Surface tension, surface energy, and chemical potential due to their difference.
Hui, C-Y; Jagota, A
2013-09-10
It is well-known that surface tension and surface energy are distinct quantities for solids. Each can be regarded as a thermodynamic property related first by Shuttleworth. Mullins and others have suggested that the difference between surface tension and surface energy cannot be sustained and that the two will approach each other over time. In this work we show that in a single-component system where changes in elastic energy can be neglected, the chemical potential difference between the surface and bulk is proportional to the difference between surface tension and surface energy. By further assuming that mass transfer is driven by this chemical potential difference, we establish a model for the kinetics by which mass transfer removes the difference between surface tension and surface energy.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
NASA Astrophysics Data System (ADS)
Kwon, Kideok D.; Newton, Aric G.
2016-10-01
The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities regardless of the water chemical potential. The equilibrium morphology of pyrophyllite crystals is also expected to be dependent on these two environmental variables. Surface defects may impact the surface reactivity. We discuss the thermodynamic stability of a possible Si cation vacancy defect which provides additional hydroxyl group on the surface.
Sitt, Amit; Hess, Henry
2015-05-13
Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.
NASA Astrophysics Data System (ADS)
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-01
We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-16
We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Effect of Coulomb interaction on chemical potential of metal film
NASA Astrophysics Data System (ADS)
Kostrobij, P. P.; Markovych, B. M.
2018-07-01
The chemical potential of a metal film within the jellium model taking into account the Coulomb interaction between electrons is calculated. The surface potential is modelled as the infinite rectangular potential well. The behaviour of the chemical potential as a function of the film thickness is studied, the quantum size effect for this quantity is analysed. It is shown that taking into account the Coulomb interaction leads to a significant decrease of the chemical potential and to an enhancement of the quantum size effect.
NASA Astrophysics Data System (ADS)
Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.
2018-04-01
Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.
Energy of Supported Metal Catalysts: From Single Atoms to Large Metal Nanoparticles
James, Trevor E.; Hemmingson, Stephanie L.; Campbell, Charles T.
2015-08-14
It is known that many catalysts consist of late transition metal nanoparticles dispersed across oxide supports. The chemical potential of the metal atoms in these particles correlate with their catalytic activity and long-term thermal stability. This chemical potential versus particle size across the full size range between the single isolated atom and bulklike limits is reported here for the first time for any metal on any oxide. The chemical potential of Cu atoms on CeO 2(111) surfaces, determined by single crystal adsorption calorimetry of gaseous Cu atoms onto slightly reduced CeO 2(111) at 100 and 300 K is shown tomore » decrease dramatically with increasing Cu cluster size. The Cu chemical potential is ~110 kJ/mol higher for isolated Cu adatoms on stoichometric terrace sites than for Cu in nanoparticles exceeding 2.5 nm diameter, where it reaches the bulk Cu(solid) limit. In Cu dimers, Cu’s chemical potential is ~57 kJ/mol lower at step edges than on stoichiometric terrace sites. Since Cu avoids oxygen vacancies, these monomer and dimer results are not strongly influenced by the 2.5% oxygen vacancies present on this CeO 2 surface and are thus considered representative of stoichiometric CeO 2(111) surfaces.« less
Spatially selective modification of PLLA surface: From hydrophobic to hydrophilic or to repellent
NASA Astrophysics Data System (ADS)
Bastekova, Kristina; Guselnikova, Olga; Postnikov, Pavel; Elashnikov, Roman; Kunes, Martin; Kolska, Zdenka; Švorčík, Vaclav; Lyutakov, Oleksiy
2017-03-01
A universal approach to controlled surface modification of polylactic acid (PLLA) films using diazonium chemistry was proposed. The multistep procedure includes surface activation of PLLA by argon plasma treatment and chemical activation of arenediazonium tosylates by NaBH4. The surface of PLLA film was grafted with different functional organic groups (OFGs), changing the PLLA surface properties (wettability, morphology, zeta potential, chemical composition, and mechanical response). Three approaches of OFG grafting were examined: (i) plasma treatment following by PLLA immersion into diazonium salt aqueous solution; (ii) grafting of PLLA surface through the reaction with chemically created aryl radicals; (iii) mutual combination of both methods The best results were achieved in the last case, where the previous plasma treatment was combined with further reaction of PLLA surface with generated aryl radicals. Using this method PLLA surface was successfully grafted with amino, carboxyl, aliphatic and fluorinated OFGs. Further investigation of surface properties from potential biological and medical points of view was performed using zeta potential, biodegradation and biofouling tests. It was shown that proposed technique allows preparation of biorepellent or bioabsorptive surfaces, tuning of PLLA biodegradation rate and nanomechanical properties, as well as the introduction of inverse properties (such as hydrophilic and hydrophobic) on both sides of PLLA films.
Li, H; Atkin, R; Page, A J
2015-06-28
The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Moonsoo; Kim, Jongmin; Cho, Jaehee
Graphical abstract: The presence of Chlorine in the outer surface resulted in a highly electro-negative surface states and an increase in the vacuum energy level. - Highlights: • We investigated the influence of chlorine surface treatment on ITO properties. • Chlorination induced the change of the electro-static potential in the outer surface. • Chlorine electro-chemical treatment of ITO is a simple, fast and effective technique. - Abstract: In this work, we investigate the influence of a chlorine-based electro-chemical surface treatment on the characteristics of indium tin oxide (ITO) including the work function, chemical composition, and phase transition. The treated ITOsmore » were characterized using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), 4-point probe measurements, and grazing incidence X-ray diffraction (GI-XRD). We confirmed a change of the chemical composition in the near-surface region of the ITO and the formation of indium-chlorine (In-Cl) bonds and surface dipoles (via XPS). In particular, the change of the electro-static potential in the outer surface was caused by chlorination. Due to the vacuum-level shift after the electro-chemical treatment in a dilute hydrochloric acid, the ITO work function was increased by ∼0.43 eV (via UPS); furthermore, the electro-negativity of the chlorine anions attracted electrons to emit them from the hole transport layer (HTL) to the ITO anodes, resulting in an increase of the hole-injection efficiency.« less
Electrofluidic gating of a chemically reactive surface.
Jiang, Zhijun; Stein, Derek
2010-06-01
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
Passivating Window/First Layer AR Coating for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.
2004-01-01
Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.
Lattice QCD with mismatched fermi surfaces.
Yamamoto, Arata
2014-04-25
We study two flavor fermions with mismatched chemical potentials in quenched lattice QCD. We first consider a large isospin chemical potential, where a charged pion is condensed, and then introduce a small mismatch between the chemical potentials of the up quark and the down antiquark. We find that the homogeneous pion condensate is destroyed by the mismatch of the chemical potentials. We also find that the two-point correlation function shows spatial oscillation, which indicates an inhomogeneous ground state, although it is not massless but massive in the present simulation setup.
Computer Animation of a Chemical Reaction.
ERIC Educational Resources Information Center
Eaker, Charles W.; Jacobs, Edwin L.
1982-01-01
Taking a prototype chemical reaction (molecular hydrogen plus hydrogen atom), constructs an accurate semiempirical, generalized diatomics-in-molecules potential energy surface, calculates motions of these atoms on this surface using REACTS trajectory program, and presents results as moving picture on a microcomputer graphics system. Provides…
Chemically Layered Porous Solids
NASA Technical Reports Server (NTRS)
Koontz, Steve
1991-01-01
Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.
Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long
2018-02-28
Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.
Mechanical properties of moso bamboo treated with chemical agents
Benhua Fei; Zhijia Liu; Zehui Jiang; Zhiyong Cai
2013-01-01
Bamboo is a type of biomass material and has great potential as a bioenergy resource for the future in China. Surface chemical and thermalâmechanical behavior play an important role in the manufacturing process of bamboo composites and pellets. In this study, moso bamboo was treated by sodium hydrate solution and acetic acid solution. Surface chemical and dynamic...
Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol
2015-10-01
We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.
Ferraris, Sara; Cazzola, Martina; Peretti, Veronica; Stella, Barbara; Spriano, Silvia
2018-01-01
Surface properties of biomaterials (e.g., roughness, chemical composition, charge, wettability, and hydroxylation degree) are key features to understand and control the complex interface phenomena that happens upon contact with physiological fluids. Numerous physico-chemical techniques can be used in order to investigate in depth these crucial material features. Among them, zeta potential measurements are widely used for the characterization of colloidal suspensions, but actually poorly explored in the study of solid surfaces, even if they can give significant information about surface charge in function of pH and indirectly about surface functional groups and reactivity. The aim of the present research is application of zeta potential measurements of solid surfaces for the in vitro testing of biomaterials. In particular, bare and surface modified Ti6Al4V samples have been compared in order to evaluate their isoelectric points (IEPs), surface charge at physiological pH, in vitro bioactivity [in simulated body fluid (SBF)] and protein absorption. Zeta potential titration was demonstrated as a suitable technique for the surface characterization of surface treated Ti6Al4V substrates. Significant shift of the isoelectric point was recorded after a chemical surface treatment (because of the exposition of hydroxyl groups), SBF soaking (because of apatite precipitation IEP moves close to apatite one) and protein absorption (IEP moves close to protein ones). Moreover, the shape of the curve gives information about exposed functional groups (e.g., a plateau in the basic range appears due to the exposition of acidic OH groups and in the acidic range due to exposition of basic NH2 groups). PMID:29868575
High volume hydraulic fracturing operations: potential impacts on surface water and human health.
Mrdjen, Igor; Lee, Jiyoung
2016-08-01
High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.
2018-01-01
Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972
A New Exploration of the Torsional Energy Surface of N-Pentane Using Molecular Modeling Software
ERIC Educational Resources Information Center
Galembeck, Sergio E.; Caramori, Giovanni F.; Romero, Jose Ricardo
2005-01-01
The torsional potential energy surface of a chemical compounds, the accessible conformations at a specified temperature and the transition states that connect these confirmations establishes many chemical properties such as dynamic behavior, reactivity and biological activity. A conformational search of n-pentane is presented using computational…
Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi
2016-09-01
The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.
The surface stability and morphology of tobermorite 11 Å from first principles
NASA Astrophysics Data System (ADS)
Mutisya, Sylvia M.; Miranda, Caetano R.
2018-06-01
Tobermorite minerals are important in many industrial processes typically occurring in hydrous environment. Their functionality is therefore governed in various aspects by their morphology and surface stability/reactivity. Here, we present the results of the surface energies and morphology of normal tobermorite 11 Å in a water vapor environment investigated by employing first principles atomistic thermodynamic calculations. For the low index tobermorite surfaces studied, the calculated surface energies fall within a narrow range (0.41-0.97 J/m2) with the (0 0 4) surface being the most stable. The equilibrium morphology is a thin pseudohexagonal plate elongated along the b axis. The hydrated surfaces are more stable at high water vapor chemical potentials with the stability enhanced as the water partial pressures are varied from ambient to supercritical hydrothermal conditions. Increasing the water vapor chemical potential gives rise to a smaller size of the tobermorite crystal, with the equilibrium morphology remaining unaltered.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1994-01-01
Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).
Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.
Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P
2017-03-01
Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.
NASA Astrophysics Data System (ADS)
Kanno, C.; Edlin, D.; Borrillo-Hutter, T.; McCray, J. E.
2014-12-01
Potential contamination of ground water and surface water supplies from chemical contaminants in hydraulic fracturing fluids or in natural gas is of high public concern. However, quantitative assessments have rarely been conducted at specific energy-producing locations so that the true risk of contamination can be evaluated. The most likely pathways for contamination are surface spills and faulty well bores that leak production fluids directly into an aquifer. This study conducts fate and transport simulations of the most mobile chemical contaminants, based on reactivity to subsurface soils, degradation potential, and source concentration, to better understand which chemicals are most likely to contaminate water resources, and to provide information to planners who wish to be prepared for accidental releases. The simulations are intended to be most relevant to the Niobrara shale formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laursen, S.L.
Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.
NASA Technical Reports Server (NTRS)
Patel, S. N.; Bishop, J. L.; Englert, P.; Gibson, E. K.
2015-01-01
The Antarctic Dry Valleys (ADV) provide a unique terrestrial analog for Martian surface processes as they are extremely cold and dry sedimentary environments. The surface geology and the chemical composition of the Dry Valleys that are similar to Mars suggest the possible presence of these soil-formation processes on Mars. The soils and sediments from Wright Valley, Antarctica were investigated in this study to examine mineralogical and chemical changes along the surface layer in this region and as a function of depth. Surface samples collected near Prospect Mesa and Don Juan Pond of the ADV were analyzed using visible/near-infrared (VNIR) and mid-IR reflectance spectroscopy and major and trace element abundances.
Pethica, Brian A
2007-12-21
As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.
Ca + HF - The anatomy of a chemical insertion reaction
NASA Technical Reports Server (NTRS)
Jaffe, R. L.; Pattengill, M. D.; Mascarello, F. G.; Zare, R. N.
1987-01-01
A comprehensive first-principles theoretical investigation of the gas phase reaction Ca + HF - CaF + H is reported. Ab initio potential energy calculations are first discussed, along with characteristics of the computed potential energy surface. Next, the fitting of the computed potential energy points to a suitable analytical functional form is described, and maps of the fitted potential surface are displayed. The methodology and results of a classical trajectory calculation utilizing the fitted potential surface are presented. Finally, the significance of the trajectory study results is discussed, and generalizations concerning dynamical aspects of Ca + HF scattering are drawn.
Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.
2014-01-01
The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.
Nayak, Arunima; Bhushan, Brij; Gupta, Vartika; Sharma, P
2017-05-01
Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl 2 impregnated carbon (CASD_ZnCl 2 ) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd 2+ and 1.61mmoles/g for Ni 2+ ) in comparison to CASD_ZnCl 2 (0.23mmoles/g and 0.33mmoles/g for Cd 2+ and Ni 2+ respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl 2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
The adsorption of argon on ZnO at 77K
NASA Astrophysics Data System (ADS)
Marinelli, Francis; Grillet, Yves; Pellenq, Roland J.-M.
We have studied the adsorption of argon onto ZnO surfaces at 77K by means of quasiequilibrium adsorption volumetry coupled with high resolution microcalorimetry and Grand Canonical Monte-Carlo (GCMC) simulations. The adsorbate/surface adsorption potential function (PN type) used in the simulations, was determined on the basis of ab initio calculations (corrected for dispersion interactions). The first aspect of this work was to test the ability of a standard solid-state Hartree-Fock technique coupled with a perturbative semiempirical approach in deriving a reliable adsorption potential function. The dispersion part of the adsorbate/surface interatomic potential was derived by using perturbation theory-based equations while the repulsive and induction interactions were derived from periodic HartreeFock (CRYSTAL92) calculations. GCMC simulations based on this adsorption potential allow one to calculate adsorption isotherms and isosteric heat versus loading curves as well as singlet distribution functions at 77K for each type of ZnO (neutral and polar) faces. The combined analysis of the simulation data for all surfaces gives a good insight of the adsorption mechanism of argon onto ZnO surfaces at 77K in agreement with experiment. As far as neutral surfaces are concerned, it is shown that adsorption first takes place within the 'troughs' which cover ZnO neutral surfaces. At low chemical potentials, these semi-channels are preferential adsorption sites in which we could detect a nearly one-dimensional adsorbate freezing in a commensurate phase at 77K. The polar O faces are the most favourable surfaces for adsorption at higher chemical potentials.
Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.
Maes, Sharon; Huu, Son Nguyen; Heyndrickx, Marc; Weyenberg, Stephanie van; Steenackers, Hans; Verplaetse, Alex; Vackier, Thijs; Sampers, Imca; Raes, Katleen; Reu, Koen De
2017-12-01
Biofilms are an important source of contamination in food companies, yet the composition of biofilms in practice is still mostly unknown. The chemical and microbiological characterization of surface samples taken after cleaning and disinfection is very important to distinguish free-living bacteria from the attached bacteria in biofilms. In this study, sampling methods that are potentially useful for both chemical and microbiological analyses of surface samples were evaluated. In the manufacturing facilities of eight Belgian food companies, surfaces were sampled after cleaning and disinfection using two sampling methods: the scraper-flocked swab method and the sponge stick method. Microbiological and chemical analyses were performed on these samples to evaluate the suitability of the sampling methods for the quantification of extracellular polymeric substance components and microorganisms originating from biofilms in these facilities. The scraper-flocked swab method was most suitable for chemical analyses of the samples because the material in these swabs did not interfere with determination of the chemical components. For microbiological enumerations, the sponge stick method was slightly but not significantly more effective than the scraper-flocked swab method. In all but one of the facilities, at least 20% of the sampled surfaces had more than 10 2 CFU/100 cm 2 . Proteins were found in 20% of the chemically analyzed surface samples, and carbohydrates and uronic acids were found in 15 and 8% of the samples, respectively. When chemical and microbiological results were combined, 17% of the sampled surfaces were contaminated with both microorganisms and at least one of the analyzed chemical components; thus, these surfaces were characterized as carrying biofilm. Overall, microbiological contamination in the food industry is highly variable by food sector and even within a facility at various sampling points and sampling times.
Allgood, Jaime M; Jimah, Tamara; McClaskey, Carolyn M; La Guardia, Mark J; Hammel, Stephanie C; Zeineddine, Maryam M; Tang, Ian W; Runnerstrom, Miryha G; Ogunseitan, Oladele A
2017-02-01
Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronic products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.
Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Di; Hua, Xin; Xiu, Guang-Li
Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization of PM is important since the chemical heterogeneity between the surface and bulk may vary its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, capable of high spatial chemical imaging and depth profiling. Recent research shows that SIMS holds great potential in analyzing both surface and bulk chemical information of PM. In this review, we presented the working principal of SIMS in PMmore » characterization, summarized recent applications in PM analysis from different sources, discussed its advantages and limitations, and proposed the future development of this technique with a perspective in environmental sciences.« less
Monte Carlo kinetics simulations of ice-mantle formation on interstellar grains
NASA Astrophysics Data System (ADS)
Garrod, Robin
2015-08-01
The majority of interstellar dust-grain chemical kinetics models use rate equations, or alternative population-based simulation methods, to trace the time-dependent formation of grain-surface molecules and ice mantles. Such methods are efficient, but are incapable of considering explicitly the morphologies of the dust grains, the structure of the ices formed thereon, or the influence of local surface composition on the chemistry.A new Monte Carlo chemical kinetics model, MIMICK, is presented here, whose prototype results were published recently (Garrod 2013, ApJ, 778, 158). The model calculates the strengths and positions of the potential mimima on the surface, on the fly, according to the individual pair-wise (van der Waals) bonds between surface species, allowing the structure of the ice to build up naturally as surface diffusion and chemistry occur. The prototype model considered contributions to a surface particle's potential only from contiguous (or "bonded") neighbors; the full model considers contributions from surface constituents from short to long range. Simulations are conducted on a fully 3-D user-generated dust-grain with amorphous surface characteristics. The chemical network has also been extended from the simple water system previously published, and now includes 33 chemical species and 55 reactions. This allows the major interstellar ice components to be simulated, such as water, methane, ammonia and methanol, as well as a small selection of more complex molecules, including methyl formate (HCOOCH3).The new model results indicate that the porosity of interstellar ices are dependent on multiple variables, including gas density, the dust temperature, and the relative accretion rates of key gas-phase species. The results presented also have implications for the formation of complex organic molecules on dust-grain surfaces at very low temperatures.
Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin
2008-01-21
Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view.
CHARACTERIZING TRANSFER OF SURFACE RESIDUES TO SKIN USING A VIDEO-FLUORESCENT IMAGING TECHNIQUE
Surface-to-skin transfer of contaminants is a complex process. For children's residential exposure, transfer of chemicals from contaminated surfaces such as floors and furniture is potentially significant. Once on the skin, residues and contaminated particles can be transferred b...
Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok
2016-06-01
Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle
2018-08-01
The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Punnoose, Alex; Dodge, Kelsey; Rasmussen, John W; Chess, Jordan; Wingett, Denise; Anders, Catherine
2014-07-07
ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP.
Scalable graphene coatings for enhanced condensation heat transfer.
Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N
2015-05-13
Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, Jaime M.; Jimah, Tamara
Most households and workplaces all over the world possess furnishings and electronics, all of which contain potentially toxic flame retardant chemicals to prevent fire hazards. Indoor dust is a recognized repository of these types of chemicals including polybrominated diphenyl ethers (PBDEs) and non-polybrominated diphenyl ethers (non-PBDEs). However, no previous U.S. studies have differentiated concentrations from elevated surface dust (ESD) and floor dust (FD) within and across microenvironments. We address this information gap by measuring twenty-two flame-retardant chemicals in dust on elevated surfaces (ESD; n=10) and floors (FD; n=10) from rooms on a California campus that contain various concentrations of electronicmore » products. We hypothesized a difference in chemical concentrations in ESD and FD. Secondarily, we examined whether or not this difference persisted: (a) across the studied microenvironments and (b) in rooms with various concentrations of electronics. A Wilcoxon signed-rank test demonstrated that the ESD was statistically significantly higher than FD for BDE-47 (p=0.01), BDE-99 (p=0.01), BDE-100 (p=0.01), BDE-153 (p=0.02), BDE-154 (p=0.02), and 3 non-PBDEs including EH-TBB (p=0.02), BEH-TEBP (p=0.05), and TDCIPP (p=0.03). These results suggest different levels and kinds of exposures to flame-retardant chemicals for individuals spending time in the sampled locations depending on the position of accumulated dust. Therefore, further research is needed to estimate human exposure to flame retardant chemicals based on how much time and where in the room individuals spend their time. Such sub-location estimates will likely differ from assessments that assume continuous unidimensional exposure, with implications for improved understanding of potential health impacts of flame retardant chemicals. - Highlights: • Brominated flame retardants used in electronic products accumulate in room dust • Various chemical moieties of flame retardants leach differently into room dust • Flame retardant concentrations in dust differ in elevated surfaces compared to floors.« less
Development of a portable petroleum by-products chemical sensor : phase III and IV.
DOT National Transportation Integrated Search
2009-08-21
Semiconductor quantum dots (QDs) are considered to have potential for chemical sensing application : because of their high surface to volume ratio and unique size tunable properties like : photoluminescence (PL). However, our study revealed for the f...
Chembath, Manju; Balaraju, J N; Sujata, M
2015-11-01
The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in Hanks' solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Autonomous multifunctional nanobrushes-autonomous materials
NASA Astrophysics Data System (ADS)
Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.
2007-04-01
In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).
Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.
2016-01-01
Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C
2016-03-01
Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
NASA Astrophysics Data System (ADS)
Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela
2010-12-01
PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.
NASA Astrophysics Data System (ADS)
Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.
2008-03-01
Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.
Trace organic contaminant concentrations in some Great Lakes tributaries indicate potential for adverse effects on aquatic organisms. Chemicals used in agriculture, industry, and households enter surface waters via variety of sources, including urban and agricultural runoff, sewa...
Surface plasmons for doped graphene
NASA Astrophysics Data System (ADS)
Bordag, M.; Pirozhenko, I. G.
2015-04-01
Within the Dirac model for the electronic excitations of graphene, we calculate the full polarization tensor with finite mass and chemical potential. It has, besides the (00)-component, a second form factor, which must be accounted for. We obtain explicit formulas for both form factors and for the reflection coefficients. Using these, we discuss the regions in the momentum-frequency plane where plasmons may exist and give numeric solutions for the plasmon dispersion relations. It turns out that plasmons exist for both, transverse electric and transverse magnetic polarizations over the whole range of the ratio of mass to chemical potential, except for zero chemical potential, where only a TE plasmon exists.
NASA Astrophysics Data System (ADS)
Miller, Tristan; Smallwood, Chris; Zhang, Wentao; Eisaki, Hiroshi; Lee, Dung-Hai; Lanzara, Alessandra
2015-03-01
Time- and Angle-resolved photoemission spectroscopy (tr-ARPES) has been used to directly measure the dynamics of many different properties of high-temperature superconductors, including the quasiparticle relaxation, cooper pair recombination, and many-body interactions. There have also been several intriguing results on several materials showing how laser pulses can manipulate their chemical potential on ultrafast timescales, and it's been suggested that these effects could find applications in optoelectronic devices. Studies on GaAs have also found that laser pulses may induce a surface voltage effect. Here, we extend these studies for the first time to a Bi2212 sample in the superconducting state, and disentangle the shift in chemical potential from surface voltage effects. This work was supported by Berkeley Lab's program on Quantum Materials, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.
Active control of near-field radiative heat transfer between graphene-covered metamaterials
NASA Astrophysics Data System (ADS)
Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua
2017-04-01
In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo
2018-02-01
We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.
Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.
Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping
2018-08-24
Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.
IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine
NASA Astrophysics Data System (ADS)
Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.
2007-01-01
We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.
NASA Astrophysics Data System (ADS)
Wu, Yunfeng; Wang, Yaming; Liu, Hao; Liu, Yan; Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu
2016-12-01
Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic 'lotus leaf' hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO3 aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7-9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured 'over growth' oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO3 and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from -1.521 V of the bare magnesium to -1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily extended to the other metal materials.
Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.
Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi
2014-04-14
The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.
EVALUATION OF DRINKING WATER TREATMENT TECHNIQUES FOR EDC REMOVAL
Many of the chemicals identified as potential endocrine disrupting chemicals (EDCs) may be present in surface or ground waters used as drinking water sources, due to their disposal via domestic and industrial sewage treatment systems and wet-weather runoff. In order to decrease t...
SchNet - A deep learning architecture for molecules and materials
NASA Astrophysics Data System (ADS)
Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R.
2018-06-01
Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.
Modeling Human Exposure to Indoor Contaminants: External Source to Body Tissues.
Webster, Eva M; Qian, Hua; Mackay, Donald; Christensen, Rebecca D; Tietjen, Britta; Zaleski, Rosemary
2016-08-16
Information on human indoor exposure is necessary to assess the potential risk to individuals from many chemicals of interest. Dynamic indoor and human physicologically based pharmacokinetic (PBPK) models of the distribution of nonionizing, organic chemical concentrations in indoor environments resulting in delivered tissue doses are developed, described and tested. The Indoor model successfully reproduced independently measured, reported time-dependent air concentrations of chloroform released during showering and of 2-butyoxyethanol following use of a volatile surface cleaner. The Indoor model predictions were also comparable to those from a higher tier consumer model (ConsExpo 4.1) for the surface cleaner scenario. The PBPK model successful reproduced observed chloroform exhaled air concentrations resulting from an inhalation exposure. Fugacity based modeling provided a seamless description of the partitioning, fluxes, accumulation and release of the chemical in indoor media and tissues of the exposed subject. This has the potential to assist in health risk assessments, provided that appropriate physical/chemical property, usage characteristics, and toxicological information are available.
2015-01-01
ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096
NASA Astrophysics Data System (ADS)
Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang
2017-12-01
Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang
2018-02-13
Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'. © 2017 The Author(s).
Johnson
1999-01-01
The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.
Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.
2015-01-01
Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476
Increases in impervious surface area lead to declines in chemical and biological indicators of water quality .Roads are an important aspect of impervious surface, and distance to roads is an indicator of the potential threat to aquatic and terrestrial ecosystems. Although roads a...
Wang, Zhiming; Zhong, Z.; Walker, S. McKeown; ...
2017-03-10
Engineering the electronic band structure of two-dimensional electron liquids (2DELs) confined at the surface or interface of transition metal oxides is key to unlocking their full potential. Here we describe a new approach to tailoring the electronic structure of an oxide surface 2DEL demonstrating the lateral modulation of electronic states with atomic scale precision on an unprecedented length scale comparable to the Fermi wavelength. To this end, we use pulsed laser deposition to grow anatase TiO 2 films terminated by a (1 x 4) in-plane surface reconstruction. Employing photo-stimulated chemical surface doping we induce 2DELs with tunable carrier densities thatmore » are confined within a few TiO 2 layers below the surface. Subsequent in situ angle resolved photoemission experiments demonstrate that the (1 x 4) surface reconstruction provides a periodic lateral perturbation of the electron liquid. Furthermore, this causes strong backfolding of the electronic bands, opening of unidirectional gaps and a saddle point singularity in the density of states near the chemical potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.
Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less
Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry
2015-07-15
There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical
Hsueh, Hsiao-Ting; Lin, Chih-Ting
2016-05-15
Surface potential is one of the most important properties at solid-liquid interfaces. It can be modulated by the voltage applied on the electrode or by the surface properties. Hence, surface potential is a good indicator for surface modifications, such as biomolecular bindings. In this work, we proposed a planar nano-gap structure for surface-potential difference monitoring. Based on the proposed architecture, the variance of surface-potential difference can be determined by electrical double layer capacitance (EDLC) between the nano-gap electrodes. Using cyclic voltammetry method, in this work, we demonstrated a relationship between surface potential and EDLC by chemically modifying surface properties. Finally, we also showed the proposed planar nano-gap device provides the capability for cardiac-troponin T (cTnT) measurements with co-existed 10 µg/ml BSA interference. The detection dynamic range is from 100 pg/ml to 1 µg/ml. Based on experimental results and extrapolation, the detection limit is less than 100 pg/ml in diluted PBS buffer (0.01X PBS). These results demonstrated the planar nano-gap architecture having potentials on biomolecular detection through monitoring of surface-potential variation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Balss, Karin Maria
The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential gradients is discussed. Electrochemical reactions other than electrosorption of alkanethiols were demonstrated with over-potential deposition of copper onto gold films. One application of these patterns is to control the movement of supermolecular objects. As a first step towards this goal, biological cells were seeded onto gradient patterns containing adhesion promoters and inhibitors. The morphology and adhesion was investigated as a function of concentration along the gradient.
NASA Astrophysics Data System (ADS)
Kastl, Christoph; Seifert, Paul; He, Xiaoyue; Wu, Kehui; Li, Yongqing; Holleitner, Alexander
2015-06-01
We investigate the photocurrent properties of the topological insulator (Bi0.5Sb0.5)2Te3 on SrTiO3-substrates. We find reproducible, submicron photocurrent patterns generated by long-range chemical potential fluctuations, occurring predominantly at the topological insulator/substrate interface. We fabricate nano-plowed constrictions which comprise single potential fluctuations. Hereby, we can quantify the magnitude of the disorder potential to be in the meV range. The results further suggest a dominating photo-thermoelectric current generated in the surface states in such nanoscale constrictions.
Ziaeifar, Leila; Labbafi Mazrae Shahi, Mohsen; Salami, Maryam; Askari, Gholam R
2018-05-21
The effect of the addition of the camel casein fraction on some physico-chemical properties of low fat camel milk cream was studied. Oil-in-water emulsions, 25, 30, and 35 (w/w) fat, were prepared using inulin, camel skim milk, milk fat and variable percentages of casein (1, 2, and 3% w/w). The droplet size, ζ-potential, surface protein concentration, viscosity and surface tension of low fat dairy creams was measured. Cream containing 2% (w/w) casein had better stability. The modifications in physico-chemical properties appeared to be driven by changes in particle size distribution caused by droplet aggregation. The cream containing 2% casein leads to a gradual decrease in droplet size, as the particle size decreased, apparent viscosity increased. When casein concentration increased, ζ-potential decreased due to combination of c terminal (negative charge) with the surface of fat particles but steric repulsion improved textural properties. Cream with 30% fat and 2% casein had the best result. Copyright © 2018 Elsevier B.V. All rights reserved.
Surface conservation laws at microscopically diffuse interfaces.
Chu, Kevin T; Bazant, Martin Z
2007-11-01
In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.
Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M
2018-06-04
A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.
Novel poly(dimethylsiloxane) bonding strategy via room temperature "chemical gluing".
Lee, Nae Yoon; Chung, Bong Hyun
2009-04-09
Here we propose a new scheme for bonding poly(dimethylsiloxane) (PDMS), namely, a "chemical gluing", at room temperature by anchoring chemical functionalities on the surfaces of PDMS. Aminosilane and epoxysilane are anchored separately on the surfaces of two PDMS substrates, the reaction of which are well-known to form a strong amine-epoxy bond, therefore acting as a chemical glue. The bonding is performed for 1 h at room temperature without employing heat. We characterize the surface properties and composition by contact angle measurement, X-ray photoelectron spectroscopy analysis, and fluorescence measurement to confirm the formation of surface functionalities and investigate the adhesion strength by means of pulling, tearing, and leakage tests. As confirmed by the above-mentioned analyses and tests, PDMS surfaces were successfully modified with amine and epoxy functionalities, and a bonding based on the amine-epoxy chemical gluing was successfully realized within 1 h at room temperature. The bonding was sufficiently robust to tolerate intense introduction of liquid whose per minute injection volume was almost 2000 times larger than the total internal volume of the microchannel used. In addition to the bonding of PDMS-PDMS homogeneous assembly, the bonding of the PDMS-poly(ethylene terephthalate) heterogeneous assembly was also examined. We also investigate the potential use of the multifunctionalized walls inside the microchannel, generated as a consequence of the chemical gluing, as a platform for the targeted immobilization.
NASA Astrophysics Data System (ADS)
Gupta, Banshi D.; Kant, Ravi
2018-05-01
Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.
Bicanonical ab Initio Molecular Dynamics for Open Systems.
Frenzel, Johannes; Meyer, Bernd; Marx, Dominik
2017-08-08
Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.
The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle
Arakha, Manoranjan; Saleem, Mohammed; Mallick, Bairagi C.; Jha, Suman
2015-01-01
The work investigates the role of interfacial potential in defining antimicrobial propensity of ZnO nanoparticle (ZnONP) against different Gram positive and Gram negative bacteria. ZnONPs with positive and negative surface potential are tested against different bacteria with varying surface potentials, ranging −14.7 to −23.6 mV. Chemically synthesized ZnONPs with positive surface potential show very high antimicrobial propensity with minimum inhibitory concentration of 50 and 100 μg/mL for Gram negative and positive bacterium, respectively. On other hand, ZnONPs of the same size but with negative surface potential show insignificant antimicrobial propensity against the studied bacteria. Unlike the positively charged nanoparticles, neither Zn2+ ion nor negatively charged ZnONP shows any significant inhibition in growth or morphology of the bacterium. Potential neutralization and colony forming unit studies together proved adverse effect of the resultant nano-bacterial interfacial potential on bacterial viability. Thus, ZnONP with positive surface potential upon interaction with negative surface potential of bacterial membrane enhances production of the reactive oxygen species and exerts mechanical stress on the membrane, resulting in the membrane depolarization. Our results show that the antimicrobial propensity of metal oxide nanoparticle mainly depends upon the interfacial potential, the potential resulting upon interaction of nanoparticle surface with bacterial membrane. PMID:25873247
NASA Astrophysics Data System (ADS)
Andersen, A.; Govind, N.; Laskin, A.
2017-12-01
Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.
NASA Technical Reports Server (NTRS)
Cooper, Paul D.; Cooper, John F.; Sittler, Edward C.; Burger, Matthew H.; Sturner, Steven J.; Rymer, Abigail M.
2008-01-01
The active south polar surface of Enceladus is exposed to strong chemical processing by direct interaction with charged plasma and energetic particles in the local magnetospheric environment of this icy moon. Chemical oxidation activity is suggested by detection of H202 at the surface in this region and less directly by substantial presence of C02, CO, and N2 in the plume gases. Molecular composition of the uppermost surface, including ejecta from plume activity, is radiolytically transformed mostly by penetrating energetic electrons with lesser effects from more depleted populations of energetic protons. The main sources of molecular plasma ions and E-ring dust grains in the magnetospheric environment are the cryovolcanic plume emissions from Enceladus. These molecular ions and the dust grains are chemically processed by magnetospheric interactions that further impact surface chemistry on return to Enceladus. For example, H20 neutrals dominating the emitted plume gas return to the surface mostly as H30+ ions after magnetospheric processing. Surface oxidant loading is further increased by return of radiolytically processed ice grains from the E-ring. Plume frost deposition and micrometeoroid gardening protect some fraction of newly produced molecular species from destruction by further irradiation. The evident horizontal and vertical mobility of surface ices in the south polar region drive mixing of these processed materials into the moon interior with potential impacts on deep ice molecular chemistry and plume gas production. Similarly as suggested previously for Europa, the externally driven source of radiolytic oxidants could affect evolution of life in any subsurface liquid water environments of Enceladus.
Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik
2011-01-01
We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Junwei; Wang, Bin; Ma, Qi; Wang, Wenjing; Xiang, Dong; Li, Mengyao; Zeng, Lan; Li, Hui; Li, Yuntao; Zhao, Chunxia
2018-06-01
Melamine and multi-walled carbon nanotubes (MWCNTs) were grafted onto Poly-p-phenylene benzobisoxazole (PBO) fiber surface effectively via layer-by-layer method. Both of them have been chemically bonded as fourier transform infrared spectroscopy (FTIR) confirmed. Grafting melamine overcame the inertness of PBO surface. Ammoniation was processed on PBO surface through grafting melamine so that the MWCNTs could be grafted onto PBO surface. Scanning electron microscopy (SEM) images indicated that melamine used as molecular bridge could increase MWCNTs’ quantity on PBO surface. X-ray photoelectron spectroscopy (XPS) results revealed the variation of chemical composition of PBO surface. Test of interfacial shear strength (IFSS) and tensile strength indicated the great mechanical properties of modified PBO fibers when combining with epoxy resin. Furthermore, whole reaction was processed under a simple condition. Results in this research also promised a potential method to modify PBO surface.
Pitting corrosion of titanium. Interim report, June-December 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casillas, N.; Charlebois, S.J.; Smyrl, W.H.
1994-01-20
The breakdown of native and anodically-grown oxide films on Ti electrodes is investigated by scanning electrochemical microscopy (SECM), video microscopy, transmission electron microscopy and voltammetry. SECM is used to demonstrate that the oxidation of Br- on Ti occurs at microscopic surface sites (10 - 50 micrometer diameter, 30 sites/sq cm) that are randomly positioned across the oxide surface. After determining the position of the active sites for Br- oxidation, breakdown of the oxide is initiated by increasing the electrode potential to more positive values. Direct correspondence is observed between the location of the electroactive sites and corrosion pits, indicating thatmore » oxide breakdown is associated with a localized site of high electrical conductivity. The potential at which pitting is observed in voltammetric experiments is found to be proportional to the average oxide thickness, for values ranging between 20 and 100 A, indicating that breakdown is determined either by the magnitude of the electric field within the oxide or by the interfacial potential at the oxide/Br- solution interface. Pitting occurs at significantly lower potentials in Br- solutions than in C 1- solutions, suggesting a strong chemical interaction between the TiO2 surface and Br-. A mechanism of oxide breakdown is proposed that is based on the potential-dependent chemical dissolution of the oxide at microscopic surface sites.« less
Kuo, Che-Hung; Chang, Hsun-Yun; Liu, Chi-Ping; Lee, Szu-Hsian; You, Yun-Wen; Shyue, Jing-Jong
2011-03-07
Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP). In this work, the surface of silicon substrates was tailored with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), which form amine- and thiol-bearing SAMs, respectively. The ratio of the functional groups on the silicon surface was quantified by X-ray photoelectron spectrometry (XPS); in general, the deposition kinetics of APTMS were found to be faster than those of MPTMS. Furthermore, for solutions with high MPTMS concentrations, the relative deposition rate of APTMS increased dramatically due to the acid-base reaction in the solution and subsequent electrostatic interactions between the molecules and the substrate. The zeta potential in aqueous electrolytes was determined with an electro-kinetic analyzer. By depositing SAMs of binary functional groups in varied ratios, the surface potential and IEP of silicon substrates could be fine-tuned. For <50% amine concentration in SAMs, the IEP changed linearly with the chemical composition from <2 to 7.18. For higher amine concentrations, the IEP slowly increased with concentration to 7.94 because the formation of hydrogen-bonding suppressed the subsequent protonation of amines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jae Woo; Rhee, Young Min, E-mail: ymrhee@postech.ac.kr; Department of Chemistry, Pohang University of Science and Technology
2014-04-28
Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabaticmore » transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.« less
Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.
Kumar, Gaurav; Van Cleve, Timothy; Park, Jiyun; van Duin, Adri; Medlin, J Will; Janik, Michael J
2018-06-05
We investigate the structure and binding energy of alkanethiolate self-assembled monolayers (SAMs) on Pd (111), Pd (100), and Pd (110) facets at different coverages. Dispersion-corrected density functional theory calculations are used to correlate the binding energy of alkanethiolates with alkyl chain length and coverage. The equilibrium coverage of thiolate layers strongly prefers 1/3 monolayer (ML) on the Pd (111) surface. The coverage of thiolates varies with chemical potential on Pd (100) and Pd (110), increasing from 1/3 to 1/2 ML on (100) and from 1/4 to 1/2 ML on (110) as the thiol chemical potential is increased. Higher coverages are driven by attractive dispersion interactions between the extended alkyl chains, such that transitions to higher coverages occur at lower thiol chemical potentials for longer chain thiolates. Stronger adsorption to the Pd (100) surface causes the equilibrium Wulff construction of Pd particles to take on a cubic shape upon saturation with thiols. The binding of H, O, and CO adsorbates is weakened as the thiolate coverage is increased, with saturation coverages causing unfavorable binding of O and CO on Pd (100) and weakened binding on other facets. Temperature-dependent CO diffuse reflectance infrared Fourier transform spectroscopy experiments are used to corroborate the weakened binding of CO in the presence of thiolate SAMs of varying surface density. Preliminary results of multiscale modeling efforts on the Pd-thiol system using a reactive force field, ReaxFF, are also discussed.
Control of chemical dynamics by lasers: theoretical considerations.
Kondorskiy, Alexey; Nanbu, Shinkoh; Teranishi, Yoshiaki; Nakamura, Hiroki
2010-06-03
Theoretical ideas are proposed for laser control of chemical dynamics. There are the following three elementary processes in chemical dynamics: (i) motion of the wave packet on a single adiabatic potential energy surface, (ii) excitation/de-excitation or pump/dump of wave packet, and (iii) nonadiabatic transitions at conical intersections of potential energy surfaces. A variety of chemical dynamics can be controlled, if we can control these three elementary processes as we desire. For (i) we have formulated the semiclassical guided optimal control theory, which can be applied to multidimensional real systems. The quadratic or periodic frequency chirping method can achieve process (ii) with high efficiency close to 100%. Concerning process (iii) mentioned above, the directed momentum method, in which a predetermined momentum vector is given to the initial wave packet, makes it possible to enhance the desired transitions at conical intersections. In addition to these three processes, the intriguing phenomenon of complete reflection in the nonadiabatic-tunneling-type of potential curve crossing can also be used to control a certain class of chemical dynamics. The basic ideas and theoretical formulations are provided for the above-mentioned processes. To demonstrate the effectiveness of these controlling methods, numerical examples are shown by taking the following processes: (a) vibrational photoisomerization of HCN, (b) selective and complete excitation of the fine structure levels of K and Cs atoms, (c) photoconversion of cyclohexadiene to hexatriene, and (d) photodissociation of OHCl to O + HCl.
NASA Astrophysics Data System (ADS)
Mateo-Marti, Eva
2014-08-01
The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.
NASA Astrophysics Data System (ADS)
Schouten, Peter; Lemckert, Charles; Turnbull, David; Parisi, Alfio; Downs, Nathan; Underhill, Ian; Turner, Geoff
2011-06-01
Over the past 50 years numerous types of chemical films and monolayers have been deployed on top of a wide variety of water reserves in an endeavour to reduce evaporation. To date very little knowledge has been assimilated on how these chemical films and monolayers, once applied to a water surface, influence the underwater UV light field and, in turn, the delicate ecosystems that exist in aquatic environments. This manuscript presents underwater UV exposure profiles weighted to the DNA damage action spectrum measured under an octadecanol/hexadecanol/lime chemical film mixture, a silicone-based chemical film and an octadecanol monolayer applied to the water surface. UV transmission and absorption properties were also evaluated for each of these chemical films and monolayers. From this it was found that when chemical films/monolayers are applied to surface water they can reduce the penetration of biologically effective UV into the water column by up to 85% at a depth as small as 1 cm. This could have a positive influence on the aquatic ecosystem, as harmful UV radiation may be prevented from reaching and consequently damaging a variety of life forms or it could have a negative effect by potentially stopping aquatic organisms from adapting to solar ultraviolet radiation over extended application intervals. Additionally, there is currently no readily applicable system or technique available to readily detect or visualize chemical films and monolayers on the water surface. To overcome this problem a new method of monolayer and chemical film visualization, using a UV camera system, is detailed and tested and its applicability for usage in both laboratory-based trials and real-world operations is evaluated.
NASA Astrophysics Data System (ADS)
Liu, Pei; Han, Xiuli; Sun, Dongli; Wang, Qing
2018-03-01
In this research work, the structures, energies, electronic and defective properties of (0001), (10 1 bar 0) , (11 2 bar 0) and (10 1 bar 3) surfaces of Ti2AlN were investigated systematically by the first-principles calculations based on density functional theory. The (0001) and (10 1 bar 0) are polar surfaces and have different kinds of surface terminations, while the (11 2 bar 0) and (10 1 bar 3) are non-polar surfaces. The calculated results show that the Ti(Al)-, Al- terminated (0001) surfaces experience the least relaxation, and N- terminated (0001) surface experiences the greatest relaxation. The calculated surface energies of non-polar surfaces are independent on the constituent element chemical potential, while surface energies of polar surfaces are correlated with the constituent element chemical potential. It is found that the (0001)-Ti(Al), (0001)-Al, (10 1 bar 0) -TiAl and (10 1 bar 3) surface are stable under the condition of Ti- and Al- rich environments, the (0001)-N surface is the most stable one under the Ti- and Al- poor condition. The electronic structures of all the surfaces except (10 1 bar 3) are significantly influenced by structure relaxations. Furthermore, the monovacancy formation energies on the surface layer are lower than that in the bulk, the monovacancies are most difficult to exist on the (10 1 bar 3) surface among all the surfaces.
Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce
Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less
Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly
Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce; ...
2017-09-25
Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less
Lindström, Fredrick; Williamson, Philip T F; Gröbner, Gerhard
2005-05-11
Exploiting naturally abundant (14)N and (31)P nuclei by high-resolution MAS NMR (magic angle spinning nuclear magnetic resonance) provides a molecular view of the electrostatic potential present at the surface of biological model membranes, the electrostatic charge distribution across the membrane interface, and changes that occur upon peptide association. The spectral resolution in (31)P and (14)N MAS NMR spectra is sufficient to probe directly the negatively charged phosphate and positively charged choline segment of the electrostatic P(-)-O-CH(2)-CH(2)-N(+)(CH(3))(3) headgroup dipole of zwitterionic DMPC (dimyristoylphosphatidylcholine) in mixed-lipid systems. The isotropic shifts report on the size of the potential existing at the phosphate and ammonium group within the lipid headgroup while the chemical shielding anisotropy ((31)P) and anisotropic quadrupolar interaction ((14)N) characterize changes in headgroup orientation in response to surface potential. The (31)P/(14)N isotropic chemical shifts for DMPC show opposing systematic changes in response to changing membrane potential, reflecting the size of the electrostatic potential at opposing ends of the P(-)-N(+) dipole. The orientational response of the DMPC lipid headgroup to electrostatic surface variations is visible in the anisotropic features of (14)N and (31)P NMR spectra. These features are analyzed in terms of a modified "molecular voltmeter" model, with changes in dynamic averaging reflecting the tilt of the C(beta)-N(+)(CH)(3) choline and PO(4)(-) segment. These properties have been exploited to characterize the changes in surface potential upon the binding of nociceptin to negatively charged membranes, a process assumed to proceed its agonistic binding to its opoid G-protein coupled receptor.
Masunov, Artem E.; Wait, Elizabeth; Vasu, Subith S.
2016-06-28
The supercritical carbon dioxide medium, used to increase efficiency in oxy combustion fossil energy technology, may drastically alter both rates and mechanisms of chemical reactions. Here we investigate potential energy surface of the second most important combustion reaction with quantum chemistry methods. Two types of effects are reported: formation of the covalent intermediates and formation of van der Waals complexes by spectator CO 2 molecule. While spectator molecule alter the activation barrier only slightly, the covalent bonding opens a new reaction pathway. The mechanism includes sequential covalent binding of CO 2 to OH radical and CO molecule, hydrogen transfer frommore » oxygen to carbon atoms, and CH bond dissociation. This reduces the activation barrier by 11 kcal/mol at the rate-determining step and is expected to accelerate the reaction rate. The finding of predicted catalytic effect is expected to play an important role not only in combustion but also in a broad array of chemical processes taking place in supercritical CO 2 medium. Furthermore, tt may open a new venue for controlling reaction rates for chemical manufacturing.« less
Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke R.; Clark, Jimmy M.; Journey, Celeste A.
2016-01-01
Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.
Kim, Chaeeun; Park, Jun-Cheol; Choi, Sun Young; Kim, Yonghun; Seo, Seung-Young; Park, Tae-Eon; Kwon, Se-Hun; Cho, Byungjin; Ahn, Ji-Hoon
2018-04-01
2D layered materials with sensitive surfaces are promising materials for use in chemical sensing devices, owing to their extremely large surface-to-volume ratios. However, most chemical sensors based on 2D materials are used in the form of laterally defined active channels, in which the active area is limited to the actual device dimensions. Therefore, a novel approach for fabricating self-formed active-channel devices is proposed based on 2D semiconductor materials with very large surface areas, and their potential gas sensing ability is examined. First, the vertical growth phenomenon of SnS 2 nanocrystals is investigated with large surface area via metal-assisted growth using prepatterned metal electrodes, and then self-formed active-channel devices are suggested without additional pattering through the selective synthesis of SnS 2 nanosheets on prepatterned metal electrodes. The self-formed active-channel device exhibits extremely high response values (>2000% at 10 ppm) for NO 2 along with excellent NO 2 selectivity. Moreover, the NO 2 gas response of the gas sensing device with vertically self-formed SnS 2 nanosheets is more than two orders of magnitude higher than that of a similar exfoliated SnS 2 -based device. These results indicate that the facile device fabrication method would be applicable to various systems in which surface area plays an important role. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loague, Keith; Blanke, James S; Mills, Melissa B; Diaz-Diaz, Ricardo; Corwin, Dennis L
2012-01-01
Precious groundwater resources across the United States have been contaminated due to decades-long nonpoint-source applications of agricultural chemicals. Assessing the impact of past, ongoing, and future chemical applications for large-scale agriculture operations is timely for designing best-management practices to prevent subsurface pollution. Presented here are the results from a series of regional-scale vulnerability assessments for the San Joaquin Valley (SJV). Two relatively simple indices, the retardation and attenuation factors, are used to estimate near-surface vulnerabilities based on the chemical properties of 32 pesticides and the variability of both soil characteristics and recharge rates across the SJV. The uncertainties inherit to these assessments, derived from the uncertainties within the chemical and soil data bases, are estimated using first-order analyses. The results are used to screen and rank the chemicals based on mobility and leaching potential, without and with consideration of data-related uncertainties. Chemicals of historic high visibility in the SJV (e.g., atrazine, DBCP [dibromochloropropane], ethylene dibromide, and simazine) are ranked in the top half of those considered. Vulnerability maps generated for atrazine and DBCP, featured for their legacy status in the study area, clearly illustrate variations within and across the assessments. For example, the leaching potential is greater for DBCP than for atrazine, the leaching potential for DBCP is greater for the spatially variable recharge values than for the average recharge rate, and the leaching potentials for both DBCP and atrazine are greater for the annual recharge estimates than for the monthly recharge estimates. The data-related uncertainties identified in this study can be significant, targeting opportunities for improving future vulnerability assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Buffered Electrochemical Polishing of Niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati; Tian, Hui; Corcoran, Sean
The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. Asmore » part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.« less
NASA Astrophysics Data System (ADS)
Ngo, Chi-Vinh; Chun, Doo-Man
2018-03-01
Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.
Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2017-01-01
Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability. PMID:28555001
Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2017-05-27
Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.
Methods for isolation and viability assessment of biological organisms
Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping
2015-02-03
Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.
NASA Technical Reports Server (NTRS)
Albridge, Royal; Barnes, Alan; Tolk, Norman
1993-01-01
The interaction of atomic particles with surfaces is of both scientific and technological interest. Past work emphasizes the measurement of high-energy sputtering yields. Very little work utilized low-energy beams for which chemical and electronic effects can be important. Even less work has been carried out using well-defined low-energy projectiles. The use of low-energy, reactive projectiles permits one to investigate surface processes that have not been well characterized. As the energy of the projectile decreases, the collisional cascades and spikes, that are common for high-energy projectiles, become less important, and chemical and electronic effects can play a significant role. Aspects of particle-surface interactions are of concern in several areas of technology. For example, the erosion, desorption, and glow of surfaces of spacecraft in orbit are important in the arena of space technology. The materials studied under this contract are of possible use on the exterior portions of the power generation system of Space Station Freedom. Under the original designs, Space Station Freedom's power generation system would generate potential differences on the surface as high as 200 volts. Ions in the plasma that often surround orbiting vehicles would be accelerated by these potentials leading to bombardment and erosion of the exposed surfaces. The major constituent of the atmosphere, approximately 90 percent, in the low earth orbit region is atomic oxygen. Since atomic oxygen is extremely reactive with most materials, chemical effects can arise in addition to the physical sputtering caused by the acceleration of the oxygen ions. Furthermore, the incident oxygen ions can remain embedded in the exposed surfaces, altering the chemical composition of the surfaces. Since the effective binding energy of a chemically altered surface can be quite different from that of the pure substrate, the sputtering yield of a chemically altered surface is usually different also. The low-energy O+ sputtering yield measurements, reported here, will help quantify the erosion rates for materials exposed to the low-earth orbit environment. These measurements are of technological importance in another respect. In most surface analysis techniques, a surface is bombarded with ions, electrons or photons. Information concerning the structure of the surface and near-surface bulk, abundance of impurities and defects, as well as other surface properties are obtained either from the desorbed species or from the scattered projectiles. Because of their low penetration depth, low-energy ions provide an advantage over other techniques because they provide information that is more indicative of conditions on the surface rather than integrated effects arising from deeper in the bulk. A better understanding of the microscopic processes involved in these interactions is not only of basic scientific interest, but will also aid the scientific community by increasing the accuracy and usefulness of these surface analysis techniques.
A number of the chemicals identified as potential EDCs have been observed in surface and ground waters leading to concern over the possible presence of EDCs in finished drinking waters. Although there has not yet been a determination of risks posed by EDCs in finished waters, it ...
Today’s world and political climate lends itself to potential attacks by hostile forces and terrorists where both exterior and interior surfaces of vehicles, buildings, or equipment could become contaminated with biological warfare (BW) or chemical warfare (CW) agents. R...
Maier, F; Niedermaier, I; Steinrück, H-P
2017-05-07
This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.
Innovative smart micro sensors for Army weaponry applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene
2008-03-01
Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.
Han, Yong; Axnanda, Stephanus; Crumlin, Ethan J.; ...
2017-08-28
Some rcent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ~12.2 nm-thick layer of Co(OH) 2 forms at a potential of about -0.4 V Ag/AgCl, and upon increasing the anodic potential to about +0.4 V Ag/AgCl, this layer is partially oxidized into cobaltmore » oxyhydroxide (CoOOH). A CoOOH/Co(OH) 2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. Our observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.« less
Anthony, David B; Qian, Hui; Clancy, Adam J; Greenhalgh, Emile S; Bismarck, Alexander; Shaffer, Milo S P
2017-07-28
The application of an in situ potential difference between carbon fibres and a graphite foil counter electrode (300 V, generating an electric field ca 0.3-0.7 V μm -1 ), during the chemical vapour deposition synthesis of carbon nanotube (CNT) grafted carbon fibres, significantly improves the uniformity of growth without reducing the tensile properties of the underlying carbon fibres. Grafted CNTs with diameters 55 nm ± 36 nm and lengths around 10 μm were well attached to the carbon fibre surface, and were grown without the requirement for protective barrier coatings. The grafted CNTs increased the surface area to 185 m 2 g -1 compared to the as-received sized carbon fibre 0.24 m 2 g -1 . The approach is not restricted to batch systems and has the potential to improve CNT grafted carbon fibre production for continuous processing.
NASA Astrophysics Data System (ADS)
Anthony, David B.; Qian, Hui; Clancy, Adam J.; Greenhalgh, Emile S.; Bismarck, Alexander; Shaffer, Milo S. P.
2017-07-01
The application of an in situ potential difference between carbon fibres and a graphite foil counter electrode (300 V, generating an electric field ca 0.3-0.7 V μm-1), during the chemical vapour deposition synthesis of carbon nanotube (CNT) grafted carbon fibres, significantly improves the uniformity of growth without reducing the tensile properties of the underlying carbon fibres. Grafted CNTs with diameters 55 nm ± 36 nm and lengths around 10 μm were well attached to the carbon fibre surface, and were grown without the requirement for protective barrier coatings. The grafted CNTs increased the surface area to 185 m2 g-1 compared to the as-received sized carbon fibre 0.24 m2 g-1. The approach is not restricted to batch systems and has the potential to improve CNT grafted carbon fibre production for continuous processing.
Microbial biosurfactants as additives for food industries.
Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M
2013-01-01
Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed. © 2013 American Institute of Chemical Engineers.
Bexfield, Laura M.; Anderholm, Scott K.
2008-01-01
Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to either dissolve or newly precipitate when surface water or ground-water/surface-water mixtures are delivered through the Authority's current distribution system are carbonates (particularly aragonite and calcite). Other types of minerals having the potential to dissolve or newly precipitate under conditions present throughout most of the distribution system include a form of silica, an aluminum hyroxide (gibbsite or diaspore), or the Fe-containing mineral Fe3(OH)8. Dissolution of most of these minerals (except perhaps the Fe-containing minerals) is not likely to substantially affect trace-element concentrations or aesthetic characteristics of delivered water, except perhaps hardness. Precipitation of these minerals would probably be of concern only if the quantities of material involved were large enough to clog pipes or fixtures. The mineral Fe3(OH)8 was not found in the current distribution system. Some Fe-containing minerals that were identified in the distribution system were associated with relatively high contents of selected elements, including As, Cr, Cu, Mn, Pb, and Zn. However, these Fe-containing minerals were not identified as minerals likely to dissolve when the source of water was changed from ground water to surface water or a ground-water/surface-water mixture. Based on the modeled potential for calcite precipitation and additional calculations of corrosion indices ground water, surface water, and ground-water/surface-water mixtures are not likely to differ greatly in corrosion potential. In particular, surface water and ground-water/surface-water mixtures do not appear likely to dissolve large quantities of existing calcite and expose metal surfaces in the distribution system to substantially increased corrosion. Instead, modeling calculations indicate that somewhat larger masses of material would tend to precipitate from surface water or ground-water/surface-water mixtures compared to ground water alone.
Shabalovskaya, S; Rondelli, G; Anderegg, J; Simpson, B; Budko, S
2003-07-15
The effect of chemical etching in a HF/HNO(3) acid solution and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide has been evaluated with the use of potentiodynamic, modified potentiostatic ASTM F746, and scratch tests. Scanning-electron microscopy, elemental XPS, and Auger analysis were employed to characterize surface alterations induced by surface treatment and corrosion testing. The effect of aging in boiling water on the temperatures of martensitic transformations and shape recovery was evaluated by means of measuring the wire electroresistance. After corrosion tests, as-received wires revealed uniformly cracked surfaces reminiscent of the stress-corrosion-cracking phenomenon. These wires exhibited negative breakdown potentials in potentiostatic tests and variable breakdown potentials in potentiodynamic tests (- 100 mV to + 400 mV versus SCE). Wires with treated surfaces did not reveal cracking or other traces of corrosion attacks in potentiodynamic tests up to + 900-1400-mV potentials and no pitting after stimulation at + 800 mV in potentiostatic tests. They exhibited corrosion behavior satisfactory for medical applications. Significant improvement of corrosion parameters was observed on the reverse scans in potentiodynamic tests after exposure of treated wires to potentials > 1000 mV. In scratch tests, the prepared surfaces repassivated only at low potentials, comparable to that of stainless steel. Tremendous improvement of the corrosion behavior of treated Nitinol wires is associated with the removal of defect surface material and the growth of stable TiO(2) oxide. The role of precipitates in the corrosion resistance of Nitinol-scratch repassivation capacity in particular-is emphasized in the discussion. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 331-340, 2003
Meyer, Jörg; Reuter, Karsten
2014-04-25
We present an embedding technique for metallic systems that makes it possible to model energy dissipation into substrate phonons during surface chemical reactions from first principles. The separation of chemical and elastic contributions to the interaction potential provides a quantitative description of both electronic and phononic band structure. Application to the dissociation of O2 at Pd(100) predicts translationally "hot" oxygen adsorbates as a consequence of the released adsorption energy (ca. 2.6 eV). This finding questions the instant thermalization of reaction enthalpies generally assumed in models of heterogeneous catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of chemical residues in food oil via surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Kexi; Huang, Qing
2016-05-01
Highly ordered hexagonally patterned Ag-nanorod (Ag-NR) arrays for surface-enhanced Raman scattering (SERS) detection of unhealthy chemical residues in food oil was reported, which was obtained by sputtering Ag on the alumina nanotip arrays stuck out of conical-pore anodic aluminum oxide (AAO) templates. SERS measurements demonstrate that the as-fabricated large-scale Ag-nanostructures can serve as highly sensitive and reproducible SERS substrates for detection of trace amount of chemicals in oil with the lower detection limits of 2×10-6 M for thiram and 10-7 M for rhodamine B, showing the potential of application of SERS in rapid trace detection of pesticide residues and illegal additives in food oils.
Myung, Ja Hye; Hsu, Hao-Jui; Bugno, Jason; Tam, Kevin A; Hong, Seungpyo
2017-01-01
Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Product lambda-doublet ratios as an imprint of chemical reaction mechanism
Jambrina, P. G.; Zanchet, A.; Aldegunde, J.; Brouard, M.; Aoiz, F. J.
2016-01-01
In the last decade, the development of theoretical methods has allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the Λ-doublet states produced by chemical reactions. In particular, recent measurements of the OD(2Π) product of the O(3P)+D2 reaction have shown a clear preference for the Π(A′) Λ-doublet states, in apparent contradiction with ab initio calculations, which predict a larger reactivity on the A′′ potential energy surface. Here we present a method to calculate the Λ-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental Λ-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that the propensity of the Π(A′) state is a consequence of the different mechanisms of the reaction on the two concurrent potential energy surfaces PMID:27834381
Perspective: chemical dynamics simulations of non-statistical reaction dynamics
Ma, Xinyou; Hase, William L.
2017-01-01
Non-statistical chemical dynamics are exemplified by disagreements with the transition state (TS), RRKM and phase space theories of chemical kinetics and dynamics. The intrinsic reaction coordinate (IRC) is often used for the former two theories, and non-statistical dynamics arising from non-IRC dynamics are often important. In this perspective, non-statistical dynamics are discussed for chemical reactions, with results primarily obtained from chemical dynamics simulations and to a lesser extent from experiment. The non-statistical dynamical properties discussed are: post-TS dynamics, including potential energy surface bifurcations, product energy partitioning in unimolecular dissociation and avoiding exit-channel potential energy minima; non-RRKM unimolecular decomposition; non-IRC dynamics; direct mechanisms for bimolecular reactions with pre- and/or post-reaction potential energy minima; non-TS theory barrier recrossings; and roaming dynamics. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320906
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Levin, Eugene
1993-01-01
A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.
Lim, Seung Joo; Fox, Peter
2014-02-01
The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassett, J.M.
1988-01-01
Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, andmore » 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.« less
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
Chemical analyses of provided samples
NASA Technical Reports Server (NTRS)
Becker, Christopher H.
1993-01-01
A batch of four samples were received and chemical analysis was performed of the surface and near surface regions of the samples by the surface analysis by laser ionization (SALI) method. The samples included four one-inch diameter optics labeled windows no. PR14 and PR17 and MgF2 mirrors 9-93 PPPC exp. and control DMES 26-92. The analyses emphasized surface contamination or modification. In these studies, pulsed desorption by 355 nm laser light and single-photon ionization (SPI) above the sample by coherent 118 nm radiation (at approximately 5 x 10(exp 5) W/cm(sup 2)) were used, emphasizing organic analysis. For the two windows with an apparent yellowish contaminant film, higher desorption laser power was needed to provide substantial signals, indicating a less volatile contamination than for the two mirrors. Window PR14 and the 9-93 mirror showed more hydrocarbon components than the other two samples. The mass spectra, which show considerable complexity, are discussed in terms of various potential chemical assignments.
Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications
Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon
2016-01-01
Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916
Performance Optimization Control of ECH using Fuzzy Inference Application
NASA Astrophysics Data System (ADS)
Dubey, Abhay Kumar
Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.
A multifunctional polymeric nanofilm with robust chemical performances for special wettability.
Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong
2016-03-07
A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.
ERIC Educational Resources Information Center
Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan
2010-01-01
To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…
Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.
2015-01-01
Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.
NASA Astrophysics Data System (ADS)
Krajčí, M.; Hafner, J.
2013-03-01
The polar threefold surfaces of the GaPd compound crystallizing in the B20 (FeSi-type) structure (space group P213) have been investigated using density-functional methods. Because of the lack of inversion symmetry the B20 structure exists in two enantiomorphic forms denoted as A and B. The threefold {111} surfaces have polar character. In both nonequivalent (111) and (bar{1}bar{1}bar{1}) directions several surface terminations differing in structure and chemical composition are possible. The formation of the threefold surfaces has been studied by simulated cleavage experiments and by calculations of the surface energies. Because of the polar character of the threefold surfaces calculations for stoichiometric slabs permit only the determination of the average energy of the surfaces exposed on both sides of the slab. Calculations for nonstoichiometric slabs performed in the grand canonical ensemble yield differences of the surface energies for the possible terminations as a function of the chemical potential in the reactive atmosphere above the surface and predict a transition between Ga- and Pd-terminated surfaces as a function of the chemical potential. The {100} surfaces are stoichiometric and uniquely defined. The calculated surface energies are identical to the average energies of the {100} surfaces of the pure metals. The {210} surfaces are also stoichiometric, with an energy very close to that of the {100} surfaces. Assuming that for the {111} surfaces the energies of different possible terminations are in a proportion equal to that of the concentration-weighted energies of the {111} surfaces of the pure metals, surface energies for all possible {111} terminations may be calculated. The preferable termination perpendicular to the A⟨111⟩ direction consists of a bilayer with three Ga atoms in the upper and three Pd atoms in the lower part. The surface energy of this termination further decreases if the Pd triplet is covered by additional Ga atom. Perpendicular to the A< bar{1}bar{1}bar{1} > direction the lowest energy has been found for a bilayer with three Ga atoms per surface cell in the upper layer and one Ga and one Pd in the lower part. The calculated surface energies are in agreement with a simulated cleavage experiment. However, cleavage does not result in the formation of the lowest-energy surfaces, because all possible {111} cleavage planes expose a low-energy surface on one, and a high-energy surface on the other side. The prediction of Ga-terminated surfaces has been tested against the available experimental information. The calculated surface electronic density of states is in very good agreement with photo-emission spectroscopy. Calculated STM images of the most stable surfaces agree with all details of the available experimental images. The chemical reactivity of the most stable surfaces has been studied by the adsorption of CO molecules. The adsorption energies and maximum coverages calculated for the Ga-terminated surfaces permit a reasonable interpretation of the observed thermal desorption spectra, whereas for the Pd-terminated surfaces the calculated adsorption energies are far too high.
Perception of airborne odors by loggerhead sea turtles.
Endres, C S; Putman, N F; Lohmann, K J
2009-12-01
Sea turtles are known to detect chemical cues, but in contrast to most marine animals, turtles surface to breathe and thus potentially have access to olfactory cues both in air and in water. To determine whether sea turtles can detect airborne chemical cues, captive loggerhead turtles (Caretta caretta) were placed into a circular, water-filled arena in which odorants could be introduced to the air above the water surface. Air that had passed across the surface of a cup containing food elicited increased activity, diving and other behavior normally associated with feeding. By contrast, air that had passed across the surface of an identical cup containing distilled water elicited no response. Increases in activity during food odor trials occurred only after turtles surfaced to breathe and peaked in the first post-breath minute, implying that the chemical cues eliciting the responses were unlikely to have been detected while the turtles were under water. These results provide the first direct evidence that sea turtles can detect airborne odors. Under natural conditions, this sensory ability might function in foraging, navigation or both.
Tunable antenna radome based on graphene frequency selective surface
NASA Astrophysics Data System (ADS)
Qu, Meijun; Rao, Menglou; Li, Shufang; Deng, Li
2017-09-01
In this paper, a graphene-based frequency selective surface (FSS) is proposed. The proposed FSS exhibits a tunable bandpass filtering characteristic due to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells. A conventional omnidirectional dipole can realize a two-beam directional pattern when it is placed into the proposed antenna radome. Forward and backward endfire radiations of the dipole loaded with the radome is realized by properly adjusting the chemical potential. The proposed antenna radome is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems when the gain of a conventional antenna needs to be enhanced.
Fuller, C.C.; Davis, J.A.; Coston, J.A.; Dixon, E.
1996-01-01
Several geochemical properties of an aquifer sediment that control metal-ion adsorption were investigated to determine their potential use as indicators of the spatial variability of metal adsorption. Over the length of a 4.5-m-long core from a sand and gravel aquifer, lead (Pb2+) and zinc (Zn2+) adsorption at constant chemical conditions (pH 5.3) varied by a factor of 2 and 4, respectively. Pb2+ and Zn2+ were adsorbed primarily by Fe- and Al-oxide coatings on quartz-grain surfaces. Per unit surface area, both Pb2+ and Zn2+ adsorption were significantly correlated with the amount of Fe and Al that dissolved from the aquifer material in a partial chemical extraction. The variability in conditional binding constants for Pb2+ and Zn2+ adsorption (log KADS) derived from a simple non-electrostatic surface complexation model were also predicted by extracted Fe and Al normalized to surface area. Because the abundance of Fe- and Al-oxide coatings that dominate adsorption does not vary inversely with grain size by a simple linear relationship, only a weak, negative correlation was found between the spatial variability of Pb2+ adsorption and grain size in this aquifer. The correlation between Zn2+ adsorption and grain size was not significant. Partial chemical extractions combined with surface-area measurements have potential use for estimating metal adsorption variability in other sand and gravel aquifers of negligible carbonate and organic carbon content.
Surface properties of hydrogenated nanodiamonds: a chemical investigation.
Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P
2011-06-28
Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011
Analysis of surface structures of chemically peculiar stars with modern and future interferometers
NASA Astrophysics Data System (ADS)
Shulyak, D.; Perraut, K.; Paladini, Claudia; Li Causi, G.; Sacuto, Stephane; Kochukhov, O.
2014-07-01
Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.
The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...
USDA-ARS?s Scientific Manuscript database
Soil fumigation is important for food production but has the potential to discharge toxic chemicals into the environment, which may adversely affect human and ecosystem health. A field experiment was conducted to evaluate the effect of applying ammonium thiosulfate fertilizer to the soil surface pr...
Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor
NASA Astrophysics Data System (ADS)
Sivakumarasamy, R.; Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Nishiguchi, K.; Fujiwara, A.; Clément, N.
2018-05-01
Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to 25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.
Late diagenetic indicators of buried oil and gas
Donovan, Terrence J.; Dalziel, Mary C.
1977-01-01
At least three hydrocarbon seepage mechanisms are interpreted to operate over oil and gas fields. These are: (1) effusion ofh ydrocarbons through inadequate caprocks and along faults and fractures, (2) low-molecular-weight hydrocarbons dissolved in water moving vertically through capping shales as a result of a hydrodynamic or chemical potential drive, and (3) diffusion of gases dissolved in water. Combinations of these mechanisms may also occur. Seeping hydrocarbons are oxidized near the earth's surface, and the resulting carbon dioxide reacts with water producing bicarbonate ions, which combine with calcium and magnesium dissolved in ground waters to yield isotopically distinctive pore-filling carbonate cements and surface rocks. The passage of hydrocarbons and associated compounds such as hydrogen sulfide through surface rocks causes a reducing environment and consequent reduction, mobilization, and loss of iron from iron-bearing minerals commonly resulting in a discoloration. Other metals such as manganese are also mobilized and redistributed. These changes in the physical and chemical properties of surface rocks correlate with the subsurface distribution of petroleum, and potentially can be detected from both airborne and spaceborne platforms.
Raman spectroscopy method for subsurface detection of food powders through plastic layers
NASA Astrophysics Data System (ADS)
Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.; Bae, Abigail
2017-05-01
Proper chemical analyses of materials in sealed containers are important for quality control purpose. Although it is feasible to detect chemicals at top surface layer, it is relatively challenging to detect objects beneath obscuring surface. This study used spatially offset Raman spectroscopy (SORS) method to detect urea, ibuprofen and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785 nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. With increasing offset distance, the fraction of information from the deeper subsurface material increased compared to that from the top surface material. The series of measurements was analyzed to differentiate and identify the top surface and subsurface materials. Containing mixed contributions from the powder and capsule, the SORS of each sample was decomposed using self modeling mixture analysis (SMA) to obtain pure component spectra of each component and corresponding components were identified using spectral information divergence values. Results show that SORS technique together with SMA method has a potential for non-invasive detection of chemicals at deep subsurface layer.
