Science.gov

Sample records for surface chemistry investigation

  1. Investigating the surface chemistry of Mars

    SciTech Connect

    Grunthaner, F.J.; Ricco, A.J.; Butler, A.M.; Lane, A.L.; McKay, C.P.; Zent, A.P.; Quinn, R.C.; Murray, B.; Klein, H.P.; Levin, G.V.; Terhune, R.W.; Homer, M.L.; Ksendzov, A.; Niedermann, P.

    1995-10-01

    One of the primary objectives of the Viking missions to Mars in the 1970s was to search for life. Numerous theories were put forth to explain the Viking data, most of which involved an oxidizing species in the Martian surface material. In December 1992, the Mars Oxidant Experiment (MOx) was selected as the U.S. contribution to the Russian Mars 96 mission. Two landers are scheduled for launch in November 1996 and should arrive at Mars in September 1997. The MOx instrument on the Russian lander is designed to investigate the chemical nature of the Martian surface material, with particular emphasis on its oxidative character. The instrument uses fiber-optic technology to monitor real-time physicochemical changes in a suite of chemically sensitive thin-film materials. This report describes the scientific rationale and basis for the MOx instrument, along with the details of its design and construction. 15 refs., 4 figs., 1 tab.

  2. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  3. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions.

    PubMed

    Flemmer, Michael M; Ham, Jason E; Wells, J R

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with alpha-terpineol on a vinyl surface over 72 h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with alpha-terpineol were collected from both zero and 100 ppb (parts per 10(9)) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100 ppb (over 339 h) provided a pooled standard deviation of 1.65 ppb and a 95% tolerance of 3.3 ppb. Humidity data from 17 experiments at 50% relative humidity (over 664 h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300 ml/min (over 548 h) provided a pooled standard deviation of 3.02 ml/min and a 95% tolerance range of 6.03 ml/min. Initial experimental results yielded long term emissions of ozone/alpha-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  4. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    NASA Astrophysics Data System (ADS)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  5. Investigating playa surface textures: The impact of chemistry and environment on surface morphology and dust

    NASA Astrophysics Data System (ADS)

    Tollerud, H. J.; Fantle, M. S.

    2010-12-01

    Mineral dust is an important component of geochemical cycles, but its impact on those cycles is not thoroughly understood. For instance, dust inputs to the ocean have been suggested to affect the iron cycle by stimulating natural iron fertilization, which then could modify climate. The influence of dust on geochemical cycles is determined by the chemical and mineralogical composition of dust inputs, which is governed in turn by the composition of dust source regions. A loose, unconsolidated surface texture is more easily ablated by wind, and so a location where composition and environmental characteristics encourage this type of surface is more likely to produce dust and influence geochemical cycles. Also, if evaporation concentrates evaporites such as calcite at the surface of a dust producing region, dust Ca concentrations are likely to be higher. Playas can be regionally significant dust source regions, and they are amenable to study as their surface textures often vary significantly across small areas. This study investigates surface processes experimentally, and compares the results to observations of surface texture in a natural playa system (the Black Rock Desert, Nevada). We dry surfaces with 25% to 75% clay and quartz at 40°C for approximately a day, wet the surface to simulate rain, and then repeat the cycle multiple times. We estimate surface roughness, measure surface strength with a penetrometer, and investigate thermal characteristics with an IR camera (wavelength range 8-12μm). We find that textures similar to those in playas can be reproduced with cycles of wetting and drying, such as might occur in an arid environment with intermittent rain. We investigate the addition of calcite and halite, since their precipitation potentially can disrupt the clay surfaces through the formation and expansion of crystals, thereby linking the chemical composition with the disruption of a strong surface texture and an increased chance of dust production. In the

  6. Impact of surface chemistry

    PubMed Central

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  7. Impact of surface chemistry.

    PubMed

    Somorjai, Gabor A; Li, Yimin

    2011-01-18

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas-solid, liquid-solid, and solid-solid interfaces under reaction conditions are emphasized.

  8. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  9. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    SciTech Connect

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical

  10. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    SciTech Connect

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; Contreras, Miguel; Weng, Tsu -Chien; Mansfield, Lorelle; Hurst, Katherine E.; Dameron, Arrelaine; Ramanathan, Kannan; Prendergast, David; Christensen, Steven T.

    2016-11-10

    The surface and near surface structure of the copper-indium-gallium-selenide (CIGS) absorber layer is integral to producing of a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigate the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces a normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (~19%). Finally, the results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.

