original data with one class specified by the data and the other by the explicit distribution, and solving using binary classification.

  16. Image Change Detection via Ensemble Learning

    SciTech Connect

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success. In this work, we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a mixture of experts in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately 11.5% higher change detection accuracy than an individual classifier.

  17. Passive Optical Detection of a Vibrating Surface

    DTIC Science & Technology

    2014-01-01

    a refrigerator door vibrates from the compressor . The ability to optically image such vibrations may lead to a better speaker or a quieter...quote Nicode- mus: “Reflection is the process by which electromagnetic flux (power), incident on a stationary surface or medium, leaves that surface or...medium from the incident side without change in frequency; reflectance is the fraction of the incident flux that is reflected.” Nicodemus defines more

  18. Detecting Concentration Changes with Cooperative Receptors

    NASA Astrophysics Data System (ADS)

    Bo, Stefano; Celani, Antonio

    2016-03-01

    Cells constantly need to monitor the state of the environment to detect changes and timely respond. The detection of concentration changes of a ligand by a set of receptors can be cast as a problem of hypothesis testing, and the cell viewed as a Neyman-Pearson detector. Within this framework, we investigate the role of receptor cooperativity in improving the cell's ability to detect changes. We find that cooperativity decreases the probability of missing an occurred change. This becomes especially beneficial when difficult detections have to be made. Concerning the influence of cooperativity on how fast a desired detection power is achieved, we find in general that there is an optimal value at finite levels of cooperation, even though easy discrimination tasks can be performed more rapidly by noncooperative receptors.

  19. Indigenous people's detection of rapid ecological change.

    PubMed

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources.

  20. Early Cancer Detection at the Epithelial Surface.

    PubMed

    Rogalla, Stephan; Contag, Christopher H

    2015-01-01

    Malignant neoplastic lesions derived from epithelial tissue, carcinomas, account for 80% to 100% of all human cancers including some of the most deadly diseases such as cervical and non-small cell lung cancer. Many of these carcinomas present at readily accessible epithelial surfaces offering unique detection opportunities. Effective clinical management of carcinomas is enabled by early detection, at a time when full surgical resection is possible and before invasion of adjacent tissue or significant intravasation into blood vessels leading to metastasis. Good prognosis with long-term disease-free survival is more likely after early detection when progression is limited. At present, detection of carcinomas at epithelial surfaces largely relies on routine inspection with the naked eye (e.g., skin and oropharynx) or simple white light tools (e.g., cervix and colon). Emerging optical tools based on differential refraction, absorption, reflection, scattering, or fluorescence of carcinomas relative to normal tissues enable label-free visualization of neoplasia. However, the differences in intrinsic optical properties of normal and malignant tissues can be subtle, and relying on these may lead to high miss rates. Enhanced optical contrast offered by molecularly targeted agents can be used to improve early detection; and given that optical imaging and sensing tools can be readily combined, integrated systems that image over a range of scales, or detect multiple parameters, can be developed to aid in early detection. Diagnosis is, at present, made by histologic examination of tissue biopsies after identification of suspicious lesions. Miniature and handheld microscopic imaging tools have recently been developed, and integration of these tools with wide-field optical surveillance devices offers both rapid detection and confirmatory histologic examination at the point-of-care, that can provide guidance for biopsy and/or resection. A wide variety of targeted probe strategies

  1. Detectability of onsets versus offsets in the change detection paradigm.

    PubMed

    Cole, Geoff G; Kentridge, Robert W; Gellatly, Angus R H; Heywood, Charles A

    2003-01-01

    The human visual system is particularly sensitive to abrupt onset of new objects that appear in the visual field. Onsets have been shown to capture attention even when other transients simultaneously occur. This has led some authors to argue for the special role that object onset plays in attentional capture. However, evidence from the change detection paradigm appears contradictory to such findings. Studies of change blindness demonstrate that the onset of new objects can often go unnoticed. Assessing the relative detectability of onsets compared with other visual transients in a change detection procedure may help resolve this contradiction. We report the results of four experiments investigating the efficacy with which onsets capture attention compared with offsets. In Experiment 1, we employed a standard flicker procedure and assessed whether participants were more likely to detect the change following a frame containing an onset or following a frame containing an offset. In Experiment 2, we employed the one-shot method and investigated whether participants detected more onsets or offsets. Experiment 3 used the same method but assessed whether onsets would be detected more rapidly than offsets. In Experiment 4, we investigated whether the effect obtained in Experiments 1-3 using simple shapes would replicate when images of real-world objects were used. Results showed that onsets were less susceptible to change blindness than were offsets. We argue that the preservation of information is greater in onsets than in offsets.

  2. Detection and characterisation of surface cracking using scanning laser techniques

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Clough, A. R.; Rosli, M. H.; Hernandez-Valle, J. F.; Dutton, B.

    2012-05-01

    The use of lasers for generating and detecting ultrasound is becoming more established in non-destructive testing. However, there is still scope in developing the techniques to fully realise the benefits of non-contact measurements. One application is the detection of surface defects in metals; for example, rolling contact fatigue in rails, and surface cracking on billets or plates. We present measurements using a pulsed Nd:YAG laser to generate surface ultrasonic waves and an interferometer to detect the surface displacement on the sample, and investigate the interaction of Rayleigh or Lamb waves with surface defects. Signal enhancement in the near-field is observed for Rayleigh waves when either the generator or detector is close to a defect. For a scanned detector measurement, enhancement is observed due to constructive interference of the incident and reflected waves. For a scanned generator measurement, the change in generation conditions when the laser is over the defect also lead to an enhancement. In measurements of plate samples we observe similar enhancement effects whereby higher order modes are observed when the laser is above a defect. We discuss the implications of signal enhancements for detecting and characterising surface cracking.

  3. Surface plasmon resonance biosensor for enzymatic detection of small analytes.

    PubMed

    Miyazaki, Celina Massumi; Shimizu, Flávio Makoto; Mejía-Salazar, J R; Oliveira, Osvaldo N; Ferreira, Marystela

    2017-04-07

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l(-1), respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  4. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    NASA Astrophysics Data System (ADS)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l‑1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  5. Colorimetric Method for Beryllium Surface Contamination Detection

    SciTech Connect

    MCWHORTER, CHRISTOPHER

    2004-03-11

    To address the need for real-time accurate total beryllium analyses, Savannah River Technology Center Analytical Development Section personnel evaluated and modified a colorimetric screening method developed at Los Alamos National Lab to measure beryllium on surfaces. This method was based on a color complex formed by beryllium and chromium azurol s . SRTC converted this visual method to a quantitative analysis method using spectrophotometric detection. The addition of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to the Be-CAS system shifted the complex absorbance away from the CAS absorbance and allowed for the detection. Assuming complete dissolution and a 10 mL rinse solution volume to remove the beryllium from the wipe, the detection limit was calculated comfortably below the free release limit. The spectrophotometric method was rugged and simple enough that it could be used as a field method.

  6. Radar detection of surface oil accumulations

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Oneill, P.; Wilson, M.

    1980-01-01

    The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.

  7. Flat Surface Damage Detection System (FSDDS)

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  8. Detection of cell surface dopamine receptors.

    PubMed

    Xiao, Jiping; Bergson, Clare

    2013-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbent assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact.

  9. Detection of Cell Surface Dopamine Receptors

    PubMed Central

    Xiao, Jiping; Bergson, Clare

    2014-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbant assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, cells surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact. PMID:23296774

  10. High-Sensitivity Surface-Enhanced Raman Scattering (SERS) Substrate Based on a Gold Colloid Solution with a pH Change for Detection of Trace-Level Polycyclic Aromatic Hydrocarbons in Aqueous Solution.

    PubMed

    Shi, Xiaofeng; Liu, Shu; Han, Xiaohong; Ma, Jun; Jiang, Yongchao; Yu, Guifeng

    2015-05-01

    In this study, a gold colloid solution whose parameters were optimized, and without any surfactants, was developed as a surface-enhanced Raman scattering (SERS) substrate for the detection of trace-level polycyclic aromatic hydrocarbons (PAHs). A gold colloid solution with 57 nm gold particles and pH 13 was prepared to be the SERS substrate. It had impressive enhancement that was two orders of magnitude higher than that of a gold colloid solution with 57 nm gold particles and without pH change (pH 6). Even with a compact field-based Raman spectrometer, naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were detected, with limits of detection at 6.8 nM, 3.4 nM, 1.8 nM, 0.68 nM (680 pM), and 0.44 nM (440 pM), respectively. The significant enhancement was ascribed to an electromagnetic mechanism and a charge-transfer mechanism. Quantitative analyses for these five PAHs in water were also performed. The SERS intensities of PAHs were found to have good linear dependence relations with the concentrations in low concentration. This high-sensitivity, easily prepared substrate offers a promising technology for the quantitative detection of trace-level PAHs.

  11. Change Detection Experiments Using Low Cost UAVs

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Vranas, Thomas L.; Motter, Mark; Hines, Glenn D.; Rahman, Zia-ur

    2005-01-01

    This paper presents the progress in the development of a low-cost change-detection system. This system is being developed to provide users with the ability to use a low-cost unmanned aerial vehicle (UAV) and image processing system that can detect changes in specific fixed ground locations using video provided by an autonomous UAV. The results of field experiments conducted with the US Army at Ft. A.P.Hill are presented.

  12. System and process for detecting and monitoring surface defects

    NASA Technical Reports Server (NTRS)

    Mueller, Mark K. (Inventor)

    1994-01-01

    A system and process for detecting and monitoring defects in large surfaces such as the field joints of the container segments of a space shuttle booster motor. Beams of semi-collimated light from three non-parallel fiber optic light panels are directed at a region of the surface at non-normal angles of expected incidence. A video camera gathers some portion of the light that is reflected at an angle other than the angle of expected reflectance, and generates signals which are analyzed to discern defects in the surface. The analysis may be performed by visual inspection of an image on a video monitor, or by inspection of filtered or otherwise processed images. In one alternative embodiment, successive predetermined regions of the surface are aligned with the light source before illumination, thereby permitting efficient detection of defects in a large surface. Such alignment is performed by using a line scan gauge to sense the light which passes through an aperture in the surface. In another embodiment a digital map of the surface is created, thereby permitting the maintenance of records detailing changes in the location or size of defects as the container segment is refurbished and re-used. The defect detection apparatus may also be advantageously mounted on a fixture which engages the edge of a container segment.

  13. Change Point Detection in Correlation Networks

    PubMed Central

    Barnett, Ian; Onnela, Jukka-Pekka

    2016-01-01

    Many systems of interacting elements can be conceptualized as networks, where network nodes represent the elements and network ties represent interactions between the elements. In systems where the underlying network evolves, it is useful to determine the points in time where the network structure changes significantly as these may correspond to functional change points. We propose a method for detecting change points in correlation networks that, unlike previous change point detection methods designed for time series data, requires minimal distributional assumptions. We investigate the difficulty of change point detection near the boundaries of the time series in correlation networks and study the power of our method and competing methods through simulation. We also show the generalizable nature of the method by applying it to stock price data as well as fMRI data. PMID:26739105

  14. Change Point Detection in Correlation Networks

    NASA Astrophysics Data System (ADS)

    Barnett, Ian; Onnela, Jukka-Pekka

    2016-01-01

    Many systems of interacting elements can be conceptualized as networks, where network nodes represent the elements and network ties represent interactions between the elements. In systems where the underlying network evolves, it is useful to determine the points in time where the network structure changes significantly as these may correspond to functional change points. We propose a method for detecting change points in correlation networks that, unlike previous change point detection methods designed for time series data, requires minimal distributional assumptions. We investigate the difficulty of change point detection near the boundaries of the time series in correlation networks and study the power of our method and competing methods through simulation. We also show the generalizable nature of the method by applying it to stock price data as well as fMRI data.

  15. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, W.F.

    1980-02-26

    A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  16. Sensor for detecting changes in magnetic fields

    DOEpatents

    Praeg, Walter F.

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  17. Parallax mitigation for hyperspectral change detection

    NASA Astrophysics Data System (ADS)

    Vongsy, Karmon; Eismann, Michael T.; Mendenhall, Michael J.; Velten, Vincent J.

    2014-06-01

    A pixel-level Generalized Likelihood Ratio Test (GLRT) statistic for hyperspectral change detection is developed to mitigate false change caused by image parallax. Change detection, in general, represents the difficult problem of discriminating significant changes opposed to insignificant changes caused by radiometric calibration, image registration issues, and varying view geometries. We assume that the images have been registered, and each pixel pair provides a measurement from the same spatial region in the scene. Although advanced image registration methods exist that can reduce mis-registration to subpixel levels; residual spatial mis-registration can still be incorrectly detected as significant changes. Similarly, changes in sensor viewing geometry can lead to parallax error in an urban cluttered scene where height structures, such as buildings, appear to move. Our algorithm looks to the inherent relationship between the image views and the theory of stereo vision to perform parallax mitigation leading to a search result in the assumed parallax direction. Mitigation of the parallax-induced false alarms is demonstrated using hyperspectral data in the experimental analysis. The algorithm is examined and compared to the existing chronochrome anomalous change detection algorithm to assess performance.

  18. [Surface changes in glass eye prostheses].

    PubMed

    Härting, F; Flörke, O W; Bornfeld, N; Trester, W

    1984-10-01

    The exposed surface of new glass eye protheses becomes rough and is destroyed in use. The changes in the exposed surfaces have been demonstrated by scanning electron microscopy and with thin sections under optical microscopes. The alteration process depends on the length of time the artificial eye is worn. The main cause is chemical attack of the glass surface in the tear fluid, which is usually slightly alkaline. Chronic conjunctival inflammation, appearing after a long period of wearing the same artificial eye, may be caused by mechanical irritation from the surface roughness.

  19. Evaluation of experimental UAV video change detection

    NASA Astrophysics Data System (ADS)

    Bartelsen, J.; Saur, G.; Teutsch, C.

    2016-10-01

    During the last ten years, the availability of images acquired from unmanned aerial vehicles (UAVs) has been continuously increasing due to the improvements and economic success of flight and sensor systems. From our point of view, reliable and automatic image-based change detection may contribute to overcoming several challenging problems in military reconnaissance, civil security, and disaster management. Changes within a scene can be caused by functional activities, i.e., footprints or skid marks, excavations, or humidity penetration; these might be recognizable in aerial images, but are almost overlooked when change detection is executed manually. With respect to the circumstances, these kinds of changes may be an indication of sabotage, terroristic activity, or threatening natural disasters. Although image-based change detection is possible from both ground and aerial perspectives, in this paper we primarily address the latter. We have applied an extended approach to change detection as described by Saur and Kr uger,1 and Saur et al.2 and have built upon the ideas of Saur and Bartelsen.3 The commercial simulation environment Virtual Battle Space 3 (VBS3) is used to simulate aerial "before" and "after" image acquisition concerning flight path, weather conditions and objects within the scene and to obtain synthetic videos. Video frames, which depict the same part of the scene, including "before" and "after" changes and not necessarily from the same perspective, are registered pixel-wise against each other by a photogrammetric concept, which is based on a homography. The pixel-wise registration is used to apply an automatic difference analysis, which, to a limited extent, is able to suppress typical errors caused by imprecise frame registration, sensor noise, vegetation and especially parallax effects. The primary concern of this paper is to seriously evaluate the possibilities and limitations of our current approach for image-based change detection with respect

  20. The impact of misregistration on change detection

    NASA Technical Reports Server (NTRS)

    Townshend, John R. G.; Justice, Christopher O.; Gurney, Charlotte; Mcmanus, James

    1992-01-01

    The impact of images misregistration on the detection of changes in land cover was studied using spatially degraded Landsat MSS images. Emphasis is placed on simulated images of the Normalized Difference Vegetation Index (NDVI) at spatial resolutions of 250 and 500 m. It is pointed out that there is the need to achieve high values of registration accuracy. The evidence from simulations suggests that misregistrations can have a marked effect on the ability of remotely sensed data to detect changes in land cover. Even subpixel misregistrations can have a major impact, and the most marked proportional changes will tend to occur at the finest misregistrations.

  1. Automated change detection for synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    G-Michael, Tesfaye; Marchand, Bradley; Tucker, J. D.; Sternlicht, Daniel D.; Marston, Timothy M.; Azimi-Sadjadi, Mahmood R.

    2014-05-01

    In this paper, an automated change detection technique is presented that compares new and historical seafloor images created with sidescan synthetic aperture sonar (SAS) for changes occurring over time. The method consists of a four stage process: a coarse navigational alignment; fine-scale co-registration using the scale invariant feature transform (SIFT) algorithm to match features between overlapping images; sub-pixel co-registration to improves phase coherence; and finally, change detection utilizing canonical correlation analysis (CCA). The method was tested using data collected with a high-frequency SAS in a sandy shallow-water environment. By using precise co-registration tools and change detection algorithms, it is shown that the coherent nature of the SAS data can be exploited and utilized in this environment over time scales ranging from hours through several days.

  2. Holistic processing improves change detection but impairs change identification.

    PubMed

    Mathis, Katherine M; Kahan, Todd A

    2014-10-01

    It has been just over a century since Gestalt psychologists described the factors that contribute to the holistic processing of visually presented stimuli. Recent research indicates that holistic processing may come at a cost; specifically, the perception of holistic forms may reduce the visibility of constituent parts. In the present experiment, we examined change detection and change identification accuracy with Kanizsa rectangle patterns that were arranged to either form a Gestalt whole or not. Results from an experiment with 62 participants support this trade-off in processing holistic forms. Holistic processing improved the detection of change but obstructed its identification. Results are discussed in terms of both their theoretical significance and their application in areas ranging from baggage screening and the detection of changes in radiological images to the systems that are used to generate composite images of perpetrators on the basis of eyewitness reports.

  3. Enhanced Propagating Surface Plasmon Signal Detection

    SciTech Connect

    Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2016-12-21

    Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from a hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.

  4. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  5. Identifying Changes in Snowpack Surface Roughness Characteristics

    NASA Astrophysics Data System (ADS)

    Fassnacht, S. R.; Corrao, M. V.; Deems, J. S.; Stednick, J. D.

    2006-12-01

    The flow of air over a surface is influenced by its roughness. The surface of a snowpack is smooth relative to the underlying ground surface. The relative roughness of the snowpack surface changes directionally, spatially, and temporally, due to deposition, erosion, and melt. To examine these changes in snowpack surface roughness at the microtopographic scale for a Northern Colorado site, the surface was photographed using a darker-coloured roughness board that was inserted into the snowpack so that a black (board) versus white (snow) contrast existed along the entire length of the board. The board was 1-m long and was inserted 11 times at 10-cm intervals to create a 1-m by 1-m mesh. The orientation of the boards was rotated 90 degrees to provide finer resolution data in perpendicular directions. For the 1-m boards, the pixel resolution was approximately 0.4 mm. To measure the snow grain scale, a crystal card was photographed and yielded a pixel resolution of approximately 0.1 mm. Incorporating image processing issues such as image contrast and brightness, the digital images were translated into individual lines. These lines were used to compute semi- variograms in log-log space, from which the magnitude of semi-variance, the fractal dimensions, and the scale break were computed. The semi-variogram characteristics were used to illustrate directional, spatial, and temporal changes in snowpack surface roughness.

  6. NOVELTY DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS

    SciTech Connect

    H. SOHN; K. WORDER; C. R. FARRAR

    2001-04-01

    The primary objective of novelty detection is to examine a system's dynamic response to determine if the system significantly deviates from an initial baseline condition. In reality, the system is often subject to changing environmental and operation conditions that affect its dynamic characteristics. Such variations include changes in loading, boundary conditions, temperature, and moisture. Most damage diagnosis techniques, however, generally neglect the effects of these changing ambient conditions. Here, a novelty detection technique is developed explicitly taking into account these natural variations of the system in order to minimize false positive indications of true system changes. Auto-associative neural networks are employed to discriminate system changes of interest such as structural deterioration and damage from the natural variations of the system.

  7. ULTRASONIC DETECTION OF SURFACE-BREAKING RAILHEAD DEFECTS

    SciTech Connect

    Edwards, R. S.; Fan, Y.; Dixon, S.; Papaelias, M.; Davis, C. L.; Roberts, C.

    2008-02-28

    We recently presented measurements of defects on the railhead, using a novel pitch-catch ultrasonic system comprising of two electro-magnetic acoustic transducers (EMATs) generating and detecting Rayleigh waves. Current systems used on the UK rail network for detecting surface breaking defects are limited in speed (<30 mph) and accuracy (depths >5 mm). The non-contact EMAT system has the potential to operate at higher line speed, improving network inspection coverage. The current system detects signals and performs an FFT in less than 1 ms, and changes in the detected signal amplitude and frequency content are used to characterise defects. A new set of simulated defects on sections of rail have been produced, including half-face slots machined normal to the railhead surface, clusters of angled slots, and pocket defects more typical of real defects. The smallest pocket defects are difficult to detect, with changes in signal amplitude and cut-off falling close to the noise level. However, at chosen higher frequencies a drop in FFT magnitude indicates the presence of a defect, and this indicator can be logically combined with amplitude and cut-off measurements to provide a more reliable result. Preparation for testing on a rotating rail rig at high speeds is ongoing.

  8. Surface plasmon resonance immunosensor for bacteria detection.

    PubMed

    Baccar, H; Mejri, M B; Hafaiedh, I; Ktari, T; Aouni, M; Abdelghani, A

    2010-07-15

    This work describes an approach for the development of two bacteria biosensors based on surface plasmon resonance (SPR) technique. The first biosensor was based on functionalized gold substrate and the second one on immobilized gold nanoparticles. For the first biosensor, the gold substrate was functionalized with acid-thiol using the self-assembled monolayer technique, while the second one was functionalized with gold nanoparticles immobilized on modified gold substrate. A polyclonal anti-Escherichia coli antibody was immobilized for specific (E. coli) and non-specific (Lactobacillus) bacteria detection. Detection limit with a good reproducibility of 10(4) and 10(3) cfu mL(-1) of E. coli bacteria has been obtained for the first biosensor and for the second one respectively. A refractive index variation below 5x10(-3) due to bacteria adsorption is able to be detected. The refractive index of the multilayer structure and of the E. coli bacteria layer was estimated with a modeling software.

  9. Automatic change detection in spaceborne SAR imagery

    NASA Astrophysics Data System (ADS)

    Corr, Douglas G.; Whitehouse, Simon W.; Mott, David H.; Baldwin, Jim F.

    1996-06-01

    This paper describes a new technique of the automatic detection of change within synthetic aperture radar (SAR) images produced from satellite data. The interpretation of this type of imagery is difficult due to the combined effect of speckle, low resolution and the complexity of the radar signatures. The change detection technique that has been developed overcomes these problems by automatically measuring the degree of change between two images. The principle behind the technique used is that when satellite repeat orbits are at almost the same position in space then unless the scene has changed, the speckle pattern in the image will be unchanged. Comparison of images therefore reveals real change, not change due to fluctuating speckle patterns. The degree of change between two SAR images was measured by using the coherence function. Coherence has been studied for a variety of scene types: agricultural, forestry, domestic housing, small and large scale industrial complexes. Fuzzy set techniques, as well as direct threshold methods, have bee applied to the coherence data to determine places where change has occurred. The method has been validated using local information on building changes due to construction or demolition.

  10. Parametric probability distributions for anomalous change detection

    SciTech Connect

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  11. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    PubMed

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  12. Landsat change detection can aid in water quality monitoring

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  13. Automatic Identification of Changes on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Speyerer, Emerson; Wagner, Robert; Robinson, Mark

    2014-05-01

    Since June 2009, the Lunar Reconnaissance Orbiter (LRO) has maintained a stable polar orbit enabling the twin Narrow Angle Cameras (NACs) to acquire high-resolution observations of the lunar surface (pixel scale of 0.25 to 2 m/pixel). This orbital configuration facilitates occasional repeat coverage with similar lighting geometries. These before and after observations, referred to in this study as temporal pairs, enable the identification of changes to the surface based on applying a series of change detection techniques. Manual inspection of the temporal pairs by LROC team members resulted in the discovery of hundreds of new changes across the lunar surface [1]. However, this manual process is time consuming (2-4 hours per temporal pair) and each analyst must apply their own judgment on whether they have discovered a real change or an artifact in the image pair. Thus far, the LROC team has identified 650 surface changes as well as 19 resolved craters using the manual approach. Leveraging image processing techniques developed by the LROC team, we started automatically scanning and identifying these changes. The new automated algorithm locates changes based on albedo variations and changes in surface texture. The program provides a list of potential new features for later manual inspection and classification (disturbance lacking resolvable crater or crater with a rim diameter of X meters). This new approach eliminates the human inspector from scanning up to 5.22*109 pixels in each temporal pair and instead provides cropped cutouts with the detected changes centered in the thumbnail image. The LROC NACs have already collected thousands of temporal pair observations and will continue to do so over the remaining extended mission. Highest fidelity change detection comes from temporal pairs with nearly identical lighting geometries. In the next two years, the progression of the LRO orbit with respect to beta angle will enable direct illumination matches (<2 degrees

  14. Detection of abrupt changes in dynamic systems

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1984-01-01

    Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed.

  15. Molecular Engineering of Surfaces for Sensing and Detection

    DTIC Science & Technology

    2005-08-01

    difference in protein orientation on different charged surfaces. Surface Plasmon Resonance ( SPR ) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF...6 SPR STUDY OF PROTEIN ORIENTATION ON CHARGED SURFACES...THE LOW DETECTION REGION. ........................81 FIGURE 7.5 COMPENSATED SPR RESPONSE SHOWING A) A DETECTION OF 0.5 NG/ML AND B) NO CLEAR DETECTION

  16. Surface changes of implants after laser irradiation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Sadegh, Hamid M. M.; Goldin, Dan S.; Hennig, Thomas

    1999-05-01

    Periimplantitis is one of the major factors for the loss of dental implants. Due to the minor defense ability of the tissue surrounding the implant compared to natural teeth treatment of periimplantitis in the early stage is very important. Reducing bacteria with a laser might be the most successful step in therapy of periimplantitis. Aim of the study was to observe changes in surface morphology of seven different implants after irradiation with three different lasers. Two kinds of flat round samles were prepared by the manufacturers either identical to the body surface or to the cervical area of the corresponding implants. The samples were irradiated using different power settings. The lasers used were a CO2 laser (Uni Laser 450P, ASAH Medico Denmark; fiber guided, wavelength 10.6 μm, max. average power 8.3 W, "soft-pulse" and cw) an Er:YAG laser (KaVo Key Laser II, wavelength 2.94 μm, pulse duration 250-500μs, pulse energy 60-500 mJ, pulse repetition rate 1-15 Hz, focus diameter 620 μm, air-water cooling; Biberach, Germany; a frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 μs, pulse repetition rate 30 Hz, water cooling). After irradiation the implant surfaces were investigated with a Scanning Electron Microscope. Ablation thresholds were determined. After CO2 laser irradiation no changes in surface morphology were observed whereas using the pulsed Er:YAG laser or frequency doubled Alexandrite laser even at low energies loss of integrity or melting of the surface was observed. The changes in surface morphology seem to depend very strongly on the type of surface coating.

  17. Three decades of Martian surface changes

    USGS Publications Warehouse

    Geissler, P.E.

    2005-01-01

    The surface of Mars has changed dramatically during the three decades spanned by spacecraft exploration. Comparisons of Mars Global Surveyor images with Viking and Mariner 9 pictures suggest that more than one third of Mars' surface area has brightened or darkened by at least 10%. Such albedo changes could produce significant effects on solar heating and the global circulation of winds across the planet. All of the major changes took place in areas of moderate to high thermal inertia and rock abundance, consistent with burial of rocky surfaces by thin dust layers deposited during dust storms and subsequent exposure of the rocky surfaces by aeolian erosion. Several distinct mechanisms contribute to aeolian erosion on Mars. Prevailing winds dominate erosion at low latitudes, producing diffuse albedo boundaries and elongated wind streaks generally oriented in the direction of southern summer winds. Dust devils darken the mid to high latitudes from 45 to 70 degrees during the summer seasons, forming irregular albedo patterns consisting of dark linear tracks. Dust storms produce regional albedo variations with distinct but irregular margins. Dark sand duties in southern high latitudes appear to be associated with regional darkening that displays diffuse albedo boundaries. No surface changes were observed to repeat regularly on an annual basis, but many of the changes took place in areas that alternate episodically between high- and low-albedo states as thin mantles of dust are deposited and later stripped off. Hence the face of Mars remains recognizable after a century of telescopic observations, in spite of the enormous extent of alteration that has taken place during the era of spacecraft exploration.

  18. GISS Analysis of Surface Temperature Changes

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M.

    1999-01-01

    We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.

  19. Automatic change detection using mobile laser scanning

    NASA Astrophysics Data System (ADS)

    Hebel, M.; Hammer, M.; Gordon, M.; Arens, M.

    2014-10-01

    Automatic change detection in 3D environments requires the comparison of multi-temporal data. By comparing current data with past data of the same area, changes can be automatically detected and identified. Volumetric changes in the scene hint at suspicious activities like the movement of military vehicles, the application of camouflage nets, or the placement of IEDs, etc. In contrast to broad research activities in remote sensing with optical cameras, this paper addresses the topic using 3D data acquired by mobile laser scanning (MLS). We present a framework for immediate comparison of current MLS data to given 3D reference data. Our method extends the concept of occupancy grids known from robot mapping, which incorporates the sensor positions in the processing of the 3D point clouds. This allows extracting the information that is included in the data acquisition geometry. For each single range measurement, it becomes apparent that an object reflects laser pulses in the measured range distance, i.e., space is occupied at that 3D position. In addition, it is obvious that space is empty along the line of sight between sensor and the reflecting object. Everywhere else, the occupancy of space remains unknown. This approach handles occlusions and changes implicitly, such that the latter are identifiable by conflicts of empty space and occupied space. The presented concept of change detection has been successfully validated in experiments with recorded MLS data streams. Results are shown for test sites at which MLS data were acquired at different time intervals.

  20. Abandoned Mine Detection in Western Pennsylvania Using Surface Wave Data

    NASA Astrophysics Data System (ADS)

    Miller, B.

    2015-12-01

    Abandoned mines throughout the Appalachian region of the United States have been recognized as problematic. Resource extraction from these mines has long ceased and few, if any, documents pertaining to these operations exist. Over time support structures internal to the mines may collapse and lead to subsidence, potentially damaging surface structures. A non-invasive, surface deployed seismic method to detect undisclosed, abandoned near-surface mines would be beneficial as a first step to remediation. The use of seismic surface waves to analyze the upper several tens of meters of the subsurface has become an important technique for near-surface investigations and may provide a method for detection of near-surface, abandoned mine shafts. While there are many undocumented abandoned mines throughout the Appalachians one known example exists within Butler County, Pennsylvania. Although little is known about the overall operation there is limited documentation which provides information as to the location of the mine tunnels. Currently there is no recognized surface subsidence associated with the mine however documents indicate that the abandoned mining operations have an estimated depth ranging from twenty to fifty feet. To assist with acquisition a seismic land streamer was constructed. Use of a land streamer increases the speed, ease and efficiency required to perform a seismic survey. Additionally the land streamer allows for the acquisition of seismic surface waves which were analyzed using the Multichannel Analysis of Surface Waves (MASW) method. Data were acquired by conducting multiple, adjacent surveys perpendicular to the suspected location of abandoned mine tunnels. Throughout the survey area to a depth of approximately 15 meters, shear wave velocities range between approximately 200-1200 m/s. Based upon shear wave velocity changes within the profile anomalies have been identified corresponding to the contrast between the suspected mined, and unmined, areas.

  1. Enamel surface changes caused by hydrogen sulfide

    PubMed Central

    Yamaguchi, Takao; Hanabusa, Masao; Hosoya, Noriyasu; Chiba, Toshie; Yoshida, Takumasa; Morito, Akiyuki

    2015-01-01

    Background: Volatile sulfur compounds (VSCs) produced inside the mouth are a well-known cause of halitosis. Recent studies have suggested that VSCs modify the pathology of periodontitis by encouraging the migration of bacterial toxins associated with increased permeability of gingival epithelia, and enhancing the production of matrix metalloproteinases in gingival connective tissue. Nonetheless, the effects on the enamel of direct exposure to VSCs within the oral cavity remain unclear. In the present study, we observed the effects of VSCs in the form of hydrogen sulfide (H2S) on enamel surfaces and determined their effects on restorations. Materials and Methods: Extracted human tooth and bovine tooth samples were divided into the H2S experimental side and the control side. We observed the effects of H2S on enamel surfaces using electron microscopy and conducted a shear test. Results: We found that exposure to H2S obscured the enamel surface's crystal structure. The surface also exhibited coarseness and reticular changes. Shear testing did not reveal any differences in bond strength. Conclusions: Our findings suggested that H2S occurring inside the mouth causes changes to the crystal structure of the enamel surface that can lead to tooth wear, but that it does not diminish the effects of dental bonding in adhesive restorations. PMID:26752833

  2. Optical and SAR data integration for automatic change pattern detection

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Susaki, J.

    2014-09-01

    Automatic change pattern mapping in urban and sub-urban area is important but challenging due to the diversity of urban land use pattern. With multi-sensor imagery, it is possible to generate multidimensional unique information of Earth surface features that allow developing a relationship between a response of each feature to synthetic aperture radar (SAR) and optical sensors to track the change automatically. Thus, a SAR and optical data integration framework for change detection and a relationship for automatic change pattern detection were developed. It was carried out in three steps: (i) Computation of indicators from SAR and optical images, namely: normalized difference ratio (NDR) from multi-temporal SAR images and the normalized difference vegetation index difference (NDVI) from multi-temporal optical images, (ii) computing the change magnitude image from NDR and ΔNDVI and delineating the change area and (iii) the development of an empirical relationship, for automatic change pattern detection. The experiment was carried out in an outskirts part of Ho Chi Minh City, one of the fastest growing cities in the world. The empirical relationship between the response of surface feature to optical and SAR imagery has successfully delineated six changed classes in a very complex urban sprawl area that was otherwise impossible with multi-spectral imagery. The improvement of the change detection results by making use of the unique information on both sensors, optical and SAR, is also noticeable with a visual inspection and the kappa index was increased by 0.13 (0.75 to 0.88) in comparison to only optical images.

  3. Historical Landsat data comparisons: illustrations of the Earth's changing surface

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) EROS Data Center (EDC) has managed the Landsat data archive for more than two decades. This archive provides a rich collection of information about the Earth's land surface. Major changes to the surface of the planet can be detected, measured, and analyzed using Landsat data. The effects of desertification, deforestation, pollution, cataclysmic volcanic activity, and other natural and anthropogenic events can be examined using data acquired from the Landsat series of Earth-observing satellites. The information obtainable from the historical and current Landsat data play a key role in studying surface changes through time. This document provides an overview of the Landsat program and illustrates the application of the data to monitor changes occurring on the surface of the Earth. To reveal changes that have taken place within the past 20 years, pairs and triplicates of images were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical record of the Earth's land surface from the early 1970's to the early 1990's. Landsat TM data provide land surface information from the early 1980's to the present.

  4. Total least squares for anomalous change detection

    SciTech Connect

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  5. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    SciTech Connect

    Skinner, C H; Bell, M G; Friesen, F.Q.L.; Heim, B; Jaworski, M A; Kugel, H; Maingi, R; Rais, B; Taylor, C N

    2011-05-23

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  6. Detecting changes during pregnancy with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  7. Evaluation of object level change detection techniques

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Bergeron, Stuart; Hugo, Doug; O'Brien, Michael A.

    2007-04-01

    A variety of change detection (CD) methods have been developed and employed to support imagery analysis for applications including environmental monitoring, mapping, and support to military operations. Evaluation of these methods is necessary to assess technology maturity, identify areas for improvement, and support transition to operations. This paper presents a methodology for conducting this type of evaluation, discusses the challenges, and illustrates the techniques. The evaluation of object-level change detection methods is more complicated than for automated techniques for processing a single image. We explore algorithm performance assessments, emphasizing the definition of the operating conditions (sensor, target, and environmental factors) and the development of measures of performance. Specific challenges include image registration; occlusion due to foliage, cultural clutter and terrain masking; diurnal differences; and differences in viewing geometry. Careful planning, sound experimental design, and access to suitable imagery with image truth and metadata are critical.

  8. Region Based Forest Change Detection from CARTOSAT-1 Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Tian, J.; Leitloff, J.; Krauß, T.; Reinartz, P.

    2011-09-01

    Tree height is a fundamental parameter for describing the forest situation and changes. The latest development of automatic Digital Surface Model (DSM) generation techniques allows new approaches of forest change detection from satellite stereo imagery. This paper shows how DSMs can support the change detection in forest area. A novel region based forest change detection method is proposed using single-channel CARTOSAT-1 stereo imagery. In the first step, DSMs from two dates are generated based on automatic matching technology. After co-registration and normalising by using LiDAR data, the mean-shift segmentation is applied to the original pan images, and the images of both dates are classified to forest and non-forest areas by analysing their histograms and height differences. In the second step, a rough forest change detection map is generated based on the comparison of the two forest map. Then the GLCM texture from the nDSM and the Cartosat-1 images of the resulting regions are analyzed and compared, the real changes are extracted by SVM based classification.

  9. Detecting hydrological changes through conceptual model

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General

  10. Detecting Change in Longitudinal Social Networks

    DTIC Science & Technology

    2011-01-01

    marketing campaigns and media on social behavior. Initial Construct populations, social and knowledge networks, can be hypothetical or real (Carley...patent data bases, phone-networks, email- based-networks, social- media networks and more. Page 6 of 37 Current methods of change detection in...CUSUM C Sta measured fo o be successf Average Bet ct either incre or each socia g increases in the data for fective for ch ork. tistic Over Tim

  11. Automated Change Detection for Synthetic Aperture Sonar

    DTIC Science & Technology

    2014-01-01

    analysis ( CCA ). The method was tested using data collected with a high-frequency SAS in a sandy shallow-water environment. By using precise co...coherent-based change detection results using canonical correlation analysis ( CCA ) described by Azimi-Sadjadi and Srinivasan,18 G-Michael and Tucker15 and...Sternlicht and G-Michael,19 where the preliminary studies were performed on simulated SAR and SAS imagery. The motivation behind CCA comes from recent

  12. Scene change detection based on multimodal integration

    NASA Astrophysics Data System (ADS)

    Zhu, Yingying; Zhou, Dongru

    2003-09-01

    Scene change detection is an essential step to automatic and content-based video indexing, retrieval and browsing. In this paper, a robust scene change detection and classification approach is presented, which analyzes audio, visual and textual sources and accounts for their inter-relations and coincidence to semantically identify and classify video scenes. Audio analysis focuses on the segmentation of audio stream into four types of semantic data such as silence, speech, music and environmental sound. Further processing on speech segments aims at locating speaker changes. Video analysis partitions visual stream into shots. Text analysis can provide a supplemental source of clues for scene classification and indexing information. We integrate the video and audio analysis results to identify video scenes and use the text information detected by the video OCR technology or derived from transcripts available to refine scene classification. Results from single source segmentation are in some cases suboptimal. By combining visual, aural features adn the accessorial text information, the scence extraction accuracy is enhanced, and more semantic segmentations are developed. Experimental results are proven to rather promising.

  13. Surface Deformation and Gravity Changes from Surface and Internal Loads

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Fang, Ming

    2002-01-01

    Air and space borne remote sensing have made it possible to monitor the mass and energy transport at various scales within the cryosphere-hydrosphere-atmosphere system. The recent surface mass balance (the rate of net gain of snow and ice at a geographic point) map for the Antarctic ice sheet is constructed by interpolating sparse in situ observations (about 1,800 points) with empirically calibrated satellite data of passive back emission of microwaves. The digital elevation model obtained from satellite radar altimetry is used to improve the delineation of the ice flow drainage basins. As important as these results are, the uncertainty remains up to about 2 mm/yr of eustatic sea level change with the net imbalance. In other words, we are still unable to determine even the sign of the contribution of the Antarctic ice sheet to contemporary sea level change. The problem is more likely with the discharge rather than accumulation.

  14. Detecting regional patterns of changing CO2 flux in Alaska

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.

    2016-07-01

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

  15. Detecting regional patterns of changing CO2 flux in Alaska

    PubMed Central

    Parazoo, Nicholas C.; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.

    2016-01-01

    With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. PMID:27354511

  16. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.

  17. Seasonal Changes in Titan's Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Jennins, Donald E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.; Carlson, R. C.; Gorius, N. J. P.; Coustenis, A.; Tokano, T.

    2011-01-01

    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer (CIRS) measured surface radiances at 19 micron in two time periods: one in late northern winter (Ls = 335d eg) and another centered on northern spring equinox (Ls = 0 deg). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between late northern winter and northern spring equinox a shift occurred in the temperature distribution, characterized by a warming of approximately 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was 93.4 K. We measured a seasonal lag of delta Ls approximately 9 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 deg S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

  18. SEASONAL CHANGES IN TITAN'S SURFACE TEMPERATURES

    SciTech Connect

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.; Carlson, R. C.; Gorius, N. J. P.; Coustenis, A.; Tokano, T.

    2011-08-10

    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer measured surface radiances at 19 {mu}m in two time periods: one in late northern winter (LNW; L{sub s} = 335 deg.) and another centered on northern spring equinox (NSE; L{sub s} = 0 deg.). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between LNW and NSE a shift occurred in the temperature distribution, characterized by a warming of {approx}0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was at 93.4 K. We measured a seasonal lag of {Delta}L{sub S} {approx} 9{sup 0} in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65{sup 0} S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

  19. Detecting ecological change on coral reefs

    NASA Astrophysics Data System (ADS)

    Dustan, P.

    2011-12-01

    Remote sensing offers the potential to observe the response of coral reef ecosystems to environmental perturbations on a geographical scale not previously accessible. However, coral reef environments are optically, spatially, and temporally complex habitats which all present significant challenges for extracting meaningful information. Virtually every member of the reef community possesses some degree of photosynthetic capability. The community thus generates a matrix of fine scale features with bio-optical signatures that blend as the scale of observation increases. Furthermore, to have any validity, the remotely sensed signal must be "calibrated" to the bio-optics of the reef, a difficult and resource intensive process due to a convergence of photosynthetic light harvesting by green, red, and brown algal pigment systems. To make matters more complex, reefs are overlain by a seawater skin with its own set of hydrological optical challenges. Rather than concentrating on classification, my research has attempted to track change by following the variation in geo-referenced pixel brightness over time with a technique termed temporal texture. Environmental periodicities impart a phenology to the variation in brightness and departures from the norm are easily detected as statistical outliers. This opens the door to using current orbiting technology to efficiently examine large areas of sea for change. If hot spots are detected, higher resolution sensors and field studies can be focused as resources permit. While this technique does not identify the type of change, it is sensitive, simple to compute, easy to automate and grounded in ecological niche theory

  20. Immunohistochemical Detection of Changes in Tumor Hypoxia

    SciTech Connect

    Russell, James Carlin, Sean; Burke, Sean A.; Wen Bixiu; Yang, Kwang Mo; Ling, C. Clifton

    2009-03-15

    Purpose: Although hypoxia is a known prognostic factor, its effect will be modified by the rate of reoxygenation and the extent to which the cells are acutely hypoxic. We tested the ability of exogenous and endogenous markers to detect reoxygenation in a xenograft model. Our technique might be applicable to stored patient samples. Methods and Materials: The human colorectal carcinoma line, HT29, was grown in nude mice. Changes in tumor hypoxia were examined by injection of pimonidazole, followed 24 hours later by EF5. Cryosections were stained for these markers and for carbonic anhydrase IX (CAIX) and hypoxia-inducible factor 1{alpha} (HIF1{alpha}). Tumor hypoxia was artificially manipulated by carbogen exposure. Results: In unstressed tumors, all four markers showed very similar spatial distributions. After carbogen treatment, pimonidazole and EF5 could detect decreased hypoxia. HIF1{alpha} staining was also decreased relative to CAIX, although the effect was less pronounced than for EF5. Control tumors displayed small regions that had undergone spontaneous changes in tumor hypoxia, as judged by pimonidazole relative to EF5; most of these changes were reflected by CAIX and HIF1{alpha}. Conclusion: HIF1{alpha} can be compared with either CAIX or a previously administered nitroimidazole to provide an estimate of reoxygenation.