In-surface confinement of topological insulator nanowire surface states
NASA Astrophysics Data System (ADS)
Chen, Fan W.; Jauregui, Luis A.; Tan, Yaohua; Manfra, Michael; Klimeck, Gerhard; Chen, Yong P.; Kubis, Tillmann
2015-09-01
The bandstructures of [110] and [001] Bi2Te3 nanowires are solved with the atomistic 20 band tight binding functionality of NEMO5. The theoretical results reveal: The popular assumption that all topological insulator (TI) wire surfaces are equivalent is inappropriate. The Fermi velocity of chemically distinct wire surfaces differs significantly which creates an effective in-surface confinement potential. As a result, topological insulator surface states prefer specific surfaces. Therefore, experiments have to be designed carefully not to probe surfaces unfavorable to the surface states (low density of states) and thereby be insensitive to the TI-effects.
Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T
2010-02-01
The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests.
NASA Astrophysics Data System (ADS)
Zhang, Minhua; Wang, Wenyi; Chen, Yifei
2018-03-01
In2O3 catalysts show remarkable activity and selectivity in methanol synthesis from CO2 hydrogenation. In order to get insight into the surface stability of this catalyst, density functional theory and ab initio atomistic thermodynamics method were used to investigate the surface free energies of various facets as a function of oxygen chemical potential, as well as the influences of temperature, pressure and gas compositions. The results show that the (111) facet presents lowest surface free energy under oxygen-rich condition, while the indium-terminated (100) facet is the most stable one under oxygen-lean condition. Moreover, we applied Wulff construction to determine the equilibrium shape of In2O3 with different oxygen chemical potentials. The equilibrium shape under oxygen-lean condition is cubic, which only expose (100) facet, while, the equilibrium shape under oxygen-rich condition is octahedron, which only expose (111) facet. Meanwhile, the results agree well with what is observed experimentally. It is further predicted that Wulff shape of In2O3 exists in a truncated octahedron morphology in which the (100) surface becomes predominant plane under CO2 hydrogenation reaction conditions.
Clark, Dennis A.; Izbicki, John A.; Johnson, Russell D.; Land, Michael
2009-01-01
This report presents data on the physical and hydraulic properties of unsaturated alluvial deposits and on the chemical and isotopic composition of water collected at two recharge sites in the western part of the Mojave Desert, near Victorville, California, from 2001 to 2006. Unsaturated-zone monitoring sites were installed adjacent to the two recharge ponds using the ODEX air-hammer and air rotary method to depths of about 460 feet and 269 feet below land surface. Each of the two unsaturated-zone monitoring sites included a water-table well, matric-potential sensors, and suction-cup lysimeters installed in a single bore hole. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 400 samples of cores and cuttings was determined. Water from suction-cup lysimeters also was analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of groundwater from the two water-table wells are reported along with chemical and isotopic composition of the surface water in the recharge ponds.
Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E
2015-08-15
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities. Published by Elsevier B.V.
Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.
2015-01-01
Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.
Chemically grafted fibronectin for use in QCM-D cell studies
Sobolewski, Peter; Tomczyk, Nancy; Composto, Russell J.; Eckmann, David M.
2014-01-01
Traditionally, fibronectin has been used as a physisorbed surface coating (physFN) in cell culture experiments due to its critical role in cell adhesion. However, because the resulting layer is thick, unstable, and of unpredictable uniformity, this method of fibronectin deposition is unsuitable for some types of research, including quartz crystal microbalance (QCM) experiments involving cells. Here, we present a new method for chemical immobilization of fibronectin onto silicon oxide surfaces, including QCM crystals pre-coated with silicon oxide. We characterize these chemically coated fibronectin surfaces (chemFN) as well as physFN ones using surface ellipsometry (SE), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle measurements. A cell culture model demonstrates that cells on chemFN and physFN surfaces exhibit similar viability, structure, adhesion and metabolism. Finally, we perform QCM experiments using cells on both surfaces which demonstrate the superior suitability of chemFN coatings for QCM research, and provide real-time QCM-D data from cells subjected to an actin depolymerizing agent. Overall, our method of chemical immobilization of fibronectin yields great potential for furthering cellular experiments in which thin, stable and uniform coatings are desirable. As QCM research with cells has been rather limited in success thus far, we anticipate that this new technique will particularly benefit this experimental system by availing it to the much broader field of cell mechanics. PMID:24657645
Surface modification of protein enhances encapsulation in chitosan nanoparticles
NASA Astrophysics Data System (ADS)
Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael
2018-04-01
Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.
NASA Astrophysics Data System (ADS)
Ward, C.; Cory, R. M.
2015-12-01
Thawing permafrost soils are expected to shift the chemical composition of DOM exported to and degraded in arctic surface waters. While DOM photo-degradation is an important component of the freshwater C cycle in the Arctic, the molecular controls on DOM photo-degradation remain poorly understood, making it difficult to predict how shifting chemical composition may alter DOM photo-degradation in arctic surface waters. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer to complete photo-oxidation to CO₂ and partial photo-oxidation to compounds that remain in the DOM pool, and investigated changes in DOM chemical composition following sunlight exposure. DOM leached from the organic mat contained higher molecular weight, more oxidized and unsaturated aromatic species compared to permafrost DOM. Despite significant differences in initial chemical composition, permafrost and organic mat DOM had similar susceptibilities to complete photo-oxidation to CO₂. Concurrent losses of carboxyl moieties and shifts in chemical composition during photo-degradation indicated that carboxyl-rich tannin-like compounds in both DOM sources were likely photo-decarboxylated to CO₂. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic compounds that act as "antioxidants" and slow the oxidation of DOM. These results demonstrated how chemical composition controls the photo-degradation of DOM in arctic surface waters, and that DOM photo-degradation will likely remain an important component of the freshwater C budget in the Arctic with increased export of permafrost DOM to surface waters.
Nallathamby, Prakash D; Mortensen, Ninell P; Palko, Heather A; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J; Gu, Baohua; Roeder, Ryan K; Wang, Wei; Retterer, Scott T
2015-04-21
Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with (14)C, with a final activity of 0.097 nCi mg(-1) of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.
Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.
2016-01-01
Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90–110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of –35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg–1 of NPs. In chronic studies, the biodistribution profile is tracked using low-level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials. PMID:25790032
Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; ...
2015-03-02
Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and 10 easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), wasmore » between 90 110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate 15 functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi/mg -1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-20 radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and 25 detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.« less
Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T
Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.
Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.
2016-01-01
Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface. PMID:27212937
NASA Technical Reports Server (NTRS)
Cooper, John F.
2006-01-01
Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.
Unraveling the Nature of Chemical Reactivity of Complex Systems
2009-01-13
28 J. Zhou, J. J. Lin, W. Shiu, and K. Liu, J. Chem. Phys. 119, 4997 2003. 29 S. C. Althorpe, F. Fernandez - Alonso , B. D. Bean, J. D. Ayers, A. E...Truhlar DG, Espinosa- Garcia J (2000) Potential energy surface, thermal, and state-selected rate coefficients, and kinetic isotope effects for Cl CH43...HCl CH3. J Chem Phys 112:9375–9389. 22. Rangel C, Navarrete M, Corchado JC, Espinosa- Garcia J (2006) Potential energy surface, kinetics, and
Asegbeloyin, Jonnie N.; Ejikeme, Paul M.; Olasunkanmi, Lukman O.; Adekunle, Abolanle S.; Ebenso, Eno E.
2015-01-01
The corrosion inhibition activity of a newly synthesized Schiff base (SB) from 3-acetyl-4-hydroxy-6-methyl-(2H)-pyran-2-one and 2,2'-(ethylenedioxy)diethylamine was investigated on the corrosion of mild steel in 1 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic techniques. Ultraviolet-visible (UV-vis) and Raman spectroscopic techniques were used to study the chemical interactions between SB and mild steel surface. SB was found to be a relatively good inhibitor of mild steel corrosion in 1 M HCl. The inhibition efficiency increases with increase in concentration of SB. The inhibition activity of SB was ascribed to its adsorption onto mild steel surface, through physisorption and chemisorption, and described by the Langmuir adsorption model. Quantum chemical calculations indicated the presence of atomic sites with potential nucleophilic and electrophilic characteristics with which SB can establish electronic interactions with the charged mild steel surface.
Lowe, Aaron M.; Bertics, Paul J.; Abbott, Nicholas L.
2009-01-01
We report methods for the acquisition and analysis of optical images formed by thin films of twisted nematic liquid crystals (LCs) placed into contact with surfaces patterned with bio/chemical functionality relevant to surface-based assays. The methods are simple to implement and are shown to provide easily interpreted maps of chemical transformations on surfaces that are widely exploited in the preparation of analytic devices. The methods involve acquisition of multiple images of the LC as a function of the orientation of a polarizer; data analysis condenses the information present in the stack of images into a spatial map of the twist angle of the LC on the analytic surface. The potential utility of the methods is illustrated by mapping (i) the displacement of a monolayer formed from one alkanethiol on a gold film by a second thiol in solution, (ii) coadsorption of mixtures of amine-terminated and ethyleneglycol-terminated alkanethiols on gold films, which leads to a type of mixed monolayer that is widely exploited for immobilization of proteins on analytic surfaces, and (iii) patterns of antibodies printed onto surfaces. These results show that maps of the twist angle of the LC constructed from families of optical images can be used to reveal surface features that are not apparent in a single image of the LC film. Furthermore, the twist angles of the LC can be used to quantify the energy of interaction of the LC with the surface with a spatial resolution of <10 µm. When combined, the results described in this paper suggest non-destructive methods to monitor and validate chemical transformations on surfaces of the type that are routinely employed in the preparation of surface-based analytic technologies. PMID:18355089
Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P
2016-04-21
Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.
Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells
Mura, Simona; Hillaireau, Herve; Nicolas, Julien; Le Droumaguet, Benjamin; Gueutin, Claire; Zanna, Sandrine; Tsapis, Nicolas; Fattal, Elias
2011-01-01
Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. PMID:22114491
Laser-based standoff detection of surface-bound explosive chemicals
NASA Astrophysics Data System (ADS)
Huestis, David L.; Smith, Gregory P.; Oser, Harald
2010-04-01
Avoiding or minimizing potential damage from improvised explosive devices (IEDs) such as suicide, roadside, or vehicle bombs requires that the explosive device be detected and neutralized outside its effective blast radius. Only a few seconds may be available to both identify the device as hazardous and implement a response. As discussed in a study by the National Research Council, current technology is still far from capable of meeting these objectives. Conventional nitrocarbon explosive chemicals have very low vapor pressures, and any vapors are easily dispersed in air. Many pointdetection approaches rely on collecting trace solid residues from dust particles or surfaces. Practical approaches for standoff detection are yet to be developed. For the past 5 years, SRI International has been working toward development of a novel scheme for standoff detection of explosive chemicals that uses infrared (IR) laser evaporation of surfacebound explosive followed by ultraviolet (UV) laser photofragmentation of the explosive chemical vapor, and then UV laser-induced fluorescence (LIF) of nitric oxide. This method offers the potential of long standoff range (up to 100 m or more), high sensitivity (vaporized solid), simplicity (no spectrometer or library of reference spectra), and selectivity (only nitrocompounds).
Computational insights of water droplet transport on graphene sheet with chemical density
NASA Astrophysics Data System (ADS)
Zhang, Liuyang; Wang, Xianqiao
2014-05-01
Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe
A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.
ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that aremore » in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.« less
Studying Reaction Intermediates Formed at Graphenic Surfaces
NASA Astrophysics Data System (ADS)
Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil
2014-03-01
We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.
Characterisation of nanomaterial hydrophobicity using engineered surfaces
NASA Astrophysics Data System (ADS)
Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal
2017-03-01
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.
Evaluation of surface water resources from machine-processing of ERTS multispectral data
NASA Technical Reports Server (NTRS)
Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.; Mitchell, R. A.; Cook, J. P.
1976-01-01
The surface water resources of a large metropolitan area, Marion County (Indianapolis), Indiana, are studied in order to assess the potential value of ERTS spectral analysis to water resources problems. The results of the research indicate that all surface water bodies over 0.5 ha were identified accurately from ERTS multispectral analysis. Five distinct classes of water were identified and correlated with parameters which included: degree of water siltiness; depth of water; presence of macro and micro biotic forms in the water; and presence of various chemical concentrations in the water. The machine processing of ERTS spectral data used alone or in conjunction with conventional sources of hydrological information can lead to the monitoring of area of surface water bodies; estimated volume of selected surface water bodies; differences in degree of silt and clay suspended in water and degree of water eutrophication related to chemical concentrations.
Effects of Chemical Treatments on Microbiologically Influenced Corrosion
NASA Astrophysics Data System (ADS)
Friedman, E. S.; Strom, M.; Dexter, S. C.
2008-12-01
Biofilms are known to have an effect on galvanic corrosion of alloys in seawater systems. In the Delaware Bay, biofilm formation on surface of cathodes has been shown to cause galvanic corrosion to occur up to 100 times more rapidly. Given the impacts that corrosion can have on structures, it is important to study how we can affect corrosion rates. One way of doing this is the application of chemical treatments to biofilms on metal samples. To investigate this, natural marine biofilms were grown on alloy 6XN stainless steel samples, and various chemical treatments were applied to discover their effects on open circuit potentials and corrosion currents. Another objective of this study was to determine if there was a threshold molecular weight above which molecules were unable to penetrate the biofilm. It was discovered that chemicals with molecular weights as high as 741.6 g/mol were able to penetrate at least some parts of the heterogeneous biofilm and reach the metal surface. No upper threshold value was found in this study. It was found that the reducing agents sodium L-ascorbate and NADH as well as the chelate ferizene caused a drop in open circuit potential of biofilmed 6XN samples. Also, glutaraldahyde, which is used as a fixative for bacteria, shifted the open circuit potential of biofilm samples in the noble direction but had no effect on the corrosion current. Sodium L- ascorbate was found to reach the metal surface, but in concentrations lower than those present in the bulk fluid. It was not determined in this study whether this was due to physical or chemical processes within the biofilm. A synergistic effect was observed when applying a mixture of ferizene and glutaraldahyde. It is thought that this was due to the death of the bacteria as well as the disruption of iron cycling in the biofilm. Finally, it was observed that NADH caused a reduction in current at potentials associated with iron reduction, leading us to believe that the iron was being reduced by the NADH.
Goldstein, Harland L.; Breit, George N.; Reynolds, Richard L.
2017-01-01
Saline-surface crusts and their compositions at ephemeral, dry, and drying lakes are important products of arid-land processes. Detailed understanding is lacking, however, about interactions among locally variable hydrogeologic conditions, compositional control of groundwater on vadose zone and surface salts, and dust composition. Chemical and physical data from groundwater, sediments, and salts reveal compositional controls on saline-surface crusts across a wet playa, Mojave Desert, with bearing on similar settings elsewhere. The compositions of chemically and isotopically distinctive shallow (<3 m) water masses are recorded in the composition of associated salts. In areas with deeper and more saline groundwater, however, not all ions are transported through the vadose zone. Retention of arsenic and other elements in the vadose zone diminishes the concentrations of potentially toxic elements in surface salts, but creates a reservoir of these elements that may be brought to the surface during wetter conditions or by human disturbance. Selective wind-erosion loss of sulfate salts was identified by the compositional contrast between surface salt crusts and underlying groundwater. At the sub-basin scale, compositional links exist among groundwater, salt crusts, and dust from wet playas. Across the study basin, however, lateral variations in groundwater and solid-salt compositions are produced by hydrogeologic heterogeneity.
Effects of oxygen chemical potential on the anisotropy of the adsorption properties of Zr surfaces.
Zhang, Hai-Hui; Xie, Yao-Ping; Yao, Mei-Yi; Xu, Jing-Xiang; Zhang, Jin-Long; Hu, Li-Juan
2018-05-30
The anisotropy of metal oxidation is a fundamental issue, and the oxidation of Zr surfaces also attracts much attention due to the application of Zr alloys as cladding materials for nuclear fuels in nuclear power plants. In this study, we systematically investigate the diagram of O adsorption on low Miller index Zr surfaces by using first-principles calculations based on density functional theory calculations. We find that O adsorption on the basal surface, Zr(0001), is more favourable than that on the prism surfaces, Zr(112[combining macron]0) and Zr(101[combining macron]0), under strong O-reducing conditions, while O adsorption on the prism surface is more favourable than that of the basal surface under weak O-reducing conditions and the O-rich conditions. Our findings reveal that the anisotropy of adsorption properties of O on the Zr surfaces is dependent on the O chemical potential in the environment. Furthermore, the ability of the prism for O adsorption is stronger than that of the basal surface under the O-rich condition, which is consistent with the experimental observation that the oxidation of the prism Zr surface is easier than that of the basal surface. Systematic surveys show the adsorption ability of the surface under strong O-reducing conditions is determined by the low coordination numbers of surface atoms and surface geometrical structures, while the adsorption ability of the surface under weak O-reducing conditions and O-rich conditions is only determined by the low coordination number of surface atoms. These results can provide an atomic scale understanding of the initial oxidation of Zr surfaces, which inevitably affects the growth of protective passivation layers that play critical roles in the corrosion resistance of Zr cladding materials.
NASA Astrophysics Data System (ADS)
Sulyma, Christopher Michael
This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated here in detail using the electrochemical techniques of cyclic voltammetry, open circuit potential analysis, polarization resistance measurements, and Fourier transform impedance spectroscopy. The results suggest that forming structurally weak oxide layers on the CMP samples is a key to achieving the goal of chemically controlled CMP of Ta/TaN at low down-pressures. (Abstract shortened by UMI.)
E-FAST-Exposure and Fate Assessment Screening Tool Version 2014
E-FAST estimates potential exposures to the general population and surface water concentrations based on releases from industrial operations and basic physical-chemical properties and fate parameters of the substance
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
NASA Astrophysics Data System (ADS)
Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar
2018-05-01
Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.
Alizadeh, Amer; Wang, Moran
2017-03-01
Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pięta, Ewa; Paluszkiewicz, Czesława; Oćwieja, Magdalena; Kwiatek, Wojciech M.
2017-05-01
An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface-enhanced Raman scattering (SERS) spectroscopic investigations of N-acetyl-5-methoxytryptamine (melatonin) and α-methyl-DL-tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6-311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.
Svítková, Jana; Ignat, Teodora; Švorc, Ľubomír; Labuda, Ján; Barek, Jiří
2016-05-03
Boron-doped diamond (BDD) is a prospective electrode material that possesses many exceptional properties including wide potential window, low noise, low and stable background current, chemical and mechanical stability, good biocompatibility, and last but not least exceptional resistance to passivation. These characteristics extend its usability in various areas of electrochemistry as evidenced by increasing number of published articles over the past two decades. The idea of chemically modifying BDD electrodes with molecular species attached to the surface for the purpose of creating a rational design has found promising applications in the past few years. BDD electrodes have appeared to be excellent substrate materials for various chemical modifications and subsequent application to biosensors and biosensing. Hence, this article presents modification strategies that have extended applications of BDD electrodes in electroanalytical chemistry. Different methods and steps of surface modification of this electrode material for biosensing and construction of biosensors are discussed.
Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications
NASA Astrophysics Data System (ADS)
Nallon, Eric C.
An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a chemiresistor device and used as a chemical sensor, where its resistance is temporarily modified while exposed to chemical compounds. The inherent, broad selective nature of graphene is demonstrated by testing a sensor against a diverse set of volatile organic compounds and also against a set of chemically similar compounds. The sensor exhibits excellent selectivity and is capable of achieving high classification accuracies. The kinetics of the sensor's response are further investigated revealing a relationship between the transient behavior of the response curve and physiochemical properties of the compounds, such as the molar mass and vapor pressure. This kinetic information is also shown to provide important information for further pattern recognition and classification, which is demonstrated by increased classification accuracy of very similar compounds. Covalent modification of the graphene surface is demonstrated by means of plasma treatment and free radical exchange, and sensing performance compared to an unmodified graphene sensor. Finally, the first example of a graphene-based, cross-reactive chemical sensor array is demonstrated by applying various polymers as coatings over an array of graphene sensors. The sensor array is tested against a variety of compounds, including the complex odor of Scotch whiskies, where it is capable of perfect classification of 10 Scotch whiskey variations.
Thermodynamic Stability of Low- and High-Index Spinel LiMn 2 O 4 Surface Terminations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warburton, Robert E.; Iddir, Hakim; Curtiss, Larry A.
2016-05-04
Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of offstoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of whichmore » adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes.« less
Hohmann, Mareike V; Ágoston, Péter; Wachau, André; Bayer, Thorsten J M; Brötz, Joachim; Albe, Karsten; Klein, Andreas
2011-08-24
The ionization potentials of In(2)O(3) films grown epitaxially by magnetron sputtering on Y-stabilized ZrO(2) substrates with (100) and (111) surface orientation are determined using photoelectron spectroscopy. Epitaxial growth is verified using x-ray diffraction. The observed ionization potentials, which directly affect the work functions, are in good agreement with ab initio calculations using density functional theory. While the (111) surface exhibits a stable surface termination with an ionization potential of ∼ 7.0 eV, the surface termination and the ionization potential of the (100) surface depend strongly on the oxygen chemical potential. With the given deposition conditions an ionization potential of ∼ 7.7 eV is obtained, which is attributed to a surface termination stabilized by oxygen dimers. This orientation dependence also explains the lower ionization potentials observed for In(2)O(3) compared to Sn-doped In(2)O(3) (ITO) (Klein et al 2009 Thin Solid Films 518 1197-203). Due to the orientation dependent ionization potential, a polycrystalline ITO film will exhibit a laterally varying work function, which results in an inhomogeneous charge injection into organic semiconductors when used as electrode material. The variation of work function will become even more pronounced when oxygen plasma or UV-ozone treatments are performed, as an oxidation of the surface is only possible for the (100) surface. The influence of the deposition technique on the formation of stable surface terminations is also discussed. © 2011 IOP Publishing Ltd
Elucidating the alkaline oxygen evolution reaction mechanism on platinum
Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...
2017-03-07
Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less
Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.
2010-01-01
The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. ??Springer Science+Business Media, LLC 2009.
Low-Temperature Alkaline pH Hydrolysis of Oxygen-Free Titan Tholins: Carbonates' Impact.
Brassé, Coralie; Buch, Arnaud; Coll, Patrice; Raulin, François
2017-01-01
Titan, the largest moon of Saturn, is one of the key planetary objects in the field of exobiology. Its dense, nitrogen-rich atmosphere is the site of important organic chemistry. This paper focuses on the organic aerosols produced in Titan's atmosphere that play an important role in atmospheric and surface processes and in organic chemistry as it applies to exobiological interests. To produce reliable laboratory analogues of these aerosols, we developed, tested, and optimized a device for the synthesis of clean tholins. The potential chemical evolution of Titan aerosols at Titan's surface has been studied, in particular, the possible interaction between aerosols and putative ammonia-water cryomagma. Modeling of the formation of Saturn's atmosphere has permitted the characterization of a composition of salts in the subsurface ocean and cryolava. From this new and original chemical composition, a laboratory study of several hydrolyses of tholins was carried out. The results obtained show the formation of many organic compounds, among them, species identified only in the presence of salts. In addition, a list of potential precursors of these compounds was established, which could provide a database for research of the chemical composition of tholins and/or aerosols of Titan. Key Words: Titan tholins-Titan aerosols-Hydrolysis-Carbonates-Titan's surface. Astrobiology 17, 8-26.
Raman and photothermal spectroscopies for explosive detection
NASA Astrophysics Data System (ADS)
Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas
2013-06-01
Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.
King, Helen E; Plümper, Oliver; Putnis, Christine V; O'Neill, Hugh St C; Klemme, Stephan; Putnis, Andrew
2017-04-20
Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe) 2 SiO 4 ) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.
Passive Standoff Detection of Chemical Warfare Agents on Surfaces
NASA Astrophysics Data System (ADS)
Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.
2004-11-01
Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.
Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations
NASA Astrophysics Data System (ADS)
Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay
2017-04-01
Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic potential. The other sets of interatomic potentials («Zircon 2, Zircon 3») differed from the first in that parameters was found with the help of quantum-chemical calculations of the structure «ab initio».The surface energies for different faces of zircon were calculated using Metadise code (Watson et al., 1996) at P4-3000 personal computer with Windows XP operating system. The computation time for one simple form was from 30 minutes to 12 hours. Calculations have shown that depending on the chosen model the surface energy of zircons faces several changes. For example, Esurf of face (331) obtained using models of potentials «Zircon 2», «Zircon 3» sufficiently similar (2.82 and 3.01 J/mol2 respectively). Meaning of Esurf of this face, calculated on the basis of set «Zircon 1» significantly lower (1,54 J/mol2). With regard to the face (100), it has low surface energies when selecting all three models, with a minimum value (1,14 J/mol2) in the model «Zircon 1». References: Gromalova N.A., Eremin N.N., Urusov V.S. Atomistic computer modeling of the crystal-morpology of corundum group minerals // Zapiski RMO. V. 144. №4. 2015. p. 84-92. Watson G.W., Kelsey E.T., de Leeuw N.H., Harris D.J, Parker S.C. Atomistic simulation of dislocations, surfaces and interfaces in MgO. Journal of the Chemical Society Faraday Transactions. 1996. V.92 P. 433-438.
2006-06-01
Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen...resistant to commonly used disinfectants and require the use of chemical sterilants † to effectively decontaminate exposed areas. Since anthrax...spores can aerosolise the use of vaporous sterilants in the remediation of contaminated areas is desirable. A number of vaporous sterilants exist which
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy
Barhoumi, Aoune; Halas, Naomi J.
2013-01-01
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449
Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.
Barhoumi, Aoune; Halas, Naomi J
2011-12-15
Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.
Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential.
Kong, Desheng; Dang, Wenhui; Cha, Judy J; Li, Hui; Meister, Stefan; Peng, Hailin; Liu, Zhongfan; Cui, Yi
2010-06-09
A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi(2)Se(3), Bi(2)Te(3), and Sb(2)Te(3) are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi(2)Te(3) and Bi(2)Se(3) nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO(2)/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential.
Theoretical research program to study transition metal trimers and embedded clusters
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1987-01-01
The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.
Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.
Jewett, Scott A; Ivanisevic, Albena
2012-09-18
In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can occur during sample transfer between solutions. The passivation of InAs is dominated by sulfur-based molecules, which form stable In-S bonds on the InAs surface. Both sulfides and alkanethiols form well-defined monolayers on InAs and are dominated by In-S interactions. Sulfur-passivated InAs surfaces prevent regrowth of the surface oxide layer and are more stable in air than unpassivated surfaces. Although functionalization of InAs with sulfur-based molecules effectively passivates the surface, future sensing applications may require the adsorption of functional biomolecules onto the InAs surface. Current research in this area focuses on the passivation abilities of biomolecules such as collagen binding peptides and amino acids. These biomolecules can physically adsorb onto InAs, and they demonstrate some passivation ability but not to the extent of sulfur-based molecules. Because these adsorbents do not form covalent bonds with the InAs surface, they do not effectively block oxide regrowth. A mixed adlayer containing a biomolecule and a thiol on the InAs surface provides one possible solution: these hybrid surfaces enhance passivation but also maintain the presence of a biomolecule on the surface. Such surface functionalization strategies on InAs could provide long-term stability and make these surfaces suitable for biological applications.
Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion
NASA Astrophysics Data System (ADS)
McBride, A. T.; Javili, A.; Steinmann, P.; Bargmann, S.
2011-10-01
Surfaces can have a significant influence on the overall response of a continuum body but are often neglected or accounted for in an ad hoc manner. This work is concerned with a nonlinear continuum thermomechanics formulation which accounts for surface structures and includes the effects of diffusion and viscoelasticity. The formulation is presented within a thermodynamically consistent framework and elucidates the nature of the coupling between the various fields, and the surface and the bulk. Conservation principles are used to determine the form of the constitutive relations and the evolution equations. Restrictions on the jump in the temperature and the chemical potential between the surface and the bulk are not a priori assumptions, rather they arise from the reduced dissipation inequality on the surface and are shown to be satisfiable without imposing the standard assumptions of thermal and chemical slavery. The nature of the constitutive relations is made clear via an example wherein the form of the Helmholtz energy is explicitly given.
Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.
Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue
2017-04-01
Here surface potential of chemical vapor deposition (CVD) grown 2D MoS 2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS 2 are investigated. The surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS 2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO 2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS 2 , with the increase in light intensity, the surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS 2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS 2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Elsner, Martin; Schreglmann, Kathrin
2015-04-01
Few technologies are being discussed in such controversial terms as hydraulic fracturing ("fracking") in the recovery of unconventional gas. Particular concern regards the chemicals that may return to the surface as a result of hydraulic fracturing. These are either "fracking chemicals" - chemicals that are injected together with the fracking fluid to optimize the fracturing performance or geogenic substances which may turn up during gas production, in the so-called produced water originating from the target formation. Knowledge about them is warranted for several reasons. (1) Monitoring. Air emissions are reported to arise from well drilling, the gas itself or condensate tanks. In addition, potential spills and accidents bear the danger of surface and shallow groundwater contaminations. Monitoring strategies are therefore warranted to screen for "indicator" substances of potential impacts. (2) Chemical Analysis. To meet these analytical demands, target substances must be defined so that adequate sampling approaches and analytical methods can be developed. (3) Transformation in the Subsurface. Identification and classification of fracking chemicals (aromatics vs. alcohols vs. acids, esters, etc.) is further important to assess the possibility of subsurface reactions which may potentially generate new, as yet unidentified transformation products. (4) Wastewater Treatment. For the same reason chemical knowledge is important for optimized wastewater treatment strategies. (5) Human and Ecosystem Health. Knowledge of the most frequent fracking chemicals is further essential for risk assessment (environmental behavior, toxicity) (6) Public Discussions. Finally, an overview of reported fracking chemicals can provide unbiased scientific into current public debates and enable critical reviews of Green Chemistry approaches. Presently, however, such information is not readily available. We aim to close this knowledge gap by providing a quantitative overview of chemical additives reported for use in hydraulic fracturing. For the years 2005-2009 it is based on the Waxman report, and for the years 2011-2013 it relies on the database FracFocus, where it makes use of the data extracted and provided by the website "SkyTruth". For the first time, we list fracking chemicals according to their chemical structure and functional groups, because these properties are important as a starting point for (i) the design of analytical methods, (ii) to assess environmental fate and (iii) to understand why a given chemical is used at a certain stage of the fracturing process and what possible alternatives exist.
Functional patterned coatings by thin polymer film dewetting.
Telford, Andrew M; Thickett, Stuart C; Neto, Chiara
2017-12-01
An approach for the fabrication of functional polymer surface coatings is introduced, where micro-scale structure and surface functionality are obtained by means of self-assembly mechanisms. We illustrate two main applications of micro-patterned polymer surfaces obtained through dewetting of bilayers of thin polymer films. By tuning the physical and chemical properties of the polymer bilayers, micro-patterned surface coatings could be produced that have applications both for the selective attachment and patterning of proteins and cells, with potential applications as biomaterials, and for the collection of water from the atmosphere. In all cases, the aim is to achieve functional coatings using approaches that are simple to realize, use low cost materials and are potentially scalable. Copyright © 2017 Elsevier Inc. All rights reserved.
A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION
Finch, Craig; Clarke, Thomas; Hickman, James J.
2012-01-01
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843
Surface modification: advantages, techniques, and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.
2000-03-01
Adequate performance of materials at elevated temperatures is a potential problem in many systems within the chemical, petroleum, process, and power-generating industries. Degradation of materials occurs because of interaction between the structural material and the exposure environment. These interactions are generally undesired chemical reactions that can lead to accelerated wastage and alter the functional requirements and/or structural integrity of the materials. Therefore, material selection for high-temperature applications must be based not only on a material strength properties but also on resistance to the complex environments prevalent in the anticipated exposure environment. As plants become larger, the satisfactory performance and reliabilitymore » of components play a greater role in plant availability and economics. However, system designers are becoming increasingly concerned with finding the least expensive material that will satisfactorily perform the design function for the desired service life. This present paper addresses the benefits of surface modification and identified several criteria for selection and application of modified surfaces in the power sector. A brief review is presented on potential methods for modification of surfaces, with the emphasis on coatings. In the final section of the paper, several examples address the requirements of different energy systems and surface modification avenues that have been applied to resolve the issues.« less
NASA Astrophysics Data System (ADS)
Qi, Wenjie; Ran, Jingyu; Zhang, Zhien; Niu, Juntian; Zhang, Peng; Fu, Lijuan; Hu, Bo; Li, Qilai
2018-03-01
Density functional theory combined with kinetic models were used to probe different kinetics consequences by which methane activation on different oxygen chemical potential surfaces as oxygen pressure increased. The metallic oxide → metal transformation temperature of Pd-Pt catalysts increased with the increase of the Pd content or/and O2 pressure. The methane conversion rate on Pt catalyst increased and then decreased to a constant value when increasing the O2 pressure, and Pd catalyst showed a poor activity performance in the case of low O2 pressure. Moreover, its activity increased as the oxygen chemical potential for O2 pressure increased in the range of 2.5-10 KPa. For metal clusters, the Csbnd H bond and Odbnd O bond activation steps occurred predominantly on *-* site pairs. The methane conversion rate was determined by O2 pressure because the adsorbed O atoms were rapidly consumed by other adsorbed species in this kinetic regime. As the O2 pressure increased, the metallic active sites for methane activation were decreased and there was no longer lack of adsorbed O atoms, resulting in the decrease of the methane conversion rate. Furthermore, when the metallic surfaces were completely covered by adsorbed oxygen atoms at higher oxygen chemical potentials, Pt catalyst showed a poor activity due to a high Csbnd H bond activation barrier on O*sbnd O*. In the case of high O2 pressure, Pd atoms preferred to segregate to the active surface of Pd-Pt catalysts, leading to the formation of PdO surfaces. The increase of Pd segregation promoted a subsequent increase in active sites and methane conversion rate. The PdO was much more active than metallic and O* saturated surfaces for methane activation, inferred from the theory and experimental study. Pd-rich bimetallic catalyst (75% molar Pd) showed a dual high methane combustion activity on O2-poor and O2-rich conditions.
Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface
NASA Astrophysics Data System (ADS)
Guerrero-Sánchez, J.; Takeuchi, Noboru
2018-05-01
We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.
Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A
2016-05-01
Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp
2014-04-14
The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemicalmore » potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.« less
NASA Astrophysics Data System (ADS)
Li, Yang; He, Yongyong; Wang, Wei; Mao, Junyuan; Zhang, Lei; Zhu, Yijie; Ye, Qianwen
2018-03-01
In direct current plasma nitriding (DCPN), the treated components are subjected to a high cathodic potential, which brings several inherent shortcomings, e.g., damage by arcing and the edging effect. In active screen plasma nitriding (ASPN) processes, the cathodic potential is applied to a metal screen that surrounds the workload, and the component to be treated is placed in a floating potential. Such an electrical configuration allows plasma to be formed on the metal screen surface rather than on the component surface; thus, the shortcomings of the DCPN are eliminated. In this work, the nitrided experiments were performed using a plasma nitriding unit. Two groups of samples were placed on the table in the cathodic and the floating potential, corresponding to the DCPN and ASPN, respectively. The floating samples and table were surrounded by a steel screen. The DCPN and ASPN of the AISI 304 stainless steels are investigated as a function of the electric potential. The samples were characterized using scanning electron microscopy with energy-dispersive x-ray spectroscopy, x-ray diffraction, atomic force microscopy and transmission electron microscope. Dry sliding ball-on-disk wear tests were conducted on the untreated substrate, DCPN and ASPN samples. The results reveal that all nitrided samples successfully produced similar nitrogen-supersaturated S phase layers on their surfaces. This finding also shows the strong impact of the electric potential of the nitriding process on the morphology, chemical characteristics, hardness and tribological behavior of the DCPN and ASPN samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073; Guo, Zhiguang, E-mail: zguo@licp.cas.cn
Graphical abstract: A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces, showing a good superhydrophobicity with the contact angle of about 170°, and the sliding angle of about 0°. Meanwhile, the potential formation mechanism about it is also presented. Highlights: ► A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces. ► The obtained surfaces show good superhydrophobicity with a high contact angle and low sliding angle. ► The color of the etched substrate dark brown or black and it is so-called black silicon. -- Abstract: Silicon substrates treated by metal-assisted chemical etching have been studied formore » many years since they could be employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors and detectors. However, to the best of our knowledge, the chemical etching treatment on the same silicon substrate with the assistance of two or more kinds of metals has not been reported. In this paper, we mainly focus on the etching time and finally obtain a series of superhydrophobic silicon surfaces with novel etching structures through two successive etching processes of Cu-assisted and Ag-assisted chemical etching. It is shown that large-scale homogeneous but locally irregular wire-like structures are obtained, and the superhydrophobic surfaces with low hysteresis are prepared after the modifications with low surface energy materials. It is worth noting that the final silicon substrates not only possess high static contact angle and low hysteresis angle, but also show a black color, indicating that the superhydrophobic silicon substrate has an extremely low reflectance in a certain range of wavelengths. In our future work, we will go a step further to discuss the effect of temperature, the size of Cu nanoparticles and solution concentration on the final topography and superhydrophobicity.« less
Improved explosive collection and detection with rationally assembled surface sampling materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.
Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple usesmore » of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.« less
Surface modification of cellulose using silane coupling agent.
Thakur, Manju Kumari; Gupta, Raju Kumar; Thakur, Vijay Kumar
2014-10-13
Recently there has been a growing interest in substituting traditional synthetic polymers with natural polymers for different applications. However, natural polymers such as cellulose suffer from few drawbacks. To become viable potential alternatives of synthetic polymers, cellulosic polymers must have comparable physico-chemical properties to that of synthetic polymers. So in the present work, cellulose polymer has been modified by a series of mercerization and silane functionalization to optimize the reaction conditions. Structural, thermal and morphological characterization of the cellulose has been done using FTIR, TGA and SEM, techniques. Surface modified cellulose polymers were further subjected to evaluation of their properties like swelling and chemical resistance behavior. Published by Elsevier Ltd.
FY06 L2C2 HE program report Zaug et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Crowhurst, J C; Howard, W M
2008-08-01
The purpose of this project is to advance the improvement of LLNL thermochemical computational models that form the underlying basis or input for laboratory hydrodynamic simulations. Our general work approach utilizes, by design, tight experimental-theoretical research interactions that allow us to not empirically, but rather more scientifically improve LLNL computational results. The ultimate goal here is to confidently predict through computer models, the performance and safety parameters of currently maintained, modified, and newly designed stockpile systems. To attain our goal we make relevant experimental measurements on candidate detonation products constrained under static high-pressure and temperature conditions. The reduced information frommore » these measurements is then used to construct analytical forms that describe the potential surface (repulsive energy as a function of interatomic separation distance) of single and mixed fluid or detonation product species. These potential surface shapes are also constructed using input from well-trusted shock wave physics and assorted thermodynamic data available in the open literature. Our potential surfaces permit one to determine the equations of state (P,V,T), the equilibrium chemistry, phase, and chemical interactions of detonation products under a very wide range of extreme pressure temperature conditions. Using our foundation of experimentally refined potential surfaces we are in a position to calculate, with confidence, the energetic output and chemical speciation occurring from a specific combustion and/or detonation reaction. The thermochemical model we developed and use for calculating the equilibrium chemistry, kinetics, and energy from ultrafast processes is named 'Cheetah'. Computational results from our Cheetah code are coupled to laboratory ALE3D hydrodynamic simulation codes where the complete response behavior of an existing or proposed system is ultimately predicted. The Cheetah thermochemical code is also used by well over 500 U.S. government DoD and DOE community users who calculate the chemical properties of detonated high explosives, propellants, and pyrotechnics. To satisfy the growing needs of LLNL and the general user community we continue to improve the robustness of our Cheetah code. The P-T range of current speed of sound experiments will soon be extended by a factor of four and our recently developed technological advancements permit us to, for the first time, study any chemical specie or fluid mixture. New experiments will focus on determining the miscibility or coexistence curves of detonation product mixtures. Our newly constructed ultrafast laser diagnostics will permit us to determine what chemical species exist under conditions approaching Chapman-Jouguet (CJ) detonation states. Furthermore we will measure the time evolution of candidate species and use our chemical kinetics data to develop new and validate existing rate laws employed in future versions of our Cheetah thermochemical code.« less
Enhanced optical gradient forces between coupled graphene sheets
Xu, Xinbiao; Shi, Lei; Liu, Yang; Wang, Zheqi; Zhang, Xinliang
2016-01-01
Optical gradient forces between monolayer infinite-width graphene sheets as well as single-mode graphene nanoribbon pairs of graphene surface plasmons (GSPs) at mid-infrared frequencies were theoretically investigated. Although owing to the strongly enhanced optical field, the normalized optical force, fn, can reach 50 nN/μm/mW, which is the largest fn as we know, the propagation loss is also large. But we found that by changing the chemical potential of graphene, fn and the optical propagation loss can be balanced. The total optical force acted on the nanoribbon waveguides can thus enhance more than 1 order of magnitude than that in metallic surface plasmons (MSPs) waveguides with the same length and the loss can be lower. Owing to the enhanced optical force and the significant neff tuning by varying the chemical potential of graphene, we also propose an ultra-compact phase shifter. PMID:27338252
Extension of Gibbs-Duhem equation including influences of external fields
NASA Astrophysics Data System (ADS)
Guangze, Han; Jianjia, Meng
2018-03-01
Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.
Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon
NASA Technical Reports Server (NTRS)
Musgrave, Charles Bruce
1999-01-01
This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.
NASA Astrophysics Data System (ADS)
Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian
2013-06-01
Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.
Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian
2013-06-21
Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.
Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M
2017-08-01
Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nanoengineered Plasmonic Hybrid Systems for Bio-nanotechnology
NASA Astrophysics Data System (ADS)
Leong, Kirsty
Plasmonic hybrid systems are fabricated using a combination of lithography and layer-by-layer directed self-assembly approaches to serve as highly sensitive nanosensing devices. This layer-by-layer directed self-assembly approach is utilized as a hybrid methodology to control the organization of quantum dots (QDs), nanoparticles, and biomolecules onto inorganic nanostructures with site-specific attachment and functionality. Here, surface plasmon-enhanced nanoarrays are fabricated where the photoluminescence of quantum dots and conjugated polymer nanoarrays are studied. This study was performed by tuning the localized surface plasmon resonance and the distance between the emitter and the metal surface using genetically engineered polypeptides as binding agents and biotin-streptavidin binding as linker molecules. In addition, these nanoarrays were also chemically modified to support the immobilization and label-free detection of DNA using surface enhanced Raman scattering. The surface of the nanoarrays was chemically modified using an acridine containing molecule which can act as an intercalating agent for DNA. The self-assembled monolayer (SAM) showed the ability to immobilize and intercalate DNA onto the surface. This SAM system using surface enhanced Raman scattering (SERS) serves as a highly sensitive methodology for the immobilization and label-free detection of DNA applicable into a wide range of bio-diagnostic platforms. Other micropatterned arrays were also fabricated using a combination of soft lithography and surface engineering. Selective single cell patterning and adhesion was achieved through chemical modifications and surface engineering of poly(dimethylsiloxane) surface. The surface of each microwell was functionally engineered with a SAM which contained an aldehyde terminated fused-ring aromatic thiolated molecule. Cells were found to be attracted and adherent to the chemically modified microwells. By combining soft lithography and surface engineering, a simple methodology produced single cell arrays on biocompatible substrates. Thus the design of plasmonic devices relies heavily on the nature of the plasmonic interactions between nanoparticles in the devices which can potentially be fabricated into lab-on-a-chip devices for multiplex sensing capabilities.
Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.
Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S
2014-07-01
Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.
Kinetic mechanism for modeling of electrochemical reactions.
Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil
2012-04-01
We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.
Groundwater Contamination Response Guide. Volume 2. Desk Reference.
1983-06-01
compounds to a total number now near 2 million (Freeze and Cherry, 1979). Organic chemicals make their way to the land surface as potential...that the central part of the plume would be lowered 15 feet and that water north, east , and south of the most highly contaminated zone would be drawn...assess the degree of contamination. However, characterization under Items (b) and (c) (following paragraphs) will require substantially more chemical
Excess chemical potential of small solutes across water--membrane and water--hexane interfaces
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M. A.
1996-01-01
The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.
Effect of Stratification on Surface Properties of Corneal Epithelial Cells
Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.
2015-01-01
Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762
LiNbO3 surfaces from a microscopic perspective
NASA Astrophysics Data System (ADS)
Sanna, Simone; Gero Schmidt, Wolf
2017-10-01
A large number of oxides has been investigated in the last twenty years as possible new materials for various applications ranging from opto-electronics to heterogeneous catalysis. In this context, ferroelectric oxides are particularly promising. The electric polarization plays a crucial role at many oxide surfaces, and it largely determines their physical and chemical properties. Ferroelectrics offer in addition the possibility to control/switch the electric polarization and hence the surface chemistry, allowing for the realization of domain-engineered nanoscale devices such as molecular detectors or highly efficient catalysts. Lithium niobate (LiNbO3) is a ferroelectric with a high spontaneous polarization, whose surfaces have a huge and largely unexplored potential. Owing to recent advances in experimental techniques and sample preparation, peculiar and exclusive properties of LiNbO3 surfaces could be demonstrated. For example, water films freeze at different temperatures on differently polarized surfaces, and the chemical etching properties of surfaces with opposite polarization are strongly different. More important, the ferroelectric domain orientation affects temperature dependent surface stabilization mechanisms and molecular adsorption phenomena. Various ab initio theoretical investigations have been performed in order to understand the outcome of these experiments and the origin of the exotic behavior of the lithium niobate surfaces. Thanks to these studies, many aspects of their surface physics and chemistry could be clarified. Yet other puzzling features are still not understood. This review gives a résumé on the present knowledge of lithium niobate surfaces, with a particular view on their microscopic properties, explored in recent years by means of ab initio calculations. Relevant aspects and properties of the surfaces that need further investigation are briefly discussed. The review is concluded with an outlook of challenges and potential payoff for LiNbO3 based applications.
NASA Astrophysics Data System (ADS)
Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.
2015-04-01
Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials. Electronic supplementary information (ESI) available: (S1) High-Resolution Transmission Electron Microscopy (HRTEM) image of iron oxide nanoparticles, (S2) Superconducting Quantum Interference Device (SQUID) measurement of magnetization of super paramagnetic iron oxide nanoparticles, (S3) Fourier Transform Infrared Spectroscopy (FT-IR) spectra of Fe-Si-COO- synthesised using Grignard reagents (S4) FT-IR spectra of iron oxide nanoparticles silanized with commercially available N-[(3-Trimethoxysilyl)propyl]ethylenediamine triacetic acid tripotassium salt, (S5) Synthesis of hyperbranched amine functionalized iron oxide nanoparticles from amino propyl triethyl silane functionalized iron nanoparticles using ethyleneimine as an initiator and polymerizing agent. See DOI: 10.1039/c4nr06441k
Radiation characteristics of Leaky Surface Plasmon polaritons of graphene
NASA Astrophysics Data System (ADS)
Mohadesi, V.; Asgari, A.; Siahpoush, V.
2018-07-01
High efficient coupling of graphene surface plasmons to far field radiation is possible by some techniques and can be used in the radiating applications. Besides of the coupling efficiency, the angular distribution of the radiated power is an important parameter in the radiating devices performance. In this paper we investigate the gain of the far field radiation related to the coupling of graphene surface plasmons via a high permittivity medium located close to the graphene. Our results show that high directive radiation and high coupling efficiency can be obtained by this technique and gain and directivity of radiation can be modified by graphene characteristics such as chemical potential and also quality of the graphene. Raising the chemical potential of graphene leads to increase the gain of the radiation as the result of amplifying the directivity of the radiation. Furthermore, high values of relaxation time lead to high directive and strong coupling which raises the maximum value of gain in efficient coupling angle. Tunable characteristics of gain and directivity in this structure can be important designing reconfigurable THz radiating devices.
Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik
2018-02-19
Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.
Tyrakowski, Tomasz; Hołyńska, Iga; Lampka, Magdalena; Kaczorowski, Piotr
2006-01-01
An important electrophysiological variable--the transepithelial potential difference reflects the electrogenic transepithelial ion currents, which are produced and modified by ion transport processes in polarized cells of epithelium. These processes result from coordinated function of transporters in apical and basolateral cell membranes and have been observed in all epithelial tissues studied so far. The experiments were performed on isolated specimens of snail foot. In the experiments, the baseline transepithelial electrical potential difference--PD, changes of transepithelial difference during mechanical stimulation--dPD and the transepithelial resistance were measured with an Ussing apparatus. A total of 60 samples of foot ventral surface of 28 snails were studied. The transepithelial electrical potential difference of isolated foot ranged from -6.0 to 10.0 mV under different experimental conditions. Mechanical stimulation of foot ventral surface caused changes of electrogenic ion transport, observed as transient hyperpolarization (electrical potential difference became more positive). When the transepithelial electrical potential difference decreased during stimulation, the reaction was described as depolarization. When amiloride and bumetanide were added to the stimulating fluid so that the sodium and chloride ion transport pathways were inhibited, prolonged depolarization occurred. Under the influence of different stimuli: mechanical (gentle rinsing), chemical (changes of ion concentrations) and pharmacological (application of ion inhibitors), transient changes of potential difference (dPD) were evoked, ranging from about -0.7 to almost 2.0 mV. Changes in transepithelial potential difference of the pedal surface of the snail's foot related to these physiological stimuli are probably involved in the locomotion of the animal and are under control of the part of the nervous system in which tachykinin related peptides (TRP) act as transmitters.
Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.
Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki
2005-11-08
By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.
Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species.
Yoshinobu, Tatsuo; Miyamoto, Ko-Ichiro; Werner, Carl Frederik; Poghossian, Arshak; Wagner, Torsten; Schöning, Michael J
2017-06-12
A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.
NASA Astrophysics Data System (ADS)
Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant
2014-10-01
Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b
Nanoimprinting on optical fiber end faces for chemical sensing
NASA Astrophysics Data System (ADS)
Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.
2008-04-01
Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.
Self-Propulsion Of Catalytic Conical Micro-Swimmer
NASA Astrophysics Data System (ADS)
Gallino, Giacomo; Gallaire, Francois; Lauga, Eric; Michelin, Sebastien
2017-11-01
Self-propelled artificial micro-motors have attracted much attention both as fundamental examples of active matter and for their potential biomedical applications (e.g. drug delivery, cell sorting). A popular design exploits the catalytic decomposition of a fuel (e.g. hydrogen peroxide) on the active surface of the motor to produce oxygen bubbles that propel the swimmer, effectively converting chemical energy into swimming motion. We focus here on a conical shape swimmer with chemically-active inner surfaces. Using numerical simulations of the chemical problem and viscous hydrodynamics, we analyze the formation, growth and motion of the bubbles inside the micro-motor and the resulting swimming motion. Our results shed light on the fundamental hydrodynamics of the propulsion of conical swimmers and may help to improve the efficiency of these machines. G.G. aknowledges support from the Swiss National Science Fundation.
POTENTIAL AQUATIC COMMUNITY IMPROVEMENT THROUGH A MULTIDISCIPLINARY STORMWATER MANAGEMENT EXPERIMENT
Small-scale urban stream restoration efforts (e.g., riparian planting and in-stream habitat structures) often fail to improve ecological structure and function due the continuous hydrologic and chemical disturbances posed by impervious surfaces upstream. Decentralized stormwater...
Adsorption behaviour of hydrogarnet for humic acid
NASA Astrophysics Data System (ADS)
Maeda, Hirotaka; Kurosaki, Yuichi; Nakayama, Masanobu; Ishida, Emile Hideki; Kasuga, Toshihiro
2018-04-01
Discharge of humic acid (HA) in aqueous environments is a key health and aesthetic issue. The present work investigates the use of hydrogarnet as a novel adsorbent for HA. Hydrogarnet was hydrothermally synthesized with different solvents to control the chemical composition. Hydrogarnet with three types of chemical compositions had better adsorption properties for HA than hydrogarnet with a single chemical composition. Controlling the chemical composition of hydrogarnet increased the number of hydroxyl groups and the overall binding energy of the system, leading to changes in the zeta potential. The enhancement of these adsorption properties is related to the increased numbers of hydroxyl groups on the surface and their diverse binding energies.
Ocular chemical injuries and their management.
Singh, Parul; Tyagi, Manoj; Kumar, Yogesh; Gupta, K K; Sharma, P D
2013-05-01
Chemical burns represent potentially blinding ocular injuries and constitute a true ocular emergency requiring immediate assessment and initiation of treatment. The majority of victims are young and exposure occurs at home, work place and in association with criminal assaults. Alkali injuries occur more frequently than acid injuries. Chemical injuries of the eye produce extensive damage to the ocular surface epithelium, cornea, anterior segment and limbal stem cells resulting in permanent unilateral or bilateral visual impairment. Emergency management if appropriate may be single most important factor in determining visual outcome. This article reviews the emergency management and newer techniques to improve the prognosis of patients with chemical injuries.
Substrate Vibrations as Promoters of Chemical Reactivity on Metal Surfaces.
Campbell, Victoria L; Chen, Nan; Guo, Han; Jackson, Bret; Utz, Arthur L
2015-12-17
Studies exploring how vibrational energy (Evib) promotes chemical reactivity most often focus on molecular reagents, leaving the role of substrate atom motion in heterogeneous interfacial chemistry underexplored. This combined theoretical and experimental study of methane dissociation on Ni(111) shows that lattice atom motion modulates the reaction barrier height during each surface atom's vibrational period, which leads to a strong variation in the reaction probability (S0) with surface temperature (Tsurf). State-resolved beam-surface scattering studies at Tsurf = 90 K show a sharp threshold in S0 at translational energy (Etrans) = 42 kJ/mol. When Etrans decreases from 42 kJ/mol to 34 kJ/mol, S0 decreases 1000-fold at Tsurf = 90 K, but only 2-fold at Tsurf = 475 K. Results highlight the mechanism for this effect, provide benchmarks for DFT calculations, and suggest the potential importance of surface atom induced barrier height modulation in heterogeneously catalyzed reactions, particularly on structurally labile nanoscale particles and defect sites.
An, Susun; Kim, Seoyoung; Huh, Yong; Lee, Tae Ryong; Kim, Han-Kon; Park, Kui-Lea; Eun, Hee Chul
2009-04-01
Evaluation of skin sensitization potential is an important part of the safety assessment of cosmetic ingredients and topical drugs. Recently, evaluation of changes in surface marker expression induced in dendritic cells (DC) or DC surrogate cell lines following exposure to chemicals represents one approach for in vitro test methods. The study aimed to test the change of expression patterns of surface markers on THP-1 cells by chemicals as a predictive in vitro method for contact sensitization. We investigated the expression of CD54, CD86, CD83, CD80, and CD40 after a 1-day exposure to sensitizers (1-chloro-2,4-dinitrobenzene; 2,4-dinitrofluorobenzene; benzocaine; 5-chloro-2-methyl-4-isothiazolin-3-one; hexyl cinnamic aldehyde; eugenol; nickel sulfate hexahydrate; potassium dichromate; cobalt sulfate; 2-mercaptobenzothiazole; and ammonium tetrachloroplatinate) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride, lactic acid, salicylic acid, isopropanol, and dimethyl sulphoxide). The test concentrations were 0.1x, 0.5x, and 1x of the 50% inhibitory concentration, and the relative fluorescence intensity was used as an expression indicator. By evaluating the expression patterns of CD54, CD86, and CD40, we could classify the chemicals as sensitizers or non-sensitizers, but CD80 and CD83 showed non-specific patterns of expression. These data suggest that the THP-1 cells are good model for screening contact sensitizers and CD40 could be a useful marker complementary to CD54 and CD86.
Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability
NASA Astrophysics Data System (ADS)
Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.
2017-12-01
Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface structure and activity. In addition to surface investigations, Dragonfly can perform measurements during flight, including atmospheric profiles and aerial observations of surface geology, which also provide sampling context and scouting for landing sites.
Molecular dynamics studies of water deposition on hematite surfaces
NASA Astrophysics Data System (ADS)
Kvamme, Bjørn; Kuznetsova, Tatiana; Haynes, Martin
2012-12-01
The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decrease in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide to the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures which may lead to the formation of hydrate between residual water dissolved in carbon dioxide. The critical question is whether the water at some condition of temperature and pressure will drop out as liquid droplets or as water adsorbed on the surfaces of the pipeline and then subsequently form hydrates heterogeneously. In this work we have used the 6-311G basis set with B3LYP to estimate the charge distribution of different sizes of hematite crystals. The obtained surface charge distribution were kept unchanged while the inner charge distribution where scaled so as to result in an overall neutral crystal. These rust particles were embedded in water and chemical potential for adsorbed water molecules were estimated through thermodynamic integration and compared to similar estimates for same size water cluster. Estimated values of water chemical potentials indicate that it is thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based this sequence of processes.
Integrated optical sensors for 2D spatial chemical mapping (Conference Presentation)
NASA Astrophysics Data System (ADS)
Flores, Raquel; Janeiro, Ricardo; Viegas, Jaime
2017-02-01
Sensors based on optical waveguides for chemical sensing have attracted increasing interest over the last two decades, fueled by potential applications in commercial lab-on-a-chip devices for medical and food safety industries. Even though the early studies were oriented for single-point detection, progress in device size reduction and device yield afforded by photonics foundries have opened the opportunity for distributed dynamic chemical sensing at the microscale. This will allow researchers to follow the dynamics of chemical species in field of microbiology, and microchemistry, with a complementary method to current technologies based on microfluorescence and hyperspectral imaging. The study of the chemical dynamics at the surface of photoelectrodes in water splitting cells are a good candidate to benefit from such optochemical sensing devices that includes a photonic integrated circuit (PIC) with multiple sensors for real-time detection and spatial mapping of chemical species. In this project, we present experimental results on a prototype integrated optical system for chemical mapping based on the interaction of cascaded resonant optical devices, spatially covered with chemically sensitive polymers and plasmon-enhanced nanostructured metal/metal-oxide claddings offering chemical selectivity in a pixelated surface. In order to achieve a compact footprint, the prototype is based in a silicon photonics platform. A discussion on the relative merits of a photonic platform based on large bandgap metal oxides and nitrides which have higher chemical resistance than silicon is also presented.
NASA Astrophysics Data System (ADS)
Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.
2016-11-01
Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.
Oldenkamp, Rik; Hendriks, Harrie W M; van de Meent, Dik; Ragas, Ad M J
2015-09-01
Species in the aquatic environment differ in their toxicological sensitivity to the various chemicals they encounter. In aquatic risk assessment, this interspecies variation is often quantified via species sensitivity distributions. Because the information available for the characterization of these distributions is typically limited, optimal use of information is essential to reduce uncertainty involved in the assessment. In the present study, we show that the credibility intervals on the estimated potentially affected fraction of species after exposure to a mixture of chemicals at environmentally relevant surface water concentrations can be extremely wide if a classical approach is followed, in which each chemical in the mixture is considered in isolation. As an alternative, we propose a hierarchical Bayesian approach, in which knowledge on the toxicity of chemicals other than those assessed is incorporated. A case study with a mixture of 13 pharmaceuticals demonstrates that this hierarchical approach results in more realistic estimations of the potentially affected fraction, as a result of reduced uncertainty in species sensitivity distributions for data-poor chemicals.
IHR (2005) Compliance: Laboratory Capacities and Biological Risks
2014-08-01
Preparedness 6. Risk communication 7. Human resources 8. Laboratory Other obligations/Potential Hazards: 9. Points of entry 10. Zoonotic events 11. Food ...of personal protected equipment, 3) safe injection practices, 4) safe handling of potentially contaminated equipment and surfaces, and 5...Any public health event of international or national concern (infectious, zoonotic, food borne, chemical, radio nuclear, or due to unknown
Welling, John D; Pike, Evan C; Mauger, Thomas F
2016-02-01
To report 2 cases of ocular chemical burns associated with the use of a swim goggle antifog agent and to review the literature for this and similar antifog products. Case reports and systematic review of the medical literature, material safety data, product safety reports, and consumer reviews. Two males, one 46 years and the other 41 years, were referred to our clinic with chemical burns of the ocular surface after using the same goggle antifog agent while swimming in a triathlon. Both sustained significant epithelial defects. Fortunately, with prompt treatment, both of our patients returned to their baseline vision within a few weeks without suffering sight-threatening complications. These are the first cases of ocular chemical burn secondary to use of an eyewear antifog agent to be reported in the medical literature. Similar reports found in consumer forums suggest that our cases are not isolated and these products may have the potential to cause vision-threatening chemical burns.
Chemical agent detection by surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.
2004-03-01
In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.
Kwak, Jin Il; Nam, Sun-Hwa; An, Youn-Joo
2018-02-01
Since the Korean Ministry of the Environment established the Master Plan for Water Environment (2006-2015), the need to revise the water quality standards (WQSs) has driven government projects to expand the standards for the protection of human health and aquatic ecosystems. This study aimed to provide an historical overview of how these WQSs were established, amended, and expanded over the past 10 years in Korea. Here, major projects related to national monitoring in rivers and the amendment of WQSs were intensely reviewed, including projects on the categorization of hazardous chemicals potentially discharged into surface water, the chemical ranking and scoring methodology for surface water (CRAFT, Chemical RAnking of surFace water polluTants), whole effluent toxicity (WET) management systems, the 4th, 5th, and 6th revisions of the water quality standards for the protection of human health, and efforts toward developing the 7th revision. In this review, we assimilated the past and current status as well as future perspectives of Korean surface WQSs. This research provides information that aids our understanding of how surface WQSs have been expanded, and how scientific approaches to ensure water quality have been applied at each step of the process in Korea.
NASA Astrophysics Data System (ADS)
Henocq, Pierre
2017-06-01
In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.
Titanium-based Organic Frameworks for Chemical Transformations
Metal–organic frameworks (MOFs) based on organic bridging ligands are a promising class of highly ordered porous materials1 with potential applications in catalysis, gas storage and photoelectric devices. The availability of external surface of the solid-state catalysts plays an ...
Perfluorinated Compounds: Emerging POPs with Potential Immunotoxicity
Perfluorinated compounds (PFCs) have been recognized as an important class of environmental contaminants commonly detected in blood samples of both wildlife and humans. These compounds have been in use for more than 60 years as surface treatment chemicals, polymerization aids, an...
Evaluation of current techniques for isolation of chars as natural adsorbents
Chun, Y.; Sheng, G.; Chiou, C.T.
2004-01-01
Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O 72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr 2O72- oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.
Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers
Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.
2008-01-01
Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Physics and Chemistry on Well-Defined Semiconductor and Oxide Surfaces
NASA Astrophysics Data System (ADS)
Chen, Peijun
High resolution electron energy loss spectroscopy (HREELS) and other surface spectroscopic techniques have been employed to investigate the following two classes of surface/interface phenomena on well-defined semiconductor and oxide surfaces: (i) the fundamental physical and chemical processes involved in gas-solid interaction on silicon single crystal surfaces, and (ii) the physical and chemical properties of metal-oxide interfaces. The particular systems reported in this dissertation are: NH_3, PH_3 and B_ {10}H_{14} on Si(111)-(7 x 7); NH_3 on Si(100) -(2 x 1); atomic H on Si(111)-(7 x 7) and boron-modified Si(111); Al on Al_2O_3 and Sn on SiO_2.. On silicon surfaces, the surface dangling bonds function as the primary adsorption sites where surface chemical processes take place. The unambiguous identification of surface species by vibrational spectroscopy allows the elementary steps involved in these surface chemical processes to be followed on a molecular level. For adsorbate molecules such as NH_3 and PH_3, the nature of the initial low temperature (100 -300 K) adsorption is found to be dissociative, while that for B_{10}H_ {14} is non-dissociative. This has been deduced based upon the presence (or absence) of specific characteristic vibrational mode(s) on surface. By following the evolution of surface species as a function of temperature, the elementary steps leading to silicon nitride thin film growth and doping of silicon are elucidated. In the case of NH_3 on Si(111)-(7 x 7) and Si(100)-(2 x 1), a detailed understanding on the role of substrate surface structure in controlling the surface reactivity has been gained on the basis of a Si adatom backbond-strain relief mechanism on the Si(111) -(7 x 7). The electronic modification to Si(111) surface by subsurface boron doping has been shown to quench its surface chemistry, even for the most aggressive atomic H. This discovery is potentially meaningful to the technology of gas-phase silicon etching. The electron energy loss studies on the excitation of surface plasmon in heavily B-doped Si(111) and the investigation of surface optical phonon modes in aluminum oxide thin films provide insights into the sensitive dependence of the physical properties of a solid upon its chemical modification. Successful interpretations of these elementary excitation features are built upon the understanding of the fundamental physics of low-energy electron-solid interaction. Finally, the temperature behavior of the interfacial properties of Sn/SiO_2 are explored.
First-principles study of low Miller index Ni3S2 surfaces in hydrotreating conditions.
Aray, Yosslen; Vega, David; Rodriguez, Jesus; Vidal, Alba B; Grillo, Maria Elena; Coll, Santiago
2009-03-12
Density functional theory (DFT) calculations combined with surface thermodynamic arguments and the Gibbs-Curie-Wulff equilibrium morphology formalism have been employed to explore the effect of the reaction conditions, temperature (T), and gas-phase partial pressures (PH2 and PH2S) on the stability of nickel sulfide (Ni3S2) surfaces. Furthermore, the strength and nature of chemical bonds for selected Ni3S2 surface cuts were investigated with the quantum theory of atoms in molecules methodology. A particular analysis of the electrostatic potential within this theoretical framework is performed to study the potential activity of nickel sulfide nanoparticles as hydrodesulfurization (HDS) catalysts. The calculated thermodynamic surface stabilities and the resulting equilibrium morphology model suggest that unsupported Ni3S2 nanoparticles mainly expose (111) and (111) type surface faces in HDS conditions. Analysis of the electrostatic potential mapped onto a selected electron density isocontour (0.001 au) on those expose surface reveals a poor potential reactivity toward electron-donating reagents (i.e., low Lewis acidity). Consequently, a very low attraction between coordinatively unsaturated active sites (Lewis sites) exposed at the catalytic particles and the S atoms coming from reagent polluting molecules does inactive these kinds of particles for HDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Patel; K. Artyushkova; P. Atanassov
The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less
Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen
2010-07-01
The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less
Disposable chemical sensors and biosensors made on cellulose paper.
Kim, Joo-Hyung; Mun, Seongcheol; Ko, Hyun-U; Yun, Gyu-Young; Kim, Jaehwan
2014-03-07
Most sensors are based on ceramic or semiconducting substrates, which have no flexibility or biocompatibility. Polymer-based sensors have been the subject of much attention due to their ability to collect molecules on their sensing surface with flexibility. Beyond polymer-based sensors, the recent discovery of cellulose as a smart material paved the way to the use of cellulose paper as a potential candidate for mechanical as well as electronic applications such as actuators and sensors. Several different paper-based sensors have been investigated and suggested. In this paper, we review the potential of cellulose materials for paper-based application devices, and suggest their feasibility for chemical and biosensor applications.
Mozley, Olivia L; Thompson, Ben C; Fernandez-Martell, Alejandro; James, David C
2014-01-01
In this study, we examine the molecular and cellular interactions that underpin efficient internalization and utilization of polyethylenimine (PEI):DNA complexes (polyplexes) by Chinese Hamster Ovary (CHO) cells. Cell surface polyplex binding and internalization was a biphasic process, consisting of an initial rapid Phase (I), lasting approximately 15 min, followed by a slower second Phase (II), saturating at approximately 240 min post transfection. The second Phase accounted for the majority (60-70%) of polyplex internalization. While cell surface heparan sulphate proteoglycans (HSPGs) were rapidly cointernalized with polyplexes during Phase I, cell surface polyplex binding was not dependent on HSPGs. However, Phase II polyplex internalization and HSPG regeneration onto the surface of trypsinized cells occurred at similar rates, suggesting that the rate of recycling of HSPG-containing membrane to the plasma membrane limits Phase II internalization rate. Under optimal transfection conditions, polyplexes had a near neutral surface charge (zeta potential) and cell surface binding was dependent on hydrophobic interactions, being significantly inhibited by both chemical sequestration of cholesterol from the plasma membrane and addition of nonionic surfactant. Induced alterations in polyplex zeta potential, using ferric (III) citrate to decrease surface charge and varying PEI:DNA ratio to increase surface charge, served to inhibit polyplex binding or reduce secreted alkaline phosphatase reporter expression and cell viability, respectively. To increase polyplex hydrophobicity and internalization an alkylated derivative of PEI, propyl-PEI, was chemically synthesized. Using Design of Experiments-Response Surface Modeling to optimize the transfection process, the function of propyl-PEI was compared to that of unmodified PEI in both parental CHO-S cells and a subclone (Clone 4), which exhibited superior transgene expression via an increased resistance to polyplex cytotoxicity. The combination of propyl-PEI and Clone 4 doubled the efficiency of recombinant DNA utilization and reporter protein production. These data show that for maximal efficacy, strategies to increase polyplex internalization into cells must be used in concert with strategies to offset the inherent cytotoxicity of this process. © 2014 American Institute of Chemical Engineers.
1998-02-27
NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
1999-05-26
NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
On the growth mechanisms of polar (100) surfaces of ceria on copper (100)
NASA Astrophysics Data System (ADS)
Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.
2018-05-01
We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.
Surface phase stability and surfactant behavior of InAsSb alloy surfaces.
NASA Astrophysics Data System (ADS)
Anderson, Evan M.; Lundquist, Adam M.; Pearson, Chris; Millunchick, Joanna M.
InAsSb has the narrowest bandgap of any of the conventional III-V semiconductors: low enough for long wavelength infrared applications. Such devices are sensitive to point defects, which can be detrimental to performance. To control these defects, all aspects of synthesis must be considered, especially the atomic bonding at the surface. We use an ab initio statistical mechanics approach that combines density functional theory with a cluster expansion formalism to determine the stable surface reconstructions of Sb (As) on InAs (InSb) substrates. The surface phase diagram of Sb on InAs is dominated by Sb-dimer termination α2(2x4) and β2(2x4) and c(4x4). Smaller regions of mixed Sb-As dimers appear for high Sb chemical potentials and intermediate As chemical potential. We propose that InAsSb films could be grown on (2x4), which maintain bulk-like stoichiometry, to eliminate the formation of typically observed n-type defects. Scanning tunneling microscopy and reflection high energy electron diffraction confirm the calculated phase diagram. Based on these calculations, we propose a new mechanism for the surfactant behavior of Sb in these materials. We gratefully acknowledge Chakrapani Varanasi and the support of the Department of Defense, Army Research Office via the Grant Number W911NF-12-1-0338.
Peng, Ying; Fang, Wendi; Krauss, Martin; Brack, Werner; Wang, Zhihao; Li, Feilong; Zhang, Xiaowei
2018-06-04
Increased synthetic chemical production and diversification in developing countries caused serious aquatic pollution worldwide with emerging organic pollutants (EOPs) detected in surface water rising health concerns to human and aquatic ecosystem even at low ng/L concentration with long-term exposure. The Yangtze River Delta (YRD) area serves agriculture and industry for people in eastern China. However, the current knowledge on the occurrence and ecological risk of diverse EOPs which are present in the aquatic environment is limited. This study was to investigate the complexity and diversity of EOPs in surface water from 28 sampling sites, which were selected to represent urban, industrial or agriculture areas in the YRD area. In total 484 chemicals were analyze by a target screening approach using liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-HRMS/MS). 181 out of 484 EOPs were detected at least one site in the YRD area, and 44 analytes, mostly industrial chemicals and pesticides, were ubiquitous at all sampling sites. Most EOPs were industrial chemicals with 1H-benzotriazole and organophosphate flame retardants (PFRs) as the chemicals with highest concentrations. For 21 pesticides, mostly herbicides, maximum concentrations of atrazine and isoproturon were above the annual average environmental quality standards of Europe. Amantadine and DEET were the dominant pharmceuticals and personal care products (PPCPs) in the YRD area. Compared to urban areas (mostly in Qinhuai River), chemical profiles from industrial areas were more complex. Industrial activities likely have a strong impact on the composition of chemical mixtures in surface water from the YRD area. ISO E Super, 4-methylbenzylidene camphor and clotrimazole detected in this study are potentially persistent and bioaccumulative chemicals. Furthermore, results of risk assessment showed that hazard quotients of dimethyldioctadecylammonium, didecyldimethylammonium and octocrylene were higher than one and occur frequently, which indicates possibly adverse effects on fish species in the YRD area. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhang, Hongrui; Jiang, Jue; Zhao, Yi-Fan; Yu, Jia; Liu, Wei; Li, Da; Chan, Moses H. W.; Sun, Jirong; Zhang, Zhidong; Chang, Cui-Zu
2018-03-01
Topological crystalline insulator is a recently discovered topological phase of matter. It possesses multiple Dirac surface states, which are protected by the crystal symmetry. This is in contrast to the time-reversal symmetry that is operative in the well-known topological insulators. In the presence of a Zeeman field and/or strain, the multiple Dirac surface states are gapped. The high-Chern-number quantum anomalous Hall (QAH) state is predicted to emerge if the chemical potential resides in all the Zeeman gaps. Here, we use molecular-beam epitaxy to grow 12 double-layer (DL) pure and Cr-doped SnTe (111) thin film on heat-treated SrTi O3 (111) substrate using a quintuple layer of insulating (Bi0.2Sb0.8 ) 2T e3 topological insulator as a buffer film. The Hall traces of Cr-doped SnTe film at low temperatures display square hysteresis loops indicating long-range ferromagnetic order with perpendicular anisotropy. The Curie temperature of the 12 DL S n0.9C r0.1Te film is ˜110 K. Due to the chemical potential crossing the bulk valence bands, the anomalous Hall resistance of 12 DL S n0.9C r0.1Te film is substantially lower than the predicted quantized value (˜1 /4 h /e2 ). It is possible that with systematic tuning the chemical potential via chemical doping and electrical gating, the high-Chern-number QAH state can be realized in the Cr-doped SnTe (111) thin film.