  11. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE PAGES

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...

    2016-11-10

    The surface and near surface structure of the copper-indium-gallium-selenide (CIGS) absorber layer is integral to producing of a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigate themore » effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces a normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (~19%). Finally, the results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  12. A solid phase extraction based non-disruptive sampling technique to investigate the surface chemistry of macroalgae.

    PubMed

    Cirri, Emilio; Grosser, Katharina; Pohnert, Georg

    2016-01-01

    The surface chemistry of aquatic organisms determines their biotic interactions. Metabolites in the spatially limited laminar boundary layer mediate processes, such as antifouling, allelopathy and chemical defense against herbivores. However, very few methods are available for the investigation of such surface metabolites. An approach is described in which surfaces are extracted by means of C18 solid phase material. By powdering wet algal surfaces with this material, organic compounds are adsorbed and can be easily recovered for subsequent liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS) investigations. The method is robust, picks up metabolites of a broad polarity range and is easy to handle. It is more universal compared to established solvent dipping protocols and it does not cause damage to the test organisms. A protocol is introduced for the macroalgae Fucus vesiculosus, Caulerpa taxifolia and Gracilaria vermiculophylla, but it can be easily transferred to other aquatic organisms.

  13. Investigating unusual organic functional groups to engineer the surface chemistry of mesoporous silica to tune CO2-surface interactions.

    PubMed

    Bloch, Emily; Besson, Eric; Queyroy, Séverine; Llewellyn, Richard; Gastaldi, Stéphane; Llewellyn, Philip L

    2017-04-04

    As the search for functionalized materials for CO2 capture continues, the role of theoretical chemistry is becoming more and more central. In this work, a strategy is proposed where ab initio calculations are compared and validated by adsorption microcalorimetry experiments for a series of, so far unexplored, functionalized SBA-15 silicas with different spacers (aryl, alkyl) and terminal functions (N3, NO2). This validation then permitted to propose the use of a nitro-indole surface functionality. After synthesis of such a material the predictions were confirmed by experiment. This confirms that it is possible to fine tune CO2-functional interactions at energies much lower than those observed with amine species.

  14. Interstellar Grain Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Chemistry on grain surfaces plays an Important role in the formation of interstellar Ices, It can also influence the composition of the gas phase through outgassing near luminous, newly formed stars. This paper reviews the chemical processes taking place on Interstellar grain surfaces with the emphasis on those transforming CO into other hydrocarbons. At low, molecular cloud temperatures (approximately equal to 10K), physisorption processes dominate interstellar grain surface chemistry and GO is largely hydrogenated through reactions with atomic H and oxidized through reactions with atomic O. The former will lead to the formation of H2CO and CH3OH ices, while the latter results in CO2 ice. The observational evidence for these ices in molecular clouds will be discussed. Very close to protostars, the gas and grain temperatures are much higher (approximately equal to 500K) and chemisorption processes, including catalytic surface reactions, becomes important. This will be illustrated based upon our studies of the Fischer-Tropsch Synthesis of CH4 from CO on metallic surfaces. Likely, this process has played an important role in the early solar nebula. Observational consequences will be pointed out.

  15. Investigation of pyrite oxidation by hexavalent chromium: solution species and surface chemistry.

    PubMed

    Demoisson, Frédéric; Mullet, Martine; Humbert, Bernard

    2007-12-15

    Pyrite oxidation processes by aqueous Cr(VI) were investigated at 25 degrees C under an argon atmosphere. Synthetic pyrite suspensions (6 g L(-1)) were reacted for 20 h with a range of Cr(VI) solutions from 0 to 700 microM and at pH 2-12. The main objective of this work was to investigate the reaction mechanisms by emphasizing the role of sulfur species. Aqueous chemical processes were well illustrated in acidic media where significant amounts of sulfate and iron species were determined. Sulfate anions are the final stable sulfur species involved in the reaction pathway. Experiments showing complete Cr(VI) removal from solution displayed ratios [S(VI)]/[Fe](tot)<2, probably due to a deficit in aqueous sulfur species. Experiments showing incomplete Cr(VI) removal displayed ratios [Cr(VI)](removed)/[S(VI)] close to 1.5. This ratio was found to be consistent with the formation of thiosulfate (S(2)O(2-)(3)). Thiosulfate ions disproportionated into elemental sulfur S(0) and tetrathionate ions (S(4)O(2-)(6)) that were finally oxidized to sulfate anions under acidic conditions. The distribution of the oxidation state of sulfur atoms at the pyrite surface determined by XPS was additional evidence for the multistep sulfur oxidation process. The presence of elemental sulfur in the S(2p) spectra correlated well with the disproportion of thiosulfate under acidic conditions.