  1. Lake Chapala change detection using time series

    NASA Astrophysics Data System (ADS)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  2. Refractive index change detection based on porous silicon microarray

    NASA Astrophysics Data System (ADS)

    Chen, Weirong; Jia, Zhenhong; Li, Peng; Lv, Guodong; Lv, Xiaoyi

    2016-05-01

    By combining photolithography with the electrochemical anodization method, a microarray device of porous silicon (PS) photonic crystal was fabricated on the crystalline silicon substrate. The optical properties of the microarray were analyzed with the transfer matrix method. The relationship between refractive index and reflectivity of each array element of the microarray at 633 nm was also studied, and the array surface reflectivity changes were observed through digital imaging. By means of the reflectivity measurement method, reflectivity changes below 10-3 can be observed based on PS microarray. The results of this study can be applied to the detection of biosensor arrays.

  3. Multi-Dimensional Damage Detection for Surfaces and Structures

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or

  4. 3D change detection - Approaches and applications

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  5. Detectability of Potentially Entrained Microorganisms at the Surface of Europa

    NASA Technical Reports Server (NTRS)

    Dalton, J. B.

    2002-01-01

    New spectral measurements of bacteria taken at cryogenic temperatures provide insights on the surface composition of Europa as well as the detectability of microbes on the surface. Additional information is contained in the original extended abstract.

  6. Imaging, object detection, and change detection with a polarized multistatic GPR array

    SciTech Connect

    Beer, N. Reginald; Paglieroni, David W.

    2015-07-21

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.

  7. Probing Interfacial Processes on Graphene Surface by Mass Detection

    NASA Astrophysics Data System (ADS)

    Kakenov, Nurbek; Kocabas, Coskun

    2013-03-01

    In this work we studied the mass density of graphene, probed interfacial processes on graphene surface and examined the formation of graphene oxide by mass detection. The graphene layers were synthesized by chemical vapor deposition method on copper foils and transfer-printed on a quartz crystal microbalance (QCM). The mass density of single layer graphene was measured by investigating the mechanical resonance of the QCM. Moreover, we extended the developed technique to probe the binding dynamics of proteins on the surface of graphene, were able to obtain nonspecific binding constant of BSA protein of graphene surface in aqueous solution. The time trace of resonance signal showed that the BSA molecules rapidly saturated by filling the available binding sites on graphene surface. Furthermore, we monitored oxidation of graphene surface under oxygen plasma by tracing the changes of interfacial mass of the graphene controlled by the shifts in Raman spectra. Three regimes were observed the formation of graphene oxide which increases the interfacial mass, the release of carbon dioxide and the removal of small graphene/graphene oxide flakes. Scientific and Technological Research Council of Turkey (TUBITAK) grant no. 110T304, 109T209, Marie Curie International Reintegration Grant (IRG) grant no 256458, Turkish Academy of Science (TUBA-Gebip).

  8. Detecting past changes of effective population size

    PubMed Central

    Nikolic, Natacha; Chevalet, Claude

    2014-01-01

    Understanding and predicting population abundance is a major challenge confronting scientists. Several genetic models have been developed using microsatellite markers to estimate the present and ancestral effective population sizes. However, to get an overview on the evolution of population requires that past fluctuation of population size be traceable. To address the question, we developed a new model estimating the past changes of effective population size from microsatellite by resolving coalescence theory and using approximate likelihoods in a Monte Carlo Markov Chain approach. The efficiency of the model and its sensitivity to gene flow and to assumptions on the mutational process were checked using simulated data and analysis. The model was found especially useful to provide evidence of transient changes of population size in the past. The times at which some past demographic events cannot be detected because they are too ancient and the risk that gene flow may suggest the false detection of a bottleneck are discussed considering the distribution of coalescence times. The method was applied on real data sets from several Atlantic salmon populations. The method called VarEff (Variation of Effective size) was implemented in the R package VarEff and is made available at https://qgsp.jouy.inra.fr and at http://cran.r-project.org/web/packages/VarEff. PMID:25067949

  9. Correlation studies on surface particle detection methods

    NASA Technical Reports Server (NTRS)

    Peterson, Ronald V.; White, James C.

    1988-01-01

    The accurate determination of dust levels on optical surfaces is necessary to assess sensor system performance. A comparison study was made on several particle measurement methods including those based on direct imaging and light scattering. The effectiveness of removing the particles from the surface prior to determining particle size distributions was also assessed. These studies revealed that some methods, especially those requiring particle removal before analysis, are subject to large systematic errors affecting particle size distributions. Thus, an understanding of the particle measurement methods employed is necessary before any surface cleanliness or obstruction value assignments are accepted as true representations of an optical surface contamination condition.

  10. Groundwater storage change detection using micro-gravimetric technology

    NASA Astrophysics Data System (ADS)

    El-Diasty, Mohammed

    2016-06-01

    In this paper, new perspectives and developments in applying a ground-based micro-gravimetric method to detect groundwater storage change in Waterloo Moraine are investigated. Four epochs of gravity survey were conducted using absolute gravimeter (FG5), two relative gravity meters (CG5) and two geodetic global positioning systems (GPS) in the Waterloo Moraine in May and August of 2010 and 2011, respectively. Data were processed using the parametric least-squares method and integrated with geological and hydrological studies. The gravity differences between May and August for 2010 and 2011 epochs were inverted to provide the estimated total water storage changes. Changes in soil water content obtained from land surface models of Ecological Assimilation of Land and Climate Observations (EALCO) and the Global Land Data Assimilation System (GLDAS) program were employed to estimate the groundwater storage change. The ratios between the estimated groundwater storage changes and measured water table changes (specific yields) were determined at a local monitoring well located in the survey area. The results showed that the estimates of specific yields between May and August of 2010 and 2011 were consistent at a significant confidence level and are also within the range of the specific yield from geological and hydrological studies. Therefore, the micro-gravimetric (absolute and relative gravity meters) technology has demonstrated the great potential in detecting groundwater storage change and specific yield for local scale aquifers such as Waterloo Moraine.

  11. Point pattern match-based change detection in a constellation of previously detected objects

    SciTech Connect

    Paglieroni, David W.

    2016-06-07

    A method and system is provided that applies attribute- and topology-based change detection to objects that were detected on previous scans of a medium. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, detection strength, size, elongation, orientation, etc. The locations define a three-dimensional network topology forming a constellation of previously detected objects. The change detection system stores attributes of the previously detected objects in a constellation database. The change detection system detects changes by comparing the attributes and topological consistency of newly detected objects encountered during a new scan of the medium to previously detected objects in the constellation database. The change detection system may receive the attributes of the newly detected objects as the objects are detected by an object detection system in real time.

  12. Census cities experiment in urban change detection

    NASA Technical Reports Server (NTRS)

    Wray, J. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Work continues on mapping of 1970 urban land use from 1970 census contemporaneous aircraft photography. In addition, change detection analysis from 1972 aircraft photography is underway for several urban test sites. Land use maps, mosaics, and census overlays for the two largest urban test sites are nearing publication readiness. Preliminary examinations of ERTS-1 imagery of San Francisco Bay have been conducted which show that tracts of land of more than 10 acres in size which are undergoing development in an urban setting can be identified. In addition, each spectral band is being evaluated as to its utility for urban analyses. It has been found that MSS infrared band 7 helps to differentiate intra-urban land use details not found in other MSS bands or in the RBV coverage of the same scene. Good quality false CIR composites have been generated from 9 x 9 inch positive MSS bands using the Diazo process.

  13. Detection and Attribution of Regional Climate Change

    SciTech Connect

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  14. Nondestructive image detection of surface and sub-surface defects of solid materials by OBD

    NASA Astrophysics Data System (ADS)

    Shi, Baixuan; Gong, Jian

    1996-09-01

    The measurement principle for detecting surface and sub-surface defects in solid materials by the optical beam deflection method (OBD) is described. The detectable depth of sub-surface defects is predicted through calculating the dependence of the surface temperature distribution of a solid sample, typically metal Al, on the thickness of the solid material and modulation frequencies of a pump laser. The defects in surface and sub-surface of some samples such as carbon film coated on glass, C/C composite material and metallic Al, etc., experimentally detected and directly displayed by grey image or 3D image.

  15. Change Detection Based on Persistent Scatterer Interferometry - a New Method of Monitoring Building Changes

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Kenduiywo, B. K.; Soergel, U.

    2016-06-01

    Persistent Scatterer Interferometry (PSI) is a technique to detect a network of extracted persistent scatterer (PS) points which feature temporal phase stability and strong radar signal throughout time-series of SAR images. The small surface deformations on such PS points are estimated. PSI particularly works well in monitoring human settlements because regular substructures of man-made objects give rise to large number of PS points. If such structures and/or substructures substantially alter or even vanish due to big change like construction, their PS points are discarded without additional explorations during standard PSI procedure. Such rejected points are called big change (BC) points. On the other hand, incoherent change detection (ICD) relies on local comparison of multi-temporal images (e.g. image difference, image ratio) to highlight scene modifications of larger size rather than detail level. However, image noise inevitably degrades ICD accuracy. We propose a change detection approach based on PSI to synergize benefits of PSI and ICD. PS points are extracted by PSI procedure. A local change index is introduced to quantify probability of a big change for each point. We propose an automatic thresholding method adopting change index to extract BC points along with a clue of the period they emerge. In the end, PS ad BC points are integrated into a change detection image. Our method is tested at a site located around north of Berlin main station where steady, demolished, and erected building substructures are successfully detected. The results are consistent with ground truth derived from time-series of aerial images provided by Google Earth. In addition, we apply our technique for traffic infrastructure, business district, and sports playground monitoring.

  16. Surface changes on Io during the Galileo mission

    USGS Publications Warehouse

    Geissler, P.; McEwen, A.; Phillips, C.; Keszthelyi, L.; Spencer, J.

    2004-01-01

    A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of Patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate

  17. Analysis of Cell Surface Proteome Changes via Label-free, Quantitative Mass Spectrometry*S⃞

    PubMed Central

    Schiess, Ralph; Mueller, Lukas N.; Schmidt, Alexander; Mueller, Markus; Wollscheid, Bernd; Aebersold, Ruedi

    2009-01-01

    We present a mass spectrometry-based strategy for the specific detection and quantification of cell surface proteome changes. The method is based on the label-free quantification of peptide patterns acquired by high mass accuracy mass spectrometry using new software tools and the cell surface capturing technology that selectively enriches glycopeptides exposed to the cell exterior. The method was applied to monitor dynamic protein changes in the cell surface glycoproteome of Drosophila melanogaster cells. The results led to the construction of a cell surface glycoprotein atlas consisting of 202 cell surface glycoproteins of D. melanogaster Kc167 cells and indicated relative quantitative changes of cell surface glycoproteins in four different cellular states. Furthermore we specifically investigated cell surface proteome changes upon prolonged insulin stimulation. The data revealed insulin-dependent cell surface glycoprotein dynamics, including insulin receptor internalization, and linked these changes to intracellular signaling networks. PMID:19036722

  18. Attribute and topology based change detection in a constellation of previously detected objects

    SciTech Connect

    Paglieroni, David W.; Beer, Reginald N.

    2016-01-19

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  19. Change detection experiments using Gotcha public release SAR data

    NASA Astrophysics Data System (ADS)

    Stojanovic, Ivana; Novak, Les

    2013-05-01

    In this paper we compare coherent change detection performance obtained using the maximum likelihood estimate (MLE) of the SAR image-pair coherence versus using the complex correlation coefficient coherence estimate (CCD). We also compare the non-coherent change detection performance (PD vs. PFA) versus the performance of the coherent change detection algorithms.

  20. Surface Inspection Tool for Optical Detection of Surface Defects

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert; Dyer, Dustin

    2013-01-01

    The Space Shuttle Orbiter windows were damaged both by micrometeor impacts and by handling, and required careful inspection before they could be reused. The launch commit criteria required that no defect be deeper than a critical depth. The shuttle program used a refocus microscope to perform a quick pass/fail determination, and then followed up with mold impressions to better quantify any defect. However, the refocus microscope is slow and tedious to use due to its limited field of view, only focusing on one small area of glass at a time. Additionally, the unit is bulky and unable to be used in areas with tight access, such as defects near the window frame or on the glass inside the Orbiter due to interference with the dashboard. The surface inspection tool is a low-profile handheld instrument that provides two digital video images on a computer for monitoring surface defects. The first image is a wide-angle view to assist the user in locating defects. The second provides an enlarged view of a defect centered in the window of the first image. The focus is adjustable for each of the images. However, the enlarged view was designed to have a focal plane with a short depth. This allows the user to get a feel for the depth of different parts of the defect under inspection as the focus control is varied. A light source is also provided to illuminate the defect, precluding the need for separate lighting tools. The software provides many controls to adjust image quality, along with the ability to zoom digitally the images and to capture and store them for later processing.

  1. Detection of surface strain by three-dimensional digital holography

    NASA Astrophysics Data System (ADS)

    de La Torre-Ibarra, Manuel; Mendoza-Santoyo, Fernando; Pérez-López, Carlos; Saucedo-A., Tonatiuh

    2005-01-01

    Three-dimensional digital holography with three object-illuminating beams has been successfully used for the detection of surface strain in metallic objects. The optical setup that uses illuminating beams to irradiate the object from three directions means that all three object surface displacement components, x, y, and z, can be independently calculated and used to find the strain gradients on the surface. The results show the conversion of the complete surface displacement field into a surface strain field. The method is capable of measuring microstrains for out-of-plane surface displacements of less than 10 μm.

  2. Eye Movements and Display Change Detection during Reading

    ERIC Educational Resources Information Center

    Slattery, Timothy J.; Angele, Bernhard; Rayner, Keith

    2011-01-01

    In the boundary change paradigm (Rayner, 1975), when a reader's eyes cross an invisible boundary location, a preview word is replaced by a target word. Readers are generally unaware of such changes due to saccadic suppression. However, some readers detect changes on a few trials and a small percentage of them detect many changes. Two experiments…

  3. First-Trimester Detection of Surface Abnormalities

    PubMed Central

    Rousian, Melek; Koning, Anton H. J.; Bonsel, Gouke J.; Eggink, Alex J.; Cornette, Jérôme M. J.; Schoonderwaldt, Ernst M.; Husen-Ebbinge, Margreet; Teunissen, Katinka K.; van der Spek, Peter J.; Steegers, Eric A. P.; Exalto, Niek

    2014-01-01

    The aim was to determine the diagnostic performance of 3-dimensional virtual reality ultrasound (3D_VR_US) and conventional 2- and 3-dimensional ultrasound (2D/3D_US) for first-trimester detection of structural abnormalities. Forty-eight first trimester cases (gold standard available, 22 normal, 26 abnormal) were evaluated offline using both techniques by 5 experienced, blinded sonographers. In each case, we analyzed whether each organ category was correctly indicated as normal or abnormal and whether the specific diagnosis was correctly made. Sensitivity in terms of normal or abnormal was comparable for both techniques (P = .24). The general sensitivity for specific diagnoses was 62.6% using 3D_VR_US and 52.2% using 2D/3D_US (P = .075). The 3D_VR_US more often correctly diagnosed skeleton/limb malformations (36.7% vs 10%; P = .013). Mean evaluation time in 3D_VR_US was 4:24 minutes and in 2D/3D_US 2:53 minutes (P < .001). General diagnostic performance of 3D_VR_US and 2D/3D_US apparently is comparable. Malformations of skeleton and limbs are more often detected using 3D_VR_US. Evaluation time is longer in 3D_VR_US. PMID:24440996

  4. Onboard Data Processor for Change-Detection Radar Imaging

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Muellerschoen, Ronald J.; Chien, Steve A.; Saatchi, Sasan S.; Clark, Duane

    2008-01-01

    A computer system denoted a change-detection onboard processor (CDOP) is being developed as a means of processing the digitized output of a synthetic-aperture radar (SAR) apparatus aboard an aircraft or spacecraft to generate images showing changes that have occurred in the terrain below between repeat passes of the aircraft or spacecraft over the terrain. When fully developed, the CDOP is intended to be capable of generating SAR images and/or SAR differential interferograms in nearly real time. The CDOP is expected to be especially useful for understanding some large-scale natural phenomena and/or mitigating natural hazards: For example, it could be used for near-real-time observation of surface changes caused by floods, landslides, forest fires, volcanic eruptions, earthquakes, glaciers, and sea ice movements. It could also be used to observe such longer-term surface changes as those associated with growth of vegetation (relevant to estimation of wildfire fuel loads). The CDOP is, essentially, an interferometric SAR processor designed to operate aboard a radar platform.

  5. Volumetric Forest Change Detection Through Vhr Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro

    2016-06-01

    Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in

  6. Methods and systems for detection of ice formation on surfaces

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Wang, Wubao (Inventor); Sztul, Henry (Inventor); Budansky, Yury (Inventor)

    2007-01-01

    A system for detecting ice formation on metal, painted metal and other material surfaces can include a transparent window having an exterior surface upon which ice can form; a light source and optics configured and arranged to illuminate the exterior surface of the window from behind the exterior surface; and a detector and optics configured and arranged to receive light backscattered by the exterior surface and any ice disposed on the exterior surface and determine the thickness of the ice layer. For example, the system can be used with aircraft by placing one or more windows in the wings of the aircraft. The system is used for a novel optical method for real-time on-board detection and warning of ice formation on surfaces of airplanes, unmanned aerial vehicles (UAVs), and other vehicles and stationary structures to improve their safety and operation.

  7. 3D change detection in staggered voxels model for robotic sensing and navigation

    NASA Astrophysics Data System (ADS)

    Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.

    2016-05-01

    3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.

  8. Object-Oriented Change Detection Based on Multi-Scale Approach

    NASA Astrophysics Data System (ADS)

    Jia, Yonghong; Zhou, Mingting; Jinshan, Ye

    2016-06-01

    The change detection of remote sensing images means analysing the change information quantitatively and recognizing the change types of the surface coverage data in different time phases. With the appearance of high resolution remote sensing image, object-oriented change detection method arises at this historic moment. In this paper, we research multi-scale approach for high resolution images, which includes multi-scale segmentation, multi-scale feature selection and multi-scale classification. Experimental results show that this method has a stronger advantage than the traditional single-scale method of high resolution remote sensing image change detection.

  9. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A.; Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    Development of satisfactory techniques for detecting change in coastal zone environments is required before operational monitoring procedures can be established. In an effort to meet this need a study was directed toward developing and evaluating different types of change detection techniques, based upon computer aided analysis of LANDSAT multispectral scanner (MSS) data, to monitor these environments. The Matagorda Bay estuarine system along the Texas coast was selected as the study area. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. Each of the four techniques was used to analyze a LANDSAT MSS temporal data set to detect areas of change of the Matagorda Bay region.

  10. Chenge Detection Method for Wetland Surface Conditions using NDVI Values of High Spatial Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Takeshita, Shinichi; Suzuki, Kenji

    In this study, a new method has been proposed that can reveal changes of wetland surface condition using high spatial resolution satellite data (IKONOS) for actual wetland managements. The method can detect the wetland surface change based on the NDVI change domain in wetlands using bi-temporal satellite data through analyzing ‘coordinate of NDVI change’. We applied the method to Kawaminami wetland in Miyazaki prefecture for comparing the calculation results and actual state of wetland with observed groundwater level data. As the results, it was able to extract artificial change of the wetland surface precisely and to detect differences of the wetness of the surface in two imageries. For satellite data analysis, it was indicated that utilization of supplementary climate data such as rainfall is important. The proposed method is effective for actual wetland managements, because it is simple and practical.

  11. Visible Hyperspectral Imaging for Standoff Detection of Explosives on Surfaces

    SciTech Connect

    Bernacki, Bruce E.; Blake, Thomas A.; Mendoza, Albert; Johnson, Timothy J.

    2010-11-01

    There is an ever-increasing need to be able to detect the presence of explosives, preferably from standoff distances. This paper presents an application of visible hyperspectral imaging using anomaly, polarization and spectral identification approaches for the standoff detection (13 meters) of nitroaromatic explosives on realistic painted surfaces based upon the colorimetric differences between tetryl and TNT which are enhanced by solar irradiation.

  12. Laser spectrum detection methods for substance of Mars surface

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Xue, Bin; Zhao, Yi-yi

    2014-11-01

    The chemical element and mineral rock's abundance and distribution are the basic material of planetary geology evolution research [1], hence preterit detection for composition of Mars surface substance contains both elements sorts and mineral ingredients. This article introduced new ways to detect Mars elements and mineral components, Laser Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) which have distinct advantages, such as work over a long distance, detect rapidly, accuratly and nondestructively. LIBS and RS both use laser excitation to shoot the substance of Mars exciting new wavelengths. The techniques of LIBS and RS in laboratory are mature, besides the technique of LIBS is being used in MSL (Chemcam) now and RS will be used in ExoMars. Comparing LIBS and RS's detection results with XRF and APXS, Mossbauer spectrometer, these existed Mars surface material detection instruments,and the Infrared spectrometer, Mid-IR, they have more accurate detection results. So LIBS and RS are competent for Mars surface substance detection instead of X-ray spectrometer and Mossbauer spectrometer which were already used in 'Viking 1' and 'Opportunity'. Only accurate detection results about Mars surface substance can lead to scientist's right analysis in inversing geological evolution of the planet.

  13. Surface Electromyographic Onset Detection Based On Statistics and Information Content

    NASA Astrophysics Data System (ADS)

    López, Natalia M.; Orosco, Eugenio; di Sciascio, Fernando

    2011-12-01

    The correct detection of the onset of muscular contraction is a diagnostic tool to neuromuscular diseases and an action trigger to control myoelectric devices. In this work, entropy and information content concepts were applied in algorithmic methods to automatic detection in surface electromyographic signals.

  14. Passive standoff detection of chemical warfare agents on surfaces.

    PubMed

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  15. Detection of multiscale pockets on protein surfaces using mathematical morphology.

    PubMed

    Kawabata, Takeshi

    2010-04-01

    Detection of pockets on protein surfaces is an important step toward finding the binding sites of small molecules. In a previous study, we defined a pocket as a space into which a small spherical probe can enter, but a large probe cannot. The radius of the large probes corresponds to the shallowness of pockets. We showed that each type of binding molecule has a characteristic shallowness distribution. In this study, we introduced fundamental changes to our previous algorithm by using a 3D grid representation of proteins and probes, and the theory of mathematical morphology. We invented an efficient algorithm for calculating deep and shallow pockets (multiscale pockets) simultaneously, using several different sizes of spherical probes (multiscale probes). We implemented our algorithm as a new program, ghecom (grid-based HECOMi finder). The statistics of calculated pockets for the structural dataset showed that our program had a higher performance of detecting binding pockets, than four other popular pocket-finding programs proposed previously. The ghecom also calculates the shallowness of binding ligands, R(inaccess) (minimum radius of inaccessible spherical probes) that can be obtained from the multiscale molecular volume. We showed that each part of the binding molecule had a bias toward a specific range of shallowness. These findings will be useful for predicting the types of molecules that will be most likely to bind putative binding pockets, as well as the configurations of binding molecules. The program ghecom is available through the Web server (http://biunit.naist.jp/ghecom).

  16. Localized surface plasmon resonance mercury detection system and methods

    DOEpatents

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  17. A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a prior surface reflectance database

    NASA Astrophysics Data System (ADS)

    Sun, Lin; Wei, Jing; Wang, Jian; Mi, Xueting; Guo, Yamin; Lv, Yang; Yang, Yikun; Gan, Ping; Zhou, Xueying; Jia, Chen; Tian, Xinpeng

    2016-06-01

    Conventional cloud detection methods are easily affected by mixed pixels, complex surface structures, and atmospheric factors, resulting in poor cloud detection results. To minimize these problems, a new Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) supported by a priori surface reflectance database is proposed in this paper. A monthly surface reflectance database is constructed using long-time-sequenced MODerate resolution Imaging Spectroradiometer surface reflectance product (MOD09A1) to provide the surface reflectance of the underlying surfaces. The relationships between the apparent reflectance changes and the surface reflectance are simulated under different observation and atmospheric conditions with the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) model, and the dynamic threshold cloud detection models are developed. Two typical remote sensing data with important application significance and different sensor parameters, MODIS and Landsat 8, are selected for cloud detection experiments. The results were validated against the visual interpretation of clouds and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation cloud measurements. The results showed that the UDTCDA can obtain a high precision in cloud detection, correctly identifying cloudy pixels and clear-sky pixels at rates greater than 80% with error rate and missing rate of less than 20%. The UDTCDA cloud product overall shows less estimation uncertainty than the current MODIS cloud mask products. Moreover, the UDTCDA can effectively reduce the effects of atmospheric factors and mixed pixels and can be applied to different satellite sensors to realize long-term, large-scale cloud detection operations.

  18. Detecting holocene changes in thermohaline circulation.

    PubMed

    Keigwin, L D; Boyle, E A

    2000-02-15

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous.

  19. Change Detection in Naturalistic Pictures among Children with Autism

    ERIC Educational Resources Information Center

    Burack, Jacob A.; Joseph, Shari; Russo, Natalie; Shore, David I.; Porporino, Mafalda; Enns, James T.

    2009-01-01

    Persons with autism often show strong reactions to changes in the environment, suggesting that they may detect changes more efficiently than typically developing (TD) persons. However, Fletcher-Watson et al. (Br J Psychol 97:537-554, 2006) reported no differences between adults with autism and TD adults with a change-detection task. In this study,…

  20. Defect detection for end surface of ferrite magnetic tile

    NASA Astrophysics Data System (ADS)

    Tao, Jiayuan; Wang, Yuwei; Wang, Keyi

    2016-09-01

    A visual automatic detection method is proposed for defect detection on end surface of ferrite magnetic tile to tackle the disadvantages generated by human work which has low efficiency and unstable accuracy. Because the defects on end surface of ferrite magnetic tile with dark colors and low contrasts are negative for defect detection, uniform illumination is provided by LED light source and a dedicated optical system is designed to extract defects conveniently. The approach uses comparison of the fitting and actual edge curves to detect defects mainly with most defects located on the edge. Firstly improved adaptive median filter is used as the image preprocessing. Subsequently the appropriate threshold is calculated by Otsu algorithm based on the extreme points in the gray-level histogram to segment the preprocessing image. Then the Sobel operator can be used to extract the edge of end surface precisely. Finally through comparing the ideal fitting and actual edge curves of end surface, to detect the defects with some relevant features. Experimental results show that the proposed scheme could detect defects on the end surface of ferrite magnetic tile efficiency and accurately with 93.33% accuracy rate, 2.30% false acceptance rate and 8.45% correct rejection rate.

  1. Wavelet-based detection of clods on a soil surface

    NASA Astrophysics Data System (ADS)

    Vannier, E.; Ciarletti, V.; Darboux, F.

    2009-11-01

    One of the aims of the tillage operation is to produce a specific range of clod sizes, suitable for plant emergence. Due to its cloddy structure, a tilled soil surface has its own roughness, which is connected also with soil water content and erosion phenomena. The comprehension and modeling of surface runoff and erosion require that the micro-topography of the soil surface is well estimated. Therefore, the present paper focuses on the soil surface analysis and characterization. An original method consisting in detecting the individual clods or large aggregates on a 3D digital elevation model (DEM) of the soil surface is introduced. A multiresolution decomposition of the surface is performed by wavelet transform. Then a supervised local maxima extraction is performed on the different sub surfaces and a last process makes the validation of the extractions and the merging of the different scales. The method of detection was evaluated with the help of a soil scientist on a controlled surface made in the laboratory as well as on real seedbed and ploughed surfaces, made by tillage operations in an agricultural field. The identifications of the clods are in good agreement, with an overall sensitivity of 84% and a specificity of 94%. The false positive or false negative detections may have several causes. Some very nearby clods may have been smoothed together in the approximation process. Other clods may be embedded into another peace of the surface relief such as another bigger clod or a part of the furrow. At last, the low levels of decomposition are dependent on the resolution and the measurement noise of the DEM. Therefore, some borders of clods may be difficult to determine. The wavelet-based detection method seems to be suitable for soil surfaces described by 2 or 3 levels of approximation such as seedbeds.

  2. Epigenetic changes detected in micropropagated hop plants.

    PubMed

    Peredo, Elena L; Arroyo-García, Rosa; Revilla, M Angeles

    2009-07-01

    Micropropagation is a widely used technique in hops (Humulus lupulus L.). However, to the best of our knowledge, the genetic and epigenetic stability of the microplants has never been tested before. In the present study, two hop accessions were established in vitro and micropropagated for 2 years. The genetic and epigenetic stability of the in vitro plants was analyzed with several molecular techniques: random amplified DNA polymorphism (RAPD), retrotransposon microsatellite amplified polymorphism (REMAP), and methylation-sensitive amplification polymorphism (MSAP). No genetic variation among control and treated plants was found, even after 12 cycles of micropropagation. Epigenetic variation was detected, first, when field and in vitro samples were compared. Nearly a 30% of the detected fragments presented the same pattern of alterations in all the vitroplants. Second, lower levels of epigenetic variation were detected among plants from the different subcultures. Part of this detected variation seemed to be accumulated along the 12 sequential subcultures tested.

  3. Urban change detection procedures using Landsat digital data

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.; Toll, D. L.

    1982-01-01

    Landsat multispectral scanner data was applied to an urban change detection problem in Denver, CO. A dichotomous key yielding ten stages of residential development at the urban fringe was developed. This heuristic model allowed one to identify certain stages of development which are difficult to detect when performing digital change detection using Landsat data. The stages of development were evaluated in terms of their spectral and derived textural characteristics. Landsat band 5 (0.6-0.7 micron) and texture data produced change detection maps which were approximately 81 percent accurate. Results indicated that the stage of development and the spectral/textural features affect the change in the spectral values used for change detection. These preliminary findings will hopefully prove valuable for improved change detection at the urban fringe.

  4. Change Detection Module for New Orleans City of USA Using

    NASA Astrophysics Data System (ADS)

    Singh, Dharmendra

    accuracy. The New Orleans city of USA is taken as study area because this is reported that this city is shrinking. RADARSAT SLC (Single look complex) images acquired from January 2002 to March 2007 were obtained for the study area. Image pairs with perpendicular baselines less than 100 km are chosen. Selection of suitable image pairs is crucial since baseline distance between them affects the altitude ambiguity in resultant change detection map. Coherence is computed for the image pairs. If the coherence is greater than 0.25, such image pairs are considered for further analysis. Three pass differential InSAR is used for the analysis of change detection. Images 1 and 2 of the study area with lesser temporal span (minimum of 24 day interval) is chosen to make a digital elevation model and then images 1 and 3 of the same area with one year of temporal span is chosen to make an interferogram. The topographic phase estimated with images 1 and 2 is then subtracted to make a differential interferogram showing change from image 2 to 3. Image pairs with approximately one month temporal span, are considered for generating interferogram. Changes occurred in every one year is measured by subtracting topographic phase of the year corresponding to master image, from interferogram. From the change detection map obtained from both methods show that areas of larger changes are identified near Lake Borgne, and in the boundaries of Mississippi river. Lake Borgne is reported to be identified as an area of major land subsidence as found by other studies also. On comparing our result with this interferometric study, it is found that both are showing some common regions with high changes near water bodies. Surface deformation can be monitored quantitatively in the scale of mm with the help of temporal analysis of D-InSAR.

  5. Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.

    2001-01-01

    Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.

  6. Occupancy change detection system and method

    SciTech Connect

    Bruemmer, David J; Few, Douglas A

    2009-09-01

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.

  7. Seasonal changes in Titan's weather and surface features

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; McEwen, A. S.; Barbara, J.; Del Genio, A.; West, R. A.; Hayes, A.; Schaller, E.

    2010-04-01

    Since Cassini's arrival at Saturn, the Titan's season has progressed from southern summer to just past the southern autumnal equinox (the equivalent of 12 January to 26 March), and accompanying changes in meteorology have been observed. Through 2004, large convective cloud systems were common over Titan's South Pole (e.g., Schaller et al., 2006); since 2005 such storms have been less common. Elongated streaks of clouds have been observed consistently at mid-southern latitudes, and became common at high northern latitudes in 2007. Only recently have clouds been detected at mid-northern latitudes. Changes have also been observed in surface features at high southern latitudes. A large dark area appeared between July 2004 and June 2005 (Turtle et al., 2009), and may have subsequently faded. Recent observations of Ontario Lacus suggest that its shoreline may have receded (e.g., Hayes et al., 2009). No changes have been observed to date in lakes and seas at high northern latitudes. Intriguingly, Cassini RADAR observations of Titan's South Pole reveal far fewer lakes than have been identified in the north (Stofan et al., 2007) and fewer than suggested by the number of dark features observed by ISS in this area (Turtle et al., 2009). This apparent discrepancy may indicate that not all of the dark south-polar features identified by ISS are filled with liquid. Alternatively, some lakes may be ephemeral: differences may be the result of precipitation and ponding of liquid methane and subsequent evaporation or infiltration thereof (Turtle et al., 2009) in the time between observations: ISS in mid-2004 and mid-2005 (equivalent of ~12 and ~25 January) and the RADAR observations starting in late 2007 (equivalent of ~28 February). We will present observations of Titan's meteorology and surface features, documenting seasonal changes and their implications for Titan's active methane cycle and atmospheric circulation.

  8. Observed Changes at the Surface of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ortmeyer, M.; Rigor, I.

    2004-12-01

    The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the

  9. Speckle correlation method used to detect an object's surface slope

    SciTech Connect

    Smid, Petr; Horvath, Pavel; Hrabovsky, Miroslav

    2006-09-20

    We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval(10 deg. -30 deg. ). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.

  10. Speckle correlation method used to detect an object's surface slope.

    PubMed

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2006-09-20

    We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval (10 degrees-30 degrees). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.

  11. Method for Measuring Changes in Surface Tension on Agar

    PubMed Central

    Weisberg, David S.; Dworkin, Martin

    1983-01-01

    The surface tension of agar surfaces was determined by measuring the contact angles formed by drops of various hydrophobic liquids on the surface and then calculating the composite surface free energy function by solving a series of simultaneous equations derived from these data. This method was used to measure the change in the surface tension of agar produced by the addition of various concentrations of albumin. The resulting curve was typical of the effect of increasing concentrations of surfactants on surface tension. The method was compared with other methods of determining surface tension of solids, and it was concluded that the technique used here provided the most reliable results. PMID:16346273

  12. Seasonal Surface Temperature Changes on Titan

    NASA Astrophysics Data System (ADS)

    Jennings, Donald E.; Cottini, Valeria; Nixon, Conor A.; Coustenis, Athena; Tokano, Tetsuya

    2015-11-01

    The Composite Infrared Spectrometer (CIRS) on Cassini has been measuring surface brightness temperatures on Titan since 2004 (Jennings et al. 2011; Cottini et al. 2012; Tan et al. 2015). Radiation from the surface reaches space through a window of minimum opacity in Titan’s atmosphere near 19 microns wavelength. We mapped surface temperatures in five time periods, each about 2 years, centered on solar longitudes Ls = 313°, 335°, 0°, 28° and 53° degrees. Using zonally-averaged spectra binned in 10-degree latitude intervals, we clearly see the seasonal progression of the pole-to-pole temperature distribution. Whereas peak temperatures in the vicinity of the Equator have been close to 94 K throughout the Cassini mission, early in the mission temperatures at the North Pole were as low as 90 K and at the South Pole were 92 K. Late in the mission the pattern has reversed: 92 K in the north and 90 K in the south. Over 2005 to 2014 the peak temperature moved in latitude from about 15 S to 15 N. We estimate a seasonal lag of 0.2 Titan month. In 2010 the temperature distribution was approximately symmetric north and south, agreeing with Voyager 1 from one Titan year earlier. The surface temperatures follow closely the predictions of Tokano (2005). Our measurements may indicate a lower thermal inertia in the south than in the north.Jennings, D.E. et al., ApJ Lett. 737, L15 (2011)Cottini, V. et al., 2012. Planet. Space Sci. 60, 62 (2012)Tan, S. P. et al., Icarus 250, 64 (2015)Tokano, T., Icarus 204, 619 (2005)

  13. A Dual-Process Account of Auditory Change Detection

    ERIC Educational Resources Information Center

    McAnally, Ken I.; Martin, Russell L.; Eramudugolla, Ranmalee; Stuart, Geoffrey W.; Irvine, Dexter R. F.; Mattingley, Jason B.

    2010-01-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed…

  14. Surface classification and detection of latent fingerprints based on 3D surface texture parameters

    NASA Astrophysics Data System (ADS)

    Gruhn, Stefan; Fischer, Robert; Vielhauer, Claus

    2012-06-01

    In the field of latent fingerprint detection in crime scene forensics the classification of surfaces has importance. A new method for the scientific analysis of image based information for forensic science was investigated in the last years. Our image acquisition based on a sensor using Chromatic White Light (CWL) with a lateral resolution up to 2 μm. The used FRT-MicroProf 200 CWL 600 measurement device is able to capture high-resolution intensity and topography images in an optical and contact-less way. In prior work, we have suggested to use 2D surface texture parameters to classify various materials, which was a novel approach in the field of criminalistic forensic using knowledge from surface appearance and a chromatic white light sensor. A meaningful and useful classification of different crime scene specific surfaces is not existent. In this work, we want to extend such considerations by the usage of fourteen 3D surface parameters, called 'Birmingham 14'. In our experiment we define these surface texture parameters and use them to classify ten different materials in this test set-up and create specific material classes. Further it is shown in first experiments, that some surface texture parameters are sensitive to separate fingerprints from carrier surfaces. So far, the use of surface roughness is mainly known within the framework of material quality control. The analysis and classification of the captured 3D-topography images from crime scenes is important for the adaptive preprocessing depending on the surface texture. The adaptive preprocessing in dependency of surface classification is necessary for precise detection because of the wide variety of surface textures. We perform a preliminary study in usage of these 3D surface texture parameters as feature for the fingerprint detection. In combination with a reference sample we show that surface texture parameters can be an indication for a fingerprint and can be a feature in latent fingerprint detection.

  15. Proximal and point detection of contaminated surfaces using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason A.; Christesen, Steven D.; Tripathi, Ashish; Emmons, Erik D.; Wilcox, Phillip G.; Emge, Darren K.; Pardoe, Ian J.; Fountain, Augustus W., III

    2011-11-01

    We are actively investigating the use of Raman spectroscopy for proximal standoff detection of chemicals and explosive materials on surfaces. These studies include Raman Chemical Imaging of contaminated fingerprints for forensic attribution and the assessments of commercial handheld or portable Raman instruments operating with near-infrared (IR) as well as ultraviolet (UV) laser excitation specifically developed for on-the-move reconnaissance of chemical contamination. As part of these efforts, we have measured the Raman cross sections of chemical agents, toxic industrial chemicals, and explosives from the UV to NIR. We have also measured and modeled the effect interrogation angle has on the Raman return from droplets on man-made surfaces. Realistic droplet distributions have been modeled and tested against variations in surface scan patterns and laser spot size for determining the optimum scan characteristics for detection of relevant surface contamination.

  16. Characterization and Detection of Uranyl Ion Sorption on Silver Surfaces using Surface Enhanced Raman Spectroscopy

    SciTech Connect

    Retterer, Scott T; Wells, Sabrina M; Sepaniak, Michael

    2009-01-01

    The study of the chemical behavior of uranyl species and its rapid detection is of primary environmental and non-proliferation concern. Herein we report on a surface enhanced Raman spectroscopic study of uranyl ion (UO22+) sorption onto the thermally vapor deposited silver particle surface. The ability of vibrational spectroscopy to characterize surface phenomenon and the remarkable sensitivity of the surface enhanced Raman spectroscopy (SERS) have been introduced as an appropriate combination for the surface characterization and detection of UO22+ onto the silver surface. The appearance of symmetric stretching frequency of UO22+ around 700 cm-1 and the disappearance of the 854 cm-1 band is attributed to the development of a chemical bond between silver surface and uranyl species. The effects of temperature, solute-surface interaction time, and pH have been studied using silver modified polypropylene filter (PPF) substrates. Results show that under appropriate conditions, the concentration of uranyl ion as low as 20 ng/mL can be easily detected using the discussed SERS approach without any surface modification of silver nanoparticles. Moreover, an alteranative SERS approach of uranyl detection is demonstrated using nano-lithographically fabricated SERS substrates.

  17. Nanostructured surfaces and detection instrumentation for photonic crystal enhanced fluorescence.

    PubMed

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T

    2013-04-26

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers.

  18. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  19. Load and Rate of Change of Load Detection System.

    DTIC Science & Technology

    The present invention relates to a system for detecting and recording the level and rate of change of landing loads in the struts of aircraft landing...to a minimum pressure to record the level and rate of change of pressure detected by the sensor.

  20. Standoff detection of explosive residues on unknown surfaces

    NASA Astrophysics Data System (ADS)

    Van Neste, C. W.; Liu, Xunchen; Gupta, Manisha; Kim, Seonghwan; Tsui, Ying; Thundat, T.

    2012-06-01

    Standoff identification of explosive residues may offer early warnings to many hazards plaguing present and future military operations. The greatest challenge is posed by the need for molecular recognition of trace explosive compounds on real-world surfaces. Most techniques that offer eye-safe, long-range detection fail when unknown surfaces with no prior knowledge of the surface spectral properties are interrogated. Inhomogeneity in the surface concentration and optical absorption from background molecules can introduce significant reproducibility challenges for reliable detection when surface residue concentrations are below tens of micrograms per square centimeter. Here we present a coupled standoff technique that allows identification of explosive residues concentrations in the sub microgram per square centimeter range on real-world surfaces. Our technique is a variation of standoff photoacoustic spectroscopy merged with ultraviolet chemical photodecomposition for selective identification of explosives. We demonstrate the detection of standard military grade explosives including RDX, PETN, and TNT along with a couple of common compounds such as diesel and sugar. We obtain identification at several hundred nanograms per centimeter square at a distance of four meters.

  1. Surface-bonded fiber optic Sagnac sensors for ultrasound detection.

    PubMed

    Jang, Tae Seong; Lee, Seung Seok; Kim, Young Gil

    2004-04-01

    This paper describes a fiber optic sensor suitable for remote sensing and multi-point detection of ultrasound. This ultrasound sensor is based on the surface-bonded fiber optic Sagnac interferometer with the output fringe visibility of 1; it consists of a laser source, an ordinary single mode fiber delay line, a fiber coupler, a phase modulator and polarization controllers. For the validation of the sensor, surface acoustic waves and Lamb waves are excited by illuminating a steel specimen with an array of Q-switched Nd:YAG laser-generated line sources and the measurement of laser-generated ultrasonic waves are performed on the specimen surface using the surface-mounting fiber optic Sagnac sensor. The surface-bonded fiber optic sensor developed in this study has a simple configuration for detection of ultrasonic waves. Effectiveness of surface-bonded fiber optic Sagnac sensors for remote sensing of ultrasound and in situ monitoring of structures is investigated. The capability of multi-point detection of ultrasound by this Sagnac sensor is also discussed.