NASA Astrophysics Data System (ADS)
Shaikh, Shazia; Singh, Deepti; Subramanian, Mahesh; Kedia, Sunita; Singh, Anil Kumar; Singh, Kulwant; Gupta, Nidhi; Sinha, Sucharita
2018-02-01
Bacterial attachment and biofilm formation on implant surface has been a major concern in hospital and industrial environment. Prevention of bacterial infections of implant surface through surface treatment could be a potential solution and hence this has become a key area of research. In the present study, the antibacterial and biocompatible properties of femtosecond laser surface treated 45S5 bioactive glass (BG) have been investigated. Adhesion and sustainability of both gram positive S. aureus and gram negative P.aeruginosa and E. coli nosocomial bacteria on untreated and laser treated BG samples has been explored. An imprint method has been used to visualize the growth of bacteria on the sample surface. We observed complete bacterial rejection potentially reducing risk of biofilm formation on laser treated surface. This was correlated with surface roughness, wettability and change in surface chemical composition of the samples before and after laser treatment. Biocompatibility of the laser treated BG was demonstrated by studying the anchoring and growth of human cervix cell line INT407. Our results demonstrate that, laser surface modification of BG enables enhanced bacterial rejection without affecting its biocompatibility towards growth of human cells on it. These results open a significantly potential approach towards use of laser in successfully imparting desirable characteristics to BG based bio-implants and devices.
Recent Advances in the Sciences of Electrocatalysis.
1980-11-01
without substantial restructuring of the surface as well as chemical changes and contamination . Several research groups (30-35) have carried out... contamination . In the USA these include A. Hubbard (71,72) at the University of California at Santa Barbara, J.A. Joebstl (73,74) at Fort Belvoir, P... contamination ; and intro- duction of the Pt single crystal surfaces into the electrolyte at controlled potentials in the hydrogen adsorption region. In
Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.
Huttenloch, P; Roehl, K E; Czurda, K
2001-11-01
The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.
Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots.
Shegai, Timur; Vaskevich, Alexander; Rubinstein, Israel; Haran, Gilad
2009-10-14
The role of chemical enhancement in surface-enhanced Raman scattering (SERS) remains a contested subject. We study SERS spectra of 4-mercaptopyridine molecules excited far from the molecular resonance, which are collected from individual electromagnetic hot spots at concentrations close to the single-molecule limit. The hot spots are created by depositing Tollen's silver island films on a transparent electrode incorporated within an electrochemical cell. Analysis of the intensity of the spectra relative to those obtained from individual rhodamine 6G molecules on the same surface provides a lower limit of approximately 3 orders of magnitude for the chemical enhancement. This large enhancement is likely to be due to a charge transfer resonance involving the transfer of an electron from the metal to an adsorbed molecule. Excitation at three different wavelengths, as well as variation of electrode potential from 0 to -1.2 V, lead to significant changes in the relative intensities of bands in the spectrum. It is suggested that while the bulk of the enhancement is due to an Albrecht A-term resonance Raman effect (involving the charge transfer transition), vibronic coupling provides additional enhancement which is sensitive to electrode potential. The measurement of potential-dependent SERS spectra from individual hot spots opens the way to a thorough characterization of chemical enhancement, as well to studies of redox phenomena at the single-molecule level.
NASA Astrophysics Data System (ADS)
Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide
2015-04-01
Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.
Kempisty, Pawel; Strąk, Paweł; Sakowski, Konrad; Kangawa, Yoshihiro; Krukowski, Stanisław
2017-11-08
Thermodynamic foundations of ab initio modeling of vapor-solid and vapor-surface equilibria are introduced. The chemical potential change is divided into enthalpy and entropy terms. The enthalpy path passes through vapor-solid transition at zero temperature. The entropy path avoids the singular point at zero temperature passing a solid-vapor transition under normal conditions, where evaporation entropy is employed. In addition, the thermal changes are calculated. The chemical potential difference contribution of the following terms: vaporization enthalpy, vaporization entropy, the temperature-entropy related change, the thermal enthalpy change and mechanical pressure is obtained. The latter term is negligibly small for the pressure typical for epitaxy. The thermal enthalpy change is two orders smaller than the first three terms which have to be taken into account explicitly. The configurational vaporization entropy change is derived for adsorption processes. The same formulation is derived for vapor-surface equilibria using hydrogen at the GaN(0001) surface as an example. The critical factor is the dependence of the enthalpy of evaporation (desorption energy) on the pinning of the Fermi level bringing a drastic change of the value from 2.24 eV to -2.38 eV. In addition it is shown that entropic contributions considerable change the hydrogen equilibrium pressure over the GaN(0001) surface by several orders of magnitude. Thus a complete and exact formulation of vapor-solid and vapor-surface equilibria is presented.
Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine
Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young
2014-01-01
M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature. PMID:25540583
Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine.
Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young
2014-01-01
M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature.
Advanced Techniques for Improving Laser Optical Surfaces
1975-03-01
discs, obtained from Harshaw Chemical Co. 1 The polycrystalline material included fusion cast specimens fabri - cated at Raytheon Research...polish single crystal wafers of süxcon and gadolinium gallium garnet (a substrate for magnecic bubble domain films). It was used as a potential
Application of surface complexation models to anion adsorption by natural materials.
Goldberg, Sabine
2014-10-01
Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.
Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study
NASA Astrophysics Data System (ADS)
Nilius, Niklas
2015-08-01
Doping opens fascinating possibilities for tailoring the electronic, optical, magnetic, and chemical properties of oxides. The dopants perturb the intrinsic behavior of the material by generating charge centers for electron transfer into adsorbates, by inducing new energy levels for electronic and optical excitations, and by altering the surface morphology and hence the adsorption and reactivity pattern. Despite a vivid scientific interest, knowledge on doped oxides is limited when compared to semiconductors, which reflects the higher complexity and the insulating nature of many oxides. In fact, atomic-scale studies, aiming at a mechanistic understanding of dopant-related processes, are still scarce. In this article, we review our scanning tunneling microscopy (STM) experiments on thin, crystalline oxide films with a defined doping level. We demonstrate how the impurities alter the surface morphology and produce cationic/anionic vacancies in order to keep the system charge neutral. We discuss how individual dopants can be visualized in the lattice, even if they reside in subsurface layers. By means of STM-conductance and x-ray photoelectron spectroscopy, we determine the electronic impact of dopants, including the energies of their eigen states and local band-bending effects in the host oxide. Electronic transitions between dopant-induced gap states give rise to new optical modes, as detected with STM luminescence spectroscopy. From a chemical perspective, dopants are introduced to improve the redox potential of oxide materials. Electron transfer from Mo-donors, for example, alters the growth behavior of gold and activates O2 molecules on a wide-gap CaO surface. Such results demonstrate the enormous potential of doped oxides in heterogeneous catalysis. Our experiments address the issue of doping from a fundamental viewpoint, posing questions on the lattice position, charge state, and electron-transfer potential of the impurity ions. Whether doped oxides are suitable to catalyze surface reactions needs to be explored in more applied studies in the future.
Remote Assessment of Lunar Resource Potential
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey
1992-01-01
Assessing the resource potential of the lunar surface requires a well-planned program to determine the chemical and mineralogical composition of the Moon's surface at a range of scales. The exploration program must include remote sensing measurements (from both Earth's surface and lunar orbit), robotic in situ analysis of specific places, and eventually, human field work by trained geologists. Remote sensing data is discussed. Resource assessment requires some idea of what resources will be needed. Studies thus far have concentrated on oxygen and hydrogen production for propellant and life support, He-3 for export as fuel for nuclear fusion reactors, and use of bulk regolith for shielding and construction materials. The measurement requirements for assessing these resources are given and discussed briefly.
Effect of lubricant environment on saw damage in silicon wafers
NASA Technical Reports Server (NTRS)
Kuan, T. S.; Shih, K. K.; Vanvechten, J. A.; Westdorp, W. A.
1982-01-01
The chemomechanical effect of lubricant environments on the inner diameter (ID) sawing induced surface damage in Si wafers was tested for four different lubricants: water, dielectric oil, and two commercial cutting solutions. The effects of applying different potential on Si crystals during the sawing were also tested. It is indicated that the number and depth of surface damage are sensitive to the chemical nature of the saw lubricant. It is determined that the lubricants that are good catalysts for breaking Si bonds can dampen the out of plane blade vibration more effectively and produce less surface damage. Correlations between the applied potential and the depth of damage in the dielectric oil and one of the commercial cutting solutions and possible mechanisms involved are discussed.
Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.
Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong
2013-01-01
We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.
The properties and applications of nanodiamonds.
Mochalin, Vadym N; Shenderova, Olga; Ho, Dean; Gogotsi, Yury
2011-12-18
Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.
Polyethylene Glycol Propionaldehydes
NASA Technical Reports Server (NTRS)
Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.
1992-01-01
New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.
Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei
2018-01-24
Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.
Chemical Vapor Sensing with Monolayer MoS2
2013-01-04
show great potential for future nanoscale electronic devices. The high surface-to-volume ratio is a natural asset for applications such as chemical...For the devices in this study, 3 bulk sources of MoS2 were used. One piece was obtained from a colleague’s tribology research project (called the...devices were ~20 cm2/Vs. Although the conductance of our monolayer MoS2 devices can be increased significantly by application of a back gate
Graphene sheets modified with polyindole for electro-chemical detection of dopamine.
Kumar, Ashish; Prakash, Rajiv
2014-03-01
Oxidized polyindole is coated over graphene surface by in-situ chemical oxidation method in dilute hydrochloric acid solution. Morphology of graphene modified with oxidized polyindole is investigated by scanning electron microscope. The interaction of graphene to polyindole is observed by Raman spectroscopy. The introduction of carboxylate functionality is observed in graphene due to pyrolysis. The association of this functionality with indole monomer and their interactive behaviour led to formation of uniform polyindole over graphene surface in presence of oxidizing agent. Our chemical synthesis results not only formation of uniform polymer thin layer over the graphene sheets but also enhances various properties and processibility of the graphene. Negative surface charge on the composite material is observed at acidic pH, which shows potential for accumulation of positively charged species in the solution. Further it is explored for electro-catalytic and sensing applications and shows cation permselective behavior of dopamine hydrochloride. It is demonstrated by differential pulse voltammetric technique in dopamine concentration range from 10 microM to 1 mM (in presence of 1 mM ascorbic acid).
Physical and chemical properties of the Martian soil: Review of resources
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted
1991-01-01
The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.
Simulation of Carbon Production from Material Surfaces in Fusion Devices
NASA Astrophysics Data System (ADS)
Marian, J.; Verboncoeur, J.
2005-10-01
Impurity production at carbon surfaces by plasma bombardment is a key issue for fusion devices as modest amounts can lead to excessive radiative power loss and/or hydrogenic D-T fuel dilution. Here results of molecular dynamics (MD) simulations of physical and chemical sputtering of hydrocarbons are presented for models of graphite and amorphous carbon, the latter formed by continuous D-T impingement in conditions that mimic fusion devices. The results represent more extensive simulations than we reported last year, including incident energies in the 30-300 eV range for a variety of incident angles that yield a number of different hydrocarbon molecules. The calculated low-energy yields clarify the uncertainty in the complex chemical sputtering rate since chemical bonding and hard-core repulsion are both included in the interatomic potential. Also modeled is hydrocarbon break-up by electron-impact collisions and transport near the surface. Finally, edge transport simulations illustrate the sensitivity of the edge plasma properties arising from moderate changes in the carbon content. The models will provide the impurity background for the TEMPEST kinetic edge code.
Quantitative Analysis of Fullerene Nanomaterials in Environmental Systems: A Critical Review
Isaacson, Carl W.; Kleber, Markus; Field, Jennifer A.
2009-01-01
The increasing production and use of fullerene nanomaterials has led to calls for more information regarding the potential impacts that releases of these materials may have on human and environmental health. Fullerene nanomaterials, which are comprised of both fullerenes and surface-functionalized fullerenes, are used in electronic, optic, medical and cosmetic applications. Measuring fullerene nanomaterial concentrations in natural environments is difficult because they exhibit a duality of physical and chemical characteristics as they transition from hydrophobic to polar forms upon exposure to water. In aqueous environments, this is expressed as their tendency to initially (i) self assemble into aggregates of appreciable size and hydrophobicity, and subsequently (ii) interact with the surrounding water molecules and other chemical constituents in natural environments thereby acquiring negative surface charge. Fullerene nanomaterials may therefore deceive the application of any single analytical method that is applied with the assumption that fullerenes have but one defining characteristic (e.g., hydrophobicity). [1] We find that analytical procedures are needed to account for the potentially transitory nature of fullerenes in natural environments through the use of approaches that provide chemically-explicit information including molecular weight and the number and identity of surface functional groups. [2] We suggest that sensitive and mass-selective detection, such as that offered by mass spectrometry when combined with optimized extraction procedures, offers the greatest potential to achieve this goal. [3] With this review, we show that significant improvements in analytical rigor would result from an increased availability of well characterized authentic standards, reference materials, and isotopically-labeled internal standards. Finally, the benefits of quantitative and validated analytical methods for advancing the knowledge on fullerene occurrence, fate, and behavior are indicated. PMID:19764203
Shen, Zhitao; Ma, Haitao; Zhang, Chunfang; Fu, Mingkai; Wu, Yanan; Bian, Wensheng; Cao, Jianwei
2017-01-01
Encouraged by recent advances in revealing significant effects of van der Waals wells on reaction dynamics, many people assume that van der Waals wells are inevitable in chemical reactions. Here we find that the weak long-range forces cause van der Waals saddles in the prototypical C(1D)+D2 complex-forming reaction that have very different dynamical effects from van der Waals wells at low collision energies. Accurate quantum dynamics calculations on our highly accurate ab initio potential energy surfaces with van der Waals saddles yield cross-sections in close agreement with crossed-beam experiments, whereas the same calculations on an earlier surface with van der Waals wells produce much smaller cross-sections at low energies. Further trajectory calculations reveal that the van der Waals saddle leads to a torsion then sideways insertion reaction mechanism, whereas the well suppresses reactivity. Quantum diffraction oscillations and sharp resonances are also predicted based on our ground- and excited-state potential energy surfaces. PMID:28094253
Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides
NASA Astrophysics Data System (ADS)
Stepanov, V. P.
2018-03-01
Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.
Physical and chemical characterization of waste wood derived biochars.
Yargicoglu, Erin N; Sadasivam, Bala Yamini; Reddy, Krishna R; Spokas, Kurt
2015-02-01
Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, including nutrients, organic contaminants, and some gases. Physical and chemical properties of biochars are dictated by the feedstock and production processes (pyrolysis or gasification temperature, conversion technology and pre- and post-treatment processes, if any), which vary widely across commercially produced biochars. In this study, several commercially available biochars derived from waste wood are characterized for physical and chemical properties that can signify their relevant environmental applications. Parameters characterized include: physical properties (particle size distribution, specific gravity, density, porosity, surface area), hydraulic properties (hydraulic conductivity and water holding capacity), and chemical and electrochemical properties (organic matter and organic carbon contents, pH, oxidation-reduction potential and electrical conductivity, zeta potential, carbon, nitrogen and hydrogen (CHN) elemental composition, polycyclic aromatic hydrocarbons (PAHs), heavy metals, and leachable PAHs and heavy metals). A wide range of fixed carbon (0-47.8%), volatile matter (28-74.1%), and ash contents (1.5-65.7%) were observed among tested biochars. A high variability in surface area (0.1-155.1g/m(2)) and PAH and heavy metal contents of the solid phase among commercially available biochars was also observed (0.7-83 mg kg(-1)), underscoring the importance of pre-screening biochars prior to application. Production conditions appear to dictate PAH content--with the highest PAHs observed in biochar produced via fast pyrolysis and lowest among the gasification-produced biochars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feaster, Jeremy T.; Shi, Chuan; Cave, Etosha R.; ...
2017-06-22
Increases in energy demand and in chemical production, together with the rise in CO 2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO 2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO –) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO – production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO 2 tomore » HCOO – on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO –. Our results show that Sn electrodes produce HCOO –, carbon monoxide (CO), and hydrogen (H 2) across a range of potentials and that HCOO – production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO – production. Instead, *OCHO is suggested to be the key intermediate for the CO 2RR to HCOO – transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO –. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO 2 reduction to HCOO – on metal surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feaster, Jeremy T.; Shi, Chuan; Cave, Etosha R.
Increases in energy demand and in chemical production, together with the rise in CO 2 levels in the atmosphere, motivate the development of renewable energy sources. Electrochemical CO 2 reduction to fuels and chemicals is an appealing alternative to traditional pathways to fuels and chemicals due to its intrinsic ability to couple to solar and wind energy sources. Formate (HCOO –) is a key chemical for many industries; however, greater understanding is needed regarding the mechanism and key intermediates for HCOO – production. This work reports a joint experimental and theoretical investigation of the electrochemical reduction of CO 2 tomore » HCOO – on polycrystalline Sn surfaces, which have been identified as promising catalysts for selectively producing HCOO –. Our results show that Sn electrodes produce HCOO –, carbon monoxide (CO), and hydrogen (H 2) across a range of potentials and that HCOO – production becomes favored at potentials more negative than –0.8 V vs RHE, reaching a maximum Faradaic efficiency of 70% at –0.9 V vs RHE. Scaling relations for Sn and other transition metals are examined using experimental current densities and density functional theory (DFT) binding energies. While *COOH was determined to be the key intermediate for CO production on metal surfaces, we suggest that it is unlikely to be the primary intermediate for HCOO – production. Instead, *OCHO is suggested to be the key intermediate for the CO 2RR to HCOO – transformation, and Sn’s optimal *OCHO binding energy supports its high selectivity for HCOO –. Lastly, these results suggest that oxygen-bound intermediates are critical to understand the mechanism of CO 2 reduction to HCOO – on metal surfaces.« less
Hitzler, Manuel; Bergert, Antje; Luch, Andreas; Peiser, Matthias
2013-09-01
Dendritic cells (DCs) exhibit the unique capacity to induce T cell differentiation and proliferation, two processes that are crucially involved in allergic reactions. By combining the exclusive potential of DCs as the only professional antigen-presenting cells of the human body with the well known handling advantages of cell lines, cell-based alternative methods aimed at detecting chemical sensitization in vitro commonly apply DC-like cells derived from myeloid cell lines. Here, we present the new biomarkers programmed death-ligand 1 (PD-L1), DC immunoreceptor (DCIR), IL-16, and neutrophil-activating protein-2 (NAP-2), all of which have been detectable in primary human DCs upon exposure to chemical contact allergens. To evaluate the applicability of DC-like cells in the prediction of a chemical's sensitization potential, the expression of cell surface PD-L1 and DCIR was analyzed. In contrast to primary DCs, only minor subpopulations of MUTZ-3 and THP-1 cells presented PD-L1 or DCIR at their surface. After exposure to increasing concentrations of nickel and cinnamic aldehyde, the expression level of PD-L1 and DCIR revealed much stronger affected on monocyte-derived DCs (MoDCs) or Langerhans cells (MoLCs) when compared to THP-1 and MUTZ-3 cells. Applying protein profiler arrays we further identified the soluble factors NAP-2, IL-16, IL-8 and MIP-1α as sensitive biomarkers showing the capacity to discriminate sensitizing from non-sensitizing chemicals or irritants. An allergen-specific release of IL-8 and MIP-1α could be detected in the supernatants of MoDCs and MoLCs and also in MUTZ-3 and THP-1 cells, though at much lower levels. On the protein and transcriptional level, NAP-2 and IL-16 indicated sensitizers most sensitively and specifically in MoDCs. Altogether, we have proven the reciprocal regulated surface molecules PD-L1 and DCIR and the soluble factors MIP-1α, NAP-2 and IL-16 as reliable biomarkers for chemical sensitization. We further show that primary DCs are significantly different in their phenotype and function compared to DC-like cell lines. Since they demonstrated higher absolute values and a broader range in biomarker expression, we propose that MoDCs represent an optimal and robust sensor test system well suited to identify and classify chemicals with an allergic potential. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ranjan, Prabhat; Balasubramaniam, R.; Jain, V. K.
2018-06-01
A molecular dynamics simulation (MDS) has been carried out to investigate the material removal phenomenon of chemo-mechanical magnetorheological finishing (CMMRF) process. To understand the role of chemical assisted mechanical abrasion in CMMRF process, material removal phenomenon is subdivided into three different stages. In the first stage, new atomic bonds viz. Fe-O-Si is created on the surface of the workpiece (stainless steel). The second stage deals with the rupture of parent bonds like Fe-Fe on the workpiece. In the final stage, removal of material from the surface in the form of dislodged debris (cluster of atoms) takes place. Effects of process parameters like abrasive particles, depth of penetration and initial surface condition on finishing force, potential energy (towards secondary phenomenon such as chemical instability of the finished surface) and material removal at atomic scale have been investigated. It was observed that the type of abrasive particle is one of the important parameters to produce atomically smooth surface. Experiments were also conducted as per the MDS to generate defect-free and sub-nanometre-level finished surface (Ra value better than 0.2 nm). The experimental results reasonably agree well with the simulation results.
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.
2017-01-01
Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504
Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter
Huang, Di; Hua, Xin; Xiu, Guang-Li; ...
2017-07-24
Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization, single particle analysis and depth profiling of PM is important for a better understanding of its formation processes and predicting its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, high spatial resolution chemical imaging and unique depth profiling capabilities. Recent research shows that SIMS has great potential in analyzing both surface and bulk chemical information of PM. In this review, we give amore » brief introduction of SIMS working principle and survey recent applications of SIMS in PM characterization. In particular, analyses from different types of PM sources by various SIMS techniques were discussed concerning their advantages and limitations. Finally, we propose, the future development and needs of SIMS in atmospheric aerosol measurement with a perspective in broader environmental sciences.« less
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Di; Hua, Xin; Xiu, Guang-Li
Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization, single particle analysis and depth profiling of PM is important for a better understanding of its formation processes and predicting its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, high spatial resolution chemical imaging and unique depth profiling capabilities. Recent research shows that SIMS has great potential in analyzing both surface and bulk chemical information of PM. In this review, we give amore » brief introduction of SIMS working principle and survey recent applications of SIMS in PM characterization. In particular, analyses from different types of PM sources by various SIMS techniques were discussed concerning their advantages and limitations. Finally, we propose, the future development and needs of SIMS in atmospheric aerosol measurement with a perspective in broader environmental sciences.« less
Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry
Osborn, David L.
2017-03-15
Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less
Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, David L.
Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less
Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors.
Junginger, Andrej; Hernandez, Rigoberto
2016-03-03
Transition-state theories describing barrierless chemical reactions, or more general activated problems, are often hampered by the lack of a saddle around which the dividing surface can be constructed. For example, the time-dependent transition-state trajectory uncovering the nonrecrossing dividing surface in thermal reactions in the framework of the Langevin equation has relied on perturbative approaches in the vicinity of the saddle. We recently obtained an alternative approach using Lagrangian descriptors to construct time-dependent and recrossing-free dividing surfaces. This is a nonperturbative approach making no reference to a putative saddle. Here we show how the Lagrangian descriptor can be used to obtain the transition-state geometry of a dissipated and thermalized reaction across barrierless potentials. We illustrate the method in the case of a 1D Brownian motion for both barrierless and step potentials; however, the method is not restricted and can be directly applied to different kinds of potentials and higher dimensional systems.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1990-01-01
The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.
NASA Astrophysics Data System (ADS)
Oba, Yasuhiro; Chigai, Takeshi; Osamura, Yoshihiro; Watanabe, Naoki; Kouchi, Akira
2014-01-01
We experimentally studied hydrogen (H)-deuterium (D) substitution reactions of solid methylamine (CH3NH2) under astrophysically relevant conditions. We also calculated the potential energy surface for the H-D substitution reactions of methylamine isotopologues using quantum chemical methods. Despite the relatively large energy barrier of more than 18 kJ mol-1, CH3NH2 reacted with D atoms to yield deuterated methylamines at 10 K, suggesting that the H-D substitution reaction proceeds through quantum tunneling. Deuterated methylamines reacted with H atoms as well. On the basis of present results, we propose that methylamine has potential for D enrichment through atomic surface reactions on interstellar grains at very low temperatures in molecular clouds. D enrichment would occur in particular in the methyl group of methylamine.
NASA Astrophysics Data System (ADS)
Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo
2018-04-01
Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.
Integration of Major Computer Program Packages into Experimental Courses: A Freshman Experience.
ERIC Educational Resources Information Center
Lipschitz, Irving
1981-01-01
Describes the use of the Gaussian 70 computer programs to carry out quantum chemical calculations, including single calculations, geometry, optimization, and potential surface scans. Includes a summary of student activities and benefits for students in an honors freshman chemistry course. (SK)
Pesticides on Household Surfaces May Influence Dietary Intake of Children
The physical and chemical environment influences children’s exposures to pesticides in and around the home. Children’s activities, which increase their potential for exposure especially during eating, have been captured in the Children’s Dietary Intake Model (CDIM). In addition t...
2015-01-01
Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein–surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein–surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format. PMID:24456577
Hahm, Jong-in
2014-08-26
Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein-surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format.
Chen, Guan-Liang; Shau, Shi-Min; Juang, Tzong-Yuan; Lee, Rong-Ho; Chen, Chih-Ping; Suen, Shing-Yi; Jeng, Ru-Jong
2011-12-06
In this study, we used direct molecular exfoliation for the rapid, facile, large-scale fabrication of single-layered graphene oxide nanosheets (GOSs). Using macromolecular polyaniline (PANI) as a layered space enlarger, we readily and rapidly synthesized individual GOSs at room temperature through the in situ polymerization of aniline on the 2D GOS platform. The chemically modified GOS platelets formed unique 2D-layered GOS/PANI hybrids, with the PANI nanorods embedded between the GO interlayers and extended over the GO surface. X-ray diffraction revealed that intergallery expansion occurred in the GO basal spacing after the PANI nanorods had anchored and grown onto the surface of the GO layer. Transparent folding GOSs were, therefore, observed in transmission electron microscopy images. GOS/PANI nanohybrids possessing high conductivities and large work functions have the potential for application as electrode materials in optoelectronic devices. Our dispersion/exfoliation methodology is a facile means of preparing individual GOS platelets with high throughput, potentially expanding the applicability of nanographene oxide materials. © 2011 American Chemical Society
Cooperative binding of drugs on human serum albumin
NASA Astrophysics Data System (ADS)
Varela, L. M.; Pérez-Rodríguez, M.; García, M.
In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer-Emmet-Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.
Arjunan, V; Thirunarayanan, S; Durga Devi, G; Mohan, S
2015-11-05
Spectroscopic and theoretical quantum chemical studies of 2,5-dihydrothiophene-1,1-dioxide and 3-methyl-2,5-dihydrothiophene-1,1-dioxide have been carried out by FTIR and FT-Raman spectral techniques along with B3LYP methods. The geometry of the compounds have been optimised by B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The geometrical parameters obtained at B3LYP levels have been compared with the experimental values. Molecular electrostatic potential surface, total electron density distribution and frontier molecular orbital are constructed at B3LYP/cc-pVTZ level to understand the electronic properties. The charge density distribution and sites of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces. Natural bond orbital analysis of the molecules are carried out and the occupancies and the atomic hybrid contributions are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.
Cyclic voltammetry study of PEO processing of porous Ti and resulting coatings
NASA Astrophysics Data System (ADS)
Shbeh, Mohammed; Yerokhin, Aleksey; Goodall, Russell
2018-05-01
Ti is one of the most commonly used materials for biomedical applications. However, there are two issues associated with the use of it, namely its bio-inertness and high elastic modulus compared to the elastic modulus of the natural bone. Both of these hurdles could potentially be overcome by introducing a number of pores in the structure of the Ti implant to match the properties of the bone as well as improve the mechanical integration between the bone and implant, and subsequently coating it with a biologically active ceramic coating to promote chemical integration. Hence, in this study we investigated the usage of cyclic voltammetry in PEO treatment of porous Ti parts with different amount of porosity produced by both Metal Injection Moulding (MIM) and MIM in combination with a space holder. It was found that porous samples with higher porosity and open pores develop much thicker surface layers that penetrate through the inner structure of the samples forming a network of surface and subsurface coatings. The results are of potential benefit in producing surface engineered porous samples for biomedical applications which do not only address the stress shielding problem, but also improve the chemical integration.
Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only
NASA Technical Reports Server (NTRS)
Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.
1994-01-01
By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.
Mnif, Inès; Ghribi, Dhouha
2016-10-01
Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Surface wave chemical detector using optical radiation
Thundat, Thomas G.; Warmack, Robert J.
2007-07-17
A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.
Effect of alkali treatment on the physical and surface properties of Indian hemp fibers
NASA Astrophysics Data System (ADS)
Sangappa, Rao, B. Lakshmeesha; Asha, S.; Somashekar, R.
2013-02-01
The Plant fibers are rich in cellulose and they are a cheap, easily renewable source of fibers with the potential for polymer reinforcement. The presence of surface impurities and the large amount of hydroxyl groups make plant fibers less attractive for reinforcement of polymeric materials. Hemp (Cannabis Sativa L.) fibers were subjected to alkalization using 1N sodium hydroxide (NaOH). The structural properties and surface morphology of untreated and chemically modified fibers have been studied using X-ray diffraction (WAXS) and Scanning electron microscopy (SEM) respectively.
NASA Astrophysics Data System (ADS)
McCray, J. E.; Kanno, C.; McLaughlin, M.; Blotevogel, J.; Borch, T.
2016-12-01
Hydraulic fracturing has revolutionized the U.S.'s energy portfolio by making shale reservoirs productive and commercially viable. However, the public is concerned that the chemical constituents in hydraulic fracturing fluid, produced water, or natural gas itself could potentially impact groundwater. Here, we present fate and transport simulations of aqueous fluid surface spills. Surface spills are the most likely contamination pathway to occur during oil and gas production operations. We have three primary goals: 1) evaluate whether or not these spills pose risks to groundwater quality in the South Platte aquifer system, 2) develop a screening level methodology that could be applied at other sites and for various pollutants, and 3) demonstrate the potential importance of co-contaminant interactions using selected chemicals. We considered two types of fluid that can be accidentally released at oil and gas sites: produced water and hydraulic fracturing fluid. Benzene was taken to be a representative contaminant of interest for produced water. Glutaraldehyde, polyethylene glycol, and polyacrylamide were the chemical additives considered for spills of hydraulic fracturing fluid. We focused on the South Platte Alluvial Aquifer, which is located in the greater Denver metro area and overlaps a zone of high-density oil and gas development. Risk of groundwater pollution was based on predicted concentration at the groundwater table. In general, results showed groundwater contamination due to produced water and hydraulic fracturing fluid spills is low in most areas of the South Platte system for the contaminants and spill conditions investigated. Substantial risk may exist in certain areas where the groundwater table is shallow (less than 10 ft below ground surface) and when large spills and large post-spill storms occur. Co-chemical interactions are an important consideration in certain cases when modeling hydraulic fracturing fluid spills. By helping to identify locations in the Front Range of Colorado that are at low or high risk for groundwater contamination due to a surface spill, this work will aid in improving prevention and mitigation practices so that decision-makers can be better prepared to address accidental releases in Colorado.
NASA Astrophysics Data System (ADS)
Rioult, Maxime; Belkhou, Rachid; Magnan, Hélène; Stanescu, Dana; Stanescu, Stefan; Maccherozzi, Francesco; Rountree, Cindy; Barbier, Antoine
2015-11-01
The direct conversion of solar light into chemical energy or fuel through photoelectrochemical water splitting is promising as a clean hydrogen production solution. Ti-doped hematite (Ti:α-Fe2O3) is a potential key photoanode material, which despite its optimal band gap, excellent chemical stability, abundance, non-toxicity and low cost, still has to be improved. Here we give evidence of a drastic improvement of the water splitting performances of Ti-doped hematite photoanodes upon a HCl wet-etching. In addition to the topography investigation by atomic force microscopy, a detailed determination of the local electronic structure has been carried out in order to understand the phenomenon and to provide new insights in the understanding of solar water splitting. Using synchrotron radiation based spectromicroscopy (X-PEEM), we investigated the X-ray absorption spectral features at the L3 Fe edge of the as grown surface and of the wet-etched surface on the very same sample thanks to patterning. We show that HCl wet etching leads to substantial surface modifications of the oxide layer including increased roughness and chemical reduction (presence of Fe2 +) without changing the band gap. We demonstrate that these changes are profitable and correlated to the drastic changes of the photocatalytic activity.
Roughening of Pt nanoparticles induced by surface-oxide formation.
Zhu, Tianwei; Hensen, Emiel J M; van Santen, Rutger A; Tian, Na; Sun, Shi-Gang; Kaghazchi, Payam; Jacob, Timo
2013-02-21
Using density functional theory (DFT) and thermodynamic considerations we studied the equilibrium shape of Pt nanoparticles (NPs) under electrochemical conditions. We found that at very high oxygen coverage, obtained at high electrode potentials, the experimentally-observed tetrahexahedral (THH) NPs consist of high-index (520) faces. Since high-index surfaces often show higher (electro-)chemical activity in comparison to their close-packed counterparts, the THH NPs can be promising candidates for various (electro-)catalytic applications.
Surface Analytical Techniques for Microbiologically Influenced Corrosion. A Review
1994-01-01
chemical process, oil and gas. and power generation industries and the U.S. pitting of stainle steels is 1h military have acknowledged the occurrence...ony on metal surface. photosynthetic biofilm may influence ennoblement of the open circuit potential of type 316L stainless steel so that it approaches...at depths within an estuarine biofilm on type 304 stainless steel . fur-oxidizing. iron-red ing. sulfate- -producing, and hydr en-producing b
Active colloids in the context of chemical kinetics
NASA Astrophysics Data System (ADS)
Oshanin, G.; Popescu, M. N.; Dietrich, S.
2017-03-01
We study a mesoscopic model of a chemically active colloidal particle which on certain parts of its surface promotes chemical reactions in the surrounding solution. For reasons of simplicity and conceptual clarity, we focus on the case in which only electrically neutral species are present in the solution and on chemical reactions which are described by first order kinetics. Within a self-consistent approach we explicitly determine the steady state product and reactant number density fields around the colloid as functionals of the interaction potentials of the various molecular species in solution with the colloid. By using a reciprocal theorem, this allows us to compute and to interpret—in a transparent way in terms of the classical Smoluchowski theory of chemical kinetics—the external force needed to keep such a catalytically active colloid at rest (stall force) or, equivalently, the corresponding velocity of the colloid if it is free to move. We use the particular case of triangular-well interaction potentials as a benchmark example for applying the general theoretical framework developed here. For this latter case, we derive explicit expressions for the dependences of the quantities of interest on the diffusion coefficients of the chemical species, the reaction rate constant, the coverage by catalyst, the size of the colloid, as well as on the parameters of the interaction potentials. These expressions provide a detailed picture of the phenomenology associated with catalytically-active colloids and self-diffusiophoresis.
Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.
2002-06-01
Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less
NASA Scientists Push the Limits of Computer Technology
NASA Technical Reports Server (NTRS)
1998-01-01
Dr. Donald Frazier,NASA researcher, uses a blue laser shining through a quarts window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center.