  16. Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials

    SciTech Connect

    Destaillats, Hugo; Fisk, William J.

    2010-02-01

    Chemical reactions involving ozone of outdoor origin and indoor materials are known to be significant sources of formaldehyde and other irritant gas-phase oxidation products in the indoor environment. HVAC filters are exposed to particularly high ozone concentrations--close to outdoor levels. In this study, we investigated chemical processes taking place on the surface of filters that included fiberglass, polyester, cotton/polyester blend and synthetic (e.g., polyolefin) filter media. Ozone reactions were studied on unused filter media, and on filters that were deployed for 3 months in two different locations: at the Lawrence Berkeley National Laboratory and at the Port of Oakland. Specimens from each filter were exposed to ozone under controlled conditions in a laboratory flow tube at a constant flow of dry or humidified air (50percent relative humidity). Ozone was generated with a UV source upstream of the flow tube, and monitored using a photometric detector. Ozone breakthrough curves were recorded for each sample exposed to ~;;150 ppbv O3 for periods of ~;;1000 min, from which we estimated their uptake rate. Most experiments were performed at 1.3 L/min (corresponding to a face velocity of 0.013 m/s), except for a few tests performed at a higher airflow rate, to obtain a face velocity of 0.093 m/s, slightly closer to HVAC operation conditions. Formaldehyde and acetaldehyde, two oxidation byproducts, were collected downstream of the filter and quantified. Emissions of these volatile aldehydes were consistently higher under humidified air than under dry conditions, at which levels were near the limit of detection. Our results confirm that there are significant reactions of ozone as air containing ozone flows through HVAC filters, particularly when the filters are loaded with particles and the air is humidified. The amount of ozone reacted was not clearly related to the types of filter media, e.g., fiberglass versus synthetic. Specific fiberglass filters that were

  17. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    formation of surface silica species and follow the formation of phosphate species, respectively, while cross-polarization magic-angle spinning (CP/MAS) 29Si and 31P NMR have provided information about low intensity NMR peaks due to various silicon- and phosphorus-species present in the vicinity of associated protons on the surface of in vitro reacted BioglassRTM materials. The solid-state NMR investigations of the "interfacial" surface reactions of BioglassRTM materials are discussed in the context of the structure of these materials and the influence of this structure on the kinetics and the mechanism of their "interfacial" surface chemistry. (Abstract shortened by UMI.) BioglassRTM, trademark, University of Florida, Gainesville, FL, 32611.

  18. Cavity ring-down spectroscopy with an automated control feedback system for investigating nitrate radical surface chemistry reactions

    PubMed Central

    Flemmer, Michael M.; Ham, Jason E.

    2015-01-01

    Nitrate radical (NO3•) surface chemistry of indoor environments has not been well studied due to the difficulty in generating and maintaining NO3• at low concentrations for long term exposures. This article presents the Surface Chemistry Reactant Air Delivery and Experiment System (SCRADES), a novel feedback controlled system developed to deliver nitrate radicals at specified concentrations (50–500 ppt, ±30 ppt) and flow rates (500–2000 ml min−1) to a variety of indoor surfaces to initiate reaction chemistry for periods of up to 72 h. The system uses a cavity ring-down spectrometer (CRDS), with a detection limit of 1.7 ppt, to measure the concentration of NO3• supplied to a 24 l experiment chamber. Nitrate radicals are introduced via thermal decomposition of N2O5 and diluted with clean dry air until the desired concentration is achieved. Additionally, this article addresses details concerning NO3• loss through the system, consistency of the NO3• concentration delivered, and stability of the CRDS cavity over long exposure durations (72 h). PMID:22938328

  19. Visualizing Chemistry: Investigations for Teachers.

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Ealy, James L., Jr.

    This book contains 101 investigations for chemistry classrooms. Topics include: (1) Physical Properties; (2) Reactions of Some Elements; (3) Reactions Involving Gases; (4) Energy Changes; (5) Solutions and Solubility; (6) Transition Metals and Complex Ions; (7) Kinetics and Equilibrium; (8) Acids and Bases; (9) Oxidation-Reduction; (10)…

  20. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity

    SciTech Connect

    Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.; Nash, Connor; Steirer, K. Xerxes; Clark, Jared; Robichaud, David J.; Ruddy, Daniel A.