  2. Detecting small surface vibrations by passive electro-optical illumination

    NASA Astrophysics Data System (ADS)

    Buoni, Matthew; Pereira, Wellesley; Weber, Reed A.; Garcia-Cervera, Carlos

    2014-09-01

    We have performed research to understand the feasibility of using signals received by EOIR sensors to detect small vibrations in surfaces illuminated by sunlight. The vibration models consider buildings with vibrating roofs, as well as ground vibrations due to buried structures. For the surface buildings, we investigated two approaches. One involved treating the roof as an elastic medium subject to deformation resulting in a PDE whose solution describes the fluctuation in the surface's normal direction vector. The second approach treated the roof as a rigid mass subject to motion in six degrees of freedom, while modeling the dynamics of the building's frame, and tuning the parameters to result in resonant frequencies similar to real buildings (~3-7 Hz). We applied the appropriate physical models of reflected and scattered light to various surfaces, specular (insulator or conductor), rough but still reflective, or diffusely scattering (Lambertian). Matlab code was developed to perform numerical simulations of any system configuration described above and easily add new models. The main engine of the code is a signal calculator and analyzer that sums the total intensity of received light over a "scene" with a variety of surface materials, orientations, polarization (if any), and other parameters. A resulting signal versus time is generated that may be analyzed in order to: 1) optimize sensitivity, or 2) detect the vibration signature of a structure of interest. The results of this study will enable scientists/engineers to optimize signal detection, possibly from space, for passive exploitation of scattered light modulated by vibrating surfaces.

  3. Comparing Several Algorithms for Change Detection of Wetland

    NASA Astrophysics Data System (ADS)

    Yan, F.; Zhang, S.; Chang, L.

    2015-12-01

    As "the kidneys of the landscape" and "ecological supermarkets", wetland plays an important role in ecological equilibrium and environmental protection.Therefore, it is of great significance to understand the dynamic changes of the wetland. Nowadays, many index and many methods have been used in dynamic Monitoring of Wetland. However, there are no single method and no single index are adapted to detect dynamic change of wetland all over the world. In this paper, three digital change detection algorithms are applied to 2005 and 2010 Landsat Thematic Mapper (TM) images of a portion of the Northeast China to detect wetland dynamic between the two dates. The change vector analysis method (CVA) uses 6 bands of TM images to detect wetland dynamic. The tassled cap transformation is used to create three change images (change in brightness, greenness, and wetness). A new method--- Comprehensive Change Detection Method (CCDM) is introduced to detect forest dynamic change. The CCDM integrates spectral-based change detection algorithms including a Multi-Index Integrated Change Analysis (MIICA) model and a novel change model called Zone, which extracts change information from two Landsat image pairs. The MIICA model is the core module of the change detection strategy and uses four spectral indices (differenced Normalized Burn Ratio (dNBR), differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) and a new index called the Relative Change Vector Maximum (RCVMAX)) to obtain the changes that occurred between two image dates. The CCDM also includes a knowledge-based system, which uses critical information on historical and current land cover conditions and trends and the likelihood of land cover change, to combine the changes from MIICA and Zone. Related test proved that CCDM method is simple, easy to operate, widely applicable, and capable of capturing a variety of natural and anthropogenic disturbances potentially associated with land cover changes on

  4. Change Detection in Rough Time Series

    DTIC Science & Technology

    2014-09-01

    support models. While at DSTO he has worked on applications for modelling strategic decisions, intelligence analysis, and decision support systems ...changing nature of expected droughts into the future thus indicates increasing stress on the MDB river and lake system such that pre-existing irrigation ...or inaccurate sensor data, subjective ratings of vague variables, imperfect intelligence reports, algorithmic derived measures indicating degrees

  5. A Sensor System for Detection of Hull Surface Defects

    PubMed Central

    Navarro, Pedro; Iborra, Andrés; Fernández, Carlos; Sánchez, Pedro; Suardíaz, Juan

    2010-01-01

    This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results. PMID:22163590

  6. Synthetic circuit for exact adaptation and fold-change detection.

    PubMed

    Kim, Jongmin; Khetarpal, Ishan; Sen, Shaunak; Murray, Richard M

    2014-05-01

    Biological organisms use their sensory systems to detect changes in their environment. The ability of sensory systems to adapt to static inputs allows wide dynamic range as well as sensitivity to input changes including fold-change detection, a response that depends only on fold changes in input, and not on absolute changes. This input scale invariance underlies an important strategy for search that depends solely on the spatial profile of the input. Synthetic efforts to reproduce the architecture and response of cellular circuits provide an important step to foster understanding at the molecular level. We report the bottom-up assembly of biochemical systems that show exact adaptation and fold-change detection. Using a malachite green aptamer as the output, a synthetic transcriptional circuit with the connectivity of an incoherent feed-forward loop motif exhibits pulse generation and exact adaptation. A simple mathematical model was used to assess the amplitude and duration of pulse response as well as the parameter regimes required for fold-change detection. Upon parameter tuning, this synthetic circuit exhibits fold-change detection for four successive rounds of two-fold input changes. The experimental realization of fold-change detection circuit highlights the programmability of transcriptional switches and the ability to obtain predictive dynamical systems in a cell-free environment for technological applications.

  7. Synthetic circuit for exact adaptation and fold-change detection

    PubMed Central

    Kim, Jongmin; Khetarpal, Ishan; Murray, Richard M.

    2014-01-01

    Biological organisms use their sensory systems to detect changes in their environment. The ability of sensory systems to adapt to static inputs allows wide dynamic range as well as sensitivity to input changes including fold-change detection, a response that depends only on fold changes in input, and not on absolute changes. This input scale invariance underlies an important strategy for search that depends solely on the spatial profile of the input. Synthetic efforts to reproduce the architecture and response of cellular circuits provide an important step to foster understanding at the molecular level. We report the bottom-up assembly of biochemical systems that show exact adaptation and fold-change detection. Using a malachite green aptamer as the output, a synthetic transcriptional circuit with the connectivity of an incoherent feed-forward loop motif exhibits pulse generation and exact adaptation. A simple mathematical model was used to assess the amplitude and duration of pulse response as well as the parameter regimes required for fold-change detection. Upon parameter tuning, this synthetic circuit exhibits fold-change detection for four successive rounds of two-fold input changes. The experimental realization of fold-change detection circuit highlights the programmability of transcriptional switches and the ability to obtain predictive dynamical systems in a cell-free environment for technological applications. PMID:24728988

  8. A decision surface-based taxonomy of detection statistics

    NASA Astrophysics Data System (ADS)

    Bouffard, François

    2012-09-01

    Current and past literature on the topic of detection statistics - in particular those used in hyperspectral target detection - can be intimidating for newcomers, especially given the huge number of detection tests described in the literature. Detection tests for hyperspectral measurements, such as those generated by dispersive or Fourier transform spectrometers used in remote sensing of atmospheric contaminants, are of paramount importance if any level of analysis automation is to be achieved. The detection statistics used in hyperspectral target detection are generally borrowed and adapted from other fields such as radar signal processing or acoustics. Consequently, although remarkable efforts have been made to clarify and categorize the vast number of available detection tests, understanding their differences, similarities, limits and other intricacies is still an exacting journey. Reasons for this state of affairs include heterogeneous nomenclature and mathematical notation, probably due to the multiple origins of hyperspectral target detection formalisms. Attempts at sorting out detection statistics using ambiguously defined properties may also cause more harm than good. Ultimately, a detection statistic is entirely characterized by its decision boundary. Thus, we propose to catalogue detection statistics according to the shape of their decision surfaces, which greatly simplifies this taxonomy exercise. We make a distinction between the topology resulting from the mathematical formulation of the statistic and mere parameters that adjust the boundary's precise shape, position and orientation. Using this simple approach, similarities between various common detection statistics are found, limit cases are reduced to simpler statistics, and a general understanding of the available detection tests and their properties becomes much easier to achieve.

  9. Seasonal changes in Titan's meteorology and surface features

    NASA Astrophysics Data System (ADS)

    Turtle, Elizabeth; Perry, Jason; McEwen, Alfred; Barbara, John; Del Genio, Anthony; West, Robert; Hayes, Alex; Schaller, Emily

    2010-05-01

    Since Cassini's arrival at Saturn in July 2004, the seasons on Titan have progressed from southern summer to just past the southern autumnal equinox (to date, the equivalent of 12 January to 26 March), and accompanying changes in cloud distribution and activity have been observed by Cassini's Imaging Science Subsystem (ISS). Through 2004, large convective cloud systems were common over Titan's South Pole (e.g., Schaller et al., 2006; Porco et al., 2005). However, since 2005 such storms have been less common. Elongated streaks of clouds (several hundred km long) have been observed consistently at mid-southern latitudes, and became common at high northern latitudes starting in 2007. Only recently have such clouds been detected at mid-northern latitudes. ISS has also observed changes in surface features at high southern latitudes. A new large dark area appeared between July 2004 and June 2005 (Turtle et al., 2009), and may have subsequently faded. Recent observations of Ontario Lacus suggest that its shoreline may have receded as well (e.g., Hayes et al., 2009). Such changes are interpreted to be the result of precipitation and ponding of liquid methane and the subsequent evaporation thereof (Turtle et al., 2009). No changes have been observed to date in the lakes and seas at high northern latitudes. Intriguingly, Cassini RADAR observations of areas near Titan's south pole (Lunine et al., 2008) reveal far fewer lakes than have been identified at high northern latitudes (Stofan et al., 2007) and fewer than suggested by the number of dark features observed by ISS in this area (Turtle et al., 2009). This apparent discrepancy may simply be a result of the fact that not all of the dark south-polar features identified by ISS are filled with liquid. However, another possible explanation is that some lakes are ephemeral and have disappeared as a result of a combination of evaporation and infiltration into the subsurface in the time that elapsed between the observations by ISS

  10. Asphaltene detection using surface enhanced Raman scattering (SERS).

    PubMed

    Alabi, O O; Edilbi, A N F; Brolly, C; Muirhead, D; Parnell, J; Stacey, R; Bowden, S A

    2015-04-28

    Surface enhanced Raman spectroscopy using a gold substrate and excitation at 514 nm can detect sub parts per million quantities of asphaltene and thereby petroleum. This simple format and sensitivity make it transformative for applications including sample triage, flow assurance, environmental protection and analysis of unique one of a kind materials.

  11. One new method for road data shape change detection

    NASA Astrophysics Data System (ADS)

    Tang, Luliang; Li, Qingquan; Xu, Feng; Chang, Xiaomeng

    2009-10-01

    Similarity is a psychological cognition; this paper defines the Difference Distance and puts forward the Similarity Measuring Model for linear spatial data (SMM-L) based on the integration of the Distance View and the Feature Set View which are the views for similarity cognition. Based on the study of the relationship between the spatial data change and the similarity, a change detection algorithm for linear spatial data is developed, and a test on road data change detection is realized.

  12. Integration of contour and surface information in shape detection.

    PubMed

    Machilsen, Bart; Wagemans, Johan

    2011-01-01

    In studies of shape perception, the detection of contours and the segregation of regions enclosed by these contours have mostly been treated in isolation. However, contours and surfaces somehow need to be combined to create a stable perception of shape. In this study, we used a 2AFC task with arrays of oriented Gabor elements to determine whether and to what extent human observers integrate information from the contour and from the interior surface of a shape embedded in this array. The saliency of the shapes depended on the alignment of Gabors along the shape outline and on the isolinearity of Gabors inside the shape. In two experiments we measured detectability of shapes defined by the contour cue, by the surface cue, and by the combination of both cues. As a first step, we matched performance in the two single-cue conditions. We then compared shape detectability in the double-cue condition with the two equally detectable single-cue conditions. Our results show a clear double-cue benefit: Participants used both cues to detect the shapes. Next, we compared performance in the double-cue condition with the performance predicted by two models of sensory cue combination: a minimum rule (probability summation) and an integration rule (information summation). Results from Experiment 2 indicate that participants applied a combination rule that was better than mere probability summation. We found no evidence against the integration rule.

  13. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    The first surface acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposited on the acoustic propagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectic coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in Ne was demonstrated.

  14. Ultrasensitive surface-enhanced Raman scattering detection in common fluids

    PubMed Central

    Yang, Shikuan; Dai, Xianming; Stogin, Birgitt Boschitsch; Wong, Tak-Sing

    2016-01-01

    Detecting target analytes with high specificity and sensitivity in any fluid is of fundamental importance to analytical science and technology. Surface-enhanced Raman scattering (SERS) has proven to be capable of detecting single molecules with high specificity, but achieving single-molecule sensitivity in any highly diluted solutions remains a challenge. Here we demonstrate a universal platform that allows for the enrichment and delivery of analytes into the SERS-sensitive sites in both aqueous and nonaqueous fluids, and its subsequent quantitative detection of Rhodamine 6G (R6G) down to ∼75 fM level (10−15 mol⋅L−1). Our platform, termed slippery liquid-infused porous surface-enhanced Raman scattering (SLIPSERS), is based on a slippery, omniphobic substrate that enables the complete concentration of analytes and SERS substrates (e.g., Au nanoparticles) within an evaporating liquid droplet. Combining our SLIPSERS platform with a SERS mapping technique, we have systematically quantified the probability, p(c), of detecting R6G molecules at concentrations c ranging from 750 fM (p > 90%) down to 75 aM (10−18 mol⋅L−1) levels (p ≤ 1.4%). The ability to detect analytes down to attomolar level is the lowest limit of detection for any SERS-based detection reported thus far. We have shown that analytes present in liquid, solid, or air phases can be extracted using a suitable liquid solvent and subsequently detected through SLIPSERS. Based on this platform, we have further demonstrated ultrasensitive detection of chemical and biological molecules as well as environmental contaminants within a broad range of common fluids for potential applications related to analytical chemistry, molecular diagnostics, environmental monitoring, and national security. PMID:26719413

  15. Improved change detection with local co-registration adjustments

    SciTech Connect

    Wohlberg, Brendt E; Theiler, James P

    2009-01-01

    We introduce a simple approach for compensating for residual misregistration error on the performance of anomalous change detection algorithms. Using real data with a simulation framework for anomalous change and with a real anomalous change, we illustrate the approach and investigate its effectiveness.

  16. Surface plasmon resonance for detecting clenbuterol: Influence of monolayer structure

    NASA Astrophysics Data System (ADS)

    Suherman; Morita, Kinichi; Kawaguchi, Toshikazu

    2015-03-01

    Surface plasmon resonance sensor equipped with a fabricated immunosensor chip is used for detecting clenbuterol in this study. Since clenbuterol is a small analyte, indirect competitive inhibition immunoassay is employed. For fabricating the immunosurface, the Au-chip was functionalized by succinimidyl-terminated alkanethiol, and the terminal N-hydroxysuccinimide group of the self-assembled monolayer was either replaced with clenbuterol or blocked with ethanolamine. Scanning tunneling microscope experiments and electrochemical measurements depicted the domain structures of the succinimide group of succinimidyl-terminated propanethiol monolayer. The surface concentration and the orientation of succinimide group was significantly dependent on the concentration of dithiobis(succinimidyl) propionate (DSP) used in fabricating the monolayer. Furthermore, the structure of monolayer significantly influenced both the surface concentration and the orientation of clenbuterol on the sensor surface. Consequently, high coverage and standing-up configuration of clenbuterol showed high affinity for clenbuterol antibody. However, high affinity constant exhibited by the sensor surface was coupled with a low sensitivity. By contrast, lowest concentration of DSP solution (0.1 mM) used in fabricating the immunosurface showed a detection sensitivity of 3 ppt - the highest reported sensitivity for clenbuterol. For regeneration the immunosurface, 0.1 M NaOH was used and the same sensor surface could be reused for performing >100 rapid immunoreaction.

  17. Surface monitoring measurements of materials on environmental change conditions

    NASA Astrophysics Data System (ADS)

    Tornari, Vivi; Bernikola, Eirini; Bellendorf, Paul; Bertolin, Chiara; Camuffo, Dario; Kotova, Lola; Jacobs, Daniela; Zarnic, Roko; Rajcic, Vlatka; Leissner, Johanna

    2013-05-01

    Climate Change is one of the most critical global challenges of our time and the burdened cultural heritage of Europe is particularly vulnerable to be left unprotected. Climate for Culture2 project exploits the damage impact of climate change on cultural heritage at regional scale. In this paper the progress of the study with in situ measurements and investigations at cultural heritage sites throughout Europe combined with laboratory simulations is described. Cultural works of art are susceptible to deterioration with environmental changes causing imperceptibly slow but steady accumulation of damaging effects directly impacted on structural integrity. Laser holographic interference method is employed to provide remote non destructive field-wise detection of the structural differences occurred as climate responses. The first results from climate simulation of South East Europe (Crete) are presented. A full study in regards to the four climate regions of Europe is foreseen to provide values for development of a precise and integrated model of thermographic building simulations for evaluation of impact of climate change. Development of a third generation user interface software optimised portable metrology system (DHSPI II) is designed to record in custom intervals the surface of materials witnessing reactions under simulated climatic conditions both onfield and in laboratory. The climate conditions refer to real data-loggers readings representing characteristic historical building in selected climate zones. New generation impact sensors termed Glass Sensors and Free Water Sensors are employed in the monitoring procedure to cross-correlate climate data with deformation data. In this paper results from the combined methodology are additionally presented.

  18. Change of surface structure upon foam film formation.

    PubMed

    Ridings, Christiaan; Andersson, Gunther G

    2015-03-16

    The charge distribution and coverage with surfactant molecules at foam film surfaces plays an important role in determining foam film structure and stability. This work uses the concentration depth profiling technique neutral impact collision ion scattering spectroscopy to experimentally observe the charge distribution in a foam film for the first time. The charge distribution at the surface of a foam film and the surface of the corresponding bulk liquid were measured for a cationic surfactant solution and the surface excess as well as the electric potential were determined. Describing the internal pressure of foam films by using the electrochemical potential is introduced as a new concept. The foam film can be seen to have a more negative surface charge compared to the bulk liquid surface due to re-arranging of the surfactant molecules. It is discussed how the change in surface excess and electric potential change the electrochemical potential and the stability of the foam film.

  19. Relative Saliency in Change Signals Affects Perceptual Comparison and Decision Processes in Change Detection

    ERIC Educational Resources Information Center

    Yang, Cheng-Ta

    2011-01-01

    Change detection requires perceptual comparison and decision processes on different features of multiattribute objects. How relative salience between two feature-changes influences the processes has not been addressed. This study used the systems factorial technology to investigate the processes when detecting changes in a Gabor patch with visual…

  20. Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips.

    PubMed

    Nagatsuka, Takehiro; Uzawa, Hirotaka; Sato, Keita; Kondo, Satoshi; Izumi, Masayuki; Yokoyama, Kenji; Ohsawa, Isaac; Seto, Yasuo; Neri, Paola; Mori, Hiroshi; Nishida, Yoshihiro; Saito, Masato; Tamiya, Eiichi

    2013-05-22

    We have detected biological toxins using localized surface plasmon resonance (LSPR) and synthetic glycosyl ceramides (β-lactoside, globosyl trisaccharide (Gb3), or GM1 pentasaccharide) attached to gold (Au) nanoparticles. The particle diameters ranged from 5-100 nm. The detection sensitivity for three toxins (ricin, Shiga toxin, and cholera toxin) was found to depend not only on the attached glycoside but also on the diameter of the Au nanoparticles. For the detection of ricin, the 20-nm β-lactoside-coated Au nanoparticle exhibited the highest LSPR response, whereas 40-nm Gb3- and GM1-coated Au nanoparticles gave the best results for Shiga toxin and cholera toxin, respectively. In addition, a blocking process on the nanoparticle surface greatly improved the detection sensitivity for cholera toxin. The LSPR system enabled us to detect ricin at 30 ng/mL, Shiga toxin at 10 ng/mL, and the cholera toxin at 20 ng/mL.

  1. Land Cover Change Detection Using Saliency Andwavelet Transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Haopeng; Jiang, Zhiguo; Cheng, Yan

    2016-06-01

    How to obtain accurate difference map remains an open challenge in change detection. To tackle this problem, we propose a change detection method based on saliency detection and wavelet transformation. We do frequency-tuned saliency detection in initial difference image (IDI) obtained by logarithm ratio to get a salient difference image (SDI). Then, we calculate local entropy of SDI to obtain an entropic salient difference image (ESDI). The final difference image (FDI) is the wavelet fusion of IDI and ESDI, and Otsu thresholding is used to extract difference map from FDI. Experimental results validate the effectiveness and feasibility.

  2. Detecting data and schema changes in scientific documents

    SciTech Connect

    Adiwijaya, I; Critchlow, T; Musick, R

    1999-06-08

    Data stored in a data warehouse must be kept consistent and up-to-date with the underlying information sources. By providing the capability to identify, categorize and detect changes in these sources, only the modified data needs to be transferred and entered into the warehouse. Another alternative, periodically reloading from scratch, is obviously inefficient. When the schema of an information source changes, all components that interact with, or make use of, data originating from that source must be updated to conform to the new schema. In this paper, the authors present an approach to detecting data and schema changes in scientific documents. Scientific data is of particular interest because it is normally stored as semi-structured documents, and it incurs frequent schema updates. They address the change detection problem by detecting data and schema changes between two versions of the same semi-structured document. This paper presents a graph representation of semi-structured documents and their schema before describing their approach to detecting changes while parsing the document. It also discusses how analysis of a collection of schema changes obtained from comparing several individual can be used to detect complex schema changes.

  3. Updating National Topographic Data Base Using Change Detection Methods

    NASA Astrophysics Data System (ADS)

    Keinan, E.; Felus, Y. A.; Tal, Y.; Zilberstien, O.; Elihai, Y.

    2016-06-01

    The traditional method for updating a topographic database on a national scale is a complex process that requires human resources, time and the development of specialized procedures. In many National Mapping and Cadaster Agencies (NMCA), the updating cycle takes a few years. Today, the reality is dynamic and the changes occur every day, therefore, the users expect that the existing database will portray the current reality. Global mapping projects which are based on community volunteers, such as OSM, update their database every day based on crowdsourcing. In order to fulfil user's requirements for rapid updating, a new methodology that maps major interest areas while preserving associated decoding information, should be developed. Until recently, automated processes did not yield satisfactory results, and a typically process included comparing images from different periods. The success rates in identifying the objects were low, and most were accompanied by a high percentage of false alarms. As a result, the automatic process required significant editorial work that made it uneconomical. In the recent years, the development of technologies in mapping, advancement in image processing algorithms and computer vision, together with the development of digital aerial cameras with NIR band and Very High Resolution satellites, allow the implementation of a cost effective automated process. The automatic process is based on high-resolution Digital Surface Model analysis, Multi Spectral (MS) classification, MS segmentation, object analysis and shape forming algorithms. This article reviews the results of a novel change detection methodology as a first step for updating NTDB in the Survey of Israel.

  4. Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K. (Inventor); Goldstein, Richard M. (Inventor); Zebker, Howard A. (Inventor)

    1990-01-01

    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes.

  5. Imaging Catalytic Surfaces by Multiplexed Capillary Electrophoresis With Absorption Detection

    SciTech Connect

    Christodoulou, Michael

    2002-01-01

    A new technique for in situ imaging and screening heterogeneous catalysts by using multiplexed capillary electrophoresis with absorption detection was developed. By bundling the inlets of a large number of capillaries, an imaging probe can be created that can be used to sample products formed directly from a catalytic surface with high spatial resolution. In this work, they used surfaces made of platinum, iron or gold wires as model catalytic surfaces for imaging. Various shapes were recorded including squares and triangles. Model catalytic surfaces consisting of both iron and platinum wires in the shape of a cross were also imaged successfully. Each of the two wires produced a different electrochemical product that was separated by capillary electrophoresis. Based on the collected data they were able to distinguish the products from each wire in the reconstructed image.

  6. Primary detection of hardwood log defects using laser surface scanning

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Thomas, Liya; Mili, Lamine; Ehrich, Roger W.; Abbott, A. Lynn; Shaffer, Clifford

    2003-05-01

    The use of laser technology to scan hardwood log surfaces for defects holds great promise for improving processing efficiency and the value and volume of lumber produced. External and internal defect detection to optimize hardwood log and lumber processing is one of the top four technological needs in the nation"s hardwood industry. The location, type, and severity of defects on hardwood logs are the key indicators of log quality and value. These visual cues provide information about internal log characteristics and products for which the log is suitable. We scanned 162 logs with a high-resolution industrial four-head laser surface scanner. The resulting data sets contain hundreds of thousands of three-dimensional coordinate points. The size of the data and noise presented special problems during processing. Robust regression models were used to fit geometric shapes to the data. The estimated orthogonal distances between the fitted model and the log surface are converted to a two-dimensional image to facilitate defect detection. Using robust regression methods and standard image processing tools we have demonstrated that severe surface defects on hardwood logs can be detected using height and contour analyses of three-dimensional laser scan data.

  7. Attending to faces: change detection, familiarization, and inversion effects.

    PubMed

    Barton, Jason J S; Deepak, Shaunak; Malik, Numaan

    2003-01-01

    We tested detection of changes to eye position, eye color (brightness), mouth position, and mouth color in frontal views of faces. Two faces were presented sequentially for 555 ms each, with a blank screen of 120 ms separating the two. Faces were presented either both upright or both inverted. Measures of detection (d') were calculated for several different degrees of change for each of the four dimensions of change. We first compared results to an earlier experiment that used an oddity design, in which subjects indicated which of three simultaneously viewed and otherwise identical faces had been altered on one of these four dimensions. Subjects in both of these experiments were partially cued, in that they knew the four possible types of changes that could occur on a given trial. The change-detection results correlated well with the oddity data. They confirmed that face inversion had little effect upon detection of changes in eye color, a moderate effect upon detection of eye-position or mouth-color changes, and caused a drastic reduction in the detection of mouth-position changes. An experiment in which uncued and fully cued subjects were compared showed that cueing significantly improved detection of feature color changes, but there was little difference between upright and inverted faces. Full cueing eliminated all effects of inversion. Compared to partial cueing, changes in mouth color were poorly detected by uncued subjects. Last, a change in the frequency of the base (unaltered) face in an experiment from 75% to 40% showed that increased short-term familiarity decreased the detection of eye changes and increased the detection of mouth changes, regardless of face orientation and the type of change made (color or position). We conclude that uncued subjects encode the spatial relations of features more than the colors of features, that mouth color in particular is not considered a relevant dimension for encoding, and that familiarization redistributes attention

  8. Classification of change detection and change blindness from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  9. 3D surface configuration modulates 2D symmetry detection.

    PubMed

    Chen, Chien-Chung; Sio, Lok-Teng

    2015-02-01

    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection.

  10. Surface flaw detection in structural ceramics by scanning photoacoustic spectroscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, P. K.; Heitman, P. W.; Wakefield, T. D.; Silversmith, A. J.

    1980-01-01

    Laser-scanned photoacoustic spectroscopy has been used to detect tightly closed surface cracks in three structural ceramic materials: sintered silicon nitride, reaction-bonded silicon nitride, and sintered silicon carbide. It is found that the amplitude of the photoacoustic signal from the flaws is greater for the silicon nitrides than for silicon carbide, which is attributed to the lower thermal diffusivity of silicon nitride as well as differences in the grain size distribution and chemical composition. Signal amplitude, reproducibility, and signal-to-noise ratio are acceptable for effective flaw detection

  11. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    NASA Astrophysics Data System (ADS)

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    2009-05-01

    We report a novel high-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of protein biomarkers. The biosensor is based on a high-performance SPR imaging sensor with polarization contrast and internal referencing which yields a considerably higher sensitivity and resolution than conventional SPR imaging systems (refractive index resolution 2 × 10-7 RIU). We combined the SPR imaging biosensor with microspotting to create an array of antibodies. DNA-directed protein immobilization was utilized for the spatially resolved attachment of antibodies. Using Human Chorionic Gonadotropin (hCG) as model protein biomarker, we demonstrated the potential for simultaneous detection of proteins in up to 100 channels.

  12. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    PubMed Central

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  13. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating.

    PubMed

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-03-11

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  14. Tunneling current change of graphite surface by single ion irradiation

    SciTech Connect

    Ogiso, H. |; Mizutani, W.; Nakano, S.; Tokumoto, H.; Yamanaka, K.

    1997-12-01

    The authors discuss changes in electronic structure and the topography of a graphite surface undergoing by a single ion impact. Protrusion-like regions (PLRs) found in a scanning tunneling microscope image disappeared in the same view of a noncontact atomic force microscope image. They measured tunneling current versus voltage characteristics to determine the density-of-states change in PLRs. They found that the density of states at the Fermi level of PLRs was greater than that of the intact surface. They therefore concluded that the PLRs were not actual topographical changes, but originated from electronic structural changes in semimetal to metal transition.

  15. Spatial Temporal Land Use Change Detection Using Google Earth Data

    NASA Astrophysics Data System (ADS)

    Wibowo, Adi; Osman Salleh, Khairulmaini; Sitanala Frans, F. Th. R.; Mulyo Semedi, Jarot

    2016-11-01

    Land use as representation of human activities had different type. Human activity needs land for home, food, school, work, and leisure. Land use changed depends on human activity in the world within spatial and temporal term. This study aims to identify land use change using Google Earth data spatially and temporally. To answer the aim of this research, Google Earth data within five-year used for the analysis. This technique use for detection and mapping the land use change. The result saw the spatial-temporal land use change each year. This result addressed very importance of Google Earth Data as spatial temporal land use detection for land use mapping.

  16. Dynamic Moon: New Impacts and Contemporary Surface Changes

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Povilaitis, R. Z.; Robinson, M. S.; Thomas, P. C.; Wagner, R. V.

    2016-05-01

    Before and after image pairs acquired by the Lunar Reconnaissance Orbiter Camera enable the identification of new impact craters and secondary surface changes revealing new insight into the cratering process and regolith gardening.

  17. Acoustic change detection algorithm using an FM radio

    NASA Astrophysics Data System (ADS)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  18. Fast Change Point Detection for Electricity Market Analysis

    SciTech Connect

    Berkeley, UC; Gu, William; Choi, Jaesik; Gu, Ming; Simon, Horst; Wu, Kesheng

    2013-08-25

    Electricity is a vital part of our daily life; therefore it is important to avoid irregularities such as the California Electricity Crisis of 2000 and 2001. In this work, we seek to predict anomalies using advanced machine learning algorithms. These algorithms are effective, but computationally expensive, especially if we plan to apply them on hourly electricity market data covering a number of years. To address this challenge, we significantly accelerate the computation of the Gaussian Process (GP) for time series data. In the context of a Change Point Detection (CPD) algorithm, we reduce its computational complexity from O($n^{5}$) to O($n^{2}$). Our efficient algorithm makes it possible to compute the Change Points using the hourly price data from the California Electricity Crisis. By comparing the detected Change Points with known events, we show that the Change Point Detection algorithm is indeed effective in detecting signals preceding major events.

  19. Detection of Greenhouse-Gas-Induced Climatic Change

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  20. Finite element simulation for damage detection of surface rust in steel rebars using elastic waves

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.

  1. Electrophysiological evidence for different types of change detection and change blindness.

    PubMed

    Busch, Niko A; Fründ, Ingo; Herrmann, Christoph S

    2010-08-01

    Numerous studies have demonstrated that observers often fail to notice large changes in visual scenes, a phenomenon known as change blindness. Some experiments have suggested that phenomenological experience in change blindness experiments is more diverse than the common distinction between change detection and change blindness allows to resolve. Recently, it has been debated whether changes in visual scenes can be detected ("sensed") without a corresponding perception of the changing object ("seeing") and whether these phenomena build on fundamentally different perceptual processes. The present study investigated whether phenomenologically different perceptual processes such as sensing and seeing rely on different or similar neural processes. We studied ERP effects of visual change processing (as compared to change blindness) when observers merely detected the presence of a change ("sensing") and when they identified the changing object in addition to detection ("seeing"). Although the visual awareness negativity (VAN)/selection negativity was similar for detection with and without identification, a change-related positivity and the N2pc contralateral to changes were found exclusively when the change was fully identified. This finding indicates that change identification requires perceptual and neural processes that are not involved in mere detection. In a second experiment, we demonstrated that the VAN and N2pc effects are similar to effects of selective attention in a visual search task. By contrast, the change-related positivity was specific for conscious processing of visual changes. The results suggest that changes can be detected ("sensed") without perception of the changing object. Furthermore, sensing and seeing seem to rely on different neural processes and seem to constitute different types of visual perception. These findings bear implications for how different categories of visual awareness are related to different stages in visual processing.

  2. A SAR ATR algorithm based on coherent change detection

    SciTech Connect

    Harmony, D.W.

    2000-12-01

    This report discusses an automatic target recognition (ATR) algorithm for synthetic aperture radar (SAR) imagery that is based on coherent change detection techniques. The algorithm relies on templates created from training data to identify targets. Objects are identified or rejected as targets by comparing their SAR signatures with templates using the same complex correlation scheme developed for coherent change detection. Preliminary results are presented in addition to future recommendations.

  3. A Generalizable Hierarchical Bayesian Model for Persistent SAR Change Detection

    DTIC Science & Technology

    2012-04-01

    6] K. Ranney and M. Soumekh, “Signal subspace change detection in averaged multilook sar imagery,” Geoscience and Remote Sensing, IEEE Transactions on...A Generalizable Hierarchical Bayesian Model for Persistent SAR Change Detection Gregory E. Newstadta, Edmund G. Zelniob, and Alfred O. Hero IIIa...Base, OH, 45433, USA ABSTRACT This paper proposes a hierarchical Bayesian model for multiple-pass, multiple antenna synthetic aperture radar ( SAR

  4. Diffusion Geometry Based Nonlinear Methods for Hyperspectral Change Detection

    DTIC Science & Technology

    2010-05-12

    Schaum and A. Stocker, “Hyperspectral change detection and supervised matched filtering based on covariance equalization,” Proceedings of the SPIE, vol...5425, pp. 77- 90 (2004). 10. A. Schaum and A. Stocker, “Linear chromodynamics models for hyperspectral target detection,” Proceedings of the IEEE...Aerospace Conference (February 2003). 11. A. Schaum and A. Stocker, “Linear chromodynamics models for hyperspectral target detection

  5. Greenland surface albedo changes 1981-2012 from satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant melt over Greenland has been observed during the last several decades associated with extreme warming events over the northern Atlantic Ocean. An analysis of surface albedo change over Greenland is presented, using a 32-year consistent satellite albedo product from the Global Land Surfac...

  6. Plasma functionalized surface of commodity polymers for dopamine detection

    NASA Astrophysics Data System (ADS)

    Fabregat, Georgina; Osorio, Joaquin; Castedo, Alejandra; Armelin, Elaine; Buendía, Jorge J.; Llorca, Jordi; Alemán, Carlos

    2017-03-01

    We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1-2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  7. One-step tumor detection from dynamic morphology tracking on aptamer-grafted surfaces

    PubMed Central

    Mahmood, Mohammed Arif I.; Hasan, Mohammad Raziul; Khan, Umair J. M.; Allen, Peter B.; Kim, Young-tae; Ellington, Andrew D.; Iqbal, Samir M.

    2015-01-01

    In this paper, we report a one-step tumor cell detection approach based on the dynamic morphological behavior tracking of cancer cells on a ligand modified surface. Every cell on the surface was tracked in real time for several minutes immediately after seeding until these were finally attached. Cancer cells were found to be very active in the aptamer microenvironment, changing their shapes rapidly from spherical to semi-elliptical, with much flatter spread and extending pseudopods at regular intervals. When incubated on a functionalized surface, the balancing forces between cell surface molecules and the surface-bound aptamers, together with the flexibility of the membranes, caused cells to show these distinct dynamic activities and variations in their morphologies. On the other hand, healthy cells remained distinguishingly inactive on the surface over the same period. The quantitative image analysis of cell morphologies provided feature vectors that were statistically distinct between normal and cancer cells. PMID:26753172

  8. Remote Detection of Oil Slicks at the Ocean Surface

    DTIC Science & Technology

    2014-10-01

    particulates have signals at these wavelengths. Additionally, floating vegetation (i.e.,Sargassum spp.) and thick and emulsified oil can be observed at NIR...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01-23-2015 Conference Proceedings 1 REMOTE DETECTION OF OIL SLICKS AT THE OCEAN SURFACE...H, Bldg. 17, Rm. N111 Greenbelt, MD NASA Approved for public release, distribution is unlimited. The 2010 Deepwater Horizon (DWH) oil slick caused by

  9. Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering

    NASA Astrophysics Data System (ADS)

    Heydari, Esmaeil; Mabbott, Samuel; Thompson, David; Graham, Duncan; Cooper, Jonathan M.; Clark, Alasdair W.

    2016-03-01

    We report a novel nanophotonic biosensor surface capable of both colorimetric detection and Raman-scattered detection of DNA infection markers at extreme sensitivities. Combining direct-write lithography, dip-pen nanolithography based DNA patterning, and molecular self-assembly, we create molecularly-active plasmonic nanostructures onto which metallic nanoparticles are located via DNA-hybridization. Arraying these structures enables optical surfaces that change state when contacted by specific DNA sequences; shifting the surface color while simultaneously generating strong Raman-scattering signals. Patterning the DNA markers onto the plasmonic surface as micro-scale symbols results in easily identifiable color shifts, making this technique applicable to multiplexed lab-on-a-chip and point-of-care diagnostic applications.

  10. Outlier detection in high-density surface electromyographic signals.

    PubMed

    Marateb, Hamid R; Rojas-Martínez, Monica; Mansourian, Marjan; Merletti, Roberto; Villanueva, Miguel A Mañanas

    2012-01-01

    Recently developed techniques allow the analysis of surface EMG in multiple locations over the skin surface (high-density surface electromyography, HDsEMG). The detected signal includes information from a greater proportion of the muscle of interest than conventional clinical EMG. However, recording with many electrodes simultaneously often implies bad-contacts, which introduce large power-line interference in the corresponding channels, and short-circuits that cause near-zero single differential signals when using gel. Such signals are called 'outliers' in data mining. In this work, outlier detection (focusing on bad contacts) is discussed for monopolar HDsEMG signals and a new method is proposed to identify 'bad' channels. The overall performance of this method was tested using the agreement rate against three experts' opinions. Three other outlier detection methods were used for comparison. The training and test sets for such methods were selected from HDsEMG signals recorded in Triceps and Biceps Brachii in the upper arm and Brachioradialis, Anconeus, and Pronator Teres in the forearm. The sensitivity and specificity of this algorithm were, respectively, 96.9 ± 6.2 and 96.4 ± 2.5 in percent in the test set (signals registered with twenty 2D electrode arrays corresponding to a total of 2322 channels), showing that this method is promising.

  11. Casi real-time surface-laid mine detection system

    NASA Astrophysics Data System (ADS)

    Ivanco, Tyler; Achal, Stephen B.; McFee, John E.; Anger, Clifford D.

    2001-10-01

    A ground vehicle-based, real-time, surface mine detection system, utilizing a Compact Airborne Spectrographic Image (casi), efficient mine detection algorithms, and real-time processing systems, was designed and tested. The combined real-time system was capable of 'learning' the in-situ spectra of various mines, thus providing a spectral library for the detection algorithms. The real-time processing of the casi data involved three steps. The first step was the radiometric correction of the raw data. The second step involved the application of the mine detection algorithms to the corrected data, referencing the spectral library. In the final step, the results of the real-time processes were stored and displayed, usually within a few frame times of the data acquisition. To the authors knowledge, this system represents the first hyperspectral imager to detect mines in real-time. This paper describes the generation of the in-situ mine spectral library, the collection of the scene data, the real-time processing of the scene data and the subsequent display and recording of the detection data. The limitation and expansion capabilities of the real-time system are discussed as well as various techniques that were implemented to achieve the goals. Planned future improvements that have been identified to create a more robust and higher performance, yet simpler processing systems are also discussed.

  12. Multispectral radiation detection of small changes in target emissivity. [ice measurements on space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Newton, J. M.; Schuchardt, J. M.

    1982-01-01

    An investigation into the multispectral radiation detection of small changes in target emissivity has been performed by Georgia Tech. A series of ice detection measurements on the shuttle external tank (ET) were performed using an advanced instrumentation radiometer operating at 35/95 GHz. Actual shuttle ET ice detection measurements were run at NASA's National Space Technology Laboratory (NSTL) during cryogenic fueling operations prior to orbiter engine firing tests. Investigations revealed that ET icing caused an increase in surface brightness temperature and the test results further demonstrated the usefulness of millimeter wave radiometry for the detection of ice on the ET.

  13. Use of superconducting imaging surfaces to enhance detection of weak magnetic sources by SQUID systems

    SciTech Connect

    Overton, W.C. Jr.; van Hulsteyn, D.B.; Flynn, E.R.

    1989-01-01

    The use of superconducting magnetometers and gradiometers to detect weak magnetic signals is well known. The weak sources produce small field changes in the vicinity of superconducting pickup coil combinations which respond to changes in the local magnetic flux. When coupled to SQUID detectors, these systems can respond to changes as small as 10 ft. However, magnetic noise severely restricts the operation of such systems. We show that combinations of flat and curved superconducting sheets in combination with superconducting pickup coils can enhance the detection capability and improve noise rejection. Surface currents induced in the sheets are represented by the source dipole and its image. They give rise to signals similar to those of the first-order gradiometer. The theory of images is used to analyze the signals. Several configurations of sense coils and superconducting imaging surfaces are analyzed. 15 refs., 28 figs.

  14. Detection of ice and organics on an asteroidal surface.

    PubMed

    Rivkin, Andrew S; Emery, Joshua P

    2010-04-29

    Recent observations, including the discovery in typical asteroidal orbits of objects with cometary characteristics (main-belt comets, or MBCs), have blurred the line between comets and asteroids, although so far neither ice nor organic material has been detected on the surface of an asteroid or directly proven to be an asteroidal constituent. Here we report the spectroscopic detection of water ice and organic material on the asteroid 24 Themis, a detection that has been independently confirmed. 24 Themis belongs to the same dynamical family as three of the five known MBCs, and the presence of ice on 24 Themis is strong evidence that it also is present in the MBCs. We conclude that water ice is more common on asteroids than was previously thought and may be widespread in asteroidal interiors at much smaller heliocentric distances than was previously expected.

  15. Attomolar protein detection using a magnetic bead surface coverage assay.

    PubMed

    Tekin, H Cumhur; Cornaglia, Matteo; Gijs, Martin A M

    2013-03-21

    We demonstrate a microfluidic method for ultra-sensitive protein detection in serum. First, 'large' (2.8 μm) antibody-functionalized magnetic beads specifically capture antigen from a serum matrix under active microfluidic mixing. Subsequently, the large beads loaded with the antigens are gently exposed to a surface pattern of fixed 'small' (1.0 μm) antibody-coated magnetic beads. During the exposure, attractive magnetic bead dipole-dipole interactions improve the contact between the two bead types and help the antigen-antibody immunocomplex formation, while non-specific large bead adsorption is limited by exploiting viscous drag forces in the microfluidic channel on the small-bead pattern. This efficient antigen-antibody recognition and binding mechanism mimics a biological process of selective recognition of tissue molecules, like is the case when leukocytes roll and slow down on blood vessel walls by selectin-mediated adhesion. After exposure of the large beads to the pattern of small beads, the antigen concentration is detected by simply counting the number of surface pattern-bound large magnetic beads. The new technique allows detection of proteins down to the sub-zeptomole range. In particular, we demonstrate detection of only 200 molecules of Tumor Necrosis Factor-α (TNF-α) in a serum sample volume of 5 μL, corresponding to a concentration of 60 attomolar or 1 fg mL(-1).