NASA Scientists Push the Limits of Computer Technology
NASA Technical Reports Server (NTRS)
1998-01-01
NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
NASA Scientists Push the Limits of Computer Technology
NASA Technical Reports Server (NTRS)
1999-01-01
NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals
NASA Astrophysics Data System (ADS)
Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie
2017-11-01
Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.
Functionalization of vertically aligned carbon nanotubes.
Van Hooijdonk, Eloise; Bittencourt, Carla; Snyders, Rony; Colomer, Jean-François
2013-01-01
This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs.
Functionalization of vertically aligned carbon nanotubes
Snyders, Rony; Colomer, Jean-François
2013-01-01
Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581
Solid solution lithium alloy cermet anodes
Richardson, Thomas J.
2013-07-09
A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.
Lima, Isabel; Marshall, Wayne E
2005-01-01
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.
Application of Plasma Technology in the Life Sciences
NASA Astrophysics Data System (ADS)
Short, Robert
2002-10-01
This paper explores the versatility of plasma polymerization in the fabrication of surfaces for use in the Life Sciences and Tissue Engineering, highlighting three successful applications of plasma polymerized surfaces. 1. Plasma polymerized acrylic acid surfaces have been used as substrates for the culture and delivery of keratinocytes (skin cells) to chronic wounds. In proof of concept studies weekly delivery of keratinocytes have promoted healing in previously non-healing wounds. These include diabetic foot ulcers and wounds where skin grafts would normally be considered, but were contra-indicated. 2. Surface chemical patterning on the micrometer scale- length, by use of pre-fabricated masks, has been used to control the spatial binding of proteins and cells. This technology makes possible a significant reduction in size of biological assays, reducing the amount of material (e.g. antibody) or cells required. 3. Surface chemical potential gradients, from a few tens of micrometers to a few centrimeters, have been fabricated by "plasma writing", a technique currently being developed in Sheffield. These gradients are being developed to separate mixtures of biomolecules or cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogwu, A. A.; Okpalugo, T. I. T.; Nanotechnology Institute, School of Electrical and Mechanical Engineering, University of Ulster, Northern Ireland
We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. Thesemore » surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.« less
NASA Astrophysics Data System (ADS)
Ogwu, A. A.; Okpalugo, T. I. T.; McLaughlin, J. A. D.
2012-09-01
We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. These surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.
Nonfouling Characteristics of Dextran-Containing Surfaces
Martwiset, Surangkhana; Koh, Anna E.; Chen, Wei
2008-01-01
Hydroxyl groups in dextrans have been selectively oxidized to aldehyde groups by sodium periodate in a controlled fashion with percentage of conversion ranging from 6% to 100%. Dextrans (10 k, 70 k, 148 k, 500 k, and 2 000 kDa) and oxidized 10 k dextrans have been successfully grafted to functionalized silicon surfaces. The effect of molecular weight on protein adsorption is not nearly as striking as that of the extent of oxidation. When ∼ 25% of the hydroxyl groups have been converted to aldehyde groups, there is negligible protein adsorption on surfaces containing the oxidized polysaccharides. Conformations of grafted polymers depend strongly on their chemical structures, i.e. the relative amounts of –OH and –CHO groups. That the dependence of the chain conformation as well as the protein resistance on the balance of the hydrogen bond donors (-OH) and the acceptors (-OH and –CHO) implies the importance of chemical structure of surface molecules, specifically the interactions between surface and surrounding water molecules on protein adsorption. Oxidized dextrans are potential poly(ethylene glycol)-alternatives for nonfouling applications. PMID:16952261
NASA Astrophysics Data System (ADS)
Imai, Shun; Kondo, Hiroki; Cho, Hyungjun; Kano, Hiroyuki; Ishikawa, Kenji; Sekine, Makoto; Hiramatsu, Mineo; Ito, Masafumi; Hori, Masaru
2017-10-01
For polymer electrolyte fuel cell applications, carbon nanowalls (CNWs) were synthesized by radical-injection plasma-enhanced chemical vapor deposition, and a high density of Pt nanoparticles (>1012 cm-2) was supported on the CNWs using a supercritical fluid deposition system. The high potential cycle tests were applied and the electrochemical surface area of the Pt nanoparticle-supported CNWs did not change significantly, even after 20 000 high potential cycles. According to transmission electron microscopy observations, the mean diameter of Pt changed slightly after the cycle tests, while the crystallinity of the CNWs evaluated using Raman spectroscopy showed almost no change.
Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua
2018-04-01
We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.
Industrial applications of metal-organic frameworks.
Czaja, Alexander U; Trukhan, Natalia; Müller, Ulrich
2009-05-01
New materials are prerequisite for major breakthrough applications influencing our daily life, and therefore are pivotal for the chemical industry. Metal-organic frameworks (MOFs) constitute an emerging class of materials useful in gas storage, gas purification and separation applications as well as heterogeneous catalysis. They not only offer higher surface areas and the potential for enhanced activity than currently used materials like base metal oxides, but also provide shape/size selectivity which is important both for separations and catalysis. In this critical review an overview of the potential applications of MOFs in the chemical industry is presented. Furthermore, the synthesis and characterization of the materials are briefly discussed from the industrial perspective (88 references).
Minimum Energy Pathways for Chemical Reactions
NASA Technical Reports Server (NTRS)
Walch, S. P.; Langhoff, S. R. (Technical Monitor)
1995-01-01
Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.
Plant surface wax affects parasitoid's response to host footprints
NASA Astrophysics Data System (ADS)
Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich
2008-10-01
The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Catledge, Shane A.
2016-02-01
Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.
NASA Astrophysics Data System (ADS)
Meunier, Alain; Petit, Sabine; Cockell, Charles S.; El Albani, Abderrazzak; Beaufort, Daniel
2010-06-01
During the Hadean to early Archean period (4.5-3.5 Ga), the surface of the Earth’s crust was predominantly composed of basalt and komatiite lavas. The conditions imposed by the chemical composition of these rocks favoured the crystallization of Fe-Mg clays rather than that of Al-rich ones (montmorillonite). Fe-Mg clays were formed inside chemical microsystems through sea weathering or hydrothermal alteration, and for the most part, through post-magmatic processes. Indeed, at the end of the cooling stage, Fe-Mg clays precipitated directly from the residual liquid which concentrated in the voids remaining in the crystal framework of the mafic-ultramafic lavas. Nontronite-celadonite and chlorite-saponite covered all the solid surfaces (crystals, glass) and are associated with tiny pyroxene and apatite crystals forming the so-called “mesostasis”. The mesostasis was scattered in the lava body as micro-settings tens of micrometres wide. Thus, every square metre of basalt or komatiite rocks was punctuated by myriads of clay-rich patches, each of them potentially behaving as a single chemical reactor which could concentrate the organics diluted in the ocean water. Considering the high catalytic potentiality of clays, and particularly those of the Fe-rich ones (electron exchangers), it is probable that large parts of the surface of the young Earth participated in the synthesis of prebiotic molecules during the Hadean to early Archean period through innumerable clay-rich micro-settings in the massive parts and the altered surfaces of komatiite and basaltic lavas. This leads us to suggest that Fe,Mg-clays should be preferred to Al-rich ones (montmorillonite) to conduct experiments for the synthesis and the polymerisation of prebiotic molecules.
The quantum dynamics of electronically nonadiabatic chemical reactions
NASA Technical Reports Server (NTRS)
Truhlar, Donald G.
1993-01-01
Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally adiabatic functions in various quantum scattering algorithms.
EVALUATION OF DRINKING WATER TREATMENT TECHNOLOGIES FOR REMOVAL OF ENDOCRINE DISRUPTING COMPOUNDS
Many of the chemicals identified as potential endocrine disrupting compounds (EDCs) may be present in surface or ground waters used as drinking water sources due to their introduction from domestic and industrial sewage treatment systems and wet-weather runoff. In order to dec...
Cheesman, Andrew; Harvey, Jeremy N; Ashfold, Michael N R
2008-11-13
Accurate potential energy surface calculations are presented for many of the key steps involved in diamond chemical vapor deposition on the [100] surface (in its 2 x 1 reconstructed and hydrogenated form). The growing diamond surface was described by using a large (approximately 1500 atoms) cluster model, with the key atoms involved in chemical steps being described by using a quantum mechanical (QM, density functional theory, DFT) method and the bulk of the atoms being described by molecular mechanics (MM). The resulting hybrid QM/MM calculations are more systematic and/or at a higher level of theory than previous work on this growth process. The dominant process for carbon addition, in the form of methyl radicals, is predicted to be addition to a surface radical site, opening of the adjacent C-C dimer bond, insertion, and ultimate ring closure. Other steps such as insertion across the trough between rows of dimer bonds or addition to a neighboring dimer leading to formation of a reconstruction on the next layer may also contribute. Etching of carbon can also occur; the most likely mechanism involves loss of a two-carbon moiety in the form of ethene. The present higher-level calculations confirm that migration of inserted carbon along both dimer rows and chains should be relatively facile, with barriers of approximately 150 kJ mol (-1) when starting from suitable diradical species, and that this step should play an important role in establishing growth of smooth surfaces.
Curtis, Angela; Morton, Jackie; Fraser, Susan; Harding, Anne-Helen; Prideaux, Brendan; Clench, Malcom; Warren, Nicholas D; Evans, Gareth S
2015-11-19
The KG1 myeloid leukaemia was used as source of dendritic cells (DC) to discriminate between respiratory and contact sensitising chemicals. A cocktail of cytokines was used to differentiate KG1 to dendritic like cells (termed dKG1) and the effects of nine chemicals (respiratory and contact sensitisers) and an irritant control on surface marker expression, 'antigen presenting' function and cytokine expression investigated. The stability of these chemicals when dissolved was characterised using MALDI ToF MS. A Hill plot model was used with the cellular viability data to quantify the lethal dose 50% (LD50) and a maximum sub toxic concentration of each chemical defined. Cytokine expression by the treated dKG1 was quantified using multiplex immunobead analysis. Whilst dKG1 cells were morphologically similar to DCs, expression of specific surface markers was not typical for DCs derived from healthy precursor cells. When the chemicals were applied at defined sub toxic doses no effects on dKG1 phenotype, function, or cytokine expression, attributable to the sensitisation properties were discriminated. However, dKG1 cells were much more sensitive to the toxic effects of these chemicals compared to the parent KG1 cells. Only 4 of the 9 chemicals tested were stable when dissolved indicating that the effect of sensitising chemicals on antigen presenting cells may be related to species other than the parent compound. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-16
The Allied Chemical/Ironton Coke site is in the City of Ironton, Lawrence County Ohio. The areas of concern for this public health assessment are the former Coke Plant and Lagoon Area and the Tar Plant. From 1920 to the 1960's, waste was discharged into the lagoon area. Soil samples showed the on-site surface soil to be contaminated with cyanide, phenolics, benzene, naphthalene, and benzo(a)pyrene (a polynuclear aromatic hydrocarbon). Groundwater analysis detected a number of volatile and semi-volatile organic compounds plus cyanide. Sediment samples from Ice Creek, a stream bordering the lagoon area contained low levels of cyanide, phenolics, and naphthalene.more » The site poses a public health hazard because of the potential for long-term exposure to cyanide, benzo(a)pyrene, and naphthalene in on-site soils. The Allied Chemical Coke site also poses an indeterminate public health hazard because of the potential impact on a public water supply. The residents who obtain their drinking water from the Coal Grove well field are potentially at risk of exposure to chemicals originating from the site.« less
Role of a Streambed's Benthic Biolayer in Enhancing Chemical Reactions in Hyporheic Flow
NASA Astrophysics Data System (ADS)
Harvey, J. W.
2016-12-01
Chemical processing of metals, nutrients, and organic compounds occurs throughout natural waters, however the rate of reactions often is greater at the streambed interface compared with surface water or deeper groundwater. Hydrologic exchange across the sediment interface brings reactive solutes and fine particulate organic matter from surface waters into contact with the streambed biolayer, a zone with algae and other living microflora and fauna, microbial communities, and reactive geochemical coatings on granular sediments. Compared with surface water or deeper hyporheic sediments, the intrinsic rate of reactions may be stimulated in biolayers because of higher rates of metabolic processing and associated redox reactions. Also, hydrologic transport may enhance reaction rates by relieving potential transport limitations through the re-supply of reactive substrates from surface water. As a result the chemical processing that occurs in the biolayer may far exceed processing that occurs in deeper hyporheic flow. Here I highlight new understanding of enhancement of reaction rates and their hydrologic and biogeochemical controls in streambed biolayers compared with hyporheic flow as a whole. The approach distinguishes and quantifies reaction limitation and transport limitation both at the centimeter-scale within the hyporheic zone and at the river network scale where the effect of streambed reactions accumulates and influences downstream water quality.
Potential for iron oxides to control metal releases in CO2 sequestration scenarios
Berger, P.M.; Roy, W.R.
2011-01-01
The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction configuration to match measured geochemical changes due to CO2 injection, we modeled potential changes in groundwater chemistry at the Illinois Basin - Decatur Project (IBDP) site in Decatur, Illinois, USA. At the IBDP, the MGSC will inject 1 million tonnes of CO2 over the course of three years at a depth of about 2 km below the surface into the Mt. Simon Formation. Sections of the Mt. Simon Formation contain up to 10 percent iron oxide, and therefore surface complexes on iron oxides should play a major role in controlling brine chemistry. The batch simulation of this system showed a significant decrease in pH after the injection of CO2 with corresponding changes in brine chemistry resulting from both mineral precipitation/dissolution reactions and changes in the chemistry on iron oxide surfaces. To ensure the safety of shallow drinking water sources, there are several shallow monitoring wells at the IBDP that the MGSC samples regularly to determine baseline chemical concentrations. Knowing what geochemical parameters are most sensitive to CO2 disturbances allows us to focus monitoring efforts. Modeling a major influx of CO2 into the shallow groundwater allowed us to determine that were an introduction of CO2 to occur, the only immediate effect will be dolomite dissolution and calcite precipitation. ?? 2011 Published by Elsevier Ltd.
Kassotis, Christopher D.; Klemp, Kara C.; Vu, Danh C.; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L.; Pinatti, Lisa; Zoeller, R. Thomas; Drobnis, Erma Z.; Balise, Victoria D.; Isiguzo, Chiamaka J.; Williams, Michelle A.; Tillitt, Donald E.; Nagel, Susan C.
2015-01-01
Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.
Kassotis, Christopher D; Klemp, Kara C; Vu, Danh C; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L; Pinatti, Lisa; Zoeller, R Thomas; Drobnis, Erma Z; Balise, Victoria D; Isiguzo, Chiamaka J; Williams, Michelle A; Tillitt, Donald E; Nagel, Susan C
2015-12-01
Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.
NASA Astrophysics Data System (ADS)
Kang, Karam
Current Ti-based dental implants exhibit failure (2-10%), due to various mechanisms, including chemical corrosion of the surface of the TiO2 naturally covered Ti-based implants. This thesis focused on developing a unique biocompatible/bio-inert/corrosion resistant/low cost Ultrananocrystalline Diamond (UNCD) coating (with 3-5 nm grain size) for encapsulation of Tibased micro-implants to potentially eliminate the corrosion/mechanical induced failure of current commercial Ti-based dental implants. Microwave Plasma Chemical Vapor Deposition (MPCVD) and Hot Filament Chemical Vapor Deposition (HFCVD) processes were used to grow UNCD coatings. The surface topography and chemistry of UNCD coatings were characterized using scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopies (XPS) respectively. In conclusion, this thesis contributed to establish the optimal conditions to grow UNCD coatings on the complex 3-D geometry of Ti-based micro-implants, with geometry similar to real implants, relevant to developing UNCD-coated Ti-based dental implants with superior mechanical/chemical performance than current Ti-based implants.
Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu
2013-07-01
The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.
NASA Technical Reports Server (NTRS)
Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.
2010-01-01
The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.
Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel
2017-03-15
We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.
Lunar Skylights and Their Chemical Compositions
NASA Astrophysics Data System (ADS)
Wong, J.; Torres, J.; FitzHoward, S.; Luu, E.; Hua, J.; Irby, R.
2013-12-01
In 2009, the Japanese orbiter, SELenological and Engineering Explorer (SELENE) discovered a skylight on the near side of the moon. Skylights are collapsed ceilings of rilles, thought to be caused by moonquakes, meteoroids, or incomplete formation of these lava tube ceilings. Since then, NASA's Lunar Reconnaissance Orbiter has discovered two more skylights, also located on the near side of the moon. Previous research has shown that the physical characteristics of known rilles, can be used as indicators of the presence of yet undiscovered rille and lava dome locations across the lunar surface. We hypothesize that skylights have a signature chemical composition that is unique, and can be used to predict the location of additional skylights on the surface of the moon. For this study, we compared chemical composition data of the three mare sites containing skylights with the 21 mare sites without skylights. Using the software JMARS for the Moon, we compiled multiple datasets to measure the concentrations of 13 different chemical compounds including calcium, iron oxide, titanium dioxide, and thorium. We then conducted a two-tailed T-test of the data, which generated probability values for the mean differences across all 13 chemical compounds of the maria sites with skylights and the maria sites without skylights. Our results show that there is no statistical difference in chemical composition across all of the maria sites examined. Therefore, we conclude that chemical composition does not predict or indicate potential skylight locations on the moon. Further research on other skylight characteristics, for example depth and surrounding underground lava channels, may shed light on the relationships between mare and skylights locations. Three Skylight Locations Found on Lunar Surface 100m View of Mare Tranquilitatis Skylight
NASA Technical Reports Server (NTRS)
Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.
2005-01-01
In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.
Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties.
Singh, Ajay Vikram; Baylan, Semanur; Park, Byung-Wook; Richter, Gunther; Sitti, Metin
2017-01-01
The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.
Wettability Switching Techniques on Superhydrophobic Surfaces
2007-01-01
The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.
Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation.
Desrousseaux, C; Sautou, V; Descamps, S; Traoré, O
2013-10-01
The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. A PubMed search of the published literature. One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Toxicity of inorganic nanomaterials in biomedical imaging.
Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang
2014-01-01
Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Micromechanical potentiometric sensors
Thundat, Thomas G.
2000-01-01
A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.
NASA Astrophysics Data System (ADS)
Katsumata, Reika; Cho, Joon Hee; Zhou, Sunshine; Kim, Chae Bin; Dulaney, Austin; Janes, Dustin; Ellison, Christopher
Nature has engineered universal, catechol-containing adhesives that can be synthetically mimicked in the form of polydopamine (PDA). We exploited PDA to enable block copolymer (BCP) nanopatterning on a variety of soft material surfaces in a way that can potentially be applied to flexible electrical devices. Applying BCP nanopatterning to soft substrates is challenging because soft substrates are often chemically inert and possess incompatible low surface energies. In this study, we exploited PDA to enable the formation of BCP nanopatterns on a variety of surfaces such as Teflon, poly(ethylene terephthalate) (PET), and Kapton. While previous studies produced a PDA coating layer too rough for BCP nanopatterning, we succeeded in fabricating conformal and ultra-smooth surfaces of PDA by engineering the PDA coating process and post-sonication procedure. This chemically functionalized, biomimetic thin film (3 nm thick) served as a reactive platform for subsequently grafting a surface treatment to perpendicularly orient a lamellae-forming BCP layer. Furthermore, we demonstrated that a perfectly nanopatterned PDA-PET substrate can be bent without distorting or damaging the nanopattern in conditions that far exceeds typical bending curvatures in roll-to-roll manufacturing.
Rasouli, Rahimeh; Barhoum, Ahmed; Uludag, Hasan
2018-05-10
The emerging field of nanostructured implants has enormous scope in the areas of medical science and dental implants. Surface nanofeatures provide significant potential solutions to medical problems by the introduction of better biomaterials, improved implant design, and surface engineering techniques such as coating, patterning, functionalization and molecular grafting at the nanoscale. This review is of an interdisciplinary nature, addressing the history and development of dental implants and the emerging area of nanotechnology in dental implants. After a brief introduction to nanotechnology in dental implants and the main classes of dental implants, an overview of different types of nanomaterials (i.e. metals, metal oxides, ceramics, polymers and hydrides) used in dental implant together with their unique properties, the influence of elemental compositions, and surface morphologies and possible applications are presented from a chemical point of view. In the core of this review, the dental implant materials, physical and chemical fabrication techniques and the role of nanotechnology in achieving ideal dental implants have been discussed. Finally, the critical parameters in dental implant design and available data on the current dental implant surfaces that use nanotopography in clinical dentistry have been discussed.
Wang, Tao; Handschuh-Wang, Stephan; Huang, Lei; Zhang, Lei; Jiang, Xin; Kong, Tiantian; Zhang, Wenjun; Lee, Chun-Sing; Zhou, Xuechang; Tang, Yongbing
2018-01-30
In this Article, we report the synthesis of micro- and nanocrystalline diamond/β-SiC composite gradient films, using a hot filament chemical vapor deposition (HFCVD) technique and its application as a robust and chemically inert means to actuate water and hazardous liquids. As revealed by scanning electron microscopy, the composition of the surface changed gradually from pure nanocrystalline diamond (hydrophobic) to a nanocrystalline β-SiC surface (hydrophilic). Transmission electron microscopy and Raman spectroscopy were employed to determine the presence of diamond, graphite, and β-SiC phases. The as-prepared gradient films were evaluated for their ability to actuate water. Indeed, water was transported via the gradient from the hydrophobic (hydrogen-terminated diamond) to the hydrophilic side (hydroxyl-terminated β-SiC) of the gradient surface. The driving distance and velocity of water is pivotally influenced by the surface roughness. The nanogradient surface showed significant promise as the lower roughness combined with the longer gradient yields in transport distances of up to 3.7 mm, with a maximum droplet velocity of nearly 250 mm/s measured by a high-speed camera. As diamond and β-SiC are chemically inert, the gradient surfaces can be used to drive hazardous liquids and reactive mixtures, which was signified by the actuation of hydrochloric acid and sodium hydroxide solution. We envision that the diamond/β-SiC gradient surface has high potential as an actuator for water transport in microfluidic devices, DNA sensors, and implants, which induce guided cell growth.
Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M
2015-04-01
Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.
The Properties and Applications of Nanodiamonds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler materialmore » for nanocomposites.« less
The properties and applications of nanodiamonds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalin, Vadym; Shenderova, Olga; Ho, Dean
Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler materialmore » for nanocomposites.« less
Atomic scale study of strain relaxation in Sn islands on Sn-induced Si(111)-(2√3 ×2√3 ) surface
NASA Astrophysics Data System (ADS)
Wang, L. L.; Ma, X. C.; Ning, Y. X.; Ji, S. H.; Fu, Y. S.; Jia, J. F.; Kelly, K. F.; Xue, Q. K.
2009-04-01
Surface structure of the Sn islands 5 ML high, prepared on Si(111)-(2√3 ×2√3 )-Sn substrate, is investigated by low temperature scanning tunneling microscopy/spectroscopy. Due to the elastic strain relaxation in the islands, the in-plane unit cell structure distorts and the apparent height of the surface atoms varies regularly to form an overall modulated strip structure. The quantum well states are observed to depend on the relative position within this structure, which implies the change of the surface chemical potential induced by the elastic strain relaxation as well.
Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina
2016-04-01
This study aimed to assess the potential impact on soil porewater, surface and groundwater from the beneficial application of organic wastes to soil, using their eluates and acute bioassays with aquatic organisms and plants: luminescence inhibition of Vibrio fischeri (15 and 30 min), Daphnia magna immobilization (48 h), Thamnocephalus platyurus survival (24 h), and seed germination of Lolium perenne (7 d) and Lactuca sativa (5 d). Some organic wastes' eluates promoted high toxic responses, but that toxicity could not be predicted by their chemical characterization, which is compulsory by regulatory documents. In fact, when organisms were exposed to the water-extractable chemical compounds of the organic wastes, the toxic responses were more connected to the degree of stabilization of the organic wastes, or to the treatment used to achieve that stabilization, than to their contaminant load. That is why the environmental risk assessment of the use of organic wastes as soil amendments should integrate bioassays with eluates, in order to correctly evaluate the effects of the most bioavailable fraction of all the chemical compounds, which can be difficult to predict from the characterization required in regulatory documents. According to our results, some rapid and standardized acute bioassays can be suggested to integrate a Tier 1 ecotoxicological evaluation of organic wastes with potential to be land applied, namely luminescence inhibition of V. fischeri, D. magna immobilization, and the germination of L. perenne and L. sativa. Copyright © 2015 Elsevier Inc. All rights reserved.
Navya, P N; Daima, Hemant Kumar
2016-01-01
Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Hun; Kim, Jae Hyeon; Park, Jeong Young, E-mail: peterlee@skku.edu, E-mail: jeongypark@kaist.ac.kr
2015-06-22
The electrical properties of two-dimensional atomic sheets exhibit remarkable dependences on layer thickness and surface chemistry. Here, we investigated the variation of the work function properties of MoS{sub 2} films prepared with chemical vapor deposition (CVD) on SiO{sub 2} substrates with the number of film layers. Wafer-scale CVD MoS{sub 2} films with 2, 4, and 12 layers were fabricated on SiO{sub 2}, and their properties were evaluated by using Raman and photoluminescence spectroscopies. In accordance with our X-ray photoelectron spectroscopy results, our Kelvin probe force microscopy investigation found that the surface potential of the MoS{sub 2} films increases by ∼0.15 eVmore » when the number of layers is increased from 2 to 12. Photoemission spectroscopy (PES) with in-situ annealing under ultra high vacuum conditions was used to directly demonstrate that this work function shift is associated with the screening effects of oxygen or water molecules adsorbed on the film surface. After annealing, it was found with PES that the surface potential decreases by ∼0.2 eV upon the removal of the adsorbed layers, which confirms that adsorbed species have a role in the variation in the work function.« less
Long-Term Planetary Habitability and the Carbonate-Silicate Cycle
NASA Astrophysics Data System (ADS)
Rushby, Andrew J.; Johnson, Martin; Mills, Benjamin J. W.; Watson, Andrew J.; Claire, Mark W.
2018-05-01
The potential habitability of an exoplanet is traditionally assessed by determining if its orbit falls within the circumstellar `habitable zone' of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long term concentration controlled by the balance between volcanic outgassing and the sequestration of CO2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation and biological (microbial) productivity. We develop a model incorporating key aspects of Earth's short and long-term biogeochemical carbon cycle to explore the potential changes in the CO2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets results in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 to 2 R_earth the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability.
NASA Astrophysics Data System (ADS)
Navya, P. N.; Daima, Hemant Kumar
2016-02-01
Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.
Stepniowski, Wojciech J; Misiolek, Wojciech Z
2018-05-29
Typically, anodic oxidation of metals results in the formation of hexagonally arranged nanoporous or nanotubular oxide, with a specific oxidation state of the transition metal. Recently, the majority of transition metals have been anodized; however, the formation of copper oxides by electrochemical oxidation is yet unexplored and offers numerous, unique properties and applications. Nanowires formed by copper electrochemical oxidation are crystalline and composed of cuprous (CuO) or cupric oxide (Cu₂O), bringing varied physical and chemical properties to the nanostructured morphology and different band gaps: 1.44 and 2.22 eV, respectively. According to its Pourbaix (potential-pH) diagram, the passivity of copper occurs at ambient and alkaline pH. In order to grow oxide nanostructures on copper, alkaline electrolytes like NaOH and KOH are used. To date, no systemic study has yet been reported on the influence of the operating conditions, such as the type of electrolyte, its temperature, and applied potential, on the morphology of the grown nanostructures. However, the numerous reports gathered in this paper will provide a certain view on the matter. After passivation, the formed nanostructures can be also post-treated. Post-treatments employ calcinations or chemical reactions, including the chemical reduction of the grown oxides. Nanostructures made of CuO or Cu₂O have a broad range of potential applications. On one hand, with the use of surface morphology, the wetting contact angle is tuned. On the other hand, the chemical composition (pure Cu₂O) and high surface area make such materials attractive for renewable energy harvesting, including water splitting. While compared to other fabrication techniques, self-organized anodization is a facile, easy to scale-up, time-efficient approach, providing high-aspect ratio one-dimensional (1D) nanostructures. Despite these advantages, there are still numerous challenges that have to be faced, including the strict control of the chemical composition and morphology of the grown nanostructures, their uniformity, and understanding the mechanism of their growth.
Production of activated carbons from waste tyres for low temperature NOx control.
Al-Rahbi, Amal S; Williams, Paul T
2016-03-01
Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of a templated approach to fabricate diamond patterns on various substrates.
Shimoni, Olga; Cervenka, Jiri; Karle, Timothy J; Fox, Kate; Gibson, Brant C; Tomljenovic-Hanic, Snjezana; Greentree, Andrew D; Prawer, Steven
2014-06-11
We demonstrate a robust templated approach to pattern thin films of chemical vapor deposited nanocrystalline diamond grown from monodispersed nanodiamond (mdND) seeds. The method works on a range of substrates, and we herein demonstrate the method using silicon, aluminum nitride (AlN), and sapphire substrates. Patterns are defined using photo- and e-beam lithography, which are seeded with mdND colloids and subsequently introduced into microwave assisted chemical vapor deposition reactor to grow patterned nanocrystalline diamond films. In this study, we investigate various factors that affect the selective seeding of different substrates to create high quality diamond thin films, including mdND surface termination, zeta potential, surface treatment, and plasma cleaning. Although the electrostatic interaction between mdND colloids and substrates is the main process driving adherence, we found that chemical reaction (esterification) or hydrogen bonding can potentially dominate the seeding process. Leveraging the knowledge on these different interactions, we optimize fabrication protocols to eliminate unwanted diamond nucleation outside the patterned areas. Furthermore, we have achieved the deposition of patterned diamond films and arrays over a range of feature sizes. This study contributes to a comprehensive understanding of the mdND-substrate interaction that will enable the fabrication of integrated nanocrystalline diamond thin films for microelectronics, sensors, and tissue culturing applications.
Zhang, Jining; Lü, Fan; Zhang, Hua; Shao, Liming; Chen, Dezhen; He, Pinjing
2015-01-01
Sewage sludge biochars were obtained at different pyrolysis temperatures from 300°C to 900°C and their macro- and microscale properties were analyzed. The biochar's plant-available nutrients and humus-like substances in the water-extractable phase and fixed nutrients in the solid fraction were evaluated for their potential agronomic implications. FT-IR, Raman, XRD, XPS, and SEM techniques were used to investigate the chemical structure, functional groups, and microcrystal structure on the surface of the biochar. The results revealed minor chemical changes and dramatic mass loss in the biochar obtained at 300–500°C, whereas significant chemical changes in the biochar were obtained at 600–900°C. The concentrations of plant-available nutrients as well as fulvic- and humic-acid-like materials decreased in the biochar samples obtained at higher temperatures. These results implied that the biochar samples pyrolyzed at 300–500°C could be a direct nutrient source and used to neutralize alkaline soil. The surface area and porosity of the biochar samples increased with temperature, which increased their adsorption capacity. Rearrangement occurred at higher temperature 600–900°C, resulting in the biochar becoming increasingly polyaromatic and its graphite-like carbon becoming organized. PMID:25802185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penley, H.M.; Schot, E.H.; Sewell, J.M.
1978-11-01
Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U/sub 3/O/sub 8/ and the radiometric surveys. Although anomalousmore » radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium.« less
40 CFR 270.17 - Specific part B information requirements for surface impoundments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing properties of other materials co-disposed...
Mobile and persistent chemicals that are present in urban wastewater, such as pharmaceuticals, may survive on-site or municipal wastewater treatment and post-discharge environmental processes. These pharmaceuticals have the potential to reach surface and groundwaters, essential d...
EVALUATION OF THE REMOVAL OF ESTROGENS FOLLOWING CHLORINATION
A number of estrogenic compounds have been shown to be present in surface waters in the U.S. These compounds have the potential to act as potent endocrine disrupting chemicals (EDCs). Although there has not yet been a determination of risks posed by EDCs in finished drinking wat...
EVALUATION OF THE REMOVAL OF ESTROGENS THROUGH THE COAGULATION PROCESS
A number of estrogenic compounds have been shown to be present in surface waters in the U.S. These compounds have the potential to act as potent endocrine disrupting chemicals (EDCs), leading to a growing concern over the possible presence of EDCs in finished drinking waters. C...
EVALUATION OF THE REMOVAL OF ESTROGENS THROUGH THE COAGULATION PROCESS
A number of estrogenic compounds have been shown to be present in surface waters in the U.S. These compounds have the potential to act as endocrine disrupting chemicals (EDCs), leading to concern over the possible presence of EDCs in finished drinking waters. Consequently, it is ...
EVALUATION OF THE REMOVAL OF ESTROGENS THROUGH THE COAGULATION PROCESS
A number of estrogenic compounds have been shown to be present in surface waters in the U.S. These compounds have the potential to act as potent endocrine disrupting chemicals (EDCs), leading to a growing concern over the possible presence of EDCs in finished drinking waters. Con...
EVALUATION OF THE REMOVAL OF ESTROGENS THROUGH THE COAGULATION PROCESS - PAPER
A number of estrogenic compounds have been shown to be present in surface waters in the U.S. These compounds have the potential to act as potent endocrine disrupting chemicals (EDCs), leading to a growing concern over the possible presence of EDCs in finished drinking waters. ons...
Improving the Analysis of Anthocyanidins from Blueberries Using Response Surface Methodology
USDA-ARS?s Scientific Manuscript database
Background: Recent interest in the health promoting potential of anthocyanins points to the need for robust and reliable analytical methods. It is essential to know that the health promoting chemicals are present in juices and other products processed from whole fruit. Many different methods have be...
Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals
NASA Astrophysics Data System (ADS)
Gómez Alvarez, Elena; Sörgel, Matthias; Gligorovski, Sasho; Bassil, Sabina; Bartolomei, Vincent; Coulomb, Bruno; Zetzsch, Cornelius; Wortham, Henri
2014-10-01
Nitrous acid (HONO) can be generated in various indoor environments directly during combustion processes or indirectly via heterogeneous NO2 reactions with water adsorbed layers on diverse surfaces. Indoors not only the concentrations of NO2 are higher but the surface to volume (S/V) ratios are larger and therefore the potential of HONO production is significantly elevated compared to outdoors. It has been claimed that the UV solar light is largely attenuated indoors. Here, we show that solar light (λ > 340 nm) penetrates indoors and can influence the heterogeneous reactions of gas-phase NO2 with various household surfaces. The NO2 to HONO conversion mediated by light on surfaces covered with domestic chemicals has been determined at atmospherically relevant conditions i.e. 50 ppb NO2 and 50% RH. The formation rates of HONO were enhanced in presence of light for all the studied surfaces and are determined in the following order: 1.3·109 molecules cm-2 s-1 for borosilicate glass, 1.7·109 molecules cm-2 s-1 for bathroom cleaner, 1.0·1010 molecules cm-2 s-1 on alkaline detergent (floor cleaner), 1.3·1010 molecules cm-2 s-1 for white wall paint and 2.7·1010 molecules cm-2 s-1 for lacquer. These results highlight the potential of household chemicals, used for cleaning purposes to generate HONO indoors through light-enhanced NO2 heterogeneous reactions. The results obtained have been applied to predict the timely evolution of HONO in a real indoor environment using a dynamic mass balance model. A steady state mixing ratio of HONO has been estimated at 1.6 ppb assuming a contribution from glass, paint and lacquer and considering the photolysis of HONO as the most important loss process.
Li, Shuzhao; Donner, Elizabeth; Xiao, Huining; Thompson, Michael; Zhang, Yachuan; Rempel, Curtis; Liu, Qiang
2016-12-01
A water resistant surface was first obtained by immobilizing hydrophobic copolymers, poly (styrene-co-glycidyl methacrylate) (PSG), with functional groups on soy protein isolate (SPI) films. XPS and AFM results showed that PSG copolymers were immobilized on the film by chemical bonding, and formed a rough surface with some bumps because of the segregation of two different phases on PSG copolymers. Water resistance of the modified films could be adjusted dramatically by further immobilizing different amounts of guanidine-based antimicrobial polymers, poly (hexamethylene guanidine hydrochloride) (PHMG) on the resulting hydrophobic surface. The introduction of hydrophilic PHMG on the resulting surface generated many micropores, which potentially increased the water uptake of the modified films. Furthermore, the modified SPI films showed higher thermostability compared to native SPI film and broad-spectrum antimicrobial activity by contact killing, attributed to the presence of PHMG on the surface. The modified SPI film with a multi-functional surface showed potential for applications in the packaging and medical fields. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
On the surface trapping parameters of polytetrafluoroethylene block
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang
2006-12-01
Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, R.M.; Yang, H.C.; McEllistrem, L.J.