    2016-01-21

    Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo2C) for the deoxygenation of acetic acid, an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.

  1. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity

    DOE PAGES

    Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.; ...

    2016-01-21

    Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo2C) for the deoxygenation of acetic acid, anmore » abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less

  2. Surface chemistries for antibody microarrays

    SciTech Connect

    Seurynck-Servoss, Shannon L.; Baird, Cheryl L.; Rodland, Karin D.; Zangar, Richard C.

    2007-05-01

    Enzyme-linked immunosorbent assay (ELISA) microarrays promise to be a powerful tool for the detection of disease biomarkers. The original technology for printing ELISA microarray chips and capturing antibodies on slides was derived from the DNA microarray field. However, due to the need to maintain antibody structure and function when immobilized, surface chemistries used for DNA microarrays are not always appropriate for ELISA microarrays. In order to identify better surface chemistries for antibody capture, a number of commercial companies and academic research groups have developed new slide types that could improve antibody function in microarray applications. In this review we compare and contrast the commercially available slide chemistries, as well as highlight some promising recent advances in the field.

  3. Surface chemistry in photodissociation regions

    NASA Astrophysics Data System (ADS)

    Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.

    2016-06-01

    Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.

  4. Surface chemistry of liquid metals

    NASA Technical Reports Server (NTRS)

    Mann, J. Adin, Jr.; Peebles, Henry; Peebles, Diamond; Rye, Robert; Yost, Fred

    1993-01-01

    The fundamental surface chemistry of the behavior of liquid metals spreading on a solid substrate is not at all well understood. Each of these questions involves knowing the details of the structure of interfaces and their dynamics. For example the structure of a monolayer of tin oxide on pure liquid tin is unknown. This is in contrast to the relatively large amount of data available on the structure of copper oxide monolayers on solid, pure copper. However, since liquid tin has a vapor pressure below 10(exp -10)torr for a reasonable temperature range above its melting point, it is possible to use the techniques of surface science to study the geometric, electronic and vibrational structures of these monolayers. In addition, certain techniques developed by surface chemists for the study of liquid systems can be applied to the ultra-high vacuum environment. In particular we have shown that light scattering spectroscopy can be used to study the surface tension tensor of these interfaces. The tin oxide layer in particular is very interesting in that the monolayer is rigid but admits of bending. Ellipsometric microscopy allows the visualization of monolayer thick films and show whether island formation occurs at various levels of dosing.

  5. Influence of pH and Surface Chemistry on Poly(L-lysine) Adsorption onto Solid Supports Investigated by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Choi, Jae-Hyeok; Kim, Seong-Oh; Linardy, Eric; Dreaden, Erik C; Zhdanov, Vladimir P; Hammond, Paula T; Cho, Nam-Joon

    2015-08-20

    Poly(L-lysine) (PLL) adsorption onto various materials has been widely applied as a surface modification strategy and layer-by-layer fabrication method. Considering the role of electrostatic charges, a detailed understanding of the influence of solution pH on PLL adsorption process is important for optimization of PLL coating protocols. Herein, PLL adsorption onto different polar and hydrophilic substrates—silica, an amine-terminated self-assembled monolayer (SAM) on gold, and a carboxyl-terminated SAM on gold—across a range of pH conditions was investigated using the quartz crystal microbalance with dissipation. The adsorption kinetics consisted of an initial rapid phase, followed by a second phase where adsorption rate gradually decelerated. These features were interpreted by applying a mean-field kinetic model implying diffusion-limited adsorption in the first phase and reconfiguration of adsorbed PLL molecules in the second phase. The adsorption kinetics and uptake were found to be sensitive to the pH condition, surface chemistry, and flow rate. The strongest PLL adsorption occurred at pH 11 on all three surfaces while weak PLL adsorption generally occurred under acidic conditions. The surface morphology and roughness of adsorbed PLL layers were investigated using atomic force microscopy, and strong PLL adsorption is found to produce a uniform and smooth adlayer while weak adsorption formed a nonuniform and rough adlayer.