  16. Historical Landsat data comparisons: illustrations of land surface change

    USGS Publications Warehouse

    Cross, Matthew D.

    1990-01-01

    This booklet provides an overview of the Landsat program and shows the application of the data to monitor changes occurring on the surface of the Earth. To show changes that have taken place within the last 20 years or less, image pairs were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical global record of the land surface from the early 1970's to present. Landsat TM data provide land surface information from the early 1980's to present.

  17. Signal detection using change point analysis in postmarket surveillance†

    PubMed Central

    Xu, Zhiheng; Kass-Hout, Taha; Anderson-Smits, Colin; Gray, Gerry

    2015-01-01

    Purpose Signal detection methods have been used extensively in postmarket surveillance to identify elevated risks of adverse events associated with medical products (drugs, vaccines, and devices). However, current popular disproportionality methods ignore useful information such as trends when the data are aggregated over time for signal detection. Methods In this paper, we applied change point analysis (CPA) to trend analysis of medical products in a spontaneous adverse event reporting system. CPA was used to detect the time point at which statistical properties of a sequence of observations change over time. Two CPA approaches, change in mean and change in variance, were demonstrated by an example using neurostimulator adverse event dataset. Results Two significant change points associated with upward trends were detected in June 2008 (n = 20, p < 0.001) and May 2011 (n = 51, p = 0.003). Further investigation confirmed battery issues and expansion of the indication for use could be possible causes for the occurrence of these change points. Two time points showed extremely low number of loss of therapy events, two cases in October 2009 and three in November 2009, which could be the result of reporting issues such as underreporting. Conclusion As a complimentary tool to current signal detection efforts at FDA, CPA can be used to detect changes in the association between medical products and adverse events over time. Detecting these changes could be critical for public health regulation, adverse events surveillance, product recalls, and regulators’ understanding of the connection between adverse events and other events regarding regulated products. © 2015 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons, Ltd. PMID:25903221

  18. Vegetation cover change detection in Chamela-Cuixamala, Mexico

    NASA Astrophysics Data System (ADS)

    De la Barreda Bautista, Betsabé; López-Caloca, Alejandra A.

    2009-09-01

    In Mexico, and everywhere else, the ecosystems are constantly changing either by natural factors or anthropogenic activity. Remote sensing has been a key tool to monitoring these changes throughout history and also to understanding the ecological dynamics. Hence, sustainable development plans have been created in order to improve the decisionmaking process; thus, this paper analyses deforestation impact in a very important natural resourcing area in Mexico, considering land cover changes. The study area is located in the coast of Jalisco, Mexico, where deforestation and fragmentation as well as high speed touristic development have been the causes of enormous biodiversity losses; the Chamela-Cuixamala Biosphere Reserve is located within this area. It has great species richness and vast endemism. The exploitation of this biome is widespread all over the country and it has already had an impact in the reserve. The change detection multi-temporal study uses Landsat satellite imagery during the 1970-2003 time period. Thus, the objective of change detection analysis is to detect and localize environmental changes through time. The change detection method consists in producing an image of change likelihood (by post-classification, multivariate alteration detection) and thresholding it in order to produce the change map. Experimental results confirmed that the patterns of land use and land cover changes have increased significantly over the last decade. This study also analyzes the deforestation impact on biodiversity. The analysis validation was carried out using field and statistic data. Spatial-temporal changing range enables the analysis of the structural and dynamic effects on the ecosystem and it enhances better decision-making and public environmental policies to decrease or eliminate deforestation, the creation of natural protected areas as a biodiversity conservation method, and counteracting the global warming phenomena.

  19. Detecting abrupt dynamic change based on changes in the fractal properties of spatial images

    NASA Astrophysics Data System (ADS)

    Liu, Qunqun; He, Wenping; Gu, Bin; Jiang, Yundi

    2016-08-01

    Many abrupt climate change events often cannot be detected timely by conventional abrupt detection methods until a few years after these events have occurred. The reason for this lag in detection is that abundant and long-term observational data are required for accurate abrupt change detection by these methods, especially for the detection of a regime shift. So, these methods cannot help us understand and forecast the evolution of the climate system in a timely manner. Obviously, spatial images, generated by a coupled spatiotemporal dynamical model, contain more information about a dynamic system than a single time series, and we find that spatial images show the fractal properties. The fractal properties of spatial images can be quantitatively characterized by the Hurst exponent, which can be estimated by two-dimensional detrended fluctuation analysis (TD-DFA). Based on this, TD-DFA is used to detect an abrupt dynamic change of a coupled spatiotemporal model. The results show that the TD-DFA method can effectively detect abrupt parameter changes in the coupled model by monitoring the changing in the fractal properties of spatial images. The present method provides a new way for abrupt dynamic change detection, which can achieve timely and efficient abrupt change detection results.

  20. A Hopfield neural network for image change detection.

    PubMed

    Pajares, Gonzalo

    2006-09-01

    This paper outlines an optimization relaxation approach based on the analog Hopfield neural network (HNN) for solving the image change detection problem between two images. A difference image is obtained by subtracting pixel by pixel both images. The network topology is built so that each pixel in the difference image is a node in the network. Each node is characterized by its state, which determines if a pixel has changed. An energy function is derived, so that the network converges to stable states. The analog Hopfield's model allows each node to take on analog state values. Unlike most widely used approaches, where binary labels (changed/unchanged) are assigned to each pixel, the analog property provides the strength of the change. The main contribution of this paper is reflected in the customization of the analog Hopfield neural network to derive an automatic image change detection approach. When a pixel is being processed, some existing image change detection procedures consider only interpixel relations on its neighborhood. The main drawback of such approaches is the labeling of this pixel as changed or unchanged according to the information supplied by its neighbors, where its own information is ignored. The Hopfield model overcomes this drawback and for each pixel allows a tradeoff between the influence of its neighborhood and its own criterion. This is mapped under the energy function to be minimized. The performance of the proposed method is illustrated by comparative analysis against some existing image change detection methods.

  1. Automated baseline change detection phase I. Final report

    SciTech Connect

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER&WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements.

  2. Detection and Attribution of Anthropogenic Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  3. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    1985-12-01

    The first surfce acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposted on the acoustic progagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectric coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in N2 has been demonstrated.

  4. Unsupervised Change Detection in SAR Images Using Gaussian Mixture Models

    NASA Astrophysics Data System (ADS)

    Kiana, E.; Homayouni, S.; Sharifi, M. A.; Farid-Rohani, M.

    2015-12-01

    In this paper, we propose a method for unsupervised change detection in Remote Sensing Synthetic Aperture Radar (SAR) images. This method is based on the mixture modelling of the histogram of difference image. In this process, the difference image is classified into three classes; negative change class, positive change class and no change class. However the SAR images suffer from speckle noise, the proposed method is able to map the changes without speckle filtering. To evaluate the performance of this method, two dates of SAR data acquired by Uninhabited Aerial Vehicle Synthetic from an agriculture area are used. Change detection results show better efficiency when compared to the state-of-the-art methods.

  5. Statistical method for detecting structural change in the growth process.

    PubMed

    Ninomiya, Yoshiyuki; Yoshimoto, Atsushi

    2008-03-01

    Due to competition among individual trees and other exogenous factors that change the growth environment, each tree grows following its own growth trend with some structural changes in growth over time. In the present article, a new method is proposed to detect a structural change in the growth process. We formulate the method as a simple statistical test for signal detection without constructing any specific model for the structural change. To evaluate the p-value of the test, the tube method is developed because the regular distribution theory is insufficient. Using two sets of tree diameter growth data sampled from planted forest stands of Cryptomeria japonica in Japan, we conduct an analysis of identifying the effect of thinning on the growth process as a structural change. Our results demonstrate that the proposed method is useful to identify the structural change caused by thinning. We also provide the properties of the method in terms of the size and power of the test.

  6. Statistically normalized coherent change detection for synthetic aperture sonar imagery

    NASA Astrophysics Data System (ADS)

    G-Michael, Tesfaye; Tucker, J. D.; Roberts, Rodney G.

    2016-05-01

    Coherent Change Detection (CCD) is a process of highlighting an area of activity in scenes (seafloor) under survey and generated from pairs of synthetic aperture sonar (SAS) images of approximately the same location observed at two different time instances. The problem of CCD and subsequent anomaly feature extraction/detection is complicated due to several factors such as the presence of random speckle pattern in the images, changing environmental conditions, and platform instabilities. These complications make the detection of weak target activities even more difficult. Typically, the degree of similarity between two images measured at each pixel locations is the coherence between the complex pixel values in the two images. Higher coherence indicates little change in the scene represented by the pixel and lower coherence indicates change activity in the scene. Such coherence estimation scheme based on the pixel intensity correlation is an ad-hoc procedure where the effectiveness of the change detection is determined by the choice of threshold which can lead to high false alarm rates. In this paper, we propose a novel approach for anomalous change pattern detection using the statistical normalized coherence and multi-pass coherent processing. This method may be used to mitigate shadows by reducing the false alarms resulting in the coherent map due to speckles and shadows. Test results of the proposed methods on a data set of SAS images will be presented, illustrating the effectiveness of the normalized coherence in terms statistics from multi-pass survey of the same scene.

  7. Hardware accelerator design for change detection in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.

  8. Bivariate gamma distributions for image registration and change detection.

    PubMed

    Chatelain, Florent; Tourneret, Jean-Yves; Inglada, Jordi; Ferrari, André

    2007-07-01

    This paper evaluates the potential interest of using bivariate gamma distributions for image registration and change detection. The first part of this paper studies estimators for the parameters of bivariate gamma distributions based on the maximum likelihood principle and the method of moments. The performance of both methods are compared in terms of estimated mean square errors and theoretical asymptotic variances. The mutual information is a classical similarity measure which can be used for image registration or change detection. The second part of the paper studies some properties of the mutual information for bivariate Gamma distributions. Image registration and change detection techniques based on bivariate gamma distributions are finally investigated. Simulation results conducted on synthetic and real data are very encouraging. Bivariate gamma distributions are good candidates allowing us to develop new image registration algorithms and new change detectors.

  9. Change detection inflates confidence on a subsequent recognition task.

    PubMed

    Fitzgerald, Ryan J; Oriet, Chris; Price, Heather L

    2011-11-01

    A face viewed under good encoding conditions is more likely to be remembered than a face viewed under poor encoding conditions. In four experiments we investigated how encoding conditions affected confidence in recognising faces from line-ups. Participants performed a change detection task followed by a recognition task and then rated how confident they were in their recognition accuracy. In the first two experiments the same faces were repeated across trials. In the final two experiments novel faces were used on each trial. Target-present and target-absent line-ups were utilised. In each experiment participants had greater recognition confidence after change detection than after change blindness. The finding that change detection inflates confidence, even for inaccurate recognitions, indicates recognition certainty can be a product of perceived encoding conditions rather than authentic memory strength.

  10. Coherent Change Detection: Theoretical Description and Experimental Results

    DTIC Science & Technology

    2006-08-01

    multilook polarimetric and interferometric SAR imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 32, no. 5, pp. 1017–1027, 1994. 50. J. W...scene changes using repeat pass Synthetic Aperture Radar ( SAR ) imagery. As SAR is a coherent imaging system two forms of change detection may be...changes to the sub-resolution cell scattering structure that may be undetectable using inco- herent techniques. The repeat pass SAR imagery however, must

  11. Geometric change detection in urban environments using images.

    PubMed

    Taneja, Aparna; Ballan, Luca; Pollefeys, Marc

    2015-11-01

    We propose a method to detect changes in the geometry of a city using panoramic images captured by a car driving around the city. The proposed method can be used to significantly optimize the process of updating the 3D model of an urban environment that is changing over time, by restricting this process to only those areas where changes are detected. With this application in mind, we designed our algorithm to specifically detect only structural changes in the environment, ignoring any changes in its appearance, and ignoring also all the changes which are not relevant for update purposes such as cars, people etc. The approach also accounts for the challenges involved in a large scale application of change detection, such as inaccuracies in the input geometry, errors in the geo-location data of the images as well as the limited amount of information due to sparse imagery. We evaluated our approach on a small scale setup using high resolution, densely captured images and a large scale setup covering an entire city using instead the more realistic scenario of low resolution, sparsely captured images. A quantitative evaluation was also conducted for the large scale setup consisting of 14,000 images.

  12. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    SciTech Connect

    Saario, T.; Paine, J.P.N.

    1995-12-31

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique.

  13. Surface engineered biosensors for the early detection of cancer

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin

    Cancer commences in the building block of human body which is cells and in most of the cases remains silent at early stage. Diseases are only expressed at molecular and cellular level at primary stages. Recognition of diseases at this micro and nano level might reduce the mortality rate of cancer significantly. This research work aimed to introduce novel electronic biosensors for for identification of cancer at cellular level. The dissertation study focuses on 1) Label-Free Isolation of Metastatic Tumor Cells Using Filter Based Microfluidic device; 2) Nanotextured Polymer Substrates for Enhanced Cancer Cell Isolation and Cell Growth; 3) Nanotextured Microfluidic Channel for Electrical Profiling and Detection of Tumor Cells from Blood; and 4) Single Biochip for the Detection of Tumor Cells by Electrical Profile and Surface Immobilized Aptamer. Standard silicon processing techniques were followed to fabricate all of the biosensors. Nantoextruing and surface functionalizon were also incorporated to elevate the efficiency of the devices. The first approach aimed to detect cancer cells from blood based on their mechanophysical properties. Cancer cells are larger than blood cells but highly elastic in nature. These cells can squeeze through small microchannels much smaller than their size. The cross sectional area of the microchannels was optimized to isolate tumor cells from blood. Nanotextured polymer substrates, a platform inspired from the natural basement membrane was used to enhance the isolation and growth of tumor cells. Micro reactive ion etching was performed to have better control on features of nantoxtured surfaces and did not require any template. Next, electrical measurement of ionic current was performed across single microchannel to detect tumor cells from blood. Later, nanotexturing enhanced the efficiency of the device by selectively altering the translocation profile of cancer cells. Eventually aptamer functionalized nanotextured polymer surface was

  14. Gyroscope pivot bearing dimension and surface defect detection.

    PubMed

    Ge, Wenqian; Zhao, Huijie; Li, Xudong

    2011-01-01

    Because of the perceived lack of systematic analysis in illumination system design processes and a lack of criteria for design methods in vision detection a method for the design of a task-oriented illumination system is proposed. After detecting the micro-defects of a gyroscope pivot bearing with a high curvature glabrous surface and analyzing the characteristics of the surface detection and reflection model, a complex illumination system with coaxial and ring lights is proposed. The illumination system is then optimized based on the analysis of illuminance uniformity of target regions by simulation and grey scale uniformity and articulation that are calculated from grey imagery. Currently, in order to apply the Pulse Coupled Neural Network (PCNN) method, structural parameters must be tested and adjusted repeatedly. Therefore, this paper proposes the use of a particle swarm optimization (PSO) algorithm, in which the maximum between cluster variance rules is used as fitness function with a linearily reduced inertia factor. This algorithm is used to adaptively set PCNN connection coefficients and dynamic threshold, which avoids algorithmic precocity and local oscillations. The proposed method is used for pivot bearing defect image processing. The segmentation results of the maximum entropy and minimum error method and the one described in this paper are compared using buffer region matching, and the experimental results show that the method of this paper is effective.

  15. Gyroscope Pivot Bearing Dimension and Surface Defect Detection

    PubMed Central

    Ge, Wenqian; Zhao, Huijie; Li, Xudong

    2011-01-01

    Because of the perceived lack of systematic analysis in illumination system design processes and a lack of criteria for design methods in vision detection a method for the design of a task-oriented illumination system is proposed. After detecting the micro-defects of a gyroscope pivot bearing with a high curvature glabrous surface and analyzing the characteristics of the surface detection and reflection model, a complex illumination system with coaxial and ring lights is proposed. The illumination system is then optimized based on the analysis of illuminance uniformity of target regions by simulation and grey scale uniformity and articulation that are calculated from grey imagery. Currently, in order to apply the Pulse Coupled Neural Network (PCNN) method, structural parameters must be tested and adjusted repeatedly. Therefore, this paper proposes the use of a particle swarm optimization (PSO) algorithm, in which the maximum between cluster variance rules is used as fitness function with a linearily reduced inertia factor. This algorithm is used to adaptively set PCNN connection coefficients and dynamic threshold, which avoids algorithmic precocity and local oscillations. The proposed method is used for pivot bearing defect image processing. The segmentation results of the maximum entropy and minimum error method and the one described in this paper are compared using buffer region matching, and the experimental results show that the method of this paper is effective. PMID:22163796

  16. Real-time defect detection on highly reflective curved surfaces

    NASA Astrophysics Data System (ADS)

    Rosati, G.; Boschetti, G.; Biondi, A.; Rossi, A.

    2009-03-01

    This paper presents an automated defect detection system for coated plastic components for the automotive industry. This research activity came up as an evolution of a previous study which employed a non-flat mirror to illuminate and inspect high reflective curved surfaces. According to this method, the rays emitted from a light source are conveyed on the surface under investigation by means of a suitably curved mirror. After the reflection on the surface, the light rays are collected by a CCD camera, in which the coating defects appear as shadows of various shapes and dimensions. In this paper we present an evolution of the above-mentioned method, introducing a simplified mirror set-up in order to reduce the costs and the complexity of the defect detection system. In fact, a set of plane mirrors is employed instead of the curved one. Moreover, the inspection of multiple bend radius parts is investigated. A prototype of the machine vision system has been developed in order to test this simplified method. This device is made up of a light projector, a set of plane mirrors for light rays reflection, a conveyor belt for handling components, a CCD camera and a desktop PC which performs image acquisition and processing. Like in the previous system, the defects are identified as shadows inside a high brightness image. At the end of the paper, first experimental results are presented.

  17. Context sensitivity in the detection of changes in facial emotion

    PubMed Central

    Yamashita, Yuichi; Fujimura, Tomomi; Katahira, Kentaro; Honda, Manabu; Okada, Masato; Okanoya, Kazuo

    2016-01-01

    In social contexts, reading subtle changes in others’ facial expressions is a crucial communication skill. To measure this ability, we developed an expression-change detection task, wherein a series of pictures of changes in an individual’s facial expressions within contextual scenes were presented. The results demonstrated that the detection of subtle changes was highly sensitive to contextual stimuli. That is, participants identified the direction of facial-expression changes more accurately and more quickly when they were ‘appropriate’—consistent with the valence of the contextual stimulus change—than when they were ‘inappropriate’. Moreover, individual differences in sensitivity to contextual stimuli were correlated with scores on the Toronto Alexithymia Scale, a commonly used measure of alexithymia tendencies. These results suggest that the current behavioural task might facilitate investigations of the role of context in human social cognition. PMID:27291099

  18. Detecting changes in dynamic and complex acoustic environments

    PubMed Central

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-01-01

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095

  19. Towards a Framework for Change Detection in Data Sets

    NASA Astrophysics Data System (ADS)

    Böttcher, Mirko; Nauck, Detlef; Ruta, Dymitr; Spott, Martin

    Since the world with its markets, innovations and customers is changing faster than ever before, the key to survival for businesses is the ability to detect, assess and respond to changing conditions rapidly and intelligently. Discovering changes and reacting to or acting upon them before others do has therefore become a strategical issue for many companies. However, existing data analysis techniques are insufflent for this task since they typically assume that the domain under consideration is stable over time. This paper presents a framework that detects changes within a data set at virtually any level of granularity. The underlying idea is to derive a rule-based description of the data set at different points in time and to subsequently analyse how these rules change. Nevertheless, further techniques are required to assist the data analyst in interpreting and assessing their changes. Therefore the framework also contains methods to discard rules that are non-drivers for change and to assess the interestingness of detected changes.

  20. Detecting changes in dynamic and complex acoustic environments.

    PubMed

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-03-06

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments.

  1. Structural Change Can Be Detected in Advanced-Glaucoma Eyes

    PubMed Central

    Belghith, Akram; Medeiros, Felipe A.; Bowd, Christopher; Liebmann, Jeffrey M.; Girkin, Christopher A.; Weinreb, Robert N.; Zangwill, Linda M.

    2016-01-01

    Purpose To compare spectral-domain optical coherence tomography (SD-OCT) standard structural measures and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients. Methods Thirty-five eyes of 35 patients with very advanced glaucoma (defined as a visual field mean deviation < −21 dB) and 46 eyes of 30 healthy subjects to estimate aging changes were included. Circumpapillary retinal fiber layer thickness (cpRNFL), minimum rim width (MRW), and macular retinal ganglion cell–inner plexiform layer (GCIPL) thicknesses were measured using the San Diego Automated Layer Segmentation Algorithm (SALSA). Progression was defined as structural loss faster than 95th percentile of healthy eyes. Three-dimensional volume ONH change was estimated using the Bayesian-kernel detection scheme (BKDS), which does not require extensive retinal layer segmentation. Results The number of progressing glaucoma eyes identified was highest for 3D volume BKDS (13, 37%), followed by GCPIL (11, 31%), cpRNFL (4, 11%), and MRW (2, 6%). In advanced-OAG eyes, only the mean rate of GCIPL change reached statistical significance, −0.18 μm/y (P = 0.02); the mean rates of cpRNFL and MRW change were not statistically different from zero. In healthy eyes, the mean rates of cpRNFL, MRW, and GCIPL change were significantly different from zero. (all P < 0.001). Conclusions Ganglion cell–inner plexiform layer and 3D volume BKDS show promise for identifying change in severely advanced glaucoma. These results suggest that structural change can be detected in very advanced disease. Longer follow-up is needed to determine whether changes identified are false positives or true progression. PMID:27454660

  2. Extended image differencing for change detection in UAV video mosaics

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang; Schumann, Arne

    2014-03-01

    Change detection is one of the most important tasks when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. We address changes of short time scale, i.e. the observations are taken in time distances from several minutes up to a few hours. Each observation is a short video sequence acquired by the UAV in near-nadir view and the relevant changes are, e.g., recently parked or moved vehicles. In this paper we extend our previous approach of image differencing for single video frames to video mosaics. A precise image-to-image registration combined with a robust matching approach is needed to stitch the video frames to a mosaic. Additionally, this matching algorithm is applied to mosaic pairs in order to align them to a common geometry. The resulting registered video mosaic pairs are the input of the change detection procedure based on extended image differencing. A change mask is generated by an adaptive threshold applied to a linear combination of difference images of intensity and gradient magnitude. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed size of shadows, and compression or transmission artifacts. The special effects of video mosaicking such as geometric distortions and artifacts at moving objects have to be considered, too. In our experiments we analyze the influence of these effects on the change detection results by considering several scenes. The results show that for video mosaics this task is more difficult than for single video frames. Therefore, we extended the image registration by estimating an elastic transformation using a thin plate spline approach. The results for mosaics are comparable to that of single video frames and are useful for interactive image exploitation due to a larger scene coverage.

  3. A new maximum-likelihood change estimator for two-pass SAR coherent change detection

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; Simonson, Katherine Mary

    2016-01-11

    In past research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimator is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.

  4. A new maximum-likelihood change estimator for two-pass SAR coherent change detection

    DOE PAGES

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; ...

    2016-01-11

    In past research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  5. Detection of open and partially closed surface defects in plates using ultrasonic enhancement

    NASA Astrophysics Data System (ADS)

    Clough, A. R.; Edwards, R. S.

    2013-01-01

    Enhancement of the frequency content of multimodal Lamb waves incident on surface breaking defects has been investigated for use in defect detection and characterization, for different thickness plates with machined defects of varying depth. A fully optical method, using laser ultrasonics, was used to study the enhancement as a function of defect depth when passing either the detection (SLD) or generation (SLS) laser over the defect. Time frequency representations (TFRs) were used to identify the wave modes present at each detection point, and the frequency magnitude of various wave modes was tracked, with an increase in magnitude observed for both scanning laser detection and scanning laser source at the defect. The scanning laser detection enhancement is explained by a superposition of incident waves with those reflected and mode converted from the defect. Scanning laser source enhancement can be explained in terms of several mechanisms; including truncation of the source, the change in geometry at the defect and the change in generation boundary conditions at the defect. The TFR analysis was also applied to samples containing partially closed defects caused by stress corrosion cracking (SCC). Scanning laser detection analysis was shown to be incapable of detecting the defects; however, scanning laser source analysis showed large enhancements over the defect site, illustrating the effectiveness of this method for detection of partially closed cracks.

  6. Air coupled ultrasonic detection of surface defects in food cans

    NASA Astrophysics Data System (ADS)

    Seco, Fernando; Ramón Jiménez, Antonio; del Castillo, María Dolores

    2006-06-01

    In this paper, we describe an ultrasonic inspection system used for detection of surface defects in food cans. The system operates in the pulse-echo mode and analyses the 220 kHz ultrasonic signal backscattered by the object. The classification of samples into valid or defective is achieved with χ2 statistics and the k nearest neighbour method, applied to features computed from the envelope of the ultrasonic echo. The performance of the system is demonstrated empirically in detection of the presence of the pull tab on the removable lid of easy-open food cans, in a production line. It is found that three factors limit the performance of the classification: the misalignment of the samples, their separation of the ultrasonic transducer, and the vibration of the conveyor belt. When these factors are controlled, classification success rates between 94% and 99% are achieved.

  7. Optimum detection of an optical image on a photoelectric surface

    NASA Technical Reports Server (NTRS)

    Helstrom, C. W.; Wang, L.

    1972-01-01

    The detection of an optical image in the presence of uniform background light is based on a likelihood ratio formed of the numbers of photoelectrons emitted from small elements of a photoelectric surface onto which the image is focused. When diffraction is negligible and the surface has unit quantum efficiency, this detector is equipollent with the optimum detector of the image forming light. Its performance is compared with that of the threshold detector and that of a detector basing its decisions on the total number of photoelectrons from a finite area of the image. The illuminance of the image is postulated to have a Gaussian spatial distribution. All three detectors exhibit nearly the same reliability.

  8. Folded Compact Range Development and Coherent Change Detection Measurement Project

    SciTech Connect

    Sorensen, K.W.

    1995-03-01

    A novel, folded compact range configuration has been developed at the Sandia National Laboratories compact range antenna and radar cross section measurement facility, operated by the Radar/Antenna Department 2343, as a means of performing indoor, environmentally-controlled, far-field simulations of synthetic aperture radar (SAR) coherent change detection (CCD) measurements. This report describes the development of the folded compact range configuration, as well as the initial set of coherent change detection measurements made with the system. These measurements have been highly successful, and have demonstrated the viability of the folded compact range concept in simulating SAR CCD measurements. It is felt that follow-on measurements have the potential of contributing significantly to the body of knowledge available to the scientific community involved in CCD image generation and processing, and that this tool will be a significant aid in the research and development of change detection methodologies.

  9. Reconstruction of interrupted SAR imagery for persistent surveillance change detection

    NASA Astrophysics Data System (ADS)

    Stojanovic, Ivana; Karl, W. C.; Novak, Les

    2012-05-01

    In this paper we apply a sparse signal recovery technique for synthetic aperture radar (SAR) image formation from interrupted phase history data. Timeline constraints imposed on multi-function modern radars result in interrupted SAR data collection, which in turn leads to corrupted imagery that degrades reliable change detection. In this paper we extrapolate the missing data by applying the basis pursuit denoising algorithm (BPDN) in the image formation step, effectively, modeling the SAR scene as sparse. We investigate the effects of regular and random interruptions on the SAR point spread function (PSF), as well as on the quality of both coherent (CCD) and non-coherent (NCCD) change detection. We contrast the sparse reconstruction to the matched filter (MF) method, implemented via Fourier processing with missing data set to zero. To illustrate the capabilities of the gap-filling sparse reconstruction algorithm, we evaluate change detection performance using a pair of images from the GOTCHA data set.

  10. A Protection And Detection Surface (PADS) for damage tolerance

    NASA Technical Reports Server (NTRS)

    Shuart, Mark J.; Prasad, Chunchu B.; Biggers, Sherrill B.

    1990-01-01

    A protection and detection surface (PADS) concept was studied for application to composite primary aircraft structures. A Kevlar-epoxy woven face sheet with a Rohacell foam core was found to be the most effective PADS configuration among the configurations evaluated. The weight of the PADS configuration was estimated to be approximately 17 pct of the structural weight. The PADS configuration was bonded to graphite-epoxy base laminates, and up to a 70 pct improvement in compression-after-impact failure strains was observed.

  11. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A.; Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    Procedures for detecting changes in Landsat multispectral scanning imagery of coastal zone environments are discussed. Four detection procedures are examined: a comparison of independently produced spectral classifications; a classification of a multispectral difference data set; a single analysis of a multidate data set; and a maximum likelihood classification using multistage decision logic. The relatively complex maximum likelihood classification technique was found to yield results closest to those obtained with the comparison of independently produced spectral classifications, the chosen standard.

  12. Detection of surface bound complement at increasing serum anticoagulant concentrations.

    PubMed

    Arvidsson, S; Askendal, A; Lindahl, T L; Tengvall, P

    2008-04-01

    Surface mediated immune complement activation can be detected by a variety of antibody utilizing methods such as ELISA, fluorescence- or radiolabelling techniques, QCM, and ellipsometry. In the present work we investigated how the common anticoagulants heparin, dalteparin, fondaparinux and sodium citrate affected the binding of anti-complement factor 3c (anti-C3c) on a model complement activator surface, immobilised IgG, after incubation in human blood serum. The results show, as expected, that different anticoagulants affect the antibody binding differently. Increasing amounts of heparin, dalteparin and sodium citrate in normal serum resulted in a decreasing anti-C3c binding. The antibody deposition was not sensitive for the fondaparinux concentration. Surprisingly high concentrations of anti-coagulantia were needed to completely eradicate the antibody binding. Experiments in EGTA-serum showed that anticoagulants interfered directly with both the classical and alternative pathways. Control C3a-des arg ELISA measurements show that the lowered antibody surface binding was not a result of complement depletion in serum. Kallikrein generation by hydrophilic glass surfaces was not affected by high anticoagulant concentrations.

  13. Satellite detection of oil on the marine surface

    NASA Technical Reports Server (NTRS)

    Wilson, M. J.; Oneill, P. E.; Estes, J. E.

    1981-01-01

    The ability of two widely dissimilar spaceborne imaging sensors to detect surface oil accumulations in the marine environment has been evaluated using broadly different techniques. Digital Landsat multispectral scanner (MSS) data consisting of two visible and two near infrared channels has been processed to enhance contrast between areas of known oil coverage and background clean surface water. These enhanced images have then been compared to surface verification data gathered by aerial reconnaissance during the October 15, 1975, Landsat overpass. A similar evaluation of oil slick imaging potential has been made for digitally enhanced Seasat-A synthetic aperture radar (SAR) data from July 18, 1979. Due to the premature failure of this satellite, however, no concurrent surface verification data were collected. As a substitute, oil slick configuration information has been generated for the comparison using meteorological and oceanographic data. The test site utilized in both studies was the extensive area of natural seepage located off Coal Oil Point, adjacent to the University of California, Santa Barbara.

  14. The characteristics and interpretability of land surface change and implications for project design

    USGS Publications Warehouse

    Sohl, Terry L.; Gallant, Alisa L.; Loveland, Thomas R.

    2004-01-01

    The need for comprehensive, accurate information on land-cover change has never been greater. While remotely sensed imagery affords the opportunity to provide information on land-cover change over large geographic expanses at a relatively low cost, the characteristics of land-surface change bring into question the suitability of many commonly used methodologies. Algorithm-based methodologies to detect change generally cannot provide the same level of accuracy as the analyses done by human interpreters. Results from the Land Cover Trends project, a cooperative venture that includes the U.S. Geological Survey, Environmental Protection Agency, and National Aeronautics and Space Administration, have shown that land-cover conversion is a relatively rare event, occurs locally in small patches, varies geographically and temporally, and is spectrally ambiguous. Based on these characteristics of change and the type of information required, manual interpretation was selected as the primary means of detecting change in the Land Cover Trends project. Mixtures of algorithm-based detection and manual interpretation may often prove to be the most feasible and appropriate design for change-detection applications. Serious examination of the expected characteristics and measurability of change must be considered during the design and implementation phase of any change analysis project.

  15. Microfluidic Devices Integrating Microcavity Surface-Plasmon-Resonance Sensors: Glucose Oxidase Binding-Activity Detection

    PubMed Central

    Amarie, Dragos; Alileche, Abdelkrim; Dragnea, Bogdan; Glazier, James A.

    2010-01-01

    We have developed miniature (≈1 μm diameter) microcavity surface-plasmon-resonance sensors (MSPRS), integrated them with microfluidics and tested their sensitivity to refractive-index changes. We tested their biosensing capability by distinguishing the interaction of glucose oxidase (Mr 160 kDa) with its natural substrate (β-D-glucose, Mr 180 Da) from its interactions with non-specific substrates (L-glucose, D-mannose and 2-deoxy-D-glucose). We ran the identical protocol we had used with the MSPRS on a Biacore 3000 instrument using their bare gold chip. Only the MSPRS was able to detect β-D-glucose binding to glucose oxidase. Each MSPRS can detect the binding to its surface of fewer than 35,000 glucose-oxidase molecules (representing 9.6 fg or 60 zmol of protein), about 106 times fewer than classical surface-plasmon-resonance biosensors. PMID:19968248

  16. Surface-immobilized polyampholytic silver nanoparticles for SERS detection of cations and anions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Tan, Siliu; Pristinski, Denis; Sukhishvili, Svetlana; Du, Henry

    2005-11-01

    A new procedure was used for the preparation of stable silver colloids by reduction of silver nitrate with (N (2 hydroxyethyl) piperazine N'-2 ethanesulfonic acid (HEPES). The nanoparticle size and the surface charge could be tuned by changing the initial pH of a HEPES solution. Rhodamine 6G and NaSCN were used respectively as model cationic and anionic analytes to study the effect of surface charge of the silver colloids on detection sensitivity. The silver colloids exhibit SERS activity comparable to those obtained by the popular Lee-Meisel approach. The combination of the high SERS sensitivity and the ability to control the nature of surface charge renders HEPES-reduced polyampholytic silver colloids a potentially powerful platform for sensing and detection of both cations and anions in aqueous solutions.

  17. Investigation on automatic change detection using pixel-changes and DSM-changes with ALOS-PRISM triplet images

    NASA Astrophysics Data System (ADS)

    Sasagawa, A.; Baltsavias, E.; Kocaman Aksakal, S.; Wegner, J. D.

    2013-10-01

    A new algorithm for automatic change detection is presented. It detects a pixel-change and DSM-change from two orthoimages and two DSMs, then it extracts the polygons in elevation-changed areas. Pixel-change is detected by using least squares fitting technique. This method can extract the visible changed areas between two orthoimages, while DSM-change is detected by difference DSM. From these two changes, polygons in elevation-changed areas are extracted using the longest matched line selection techniques. This method can automatically detect not only visible changed areas such as vegetated areas, new road construction areas and so on, but also elevation-changed areas such as new building construction, land improvement areas and so on with footprint polygon extraction. We have tested our method using the two sets of ALOS-PRISM triplet images observed over a testfield in Tsukuba, Japan. We confirmed that this method has an effect finding changed areas. Also we compared the number of extracted polygons between manual operation and our automatic method.

  18. Global Surface Temperature Change and Uncertainties Since 1861

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.

  19. Surface topographical changes measured by phase-locked interferometry

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Fung, S. S.

    1984-01-01

    An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed to examine surface profiles of bearing surfaces without physical contact. Topological chemical reactivity was determined by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. The reactivity of stainless steel plates, heated in a nitrogen atmosphere to different temperatures, were examined later at ambient temperature. The change of surface contour as a result of the probe reaction followed Arrhenius-type relation with respect to heat treatment temperature. The contact area of the plate of a ball/plate sliding elastohydrodynamic contact run on trimethylopropane triheptanoate with or without additives was optically profiled periodically. As scuffing was approached, the change of profile within the contact region changed much more rapidly by the acid probe and assumed a constant high value after scuffing. A nonetching metallurgical phase was found in the scuff mark, which was apparently responsible for the high reactivity.

  20. Changes in contact angle providing evidence for surface alteration in multi-component solid foods

    NASA Astrophysics Data System (ADS)

    Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2015-11-01

    Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.

  1. Procedure to detect impervious surfaces using satellite images and light detection and ranging (lidar) data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cuenca, B.; Alonso-Rodríguez, M. C.; Domenech-Tofiño, E.; Valcárcel Sanz, N.; Delgado-Hernández, J.; Peces-Morera, Juan José; Arozarena-Villar, Antonio

    2014-10-01

    The detection of impervious surfaces is an important issue in the study of urban and rural environments. Imperviousness refers to water's inability to pass through a surface. Although impervious surfaces represent a small percentage of the Earth's surface, knowledge of their locations is relevant to planning and managing human activities. Impervious structures are primarily manmade (e.g., roads and rooftops). Impervious surfaces are an environmental concern because many processes that modify the normal function of land, air, and water resources are initiated during their construction. This paper presents a novel method of identifying impervious surfaces using satellite images and light detection and ranging (LIDAR) data. The inputs for the procedure are SPOT images formed by four spectral bands (corresponding to red, green, near-infrared and mid-infrared wavelengths), a digital terrain model, and an .las file. The proposed method computes five decision indexes from the input data to classify the studied area into two categories: impervious (subdivided into buildings and roads) and non-impervious surfaces. The impervious class is divided into two subclasses because the elements forming this category (mainly roads and rooftops) have different spectral and height properties, and it is difficult to combine these elements into one group. The classification is conducted using a decision tree procedure. For every decision index, a threshold is set for which every surface is considered impervious or non-impervious. The proposed method has been applied to four different regions located in the north, center, and south of Spain, providing satisfactory results for every dataset.

  2. Sensing and responding to the changes of geometric surfaces in flexible manufacturing and assembly

    NASA Astrophysics Data System (ADS)

    Bi, Z. M.; Kang, Bongsu

    2014-03-01

    A flexible manufacturing system is capable of dealing with changes and uncertainties occurring in a manufacturing environment. A rigid automation system adapts changes through reconfiguration or manual modification of its control programmes. In contrast, an advanced system responds to the changes autonomously or with a minimal manual intervention. One critical technology for a flexible manufacturing system is to detect or predict the changes and uncertainties and take them into account for the control of the manufacturing system. In this paper, an intelligent manufacturing system is proposed to accommodate product geometric variants autonomously by integrating a 3D vision system into manufacturing processes. The proposed system is capable of acquiring vision sensor data, detecting the geometric changes, and modifying the control programmes of the machine in response to the changes. In this innovative work, a new method for converting the raw vision sensor data into a surface model of the product is presented. A new surface reconstruction algorithm is proposed to generate the surface model directly from the raw 3D point-cloud data of a product. In addition, an advanced programming algorithm that uses acquired surface models to automatically update robot programmes for a new task with minimal manual intervention is presented.

  3. Using adversary text to detect adversary phase changes.

    SciTech Connect

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2009-05-01

    The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

  4. Dissolve Detection Using Intensity Change Information of Edge Pixels

    NASA Astrophysics Data System (ADS)

    Kwon, Chul-Hyun; Han, Doo-Jin; Kim, Hyun-Sool; Lee, Myung-Ho; Park, Sang-Hui

    Shot transition detection is a core technology in video browsing, indexing systems and information retrieval. In this paper we propose a dissolve detection algorithm using the characteristics of edge in MPEG compressed video. Using the intensity change information of edge pixels obtained by Sobel edge detector, we detect the location of a dissolve and its precise duration. We also present a new reliable method to eliminate the false dissolves. The proposed algorithm is tested in various types of videos, and the experimental results show that the proposed algorithm is effective and robust.

  5. Detecting invisible bacillus spores on surfaces using a portable surface-enhanced Raman analyzer

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Inscore, Frank; Sperry, Jay F.

    2006-10-01

    Since the distribution of anthrax causing spores through the U.S. Postal System in the autumn of 2001, numerous methods have been developed to detect spores with the goal of minimizing casualties. During and following an attack it is also important to detect spores on surfaces, to assess extent of an attack, to quantify risk of infection by contact, as well as to evaluate post-attack clean-up. To perform useful measurements, analyzers and/or methods must be capable of detecting as few as 10 spores/cm2, in under 5-minutes, with little or no sample preparation or false-positive responses, using a portable device. In an effort to develop such a device, we have been investigating the ability of surfaceenhanced Raman spectroscopy (SERS) to detect dipicolinic acid (DPA) as a chemical signature of bacilli spores. In 2003 we employed SERS to measure DPA extracted from a 10,000 spores per μL sample using hot dodecylamine. Although the entire measurement was performed in 2 minutes, the need to heat the dodecylamine limits field portability of the method. Here we describe the use of a room temperature digesting agent in combination with SERS to detect 220 spores collected from a surface in a 1 μL sample within 3 minutes.

  6. Segmentation of Arteries in Minimally Invasive Surgery Using Change Detection

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Kosugi, Yukio; Kojima, Kazuyuki

    In laparoscopic surgery, the lack of tactile sensation and 3D visual feedback make it difficult to identify the position of a blood vessel intraoperatively. An unintentional partial tear or complete rupture of a blood vessel may result in a serious complication; moreover, if the surgeon cannot manage this situation, open surgery will be necessary. Differentiation of arteries from veins and other structures and the ability to independently detect them has a variety of applications in surgical procedures involving the head, neck, lung, heart, abdomen, and extremities. We have used the artery's pulsatile movement to detect and differentiate arteries from veins. The algorithm for change detection in this study uses edge detection for unsupervised image registration. Changed regions are identified by subtracting the systolic and diastolic images. As a post-processing step, region properties, including color average, area, major and minor axis lengths, perimeter, and solidity, are used as inputs of the LVQ (Learning Vector Quantization) network. The output results in two object classes: arteries and non-artery regions. After post-processing, arteries can be detected in the laparoscopic field. The registration method used here is evaluated in comparison with other linear and nonlinear elastic methods. The performance of this method is evaluated for the detection of arteries in several laparoscopic surgeries on an animal model and on eleven human patients. The performance evaluation criteria are based on false negative and false positive rates. This algorithm is able to detect artery regions, even in cases where the arteries are obscured by other tissues.

  7. Climate Change Detection and Attribution of Infrared Spectrum Measurements

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Parker, Peter A.; Mlynczak, Martin G.

    2012-01-01

    Climate change occurs when the Earth's energy budget changes due to natural or possibly anthropogenic forcings. These forcings cause the climate system to adjust resulting in a new climate state that is warmer or cooler than the original. The key question is how to detect and attribute climate change. The inference of infrared spectral signatures of climate change has been discussed in the literature for nearly 30 years. Pioneering work in the 1980s noted that distinct spectral signatures would be evident in changes in the infrared radiance emitted by the Earth and its atmosphere, and that these could be observed from orbiting satellites. Since then, a number of other studies have advanced the concepts of spectral signatures of climate change. Today the concept of using spectral signatures to identify and attribute atmospheric composition change is firmly accepted and is the foundation of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) satellite mission being developed at NASA. In this work, we will present an overview of the current climate change detection concept using climate model calculations as surrogates for climate change. Any future research work improving the methodology to achieve this concept will be valuable to our society.