Self-assembled monolayers (SAMs) having surfaces terminated in the following functional groups: -CH{sub 3}, -OH, -COOH, and (COO{sup -}){sub 2}Cu{sup 2+} (MUA-Cu{sup 2+}) have been prepared and examined as potential chemically sensitive interfaces. Mass measurements made using surface acoustic wave (SAW) devices indicate that these surfaces display different degrees of selectivity and sensitivity to a range of analytes. The response of the MUA-Cu{sup 2+} SAM to the nerve-agent simulant diisopropyl methylphosphonate (DIMP) is particularly intriguing. Exposure of this surface to 50%-of-saturation DIMP yields a surface concentration equivalent to about 20 DIMP monolayers. Such a high surface concentration in equilibrium with amore » much lower-than-saturation vapor pressure has not previously been observed. Newly developed analytical tools have made it possible to measure the infrared spectrum of the chemically receptive surface during analyte dosing. Coupled with in-situ SAW/ellipsometry measurements, which permit simultaneous measurement of mass and thickness with nanogram and Angstrom resolution, respectively, it has been possibly to develop a model for the surface chemistry leading to the unusual behavior of this system. The results indicate that DIMP interacts strongly with surface-confined Cu{sup 2+} adduct that nucleates growth of semi-ordered crystallites having substantially lower vapor pressure than the liquid.« less
Shape-dependent guidance of active Janus particles by chemically patterned surfaces
NASA Astrophysics Data System (ADS)
Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Dietrich, S.
2018-01-01
Self-phoretic chemically active Janus particles move by inducing—via non-equilibrium chemical reactions occurring on their surfaces—changes in the chemical composition of the solution in which they are immersed. This process leads to gradients in chemical composition along the surface of the particle, as well as along any nearby boundaries, including solid walls. Chemical gradients along a wall can give rise to chemi-osmosis, i.e., the gradients drive surface flows which, in turn, drive flow in the volume of the solution. This bulk flow couples back to the particle, and thus contributes to its self-motility. Since chemi-osmosis strongly depends on the molecular interactions between the diffusing molecular species and the wall, the response flow induced and experienced by a particle encodes information about any chemical patterning of the wall. Here, we extend previous studies on self-phoresis of a sphere near a chemically patterned wall to the case of particles with rod-like, elongated shape. We focus our analysis on the new phenomenology potentially emerging from the coupling—which is inoperative for a spherical shape—of the elongated particle to the strain rate tensor of the chemi-osmotic flow. Via detailed numerical calculations, we show that the dynamics of a rod-like particle exhibits a novel ‘edge-following’ steady state: the particle translates along the edge of a chemical step at a steady distance from the step and with a steady orientation. Moreover, within a certain range of system parameters, the edge-following state co-exists with a ‘docking’ state (the particle stops at the step, oriented perpendicular to the step edge), i.e., a bistable dynamics occurs. These findings are rationalized as a consequence of the competition between the fluid vorticity and the rate of strain by using analytical theory based on the point-particle approximation which captures quasi-quantitatively the dynamics of the system.
A review of models for near-field exposure pathways of chemicals in consumer products.
Huang, Lei; Ernstoff, Alexi; Fantke, Peter; Csiszar, Susan A; Jolliet, Olivier
2017-01-01
Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models able to quantify the multiple transfers of chemicals from products used near-field to humans. The present review therefore aims at an in-depth overview of modeling approaches for near-field chemical release and human exposure pathways associated with consumer products. It focuses on lower-tier, mechanistic models suitable for life cycle assessments (LCA), chemical alternative assessment (CAA) and high-throughput screening risk assessment (HTS). Chemicals in a product enter the near-field via a defined "compartment of entry", are transformed or transferred to adjacent compartments, and eventually end in a "human receptor compartment". We first focus on models of physical mass transfers from the product to 'near-field' compartments. For transfers of chemicals from article interior, adequate modeling of in-article diffusion and of partitioning between article surface and air/skin/food is key. Modeling volatilization and subsequent transfer to the outdoor is crucial for transfers of chemicals used in the inner space of appliances, on object surfaces or directly emitted to indoor air. For transfers from skin surface, models need to reflect the competition between dermal permeation, volatilization and fraction washed-off. We then focus on transfers from the 'near-field' to 'human' compartments, defined as respiratory tract, gastrointestinal tract and epidermis, for which good estimates of air concentrations, non-dietary ingestion parameters and skin permeation are essential, respectively. We critically characterize for each exposure pathway the ability of models to estimate near-field transfers and to best inform LCA, CAA and HTS, summarizing the main characteristics of the potentially best-suited models. This review identifies large knowledge gaps for several near-field pathways and suggests research needs and future directions. Copyright © 2016 Elsevier B.V. All rights reserved.
Midander, Klara; de Frutos, Alfredo; Hedberg, Yolanda; Darrie, Grant; Wallinder, Inger Odnevall
2010-07-01
The European product safety legislation, REACH, requires that companies that manufacture, import, or use chemicals demonstrate safe use and high level of protection of their products placed on the market from a human health and environmental perspective. This process involves detailed assessment of potential hazards for various toxicity endpoints induced by the use of chemicals with a minimum use of animal testing. Such an assessment requires thorough understanding of relevant exposure scenarios including material characteristics and intrinsic properties and how, for instance, physical and chemical properties change from the manufacturing phase, throughout use, to final disposal. Temporary or permanent adverse health effects induced by particles depend either on their shape or physical characteristics, and/or on chemical interactions with the particle surface upon human exposure. Potential adverse effects caused by the exposure of metal particles through the gastrointestinal system, the pulmonary system, or the skin, and their subsequent potential for particle dissolution and metal release in contact with biological media, show significant gaps of knowledge. In vitro bioaccessibility testing at conditions of relevance for different exposure scenarios, combined with the generation of a detailed understanding of intrinsic material properties and surface characteristics, are in this context a useful approach to address aspects of relevance for accurate risk and hazard assessment of chemicals, including metals and alloys and to avoid the use of in vivo testing. Alloys are essential engineering materials in all kinds of applications in society, but their potential adverse effects on human health and the environment are very seldom assessed. Alloys are treated in REACH as mixtures of their constituent elements, an approach highly inappropriate because intrinsic properties of alloys generally are totally different compared with their pure metal components. A large research effort was therefore conducted to generate quantitative bioaccessibility data for particles of ferro-chromium alloys compared with particles of the pure metals and stainless steel exposed at in vitro conditions in synthetic biological media of relevance for particle inhalation and ingestion. All results are presented combining bioaccessibility data with aspects of particle characteristics, surface composition, and barrier properties of surface oxides. Iron and chromium were the main elements released from ferro-chromium alloys upon exposure in synthetic biological media. Both elements revealed time-dependent release processes. One week exposures resulted in very small released particle fractions being less than 0.3% of the particle mass at acidic conditions and less than 0.001% in near pH-neutral media. The extent of Fe released from ferro-chromium alloy particles was significantly lower compared with particles of pure Fe, whereas Cr was released to a very low and similar extent as from particles of pure Cr and stainless steel. Low release rates are a result of a surface oxide with passive properties predominantly composed of chromium(III)-rich oxides and silica and, to a lesser extent, of iron(II,III)oxides. Neither the relative bulk alloy composition nor the surface composition can be used to predict or assess the extent of metals released in different synthetic biological media. Ferro-chromium alloys cannot be assessed from the behavior of their pure metal constituents. (c) 2009 SETAC.
Effect of a chemical mixture on dermal penetration of arsenic and nickel in male pig in vitro.
Turkall, Rita M; Skowronski, Gloria A; Suh, Duck H; Abdel-Rahman, Mohamed S
2003-04-11
The effect of a chemical mixture on the dermal penetration of arsenic or nickel was assessed by applying arsenic-73 or nickel-63 alone or with the chemical mixture to dermatomed male pig skin samples in flow-through diffusion cells. The chemical mixture consisted of chloroform, phenanthrene, and toluene for arsenic penetration studies and phenol, toluene, and trichloroethylene (TCE) for nickel studies. These are predominant chemicals found at hazardous waste sites. Arsenic and nickel bind to skin after dermal exposure. Total penetration of arsenic and nickel in the chemical mixture were significantly increased by 33% and 20% compared to arsenic and nickel alone, respectively. While more radioactivity penetrated skin with chemical treatment than metal alone, significantly less radioactivity was loosely adsorbed to skin and could be easily washed off from the skin surface with soap and water. The results of this study indicate that the potential health risk from dermal exposure to arsenic or nickel is enhanced if other chemicals are present.
NASA Astrophysics Data System (ADS)
Biswas, Sujit Kumar
Nanoprobes are an extraordinary set of experimental tools that allow fabrication, manipulation, and measurement in nano-scale systems. The primary use of a nanoprobe for imaging tiny objects is supplemented by powerful electrical techniques, namely scanning surface potential microscopy and current sensing atomic force microscopy. They allow us to measure potential, and current in carbon nanotube circuits. Nanoprobes are superior to conventional two- or four-probe measurements because they can provide spatial information of local electronic properties. This makes them highly attractive in studying junctions and contacts with carbon nanotubes. We have studied single-walled carbon nanotube circuits, forming junctions to other nanotubes. The experimental results indicate that these junctions act like potential barriers of about 50 meV that can confine electrons with an effective mass of 0.003 me , within nanotube channels of length 0.5 mum lying in-between two such potential barriers. This leads to quantization of the channel, forming a resonant tunneling structure. We have also found that single-walled nanotubes have phase coherence lengths of the order of 1 mum. This leads to situations where the electron interference effects at scattering centers need to be considered. We have seen direct evidence of this, in the non-linear resistance increase within nanotubes with few defects. Ambipolar transistor behavior was measured in a p-type single-walled nanotube circuit that showed electron injection across the Schottky junction at high positive bias. We have also studied multi-walled carbon nanotube circuits using scanning potential microscopy, and found that a back gate potential can vary the resistance of the channel. Vertical nanotube arrays, suitable for interconnects, were also measured. These hollow multi-walled nanotube channels were about 45 nm in diameter, and 50 mum in length, fabricated in an anodized alumina template. We found that these structures could sustain current densities greater than 105 A/cm2. Conventional use of nanoprobes in imaging aluminum nitride surfaces displayed curious step bunching structures. We have used an innovative analysis technique with which the bulk lattice constant of the crystal was measured to an accuracy of about 4% of X-ray crystallography value of 0.497 nm. In addition, this technique showed that there were regions on the surface that had a larger lattice parameter of 0.64 nm, which we interpreted to be due to a variation in the chemical composition of the surface such as oxide formation. We believe that this technique may prove useful as a study of chemical-composition variations on a surface as well as relaxation of the surface layer.
Brown, David Wayne; Hem, John David
1984-01-01
Adsorption of solutes by solid mineral surfaces commonly influences the dissolved ionic composition of natural waters. A model based on electrical double-layer theory has been developed which appears to be capable of characterizing the surface chemical behavior of a natural fine-grained sediment containing mostly quartz and feldspar. This variable surface charge-variable surface potential (VSC-VSP) model differs from others in being capable of evaluating more closely the effect of total metal ion activity on the pH-dependent change in electrical potential at the solid surface. The model was tested using 10-4 molar solutions of lead and a silt-size fraction of sediment from the bed of Colma Creek, a small stream in urban northern San Mateo County, California. The average deviation of measured percent adsorption and values calculated from the model was 6.6 adsorption percent from pH 2.0 to pH 7.0.
NASA Astrophysics Data System (ADS)
Icriverzi, Madalina; Rusen, Laurentiu; Sima, Livia Elena; Moldovan, Antoniu; Brajnicov, Simona; Bonciu, Anca; Mihailescu, Natalia; Dinescu, Maria; Cimpean, Anisoara; Roseanu, Anca; Dinca, Valentina
2018-05-01
The use of smart coatings with tunable characteristics in bioengineering fields is directly correlated with the surface chemical and topographical properties, the method of preparation, and also with the type of cells implied for the specific application. In this work, a versatile surface modification technique based on the use of lasers (Matrix-Assisted Pulsed Laser Evaporation (MAPLE)) was used to yield poly(N-isopropylacrylamide) (pNIPAM) and its derivatives (amine, azide and amide terminated pNIPAM) functional and termoresponsive thin films. Surface properties of pNIPAM and its derivative films such as morphology, roughness and hydrophobic/hydrophilic character, as well as the thermoresponsive capacity were investigated by atomic force microscopy and contact angle measurements. The chemical characteristics of the pNIPAM based thin films were analysed by Fourier Transform Infrared Spectroscopy (FTIR). The chemical functionality was kept for all the samples obtained by MAPLE and the thermoresponse was demonstrated by the change in the contact angle and thickness values when the temperature was shifted from 37 °C to 24 °C for all the materials tested, with a smaller change for maleimide terminated pNIPAM. Biological assays performed in vitro (fluorescence microscopy and Scanning Electron Microscopy (SEM)) confirmed the conditioning of the early mesenchymal stem cell (MSC) growth by specific chemistry of the coatings. The cell imaging analysis revealed no cytotoxic effect of pNIPAM surfaces irrespective of type of functionalization. An increased proliferation rate of the cells grown on pNIPAM-azide surfaces and a lower cell density on pNIPAM-maleimide surfaces compared to the pNIPAM surfaces was observed, which can direct their use to potential surfaces in regenerative medicine approaches.
2003-02-24
electron injection at interfaces, analysis of the voltage dependence of the electrostatic potential across molecules, the nature of binding at the...nanoscale titania into a metallic surface), analysis of the so-called band lineup between the molecular levels and the Fermi levels of the metal...observe the CNT’s in the electron microscope with the possibility to manipulate them externally and to apply potentials to them. These new
Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.
2010-01-01
Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.
NASA Astrophysics Data System (ADS)
Namdar, Abdolrahman; Feizollahi Onsoroudi, Rana; Khoshsima, Habib; Sahrai, Mostafa
2018-03-01
The surface plasmon-polaritons in one-dimensional graphene-based Fibonacci photonic superlattices in the terahertz frequency range have been theoretically investigated. Our numerical study shows that surface plasmon-polaritons can be realized in both transverse electric and transverse magnetic polarizations. It is shown that these modes are manageable by varying the quasi-periodic generation orders which play a critical role in the occurrence of surface modes. In addition, the effect of thickness of cap layer and chemical potential of graphene sheets on surface plasmon-polaritons and their electric field distribution are studied. We have verified the excitation of surface plasmon-polaritons by using the attenuated total reflection method. This inspection confirms that all the predicted surface modes in the dispersion curves are actually excitable with this method.
Sha, Linna; Gao, Peng; Wu, Tingting; Chen, Yujin
2017-11-22
In this work, a microwave welding method has been used for the construction of chemical Ni-C bonding at the interface between carbon nanotubes (CNTs) and metal Ni to provide a different surface electron distribution, which determined the electromagnetic (EM) wave absorption properties based on a surface plasmon resonance mechanism. Through a serial of detailed examinations, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectrum, the as-expected chemical Ni-C bonding between CNTs and metal Ni has been confirmed. And the Brunauer-Emmett-Teller and surface zeta potential measurements uncovered the great evolution of structure and electronic density compared with CNTs, metal Ni, and Ni-CNT composite without Ni-C bonding. Correspondingly, except the EM absorption due to CNTs and metal Ni in the composite, another wide and strong EM absorption band ranging from 10 to 18 GHz was found, which was induced by the Ni-C bonded interface. With a thinner thickness and more exposed Ni-C interfaces, the Ni-CNT composite displayed less reflection loss.
NASA Astrophysics Data System (ADS)
Minato, Taketoshi; Abe, Takeshi
2017-12-01
The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.
Dagenais, P; Desprez, B; Albert, J; Escher, E
1994-10-01
Direct adsorption of small peptide antigens to unaltered, commercially available polystyrene surfaces may be too weak to permit suitable assay by ELISA. We therefore developed a simple method for the covalent attachment of small, potentially single epitope antigens to polystyrene surfaces. Chemical activation of polystyrene plates with carbodiimide considerably improves the total and covalent attachment of radioactive octapeptides. The covalent attachment was demonstrated by washing with hot detergent. A 3.5 Mrad gamma-irradiation of plates also increases total binding, particularly in combination with chemical activation. The covalent attachment presumably occurs through formation and chemical activation of carboxylate functions on the polystyrene surface which form amide bonds with peptides. ELISA test was performed with CGRP and successive smaller CGRP fragments. Covalent attachment of C-terminal peptide fragments as detection antigens allows optimal recognition and sensitivity even for hexapeptides, while decapeptide antigens were already poorly recognized using a conventional antigen plating technique. Repetitive detergent washes and/or prolonged storage of plates with covalently bound antigens did not reduce their ELISA sensitivity. The method with storage and reutilization capacities that we present here will be useful for the development of preplated antibody screening test.
Electron and positron states in HgBa2CuO4
NASA Astrophysics Data System (ADS)
Barbiellini, B.; Jarlborg, T.
1994-08-01
Local-density-calculations of the electronic structure of HgBa2CuO4 have been performed with the self-consistent linear muffin-tin orbital method. The positron-density distribution and its sensitivity due to different potentials are calculated. The annihilation rates are computed in order to study the chemical bonding and to predict the Fermi-surface signal. Comparisons are made with previous calculations on other high-Tc copper oxides concerning the Fermi-surface properties and electron-positron overlap. We discuss the possibility of observing the Fermi surface associated with the Cu-O planes in positron-annihilation experiments.
NASA Astrophysics Data System (ADS)
Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.
2016-12-01
In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.
Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan
2016-05-01
Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.
Wang, Wei; Lan, Ping
2014-01-01
A novel method of constructing a glycosylated surface on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] membrane surface for the selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylic acid followed by the chemical binding of carboxyl groups with glucosamine in the presence of 1-ethyl-3-(dimethyl-aminopropyl) carbodiimide hydrochloride and N-hydroxy-succinimide. The chemical structures of the fabricated membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes, respectively. An enzyme linked immunosorbent assay was used to measure the LDL adsorption on the plain and modified membrane surfaces. It was found that the surface glycosylation of P(3HB-co-4HB) membrane greatly enhanced the affinity interactions with LDL and the absorbed LDL could be easily desorbed with eluents, indicating a specific and reversible binding of LDL to the surface. Furthermore, the hemocompatibility of glycosylated membrane was improved as examined by platelet adhesion. The results suggest that the glycosylated P(3HB-co-4HB) membrane is promising for application in LDL apheresis therapy.
Controlling enhanced absorption in graphene metamaterial
NASA Astrophysics Data System (ADS)
Zhou, Qihui; Liu, Peiguo; Bian, Li-an; Liu, Hanqing; Liu, Chenxi; Chen, Genghui
2018-04-01
In this paper, a controllable terahertz (THz) metamaterial absorber (MA) is designed with the circuit analog method. Taking advantage of the patterned graphene on SiO2/doped Si/polyimide substrates with a gold reflector, the controllable MA achieves perfect absorption at 0.75 THz. The chemical potential of graphene is regulated by controlling the voltage between graphene and doped Si layers. As the chemical potential varies from 0 eV to 0.5 eV, the MA is changed from reflection (<0.37) to absorption (>0.99). The distributions of surface current and electric field are illustrated to analyze the resonant characteristic of patterned graphene. According to the resonant characteristic, we introduce patterned graphene elements with different dimension in a unit cell, which effectively extends the effective absorption bandwidth (absorption > 0 . 9) from 0.67-0.93 THz to 0.52-0.95 THz. Moreover, replacing part of the graphene structure with gold, the switchable MA is turned into a frequency tunable MA. The absorption peak moves from 0.62 THz to 0.92 THz as the chemical potential increases from 0.1 eV to 0.5 eV. These designs overcome limitation of traditional absorbers and exhibit great potentials in many practical applications.
Hu, Keke; Wang, Yixian; Cai, Huijing; Mirkin, Michael V; Gao, Yang; Friedman, Gary; Gogotsi, Yury
2014-09-16
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
Morphology and phase behavior of ethanol nanodrops condensed on chemically patterned surfaces
NASA Astrophysics Data System (ADS)
Checco, Antonio; Ocko, Benjamin M.
2008-06-01
Equilibrium wetting of ethanol onto chemically patterned nanostripes has been investigated using environmental atomic force microscopy (AFM) in noncontact mode. The chemical patterns are composed of COOH-terminated “wetting” regions and CH3 -terminated “nonwetting” regions. A specially designed environmental AFM chamber allowed for accurate measurements of droplet height as a function of the temperature offset between the substrate and a macroscopic ethanol reservoir. At saturation, the height dependence scales with droplet width according to w1/2 , in excellent agreement with the augmented Young equation (AYE) modeled with dispersive, nonretarded surface potentials. At small under- and oversaturations, the AYE model accurately fits the data if an effective ΔT is used as a fitting parameter. There is a systematic difference between the measured ΔT and the values extracted from the fits to the data. In addition to static measurements, we present time-resolved measurements of the droplet height which enable the study of condensation-evaporation dynamics of nanometer-scale drops.
Youn, Doo-Hyeb; Yu, Young-Jun; Choi, Hongkyw; Kim, Suck-Hwan; Choi, Sung-Yool; Choi, Choon-Gi
2013-02-22
We report an improvement of the optical power and thermal stability of GaN LEDs using a chemically doped graphene transparent conducting layer (TCL) and a low-resistance contact structure. In order to obtain low contact resistance between the TCL and p-GaN surface, a patterned graphene TCL with Cr/Au electrodes is suggested. A bi-layer patterning method of a graphene TCL was utilized to prevent the graphene from peeling off the p-GaN surface. To improve the work function and the sheet resistance of graphene, CVD (chemical vapor deposition) graphene was doped by a chemical treatment using a HNO(3) solution. The effect of the contact resistance on the power degradation of LEDs at a high injection current level was investigated. In addition, the enhancement of the optical power via an increase in the current spreading and a decrease in the potential barrier of the graphene TCL was investigated.
NASA Astrophysics Data System (ADS)
Youn, Doo-Hyeb; Yu, Young-Jun; Choi, HongKyw; Kim, Suck-Hwan; Choi, Sung-Yool; Choi, Choon-Gi
2013-02-01
We report an improvement of the optical power and thermal stability of GaN LEDs using a chemically doped graphene transparent conducting layer (TCL) and a low-resistance contact structure. In order to obtain low contact resistance between the TCL and p-GaN surface, a patterned graphene TCL with Cr/Au electrodes is suggested. A bi-layer patterning method of a graphene TCL was utilized to prevent the graphene from peeling off the p-GaN surface. To improve the work function and the sheet resistance of graphene, CVD (chemical vapor deposition) graphene was doped by a chemical treatment using a HNO3 solution. The effect of the contact resistance on the power degradation of LEDs at a high injection current level was investigated. In addition, the enhancement of the optical power via an increase in the current spreading and a decrease in the potential barrier of the graphene TCL was investigated.
NASA Astrophysics Data System (ADS)
Sei, J.; Morato, F.; Kra, G.; Staunton, S.; Quiquampoix, H.; Jumas, J. C.; Olivier-Fourcade, J.
2006-10-01
Thirteen clay samples from four deposits in the Ivory Coast (West Africa) were studied using X-ray diffraction, thermogravimetric analysis and chemical analysis. Mineralogical, crystallographic and morphological characteristics of these samples are given. Kaolinite is the principal mineral but other minerals are present in small quantities: illite, quartz, anatase and iron oxides (oxides and oxyhydroxides). The crystallographic, morphological and surface characteristics are influenced by the presence of these impurities. In particular, the presence of iron oxides was associated with reduced structural ordering and thermal stability of kaolinite and increased specific surface area. These clays could be used in the ceramics industry to make tiles and bricks, and also in agronomy as supports for chemical fertilizers or for environmental protection by immobilising potentially toxic waste products.
NASA Astrophysics Data System (ADS)
Ito, Kaiki; Suzuki, Yuta; Horiuchi, Toshiyuki
2017-07-01
Lithographical patterning on the surface of a fine pipe with a thin wall is required for fabricating three-dimensional micro-parts. For this reason, a new exposure system for printing patterns on a cylindrical pipe by synchronous rotary scan-projection exposure was developed. Using the exposure system, stent-like resist patterns with a width of 251 μm were printed on a surface of stainless-steel pipe with an outer diameter of 2 mm. The exposure time was 30 s. Next, the patterned pipe was chemically etched. As a result, a stent-like mesh pipe with a line width of 230 μm was fabricated. It was demonstrated that the new method had a potential to be applied to fabrications of stent and other cylindrical micro-parts.
Blueprinting macromolecular electronics.
Palma, Carlos-Andres; Samorì, Paolo
2011-06-01
Recently, by mastering either top-down or bottom-up approaches, tailor-made macromolecular nano-objects with semiconducting properties have been fabricated. These engineered nanostructures for organic electronics are based on conjugated systems predominantly made up of sp²-hybridized carbon, such as graphene nanoribbons. Here, we describe developments in a selection of these nanofabrication techniques, which include graphene carving, stimulus-induced synthesis of conjugated polymers and surface-assisted synthesis. We also assess their potential to reproduce chemically and spatially precise molecular arrangements, that is, molecular blueprints. In a broad context, the engineering of a molecular blueprint represents the fabrication of an integrated all-organic macromolecular electronic circuit. In this Perspective, we suggest chemical routes, as well as convergent on-surface synthesis and microfabrication approaches, for the ultimate goal of bringing the field closer to technology.
Vasenko, A S; Golubov, A A; Silkin, V M; Chulkov, E V
2017-07-26
We study the effect of the Fermi surface anisotropy on the odd-frequency spin-triplet pairing component of the induced pair potential. We consider a superconductor/ ferromagnetic insulator (S/FI) hybrid structure formed on the 3D topological insulator (TI) surface. In this case three ingredients ensure the possibility of the odd-frequency pairing: (1) the topological surface states, (2) the induced pair potential, and (3) the magnetic moment of a nearby ferromagnetic insulator. We take into account the strong anisotropy of the Dirac point in topological insulators when the chemical potential lies well above the Dirac cone and its constant energy contour has a snowflake shape. Within this model, we propose that the S/FI boundary should be properly aligned with respect to the snowflake constant energy contour to have an odd-frequency symmetry of the corresponding pairing component and to insure the Majorana bound state at the S/FI boundary. For arbitrary orientation of the boundary, the Majorana bound state is absent. This provides a selection rule to the realization of Majorana modes in S/FI hybrid structures, formed on the topological insulator surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verba, Circe; Harris, Aubrey
The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015).more » There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde, guar gum, and isopropanol]; 3) reviews the known research about the interactions between several hydraulic fracturing chemicals [e.g. polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), and glutaraldehyde] with the minerals (quartz, clay, pyrite, and carbonates) common to the lithologies of the Marcellus shale and its surrounding sandstones; and 4) characterizes the Berea sandstone and analyzes the physical and chemical effects of flowing guar gum through a Berea sandstone core.« less
Liu, Benhua; Li, Yuehua; Ma, Jianfeng; Huang, Linxian; Chen, Liang
2016-01-01
China is suffering from serious water and soil pollution, especially in the North China Plain. This work investigated semi-volatile organic compounds (SVOCs) in surface water, groundwater and soil within a chemical industrial park in Eastern China, for which the volatile organic compound (VOC) results have been previously reported. A total of 20 samples were collected from the field, and analyzed in the laboratory. A 100% detection frequency of SVOCs in samples from this chemical industrial park was observed (same as VOCs). Moreover, the detection frequency of 113 SVOCs in each sample reached 15.93, 12.39 and 20.35% for surface water, groundwater and soil, respectively. The most detected SVOCs in the park included N-containing SVOCs, polycyclic aromatic hydrocarbons, phthalates, organic pesticides and polychlorodiphenyls. The elevated detecting frequencies and concentration levels of SVOCs identified in the groundwater were attributed to the intensive chemical production activities in the park. In addition, the agricultural activities in the area might also have contributed to the SVOCs to the groundwater. The results of VOCs and SVOCs from this and previous studies suggest that the groundwater in this industrial park has been severely contaminated, and the contamination likely spreads beyond the park. Imminent hydrogeological assessments and remedial actions are warranted to eliminate the source and mitigate the potential plume expansion beyond the park boundary.
Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S
2013-05-01
Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Owan, D. A.
1981-01-01
A visible emission spectroscopic method was developed. The amounts of excited singlet and triplet oxygen molecules produced by recombination on the Space Shuttle Orbiter thermal protective tiles at elevated temperatures are determined. Rate constants and energetics of the extremely exothermic reaction are evaluated in terms of a chemical and mathematical model. Implications for potential contribution to Shuttle surface reentry heating fluxes are outlined.
Gateless AlGaN/GaN HEMT response to block co-polymers
NASA Astrophysics Data System (ADS)
Kang, B. S.; Louche, G.; Duran, R. S.; Gnanou, Y.; Pearton, S. J.; Ren, F.
2004-05-01
Gateless AlGaN/GaN high electron mobility transistor (HEMT) structures exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. The polar nature of some of these polymer chains lead to a change of surface charges in gate region on the HEMT, producing a change in surface potential at the semiconductor/liquid interface. The nitride sensors appear to be promising for a wide range of chemical gas, combustion gas, liquid and strain sensing.
Sorption of mercury onto waste material derived low-cost activated carbon
NASA Astrophysics Data System (ADS)
Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro
2017-03-01
The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.
Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field
Halib, Nadia; Perrone, Francesca; Dapas, Barbara; Farra, Rossella; Abrami, Michela; Chiarappa, Gianluca; Forte, Giancarlo; Zanconati, Fabrizio; Pozzato, Gabriele; Murena, Luigi; Fiotti, Nicola; Lapasin, Romano; Cansolino, Laura; Grassi, Gabriele
2017-01-01
Because of its high biocompatibility, bio-degradability, low-cost and easy availability, cellulose finds application in disparate areas of research. Here we focus our attention on the most recent and attractive potential applications of cellulose in the biomedical field. We first describe the chemical/structural composition of cellulose fibers, the cellulose sources/features and cellulose chemical modifications employed to improve its properties. We then move to the description of cellulose potential applications in biomedicine. In this field, cellulose is most considered in recent research in the form of nano-sized particle, i.e., nanofiber cellulose (NFC) or cellulose nanocrystal (CNC). NFC is obtained from cellulose via chemical and mechanical methods. CNC can be obtained from macroscopic or microscopic forms of cellulose following strong acid hydrolysis. NFC and CNC are used for several reasons including the mechanical properties, the extended surface area and the low toxicity. Here we present some potential applications of nano-sized cellulose in the fields of wound healing, bone-cartilage regeneration, dental application and different human diseases including cancer. To witness the close proximity of nano-sized cellulose to the practical biomedical use, examples of recent clinical trials are also reported. Altogether, the described examples strongly support the enormous application potential of nano-sized cellulose in the biomedical field. PMID:28825682
NASA Technical Reports Server (NTRS)
Alnussirat, S. T.; Sabra, M. S.; Barghouty, A. F.; Rickman, Douglas L.; Meyer, F.
2014-01-01
New simulation results for the sputtering of lunar soil surface by solar-wind protons and heavy ions will be presented. Previous simulation results showed that the sputtering process has significant effects and plays an important role in changing the surface chemical composition, setting the erosion rate and the sputtering process timescale. In this new work and in light of recent data, we briefly present some theoretical models which have been developed to describe the sputtering process and compare their results with recent calculation to investigate and differentiate the roles and the contributions of potential (or electrodynamic) sputtering from the standard (or kinetic) sputtering.
gases were passed to emerge at the heated surface, permitted these data to be gathered in chemically reactive environments. Correlation of all these data...in both inert and chemically reactive environments, was possible both on the basis of an energy balance struck at the regressing surface and an...Arrhenius type of chemical kinetic description of the surface degradation process. Although expected, this represents the first demonstration that both
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
2018-03-22
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments
NASA Technical Reports Server (NTRS)
Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.
1993-01-01
By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.
Lemos, A O; Oliveira, N C D; Lemos, C T
2011-06-01
Leather manufacturing has a high potential for environmental pollution due to hides and chemicals that are not completely absorbed during the tanning process. This study aims to investigate the mutagenic potential of surface water samples from Cadeia and Feitoria rivers (RS, Brazil) in areas influenced by tanneries and leather footwear industry. Micronucleus assays using V79 cells and human lymphocytes were used. Cells were exposed to surface water collected bimonthly from three sites for a year, totaling six samples. Significant MN induction in human lymphocytes was shown by 83% of samples from sites FEI001 and CAD001 located downstream from the industrial area, followed by FEI004 (33%), upstream. Only a single sample from site FEI004 showed a positive response for MN in V79 cells. Thirteen discordant and five concordant responses were found between the two in vitro tests. Mutagenic agents were found at the sites where chemical quality was worst, corroborating studies on chronic toxicity, oxidative stress and mutagenicity performed in this area. The assay using human lymphocytes was more sensitive than V79 cells to detect the contaminants from this area, showing that it is an excellent biomarker of environmental genotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhou, Shaoqi; Feng, Xinbin
2017-01-01
In this paper, a statistically-based experimental design with response surface methodology (RSM) was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti) electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD) concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD) removal and total organic carbon (TOC) removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process. PMID:28671943
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
NASA Astrophysics Data System (ADS)
Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.
2018-05-01
One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.
Luo, Long; Holden, Deric A; White, Henry S
2014-03-25
A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.
Chemical segregation in metallic glass nanowires.
Zhang, Qi; Li, Qi-Kai; Li, Mo
2014-11-21
Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.
Dynamic contact angle cycling homogenizes heterogeneous surfaces.
Belibel, R; Barbaud, C; Mora, L
2016-12-01
In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A. Copyright © 2016 Elsevier B.V. All rights reserved.
Mud Volcanoes in the Martian Lowlands: Potential Windows to Fluid-Rich Samples from Depth
NASA Technical Reports Server (NTRS)
Oehler, Dorothy Z.; Allen, Carlton C.
2009-01-01
The regional setting of the Chryse-Acidalia area augurs well for a fluid-rich subsurface, accumulation of diverse rock types reflecting the wide catchment area, astrobiological prospectivity, and mud volcanism. This latter provides a mechanism for transporting samples from relatively great depth to the surface. Since mud volcanoes are not associated with extreme heat or shock pressures, materials they transport to the surface are likely to be relatively unaltered; thus such materials could contain interpretable remnants of potential martian life (e.g., organic chemical biomarkers, mineral biosignatures, or structural remains) as well as unmetamorphosed rock samples. None of the previous landings on Mars was located in an area with features identified as potential mud volcanoes (Fig. 3), but some of these features may offer targets for future missions aimed at sampling deep fluid-rich strata with potential habitable zones.
Bacterial adherence and biofilm formation on medical implants: a review.
Veerachamy, Suganthan; Yarlagadda, Tejasri; Manivasagam, Geetha; Yarlagadda, Prasad Kdv
2014-10-01
Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants. © IMechE 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höcker, Jan; Duchoň, Tomáš; Veltruská, Kateřina
2016-01-06
We present a novel and simple method for the preparation of a well-defined CeO 2(100) model system on Cu(111) based on the adjustment of the Ce/O ratio during growth. The method yields micrometer-sized, several nanometers high, single-phase CeO 2(100) islands with controllable size and surface termination that can be benchmarked against the known (111) nanostructured islands on Cu(111). We also demonstrate the ability to adjust the Ce to O stoichiometry from CeO 2(100) (100% Ce 4+) to c-Ce 2O 3(100) (100% Ce 3+), which can be readily recognized by characteristic surface reconstructions observed by low-energy electron diffraction. Finally, the discoverymore » of the highly stable CeO x(100) phase on a hexagonally close packed metal surface represents an unexpected growth mechanism of ceria on Cu(111), and it provides novel opportunities to prepare more elaborate models, benchmark surface chemical reactivity, and thus gain valuable insights into the redox chemistry of ceria in catalytic processes.« less
El Zrelli, Radhouan; Courjault-Radé, Pierre; Rabaoui, Lotfi; Castet, Sylvie; Michel, Sylvain; Bejaoui, Nejla
2015-12-30
In the present study, the concentrations of 6 trace metals (Hg, Cd, Cu, Pb, Cr and Zn) were assessed in the surface sediments of the central coastal area of Gabes Gulf to determine their contamination status, source, spatial distribution and ecological risks. The ranking of metal contents was found to be Zn>Cd>Cr>Pb>Cu>Hg. Correlation analysis indicated that Cd and Zn derived mainly from the Tunisian Chemical Group phosphogypsum. The other pollutants may originate from other industrial wastes. Metallic contamination was detected in the south of chemical complex, especially in the inter-harbor zone, where the ecological risk of surface sediments is the highest, implying potential negative impacts of industrial pollutants. The spatial distribution of pollutants seems to be due to the effect of harbor installations and coastal currents. The metallic pollution status of surface sediments of Gabes Gulf is obvious, very worrying and requires rapid intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yifeng; Zhang, Wenqiang; Zheng, Yun; Chen, Jing; Yu, Bo; Chen, Yan; Liu, Meilin
2017-10-16
Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal-air batteries.