  6. Chemistry. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 19 chemistry investigations found in the student manual. These investigations focus on concepts related to:…

  7. Surface Chemistry Enhanced Microbial Bioelectrocatalysis

    PubMed Central

    Santoro, Carlo; Babanova, Sofia; Artyushkova, Kateryna; Cornejo, Jose’ A.; Ista, Linnea; Bretschger, Orianna; Marsili, Enrico; Atanassov, Plamen; Schuler, Andrew J.

    2016-01-01

    Self-assembled monolayers (SAMs) modified gold anodes are used in single chamber microbial fuel cells (SCMFC) for organics removal and electricity generation. Hydrophilic (−N(CH3)3+, −OH, −COOH) and hydrophobic (−CH3) SAMs are examined for their effect on bacterial attachment, current and power output. The different substratum chemistry affects both the current and power output and the community composition of the electrochemically active biofilm formed. Of the four SAM-modified anode tested, −N(CH3)3+ results in shortest start up time, highest single electrode polarization and power density, followed by −OH and –COOH SAMs. Hydrophobic SAM decreases bacteria attachment and anodes performance in comparison to hydrophilic SAMs. Electron transfer rate is faster on the N(CH3)3+-surface than on other surfaces, and correlates with a high abundance of δ-Proteobacteria, including electrochemically active species. A consortium of Clostridia and δ-Proteobacteria is found on all the anode surfaces, suggesting a synergistic cooperation under anodic conditions. PMID:26025340

  8. Chemistry. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 19 chemistry investigations. These investigations focus on concepts related to: interactions with water; salt and calcium;…

  9. Surface Raman spectroscopy as a probe of surface chemistry

    NASA Astrophysics Data System (ADS)

    Child, Craig M.; Foster, Michelle; Ivanecky, J. E., III; Perry, Scott S.; Campion, Alan

    1995-09-01

    Unenhanced surface Raman spectroscopy has been used to study the chemistry of polymers adsorbed on solid surfaces and the chemical enhancement mechanism of surface-enhanced Raman scattering. The adsorption and reactions of the polyimide monomers pyromellitic dianhydride (PMDA) and oxydianiline on silver, copper and silicon surfaces under ultrahigh vacuum have been investigated. These include both nondissociative physisorption and dissociative chemisorption of the monomers, and the condensation polymerization to form adsorbed polyimide. The intermediate polyamic acid is detected for the first time in a surface experiment. PMDA adsorbed on Cu(111) shows chemical enhancement in the absence of electromagnetic enhancement. High resolution electron energy loss spectroscopy has revealed a strong charge transfer absorption near the Raman excitation frequency. This observation provides strong support for a proposed resonance Raman chemical enhancement mechanism.

  10. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  11. Chemistry of the Burning Surface

    DTIC Science & Technology

    1993-10-12

    control voltage of the Pt filament is highly terial. This chemistry cannot be extracted by slowly heat- sensitive to the thermochemistry of the thin...azines. the residues formed at teach iernperature ’)ascd ýucli as melon, arc known to be thcriaalLv -.) tile absorhanice value ot ouhgaseous prod

  12. Magmatic and fragmentation controls on ash surface chemistry

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; Ayris, P. M.; Diplas, S.; Damby, D. E.; Hornby, A. J.; Delmelle, P.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    The chemical effects of silicate ash particles ejected by explosive volcanic eruptions on biotic and abiotic systems are fundamentally mediated by ash particle surfaces. Ash surface properties can be presumed to be functions of magmatic state and fragmentation processes, as well as in-plume and atmospheric alteration by volcanic and/or environmental gases and liquid aerosols. Recently, attention has been focussed on the capacity of alteration processes to shape ash surfaces, with the chemistry and mineralogy of the pre-existing ash surface presumed to be equivalent to those of the bulk particle, or even of the ash deposit. Here we present findings which highlight the influence of magma composition and fragmentation mechanisms on ash surfaces. We conducted rapid decompression experiments at varying temperature and pressure conditions on porous andesitic rocks to produce fragmented ash materials, untouched by secondary alteration. These materials were compared to samples produced by crushing of clasts from the same experiments. The bulk chemistry and surface mineralogy of ash particles from a selected size fraction (63-90 μm) was determined via XRF, SEM-BSE, and EPMA, while the surface chemistry (<10 nm) was investigated by X-ray photoelectron spectroscopy (XPS). We identify similar disparities between whole-rock and surface chemistry as identified in previous ash studies, demonstrating ash surface chemistry to be a product of surface generation mechanisms, in addition to alteration. We observe dependences on both fragmentation pressure and temperature of ash surface chemistry. The mechanisms, pressure and temperature of magma fragmentation may thus influence ash surface chemistry and mineralogy, and subsequently, the post-eruptive alteration of ash particles and their reactivity within biotic and abiotic systems.