  8. Convolutional neural network features based change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  9. Detection of cardiac activity changes from human speech

    NASA Astrophysics Data System (ADS)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  10. The detection of climate change due to the enhanced greenhouse effect

    NASA Technical Reports Server (NTRS)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  11. PALSAR Change Detection in Urban Areas of European Part of Russia

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander; Zakharova, Ludmila

    2008-11-01

    The paper is focused at interferometric analysis of the areas of karst and landslide in Russia's European region. These are karst surfaces in proximity of railroad near Dzerzhinsk city, Nizhny Novgorod region, and Volga riverbank in the center of Ulyanovsk city with landslide activity. All the PALSAR data analyzed were collected in 2007. Both test sites demonstrated activity of ground displacement processes. The changes in local elevations were detected and evaluated in centimeter (Dzerzhinsk) and millimeter (Ulyanovsk) scale. Results of interferometric processing of PALSAR data confirm advantages of L-band for change detection compared to C-band.

  12. Recent changes in surface water extent over the Northern latitudes.

    NASA Astrophysics Data System (ADS)

    Papa, F.; Prigent, C.; Rossow, W. B.

    2009-04-01

    All climate scenarios agree on the high sensitivity of the northern regions to global change, with a stronger warming at these latitudes than globally. Continued warming will likely have profound consequences for many continental systems throughout the region. In particular, an increase in air temperature is expected to intensify the Arctic hydrological cycle. As a key parameter of the global biogeochemical and hydrological cycles, terrestrial surface waters (rivers, lakes, man-made reservoirs, wetlands and episodically inundation) are of a particular importance because they interact directly with the ocean and atmosphere. Using a multi-satellite method, including passive microwave land surface emissivities, along with active microwave, visible and near infrared observations developed to estimate inundated area at global scale, we present here the recent changes observed in surface water extent in Northern latitudes over the period 1993-2004. Over these regions, results show a decline in surface water extent with large geographical contrasts between Eurasia and America, between the different large river basins and between the regions underlain or not by permafrost. For six major basins located in Eurasia and North America, we analyze theses changes in comparison with precipitation, temperature and in-situ river discharge variations. The Yenissey and the Lena river basins, which are largely underlain by permafrost, show the largest changes in surface water extent especially in July/August with a decline of about 1-2% per year. Our results support the idea that more deeply thawed permafrost, due to temperature increase in the Boreal regions, would promote increased soil infiltration and a possible shift of water storage from the surface/near surface to the subsurface. The implications of these results in term of energy, biochemical and water cycles will be discussed.

  13. Detecting human influence in observed changes in precipitation

    NASA Astrophysics Data System (ADS)

    Polson, Debbie; Hegerl, Gabriele; Bollasina, Massimo; Wilcox, Laura; Zhang, Xuebin; Osborn, Timothy; Balan Sarojini, Beena

    2015-04-01

    Human induced changes to the precipitation could cause some of the most serious impacts of climate change, with potential consequences for water resources, health, agriculture and ecosystems. However, quantifying and understanding the drivers of changes to precipitation is challenging due to its large spatial and temporal variability, the lack of long-term observational records over much of the globe and the counteracting affects of greenhouse gases and aerosols. Nevertheless, detection and attribution studies have shown that human influence has changed both global and regional precipitation over the latter half of the 20th century. Using climates models to derive fingerprints of external forcing, we are able to show that greenhouse gas warming has driven large scale changes in precipitation. Greenhouse gas forcing is detectable in observed changes to zonal mean precipitation over land (Polson et al., 2012a). It has also been shown to have caused the intensification of the water cycle, enhancing existing patterns of the precipitation in the tropics and subtropics, over both land and ocean (Polson et al., 2012b). While at global scales, the influence of greenhouse gases is detectable in observations, separating the response of precipitation to anthropogenic aerosol forcing is more difficult. However, in some regions the influence of aerosols dominate, making it possible to detect aerosol forcing. Observed precipitation in the monsoon regions underwent substantial changes during the second half of the twentieth century, with drying from the 1950s to mid-1980s and increasing precipitation in recent decades. Climate model simulations are used to derive fingerprints of individual climate forcings (i.e., greenhouse gas, anthropogenic aerosol, and natural) and detection and attribution methods applied to determine which, if any, have driven these changes to monsoon precipitation. Even when accounting for internal variability of the climate, a clear signal of anthropogenic

  14. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  15. Electronic system for floor surface type detection in robotics applications

    NASA Astrophysics Data System (ADS)

    Tarapata, Grzegorz; Paczesny, Daniel; Tarasiuk, Łukasz

    2016-11-01

    The paper reports a recognizing method base on ultrasonic transducers utilized for the surface types detection. Ultra-sonic signal is transmitted toward the examined substrate, then reflected and scattered signal goes back to another ultra-sonic receiver. Thee measuring signal is generated by a piezo-electric transducer located at specified distance from the tested substrate. The detector is a second piezo-electric transducer located next to the transmitter. Depending on thee type of substrate which is exposed by an ultrasonic wave, the signal is partially absorbed inn the material, diffused and reflected towards the receiver. To measure the level of received signal, the dedicated electronic circuit was design and implemented in the presented systems. Such system was designed too recognize two types of floor surface: solid (like concrete, ceramic stiles, wood) and soft (carpets, floor coverings). The method will be applied in electronic detection system dedicated to autonomous cleaning robots due to selection of appropriate cleaning method. This work presents the concept of ultrasonic signals utilization, the design of both the measurement system and the measuring stand and as well number of wide tests results which validates correctness of applied ultrasonic method.

  16. Meteoroid Impact Ejecta Detection by Nanosatellites for Asteroid Surface Characterization

    NASA Astrophysics Data System (ADS)

    Lee, N.; Close, S.; Goel, A.

    2015-12-01

    Asteroids are constantly bombarded by much smaller meteoroids at extremely high speeds, which results in erosion of the material on the asteroid surface. Some of this material is vaporized and ionized, forming a plasma that is ejected into the environment around the asteroid where it can be detected by a constellation of closely orbiting nanosatellites. We present a concept to leverage this natural phenomenon and to analyze this excavated material using low-power plasma sensors on nanosatellites in order to determine the composition of the asteroid surface. This concept would enable a constellation of nanosatellites to provide useful data complementing existing techniques such as spectroscopy, which require larger and more power-hungry sensors. Possible mission architectures include precursor exploratory missions using nanosatellites to survey and identify asteroid candidates worthy of further study by a large spacecraft, or simultaneous exploration by a nanosatellite constellation with a larger parent spacecraft to decrease the time required to cover the entire asteroid surface. The use of meteoroid impact plasma to analyze the surface composition of asteroids will not only produce measurements that have not been previously obtained, including the molecular composition of the surface, but will also yield a better measurement of the meteoroid flux in the vicinity of the asteroid. Current meteoroid models are poorly constrained beyond the orbit of Mars, due to scarcity of data. If this technology is used to survey asteroids in the main belt, it will offer a dramatic increase in the availability of meteoroid flux measurements in deep space, identifying previously unknown meteoroid streams and providing additional data to support models of solar system dust dynamics.

  17. Temporal changes of mid-latitude surface regions on Titan

    NASA Astrophysics Data System (ADS)

    Solomonidou, Anezina; Coustenis, Athena; Lopes, Rosaly M.; Rodriguez, Sebastien; Hirtzig, Mathieu; Stephan, Katrin; Sotin, Christophe; Drossart, Pierre; Le Mouélic, Stephane; Lawrence, Kenneth; Jaumann, Ralf; Brown, Robert H.; Bratsolis, Emmanuel

    2014-11-01

    The Cassini-Huygens instruments revealed that Titan, Saturn’s largest moon, has a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes on Titan is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. Data from the remote sensing instruments have shown the presence of diverse terrains, suggesting exogenic and endogenic processes. However, interpretations of surface features need a precise knowledge of the contribution by the dense intervening atmosphere, especially the troposphere. Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) collects spectro-images within the so-called “methane windows” where the methane atmospheric absorption is weak, but non-negligible, permitting however a good perception of the surface. In order to make a good evaluation of the atmosphere and extract surface information we follow a method using a statistical tool and a Radiative transfer code with which we analyze regions of interest (i.e. regions of unknown origin), in order to monitor if their spectral behavior changes with time. These are cryovolcanic candidates and for comparison undifferentiated plains. We find that the cryovolcanic candidates Tui Regio and Sotra Patera change with time becoming darker and brighter respectively in terms of surface albedo while the plains do not present any significant change. The surface brightening of Sotra supports a possible cryovolcanic rather than an exogenic origin. The unchanged surface behavior of the plains supports a sedimentary origin rather than cryovolcanic. Such a variety of geologic processes and their relationship to the methane cycle make Titan particularly significant in Solar System studies.

  18. Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor.

    PubMed

    Liu, Xia; Li, Lei; Liu, You-Qian; Shi, Xing-Bo; Li, Wen-Jin; Yang, Yang; Mao, Lu-Gang

    2014-09-15

    Small molecules or analytes present in trace level are difficult to be detected directly using conventional surface plasmon resonance (SPR) sensor, due to its small changes in the refractive index induced by the binding of these analytes on the sensor surface. In this paper, a new approach that combines SPR sensor technology with Fe3O4 magnetic nanoparticles (MNPs) assays is developed for directly detecting of deltamethrin in soybean. The Fe3O4 MNPs conjugated with antibodies specific to antigen serves as both labels for enhancing refractive index change due to the capture of target analyte, and "vehicles" for the rapid delivery of analyte from a sample solution to the sensor surface. Meanwhile, SPR direct detection format without Fe3O4 MNPs and gas chromatography (GC) analysis were conducted for detection of deltamethrin in soybean to demonstrate the amplification effect of Fe3O4 MNPs. A good linear relationship was obtained between SPR responses and deltamethrin concentrations over a range of 0.01-1 ng/mL with the lowest measurable concentration of 0.01 ng/mL. The results reveal that the detection sensitivity for deltamethrin was improved by 4 orders of magnitude compared with SPR direct detection format. The recovery of 95.5-119.8% was obtained in soybean. The excellent selectivity of the present biosensor is also confirmed by two kinds of pesticides (fenvalerate and atrazine) as controls. This magnetic separation and amplification strategy has great potential for detection of other small analytes in trace level concentration, with high selectivity and sensitivity by altering the target-analyte-capture agent labeled to the carboxyl-coated Fe3O4 MNPs.

  19. Evaluation of Biosensor Surfaces for the Detection of Microtubule Perturbation

    PubMed Central

    Daghestani, Hikmat N.; Fernig, David G.; Day, Billy W.

    2009-01-01

    Dual polarization interferometry (DPI) and resonant mirror (RM) methods were used to characterize the growth of microtubules (MTs) on biosensor surfaces. The structure and dynamics of MTs play an important role in cell division and are a target for many anti-cancer drugs. Evidence from DPI demonstrated the growth of MTs on streptavidin-biotinylated-tubulin surfaces from the increase in mass and thickness, with a simultaneous decrease in density. The initial increase in thickness of 0.236 nm/min suggested the elongation of protofilaments before they join laterally to form the MT, where the rate of growth increased to 0.436 nm/min. Continuous mass increases were also observed when tubulin was added to a similar underlying RM surface. Tubulin binding to these surfaces was also temperature dependent, increasing the absolute response with MT stabilizers, while inhibiting binding with destabilizers when temperature was changed from 15 to 37 °C. Finally, the initial rates of tubulin assembly (mean ± SD, n=3) with MT-stabilizer agents were significantly higher at 1.50 ± 0.27 arcseconds/s and 1.04 ± 0.13 arcseconds/s, respectively, compared to 0.37 ± 0.11 arcseconds/s for tubulin containing GTP only. In the presence of the MT destabilizers, colchicine and dolastatin 10, the slopes of initial rates were lower than in their absence at 0.05 ± 0.01 arcseconds/s and 0.27 ± 0.08 arcseconds/s, respectively. This provides evidence for the ability of surface-based optical sensors to distinguish between MT stabilizers and destabilizers, while also paving the path to develop other methods to screen for MT-perturbing agents using the same underlying surface engineering. PMID:19595587

  20. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data

    USGS Publications Warehouse

    Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian

    2003-01-01

    We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.

  1. Detecting Changes in Terrain Using Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Hines, Glenn D.; Logan, Michael J.

    2005-01-01

    In recent years, small unmanned aerial vehicles (UAVs) have been used for more than the thrill they bring to model airplane enthusiasts. Their flexibility and low cost have made them a viable option for low-altitude reconnaissance. In a recent effort, we acquired video data from a small UAV during several passes over the same flight path. The objective of the exercise was to determine if objects had been added to the terrain along the flight path between flight passes. Several issues accrue to this simple-sounding problem: (1) lighting variations may cause false detection of objects because of changes in shadow orientation and strength between passes; (2) variations in the flight path due to wind-speed, and heading change may cause misalignment of gross features making the task of detecting changes between the frames very difficult; and (3) changes in the aircraft orientation and altitude lead to a change in size of the features from frame-to-frame making a comparison difficult. In this paper, we discuss our efforts to perform this change detection, and the lessons that we learned from this exercise.

  2. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, William A.; Brada, Mark P.

    1995-01-01

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.

  3. Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics

    DOEpatents

    Ellingson, W.A.; Brada, M.P.

    1995-06-20

    A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.

  4. Detection of epigenetic changes using ANOVA with spatially varying coefficients.

    PubMed

    Guanghua, Xiao; Xinlei, Wang; Quincey, LaPlant; Nestler, Eric J; Xie, Yang

    2013-03-13

    Identification of genome-wide epigenetic changes, the stable changes in gene function without a change in DNA sequence, under various conditions plays an important role in biomedical research. High-throughput epigenetic experiments are useful tools to measure genome-wide epigenetic changes, but the measured intensity levels from these high-resolution genome-wide epigenetic profiling data are often spatially correlated with high noise levels. In addition, it is challenging to detect genome-wide epigenetic changes across multiple conditions, so efficient statistical methodology development is needed for this purpose. In this study, we consider ANOVA models with spatially varying coefficients, combined with a hierarchical Bayesian approach, to explicitly model spatial correlation caused by location-dependent biological effects (i.e., epigenetic changes) and borrow strength among neighboring probes to compare epigenetic changes across multiple conditions. Through simulation studies and applications in drug addiction and depression datasets, we find that our approach compares favorably with competing methods; it is more efficient in estimation and more effective in detecting epigenetic changes. In addition, it can provide biologically meaningful results.

  5. Environmental Change Detection Using Multi-Temporal SAR Imagery

    NASA Astrophysics Data System (ADS)

    Fazel, Mohammad A.; Homayouni, Saeid; Aghakarimi, Armin

    2013-04-01

    Monitoring of environmental phenomena in short-, mid- and long-term periods is the first step of any study or plan for natural resource management. As a result, detection and identification of the environmental changes became a main area of research for different applications. Remotely sensed data and especially Synthetic Aperture Radar (SAR) imagery thanks to its independence to weather conditions and sun illumination, and its spatial and temporal resolution ability is a valuable source of information for change detection analysis and provides reliable data for information extraction for various applications. In general, change detection methods are grouped into supervised and unsupervised methods. Supervised methods work based on multi-temporal land-cover mapping of satellite images. While, unsupervised techniques include the very simple idea of image differencing to more sophisticated statistical modeling of changes in images. Unsupervised methods because of their advantages are more important in many applications. In recent years, the use of kernel based methods in change detection applications became an interesting topic in remote sensing community. Kernel-based methods and machine learning algorithms are the unsupervised paradigms which introduced powerful tools to deal with nonlinear classification. In this paper, we have presented a fully unsupervised framework for detecting the Urmia Lake changes during 2007 to 2010. This method uses the kernel-based clustering technique. The kernel k-means algorithm separates the changes from no-change classes of speckle free images. This method is a non-linear algorithm which considers the contextual information. For this purpose, at first, difference maps are calculated from multi-temporal data. Then these maps are projected into a higher dimensional space by using kernel function. Finally an unsupervised k-means clustering algorithm is used to obtain change and no-change classes. The proposed methodology is applied to

  6. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    NASA Astrophysics Data System (ADS)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  7. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography

    PubMed Central

    Freitas, João; Teixeira, António; Silva, Samuel; Oliveira, Catarina; Dias, Miguel Sales

    2015-01-01

    Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG) based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI), collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics. PMID:26069968

  8. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography.

    PubMed

    Freitas, João; Teixeira, António; Silva, Samuel; Oliveira, Catarina; Dias, Miguel Sales

    2015-01-01

    Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG) based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI), collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics.

  9. Protein immobilization and detection on laser processed polystyrene surfaces

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, Evangelia; Petrou, Panagiota S.; Kollia, Zoe; Palles, Dimitrios; Spyropoulos-Antonakakis, Nikolaos; Kakabakos, Sotirios; Cefalas, Alkiviadis-Constantinos

    2011-09-01

    The bovine serum albumin (BSA)-polystyrene (PS) interface layer is laser photo activated at 157 nm for site selective multiple target-protein immobilization. The 5-15 nm photon induced interface layer has different chemical, wetting, and stiffness properties than the PS photon processed surface. The irradiated areas exhibit target-protein binding, followed by localized probe-target protein detection. The photon induced chemical modification of the BSA-PS interface layer is identified by: (1) Morphological, imaging, and analysis of surface parameters with atomic force microscopy, (2) spectroscopic shift (4 cm-1), of the amide I group and formation of new C=N, NH2, C-O, C=O, and O-C=O groups following irradiation, identified with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and (3) the different hydrophilic/hydrophobic and force-distance response of the bare PS and BSA-PS surfaces. Near field edge diffraction (Fresnel) fluorescence imaging specifies the threshold photon energy and the fluence required to optically detect the protein binding on the photon induced BSA-PS interface layer. By approximating the Fresnel integrals with analytical functions, the threshold photon energy and the fluence are expressed as the sum of zero, first, and second order harmonic terms of two characteristic diffracted modes and they are specified to be 8.73×10-9Jand623 J m-2, respectively. Furthermore, a bioarray of three probe-target proteins is fabricated with 1.5 μm spatial resolution using a 157 nm laser microstepper. The methodology eliminates the use of intermediate polymer layers between the blocking BSA protein and the PS substrate in bioarray fabrication.

  10. Protein immobilization and detection on laser processed polystyrene surfaces

    SciTech Connect

    Sarantopoulou, Evangelia; Kollia, Zoe; Palles, Dimitrios; Spyropoulos-Antonakakis, Nikolaos; Cefalas, Alkiviadis-Constantinos; Petrou, Panagiota S.; Kakabakos, Sotirios

    2011-09-15

    The bovine serum albumin (BSA)-polystyrene (PS) interface layer is laser photo activated at 157 nm for site selective multiple target-protein immobilization. The 5-15 nm photon induced interface layer has different chemical, wetting, and stiffness properties than the PS photon processed surface. The irradiated areas exhibit target-protein binding, followed by localized probe-target protein detection. The photon induced chemical modification of the BSA-PS interface layer is identified by: (1) Morphological, imaging, and analysis of surface parameters with atomic force microscopy, (2) spectroscopic shift (4 cm{sup -1}), of the amide I group and formation of new C=N, NH{sub 2}, C-O, C=O, and O-C=O groups following irradiation, identified with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and (3) the different hydrophilic/hydrophobic and force-distance response of the bare PS and BSA-PS surfaces. Near field edge diffraction (Fresnel) fluorescence imaging specifies the threshold photon energy and the fluence required to optically detect the protein binding on the photon induced BSA-PS interface layer. By approximating the Fresnel integrals with analytical functions, the threshold photon energy and the fluence are expressed as the sum of zero, first, and second order harmonic terms of two characteristic diffracted modes and they are specified to be 8.73x10{sup -9} Jand623 J m{sup -2}, respectively. Furthermore, a bioarray of three probe-target proteins is fabricated with 1.5 {mu}m spatial resolution using a 157 nm laser microstepper. The methodology eliminates the use of intermediate polymer layers between the blocking BSA protein and the PS substrate in bioarray fabrication.

  11. A change detection approach to moving object detection in low frame-rate video

    SciTech Connect

    Porter, Reid B; Harvey, Neal R; Theiler, James P

    2009-01-01

    Moving object detection is of significant interest in temporal image analysis since it is a first step in many object identification and tracking applications. A key component in almost all moving object detection algorithms is a pixel-level classifier, where each pixel is predicted to be either part of a moving object or part of the background. In this paper we investigate a change detection approach to the pixel-level classification problem and evaluate its impact on moving object detection. The change detection approach that we investigate was previously applied to multi-and hyper-spectral datasets, where images were typically taken several days, or months apart. In this paper, we apply the approach to low-frame rate (1-2 frames per second) video datasets.

  12. Change of surface critical current in the surface superconductivity and mixed states of superconducting niobium

    NASA Astrophysics Data System (ADS)

    Aburas, Muhamad; Pautrat, Alain; Bellido, Natalia

    2017-01-01

    A systematic study of irreversible magnetization was performed in bulk niobium after different surface treatments. Starting with smooth surfaces and abrading them, a strong increase of the critical current is observed up to an apparent limiting value. An impressive change of the critical current is also observed in the surface superconductivity (SSC) state, reaching values of the same order of magnitude as in the mixed state. We explain also the observation of strong SSC for magnetic fields perpendicular to large facets in terms of nucleation of superconductivity along bumps of a corrugated surface.

  13. Spectral phase-shift detection of surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Duliakova, M.; Hlubina, P.; Ciprian, D.

    2016-12-01

    A two-step spectral interferometric technique to detect the spectral phase shift of surface plasmon resonance (SPR) in the Kretschmann configuration is proposed and demonstrated. The technique utilizes a polarimetry setup to record two channeled spectra, one including reflection of p- and s-polarized waves from an SPR structure for air when the SPR phenomenon does not occur, and the other one for an analyte when the SPR phenomenon occurs. The channeled spectra are used to detect the SPR spectral phase shift and first, an SF10 glass prism and a gold coated SF10 slide with a chromium adhesion layer is used to measure the SPR phase shift for aqueous solutions of ethanol. In addition, the position of a sharp maximum in the spectral derivative of the SPR phase shift is measured as a function of the analyte parameter. Second, the setup with a gold coated SF10 glass prism is used to measure the SPR phase shift for the same analyte. It is revealed that the detection accuracy of the measurement of the spectral derivative of the SPR phase shift in the second setup is lower than that in the first setup. For the first case, the measurements are accompanied by theoretical modeling of the SPR responses using the material dispersion characteristics.

  14. Automated anomaly detection for Orbiter High Temperature Reusable Surface Insulation

    NASA Astrophysics Data System (ADS)

    Cooper, Eric G.; Jones, Sharon M.; Goode, Plesent W.; Vazquez, Sixto L.

    1992-11-01

    The description, analysis, and experimental results of a method for identifying possible defects on High Temperature Reusable Surface Insulation (HRSI) of the Orbiter Thermal Protection System (TPS) is presented. Currently, a visual postflight inspection of Orbiter TPS is conducted to detect and classify defects as part of the Orbiter maintenance flow. The objective of the method is to automate the detection of defects by identifying anomalies between preflight and postflight images of TPS components. The initial version is intended to detect and label gross (greater than 0.1 inches in the smallest dimension) anomalies on HRSI components for subsequent classification by a human inspector. The approach is a modified Golden Template technique where the preflight image of a tile serves as the template against which the postflight image of the tile is compared. Candidate anomalies are selected as a result of the comparison and processed to identify true anomalies. The processing methods are developed and discussed, and the results of testing on actual and simulated tile images are presented. Solutions to the problems of brightness and spatial normalization, timely execution, and minimization of false positives are also discussed.

  15. Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples.

    PubMed

    Mutreja, Ruchi; Jariyal, Monu; Pathania, Preeti; Sharma, Arunima; Sahoo, D K; Suri, C Raman

    2016-11-15

    A specific surface antigen, OmpD has been reported first time as a surface biomarker in the development of selective and sensitive immunosensor for detecting Salmonella typhimurium species. The OmpD surface antigen extraction was done from Salmonella typhimurium serovars, under the optimized growth conditions for its expression. Anti-OmpD antibodies were generated and used as detector probe in immunoassay format on graphene-graphene oxide (G-GO) modified screen printed carbon electrodes. The water samples were spiked with standard Salmonella typhimurium cells, and detection was done by measuring the change in impedimetric response of developed immunosensor to know the concentration of serovar Salmonella typhimurium. The developed immunosensor was able to specifically detect S. typhimurium in spiked water and juice samples with a sensitivity upto 10(1)CFUmL(-1), with high selectivity and very low cross-reactivity with other strains. This is the first report on the detection of Salmonella typhimurum species using a specific biomarker, OmpD. The developed technique could be very useful for the detection of nontyphoidal Salmonellosis and is also important from an epidemiological point of view.

  16. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  17. Peptide immobilisation on porous silicon surface for metal ions detection

    NASA Astrophysics Data System (ADS)

    Sam, Sabrina S.; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F.; Etcheberry, Arnaud A.; Gabouze, Nour-Eddine N.

    2011-06-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl- N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  18. Peptide immobilisation on porous silicon surface for metal ions detection.

    PubMed

    Sam, Sabrina S; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F; Etcheberry, Arnaud A; Gabouze, Nour-Eddine N

    2011-06-06

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization.The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  19. Peptide immobilisation on porous silicon surface for metal ions detection

    PubMed Central

    2011-01-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution. PMID:21711937

  20. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering.

    PubMed

    Hao, Jumin; Han, Mei-Juan; Li, Jinwei; Meng, Xiaoguang

    2012-07-01

    Surface-enhanced Raman scattering (SERS), as one of the most sensitive spectroscopic analysis methods, has been investigated extensively for the detection of environmental contaminants in recent years. In this work, we reported the new development of robust SERS substrates for rapid and sensitive sensing of aqueous perchlorate, a widespread environmental contaminant. The fabrication of the substrates consisted of two simple steps: (a) formation of Ag nanofilms on Cu and surface-roughened Cu foils (Ag/Cu and Ag/rCu nanofilms) using a controllable and inexpensive one-step electroless plating process, and (b) surface modification of the Ag nanofilms with cysteamine (Cys) self-assembly monolayer (SAM) (Cys-Ag/Cu and Cys-Ag/rCu substrates). Due to the strong affinity of -NH(3)(+) groups of the Cys molecules for perchlorate ions, the rapid SERS detection of perchlorate has been realized with a limit of detection (LOD) down to 5 μg L(-1) (ppb) for aqueous samples without need for drying. Various calibration curves with good linear relationships were obtained, indicating the quantification potential of SERS analysis of perchlorate using these new substrates. It was found that the neutral pH yielded the maximum SERS signals, and 85% of original sensitivity was remained in 5 days of storage time in the air, indicating the substrates are fairly stable. Within 10 regeneration-reuse cycles, the SERS signals of perchlorate kept in the range of 85-105% of the original value, verifying its reusability.

  1. Robust Detection of Examinees with Aberrant Answer Changes

    ERIC Educational Resources Information Center

    Belov, Dmitry I.

    2015-01-01

    The statistical analysis of answer changes (ACs) has uncovered multiple testing irregularities on large-scale assessments and is now routinely performed at testing organizations. However, AC data has an uncertainty caused by technological or human factors. Therefore, existing statistics (e.g., number of wrong-to-right ACs) used to detect examinees…

  2. Automated Change Detection Using Synthetic Aperture Sonar Imagery

    DTIC Science & Technology

    2010-06-01

    using shadow outlining, scene matching using control-point matching, and visualization capabilities. This system was developed for sidescan sonar ...surveys using instrumentation such as the high-frequency Marine Sonic Technology sidescan sonar . In this paper, the authors describe modifications to...the sidescan -based system required to perform change detection using Synthetic Aperture Sonar (SAS) bottom imagery. Index Terms—Acoustic signal

  3. Experiments in Coherent Change Detection for Synthetic Aperture Sonar

    DTIC Science & Technology

    2010-06-01

    over time. ACD techniques, long used in airborne radar applications, are just beginning to be applied to sidescan sonar . In Coherent Change Detection...accurate geo- registration), the complexity of the propagation environment, and the radiometric inconsistencies of conventional sidescan sonars ...will follow suit. As conventional sidescan sonars exhibit resolution that degrades with range and are typically limited to creation of backscatter

  4. Improved forest change detection with terrain illumination corrected landsat images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An illumination correction algorithm has been developed to improve the accuracy of forest change detection from Landsat reflectance data. This algorithm is based on an empirical rotation model and was tested on the Landsat imagery pair over Cherokee National Forest, Tennessee, Uinta-Wasatch-Cache N...

  5. Climate change and the detection of trends in annual runoff

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    1997-01-01

    This study examines the statistical likelihood of detecting a trend in annual runoff given an assumed change in mean annual runoff, the underlying year-to-year variability in runoff, and serial correlation of annual runoff. Means, standard deviations, and lag-1 serial correlations of annual runoff were computed for 585 stream gages in the conterminous United States, and these statistics were used to compute the probability of detecting a prescribed trend in annual runoff. Assuming a linear 20% change in mean annual runoff over a 100 yr period and a significance level of 95%, the average probability of detecting a significant trend was 28% among the 585 stream gages. The largest probability of detecting a trend was in the northwestern U.S., the Great Lakes region, the northeastern U.S., the Appalachian Mountains, and parts of the northern Rocky Mountains. The smallest probability of trend detection was in the central and southwestern U.S., and in Florida. Low probabilities of trend detection were associated with low ratios of mean annual runoff to the standard deviation of annual runoff and with high lag-1 serial correlation in the data.

  6. Land-use/land-cover change detection using change-vector analysis in posterior probability space

    NASA Astrophysics Data System (ADS)

    Chen, Xuehong; Chen, Jin; Shen, Miaogen; Yang, Wei

    2008-10-01

    Land use/land cover change is an important field in global environmental change research. Remote sensing is a valuable data source from which land use/land cover change information can be extracted efficiently. A number of techniques for accomplishing change detection using satellite imagery have been formulated, applied, and evaluated, which can be generally grouped into two types. (1) Those based on spectral classification of the input data such as post-classification comparison and direct two-date classification; and (2) those based on radiometric change between different acquisition dates. The shortage of type 1 is cumulative error in image classification of an individual date. However, radiometric change approaches has a strict requirement for reliable image radiometry. In light of the above mentioned drawbacks of those two types of change detection methods, this paper presents a new method named change vector analysis in posterior probability space (CVAPS). Change-vector analysis (CVA) is one of the most successful radiometric change-based approaches. CVAPS approach incorporates post-classification comparison method and CVA approach, which is expected to inherit the advantages of two traditional methods and avoid their defects at the same time. CVAPS includes the following four steps. (1) Images in different periods are classified by certain classifier which can provide posterior probability output. Then, the posterior probability can be treated as a vector, the dimension of which is equal to the number of classes. (2) A procedure similar with CVA is employed. Compared with traditional CVA, new method analyzes the change vector in posterior probability space instead of spectral feature space. (3) A semiautomatic method, named Double-Window Flexible Pace Search (DFPS), is employed to determine the threshold of change magnitude. (4) Change category is discriminated by cosines of the change vectors. CVAPS approach was applied and validated by a case study of

  7. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  8. Response surfaces for climate change impact assessments in urban areas.

    PubMed

    Semadeni-Davies, A

    2003-01-01

    Assessment of the impacts of climate change in real-world water systems, such as urban drainage networks, is a research priority for IPCC (Intergovernmental Panel of Climate Change). The usual approach is to force a hydrological transformation model with a changed climate scenario. To tackle uncertainty, the model should be run with at least high, middle and low change scenarios. This paper shows the value of response surfaces for displaying multiple simulated responses to incremental changes in air temperature and precipitation. The example given is inflow, related to sewer infiltration, at the Lycksele waste water treatment plant. The range of plausible changes in inflow is displayed for a series of runs for eight GCMs (Global Circulation Model; ACACIA; Carter, 2002, pers. comm.). These runs are summarised by climate envelopes, one for each prediction time-slice (2020, 2050, 2080). Together, the climate envelopes and response surfaces allow uncertainty to be easily seen. Winter inflows are currently sensitive to temperature, but if average temperature rises to above zero, inflow will be most sensitive to precipitation. Spring inflows are sensitive to changes in winter snow accumulation and melt. Inflow responses are highly dependent on the greenhouse gas emission scenario and GCM chosen.

  9. Rapid and extensive surface changes near Titan's equator: evidence of April showers.

    PubMed

    Turtle, E P; Perry, J E; Hayes, A G; Lorenz, R D; Barnes, J W; McEwen, A S; West, R A; Del Genio, A D; Barbara, J M; Lunine, J I; Schaller, E L; Ray, T L; Lopes, R M C; Stofan, E R

    2011-03-18

    Although there is evidence that liquids have flowed on the surface at Titan's equator in the past, to date, liquids have only been confirmed on the surface at polar latitudes, and the vast expanses of dunes that dominate Titan's equatorial regions require a predominantly arid climate. We report the detection by Cassini's Imaging Science Subsystem of a large low-latitude cloud system early in Titan's northern spring and extensive surface changes (spanning more than 500,000 square kilometers) in the wake of this storm. The changes are most consistent with widespread methane rainfall reaching the surface, which suggests that the dry channels observed at Titan's low latitudes are carved by seasonal precipitation.

  10. Surface profile changes of scuffed bearing surfaces. [before and after acid treatment

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Fung, S. S.; Jones, W. R., Jr.

    1982-01-01

    A phase locked interference microscope capable of resolving depth differences to 30 A and planar displacements of 6000 A was constructed for the examination of the profiles of bearing surfaces without physical contact. This instrument was used to determine surface chemical reactivity by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than unscuffed ones, but bearing surfaces which had been previously exposed to lubricants containing an organic chloride reacted much more slowly. In a separate series of experiments, a number of stainless steel plates were heated in a nitrogen atmosphere to different temperatures and their reactivity examined later at room temperature. The change of surface contour as a result of the probe reaction followed an Arrhenius type relation with respect to heat treatment temperature. This result could have implications on the scuffing mechanism.

  11. Detecting Abrupt Changes in a Piecewise Locally Stationary Time Series

    PubMed Central

    Last, Michael; Shumway, Robert

    2007-01-01

    Non-stationary time series arise in many settings, such as seismology, speech-processing, and finance. In many of these settings we are interested in points where a model of local stationarity is violated. We consider the problem of how to detect these change-points, which we identify by finding sharp changes in the time-varying power spectrum. Several different methods are considered, and we find that the symmetrized Kullback-Leibler information discrimination performs best in simulation studies. We derive asymptotic normality of our test statistic, and consistency of estimated change-point locations. We then demonstrate the technique on the problem of detecting arrival phases in earthquakes. PMID:19190715

  12. A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors.

    PubMed

    Prendes, Jorge; Chabert, Marie; Pascal, Frederic; Giros, Alain; Tourneret, Jean-Yves

    2015-03-01

    Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associated measurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images.

  13. Long-term change in surface air temperature over Eurasian continent and possible contribution from land-surface conditions.

    NASA Astrophysics Data System (ADS)

    Kim, K.; Jeong, J. H.; Shim, T.

    2015-12-01

    Summertime heat wave over Eurasia is induced by various climatic factors. As internal and external factors are changing under an abrupt climate change, the variability of heat waves exhibits radical changes. In this study, the long-term change in heat wave characteristics over Eurasia for the last several decades was examined and the impact of land-atmosphere interaction modulated by soil moisture variability on the change was investigated. Through the empirical orthogonal functions(EOF) analysis, the principle spatio-temporal pattern of Eurasian heat wave during July-August was objectively detected. The leading pattern (1st EOF mode) of the variability was found be an overall increase in heat waves over eastern Europe and east Asia (Mongol to northern part of China), which seems to be associated mainly with the global warming signal but with interannual variability as well. Through performing JULES(Joint UK Land Environment Simulator) land surface model simulation forced with observational atmospheric forcings, soil moisture and energy flux at surface were estimated, and the impacts of land-atmosphere interaction on the heat wave variability was investigated based on the estimated land surface variables and temperature observations. It is found that there is a distinct dry soil condition accompanying with East Asian heat waves. The dry condition leads to an increase in sensible heat flux from land surface to atmosphere and resulting near-surface warming, which is followed by warm-core high - a typical characteristics of a heatwave sustained by land-atmosphere interaction. This result is consistent with an distinct increase in heatwave in recent years. By using the hindcast of long-range prediction model of KMA, GloSea5, the seasonal predictability of heatwave was examined. GloSea5 reasonably well simulates the spatial pattern of Eurasian heatwaves variability found in observations but shows modest skill in simulating accurate year-to-year variability. This result

  14. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  15. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    DTIC Science & Technology

    2012-07-01

    10-1-0422 TITLE: Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early PRINCIPAL...molecular imaging 7 cdrescher@fhcrc.org Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Page 3...Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Charles W Drescher, MD, Principle Investigator

  16. Region-based automatic building and forest change detection on Cartosat-1 stereo imagery

    NASA Astrophysics Data System (ADS)

    Tian, J.; Reinartz, P.; d'Angelo, P.; Ehlers, M.

    2013-05-01

    In this paper a novel region-based method is proposed for change detection using space borne panchromatic Cartosat-1 stereo imagery. In the first step, Digital Surface Models (DSMs) from two dates are generated by semi-global matching. The geometric lateral resolution of the DSMs is 5 m × 5 m and the height accuracy is in the range of approximately 3 m (RMSE). In the second step, mean-shift segmentation is applied on the orthorectified images of two dates to obtain initial regions. A region intersection following a merging strategy is proposed to get minimum change regions and multi-level change vectors are extracted for these regions. Finally change detection is achieved by combining these features with weighted change vector analysis. The result evaluations demonstrate that the applied DSM generation method is well suited for Cartosat-1 imagery, and the extracted height values can largely improve the change detection accuracy, moreover it is shown that the proposed change detection method can be used robustly for both forest and industrial areas.

  17. Long-term changes in sea surface temperatures

    SciTech Connect

    Parker, D.E.

    1994-12-31

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales.

  18. A targeted change-detection procedure by combining change vector analysis and post-classification approach

    NASA Astrophysics Data System (ADS)

    Ye, Su; Chen, Dongmei; Yu, Jie

    2016-04-01

    In remote sensing, conventional supervised change-detection methods usually require effective training data for multiple change types. This paper introduces a more flexible and efficient procedure that seeks to identify only the changes that users are interested in, here after referred to as ;targeted change detection;. Based on a one-class classifier ;Support Vector Domain Description (SVDD);, a novel algorithm named ;Three-layer SVDD Fusion (TLSF); is developed specially for targeted change detection. The proposed algorithm combines one-class classification generated from change vector maps, as well as before- and after-change images in order to get a more reliable detecting result. In addition, this paper introduces a detailed workflow for implementing this algorithm. This workflow has been applied to two case studies with different practical monitoring objectives: urban expansion and forest fire assessment. The experiment results of these two case studies show that the overall accuracy of our proposed algorithm is superior (Kappa statistics are 86.3% and 87.8% for Case 1 and 2, respectively), compared to applying SVDD to change vector analysis and post-classification comparison.

  19. Changes in Sea Surface Temperature and North Atlantic Hurricane Activities

    NASA Astrophysics Data System (ADS)

    Nazari, R.; Mahani, S.; Khanbilvardi, R.

    2006-05-01

    People of United States from Maine to Texas in the years 1995 to 2005 experienced the highest level of North Atlantic hurricane activity in the reliable collected data and reports in compare with the generally low activity of the previous two decays (1970 to 1994). The greater activity might be a consequence of instantaneous changes in North Atlantic Sea Surface Temperature (SST) and air temperature. This thermal energy of increased Sea Surface Temperature (warm water) is known as tropical cyclone heat potential (TCHP) partly powers a hurricane and has been called hurricane fuel. In primary steps of this research we are trying to examine the association of variation of Sea Surface Temperature (SST), Sea Surface Height (SSH) and air temperature in the past decades with changes in hurricane number, duration and intensity. Preliminary analysis demonstrated that there is correlation between global warming and the occurrence of hurricanes because of the anticipated enhancement of energy available to the storms due to higher sea surface temperatures. The goal is to characterize and specify significant factors on tropical storms to improve the capability of predicting a hurricane and its damages to human lives and the economy. This information can be used to advise strategies for warning and also minimizing the magnitude of hurricane destruction, damages, and life losses.

  20. The Importance of Detecting Lithium on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Heredia, A.; Colín-García, M.; Valdivia Silva, J.; Beraldi, H.; Negrón-Mendoza, A.; Durand-Manterola, H.; García-Martínez, J. L.; Ramos, S.; Ortega, F.

    2012-09-01

    Lithium (Li) is the third element of the periodic table and was created in the Big Bang together with hydrogen and helium. In water solution it exhibits low vapor pressure and freezing point, and other colligative properties enhancing the range of liquid water availability. With organic compounds, it forms organo-lithium reagents with direct covalent bond allowing for organic complexity. Lithium accreted with the Sun and planets in minor amounts and later it originated by nuclear fission processes due to highenergy cosmic rays. Here, we suggest that detecting Li in the surface of Mars by instruments bound to Curiosity rover may provide crucial evidence for the potential chemical evolution in the red planet in the presence of liquid water.

  1. Trichomes as sensors: detecting activity on the leaf surface.

    PubMed

    Tooker, John F; Peiffer, Michelle; Luthe, Dawn S; Felton, Gary W

    2010-01-01

    The dramatic movements of some carnivorous plants species are triggered by sensory structures derived from trichomes. While unusual plant species such as the Venus fly trap and sundews may be expected to have elaborate sensors to capture their insect prey, more modest plant species might not be expected to have similar sensory capabilities. Our recent work, however, has revealed that glandular trichomes on tomato (Solanum lycopersicum) appear to have a function similar to trigger hairs of carnivorous species, acting as "early warning" sensors. Using a combination of behavioral, molecular, and biochemical techniques, we determined that caterpillars, moths and mechanical disruption upregulate signaling molecules and defensive genes found in glandular trichomes. Importantly, we discovered that plants whose trichomes have been broken respond more vigorously when their defenses were induced. Taken together, our results suggest that glandular trichomes can act as sensors that detect activity on the leaf surface, and ready plants for herbivore attack.

  2. Surface-contacting vibrometers for seismic landmine detection

    NASA Astrophysics Data System (ADS)

    Martin, James S.; Larson, Gregg D.; Scott, Waymond R., Jr.

    2005-06-01

    A technique has been developed that exploits remote seismic sources and local measurement of the surface displacement of the ground for the detection of buried landmines. Most of the previously reported investigation of this technique has focused on non-contact displacement sensors in order to ensure the safety of the operators of both handheld and vehicle-based systems. This is not inherently a constraint that requires a non-contact sensor, but rather one requiring a sensor that is non-intrusive (i.e. its presence does not alter the measured quantity). Current research is directed toward the development of autonomous and semi-autonomous robotic systems based on this technique. Here both unit cost and power consumption are issues of comparable importance to the survival of the sensor platform. Non-intrusive surface-contacting vibrometers are therefore a reasonable alternative. Several configurations have been studied for suitable vibrometers. The configuration that has shown the most promise is based on a commercial accelerometer coupled to the ground with a small normal force and isolated from the backing structure that is used to reposition it between measurements. It is a relatively simple matter to detect seismic motion with an accelerometer. The major issue in an effective implementation of the technique is to combine reproducibility with fidelity in the measurement. These are competing goals in that reproducibility is easily achieved with large normal forces, but fidelity requires that these be small. Sufficient reproducibility for imaging purposes has been achieved with normal forces that pose no danger of landmine detonation. Unlike reproducibility, fidelity is linked to both the nature of the imposed force and to its magnitude through the nonlinearity of the soil"s elasticity. Both continuous and incremental motions of the sensor platform have been studied, although incremental movement shows the most promise for the intended application.