Super-resolution chemical imaging with dynamic placement of plasmonic hotspots
NASA Astrophysics Data System (ADS)
Olson, Aeli P.; Ertsgaard, Christopher T.; McKoskey, Rachel M.; Rich, Isabel S.; Lindquist, Nathan C.
2015-08-01
We demonstrate dynamic placement of plasmonic "hotspots" for super-resolution chemical imaging via Surface Enhanced Raman Spectroscopy (SERS). A silver nanohole array surface was coated with biological samples and illuminated with a laser. Due to the large plasmonic field enhancements, blinking behavior of the SERS hotspots was observed and processed using a Stochastic Optical Reconstruction Microscopy (STORM) algorithm enabling localization to within 10 nm. However, illumination of the sample with a single static laser beam (i.e., a slightly defocused Gaussian beam) only produced SERS hotspots in fixed locations on the surface, leaving noticeable gaps in any final image. But, by using a spatial light modulator (SLM), the illumination profile of the beam could be altered, shifting any hotspots across the nanohole array surface in sub-wavelength steps. Therefore, by properly structuring an illuminating light field with the SLM, we show the possibility of positioning plasmonic hotspots over a metallic nanohole surface on-the-fly. Using this and our SERS-STORM imaging technique, we show potential for high-resolution chemical imaging without the noticeable gaps that were present with static laser illumination. Interestingly, even illuminating the surface with randomly shifting SLM phase profiles was sufficient to completely fill in a wide field of view for super-resolution SERS imaging of a single strand of 100-nm thick collagen protein fibrils. Images were then compared to those obtained with a scanning electron microscope (SEM). Additionally, we explored alternative methods of phase shifting other than holographic illumination through the SLM to create localization of hotspots necessary for SERS-STORM imaging.
Observation of OH radicals produced by pulsed discharges on the surface of a liquid
NASA Astrophysics Data System (ADS)
Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu; Kocik, Marek; Mizeraczyk, Jerzy
2011-06-01
The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO2), hydrogen peroxide(H2O2) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A 2∑+(v' = 1) <-- X 2Π(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.
Tribochemical investigation of microelectronic materials
NASA Astrophysics Data System (ADS)
Kulkarni, Milind Sudhakar
To achieve efficient planarization with reduced device dimensions in integrated circuits, a better understanding of the physics, chemistry, and the complex interplay involved in chemical mechanical planarization (CMP) is needed. The CMP process takes place at the interface of the pad and wafer in the presence of the fluid slurry medium. The hardness of Cu is significantly less than the slurry abrasive particles which are usually alumina or silica. It has been accepted that a surface layer can protect the Cu surface from scratching during CMP. Four competing mechanisms in materials removal have been reported: the chemical dissolution of Cu, the mechanical removal through slurry abrasives, the formation of thin layer of Cu oxide and the sweeping surface material by slurry flow. Despite the previous investigation of Cu removal, the electrochemical properties of Cu surface layer is yet to be understood. The motivation of this research was to understand the fundamental aspects of removal mechanisms in terms of electrochemical interactions, chemical dissolution, mechanical wear, and factors affecting planarization. Since one of the major requirements in CMP is to have a high surface finish, i.e., low surface roughness, optimization of the surface finish in reference to various parameters was emphasized. Three approaches were used in this research: in situ measurement of material removal, exploration of the electropotential activation and passivation at the copper surface and modeling of the synergistic electrochemical-mechanical interactions on the copper surface. In this research, copper polishing experiments were conducted using a table top tribometer. A potentiostat was coupled with this tribometer. This combination enabled the evaluation of important variables such as applied pressure, polishing speed, slurry chemistry, pH, materials, and applied DC potential. Experiments were designed to understand the combined and individual effect of electrochemical interactions as well as mechanical impact during polishing. Extensive surface characterization was performed with AFM, SEM, TEM and XPS. An innovative method for direct material removal measurement on the nanometer scale was developed and used. Experimental observations were compared with the theoretically calculated material removal rate values. The synergistic effect of all of the components of the process, which result in a better quality surface finish was quantitatively evaluated for the first time. Impressed potential during CMP proved to be a controlling parameter in the material removal mechanism. Using the experimental results, a model was developed, which provided a practical insight into the CMP process. The research is expected to help with electrochemical material removal in copper planarization with low-k dielectrics.
Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding
Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping
2015-01-01
The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349
NASA Astrophysics Data System (ADS)
Lee, J.-H.; Houk, R. T. J.; Robinson, A.; Greathouse, J. A.; Thornberg, S. M.; Allendorf, M. D.; Hesketh, P. J.
2010-04-01
In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.
Preparation and Characterization of Biofunctionalized Inorganic Substrates.
Dugger, Jason W; Webb, Lauren J
2015-09-29
Integrating the function of biological molecules into traditional inorganic materials and substrates couples biologically relevant function to synthetic devices and generates new materials and capabilities by combining biological and inorganic functions. At this so-called "bio/abio interface," basic biological functions such as ligand binding and catalysis can be co-opted to detect analytes with exceptional sensitivity or to generate useful molecules with chiral specificity under entirely benign reaction conditions. Proteins function in dynamic, complex, and crowded environments (the living cell) and are therefore appropriate for integrating into multistep, multiscale, multimaterial devices such as integrated circuits and heterogeneous catalysts. However, the goal of reproducing the highly specific activities of biomolecules in the perturbed chemical and electrostatic environment at an inorganic interface while maintaining their native conformations is challenging to achieve. Moreover, characterizing protein structure and function at a surface is often difficult, particularly if one wishes to compare the activity of the protein to that of the dilute, aqueous solution phase. Our laboratory has developed a general strategy to address this challenge by taking advantage of the structural and chemical properties of alkanethiol self-assembled monolayers (SAMs) on gold surfaces that are functionalized with covalently tethered peptides. These surface-bound peptides then act as the chemical recognition element for a target protein, generating a biomimetic surface in which protein orientation, structure, density, and function are controlled and variable. Herein we discuss current research and future directions related to generating a chemically tunable biofunctionalization strategy that has potential to successfully incorporate the highly specialized functions of proteins onto inorganic substrates.
Stellar Parameter Determination With J-Plus Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Whitten, Devin D.
2017-10-01
The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.
Laser surface structuring of AZ31 Mg alloy for controlled wettability.
Gökhan Demir, Ali; Furlan, Valentina; Lecis, Nora; Previtali, Barbara
2014-06-01
Structured surfaces exhibit functional properties that can enhance the performance of a bioimplant in terms of biocompatibility, adhesion, or corrosion behavior. In order to tailor the surface property, chemical and physical methods can be used in a sequence of many steps. On the other hand, laser surface processing can provide a single step solution to achieve the designated surface function with the use of simpler equipment and high repeatability. This work provides the details on the surface structuring of AZ31, a biocompatible and biodegradable Mg alloy, by a single-step laser surface structuring based on remelting. The surfaces are characterized in terms of topography, chemistry, and physical integrity, as well as the effective change in the surface wetting behavior is demonstrated. The results imply a great potential in local or complete surface structuring of medical implants for functionalization by the flexible positioning of the laser beam.
NASA Astrophysics Data System (ADS)
Kolczewski, Ch.; Fink, K.; Staemmler, V.; Neitsch, L.
1997-05-01
Quantum chemical ab initio calculations at the complete active space SCF level and with inclusion of correlation effects have been performed for the potential energy surfaces of PH in its X 3Σ- ground state and its first excited triplet state, A 3Π, colliding with He atoms. The PH distance was fixed at its experimental value (of the A 3Π state), the PH-He distance and the HePH angle were varied. All three potential energy surfaces [1 3A'' for PH(X)-He and 1 3A,2 3A'' for the two components of PH(A)-He] are purely repulsive, except for very shallow van der Waals minima with well depths of about 15-40 cm-1. The interaction potentials decay approximately exponentially with increasing PH-He distance and show large angular anisotropies. Legendre expansions for the angular dependence of the potential surfaces converge slowly for V(1 3A'') and the sum potential 1/2[V(2 3A'')+V(1 3A)], but rapidly for the corresponding difference potential 1/2[V(2 3A'')-V(1 3A)]. The present PH(A)-He potentials have been used in the companion paper by Neitsch et al. [J. Chem. Phys. 106, 7642 (1997)], for the calculation of thermal state-to-state rate constants for inelastic PH(A)-He collisions.
Alves, Nathan J; Moore, Martin; Johnson, Brandy J; Dean, Scott N; Turner, Kendrick B; Medintz, Igor L; Walper, Scott A
2018-05-09
While technologies for the remediation of chemical contaminants continue to emerge, growing interest in green technologies has led researchers to explore natural catalytic mechanisms derived from microbial species. One such method, enzymatic degradation, offers an alternative to harsh chemical catalysts and resins. Recombinant enzymes, however, are often too labile or show limited activity when challenged with nonideal environmental conditions that may vary in salinity, pH, or other physical properties. Here, we demonstrate how phosphotriesterase encapsulated in a bacterial outer membrane vesicle can be used to degrade the organophosphate chemical warfare agent (CWA) simulant paraoxon in environmental water samples. We also carried out remediation assays on solid surfaces, including glass, painted metal, and fabric, that were selected as representative materials, which could potentially be contaminated with a CWA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McPherson, Brian J.; Pan, Feng
2014-09-24
This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperaturemore » and pressure conditions of EGS reservoirs.« less
Modeling the Chemical Effect of Tropopause-penetrating Convection using NEXRAD Observations
NASA Astrophysics Data System (ADS)
Clapp, C.; Anderson, J. G.
2017-12-01
Water vapor in the upper troposphere and lower stratosphere (UTLS) from the tropics to the poles is important both radiatively and chemically. Chemically, water vapor is the dominant source of OH in the lower stratosphere, and increases in water vapor concentrations promote stratospheric ozone loss by raising the reactivity of several key heterogeneous reactions as well as by promoting the growth of reactive surface area. We examine the chemical impact of the convective contribution of boundary layer air to stratospheric chemistry over the mid-latitude United States. Using NEXRAD observations of tropopause penetrating events during the summers of 2004 through 2013 (with approximately 3300 events reaching 390K in potential temperature per year), we calculate the loss of stratospheric ozone due to an average event and the seasonal impact.
NASA Astrophysics Data System (ADS)
Sainio, Carlyn Anne
Copper will be replacing aluminum as the interconnect material in silicon integrated circuits. Chemical mechanical planarization (CMP) in combination with an inlaid metal interconnection scheme has been utilized to pattern copper interconnects. The thesis describes an attempt to understand the electrochemistry of copper in slurries used for CMP. Steady-state electrochemical potential measurements, linear polarization resistance determinations, and potentiodynamic and potentiostatic polarization scans have been used in order to characterize the mechanism by which copper is removed during CMP. Electrochemical measurements were implemented on a rotating disk assembly to simulate conditions during CMP. Experiments were performed on both bulk copper samples and blanket copper thin films sputter deposited onto silicon wafers. Electrochemical potential measurements have been used in conjunction with potential-pH diagrams to determine the possible copper species which are stable during CMP. Electrochemical results were correlated to CMP experiments to determine slurry compositions with optimum potential-pH ranges for copper planarization. The results indicate that such studies present an opportunity to isolate the electrochemical and chemical effects from the mechanical effects in the CMP of metals and to determine the dependencies of each of these effects on the other. CMP of copper was controlled by the removal of native or non-native surface films. High CMP rates were achieved by matching the rates of film formation and copper and film dissolution. During CMP, surface films are abraded, allowing increased dissolution of copper until the surface film reforms. When the surface was indented by abrasive particles, the corrosion rate of the exposed copper increased by two orders of magnitude. Etchants (i.e. ammonia or nitric acid) were necessary for high CMP rates (120-240 nm/min) and to minimize scratching. CMP rates of copper in 1 volume percent NHsb4OH and 0.7 volume percent HNOsb3 with 0.0016 weight percent KMnOsb4 were comparable. Electrochemical characterization can narrow the possible slurry compositions that may be used for polishing. Also, the possibility of implementing electrochemical techniques to detect the endpoint of polishing was investigated. Although electrochemical measurements in ammonia-based slurries did not indicate when tantalum was exposed, similar measurements may be used to determine when polishing pads should be replaced.
PyVCI: A flexible open-source code for calculating accurate molecular infrared spectra
NASA Astrophysics Data System (ADS)
Sibaev, Marat; Crittenden, Deborah L.
2016-06-01
The PyVCI program package is a general purpose open-source code for simulating accurate molecular spectra, based upon force field expansions of the potential energy surface in normal mode coordinates. It includes harmonic normal coordinate analysis and vibrational configuration interaction (VCI) algorithms, implemented primarily in Python for accessibility but with time-consuming routines written in C. Coriolis coupling terms may be optionally included in the vibrational Hamiltonian. Non-negligible VCI matrix elements are stored in sparse matrix format to alleviate the diagonalization problem. CPU and memory requirements may be further controlled by algorithmic choices and/or numerical screening procedures, and recommended values are established by benchmarking using a test set of 44 molecules for which accurate analytical potential energy surfaces are available. Force fields in normal mode coordinates are obtained from the PyPES library of high quality analytical potential energy surfaces (to 6th order) or by numerical differentiation of analytic second derivatives generated using the GAMESS quantum chemical program package (to 4th order).
NASA Astrophysics Data System (ADS)
Hasna, Kudilatt; Lakshmi, Kiran; Ezhuthachan Jayaraj, Madambi Kunjukuttan; Kumar, Kumaran Rajeev; Matham, Murukeshan Vadakke
2016-04-01
Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the thrust research areas that could find potential applications in bio and chemical sensing. We developed colloidal SERS active substrate with excellent sensitivity and high reproducibility using silver nanocube (AgNC) synthesized via the solvothermal method. Finite-difference time-domain simulation was carried out in detail to visualize dipole generation in the nanocube during localized surface plasmon resonance and to locate the respective hot spots in AgNC responsible for the huge Raman enhancement. The prediction is verified by the SERS analysis of the synthesized nanocubes using Rhodamine 6G molecule. An excellent sensitivity with a detection limit of 10-17 M and a very high enhancement factor of 1.2×108 confirms the "hot spots" in the nanocube. SERS activity is also carried out for crystal violet and for food adulterant Sudan I molecule. Finally, label-free DNA detection is performed to demonstrate the versatility of SERS as a potential biosensor.
NASA Astrophysics Data System (ADS)
Witkowska, Justyna; Sowińska, Agnieszka; Czarnowska, Elżbieta; Płociński, Tomasz; Borowski, Tomasz; Wierzchoń, Tadeusz
2017-11-01
Surface layers currently produced on NiTi alloys do not meet all the requirements for materials intended for use in cardiology. Plasma surface treatments of titanium and its alloys under glow discharge conditions make it possible to produce surface layers, such as TiN or TiO2, which increases corrosion resistance and biocompatibility. The production of layers on NiTi alloys with the same properties, and maintaining their shape memory and superelasticity features, requires the use of low-temperature processes. At the same time, since it is known that the carbon-based layers could prevent excessive adhesion and aggregation of platelets, we examined the composite a-CNH + TiO2 type surface layer produced by means of a hybrid method combining oxidation in low-temperature plasma and Radio Frequency Chemical Vapor Deposition (RFCVD) processes. Investigations have shown that this composite layer increases the corrosion resistance of the material, and both the low degree of roughness and the chemical composition of the surface produced lead to decreased platelet adhesion and aggregation and proper endothelialization, which could extend the range of applications of NiTi shape memory alloys.
Characteristics of surface modified Ti-6Al-4V alloy by a series of YAG laser irradiation
NASA Astrophysics Data System (ADS)
Zeng, Xian; Wang, Wenqin; Yamaguchi, Tomiko; Nishio, Kazumasa
2018-01-01
In this study, a double-layer Ti (C, N) film was successfully prepared on Ti-6Al-4V alloy by a series of YAG laser irradiation in nitrogen atmosphere, aiming at improving the wear resistance. The effects of laser irradiation pass upon surface chemical composition, microstructures and hardness were investigated. The results showed that the surface chemicals were independent from laser irradiation pass, which the up layer of film was a mixture of TiN and TiC0.3N0.7, and the down layer was nitrogen-rich α-Ti. Both the surface roughness and hardness increased as raising the irradiation passes. However, surface deformation and cracks happened in the case above 3 passes' irradiation. The wear resistance of laser modified sample by 3 passes was improved approximately by 37 times compared to the as received substrate. Moreover, the cytotoxic V ion released from laser modified sample was less than that of as received Ti-6Al-4V alloy in SBF, suggesting the potentiality of a new try to modify the sliding part of Ti-based hard tissue implants in future biomedical application.
Active colloidal propulsion over a crystalline surface
NASA Astrophysics Data System (ADS)
Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix
2017-12-01
We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.
2010-05-30
supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...With regard to physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass...effects in supercritical fluids , often affecting chemical reaction pathways by facilitating the formation of certain transition states [6]. Because
Animal manures, used as a nitrogen source for crop production, are often associated with negative impacts on nutrient levels in surface water. The concentration of estrogens in streams from these manures is of concern due to potential endocrine disruption in aquatic species. S...
Like most air quality modeling systems, CMAQ divides the treatment of meteorological and chemical/transport processes into separate models run sequentially. A potential drawback to this approach is that it creates the illusion that these processes are minimally interdependent an...
This project focuses on the efficacy of treatment processes at POTWs and CWTs, since discharge of treated wastewater to surface waters provides an opportunity for chemicals found in the effluent to be transported to downstream drinking water intakes.
Pressure- or non-pressure- treated lumber may pose a potential health hazard to children if the children contact certain chemicals in soils around leaching wood structures and/or in dislodgeable residues that may form on the wood surfaces of the structures. A physically-based,...
There is an urgent need to characterize potential risk to human health and the environment that arises from the manufacture and use of tens of thousands of chemicals. Computational tools and approaches for characterizing and prioritizing exposure are required: to provide input f...
Laser surface modification of AZ31B Mg alloy for bio-wettability.
Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B
2015-02-01
Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Geometric phase effects in ultracold chemistry
NASA Astrophysics Data System (ADS)
Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.
2016-05-01
In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).
NASA Astrophysics Data System (ADS)
Arjunan, V.; Saravanan, I.; Marchewka, Mariusz K.; Mohan, S.
Experimental FTIR and FT-Raman spectroscopic analysis of 2-chloro-4-methyl-3-nitropyridine (2C4M3NP) and 2-chloro-6-methylpyridine (2C6MP) have been performed. A detailed quantum chemical calculations have been carried out using B3LYP and B3PW91 methods with 6-311++G** and cc-pVTZ basis sets. Conformation analysis was carried for 2C4M3NP and 2C6MP. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach.
NASA Astrophysics Data System (ADS)
Devasia, Sebin; Anila, E. I.
2018-04-01
Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xiangjian; State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023; Zhang, Zhaojun, E-mail: zhangzhj@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn
2016-03-14
Understanding the role of reactant ro-vibrational degrees of freedom (DOFs) in reaction dynamics of polyatomic molecular dissociation on metal surfaces is of great importance to explore the complex chemical reaction mechanism. Here, we present an expensive quantum dynamics study of the dissociative chemisorption of CH{sub 4} on a rigid Ni(111) surface by developing an accurate nine-dimensional quantum dynamical model including the DOF of azimuth. Based on a highly accurate fifteen-dimensional potential energy surface built from first principles, our simulations elucidate that the dissociation probability of CH{sub 4} has the strong dependence on azimuth and surface impact site. Some improvements aremore » suggested to obtain the accurate dissociation probability from quantum dynamics simulations.« less
Skating on thin ice: surface chemistry under interstellar conditions
NASA Astrophysics Data System (ADS)
Fraser, H.; van Dishoeck, E.; Tielens, X.
Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159
Surface Tension: Mechanics, Thermodynamics, and Relaxation Times
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2018-06-01
A microscopic analysis is presented of the existing definitions of equilibrium surface tension, which can be divided into two types: mechanical and thermodynamic. Each type of definition can be studied from the presentation below according to thermodynamic hypotheses or molecular calculations. An analysis of the planar interface is given and its generalization for curved (spherical) interfaces is considered. The distinction between approaches describing the surface tension of metastable and equilibrium droplets is discussed. Based on nonequilibrium thermodynamics, it is shown that the introduction of metastable droplets is due to a violation of the relationship between the times of impulse and chemical potential relaxation in condensed phases. Problems of calculating the surface tension in nonequilibrium situations are created.
Assessment of the Potential Impacts of Hydraulic Fracturing for ...
This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities: Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation; Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; andWastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water. This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. To assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of s
Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.
2017-08-01
The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability ofmore » mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.« less
Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala
2009-02-06
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 microm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants.
Wu, Chengtie; Ramaswamy, Yogambha; Liu, Xuanyong; Wang, Guocheng; Zreiqat, Hala
2008-01-01
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants. PMID:18664431
Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2017-11-01
The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.
A chemical proteomics approach reveals Hsp27 as a target for proapoptotic clerodane diterpenes.
Faiella, Laura; Piaz, Fabrizio Dal; Bisio, Angela; Tosco, Alessandra; De Tommasi, Nunziatina
2012-10-01
Clerodane diterpenoids are a class of naturally occurring molecules widely distributed in the Lamiaceae family. Neo-clerodane diterpenoids from Salvia ssp were recently described as compounds inhibiting the proliferation of human cancer cell lines. To gain new insights into molecular mechanism(s) underlying the antitumor potential of this class of compounds, we used a chemical proteomics approach to analyse the cellular interactome of hardwickiic acid (HAA) selected as a representative molecule. HAA was linked to an opportune 1,1'-carbonyldiimidazole modified by 1,12-dodecanediamine and then immobilized on a matrix support. The modified beads were then used as bait for fishing the potential partners of HAA in a U937 cell lysate. We identified heat shock protein 27 (Hsp27), an ATP-independent antiapoptotic chaperone characterized for its tumorigenic and metastatic properties and now referenced as a major therapeutic target in many types of cancer, as a major HAA partner. Here, we also report the study of HAA-Hsp27 interaction by means of a panel of chemical and biological approaches, including surface plasmon resonance measurements limited proteolysis, and biochemical assays. Our data suggest that HAA could provide a potential tool to develop strategies for the discovery of Hsp27 chemical inhibitors.
NASA Astrophysics Data System (ADS)
Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Nittler, Larry R.; Peplowski, Patrick N.; Weider, Shoshana Z.; Frank, Elizabeth A.; McCoy, Timothy J.
2017-03-01
Orbital data from the MESSENGER mission to Mercury have facilitated a new view of the planet's structure, chemical makeup, and diverse surface, and have confirmed Mercury's status as a geochemical endmember among the terrestrial planets. In this work, the most recent results from MESSENGER's X-Ray Spectrometer, Gamma-Ray Spectrometer, and Neutron Spectrometer have been used to identify nine distinct geochemical regions on Mercury. Using a variation on the classical CIPW normative mineralogy calculation, elemental composition data is used to constrain the potential mineralogy of Mercury's surface; the calculated silicate mineralogy is dominated by plagioclase, pyroxene (both orthopyroxene and clinopyroxene), and olivine, with lesser amounts of quartz. The range in surface compositions indicate that the rocks on the surface of Mercury are diverse and vary from komatiitic to boninitic. The high abundance of alkalis on Mercury's surface results in several of the nine regions being classified as alkali-rich komatiites and/or boninites. In addition, Mercury's surface terranes span a wide range of SiO2 values that encompass crustal compositions that are more silica-rich than geochemical terranes on the Moon, Mars, and Vesta, but the range is similar to that of Earth. Although the composition of Mercury's surface appears to be chemically evolved, the high SiO2 content is a primitive feature and a direct result of the planet's low oxygen fugacity.
Wang, Alan X.; Kong, Xianming
2015-01-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428
Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L
2015-05-01
Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.
Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J
2010-02-02
Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.
NASA Astrophysics Data System (ADS)
Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.
2004-05-01
Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .
Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun
2017-03-29
Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.
Wang, Alan X; Kong, Xianming
2015-06-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.
Food acid content and erosive potential of sugar-free confections.
Shen, P; Walker, G D; Yuan, Y; Reynolds, C; Stacey, M A; Reynolds, E C
2017-06-01
Dental erosion is an increasingly prevalent problem associated with frequent consumption of acidic foods and beverages. The aim of this study was to measure the food acid content and the erosive potential of a variety of sugar-free confections. Thirty sugar-free confections were selected and extracts analysed to determine pH, titratable acidity, chemical composition and apparent degree of saturation with respect to apatite. The effect of the sugar-free confections in artificial saliva on human enamel was determined in an in vitro dental erosion assay using change in surface microhardness. The change in surface microhardness was used to categorize the confections as high, moderate or low erosive potential. Seventeen of the 30 sugar-free confections were found to contain high concentrations of food acids, exhibit low pH and high titratable acidity and have high erosive potential. Significant correlations were found between the dental erosive potential (change in enamel surface microhardness) and pH and titratable acidity of the confections. Ten of these high erosive potential confections displayed dental messages on the packaging suggesting they were safe for teeth. Many sugar-free confections, even some with 'Toothfriendly' messages on the product label, contain high contents of food acids and have erosive potential. © 2017 Australian Dental Association.
Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger
2016-11-01
All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and gas influx due to gas oversaturation in the aqueous medium.
Chemical and electrical passivation of Si(1 1 1) surfaces
NASA Astrophysics Data System (ADS)
Tian, Fangyuan; Yang, Dan; Opila, Robert L.; Teplyakov, Andrew V.
2012-01-01
This paper compares the physical and chemical properties of hydrogen-passivated Si(1 1 1) single crystalline surfaces prepared by two main chemical preparation procedures. The modified RCA cleaning is commonly used to prepare atomically flat stable surfaces that are easily identifiable spectroscopically and are the standard for chemical functionalization of silicon. On the other hand electronic properties of these surfaces are sometimes difficult to control. A much simpler silicon surface preparation procedure includes HF dipping for a short period of time. This procedure yields an atomically rough surface, whose chemical identity is not well-defined. However, the surfaces prepared by this approach often exhibit exceptionally attractive electronic properties as determined by long charge carrier lifetimes. This work utilizes infrared spectroscopy and X-ray photoelectron spectroscopy to investigate chemical modification of the surfaces prepared by these two different procedures with PCl5 (leading to surface chlorination) and with short- and long-alkyl-chain alkenes (1-decene and 1-octodecene, respectively) and follows the electronic properties of the starting surfaces produced by measuring charge-carrier lifetimes.
Ghobeira, Rouba; Philips, Charlot; Declercq, Heidi; Cools, Pieter; De Geyter, Nathalie; Cornelissen, Ria; Morent, Rino
2017-01-24
For most tissue engineering applications, surface modification and sterilization of polymers are critical aspects determining the implant success. The first part of this study is thus dedicated to modifying polycaprolactone (PCL) surfaces via plasma treatment using a medium pressure dielectric barrier discharge, while the second part focuses on the sterilization of plasma-modified PCL. Chemical and physical surface changes are examined making use of water contact angle goniometry (WCA), x-ray photoelectron spectroscopy and atomic force microscopy. Bioresponsive properties are evaluated by performing cell culture tests. The results show that air and argon plasmas decrease the WCA significantly due to the incorporation of oxygen-containing functionalities onto the PCL surface, without modifying its morphology. Extended treatment times lead to PCL degradation, especially in the case of air plasma. In addition to surface modification, the plasma potential to sterilize PCL is studied with appropriate treatment times, but sterility has not been achieved so far. Therefore, plasma-modified films are subjected to UV, H 2 O 2 plasma (HP) and ethylene oxide (EtO) sterilizations. UV exposure of 3 h does not alter the PCL physico-chemical properties. A decreased wettability is observed after EtO sterilization, attributable to the modification of PCL chain ends reacting with EtO molecules. HP sterilization increases the WCA of the plasma-treated samples, presumably due to the scission of the hydrophilic bonds generated during the prior plasma treatments. Moreover, HP modifies the PCL surface morphology. For all the sterilizations, an improved cell adhesion and proliferation is observed on plasma-treated films compared to untreated ones. EtO shows the lowest proliferation rate compared to HP and UV. Overall, of the three sterilizations, UV is the most effective, since the physical alterations provoked by HP might interfere with the structural integrity when it comes to 3D scaffolds, and the chemical modifications caused by EtO, in addition to its toxicity, interfere with PCL bioactivity.
NASA Astrophysics Data System (ADS)
Ashokraja, C.; Sakar, M.; Balakumar, S.
2017-10-01
We report the hemolysis properties of silver and silver oxide nanoparticles (NPs) prepared by chemical and green-synthesis methods. The prepared silver and silver oxide NPs were analyzed using UV-vis spectroscopy to confirm their formation by characterizing their surface plasmon resonance (SPR) and absorption band peaks respectively. The Fourier transmission infrared (FTIR) spectra of the materials showed the characteristic functional groups corresponding to the molecules present in leaf extracts, which is proposed to be acted as reducing and capping agents that are also found on the surface of silver and silver oxide nanoparticles that synthesized via green-synthesis method. Zeta potential analysis revealed the surface charge and stability of the prepared NPs. HRTEM images showed almost spherical shape nanoparticles with an average size of 15.2 and 31.5 nm for wet chemical synthesized silver and silver oxide nanoparticles respectively. In the case of green synthesized silver and silver oxide nanoparticles, it was observed to be 19.4 and 30.4 nm respectively. The order of hemolysis efficacy of the materials is found to be as follows: chemically synthesized Ag2O> chemically synthesized Ag NPs followed by green-synthesized Ag2O and green-synthesized Ag NPs which showed almost similar hemolysis with respect to concentration. The relatively stable nature of the silver NPs could be attributed to their lower hemolysis efficacy, while the increased lysis properties of silver oxide could be attributed due to reductive/oxidative processes that give rise to the hemolysis through interfacial charge interactions with RBCs.
Growth energetics of germanium quantum dots by atomistic simulation
NASA Astrophysics Data System (ADS)
Wagner, Richard Joseph
Strained epitaxial growth of Ge on Si(001) produces self-assembled, nanometer scale islands, or quantum dots. We study this growth by atomistic simulation, computing the energy of island structures to determine when and how islanding occurs. We also describe experimental methods of island growth and characterization in order to understand the relevant physical processes and to interpret experimental observations for comparison with simulation. We show that pyramidal Ge islands with rebonded step {105} facets are energetically favorable compared to growth of planar Ge (2 x 8) on Si(001). We determine how the chemical potential of these islands varies with size, lateral spacing, and wetting layer thickness. We also illustrate the atomic-level structure of these islands with favorable formation energy. Intermixing can occur between the growing Ge film and the Si substrate. We show that although Ge prefers to wet the surface, entropy drives some fraction into the underlying layers. We present a simple model of intermixing by equilibration of the top crystal layers. The equilibration is performed with a flexible lattice Monte Carlo simulation. Ultimately, intermixing produces a temperature-dependent graded Ge concentration. The resulting chemical potential leads to the onset of islanding after 3-4 monolayers of deposition, consistent with experimental observations. The distribution of island sizes on a surface is determined by the relation of island energy to size. We find that there exists a minimum-energy island size due to the interaction of surface energy and bulk relaxation. Applying the calculated chemical potential to the Boltzmann-Gibbs distribution, we predict size distributions as functions of coverage and temperature. The distributions, with peak populations around 86 000 atoms, compare favorably with experiment. This work explores the driving force in growth of Ge on Si(001). The knowledge derived here explains why islanding occurs and provides guidance for the control of island self-assembly to construct useful microelectronic devices from quantum dots.
Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials
Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.
2012-01-01
Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157
NASA Astrophysics Data System (ADS)
Bolvardi, Beleta; Seyfi, Javad; Hejazi, Iman; Otadi, Maryam; Khonakdar, Hossein Ali; Drechsler, Astrid; Holzschuh, Matthias
2017-02-01
In this study, polystyrene (PS)/titanium dioxide (TiO2) films were fabricated through simple solution casting technique via a modified phase separation process. The presented approach resulted in a remarkable reduction in the required amount of nanoparticles for achieving superhydrophobicity. Scanning electron microscopy (SEM) and 3D confocal microscopy were utilized to characterize surface morphology and topography of samples, respectively. An attempt was made to give an in-depth analysis on the surface rough structure using 3D roughness profiles. It was found that high inclusions of non-solvent and nanoparticles resulted in a stable self-cleaning behavior due to the strong presence of hydrophobic TiO2 nanoparticles on the surface. Quite unexpectedly, low inclusions of nanoparticles and non-solvent also resulted in superhydrophobic property mainly due to the proper level of induced surface roughness. XPS analysis was also utilized to determine the chemical composition of the films' surfaces. The results of falling drop experiments showed that the sample containing a higher level of nanoparticles had a much lower mechanical resistance against the induced harsh conditions. All in all, the presented method has shown promising potential in fabrication of superhydrophobic surfaces with self-cleaning behavior using the lowest content of nanoparticles.
Dong, Baiyan; Jiang, Hongquan; Manolache, Sorin; Wong, Amy C Lee; Denes, Ferencz S
2007-06-19
A simple cold plasma technique was developed to functionalize the surfaces of polyamide (PA) and polyester (PET) for the grafting of polyethylene glycol (PEG) with the aim of reducing biofilm formation. The surfaces of PA and PET were treated with silicon tetrachloride (SiCl4) plasma, and PEG was grafted onto plasma-functionalized substrates (PA-PEG, PET-PEG). Different molecular weights of PEG and grafting times were tested to obtain optimal surface coverage by PEG as monitored by electron spectroscopy for chemical analysis (ESCA). The presence of a predominant C-O peak on the PEG-modified substrates indicated that the grafting was successful. Data from hydroxyl group derivatization and water contact angle measurement also indicated the presence of PEG after grafting. The PEG-grafted PA and PET under optimal conditions had similar chemical composition and hydrophilicity; however, different morphology changes were observed after grafting. Both PA-PEG and PET-PEG surfaces developed under optimal plasma conditions showed about 96% reduction in biofilm formation by Listeria monocytogenes compared with that of the corresponding unmodified substrates. This plasma functionalization method provided an efficient way to graft PEG onto PA and PET surfaces. Because of the high reactivity of Si-Cl species, this method could potentially be applied to other polymeric materials.
Porcelain surface conditioning protocols and shear bond strength of orthodontic brackets.
Lestrade, Ashley M; Ballard, Richard W; Xu, Xiaoming; Yu, Qingzhao; Kee, Edwin L; Armbruster, Paul C
2016-05-01
The objective of the present study was to determine which of six bonding protocols yielded a clinically acceptable shear bond strength (SBS) of metal orthodontic brackets to CAD/CAM lithium disilicate porcelain restorations. A secondary aim was to determine which bonding protocol produced the least surface damage at debond. Sixty lithium disilicate samples were fabricated to replicate the facial surface of a mandibular first molar using a CEREC CAD/CAM machine. The samples were split into six test groups, each of which received different mechanical/chemical pretreatment protocols to roughen the porcelain surface prior to bonding a molar orthodontic attachment. Shear bond strength testing was conducted using an Instron machine. The mean, maximum, minimal, and standard deviation SBS values for each sample group including an enamel control were calculated. A t-test was used to evaluate the statistical significance between the groups. No significant differences were found in SBS values, with the exception of surface roughening with a green stone prior to HFA and silane treatment. This protocol yielded slightly higher bond strength which was statistically significant. Chemical treatment alone with HFA/silane yielded SBS values within an acceptable clinical range to withstand forces applied by orthodontic treatment and potentially eliminates the need to mechanically roughen the ceramic surface.
Long-Term Planetary Habitability and the Carbonate-Silicate Cycle.
Rushby, Andrew J; Johnson, Martin; Mills, Benjamin J W; Watson, Andrew J; Claire, Mark W
2018-05-01
The potential habitability of an exoplanet is traditionally assessed by determining whether its orbit falls within the circumstellar "habitable zone" of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013 ). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long-term concentration controlled by the balance between volcanic outgassing and the sequestration of CO 2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation, and biological (microbial) productivity. We developed a model that incorporates key aspects of Earth's short- and long-term biogeochemical carbon cycle to explore the potential changes in the CO 2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets result in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 and 2 R ⊕ , the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability. Key Words: Planets-Atmospheres-Carbon dioxide-Biogeochemistry. Astrobiology 18, 469-480.