  13. Switching surface chemistry with supramolecular machines.

    PubMed

    Bunker, Bruce C; Huber, Dale L; Kushmerick, James G; Dunbar, Timothy; Kelly, Michael; Matzke, Carolyn; Cao, Jianguo; Jeppesen, Jan O; Perkins, Julie; Flood, Amar H; Stoddart, J Fraser

    2007-01-02

    Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved pi-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

  14. The EDM surface: Topography, chemistry, and metallurgy

    SciTech Connect

    Fuller, J.E.

    1991-01-01

    The surface created by the electric discharge machining (EDM) process is of special interest because it has been shown to have a negative effect on the fatigue properties of many alloys. An understanding of the surface metallurgy and chemistry is important in predicting those alloys which are most susceptible to failure. Remedial actions, including thickness minimization, alteration, or removal of the surface layer are addressed.

  15. Laboratory Investigations of Stratospheric Halogen Chemistry

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. Michael; Stickel, Robert E.; Hynes, Anthony J.

    1997-01-01

    A final report for the NASA-supported project on laboratory investigations of stratospheric halogen chemistry is presented. In recent years, this project has focused on three areas of research: (1) kinetic, mechanistic, and thermochemical studies of reactions which produce weakly bound chemical species of atmospheric interest; (2) development of flash photolysis schemes for studying radical-radical reactions of stratospheric interest; and (3) photochemistry studies of interest for understanding stratospheric chemistry. The first section of this paper contains a discussion of work which has not yet been published. All subsequent chapters contain reprints of published papers that acknowledge support from this grant.

  16. SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY

    PubMed Central

    Thevenot, Paul; Hu, Wenjing; Tang, Liping

    2011-01-01

    Implantable medical devices are increasingly important in the practice of modern medicine. Unfortunately, almost all medical devices suffer to a different extent from adverse reactions, including inflammation, fibrosis, thrombosis and infection. To improve the safety and function of many types of medical implants, a major need exists for development of materials that evoked desired tissue responses. Because implant-associated protein adsorption and conformational changes thereafter have been shown to promote immune reactions, rigorous research efforts have been emphasized on the engineering of surface property (physical and chemical characteristics) to reduce protein adsorption and cell interactions and subsequently improve implant biocompatibility. This brief review is aimed to summarize the past efforts and our recent knowledge about the influence of surface functionality on protein:cell:biomaterial interactions. It is our belief that detailed understandings of bioactivity of surface functionality provide an easy, economic, and specific approach for the future rational design of implantable medical devices with desired tissue reactivity and, hopefully, wound healing capability. PMID:18393890

  17. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  18. Anisotropic surface chemistry of crystalline pharmaceutical solids.

    PubMed

    Heng, Jerry Y Y; Bismarck, Alexander; Williams, Daryl R

    2006-10-06

    The purpose of this study was to establish the link between the wetting behavior of crystalline pharmaceutical solids and the localized surface chemistry. A range of conventional wetting techniques were evaluated and compared with a novel experimental approach: sessile drop contact angle measurements on the individual facets of macroscopic (>1 cm) single crystals. Conventional measurement techniques for determining surface energetics such as capillary rise and sessile drops on powder compacts were found not to provide reliable results. When the macroscopic crystal approach was used, major differences for advancing contact angles, theta(a), of water were observed-as low as 16 degrees on facet (001) and as high as 68 degrees on facet (010) of form I paracetamol. theta(a) trends were in excellent agreement with X-ray photoelectron spectroscopy surface composition and known crystallographic structures, suggesting a direct relationship to the local surface chemistry. Inverse gas chromatography (IGC) was further used to probe the surface properties of milled and unmilled samples, as a function of particle size. IGC experiments confirmed that milling exposes the weakest attachment energy facet, with increasing dominance as particle size is reduced. The weakest attachment energy facet was also found to exhibit the highest theta(a) for water and to be the most hydrophobic facet. This anisotropic wetting behavior was established for a range of crystalline systems: paracetamol polymorphs, aspirin, and ibuprofen racemates. theta(a) was found to be very sensitive to the local surface chemistry. It is proposed that the hydrophilicity/hydrophobicity of facets reflects the presence of functional groups at surfaces to form hydrogen bonds with external molecules.