  3. Detection and monitoring of surface micro-cracks by PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad; Feng, Xin

    2015-06-01

    Appearance of micrometer size surface cracks is common in structural elements such as welded connections, beams, and gusset plates in bridges. Brillouin scattering-based sensors are capable of making distributed strain measurements. Pre-pump-pulse Brillouin optical time domain analysis (PPP-BOTDA) provides a centimeter-level spatial resolution, which facilitates detection and monitoring of the cracks. In the work described here, in addition to the shift in Brillouin frequency (distributed strains), change in the Brillouin gain spectrum (BGS) width is investigated for the detection and monitoring of surface micro-cracks. A theoretical analysis was undertaken in order to verify the rationality of the proposed method. The theoretical approach involved simulation of strain within a segment of the optical fiber traversing a crack and use of the simulated strain distribution in the opto-mechanical relations in order to numerically obtain the change in the BGS. Simulations revealed that the increase in crack opening displacements is associated with increase in BGS width and decrease in its peak power. Experimental results also indicated that the increases in crack opening displacements are accompanied with increases in BGS widths. However, it will be difficult to use the decrease in BGS power peak as another indicator due to practical difficulties in establishing generalized power amplitude in all the experiments. The study indicated that, in combination with the shift in Brillouin frequency, the increase in BGS width will provide a strong tool for detection and monitoring of surface micro-crack growths.

  4. CdSe film surface property changes during growth

    SciTech Connect

    Smyntyna, V.A.; Gerasyutenko, V.A.; Korneeva, S.A.

    1988-04-01

    The morphology changes as a cadmium selenide film grows, as indicated by transmission and scanning electron microscopes, and the microcomposition also alters, so the conductivity as a function of thickness and of substrate temperature is examined to relate the surface electronic properties to the measured adsorption sensitivity. Cadmium self-doping occurring during CdSe film growth is followed by excess cadmium atoms accumulating on the surface, which form clusters and give rise to a nonmonotone dependence of the conductivity and adsorption sensitivity on thickness.

  5. Discriminative genre-independent audio-visual scene change detection

    NASA Astrophysics Data System (ADS)

    Wilson, Kevin W.; Divakaran, Ajay

    2009-01-01

    We present a technique for genre-independent scene-change detection using audio and video features in a discriminative support vector machine (SVM) framework. This work builds on our previous work by adding a video feature based on the MPEG-7 "scalable color" descriptor. Adding this feature improves our detection rate over all genres by 5% to 15% for a fixed false positive rate of 10%. We also find that the genres that benefit the most are those with which the previous audio-only was least effective.

  6. Future Changes in Surface Winds in the Western U.S. due to Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, M. A.; O'Brien, T.; Sloan, L. C.

    2008-12-01

    Surface winds are important to both human and natural systems. These winds drive coastal upwelling, which is critical to nearshore ecosystems. Surface winds also play an important role in cooling the coast and inland regions through the thermally driven sea breeze. As Santa Ana winds, they can create extremely hazardous fire weather conditions. Additionally, surface winds are important for wind energy generation and as an alternative to fossil fuels, further development of this resource is expected to grow exponetially. Understanding how winds will change as a function of anthropogenic change climate change will assist in planning for its impact. Using a regional climate model, we examined the impact of future climate change on surface winds in the western U.S. Two pairs of experiments were conducted, using driving data from the IPCC AR4 simulations of the GFDL CM2.1 and the Canadian GCM for the time periods 1968-2000 and 2038- 2070. The IPCC scenario of these runs is the A2 scenario. The regional climate model has a 30km spatial resolution and the domain is centered over the western U.S. and includes the entire coastline of the three coastal U.S. states. Our initial results show significant changes in surface winds between the future and historical cases. The pattern of the change varies along the coast with implications for coastal upwelling and the thermal sea breeze.

  7. Advances in Electrostatic Dust Detection on Remote Surfaces

    SciTech Connect

    Voinier, C; Skinner, C H; Roquemore, A L

    2005-02-09

    The inventory of dust in next-step magnetic fusion devices will be regulated for safety reasons, however diagnostics to measure in-vessel dust are still in their infancy. Advances in dust particle detection on remote surfaces are reported. Two grids of interlocking circuit traces with spacing in the range 125 mu m to 25 mu m are biased to 30 V. Impinging dust creates a short circuit and the result current pulse is recorded. The detector response was measured with particles scraped from a carbon fiber composite tile and sorted by size category. The finest 25 mu m grid showed a sensitivity more than an order of magnitude higher than the 125 mu m grid. The response to the finest particle categories (5 30 mu m) was two orders of magnitude higher than the largest (125 250 mu m) category. Longer duration current pulses were observed from the coarser particles. The results indicate a detection threshold for fine particles below 1 mu g/cm^2.

  8. Detection Of Biochips By Raman And Surface Enhanced Raman Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kantarovich, Keren; Tsarfati, Inbal; Gheber, Levi A.; Haupt, Karsten; Bar, Ilana

    2010-08-01

    Biochips constitute a rapidly increasing research field driven by the versatility of sensing devices and the importance of their applications in the bioanalytical field, drug development, environmental monitoring, food analysis, etc. Common strategies used for creating biochips and for reading them have extensive limitations, motivating development of miniature biochips and label-free formats. To achieve these goals we combined the nano fountain pen method, for printing microscale features with Raman spectroscopy or surface enhanced Raman spectroscopy (SERS) for reading droplets of synthetic receptors. These receptors include molecularly imprinted polymers (MIPs), which are obtained by polymerization of suitable functional and cross-linking monomers around molecular templates. MIPs are characterized by higher physical and chemical stability than biomacromolecules, and therefore are potentially very suitable as recognition elements for biosensors, or biochips. The monitored bands in the Raman and SERS spectra could be related to the taken up compound, allowing direct detection of the template, i.e., the β-blocking drug propranolol in the imprinted droplets, as well as imaging of individual and multiple dots in an array. This study shows that the combination of nanolithography techniques with SERS might open the possibility of miniaturized arrayed MIP sensors with label-free, specific and quantitative detection.

  9. Transition process of abrupt climate change based on global sea surface temperature over the past century

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Hou, Wei; Feng, Guolin

    2016-05-01

    A new detection method has been proposed to study the transition process of abrupt climate change. With this method, the climate system transiting from one stable state to another can be verified clearly. By applying this method to the global sea surface temperature over the past century, several climate changes and their processes are detected, including the start state (moment), persist time, and end state (moment). According to the spatial distribution, the locations of climate changes mainly have occurred in the Indian Ocean and western Pacific before the middle twentieth century, in the 1970s in the equatorial middle-eastern Pacific, and in the middle and southern Pacific since the end of the twentieth century. In addition, the quantitative relationship between the transition process parameters is verified in theory and practice: (1) the relationship between the rate and stability parameters is linear, and (2) the relationship between the rate and change amplitude parameters is quadratic.

  10. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry.

    PubMed

    Vito, Saverio De; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Francia, Girolamo Di

    2017-04-02

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios.

  11. Detection of surface breaking fatigue crack on a complex aircraft structure with Rayleigh surface waves

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Blackshire, James L.; Kuhr, Samuel J.

    2009-03-01

    As part of an on-going, multi-year effort focused on developing a practical structural health monitoring (SHM) sensor for critical structural components in aircraft, a miniature Rayleigh surface wave sensor has been developed and tested. The sensor was specifically designed to detect localized, deterministic cracking in targeted locations in critical locations where fatigue cracking is prevalent. A representative aircraft component was used in the present investigation. Miniature interdigital transducers (IDTs) operating in the low megahertz frequency range were designed, fabricated, and tested on compact tension (CT) fatigue specimens in the laboratory before they were strategically placed on the structure, where surface wave signals were monitored in both pitch-catch and pulse-echo detection modes simultaneously. Under a high-cycle fatigue loading to the structure, the IDT sensors performed well with three of the sensors successfully detecting the existence of a critical fatigue crack. Visual and eddy current inspection methods subsequently verified the presence of the crack and its location. In this paper, the entire effort from the design and characterization of the IDT sensors to the final fatigue test on an actual aircraft part is discussed.

  12. Intelligent Detection of Cracks in Metallic Surfaces Using a Waveguide Sensor Loaded with Metamaterial Elements

    PubMed Central

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar M.

    2015-01-01

    This work presents a real-life experiment implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impacts in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing the data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks, and the experimental results showed good crack classification accuracy rates. PMID:25988871

  13. Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture".

    PubMed

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Tzur, Adi; Krepker, Maksym A; Segal, Ester

    2011-05-01

    An optical label-free biosensing platform for bacteria detection ( Escherichia coli K12 as a model system) based on nanostructured oxidized porous silicon (PSiO(2)) is introduced. The biosensor is designed to directly capture the target bacteria cells on its surface with no prior sample processing (such as cell lysis). The optical reflectivity spectrum of the PSiO(2) nanostructure displays Fabry-Pérot fringes characteristic of thin-film interference, enabling direct, real-time observation of bacteria attachment within minutes. The PSiO(2) optical nanostructure is synthesized and used as the optical transducer element. The porous surface is conjugated with specific monoclonal antibodies (immunoglobulin G's) to provide the active component of the biosensor. The immobilization of the antibodies onto the biosensor system is confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, fluorescent labeling experiments, and refractive interferometric Fourier transform spectroscopy. We show that the immobilized antibodies maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these nanostructures to the target bacteria results in "direct cell capture" onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations. The current detection limit of E. coli K12 bacteria is 10(4) cells/mL within several minutes.

  14. The surface scattering-based detection of hydrogen in air using a platinum nanowire.

    PubMed

    Yang, Fan; Donavan, Keith C; Kung, Sheng-Chin; Penner, Reginald M

    2012-06-13

    The performance of a single platinum (Pt) nanowire for detecting H(2) in air is reported. A Pt nanowire shows no resistance change upon exposure to H(2) in N(2), but H(2) exposure in air causes a reversible resistance decrease for H(2) concentrations above 10 ppm. The amplitude of the resistance change induced by H(2) exposure and the time rate of change of the nanowire resistance both increased with increasing temperature from 298 to 550 K. This resistance decrease of the Pt nanowire in the presence of H(2) results from reduced electron diffuse scattering at hydrogen-covered Pt surfaces as compared with oxygen-covered platinum surfaces, we hypothesize. The properties for the detection of H(2) in air of single Pt and Pd nanowires of similar size are compared in this study. Pt nanowires have a limit-of-detection for H(2) (LOD(H(2))) of 10 ppm; 3 orders of magnitude lower than for Pd nanowires of the same size, as well as a response time that is 1/100th of Pd for [H(2)] ≈ 1%.

  15. Detection of Epigenetic Changes Using ANOVA with Spatially Varying Coefficients

    PubMed Central

    Xiao, Guanghua; Wang, Xinlei; LaPlant, Quincey; Nestler, Eric; Xie, Yang

    2016-01-01

    Identification of genome-wide epigenetic changes, the stable changes in gene function without a change in DNA sequence, under various conditions plays an important role in biomedical research. High-throughput epigenetic experiments are useful tools to measure genome-wide epigenetic changes, but the measured intensity levels from these high-resolution genome-wide epigenetic profiling data are often spatially correlated with high noise levels. In addition, no formal statistical method was developed to compare genome-wide epigenetic changes across multiple conditions. In this study, we consider ANOVA models with spatially varying coefficients, combined with a hierarchical Bayes approach, to explicitly model spatial correlation caused by location-dependent biological effects (i.e., epigenetic changes) and borrow strength among neighboring probes to compare epigenetic changes across multiple conditions. Through simulation studies and applications in drug addiction and depression models, we find that our approach compares favorably with competing methods; it is more efficient in estimation and more effective in detecting epigenetic changes. In addition, it can provide biologically meaningful results. PMID:23502341

  16. Selective detection of live pathogens via surface-confined electric field perturbation on interdigitated silicon transducers.

    PubMed

    de la Rica, Roberto; Baldi, Antonio; Fernández-Sánchez, César; Matsui, Hiroshi

    2009-05-15

    Detection of physical changes of cells is emerging as a new diagnostic approach to determine their phenotypical features. One of such changes is related to their viability; live (viable) cells are more voluminous than the dead ones, and monitoring this parameter in tissue cells becomes essential in fields such as drug discovery and hazard evaluation. In the area of pathogen detection, an analytical system capable of specifically detecting viable cells with the simple sample preparation and detection process would be highly desirable since live microorganisms can rapidly increase their numbers even at extremely low concentration and become a severe health risk. However, current sensing strategies cannot clearly determine the viability of cells, and hence they are susceptible to false-positive signals from harmless dead pathogens. Here we developed a robust electronic immunoassay that uses a pair of polycrystalline silicon interdigitated electrodes for the rapid detection of pathogens with high specificity for live cells. After bacterial cells were specifically anchored to the surface of the antibody-modified electrode, the characteristic geometry of the transducer enables the selective detection of viable cells with a limit of detection of 3 x 10(2) cfu/mL and an incubation time of only 1 h. The CMOS compatible fabrication process of the chip along with the label-free, reagent-less electronic detection and the easy electrode regeneration to recycle for another impedance measurement make this approach an excellent candidate for oncoming economical in-field viable-cell detection systems, fully integrable with sophisticated signal processing circuits.

  17. Glacier surface feature detection and classification from airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Höfle, B.; Sailer, R.; Vetter, M.; Rutzinger, M.; Pfeifer, N.

    2009-04-01

    In recent years airborne LiDAR evolved to the state-of-the-art technology for topographic data acquisition. Up to now mainly the derived elevation information has been used in glaciology (e.g. roughness determination, multitemporal elevation and volume changes). Few studies have already shown the potential of using LiDAR signal intensities for glacier surface differentiation, primarily based on visual interpretation of signal intensity images. This contribution brings together the spatial and radiometric information provided by airborne LiDAR, in order to make an automatic glacier surface feature detection and classification possible. The automation of the processing workflow and the standardization of the used input data become important particularly for multitemporal analysis where surface changes and feature tracking are of major interest. This study is carried out at the Hintereisferner, Ötztal Alps/Austria, where 16 airborne LiDAR acquisitions have taken place since 2001. We aim at detecting the main glacier surface classes as defined by crevasses, snow, firn, ice and debris covered ice areas. Prior to the glacier facies differentiation, an automated glacier delineation based on roughness constraints is performed. It is assumed that the glacier surface, except the crevasse zone, tends to a smoother surface than the adjacent slopes and represents one large connected spatial unit. The developed method combines raster and point cloud based processing steps in an object-based segmentation and classification procedure where elevation and calibrated signal intensity are used as complementary input. The calibration of the recorded signal intensity removes known effects originating from the atmosphere, topography and scan geometry (e.g. distance to target) and hence provides a value proportional to surface reflectance in the wavelength of the laser system. Since the Bidirectional Reflectance Distribution Function (BRDF) of the scanned surface is not known beforehand

  18. Effect of microorganism on Greenland ice sheet surface temperature change

    NASA Astrophysics Data System (ADS)

    Shimada, R.; Takeuchi, N.; Aoki, T.

    2012-12-01

    Greenland ice sheet holds approximately 10% of the fresh water on earth. If it melts all, sea level rises about 7.2meter. It is reported that mass of Greenland ice sheet is decreasing with temperature rising of climate change. Melting of the coastal area is particularly noticeable. It is established that 4 to 23% of the sea level rising from 1993 to 2005 is caused by the melting of Greenland ice sheet. In 2010, amount of melting per year became the largest than the past. However many climate models aren't able to simulate the recent melting of snow and ice in the Arctic including Greenland. One of the possible causes is albedo reduction of snow and ice surface by light absorbing snow impurities such as black carbon and dust and by glacial microorganisms. But there are few researches for effect of glacial microorganism in wide area. So it is important to clarify the impact of glacial microorganisms in wide area. The purpose of this study is to clarify the effect of microorganism on Greenland ice sheet surface temperature change using satellite images of visible, near infrared and thermal infrared wavelength range and observation carried out in northwestern Greenland. We use MODIS Land Surface Temperature Product as ice sheet surface temperature. It estimates land surface temperature based on split window method using thermal infrared bands. MODIS data is bound to cover the whole of Greenland, and calculated the ratio of the temperature change per year. Analysis period is from December 2002 to November 2010. Results of calculating Greenland ice sheet surface temperature change using the MODIS data, our analysis shows that it is upward trend in the whole region. We find a striking upward trend in northern and western part of Greenland. The rate is 0.33±0.03 degree Celsius per a year from 47.5°W to 49°W. While in the coastal area from 49°W to 50.7°W, the rate is 0.26±0.06 degree Celsius per a year. This large upward trend area is the same area as dark region

  19. A structural framework for anomalous change detection and characterization

    SciTech Connect

    Prasad, Lakshman; Theiler, James P

    2009-01-01

    We present a spatially adaptive scheme for automatically searching a pair of images of a scene for unusual and interesting changes. Our motivation is to bring into play structural aspects of image features alongside the spectral attributes used for anomalous change detection (ACD). We leverage a small but informative subset of pixels, namely edge pixels of the images, as anchor points of a Delaunay triangulation to jointly decompose the images into a set of triangular regions, called trixels, which are spectrally uniform. Such decomposition helps in image regularization by simple-function approximation on a feature-adaptive grid. Applying ACD to this trixel grid instead of pixels offers several advantages. It allows: (1) edge-preserving smoothing of images, (2) speed-up of spatial computations by significantly reducing the representation of the images, and (3) the easy recovery of structure of the detected anomalous changes by associating anomalous trixels with polygonal image features. The latter facility further enables the application of shape-theoretic criteria and algorithms to characterize the changes and recognize them as interesting or not. This incorporation of spatial information has the potential to filter out some spurious changes, such as due to parallax, shadows, and misregistration, by identifying and filtering out those that are structurally similar and spatially pervasive. Our framework supports the joint spatial and spectral analysis of images, potentially enabling the design of more robust ACD algorithms.

  20. Theory of optimal weighting of data to detect climatic change

    NASA Technical Reports Server (NTRS)

    Bell, T. L.

    1986-01-01

    A search for climatic change predicted by climate models can easily yield unconvincing results because of 'climatic noise,' the inherent, unpredictable variability of time-average atmospheric data. A weighted average of data that maximizes the probability of detecting predicted climatic change is presented. To obtain the optimal weights, an estimate of the covariance matrix of the data from a prior data set is needed. This introduces additional sampling error into the method. This is presently taken into account. A form of the weighted average is found whose probability distribution is independent of the true (but unknown) covariance statistics of the data and of the climate model prediction.

  1. Ice elevations and surface change on the Malaspina Glacier, Alaska

    USGS Publications Warehouse

    Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.

    2005-01-01

    Here we use Ice, Cloud and land Elevation Satellite (ICESat)-derived elevations and surface characteristics to investigate the Malaspina Glacier of southern Alaska. Although there is significant elevation variability between ICESat tracks on this glacier, we were able to discern general patterns in surface elevation change by using a regional digital elevation model (DEM) as a reference surface. Specifically, we report elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the Malaspina Glacier. Copyright 2005 by the American Geophysical Union.

  2. Impact of LANDSAT MSS sensor differences on change detection analysis

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Wrigley, R. C.

    1983-01-01

    Some 512 by 512 pixel subwindows for simultaneously acquired scene pairs obtained by LANDSAT 2,3 and 4 multispectral band scanners were coregistered using LANDSAT 4 scenes as the base to which the other images were registered. Scattergrams between the coregistered scenes (a form of contingency analysis) were used to radiometrically compare data from the various sensors. Mode values were derived and used to visually fit a linear regression. Root mean square errors of the registration varied between .1 and 1.5 pixels. There appear to be no major problem preventing the use of LANDSAT 4 MSS with previous MSS sensors for change detection, provided the noise interference can be removed or minimized. Data normalizations for change detection should be based on the data rather than solely on calibration information. This allows simultaneous normalization of the atmosphere as well as the radiometry.

  3. Changes of protein stiffness during folding detect protein folding intermediates.

    PubMed

    Małek, Katarzyna E; Szoszkiewicz, Robert

    2014-01-01

    Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways.

  4. Remote sensing of debris-covered glaciers: Change detection and analysis using multiple sensors

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Huh, K.; Mark, B. G.; La Frenierre, J.; Gulley, J. D.; Park, K.

    2013-12-01

    Debris-cover can insulate glaciers and hinder surface melting, but also challenges accurate assessment of change detection and subsequent risk evaluation of outburst floods from moraine-dammed supra-glacial lakes that endanger downstream inhabitants. These events have been predicted to increase frequency along with the coverage of debris as warming accelerates. Enhanced monitoring capability from optical air and space-borne sensors has improved the detection of changes in surface-derived characteristics such as areal and volumetric fluctuations as well as glacier velocity over debris-covered glaciers, improving the accuracy of geometric and temporal resolutions in hydrological analysis. In this study we present case studies from Nepal, Peru and Ecuador focusing on: 1) time series of debris-coverage and moraine-dammed lakes; and 2) the relationship of remotely sensed observable quantities from different sensors such as aerial photographs, ASTER, Landsat imagery and Airborne/Terrestrial Laser Scanner.

  5. Surface changes in mid-latitude regions on Titan

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Coustenis, A.; Lopes, R. M. C.; Hirtzig, M.; Rodriguez, S.; Stephan, K.; Sotin, C.; Drossart, P.; Lawrence, K.; Le Mouélic, S.; Bratsolis, E.; Jaumann, R.; Brown, R. H.; Malaska, M.

    2014-04-01

    We present a study focused on the mid-latitude and close to the equator surface regions on Titan that present an interest on their spectral behavior and/or morphology. These are regions where spectroscopic anomalies have been reported in the evolution of the brightness and several interpretations have been proposed (cryovolcanic candidates, evaporates, lacustrine, etc [1;2;5]). Also in our work here we have included analysis of some undifferentiated plains (also referred to as 'blandlands'), which are vast expanses of terrains that appear bland in the radar data [3]. By applying a Radiative transfer code [4;2] we have analyzed these regions to look for evolution with time through their spectral behavior. We use as reference point and calibration tool the surface albedo retrieval of the Huygens Landing site (Titan's ground truth) and we also check the variability of the surface albedo of these regions against areas that are not expected to change with time (e.g. dune fields), by retrieving their albedo differences at all wavelengths [2]. We report here surface albedo changes with time for some of these regions of interest that imply connection to exogenic and/or endogenic processes.

  6. Trace Detection of Metalloporphyrin-Based Coordination Polymer Particles via Modified Surface-Enhanced Raman Scattering Assisted by Surface Metallization

    PubMed Central

    Caravella, Alessio

    2016-01-01

    This study proposed a facile method to detect metalloporphyrin-based coordination polymer particles (Z-CPPs) in aqueous solution by modified surface-enhanced Raman scattering (SERS). The SERS-active particles are photodeposited on the surface of Z-CPPs, offering an enhanced Raman signal for the trace detection of Z-CPPs. PMID:28115934

  7. Detection of anthropogenic influence on multi-decadal changes in ocean stratification

    NASA Astrophysics Data System (ADS)

    Andrews, Oliver; Le Quéré, Corinne

    2016-04-01

    Signals of anthropogenic climate change have been identified in the ocean system using established detection and attribution methods to examine historical records of ocean temperature, salinity and dissolved oxygen concentration. Strengthened stratification of the upper ocean is another likely consequence of climate-driven warming and freshening of near surface waters. However, whilst qualitative links have been made between climate forcing and observed and projected future ocean stratification, the relative contribution of natural and anthropogenic processes remains uncertain. Elevated density stratification reduces physical exchange between the surface and interior ocean, impacting upon ventilation processes and biogeochemical cycling. Here, we combine recent temperature and salinity measurements to assess the extent to which large-scale changes in ocean stratification between the 1960s and 2000s can be attributed to anthropogenic climate change using a suite of coupled climate model simulations. Applying formal, regression-based fingerprinting methods we show that external climate forcing has had a detectable influence on observed changes in density stratification and that these changes cannot be explained by climate variability or natural external factors such as volcanism or solar output. Our study indicates that human influence has already significantly altered the density structure of the upper ocean. We discuss the implications and potential for detecting the variability and trends in carbon and oxygen storage in the ocean and in heat uptake efficiency.

  8. [Early detection of cervical cancer in Chile: time for change].

    PubMed

    Léniz Martelli, Javiera; Van De Wyngard, Vanessa; Lagos, Marcela; Barriga, María Isabel; Puschel Illanes, Klaus; Ferreccio Readi, Catterina

    2014-08-01

    Mortality rates for cervical cancer (CC) in Chile are higher than those of developed countries and it has an unequal socioeconomic distribution. The recognition of human papilloma virus (HPV) as the causal agent of cervical cancer in the early 80's changed the prevention paradigms. Current goals are to prevent HPV infection by vaccination before the onset of sexual activity and to detect HPV infection in women older than 30 years. This article reviews CC prevention and early detection methods, discusses relevant evidence to support a change in Chile and presents an innovation proposal. A strategy of primary screening based on HPV detection followed by triage of HPV-positive women by colposcopy in primary care or by cytological or molecular reflex testing is proposed. Due to the existence in Chile of a well-organized nationwide CC prevention program, the replacement of a low-sensitivity screening test such as the Papanicolau test with a highly sensitive one such as HPV detection, could quickly improve the effectiveness of the program. The program also has a network of personnel qualified to conduct naked-eye inspections of the cervix, who could easily be trained to perform triage colposcopy. The incorporation of new prevention strategies could reduce the deaths of Chilean women and correct inequities.

  9. Multiscale object-oriented change detection over urban areas

    NASA Astrophysics Data System (ADS)

    Wang, Jianmei; Li, Deren

    2006-10-01

    Urban growth induces urban spatial expansion in many cities in China. There is a great need for up-to-date information for effective urban decision-making and sustainable development. Many researches have demonstrated that satellite images, especial high resolution images, are very suitable for urban growth studies. However, change detection technique is the key to keep current with the rapid urban growth rate, taking advantage of tremendous amounts of satellite data. In this paper, a multi-scale object-oriented change detection approach integrating GIS and remote sensing is introduced. Firstly, a subset of image is cropped based on existing parcel boundaries stored in GIS database, then a multi-scale watershed transform is carried out to obtain the image objects. The image objects are classified into different land cover types by supervised classification based on their spectral, geometry and texture attributes. Finally a rule-based system is set up to judge every parcel one by one whether or not change happened comparing to existing GIS land use types. In order to verify the application validity of the presented methodology, the rural-urban fringe of Shanghai in China with the support of QuickBird date and GIS is tested, the result shown that it is effective to detect illegal land use parcel.

  10. On-board processor for direct distribution of change detection data products

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Hensley, Scott; Le, Charles; Moller, Delwyn

    2004-01-01

    We are developing an on-board imagin radar data processor for repeat-pass change detection and hazards management. This is the enabling technology for NASA ESE to utilize imaging radars. This processor will enable the observation and use of surface deformation data over rapidly evolving natural hazards, both as an aid to scientific understanding ad to provide timely data to agencies responsible for the management and mitigation of natural disasters.

  11. Serum albumin analysis for type II diabetes detection using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Jinyong; Cao, Gang; Lin, Juqiang; Liu, Nenrong; Liao, Fadian; Ruan, Qiuyong; Wu, Shanshan; Huang, Zufang; Li, Ling; Chen, Rong

    2014-09-01

    Surface-enhanced Raman scattering (SERS) spectroscopy combined with membrane electrophoresis (ME) was firstly employed to detect albumin variation in type II diabetic development. Albumin was first purified from human serum by ME and then mixed with silver nanoparticles to perform SERS spectral analysis. SERS spectra were obtained from blood albumin samples of 20 diabetic patients and 19 healthy volunteers. Subtle but discernible changes in the acquired mean spectra of the two groups were observed. Tentative assignment of albumin SERS bands indicated specific structural changes of albumin molecule with diabetic development. Meanwhile, PCA-LDA diagnostic algorithms were employed to classify the two kinds of albumin SERS spectra, yielding the diagnostic sensitivity of 90% and specificity of 94.7%. The results from this exploratory study demonstrated that the EM-SERS method in combination with multivariate statistical analysis has great potential for the label-free detection of albumin variation for improving type II diabetes screening.

  12. Automatic Identification of Changes on the Lunar Surface and the Discovery of New Impact Craters

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Robinson, M. S.

    2014-12-01

    Since June 2009, the Lunar Reconnaissance Orbiter (LRO) has maintained a stable polar orbit enabling the twin Narrow Angle Cameras (NACs) to acquire high-resolution observations of the lunar surface (pixel scale of 0.25 to 2 m/pixel). This orbital configuration facilitates occasional repeat coverage with nearly identical lighting geometries. These before and after observations, referred to in this study as temporal pairs, enable the identification of changes to the surface using a series of automated change detection techniques. Initial manual inspection of temporal pairs resulted in the discovery of many changes across the lunar surface [1]. However, this manual process is time consuming (2-4 hours per temporal pair) and each analyst must apply their own judgment on whether they have discovered a real change or an artifact in the image pair. This manual approach resulted in the identification of 650 surface changes as well as 19 resolved craters. Leveraging image processing techniques developed by the LROC team, we started automatically scanning and identifying temporal changes. The new automated algorithm locates changes based on reflectance variations and changes in surface texture. The program provides a list of potential new features for later manual inspection and classification (disturbance lacking resolvable crater or crater with a rim diameter of x meters). This new approach reduces the time to manually inspect a temporal pair by over a factor of 200 by providing cropped cutouts with the putative changes centered in a thumbnail. The LROC NACs have already collected thousands of temporal pair observations and will continue to do so over the remaining extended mission. Highest fidelity change detection comes from temporal pairs with nearly identical lighting geometries (i.e. sub-solar points within 3°), of which over 5000 pairs exist. In our initial scan of 1645 temporal pairs, over 8000 surface changes were identified along with over 50 new impact craters

  13. Changes in surface antigens of Hymenolepis nana during differentiation and maturation in mice.

    PubMed

    Ito, A; Onitake, K

    1987-06-01

    The surface antigens of oncosphere, cysticercoid, adult scolex and adult strobila (other than scolex) of Hymenolepis nana differ critically from one another. When the oncosphere of H. nana undergoes differentiation and development into the mature tapeworm, the infected mouse first produces anti-oncosphere antibody, followed by anti-cysticercoid, anti-adult scolex and finally anti-strobila (other than scolex region) antibodies of IgG, IgM and IgA isotypes as detected by indirect immunofluorescent antibody test. The parasite changed its surface antigens throughout its differentiation and maturation, and all developmental stages were recognized by the infected mouse host. However, there appeared no further changes in surface antigens during aging after maturation. The antibody responses were always delayed compared with the differentiation and maturation of the parasite.

  14. Topographic Change Detection Using Full-Waveform Imaging Lidar

    NASA Technical Reports Server (NTRS)

    Blair, Bryan; Hofton, Michele A.; Smith, David E. (Technical Monitor)

    2001-01-01

    The capability of wide-footprint (i.e. 10m or greater), full-waveform laser altimeters to penetrate beneath dense vegetation to directly measure the sub-canopy topography provides us with a unique capability for sensing topographic change in the presence of vegetation. We evaluate the feasibility of using a geolocated laser altimeter return waveform instead of individual elevation measurements to measure vertical elevation change within a laser footprint. The method, dubbed the return pulse correlation method, maximizes the shape similarity of nea-coincident, vertically- geolocated laser return waveforms from two observation epochs as they are vertically-shifted relative to each other. First, we evaluate the inherent accuracy of the pulse correlation method using models and simulations under "bare-Earth" conditions. We then analyze the effects of vegetation and vegetation growth on the change detection capability. The use of this method, combined with order of magnitude improvements to laser altimeter swath widths (from 1 km to 10 km) and the potential for a future spaceborne imaging lidar, may provide subcentimeter level relative change detection beneath vegetation to complement IFSAR's ability to make similar measurements in low or vegetation-free conditions.

  15. Symmetrized local co-registration optimization for anomalous change detection

    SciTech Connect

    Wohlberg, Brendt E; Theiler, James P

    2009-01-01

    The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene, based on two images of the scene taken at different times and under different conditions. The actual anomalous changes need to be distinguished from the incidental differences that occur throughout the imagery, and one of the most common and confounding of these incidental differences is due to the misregistration of the images, due to limitations of the registration pre-processing applied to the image pair. We propose a general method to compensate for residual misregistration in any ACD algorithm which constructs an estimate of the degree of 'anomalousness' for every pixel in the image pair. The method computes a modified misregistration-insensitive anomalousness by making local re-registration adjustments to minimize the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find significant performance improvements in the anomalous change detection ROC curves for a number of real and synthetic data sets.

  16. Object-based rapid change detection for disaster management

    NASA Astrophysics Data System (ADS)

    Thunig, Holger; Michel, Ulrich; Ehlers, Manfred; Reinartz, Peter

    2011-11-01

    Rapid change detection is used in cases of natural hazards and disasters. This analysis lead to quick information about areas of damage. In certain cases the lack of information after catastrophe events is obstructing supporting measures within disaster management. Earthquakes, tsunamis, civil war, volcanic eruption, droughts and floods have much in common: people are directly affected, landscapes and buildings are destroyed. In every case geospatial data is necessary to gain knowledge as basement for decision support. Where to go first? Which infrastructure is usable? How much area is affected? These are essential questions which need to be answered before appropriate, eligible help can be established. This study presents an innovative strategy to retrieve post event information by use of an object-based change detection approach. Within a transferable framework, the developed algorithms can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated normalized temporal change index (NTCI) panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas which are developing new for cases where rebuilding has already started. The results of the study are also feasible for monitoring urban growth.

  17. Vegetation change detection in the Savannah River swamp

    SciTech Connect

    Jensen, J.R.; Christensen, E.J.; Mackey, H.E. Jr.

    1986-01-01

    Portions of Pen Branch, Four Mile Creek, Steel Creek, and Beaver Dam Creek deltas in the Savannah River swamp were evaluated for wetlands vegetation change using aircraft multispectral scanner (MSS) data acquired at 2440 meters altitude. Areas of 190 hectares on the Pen Branch, Four Mile Creek, and Beaver Dam Creek deltas, and a 240-hectare portion of Steel Creek delta were registered, classified, and wetlands vegetation change detection categories determined. Pen Branch and Four Mile Creek deltas each lost about 12 hectares of swamp forest from 1981 to 1984. Secondary successional forest regrew on portions of the Four Mile Creek delta (2.4 hectares) and the Beaver Dam Creek delta (15.4 hectares). About 5 hectares of swamp forest regrew on the Steel Creek delta. This may be the first study to detect wetlands vegetation change over several years using aircraft MSS data. One reason could be due to difficulties similar to those encountered in this study. Data distortion from aircraft movement in some areas of the swamp made image-to-image registration difficult. Best results were obtained on Beaver Dam Creek and Steel Creek deltas which had average registration accuracies within one data element, or pixel, of 5.6 x 5.6 meters. Phenological differences and shadows caused difficulties in vegetation-type discrimination and classification. As a result, the number of vegetation change classes were sometimes limited.

  18. Changes in Surface Radiation and Associated Effects on Climate

    NASA Astrophysics Data System (ADS)

    Wild, M.

    2005-12-01

    Variations in solar and thermal radiation incident at the Earth's surface profoundly affect the human environment. Increasing greenhouse gas concentrations in the atmosphere enhance the greenhouse effect at the surface manifest as a gradual increase of thermal radiation from the atmosphere down to the surface. Recent analyses of observational records confirm this expectation. Yet not only the thermal fluxes, but also solar fluxes are currently undergoing major changes. A decline of solar radiation at the land surface has become apparent in many observational records prior to 1990, a phenomenon now popularly known as "global dimming." Dimming of solar radiation was probably caused by increased air pollution, and associated levels of aerosol, as well as increasing cloud amounts. The dimming of solar radiation may also be the cause of reduced evaporation between 1960 and 1990 measured worldwide with evaporation pans, documenting the potential influence of solar dimming on the global hydrological cycle. Newly available surface observations from 1990 to present show, however, that the solar dimming did not persist into the 1990s. Instead, a widespread brightening has been observed since the mid-1980s. The brightening is consistent with reduction in cloudiness and an atmosphere which has recently become more transparent for sunlight. This has been favored by reduced aerosol loadings related to enhanced air pollution control and the economic breakdown in formerly communist countries in the late 1980s. The transition towards more sunlight at the Earth's surface since the late 1980s after decades of decline may have significantly affected surface climate and the global hydrological cycle. While from the 1960s to the 1980s the dimming of sunlight might have been able to counterbalance and mask to some extent the increasing greenhouse effect, leading to only moderate global temperature changes observed in this period, this has no longer been the case after the mid 1980s. The

  19. Luminescence Decay Dynamics and Trace Biomaterials Detection Potential of Surface-Functionalized Nanoparticles

    PubMed Central

    Cheng, Kwan H.; Aijmo, Jacob; Ma, Lun; Yao, Mingzhen; Zhang, Xing; Como, John; Hope-Weeks, Louisa J.; Huang, Juyang; Chen, Wei

    2009-01-01

    We have studied the luminescence decay and trace biomaterials detection potential of two surface-functionalized nanoparticles, poly(ethylene glycol) bis(carboxymethyl) ether-coated LaF3:Ce,Tb (~20 nm) and thioglycolic acid-coated ZnS/Mn (~5 nm). Upon UV excitation, these nanoparticles emitted fluorescence peaking at 540 and 597 nm, respectively, in solution. Fluorescence imaging revealed that these nanoparticles targeted the trace biomaterials from fingerprints that were deposited on various nonporous solid substrates. Highly ordered, microscopic sweat pores within the friction ridges of the fingerprints were labeled with good spatial resolutions by the nanoparticles on aluminum and polymethylpentene substrates, but not on glass or quartz. In solution, these nanoparticles exhibited multicomponent fluorescence decays of resolved lifetimes ranging from nano-to microseconds and of average lifetimes of ~24 and 130 µs for the coated LaF3:Ce,Tb and ZnS:Mn, respectively. The long microsecond-decay components are associated with the emitters at or near the nanocrystal core surface that are sensitive to the size, surface-functionalization, and solvent exposure of the nanoparticles. When the nanoparticles were bound to the surface of a solid substrate and in the dried state, a decrease in the microsecond decay lifetimes was observed, indicative of a change in the coating environment of the nanocrystal surface upon binding and solvent removal. The average decay lifetimes for the surface-bound ZnS:Mn in the dried state were ~60, 30, and 11 µs on quartz, aluminum, and polymethylpentene, respectively. These values were still 2 orders of magnitude longer than the typical fluorescence decay background of most substrates (e.g., ~0.36 µs for polymethylpentene) in trace forensic evidence detections. We conclude that coated ZnS: Mn nanoparticles hold great promise as a nontoxic labeling agent for ultrasensitive, time-gated, trace evidence detections in nanoforensic applications

  20. A method for detecting changes in long time series

    SciTech Connect

    Downing, D.J.; Lawkins, W.F.; Morris, M.D.; Ostrouchov, G.

    1995-09-01

    Modern scientific activities, both physical and computational, can result in time series of many thousands or even millions of data values. Here the authors describe a statistically motivated algorithm for quick screening of very long time series data for the presence of potentially interesting but arbitrary changes. The basic data model is a stationary Gaussian stochastic process, and the approach to detecting a change is the comparison of two predictions of the series at a time point or contiguous collection of time points. One prediction is a ``forecast``, i.e. based on data from earlier times, while the other a ``backcast``, i.e. based on data from later times. The statistic is the absolute value of the log-likelihood ratio for these two predictions, evaluated at the observed data. A conservative procedure is suggested for specifying critical values for the statistic under the null hypothesis of ``no change``.

  1. Detecting a trend change in cross-border epidemic transmission

    NASA Astrophysics Data System (ADS)

    Maeno, Yoshiharu

    2016-09-01

    A method for a system of Langevin equations is developed for detecting a trend change in cross-border epidemic transmission. The equations represent a standard epidemiological SIR compartment model and a meta-population network model. The method analyzes a time series of the number of new cases reported in multiple geographical regions. The method is applicable to investigating the efficacy of the implemented public health intervention in managing infectious travelers across borders. It is found that the change point of the probability of travel movements was one week after the WHO worldwide alert on the SARS outbreak in 2003. The alert was effective in managing infectious travelers. On the other hand, it is found that the probability of travel movements did not change at all for the flu pandemic in 2009. The pandemic did not affect potential travelers despite the WHO alert.

  2. Automated baseline change detection -- Phases 1 and 2. Final report

    SciTech Connect

    Byler, E.

    1997-10-31

    The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. The ABCD image processing software was installed on a robotic vehicle developed under a related DOE/FETC contract DE-AC21-92MC29112 Intelligent Mobile Sensor System (IMSS) and integrated with the electronics and software. This vehicle was designed especially to navigate in DOE Waste Storage Facilities. Initial system testing was performed at Fernald in June 1996. After some further development and more extensive integration the prototype integrated system was installed and tested at the Radioactive Waste Management Facility (RWMC) at INEEL beginning in April 1997 through the present (November 1997). The integrated system, composed of ABCD imaging software and IMSS mobility base, is called MISS EVE (Mobile Intelligent Sensor System--Environmental Validation Expert). Evaluation of the integrated system in RWMC Building 628, containing approximately 10,000 drums, demonstrated an easy to use system with the ability to properly navigate through the facility, image all the defined drums, and process the results into a report delivered to the operator on a GUI interface and on hard copy. Further work is needed to make the brassboard system more operationally robust.

  3. Multi-driver attribution of detected hydrological change

    NASA Astrophysics Data System (ADS)

    Harrigan, Shaun; Murphy, Conor; Hall, Julia; Wilby, Robert L.; Sweeney, John

    2014-05-01

    There is growing evidence that significant links between large-scale climate indices and streamflow over decadal time-scales can be established. However identifying the dominant driving mechanism(s) of detected changes in streamflow (i.e. attribution) at the catchment scale is a challenging task due to the confounding influence of human disturbances such as land-use changes, water abstractions, and river engineering. This study addresses this challenge by examining the utility of the multiple working hypotheses framework in moving towards more rigorous attribution of changes using the Boyne catchment in the east of Ireland as a case study. Previous research on this catchment found that a large upward change point in streamflow during the mid-1970s corresponded with a shift in the North Atlantic Oscillation (NAO) index towards a more positive phase, bringing increased precipitation, and hence increased risk of flooding. Here, the single-driver analysis is extended to include multiple factors causing change within the catchment (both climatic and internal) in order to establish relative contributions of hypothesised drivers. Rainfall-runoff models were employed to reconstruct streamflow to isolate the effect of climate taking account of both model structure and parameter uncertainty. The Mann-Kendall test for monotonic trend and Pettitt change point test were applied to explore signatures of change. Results show that the detected increase in annual mean and high flows was not predominantly driven by changes in precipitation as a result of a shift in the NAO index. Rather we assert that the dominant driver of change was arterial drainage and the contemporaneous onset of agricultural field drainage in the 1970s and early 1980s. It is also demonstrated that attribution can be more complex at different time-scales with multiple drivers acting simultaneously. This study emphasises the quantity and range of data types needed for rigorous attribution, especially when

  4. Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition

    NASA Astrophysics Data System (ADS)

    Xiao, Pengfeng; Zhang, Xueliang; Wang, Dongguang; Yuan, Min; Feng, Xuezhi; Kelly, Maggi

    2016-09-01

    This study proposed a new framework that combines pixel-level change detection and object-level recognition to detect changes of built-up land from high-spatial resolution remote sensing images. First, an adaptive differencing method was designed to detect changes at the pixel level based on both spectral and textural features. Next, the changed pixels were subjected to a set of morphological operations to improve the completeness and to generate changed objects, achieving the transition of change detection from the pixel level to the object level. The changed objects were further recognised through the difference of morphological building index in two phases to indicate changed objects on built-up land. The transformation from changed pixels to changed objects makes the proposed framework distinct with both the pixel-based and the object-based change detection methods. Compared with the pixel-based methods, the proposed framework can improve the change detection capability through the transformation and successive recognition of objects. Compared with the object-based method, the proposed framework avoids the issue of multitemporal segmentation and can generate changed objects directly from changed pixels. The experimental results show the effectiveness of the transformation from changed pixels to changed objects and the successive object-based recognition on improving the detection accuracy, which justify the application potential of the proposed change detection framework.

  5. High Sensitivity Surface Enhanced Raman Scattering Detection of Tryptophan

    NASA Astrophysics Data System (ADS)

    Kandakkathara, Archana

    Raman spectroscopy has the capability of providing detailed information about molecular structure, but the extremely small cross section of Raman scattering prevents this technique from applications requiring high sensitivity. Surface enhanced Raman scattering (SERS) on the other hand provides strongly increased Raman signal from molecules attached to metallic nanostructures. SERS is thus a promising technique for high sensitivity analytical applications. One particular area of interest is the application of such techniques for the analysis of the composition of biological cells. However, there are issues which have to be addressed in order to make SERS a reliable technique such as the optimization of conditions for any given analyte, understanding the kinetic processes of binding of the target molecules to the nanostructures and understanding the evolution and coagulation of the nanostructures, in the case of colloidal solutions. The latter processes introduce a delay time for the observation of maximum enhancement factors which must be taken into account for any given implementation of SERS. In the present thesis the goal was to develop very sensitive SERS techniques for the measurement of biomolecules of interest for analysis of the contents of cells. The techniques explored could be eventually be applicable to microfluidic systems with the ultimate goal of analyzing the molecular constituents of single cells. SERS study of different amino acids and organic dyes were performed during the course of this thesis. A high sensitivity detection system based on SERS has been developed and spectrum from tryptophan (Trp) amino acid at very low concentration (10-8 M) has been detected. The concentration at which good quality SERS spectra could be detected from Trp is 4 orders of magnitude smaller than that previously reported in literature. It has shown that at such low concentrations the SERS spectra of Trp are qualitatively distinct from the spectra commonly reported in

  6. Monolayer detection of ion binding at a crown ether-functionalised supramolecular surface via an integrated optical Bragg grating.

    PubMed

    Parker, Richard M; Wales, Dominic J; Gates, James C; Frey, Jeremy G; Smith, Peter G R; Grossel, Martin C

    2014-06-07

    There have been significant recent developments in the field of integrated optical Bragg grating sensors for use in the biological domain, where changes in the thickness of a surface layer upon specific binding of biological targets allows quantitative detection. However in the chemical domain less work has been reported. We present here an integrated optical Bragg grating sensor, capable of evanescently detecting small changes in refractive index down to 10(-6) RIU at infrared wavelengths, within a microfluidic system. The high spectral fidelity of the Bragg gratings combined with precise thermal compensation enables direct monitoring of the surface throughout the experiment. This allows the sensor to probe surface changes in situ and in real-time, from preparation through to chemical modification of the surface, so that the progress of dynamic surface-localized interactions can be followed. Here we describe confirmatory studies to validate this approach, including a comparison with the modelled optical system, before assessing the ability to detect binding of Group I cations at a crown ether-functionalised supramolecular surface. Unlike larger biological entities, for these small chemical species, simple additive changes in film-thickness no longer prevail.

  7. Saturn's Titan: Cassini Instruments Document Surface Change Suggesting Cryovolcanism

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Cassini VIMS SAR Titan surface variability Group

    2008-09-01

    Instruments on the Cassini Saturn Orbiter have been observing the surface of the satellite Titan since mid 2004. The Visual and Infrared Mapping Spectrometer (VIMS) reports that regions near 26oS, 78oW (region 1) and 7oS, 138oW (region 2) exhibit photometric changes consistent with surface activity; they are photometrically variable with time(1). Cassini Synthetic Aperture Rader (SAR) has investigated these regions and reports that both of these regions exhibit morphologies consistent with cryovolcanism (2). VIMS observed region 1 eight times and reported that on two occasions the region brightened two-fold and then decreased again on timescales of several weeks. Region 2 was observed on four occasions (Tb-Dec13/2004 ,T8-Oct27/2005, T10-Jan15/2006, T12-Mar18/2006) and exhibited a pronounced change in I/F betweenT8 and T10. Our photometric analysis finds that both regions do not exhibit photometric properties consistent with atmospheric phenomenon such as tropospheric clouds. These changes must be at or very near the surface. We conclude that the VIMS instrument has found two instances in which selected regions on Titan's surface become unusually reflective and remained reflective on time scales of days to months. In both cases the size of reflectance variability is large, larger than either Loki or the Big Island of Hawaii. This is a strong case for currently active surface processes on Titan. Pre-Cassini, Titan was thought of as a pre-biotic earth that was frozen in time. Cassini VIMS and SAR observations combined suggest that Titan is the present day is in no way frozen, and is instead an episodically changing or evolving world. References: [1] Nelson R. M. et al, LPSC 2007 , Europlanets 2007, AGU 2007, EGU 2008,. [2] Lopes et al (this meeting), Stofan et al. Icarus 185, 443-456, 2007. Lopes et al. Icarus 186, 395-412, 2007. Kirk et al., DPS 2007. Acknowledgement: This work done at JPL/NASA

  8. Effects of spatial configurations on visual change detection: an account of bias changes.

    PubMed

    Boduroglu, Aysecan; Shah, Priti

    2009-12-01

    In order to determine whether people encode spatial configuration information when encoding visual displays, in four experiments, we investigated whether changes in task-irrelevant spatial configuration information would influence color change detection accuracy. In a change detection task, when objects in the test display were presented in new random locations, rather than identical or different locations preserving the overall configuration, participants were more likely to report that the colors had changed. This consistent bias across four experiments suggested that people encode task-irrelevant spatial configuration along with object information. Experiment 4 also demonstrated that only a low-false-alarm group of participants effectively bound spatial configuration information to object information, suggesting that these types of binding processes are open to strategic influences.

  9. Anomalies in the detection of change: When changes in sample size are mistaken for changes in proportions.

    PubMed

    Fiedler, Klaus; Kareev, Yaakov; Avrahami, Judith; Beier, Susanne; Kutzner, Florian; Hütter, Mandy

    2016-01-01

    Detecting changes, in performance, sales, markets, risks, social relations, or public opinions, constitutes an important adaptive function. In a sequential paradigm devised to investigate detection of change, every trial provides a sample of binary outcomes (e.g., correct vs. incorrect student responses). Participants have to decide whether the proportion of a focal feature (e.g., correct responses) in the population from which the sample is drawn has decreased, remained constant, or increased. Strong and persistent anomalies in change detection arise when changes in proportional quantities vary orthogonally to changes in absolute sample size. Proportional increases are readily detected and nonchanges are erroneously perceived as increases when absolute sample size increases. Conversely, decreasing sample size facilitates the correct detection of proportional decreases and the erroneous perception of nonchanges as decreases. These anomalies are however confined to experienced samples of elementary raw events from which proportions have to be inferred inductively. They disappear when sample proportions are described as percentages in a normalized probability format. To explain these challenging findings, it is essential to understand the inductive-learning constraints imposed on decisions from experience.

  10. Residual Silicone Detection. [external tank and solid rocket booster surfaces

    NASA Technical Reports Server (NTRS)

    Smith, T.

    1980-01-01

    Both photoelectron emission and ellipsometry proved successful in detecting silicone contamination on unpainted and epoxy painted metal surfaces such as those of the external tank and the solid rocket booster. Great success was achieved using photoelectron emission (PEE). Panels were deliberately contaminated to controlled levels and then mapped with PEE to reveal the areas and levels that were contaminated. The panels were then tested with regard to adhesive properties. Tapes were bonded over the contaminated and uncontaminated regions and the peel force was measured, or the contaminated panels were bonded (with CPR 483 foam) to uncontaminated panels and made into lap shear specimens. Other panels were bonded and made into wedge specimens for hydrothermal stress endurance tests. Strong adhesion resulted if the PEE signal fell within an acceptance window, but was poor outside the acceptance window. A prototype instrument is being prepared which can automatically be scanned over the external liquid hydrogen tank and identify those regions that are contaminated and will cause bond degradation.

  11. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  12. DIRECT DETECTION OF SEASONAL CHANGES ON TRITON WITH HUBBLE SPACE TELESCOPE

    SciTech Connect

    Bauer, James M.; Buratti, Bonnie J.; Mosher, Joel A.; Hicks, Michael D.; Goguen, Jay D.; Li Jianyang; Schmidt, Britney E. E-mail: Bonnie.Buratti@jpl.nasa.go E-mail: hicksm@scn.jpl.nasa.go E-mail: jyli@astro.umd.ed

    2010-11-01

    Triton is one of the few bodies in the solar system with observed cryo-volcanic activity, in the form of plumes at its south pole, which suggests large-scale surface volatile transport over time. Triton's large variations in obliquity have motivated prior predictions of changing atmospheric column densities of several orders of magnitude, driven by seasonal evaporation of surface volatiles. Using the Hubble Space Telescope, we directly imaged Triton's surface and have detected large-scale differences in increased and decreased reflectance when compared with Voyager data at UV, visual, and methane-band wavelengths. Our surface map shows regions of increased brightness at near-equatorial latitudes and near the Neptune-facing side, and darkened regions near longitudes of {+-}180{sup 0}, indicating the presence of ongoing seasonal volatile transport.

  13. Street environment change detection from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Xiao, Wen; Vallet, Bruno; Brédif, Mathieu; Paparoditis, Nicolas

    2015-09-01

    Mobile laser scanning (MLS) has become a popular technique for road inventory, building modelling, infrastructure management, mobility assessment, etc. Meanwhile, due to the high mobility of MLS systems, it is easy to revisit interested areas. However, change detection using MLS data of street environment has seldom been studied. In this paper, an approach that combines occupancy grids and a distance-based method for change detection from MLS point clouds is proposed. Unlike conventional occupancy grids, our occupancy-based method models space based on scanning rays and local point distributions in 3D without voxelization. A local cylindrical reference frame is presented for the interpolation of occupancy between rays according to the scanning geometry. The Dempster-Shafer theory (DST) is utilized for both intra-data evidence fusion and inter-data consistency assessment. Occupancy of reference point cloud is fused at the location of target points and then the consistency is evaluated directly on the points. A point-to-triangle (PTT) distance-based method is combined to improve the occupancy-based method. Because it is robust to penetrable objects, e.g. vegetation, which cause self-conflicts when modelling occupancy. The combined method tackles irregular point density and occlusion problems, also eliminates false detections on penetrable objects.

  14. Vehicle Localization by LIDAR Point Correlation Improved by Change Detection

    NASA Astrophysics Data System (ADS)

    Schlichting, A.; Brenner, C.

    2016-06-01

    LiDAR sensors are proven sensors for accurate vehicle localization. Instead of detecting and matching features in the LiDAR data, we want to use the entire information provided by the scanners. As dynamic objects, like cars, pedestrians or even construction sites could lead to wrong localization results, we use a change detection algorithm to detect these objects in the reference data. If an object occurs in a certain number of measurements at the same position, we mark it and every containing point as static. In the next step, we merge the data of the single measurement epochs to one reference dataset, whereby we only use static points. Further, we also use a classification algorithm to detect trees. For the online localization of the vehicle, we use simulated data of a vertical aligned automotive LiDAR sensor. As we only want to use static objects in this case as well, we use a random forest classifier to detect dynamic scan points online. Since the automotive data is derived from the LiDAR Mobile Mapping System, we are able to use the labelled objects from the reference data generation step to create the training data and further to detect dynamic objects online. The localization then can be done by a point to image correlation method using only static objects. We achieved a localization standard deviation of about 5 cm (position) and 0.06° (heading), and were able to successfully localize the vehicle in about 93 % of the cases along a trajectory of 13 km in Hannover, Germany.

  15. Fault Diagnostics Using Statistical Change Detection in the Bispectral Domain

    NASA Astrophysics Data System (ADS)

    Eugene Parker, B.; Ware, H. A.; Wipf, D. P.; Tompkins, W. R.; Clark, B. R.; Larson, E. C.; Vincent Poor, H.

    2000-07-01

    It is widely accepted that structural defects in rotating machinery components (e.g. bearings and gears) can be detected through monitoring of vibration and/or sound emissions. Traditional diagnostic vibration analysis attempts to match spectral lines with a priori -known defect frequencies that are characteristic of the affected machinery components. Emphasis herein is on use of bispectral-based statistical change detection algorithms for machinery health monitoring. The bispectrum, a third-order statistic, helps identify pairs of phase-related spectral components, which is useful for fault detection and isolation. In particular, the bispectrum helps sort through the clutter of usual (second-order) vibration spectra to extract useful information associated with the health of particular components. Seeded and non-seeded helicopter gearbox fault results (CH-46E and CH-47D, respectively) show that bispectral algorithms can detect faults at the level of an individual component (i.e. bearings or gears). Fault isolation is implicit with detection based on characteristic a priori -known defect frequencies. Important attributes of the bispectral SCD approach include: (1) it does not require a priori training data as is needed for traditional pattern-classifier-based approaches (and thereby avoids the significant time and cost investments necessary to obtain such data); (2) being based on higher-order moment-based energy detection, it makes no assumptions about the statistical model of the bispectral sequences that are generated; (3) it is operating-regime independent (i.e. works across different operating conditions, flight regimes, torque levels, etc., without knowledge of same); (4) it can be used to isolate faults to the level of specific machinery components (e.g. bearings and gears); and (5) it can be implemented using relatively inexpensive computer hardware, since only low-frequency vibrations need to be processed. The bispectral SCD algorithm thus represents a

  16. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  17. Exponentially Weighted Moving Average Change Detection Around the Country (and the World)

    NASA Astrophysics Data System (ADS)

    Brooks, E.; Wynne, R. H.; Thomas, V. A.; Blinn, C. E.; Coulston, J.

    2014-12-01

    With continuous, freely available moderate-resolution imagery of the Earth's surface available, and with the promise of more imagery to come, change detection based on continuous process models continues to be a major area of research. One such method, exponentially weighted moving average change detection (EWMACD), is based on a mixture of harmonic regression (HR) and statistical quality control, a branch of statistics commonly used to detect aberrations in industrial and medical processes. By using HR to approximate per-pixel seasonal curves, the resulting residuals characterize information about the pixels which stands outside of the periodic structure imposed by HR. Under stable pixels, these residuals behave as might be expected, but in the presence of changes (growth, stress, removal), the residuals clearly show these changes when they are used as inputs into an EWMA chart. In prior work in Alabama, USA, EWMACD yielded an overall accuracy of 85% on a random sample of known thinned stands, in some cases detecting thinnings as sparse as 25% removal. It was also shown to correctly identify the timing of the thinning activity, typically within a single image date of the change. The net result of the algorithm was to produce date-by-date maps of afforestation and deforestation on a variable scale of severity. In other research, EWMACD has also been applied to detect land use and land cover changes in central Java, Indonesia, despite the heavy incidence of clouds and a monsoonal climate. Preliminary results show that EWMACD accurately identifies land use conversion (agricultural to residential, for example) and also identifies neighborhoods where the building density has increased, removing neighborhood vegetation. In both cases, initial results indicate the potential utility of EWMACD to detect both gross and subtle ecosystem disturbance, but further testing across a range of ecosystems and disturbances is clearly warranted.

  18. Can we derive ice flow from surface mass balance and surface elevation change?

    NASA Astrophysics Data System (ADS)

    Kuhn, M. H.; Olefs, M.

    2010-12-01

    Most likely we can not, or not exactly. The difference “delta” of surface mass balance and changes in surface elevation at one point or at one elevation band is the net result of two dimensional convergence of ice flow, advection of ice thickness by basal sliding, vertically integrated changes of firn density including creation and closing of voids in the ice, and basal melting. Here we present a series of delta values for 100 m elevation bands of Hintereisferner of the years 1953, 68, 79, 97, 2006. We believe that surface mass balance b and flow divergence du/dx dominate delta values in the accumulation area where surface elevation stayed constant within 10 m and we present evidence that basal melting has become important under the tongue since 1979. This is in accordance with a simultaneous, exponential decay of ice flow by one order of magnitude for Hintereisferner and other glaciers in the Alps. Based on observed delta values and measured ice thickness we attempt an extrapolation of thickness and area changes into coming years and calculate the associated melt water production for glaciers of various sizes.

  19. ROLE OF SPATIAL RESOLUTION AND SPECTRAL CONTENT IN CHANGE DETECTION.

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1984-01-01

    Summary form only given, as follows. Advancements in remote sensing technology have brought improvements and sophistication to modern remote sensor systems, especially those aboard earth resources satellites. These improvements have considerbly expanded the capabilities of the newer sensor systems, particularly the capability to achieve greatly increased spatial and spectral resolution levels. The debate still lingers, however, over whether future systems should maximize spatial resolution or spectral information, or both. As yet, the high costs and large volumes of data associated with even modest incremental improvements in spatial and spectral content have precluded the design of a single system that attempts to fully optimize both. Thus, the user is faced with having to choose between those systems providing high spatial resolutions but limited spectral information and those which offer a broad range of spectral data but hold spatial resolution to a less than optimum level. In this study, the contribution of both spatial resolution and spectral content to land cover change detection is examined. Ten-meter SPOT simulation imagery is compared with multispectral images acquired by the Thematic Mapper sensor system for use in the visual interpretation and mapping of changes. Several image processing and enhancement techniques are utilized to maximize the spatial and spectral data content offered by each system. Results indicate that when using visual image interpretation techniques to detect change, higher spatial resolutions are generally preferred over increased spectral content.

  20. Vibration-based monitoring to detect mass changes in satellites

    NASA Astrophysics Data System (ADS)

    Maji, Arup; Vernon, Breck

    2012-04-01

    Vibration-based structural health monitoring could be a useful form of determining the health and safety of space structures. A particular concern is the possibility of a foreign object that attaches itself to a satellite in orbit for adverse reasons. A frequency response analysis was used to determine the changes in mass and moment of inertia of the space structure based on a change in the natural frequencies of the structure or components of the structure. Feasibility studies were first conducted on a 7 in x 19 in aluminum plate with various boundary conditions. Effect of environmental conditions on the frequency response was determined. The baseline frequency response for the plate was then used as the basis for detection of the addition, and possibly the location, of added masses on the plate. The test results were compared to both analytical solutions and finite element models created in SAP2000. The testing was subsequently expanded to aluminum alloy satellite panels and a mock satellite with dummy payloads. Statistical analysis was conducted on variations of frequency due to added mass and thermal changes to determine the threshold of added mass that can be detected.

  1. Automatic detection of unattended changes in room acoustics.

    PubMed

    Frey, Johannes Daniel; Wendt, Mike; Jacobsen, Thomas

    2015-01-01

    Previous research has shown that the human auditory system continuously monitors its acoustic environment, detecting a variety of irregularities (e.g., deviance from prior stimulation regularity in pitch, loudness, duration, and (perceived) sound source location). Detection of irregularities can be inferred from a component of the event-related brain potential (ERP), referred to as the mismatch negativity (MMN), even in conditions in which participants are instructed to ignore the auditory stimulation. The current study extends previous findings by demonstrating that auditory irregularities brought about by a change in room acoustics elicit a MMN in a passive oddball protocol (acoustic stimuli with differing room acoustics, that were otherwise identical, were employed as standard and deviant stimuli), in which participants watched a fiction movie (silent with subtitles). While the majority of participants reported no awareness for any changes in the auditory stimulation, only one out of 14 participants reported to have become aware of changing room acoustics or sound source location. Together, these findings suggest automatic monitoring of room acoustics.

  2. Change and Anomaly Detection in Real-Time GPS Data

    NASA Astrophysics Data System (ADS)

    Granat, R.; Pierce, M.; Gao, X.; Bock, Y.

    2008-12-01

    The California Real-Time Network (CRTN) is currently generating real-time GPS position data at a rate of 1-2Hz at over 80 locations. The CRTN data presents the possibility of studying dynamical solid earth processes in a way that complements existing seismic networks. To realize this possibility we have developed a prototype system for detecting changes and anomalies in the real-time data. Through this system, we can can correlate changes in multiple stations in order to detect signals with geographical extent. Our approach involves developing a statistical model for each GPS station in the network, and then using those models to segment the time series into a number of discrete states described by the model. We use a hidden Markov model (HMM) to describe the behavior of each station; fitting the model to the data requires neither labeled training examples nor a priori information about the system. As such, HMMs are well suited to this problem domain, in which the data remains largely uncharacterized. There are two main components to our approach. The first is the model fitting algorithm, regularized deterministic annealing expectation- maximization (RDAEM), which provides robust, high-quality results. The second is a web service infrastructure that connects the data to the statistical modeling analysis and allows us to easily present the results of that analysis through a web portal interface. This web service approach facilitates the automatic updating of station models to keep pace with dynamical changes in the data. Our web portal interface is critical to the process of interpreting the data. A Google Maps interface allows users to visually interpret state changes not only on individual stations but across the entire network. Users can drill down from the map interface to inspect detailed results for individual stations, download the time series data, and inspect fitted models. Alternatively, users can use the web portal look at the evolution of changes on the

  3. Visual change detection recruits auditory cortices in early deafness.

    PubMed

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.

  4. Laboratory insights into the detection of surface biosignatures by remote-sensing techniques

    NASA Astrophysics Data System (ADS)

    Poch, O.; Pommerol, A.; Jost, B.; Roditi, I.; Frey, J.; Thomas, N.

    2014-03-01

    With the progress of direct imaging techniques, it will be possible in the short or long-term future to retrieve more efficiently the information on the physical properties of the light reflected by rocky exoplanets (Traub et al., 2010). The search for visible-infrared absorption bands of peculiar gases (O2, CH4 etc.) in this light could give clues for the presence of life (Kaltenegger and Selsis, 2007). Even more uplifting would be the direct detection of life itself, on the surface of an exoplanet. Considering this latter possibility, what is the potential of optical remote-sensing methods to detect surface biosignatures? Reflected light from the surface of the Earth exhibits a strong surface biosignature in the form of an abrupt change of reflectance between the visible and infrared range of the spectrum (Seager et al., 2005). This spectral feature called "vegetation red-edge" is possibly the consequence of biological evolution selecting the right chemical structures enabling the plants to absorb the visible energy, while preventing them from overheating by reflecting more efficiently the infrared. Such red-edge is also found in primitive photosynthetic bacteria, cyanobacteria, that colonized the surface of the Earth ocean and continents billions of years before multicellular plants (Knacke, 2003). If life ever arose on an Earth-like exoplanet, one could hypothesize that some form of its surface-life evolves into similar photo-active organisms, also exhibiting a red-edge. In this paper, we will present our plan and preliminary results of a laboratory study aiming at precising the potentiality of remote sensing techniques in detecting such surface biosignatures. Using equipment that has been developed in our team for surface photometry studies (Pommerol 2011, Jost 2013, Pommerol 2013), we will investigate the reflectance spectra and bidirectional reflectance function of soils containing bacteria such as cyanobacteria, in various environmental conditions. We will

  5. Climate change stored below the earth`s surface

    SciTech Connect

    Cermak, V.; Safanda, J.; Kresl, M.

    1997-12-31

    Earth`s subsurface has a certain capability to remember what has happened on its surface tens to hundreds (or even thousands) years ago. Long-term climate changes accompanied by variations in tile mean annual temperature determine tile soil temperature, the time variations of which then propagate downwards with an attenuated amplitude and delayed phase. Ground surface temperature (GST) history, reflecting the past climate, can thus be evaluated by analysing its excursions left on the present-day temperature-depth T(z) distribution measured by precise temperature logging in the boreholes. Whereas the depths of several hundred metres may still keep and reveal a reliable record oil the climate of the past several centuries, tile uppermost layer of 100-150 in presents a plentiful archive of the recent global warming. Several characteristic examples of extracted climate recollections from holes all over the world will be resented and discussed.

  6. Control surface wettability with nanoparticles from phase-change materials

    NASA Astrophysics Data System (ADS)

    ten Brink, G. H.; van het Hof, P. J.; Chen, B.; Sedighi, M.; Kooi, B. J.; Palasantzas, G.

    2016-12-01

    The wetting state of surfaces can be controlled physically from the highly hydrophobic to hydrophilic states using the amorphous-to-crystalline phase transition of Ge2Sb2Te5 (GST) nanoparticles as surfactant. Indeed, contact angle measurements show that by increasing the surface coverage of the amorphous nanoparticles the contact angle increases to high values ˜140°, close to the superhydrophobic limit. However, for crystallized nanoparticle assemblies after thermal annealing, the contact angle decreases down to ˜40° (significantly lower than that of the bare substrate) leading to an increased hydrophilicity. Moreover, the wettability changes are also manifested on the capillary adhesion forces by being stronger for the crystallized GST state.

  7. Land-cover change detection for the tropics using remote sensing and geographic information systems

    NASA Astrophysics Data System (ADS)

    Read, Jane M.

    1999-12-01

    Changing land-cover in the tropics is a central issue in global change research. This dissertation used Landsat-TM data to examine processes of land-use and land-cover changes for a lowland tropical site in Sarapiqui, Costa Rica. Performances of selected image-processing methods to detect and identify land-cover changes were evaluated. A land-cover time-series from 1960 to 1996 for the site was generated using maps derived from aerial photographs and Landsat-TM classifications. Changes in land-cover from 1986 to 1996 were evaluated using standard landscape indices, and interpreted in terms of their historical context. Dominant changes in the site during this decade included the breakup of extensive cattle ranches for large-scale plantation enterprises and small-scale farming. Colonization processes, improvements in access, and changes in export markets were identified as the major driving forces of change. Evaluation of change-detection methods revealed that postclassification comparison performed significantly better than image differencing algorithms. Image differencing using mid- infrared bonds performed the best of the differencing algorithms tested. Selection of a suitable change-detection method can be aided through examination of the individual bond statistics for the specific area and problem in question. The univariate bond differencing technique has potential for identification of 'hot spots' of change using Landsat-TM data. Spatial pattern-recognition techniques to characterize complexity of Landsat-TM data were evaluated. Fractal dimension calculated using the triangular prism surface area method, and Moran's I index of spatial autocorrelation, clearly distinguished different land-cover types. Shannon's diversity index and the contagion metric were not found to be useful in characterizing the images. The use of fractal dimension, in conjunction with standard non-spatial descriptive band statistics, are seen as having great potential in characterizing

  8. A surface plasmon resonance based biochip for the detection of patulin toxin

    NASA Astrophysics Data System (ADS)

    Pennacchio, Anna; Ruggiero, Giuseppe; Staiano, Maria; Piccialli, Gennaro; Oliviero, Giorgia; Lewkowicz, Aneta; Synak, Anna; Bojarski, Piotr; D'Auria, Sabato

    2014-08-01

    Patulin is a toxic secondary metabolite of a number of fungal species belonging to the genera Penicillium and Aspergillus. One important aspect of the patulin toxicity in vivo is an injury of the gastrointestinal tract including ulceration and inflammation of the stomach and intestine. Recently, patulin has been shown to be genotoxic by causing oxidative damage to the DNA, and oxidative DNA base modifications have been considered to play a role in mutagenesis and cancer initiation. Conventional analytical methods for patulin detection involve chromatographic analyses, such as HPLC, GC, and, more recently, techniques such as LC/MS and GC/MS. All of these methods require the use of extensive protocols and the use of expensive analytical instrumentation. In this work, the conjugation of a new derivative of patulin to the bovine serum albumin for the production of polyclonal antibodies is described, and an innovative competitive immune-assay for detection of patulin is presented. Experimentally, an important part of the detection method is based on the optical technique called surface plasmon resonance (SPR). Laser beam induced interactions between probe and target molecules in the vicinity of gold surface of the biochip lead to the shift in resonance conditions and consequently to slight but easily detectable change of reflectivity.

  9. Simple Nanoimprinted Polymer Nanostructures for Uncooled Thermal Detection by Direct Surface Plasmon Resonance Imaging.

    PubMed

    Hong, Brandon; Vallini, Felipe; Fang, Cheng-Yi; Alasaad, Amr; Fainman, Yeshaiahu

    2017-03-08

    We experimentally demonstrate the uncooled detection of long wavelength infrared (IR) radiation by thermal surface plasmon sensing using an all optical readout format. Thermal infrared radiation absorbed by an IR-sensitive material with high thermo-optic coefficient coated on a metal grating creates a refractive index change detectable by the shift of the supported surface plasmon resonance (SPR) measured optically in the visible spectrum. The interface localization of SPR modes and optical readout allow for submicrometer thin film transducers and eliminate complex readout integrated circuits, respectively, reducing form factor, leveraging robust visible detectors, and enabling low-cost imaging cameras. We experimentally present the radiative heat induced thermo-optic action detectable by SPR shift through imaging of a thermal source onto a bulk metal grating substrate with IR-absorptive silicon nitride coating. Toward focal plane array integration, a route to facile fabrication of pixelated metal grating structures by nanoimprint lithography is developed, where a stable polymer, parylene-C, serves as an IR-absorptive layer with a high thermo-optic coefficient. Experimental detection of IR radiation from real thermal sources imaged at infinity is demonstrated by our nanoimprinted polymer-SPR pixels with an estimated noise equivalent temperature difference of 21.9 K.

  10. Trend Analysis and Detection of Changes in the Stratospheric Circulation

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Douglass, A. R.; Rodriquez, J. M.; Stolarski, R. S.; Waugh, D. W.

    2010-01-01

    Increases in the circulation of the stratosphere appear to be a robust result of climate change in chemistry-climate models over decadal time scales. To date observations have yet to show a significant change in this circulation. It is important for the design of future observational missions to identify suitable atmospheric constituents and to determine the accuracy and length of record needed to identify a significant trend that can be attributed to circulation change. First, we determine what atmospheric variables can be used as proxies for stratospheric circulation changes. A few examples are changes in tropical lower stratospheric ozone, phase lag of the water vapor tape recorder, CO2, and SF6. Then, using both the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) and observations from satellites and balloon soundings, we calculate the number of years needed to detect a significant trend, taking into account observational uncertainty. Model simulations will be evaluated to see how well they represent observed variability. In addition, the impacts of autocorrelation among the output or data and gaps in the observational record will be discussed.

  11. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer; Sanchez, Alber; Verbesselt, Jan

    2016-07-01

    Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

  12. Shoreline Delineation and Land Reclamation Change Detection Using Landsat Image

    NASA Astrophysics Data System (ADS)

    Rosli, M. I.; Ahmad, M. A.; Kaamin, M.; Izhar, M. F. N.

    2016-07-01

    This study is conducted on the usage of remote sensing images from several different years in order to analyze the changes of shoreline and land cover of the area. Remote sensing images used in this study are the data captured by the Landsat satellite. The images are projecting the land surface in 30 by 30 meter resolution and it is processed by the ENVI software. ENVI is able to change each digital number of the pixels on the images into specific value according to the applied model for classification in which could be used as an approach in calculating the area different classes based from the images itself. Therefore, using this method, the changes on the coastal area are possible to be determined. Analysis of the shoreline and land reclamation around the coastal area is integrated with the land use changes to determine its impact. The study shows that Batu Pahat area might have undergone land reclamation whereas in Pasir Gudang is experiencing substantial amount of erosion. Besides, the changes of land use in both areas were considered to be rapid and due to the results obtained from this study, the issues may be brought about for the local authority awareness action.

  13. Competitive SWIFT cluster templates enhance detection of aging changes

    PubMed Central

    Rebhahn, Jonathan A.; Roumanes, David R.; Qi, Yilin; Khan, Atif; Thakar, Juilee; Rosenberg, Alex; Lee, F. Eun‐Hyung; Quataert, Sally A.; Sharma, Gaurav

    2015-01-01

    Abstract Clustering‐based algorithms for automated analysis of flow cytometry datasets have achieved more efficient and objective analysis than manual processing. Clustering organizes flow cytometry data into subpopulations with substantially homogenous characteristics but does not directly address the important problem of identifying the salient differences in subpopulations between subjects and groups. Here, we address this problem by augmenting SWIFT—a mixture model based clustering algorithm reported previously. First, we show that SWIFT clustering using a “template” mixture model, in which all subpopulations are represented, identifies small differences in cell numbers per subpopulation between samples. Second, we demonstrate that resolution of inter‐sample differences is increased by “competition” wherein a joint model is formed by combining the mixture model templates obtained from different groups. In the joint model, clusters from individual groups compete for the assignment of cells, sharpening differences between samples, particularly differences representing subpopulation shifts that are masked under clustering with a single template model. The benefit of competition was demonstrated first with a semisynthetic dataset obtained by deliberately shifting a known subpopulation within an actual flow cytometry sample. Single templates correctly identified changes in the number of cells in the subpopulation, but only the competition method detected small changes in median fluorescence. In further validation studies, competition identified a larger number of significantly altered subpopulations between young and elderly subjects. This enrichment was specific, because competition between templates from consensus male and female samples did not improve the detection of age‐related differences. Several changes between the young and elderly identified by SWIFT template competition were consistent with known alterations in the elderly, and additional

  14. Competitive SWIFT cluster templates enhance detection of aging changes.

    PubMed

    Rebhahn, Jonathan A; Roumanes, David R; Qi, Yilin; Khan, Atif; Thakar, Juilee; Rosenberg, Alex; Lee, F Eun-Hyung; Quataert, Sally A; Sharma, Gaurav; Mosmann, Tim R

    2016-01-01

    Clustering-based algorithms for automated analysis of flow cytometry datasets have achieved more efficient and objective analysis than manual processing. Clustering organizes flow cytometry data into subpopulations with substantially homogenous characteristics but does not directly address the important problem of identifying the salient differences in subpopulations between subjects and groups. Here, we address this problem by augmenting SWIFT--a mixture model based clustering algorithm reported previously. First, we show that SWIFT clustering using a "template" mixture model, in which all subpopulations are represented, identifies small differences in cell numbers per subpopulation between samples. Second, we demonstrate that resolution of inter-sample differences is increased by "competition" wherein a joint model is formed by combining the mixture model templates obtained from different groups. In the joint model, clusters from individual groups compete for the assignment of cells, sharpening differences between samples, particularly differences representing subpopulation shifts that are masked under clustering with a single template model. The benefit of competition was demonstrated first with a semisynthetic dataset obtained by deliberately shifting a known subpopulation within an actual flow cytometry sample. Single templates correctly identified changes in the number of cells in the subpopulation, but only the competition method detected small changes in median fluorescence. In further validation studies, competition identified a larger number of significantly altered subpopulations between young and elderly subjects. This enrichment was specific, because competition between templates from consensus male and female samples did not improve the detection of age-related differences. Several changes between the young and elderly identified by SWIFT template competition were consistent with known alterations in the elderly, and additional altered subpopulations

  15. Detection of single-nucleotide polymorphisms with novel leaky surface acoustic wave biosensors, DNA ligation and enzymatic signal amplification.

    PubMed

    Xu, Qinghua; Chang, Kai; Lu, Weiping; Chen, Wei; Ding, Yi; Jia, Shuangrong; Zhang, Kejun; Li, Fake; Shi, Jianfeng; Cao, Liang; Deng, Shaoli; Chen, Ming

    2012-03-15

    This manuscript describes a new technique for detecting single-nucleotide polymorphisms (SNPs) by integrating a leaky surface acoustic wave (LSAW) biosensor, enzymatic DNA ligation and enzymatic signal amplification. In this technique, the DNA target is hybridized with a capture probe immobilized on the surface of a LSAW biosensor. Then, the hybridized sequence is ligated to biotinylated allele-specific detection probe using Taq DNA ligase. The ligation does not take place if there is a single-nucleotide mismatch between the target and the capture probe. The ligated detection probe is transformed into a streptavidin-horseradish peroxidase (SA-HRP) terminal group via a biotin-streptavidin complex. Then, the SA-HRP group catalyzes the polymerization of 3,3-diaminobenzidine (DAB) to form a surface precipitate, thus effectively increasing the sensitivity of detecting surface mass changes and allowing detection of SNPs. Optimal detection conditions were found to be: 0.3 mol/L sodium ion concentration in PBS, pH 7.6, capture probe concentration 0.5 μmol/L and target sequence concentration 1.0 μmol/L. The detection limit was found to be 1 × 10(-12)mol/L. Using this technique, we were able to detect a single-point mutation at nucleotide A2293G in Japanese encephalitis virus.

  16. GPU based detection of topological changes in Voronoi diagrams

    NASA Astrophysics Data System (ADS)

    Bernaschi, M.; Lulli, M.; Sbragaglia, M.

    2017-04-01

    The Voronoi diagrams are an important tool having theoretical and practical applications in a large number of fields. We present a new procedure, implemented as a set of CUDA kernels, which detects, in a general and efficient way, topological changes in case of dynamic Voronoi diagrams whose generating points move in time. The solution that we provide has been originally developed to identify plastic events during simulations of soft-glassy materials based on a lattice Boltzmann model with frustrated-short range attractive and mid/long-range repulsive-interactions. Along with the description of our approach, we present also some preliminary physics results.

  17. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  18. A New Maximum-Likelihood Change Estimator for Two-Pass SAR Coherent Change Detection.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Charles V,

    2014-09-01

    In this paper, we derive a new optimal change metric to be used in synthetic aperture RADAR (SAR) coherent change detection (CCD). Previous CCD methods tend to produce false alarm states (showing change when there is none) in areas of the image that have a low clutter-to-noise power ratio (CNR). The new estimator does not suffer from this shortcoming. It is a surprisingly simple expression, easy to implement, and is optimal in the maximum-likelihood (ML) sense. The estimator produces very impressive results on the CCD collects that we have tested.

  19. Transition Zone Anisotropy Detected by Higher Modes Surface Wave Data

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Beghein, C.

    2012-12-01

    By inverting the fundamental and overtone surface wave data, we built the three-dimensional anisotropy models of vertically and horizontally polarized shear-wave in the transition zone. And we found the transition zone is seismic anisotropic. Because the seismic anisotropy can be caused by the lattice preferred orientation (LPO) of elastically anisotropic minerals, it plays a key role in understanding the mantle deformation. Lots of studies showed the seismic anisotropy in the uppermost mantle is caused by the LPO of olivine. As depth increases, the resolution of commonly used seismic data decreases, and the presence of seismic becomes more controversial. Determining its depth extent is essential to constrain the mantle flow. In this study, we used fundamental and overtone azimuthal anisotropic phase velocity maps for both Rayleigh and Love waves [Visser, et al., 2008]. The overtone surface waves are sensitive to structure down to much larger depths than fundamental modes, which make it possible to resolve the seismic anisotropy in the deeper earth. We inverted the 2Ψ terms of Rayleigh waves and 4Ψ terms of Love waves to model the azimuthally anisotropy parameter G (Vsv anisotropy) and E (Vsh anisotropy), respectively. The average amplitude of G parameter displays two main, stable peaks: one in the uppermost mantle, and most remarkably, one in the transition. We also checked the gradient of fast axis. The gradient shows two clear peaks around the upper and lower transition zone boundaries, which may indicate the different mantle flow patterns in the transition zone and outside. The average amplitude of E parameter also has a stable peak in the transition zone, which suggests the Vsh anisotropy in the transition zone. Azimuthal anisotropy in the transition zone could be due to the tilted laminated structure or arise from LPO of wadsleyite and hydrous ringwoodite in the upper and lower transition zone. The detection of seismic anisotropy in these depths may thus

  20. Understanding and predicting changes in North Atlantic Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.

    The mechanisms associated with sea surface temperature variability in the North Atlantic are explored using observation-based reconstructions of the historical surface states of the atmosphere and ocean as well as simulations run with the Community Earth System Model, version 1 (CESM1). The relationship between air-sea heat flux and SST between 1948 and 2009 yields evidence of a positive heat flux feedback at work in the subpolar gyre region on quasi-decadal timescales. Warming of the high latitude Atlantic precedes an atmospheric response which resembles a negative NAO state. The historical flux data set is used to estimate temporal variations in North Atlantic deep water formation which suggest that NAO variations drove strong decadal changes in thermohaline circulation strength in the last half century. Model simulations corroborate the observation-based inferences that substantial changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) ensued as a result of NAO-driven water mass perturbations, and that changes in the large-scale ocean circulation played a significant role in modulating North Atlantic SST. Surface forcing perturbation experiments show that the simulated low-frequency AMOC variability is mainly driven by turbulent buoyancy forcing over the Labrador Sea region, and that the decadal ocean variability, in uncoupled experiments, derives from low-frequency variability in the overlying atmospheric state. Surface momentum forcing accounts for most of the interannual variability in AMOC at all latitudes, and also most of the decadal AMOC variability south of the Equator. We show that the latter relates to the trend in wind stress forcing of the Southern Ocean, but that Southern Ocean forcing explains very little of the North Atlantic signal. The sea surface height in the Labrador Sea is identified as a strongly buoyancy-forced observable which supports its use as a monitor of AMOC strength. The dynamics which characterize the

  1. Observation of charge state and conformational change in immobilized protein using surface plasmon resonance sensor.

    PubMed

    Mannen, T; Yamaguchi, S; Honda, J; Sugimoto, S; Kitayama, A; Nagamune, T

    2001-06-15

    Behaviors of proteins immobilized on a solid surface were investigated using BIACORE, a biosensor utilizing surface plasmon resonance. This sensor is usually used for analyzing binding events during biomolecular interactions. Here we propose a novel use of this sensor to monitor two kinds of intramolecular changes in immobilized proteins. Several proteins were covalently attached to dextran chains on the sensor surface in the flow cell and were then exposed to a series of buffers with varying pH. Signal changes derived from changes of refractive index around the sensor surface were detected during and after the exposure to each of these buffers, which we denoted as in situ values and postvalues, respectively. The in situ value reflects the behavior of immobilized proteins in these buffers and was revealed to have a correlation with total charge state of the proteins, while the postvalue reflects how immobilized proteins react after the exposure and was suggested to represent the degree of conformational changes of the proteins. This method is expected to be applicable to various analyses and can provide us with new information about the behavior of proteins on solid phase.

  2. Testing the robustness of the anthropogenic climate change detection statements using different empirical models

    NASA Astrophysics Data System (ADS)

    Imbers, J.; Lopez, A.; Huntingford, C.; Allen, M. R.

    2013-04-01

    This paper aims to test the robustness of the detection and attribution of anthropogenic climate change using four different empirical models that were previously developed to explain the observed global mean temperature changes over the last few decades. These studies postulated that the main drivers of these changes included not only the usual natural forcings, such as solar and volcanic, and anthropogenic forcings, such as greenhouse gases and sulfates, but also other known Earth system oscillations such as El Niño Southern Oscillation (ENSO) or the Atlantic Multidecadal Oscillation (AMO). In this paper, we consider these signals, or forced responses, and test whether or not the anthropogenic signal can be robustly detected under different assumptions for the internal variability of the climate system. We assume that the internal variability of the global mean surface temperature can be described by simple stochastic models that explore a wide range of plausible temporal autocorrelations, ranging from short memory processes exemplified by an AR(1) model to long memory processes, represented by a fractional differenced model. In all instances, we conclude that human-induced changes to atmospheric gas composition is affecting global mean surface temperature changes.

  3. High sensitivity detection of bacteria by surface plasmon resonance enhanced common path interferometry

    NASA Astrophysics Data System (ADS)

    Greef, Charles; Petropavlovskikh, Viatcheslav; Nilsen, Oyvind; Hacioglu, Bilge; Khattatov, Boris; Hall, John

    2007-04-01

    Real time monitoring of biowarfare agents (BWA) for military and civilian protection remains a high priority for homeland security and battlefield readiness. Available devices have adequate sensitivity, but the detection modules have limited periods of deployment, require frequent maintenance, employ single-use disposable components, and have limited multiplexing capability. Surface Plasmon Resonance enhanced Common Path Interferometry (SPR-CPI) is a label-free, high sensitivity biomolecular interaction measurement technology that allows multiplexed real-time measurement of biowarfare agents, including small molecules, proteins, and microbes. The technology permits continuous operation in a field-deployable detection module of an integrated BWA monitoring system. SPR-CPI measures difference in phase shift of polarized light reflected from the transducer interface caused by changes in refractive index induced by biomolecular interactions. The measurement is performed on a discrete 2-dimensional area functionalized with biomolecule capture reagents in a microarray format, allowing simultaneous measurement of up to 100 separate analytes. Output consists of simultaneous voltage measurements proportional to the phase differences resulting from the refractive index changes and is automatically processed and displayed graphically or delivered to a decision making algorithm. This enables a fully automatic field-deployable detection system capable of integration into existing modular BWA detection systems. Proof-of-concept experiments on surrogate models of anticipated BWA threats have demonstrated utility. Efforts are in progress for full development and deployment of the device.

  4. EMAT phased array: A feasibility study of surface crack detection.

    PubMed

    Isla, J; Cegla, F

    2017-02-14

    Electromagnetic-acoustic transducers (EMATs) consist of a magnet and a coil. They are advantageous in some non-destructive evaluation (NDE) applications because no direct contact with the specimen is needed to send and receive ultrasonic waves. However, EMATs commonly require excitation peak powers greater than 1kW and therefore the driving electronics and the EMAT coils have to be bulky. This has hindered the development of EMAT phased arrays with characteristics similar to those of conventional piezoelectric phased arrays. Phased arrays are widely used in NDE because they offer superior defect characterization in comparison to single-element transducers. In this paper, we report a series of novel techniques and design elements that make it possible to construct an EMAT phased array that performs similarly to conventional piezoelectric arrays used in NDE. One of the key enabling features is the use of coded excitation to reduce the excitation peak power to less than 4.8W (24 Vpp and 200mA) so that racetrack coils with dimensions 3.2×18mm(2) can be employed. Moreover, these racetrack coils are laid out along their shortest dimension so that 1/3 of their area is overlapped. This helps to reduce the crosstalk between the coils, i.e., the array elements, to less than -15dB. We show that an 8-element EMAT phased array operating at a central frequency of 1MHz can be used to detect defects which have a width and a depth of 0.2 and 0.8mm respectively and are located on the surface opposite to the array.

  5. An Unsupervised Change Detection Based on Test Statistic and KI from Multi-Temporal and Full Polarimetric SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. Q.; Yang, J.; Li, P. X.; Liu, M. Y.; Shi, Y. M.

    2016-06-01

    Accurate and timely change detection of Earth's surface features is extremely important for understanding relationships and interactions between people and natural phenomena. Many traditional methods of change detection only use a part of polarization information and the supervised threshold selection. Those methods are insufficiency and time-costing. In this paper, we present a novel unsupervised change-detection method based on quad-polarimetric SAR data and automatic threshold selection to solve the problem of change detection. First, speckle noise is removed for the two registered SAR images. Second, the similarity measure is calculated by the test statistic, and automatic threshold selection of KI is introduced to obtain the change map. The efficiency of the proposed method is demonstrated by the quad-pol SAR images acquired by Radarsat-2 over Wuhan of China.

  6. Detection of concealed ground targets in CARABAS SAR images using change detection

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M.; Froelind, Per-Olov; Gustavsson, Anders; Hellsten, Hans; Larsson, Bjoern

    1999-08-01

    The paper describes a new method to detect man-made objects hidden under foliage or camouflage. The method is based on change detection and thus multiple revisits of the same area. It uses SAR image data provided by the low-frequency and ultra-wideband CARABAS SAR system which operate in the 20 - 90 MHz frequency range. Experimental results show a drastic reduction in false-alarm rate compared to methods based on single-pass SAR images. Small- to medium-sized trucks are consistently detected with a false-alarm rate of the order of 0.1 - 1 per km2. This level of false-alarm rate is quite sufficient for most military or civilian applications of interest.

  7. Street-side vehicle detection, classification and change detection using mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Xiao, Wen; Vallet, Bruno; Schindler, Konrad; Paparoditis, Nicolas

    2016-04-01

    Statistics on street-side car parks, e.g. occupancy rates, parked vehicle types, parking durations, are of great importance for urban planning and policy making. Related studies, e.g. vehicle detection and classification, mostly focus on static images or video. Whereas mobile laser scanning (MLS) systems are increasingly utilized for urban street environment perception due to their direct 3D information acquisition, high accuracy and movability. In this paper, we design a complete system for car park monitoring, including vehicle recognition, localization, classification and change detection, from laser scanning point clouds. The experimental data are acquired by an MLS system using high frequency laser scanner which scans the streets vertically along the system's moving trajectory. The point clouds are firstly classified as ground, building façade, and street objects which are then segmented using state-of-the-art methods. Each segment is treated as an object hypothesis, and its geometric features are extracted. Moreover, a deformable vehicle model is fitted to each object. By fitting an explicit model to the vehicle points, detailed information, such as precise position and orientation, can be obtained. The model parameters are also treated as vehicle features. Together with the geometric features, they are applied to a supervised learning procedure for vehicle or non-vehicle recognition. The classes of detected vehicles are also investigated. Whether vehicles have changed across two datasets acquired at different times is detected to estimate the durations. Here, vehicles are trained pair-wisely. Two same or different vehicles are paired up as training samples. As a result, the vehicle recognition, classification and change detection accuracies are 95.9%, 86.0% and 98.7%, respectively. Vehicle modelling improves not only the recognition rate, but also the localization precision compared to bounding boxes.

  8. Surface Organization, Light-Driven Surface Changes, and Stability of Semifluorinated Azobenzen Polymers

    SciTech Connect

    Paik,M.; Krishnan, S.; You, F.; Li, X.; Hexemer, A.; Ando, Y.; Kang, S.; Fischer, D.; Kramer, E.; Ober, C.

    2007-01-01

    A series of polymers with 4-perfluoroalkyl-modified azobenzene side groups was investigated for its light-induced changes in surface properties. The ultraviolet (UV) light activated trans to cis isomerization of the azobenzene group, and the influence of molecular order and orientation on this process were studied using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and water contact angle measurements. Light-induced molecular reorganization in the near-surface region was studied by NEXAFS using in situ UV irradiation of polymer thin films. Differential scanning calorimetry and wide-angle X-ray scattering studies showed that sufficiently long fluoroalkyl groups formed well-ordered smectic mesophases in the bulk, as well as on the surface, which was evidenced by NEXAFS. The disruption of mesogen packing by photoisomerization was found to be influenced by the fluoroalkyl segment length. Surfaces with perfluorohexyl and perfluorooctyl groups that showed high orientational order were also highly resistant to light-induced changes. In such cases, the trans-cis isomerization resulted in greater lowering of the azobenzene phenyl ring order parameters than the perfluoroalkyl order parameters. UV exposure caused reorientation of the phenyl rings of the azobenzene group, but the terminal perfluoroalkyl segments remained more or less ordered.

  9. Correlation based efficient face recognition and color change detection

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Alfalou, A.; Brosseau, C.; Alam, M. S.; Qasmi, S.

    2013-01-01

    Identifying the human face via correlation is a topic attracting widespread interest. At the heart of this technique lies the comparison of an unknown target image to a known reference database of images. However, the color information in the target image remains notoriously difficult to interpret. In this paper, we report a new technique which: (i) is robust against illumination change, (ii) offers discrimination ability to detect color change between faces having similar shape, and (iii) is specifically designed to detect red colored stains (i.e. facial bleeding). We adopt the Vanderlugt correlator (VLC) architecture with a segmented phase filter and we decompose the color target image using normalized red, green, and blue (RGB), and hue, saturation, and value (HSV) scales. We propose a new strategy to effectively utilize color information in signatures for further increasing the discrimination ability. The proposed algorithm has been found to be very efficient for discriminating face subjects with different skin colors, and those having color stains in different areas of the facial image.

  10. Illumination robust change detection with CMOS imaging sensors

    NASA Astrophysics Data System (ADS)

    Rengarajan, Vijay; Gupta, Sheetal B.; Rajagopalan, A. N.; Seetharaman, Guna

    2015-05-01

    Change detection between two images in the presence of degradations is an important problem in the computer vision community, more so for the aerial scenario which is particularly challenging. Cameras mounted on moving platforms such as aircrafts or drones are subject to general six-dimensional motion as the motion is not restricted to a single plane. With CMOS cameras increasingly in vogue due to their low power consumption, the inevitability of rolling-shutter (RS) effect adds to the challenge. This is caused by sequential exposure of rows in CMOS cameras unlike conventional global shutter cameras where all pixels are exposed simultaneously. The RS effect is particularly pronounced in aerial imaging since each row of the imaging sensor is likely to experience a different motion. For fast-moving platforms, the problem is further compounded since the rows are also affected by motion blur. Moreover, since the two images are shot at different times, illumination differences are common. In this paper, we propose a unified computational framework that elegantly exploits the scarcity constraint to deal with the problem of change detection in images degraded by RS effect, motion blur as well as non-global illumination differences. We formulate an optimization problem where each row of the distorted image is approximated as a weighted sum of the corresponding rows in warped versions of the reference image due to camera motion within the exposure period to account for geometric as well as photometric differences. The method has been validated on both synthetic and real data.

  11. Detecting and isolating abrupt changes in linear switching systems

    NASA Astrophysics Data System (ADS)

    Nazari, Sohail; Zhao, Qing; Huang, Biao

    2015-04-01

    In this paper, a novel fault detection and isolation (FDI) method for switching linear systems is developed. All input and output signals are assumed to be corrupted with measurement noises. In the proposed method, a 'lifted' linear model named as stochastic hybrid decoupling polynomial (SHDP) is introduced. The SHDP model governs the dynamics of the switching linear system with all different modes, and is independent of the switching sequence. The error-in-variable (EIV) representation of SHDP is derived, and is used for the fault residual generation and isolation following the well-adopted local approach. The proposed FDI method can detect and isolate the fault-induced abrupt changes in switching models' parameters without estimating the switching modes. Furthermore, in this paper, the analytical expressions of the gradient vector and Hessian matrix are obtained based on the EIV SHDP formulation, so that they can be used to implement the online fault detection scheme. The performance of the proposed method is then illustrated by simulation examples.

  12. Surface-enhanced nonlinear optical effects and detection of adsorbed molecular monolayers

    SciTech Connect

    Shen, Y.R.; Chen, C.K.; Heinz, T.F.; Ricard, D.

    1981-01-01

    The observation of a number of surface-enhanced nonlinear optical effects is discussed. The feasibility of using second-harmonic generation to detect the adsorption of molecular monolayers on a metal surface in an electrolytic solution is shown.

  13. Uncertainty in Estimation of Bioenergy Induced Lulc Change: Development of a New Change Detection Technique.

    NASA Astrophysics Data System (ADS)

    Singh, N.; Vatsavai, R. R.; Patlolla, D.; Bhaduri, B. L.; Lim, S. J.

    2015-12-01

    Recent estimates of bioenergy induced land use land cover change (LULCC) have large uncertainty due to misclassification errors in the LULC datasets used for analysis. These uncertainties are further compounded when data is modified by merging classes, aggregating pixels and change in classification methods over time. Hence the LULCC computed using these derived datasets is more a reflection of change in classification methods, change in input data and data manipulation rather than reflecting actual changes ion ground. Furthermore results are constrained by geographic extent, update frequency and resolution of the dataset. To overcome this limitation we have developed a change detection system to identify yearly as well as seasonal changes in LULC patterns. Our method uses hierarchical clustering which works by grouping objects into a hierarchy based on phenological similarity of different vegetation types. The algorithm explicitly models vegetation phenology to reduce spurious changes. We apply our technique on globally available Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data at 250-meter resolution. We analyze 10 years of bi-weekly data to predict changes in the mid-western US as a case study. The results of our analysis are presented and its advantages over existing techniques are discussed.

  14. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    PubMed

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  15. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  16. Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pagba, Cynthia V.; Lane, Stephen M.; Cho, Hansang; Wachsmann-Hogiu, Sebastian

    2010-07-01

    In this study, we exploit the sensitivity offered by surface-enhanced Raman scattering (SERS) for the direct detection of thrombin using the thrombin-binding aptamer (TBA) as molecular receptor. The technique utilizes immobilized silver nanoparticles that are functionalized with thiolated thrombin-specific binding aptamer, a 15-mer (5'-GGTTGGTGTGGTTGG-3') quadruplex forming oligonucleotide. In addition to the Raman vibrational bands corresponding to the aptamer and blocking agent, new peaks (mainly at 1140, 1540, and 1635 cm-1) that are characteristic of the protein are observed upon binding of thrombin. These spectral changes are not observed when the aptamer-nanoparticle assembly is exposed to a nonbinding protein such as bovine serum albumin (BSA). This methodology could be further used for the development of label-free biosensors for direct detection of proteins and other molecules of interest for which aptamers are available.

  17. Effects of food surface topography on phage-based magnetoelastic biosensor detection

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Chai, Yating; Zhao, Ruiting; Wikle, Howard C.; Chin, Bryan A.

    2014-05-01

    Phage-based magnetoelastic (ME) biosensors have proven useful in rapidly and inexpensively detecting food surface con- tamination. These biosensors are wireless, mass-sensitive biosensors and can be placed directly on food surfaces to detect the presence of target pathogens. Previously, millimeter-scale strip-shaped ME biosensors have been used to demonstrate direct detection of Salmonella Typhimurium on various fresh produce surfaces, including tomatoes, shell eggs, watermel- ons, and spinach leaves. Since the topography of these produce surfaces are different, and the biosensor must come into direct contact with Salmonella bacteria, food surfaces with large roughness and curvatures (e.g., spinach leaf surfaces) may allow the bacteria to avoid direct contact, thereby avoiding detection. The primary objective of this paper is, hence, to investigate the effects of food surface topography on the detection capabilities of the biosensors. Spinach leaf surfaces were selected as model surfaces, and detection experiments were conducted with differently sized biosensors (2 mm, 0.5 mm, and 150 μm in length). Spinach leaf roughness and curvatures of both adaxial (top) and abaxial (underside) surfaces were measured using a confocal laser scanning microscope. The experimental results showed that in spinach as the sen- sor was made smaller, the physical contact between the biosensors and bacteria were improved. Smaller sensors thereby enhance detection capabilities. When proper numbers of biosensors are used, micron-scale biosensors are anticipated to yield improved limits of detection over previously investigated millimeter-scale biosensors.

  18. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    USGS Publications Warehouse

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  19. Novel sensory surface for creatine kinase electrochemical detection.

    PubMed

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, João P; Sales, M Goreti F

    2014-06-15

    This work describes a novel concept of biosensor for quantifying enzymes, where the substrate is immobilized directly over the working area of a screen printed electrode (Au-SPE). This concept is applied here to creatine kinase isoenzyme (CK-MB), a cardiac biomarker in ischemic conditions. It acts as a phospho-transferase on creatine (Crea), requiring the presence of phosphate. So, the phosphorylated form of creatine (Pcrea) was immobilized on the Au/SPE previously aminated with cysteamine (Cys) by self-assembling monolayer technique. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were used to follow the chemical modifications in the Au-SPE. Since Pcrea is an electroactive species at low potential, its consumption over the platform by the enzyme changed the electrical response of the biosensor. So, CK-MB determination has been achieved in mediator free-conditions due the redox proprieties of the Pcrea. The analytical features of the resulting biosensor were studied by square wave voltammetry (SWV). The limit of detection was 0.11 µg/mL and the slope was -0.029(± 0.0035) µA × mL/µg. The interference effect of troponin T (TnT), bovine serum albumin (BSA) and myoglobin (Myo) in the performance of the sensor was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids, showing good stability at room temperature and excellent sensitivity and selectivity. This new concept of biosensor is especially useful for point of care (POC) applications, due to the low cost and small size of the final device.

  20. Detection of Deforestation and Land Conversion in Rondonia, Brazil Using Change Detection Techniques

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Cohen, Warren B,; Kauffman, J. Boone; Peterson, David L. (Technical Monitor)

    2001-01-01

    Fires associated with tropical deforestation, land conversion, and land use greatly contribute to emissions as well as the depletion of carbon and nutrient pools. The objective of this research was to compare change detection techniques for identifying deforestation and cattle pasture formation during a period of early colonization and agricultural expansion in the vicinity of Jamari, Rond6nia. Multi-date Landsat Thematic Mapper (TM) data between 1984 and 1992 was examined in a 94 370-ha area of active deforestation to map land cover change. The Tasseled Cap (TC) transformation was used to enhance the contrast between forest, cleared areas, and regrowth. TC images were stacked into a composite multi-date TC and used in a principal components (PC) transformation to identify change components. In addition, consecutive TC image pairs were differenced and stacked into a composite multi-date differenced image. A maximum likelihood classification of each image composite was compared for identification of land cover change. The multi-date TC composite classification had the best accuracy of 78.1% (kappa). By 1984, only 5% of the study area had been cleared, but by 1992, 11% of the area had been deforested, primarily for pasture and 7% lost due to hydroelectric dam flooding. Finally, discrimination of pasture versus cultivation was improved due to the ability to detect land under sustained clearing opened to land exhibiting regrowth with infrequent clearing.

  1. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation.

    PubMed

    Xu, Zhen J; Song, Xiaodong

    2009-08-25

    Detecting temporal changes of the medium associated with major earthquakes has implications for understanding earthquake genesis. Here we report temporal changes of surface wave velocity over a large area associated with 3 major Sumatra earthquakes in 2004, 2005, and 2007. We use ambient noise correlation to retrieve empirical Green's function (EGF) of surface waves between stations. Because the process is completely repeatable, the technique is powerful in detecting possible temporal change of medium. We find that 1 excellent station pair (PSI in Indonesia and CHTO in Thailand) shows significant time shifts (up to 1.44 s) after the 2004 and 2005 events in the Rayleigh waves at 10-20 s but not in the Love waves, suggesting that the Rayleigh time shifts are not from clock error. The time shifts are frequency dependent with the largest shifts at the period band of 11-16 s. We also observe an unusual excursion approximately 1 month before the 2004 event. We obtain a total of 17 pairs for June, 2007 to June, 2008, which allow us to examine the temporal and spatial variation of the time shifts. We observed strong anomalies (up to 0.68 s) near the epicenter after the 2007 event, but not in the region further away from the source or before the event or 3 months after the event. The observations are interpreted as stress changes and subsequent relaxation in upper-mid crust in the immediate vicinity of the rupture and the broad area near the fault zone.

  2. Smart Surfaces: New Coatings & Paints with Radiation Detection Functionality

    SciTech Connect

    Farmer, J; Choi, J

    2007-03-12

    Paints are being developed and tested that might ultimately be able to detect radiological agents in the environment by incorporating special pigments into an organic polymeric binder that can be applied as a paint or coatings. These paints detect radioactive sources and contaminants with inorganic or organic scintillation or thermo-luminescent pigments, which are selected based upon the radiation ({alpha}, {beta}, {gamma} or n) to be detected, and are shown in Figure 1.

  3. Organic bioelectronics probing conformational changes in surface confined proteins

    PubMed Central

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-01-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results. PMID:27312768

  4. Organic bioelectronics probing conformational changes in surface confined proteins

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Alberga, Domenico; Manoli, Kyriaki; Mangiatordi, Giuseppe F.; Magliulo, Maria; Palazzo, Gerardo; Giordano, Francesco; Lattanzi, Gianluca; Torsi, Luisa

    2016-06-01

    The study of proteins confined on a surface has attracted a great deal of attention due to its relevance in the development of bio-systems for laboratory and clinical settings. In this respect, organic bio-electronic platforms can be used as tools to achieve a deeper understanding of the processes involving protein interfaces. In this work, biotin-binding proteins have been integrated in two different organic thin-film transistor (TFT) configurations to separately address the changes occurring in the protein-ligand complex morphology and dipole moment. This has been achieved by decoupling the output current change upon binding, taken as the transducing signal, into its component figures of merit. In particular, the threshold voltage is related to the protein dipole moment, while the field-effect mobility is associated with conformational changes occurring in the proteins of the layer when ligand binding occurs. Molecular Dynamics simulations on the whole avidin tetramer in presence and absence of ligands were carried out, to evaluate how the tight interactions with the ligand affect the protein dipole moment and the conformation of the loops surrounding the binding pocket. These simulations allow assembling a rather complete picture of the studied interaction processes and support the interpretation of the experimental results.

  5. The relationship between change detection and recognition of centrally attended objects in motion pictures.

    PubMed

    Angelone, Bonnie L; Levin, Daniel T; Simons, Daniel J

    2003-01-01

    Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.

  6. Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection.

    PubMed

    Ghrera, Aditya Sharma; Pandey, Manoj Kumar; Malhotra, Bansi Dhar

    2016-06-15

    We report results of studies relating to the fabrication of a surface plasmon resonance (SPR)-based nucleic acid sensor for quantification of DNA sequence specific to chronic myelogeneous leukemia (CML). The SPR disk surface has been modified with octadecanethiol self-assembled monolayer followed by deposition of the tri-n-octylphosphine oxide capped cadmium selenide quantum dots (QD) Langmuir monolayer. The deposition is performed via Langmuir-Blodgett (LB) technique. For the sensor chip preparation, covalent immobilization of the thiol-terminated DNA probe sequence (pDNA) using displacement reaction is accomplished. This integrated SPR chip has been used to detect target complementary DNA concentration by monitoring the change in coupling angle via hybridization. It is revealed that this biosensor exhibits high sensitivity (0.7859 m(0)pM(-1)) towards complementary DNA and can be used to detect it in the concentration range, 180 pM to 5 pM with detection limit as 4.21 pM. The results of kinetic studies yield the values of hybridization and dissociation rate constants as 9.6 × 10(4) M(-1) s(-1) and 2.3 × 10(-2) s(-1), respectively, with the equilibrium constant for hybridization as 4.2 × 10(6) M(-1).

  7. Optimal Regulatory Circuit Topologies for Fold-Change Detection.

    PubMed

    Adler, Miri; Szekely, Pablo; Mayo, Avi; Alon, Uri

    2017-02-22

    Evolution repeatedly converges on only a few regulatory circuit designs that achieve a given function. This simplicity helps us understand biological networks. However, why so few circuits are rediscovered by evolution is unclear. We address this question for the case of fold-change detection (FCD): a response to relative changes of input rather than absolute changes. Two types of FCD circuits recur in biological systems-the incoherent feedforward and non-linear integral-feedback loops. We performed an analytical screen of all three-node circuits in a class comprising ∼500,000 topologies. We find that FCD is rare, but still there are hundreds of FCD topologies. The two experimentally observed circuits are among the very few minimal circuits that optimally trade off speed, noise resistance, and response amplitude. This suggests a way to understand why evolution converges on only few topologies for a given function and provides FCD designs for synthetic construction and future discovery.

  8. Robust real-time change detection in high jitter.

    SciTech Connect

    Simonson, Katherine Mary; Ma, Tian J.

    2009-08-01

    A new method is introduced for real-time detection of transient change in scenes observed by staring sensors that are subject to platform jitter, pixel defects, variable focus, and other real-world challenges. The approach uses flexible statistical models for the scene background and its variability, which are continually updated to track gradual drift in the sensor's performance and the scene under observation. Two separate models represent temporal and spatial variations in pixel intensity. For the temporal model, each new frame is projected into a low-dimensional subspace designed to capture the behavior of the frame data over a recent observation window. Per-pixel temporal standard deviation estimates are based on projection residuals. The second approach employs a simple representation of jitter to generate pixelwise moment estimates from a single frame. These estimates rely on spatial characteristics of the scene, and are used gauge each pixel's susceptibility to jitter. The temporal model handles pixels that are naturally variable due to sensor noise or moving scene elements, along with jitter displacements comparable to those observed in the recent past. The spatial model captures jitter-induced changes that may not have been seen previously. Change is declared in pixels whose current values are inconsistent with both models.

  9. Effect of projective viewpoint in detecting temporal density changes

    NASA Astrophysics Data System (ADS)

    Raundahl, Jakob; Nielsen, Mads; Olsen, Ole F.; Bagger, Yu Z.

    2004-05-01

    An important question in mammographic image analysis is the importance of the projected view of the breast. Can temporal changes in density be detected equally well using either one of the commonly available views Medio-Lateral (ML) and Cranio-Caudal (CC) or a combination of the two? Two sets of mammograms of 50 patients in a double-blind, placebo controlled hormone replacement therapy (HRT) experiment were used. One set of ML and CC view from 1999 and one from 2001. HRT increases density which means that the degree of separation of the populations (one group receiving HRT and the other placebo) can be used as a measure of how much density change information is carried in a particular view or combination of views. Earlier results have shown a high correlation between CC and ML views leading to the conclusion that only one of them is needed for density assessment purposes. A similar high correlation coefficient was observed in this study (0.85), while the correlation between changes was a bit lower (0.71). Using both views to separate the patients receiving hormones from the ones receiving placebo increased the area under corresponding ROC curves from 0.76 +/- 0.04 to 0.79 +/- 0.04.

  10. Phase-detection measurements in free-surface turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Chanson, Hubert

    2016-04-01

    High-velocity self-aerated flows are described as ‘white waters’ because of the entrained air bubbles. The air entrainment induces a drastic change in the multiphase flow structure of the water column and this leads to significant bubble-turbulence interactions, turbulence modulation and associated mixing processes impacting on the bulk flow properties. In these high-velocity free-surface turbulent flows, the phase-detection needle probe is a most reliable instrumentation. The signal processing of a phase-detection probe is re-visited herein. It is shown that the processing may be performed on the raw probe signal as well as the thresholded data. The latter yields the time-averaged void fraction, the bubble count rate, the particle chord time distributions and the particle clustering properties within the particulate flow regions. The raw probe signal analysis gives further the auto-correlation time scale and the power spectrum density function. Finally dimensional considerations are developed with a focus on the physical modelling of free-surface flows in hydraulic structures. It is argued that the notion of scale effects must be defined in terms of some specific set of air-water flow properties within well-defined testing conditions, while a number of free-surface flow characteristics are more prone to scale effects than others, even in large-size physical facilities.

  11. Detection and attribution of streamflow timing changes to climate change in the Western United States

    USGS Publications Warehouse

    Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R.; Pierce, D.W.; Barnett, T.P.; Bala, G.; Mirin, A.; Wood, A.W.; Bonfils, Celine; Santer, B.D.; Nozawa, T.

    2009-01-01

    This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow "center" timing (the day in the "water-year" on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States_the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier "center" timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States. ?? 2009 American Meteorological Society.

  12. Understanding land surface response to changing South Asian monsoon in a warming climate

    NASA Astrophysics Data System (ADS)

    Ramarao, M. V. S.; Krishnan, R.; Sanjay, J.; Sabin, T. P.

    2015-05-01

    Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project) global climate models have difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our understanding of the regional land surface response to monsoonal changes. This problem is investigated by performing two long-term simulation experiments, with and without anthropogenic forcing, using a variable resolution global climate model having high-resolution zooming over the South Asian region. The present results indicate that anthropogenic effects have considerably influenced the recent weakening of the monsoon circulation and decline of precipitation. It is seen that the simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the land surface response to decrease of soil moisture is associated with significant reduction in evapotranspiration over the Indian land region. A future projection, based on the representative concentration pathway 4.5 (RCP4.5) scenario of the Intergovernmental panel on Climate Change (IPCC), using the same high-resolution model indicates the possibility for detecting the summer-time soil drying signal over the Indian region during the 21st century, in response to climate change. While these monsoon hydrological changes have profound socioeconomic implications, the robustness of the high-resolution simulations provides deeper insights and enhances our understanding of the regional land surface response to the changing South Asian monsoon.

  13. Understanding land surface response to changing South Asian monsoon in a warming climate

    NASA Astrophysics Data System (ADS)

    Ramarao, M. V. S.; Krishnan, R.; Sanjay, J.; Sabin, T. P.

    2015-09-01

    Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project) global climate models have difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our understanding of the regional land surface response to monsoonal changes. This problem is investigated by performing two long-term simulation experiments, with and without anthropogenic forcing, using a variable resolution global climate model having high-resolution zooming over the South Asian region. The present results indicate that anthropogenic effects have considerably influenced the recent weakening of the monsoon circulation and decline of precipitation. It is seen that the simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the land surface response to decrease of soil moisture is associated with significant reduction in evapotranspiration over the Indian land region. A future projection, based on the representative concentration pathway 4.5 (RCP4.5) scenario of the Intergovernmental Panel on Climate Change (IPCC), using the same high-resolution model indicates the possibility for detecting the summer-time soil drying signal over the Indian region during the 21st century in response to climate change. Given that these monsoon hydrological changes have profound socio-economic implications the present findings provide deeper insights and enhance our understanding of the regional land surface response to the changing South Asian monsoon. While this study is based on a single model realization, it is highly desirable to have multiple realizations to establish the robustness

  14. A comparison of two methods for detecting abrupt changes in the variance of climatic time series

    NASA Astrophysics Data System (ADS)

    Rodionov, Sergei N.

    2016-06-01

    Two methods for detecting abrupt shifts in the variance - Integrated Cumulative Sum of Squares (ICSS) and Sequential Regime Shift Detector (SRSD) - have been compared on both synthetic and observed time series. In Monte Carlo experiments, SRSD outperformed ICSS in the overwhelming majority of the modeled scenarios with different sequences of variance regimes. The SRSD advantage was particularly apparent in the case of outliers in the series. On the other hand, SRSD has more parameters to adjust than ICSS, which requires more experience from the user in order to select those parameters properly. Therefore, ICSS can serve as a good starting point of a regime shift analysis. When tested on climatic time series, in most cases both methods detected the same change points in the longer series (252-787 monthly values). The only exception was the Arctic Ocean sea surface temperature (SST) series, when ICSS found one extra change point that appeared to be spurious. As for the shorter time series (66-136 yearly values), ICSS failed to detect any change points even when the variance doubled or tripled from one regime to another. For these time series, SRSD is recommended. Interestingly, all the climatic time series tested, from the Arctic to the tropics, had one thing in common: the last shift detected in each of these series was toward a high-variance regime. This is consistent with other findings of increased climate variability in recent decades.

  15. Saturn's Titan: A Cassini Mulit-Instrument Approach to Documenting Surface Change

    NASA Astrophysics Data System (ADS)

    Nelson, Robert

    clouds exhibit photometric behavior that is detectable with VIMS mulitwavelength image ratioing techniques (3). Our photometric analysis finds that the region that shows the reflectance change on Titan's surface does not exhibit photometric properties consistent with tropospheric clouds. This region must be at or very near the surface. We note an additional result of interest in the Cassini SAR data(4). The Case 2 region is just to the north and east of the circular feature identified in the SAR data as the crater Guabonito and is also near a regions where unusual RADAR and optical photometric properties are observed. We conclude that the VIMS instrument has found two instances in which selected regions on Titan's surface become unusually reflective and remained reflective on time scales of days to months. In one instance (Case 2) the anomalously reflective region has a nearby large crater at its border as seen in SAR images. In both cases the size of reflectance variability is large, larger than Loki or Big Island of Hawaii. This is the strongest case yet for currently active surface processes on Titan. Pre Cassini, Titan was thought of as a pre-biotic earth that was frozen in time. Cassini VIMS observations now suggest that Titan is a snapshot of a episodically changing or evolving object. References: [1] Nelson R. M. et al, LPSC 2007 , EGU 2007, Europlanets 2007. [2] Hapke, B. W. Theory of emittence and reflectance spectroscopy, p 199 and onward. [3] Griffith et al. Science, 310, 474-477(2005).[4] Stofan et al. Icarus 185, 443-456, 2007. Lopes et al. Icarus 186, 395-412, 2007..Paganelli et al, Icarus 191, 211-222, 2007. Kirk et al., DPS 2007. Acknowledgement: This work done at JPL under contract with NASA

  16. Potentiometric Sensors Based on Surface Molecular Imprinting: Detection of Cancer Biomarkers and Viruses

    SciTech Connect

    Wang, Y.; Zhang, Z; Jain, V; Yi, J; Mueller, S; Sokolov, J; Liu, Z; Levon, K; Rigas, B; Rafailovich, M

    2010-01-01

    The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for this kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.

  17. Seasonal Surface Changes in Namibia and Central Angola

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Brightness variations in the terrain along a portion of southwestern Africa are displayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). The panels portray an area that includes Namibia's Skeleton Coast and Etosha National Park as well as Angola's Cuando Cubango. The top panels were acquired on March 6, 2001, during the region's wet season, and the bottom panels were acquired on September 1, 2002, during the dry season. Corresponding changes in the abundance of vegetation are apparent. The images on the left are natural color (red, green, blue) images from MISR's vertical-viewing (nadir) camera. The images on the right represent one of MISR's derived surface products.

    The radiance (light intensity) in each pixel of the so-called 'top-of-atmosphere' images on the left includes light that is reflected by the Earth's surface in addition to light that is transmitted and reflected by the atmosphere. The amount of radiation reflected by the surface into all upward directions, as opposed to any single direction, is important when studying Earth's energy budget. A quantity called the surface 'directional hemispherical reflectance' (DHR), sometimes called the 'black-sky albedo', captures this information, and is depicted in the images on the right. MISR's multi-angle views lead to more accurate estimates of the amount of radiation reflected into all directions than can be obtained as a result of looking at a single (e.g., vertically downward) view angle. Furthermore, to generate this surface product accurately, it is necessary to compensate for the effects of the intervening atmosphere, and MISR provides the ability to characterize and account for scattering of light by airborne particulates (aerosols).

    The DHR is called a hemispherical reflectance because it measures the amount of radiation reflected into all upward directions, and which therefore traverses an imaginary hemisphere situated above each surface point. The 'directional' part of

  18. Obtaining Accurate Change Detection Results from High-Resolution Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Bryant, N.; Bunch, W.; Fretz, R.; Kim, P.; Logan, T.; Smyth, M.; Zobrist, A.

    2012-01-01

    Multi-date acquisitions of high-resolution imaging satellites (e.g. GeoEye and WorldView), can display local changes of current economic interest. However, their large data volume precludes effective manual analysis, requiring image co-registration followed by image-to-image change detection, preferably with minimal analyst attention. We have recently developed an automatic change detection procedure that minimizes false-positives. The processing steps include: (a) Conversion of both the pre- and post- images to reflectance values (this step is of critical importance when different sensors are involved); reflectance values can be either top-of-atmosphere units or have full aerosol optical depth calibration applied using bi-directional reflectance knowledge. (b) Panchromatic band image-to-image co-registration, using an orthorectified base reference image (e.g. Digital Orthophoto Quadrangle) and a digital elevation model; this step can be improved if a stereo-pair of images have been acquired on one of the image dates. (c) Pan-sharpening of the multispectral data to assure recognition of change objects at the highest resolution. (d) Characterization of multispectral data in the post-image ( i.e. the background) using unsupervised cluster analysis. (e) Band ratio selection in the post-image to separate surface materials of interest from the background. (f) Preparing a pre-to-post change image. (g) Identifying locations where change has occurred involving materials of interest.

  19. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: a matrix including lanthanide ions is provided on the surface containing the bacterial spores; functionalized aromatic molecules are released from the bacterial spores on the surface; a complex of the lanthanide ion and the aromatic molecule is formed on the surface; the complex of the lanthanide ion and the aromatic molecule is excited to generate a characteristic luminescence of the complex on the surface; and the bacterial spores exhibiting the luminescence of the complex on the surface are detected and quantified.

  20. Method and apparatus for detecting and quantifying bacterial spores on a surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  1. Method and Apparatus for Detecting and Quantifying Bacterial Spores on a Surface

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2016-01-01

    A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.

  2. Automated detection of changes in sequential color ocular fundus images

    NASA Astrophysics Data System (ADS)

    Sakuma, Satoshi; Nakanishi, Tadashi; Takahashi, Yasuko; Fujino, Yuichi; Tsubouchi, Tetsuro; Nakanishi, Norimasa

    1998-06-01

    A recent trend is the automatic screening of color ocular fundus images. The examination of such images is used in the early detection of several adult diseases such as hypertension and diabetes. Since this type of examination is easier than CT, costs less, and has no harmful side effects, it will become a routine medical examination. Normal ocular fundus images are found in more than 90% of all people. To deal with the increasing number of such images, this paper proposes a new approach to process them automatically and accurately. Our approach, based on individual comparison, identifies changes in sequential images: a previously diagnosed normal reference image is compared to a non- diagnosed image.

  3. Image animation for theme enhancement and change detection. [LANDSAT 1

    NASA Technical Reports Server (NTRS)

    Evans, W. E.

    1976-01-01

    Animated displays are useful in enhancing subtle temporally related changes in scenes viewed by satellites capable of providing repetitive coverage. The detectability of fixed features is also improved through the help of the powerful visual integration process. To expedite the process of assembling and displaying well-registered, time-lapse sequences and to provide means for making quantitative measurements of radiances, displacements, and areas, an electronic satellite image analysis console was constructed. During the LANDSAT-1 program, this equipment was applied to the needs of a number of earth resource investigators with interests principally related to dynamic hydrology. The measurement of the areal extent of snow cover within defined drainage basins is discussed as a representative applications example.

  4. Change Detection of Mobile LIDAR Data Using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Boehm, Jan; Alis, Christian

    2016-06-01

    Change detection has long been a challenging problem although a lot of research has been conducted in different fields such as remote sensing and photogrammetry, computer vision, and robotics. In this paper, we blend voxel grid and Apache Spark together to propose an efficient method to address the problem in the context of big data. Voxel grid is a regular geometry representation consisting of the voxels with the same size, which fairly suites parallel computation. Apache Spark is a popular distributed parallel computing platform which allows fault tolerance and memory cache. These features can significantly enhance the performance of Apache Spark and results in an efficient and robust implementation. In our experiments, both synthetic and real point cloud data are employed to demonstrate the quality of our method.

  5. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor.

    PubMed

    Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian

    2005-03-01

    We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.

  6. Change detection from very high resolution satellite time series with variable off-nadir angle

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Brumana, Raffaella; Cuca, Branka; Previtali, Mattia

    2015-06-01

    Very high resolution (VHR) satellite images have the potential for revealing changes occurred overtime with a superior level of detail. However, their use for metric purposes requires accurate geo-localization with ancillary DEMs and GCPs to achieve sub-pixel terrain correction, in order to obtain images useful for mapping applications. Change detection with a time series of VHS images is not a simple task because images acquired with different off-nadir angles have a lack of pixel-to-pixel image correspondence, even after accurate geo-correction. This paper presents a procedure for automatic change detection able to deal with variable off-nadir angles. The case study concerns the identification of damaged buildings from pre- and post-event images acquired on the historic center of L'Aquila (Italy), which was struck by an earthquake in April 2009. The developed procedure is a multi-step approach where (i) classes are assigned to both images via object-based classification, (ii) an initial alignment is provided with an automated tile-based rubber sheeting interpolation on the extracted layers, and (iii) change detection is carried out removing residual mis-registration issues resulting in elongated features close to building edges. The method is fully automated except for some thresholds that can be interactively set to improve the visualization of the damaged buildings. The experimental results proved that damages can be automatically found without additional information, such as digital surface models, SAR data, or thematic vector layers.

  7. Piglets’ Surface Temperature Change at Different Weights at Birth

    PubMed Central

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  8. Piglets' surface temperature change at different weights at birth.

    PubMed

    Caldara, Fabiana Ribeiro; Dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva Dos Santos, Rita

    2014-03-01

    The study was carried out in order to verify the effects of piglets' weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets' surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (-0.824 and -0.815) with STB and after 15 min from birth. The piglet's surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  9. Climate change due to anthropogenic surface albedo modification

    SciTech Connect

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Ellis, J.S.; Luther, F.M.

    1980-02-01

    Using a statistical dynamic climate model with more realistic surface albedo changes than used in previous experiments, we have conducted a numerical experiment combining desertification of the Sahara and deforestation of the tropical rain forest. Over an area of 9 x 10/sup 6/ km/sup 2/ at 20/sup 0/N the desert albedo was increased from 0.16 to 0.35 and over 7 x 10/sup 6/ km/sup 2/ at the equator and 10/sup 0/S the rain forest albedo was increased from 0.07 to 0.16. While the most significant direct climatic responses were observed in the modified zones, high northern latitudes exhibited the greatest cooling through activation of the ice-albedo feedback process. In contrast to Sagan et al., this experiment suggests that anthropogenic modification of surface albedo over the past few thousand years has had an impact on global climate which is likely quite small and probably undetectable.

  10. Global Changes in the Sea Ice Cover and Associated Surface Temperature Changes

    NASA Astrophysics Data System (ADS)

    Comiso, Josefino C.

    2016-06-01

    The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at -3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  11. DSM generation using multiple radar data for relief change detection in North Peloponnese

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Kyriou, Aggeliki; Sabatakakis, Nikolaos; Anastassopoulos, Vassilis

    2016-08-01

    Interferometry constitutes a technique of acquisition height information with a range of applications, such as Digital Surface Model (DSM) generation in order to monitoring the Earth's surface. This work is focused on interferometric DSM creation utilizing radar data of Sentinel-1 and TerraSAR-X missions, covering the wider area of Northern Peloponnese. This area is characterized of loose geological formations and intense active tectonics resulting in continuous and intense relief changes. In this context, the accuracy and the update of the DSMs is essential in order to detect and map any terrain change. The selection of Sentinel-1 and TerraSAR-X images was based on the fact that both missions provide timely, with short revisiting period and satisfactory spatial resolution data. In particular, two ranges of radar data from both missions were submitted in interferometric process aimed at DSM creation. The produced DSMs were compared both visually and statistically to a very accurate reference DSM produced from airphotos by the Greek Cadastral. Furthermore, in order to estimate the accuracy of the DSMs and detect variations of terrain's surface, points of known elevation have been used. 2D RMSE, correlation and the percentile value were computed and the results are presented.

  12. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  13. Surface immobilizable chelator for label-free electrical detection of pyrophosphate.

    PubMed

    Liu, David J; Credo, Grace M; Su, Xing; Wu, Kai; Lim, Hsiao C; Elibol, Oguz H; Bashir, Rash