  19. Surface chemistry of carbon dioxide revisited

    NASA Astrophysics Data System (ADS)

    Taifan, William; Boily, Jean-François; Baltrusaitis, Jonas

    2016-12-01

    This review discusses modern developments in CO2 surface chemistry by focusing on the work published since the original review by H.J. Freund and M.W. Roberts two decades ago (Surface Science Reports 25 (1996) 225-273). It includes relevant fundamentals pertaining to the topics covered in that earlier review, such as conventional metal and metal oxide surfaces and CO2 interactions thereon. While UHV spectroscopy has routinely been applied for CO2 gas-solid interface analysis, the present work goes further by describing surface-CO2 interactions under elevated CO2 pressure on non-oxide surfaces, such as zeolites, sulfides, carbides and nitrides. Furthermore, it describes additional salient in situ techniques relevant to the resolution of the interfacial chemistry of CO2, notably infrared spectroscopy and state-of-the-art theoretical methods, currently used in the resolution of solid and soluble carbonate species in liquid-water vapor, liquid-solid and liquid-liquid interfaces. These techniques are directly relevant to fundamental, natural and technological settings, such as heterogeneous and environmental catalysis and CO2 sequestration.

  20. Chemistry in the near-surface atmosphere at Ganymede

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.

    2013-09-01

    Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy satellites in the Jovian and Kronian systems are of great importance for assessing the biological potential of these satellites. Depending on the satellite mass the formation of the rarefied exosphere with the relatively dense near-surface layer is possible as, for example, in the case of the relatively heavy Galilean satellites Europa and Ganymede in the Jovian system [1-3]. Ganymede is of special interest, because observations indicate that Ganymede has a significant O2 near - surface atmosphere, probably subsurface ocean, and is the only satellite with its own magnetosphere. Processes of formation of the rarefied gaseous envelope of Ganymede and chemical exchange between atmosphere and icy surface will be considered. The water vapour is usually the domin ant parent species in such gaseous envelope because of the ejection from the satellite icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface. The photochemis try of water vapour in the near - surface atmospheric layer [4] and the radiolysis of icy regolith [5] result in the supplement of the atmosphere by an admixture of H2, O2, OH and O. Returning molecules have species-dependent behaviour on contact with icy surface of the satellite and non-thermal energy distributions for the chemical radicals. The H2 and O2 molecules stick with very low efficiency and are immediately desorbed thermally, but returning H2O, OH, H and O stick to the grains in the icy regolith with unit efficiency. The suprathermal radicals OH, H, and O entering the regolith can drive the surface chemistry. The numerical kinetic model to investigate on the molecular level the chemistry of the atmosphere - surface interface of the rarefied Н2О-dominant gaseous envelope at Ganymede was developed. Such numerical model simulates the gas-phase and diffusive surface

  1. Carbon Dioxide Chemistry on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Cable, M. L.; Malaska, M. J.; Vu, T. H.

    2015-12-01

    The surfaces of the moons of the outer Solar System are usually considered too cold (30-100 K) for significant chemistry to occur without the input of energy from exogenic sources (such as charged particles or VUV irradiation). In particular, Titan's thick atmosphere prevents significant amounts of high energy radiation from reaching the surface, limiting opportunities for surface chemical reactivity. Recently, we have identified carbamation, the reaction of carbon dioxide with primary amines to form carbamic acids, as a reaction that could occur thermally on Titan's surface. Amines should be present on Titan's surface, formed by photochemical reactions of N2 and CH4 in the upper atmosphere, and amine-containing molecules have been detected as a component of laboratory tholins made in terrestrial laboratories. There is some spectral evidence that CO2 is present on the surface, and CO2 has been definitively identified in the atmosphere. We use a combination of micro-Raman spectroscopy and UHV FTIR spectroscopy to examine the reaction products and kinetics of the carbamation reaction for a variety of primary amines. The reaction occurs readily at Titan surface temperatures (94 K), and leads to both carbamic acids and ammonium carbamate salts. Our kinetic data can be used to estimate the lifetime of CO2 on Titan's surface, and thus constrain the age of possible CO2-bearing cryovolcanic deposits.

  2. Contraband drug surface chemistry at nanogram levels

    NASA Astrophysics Data System (ADS)

    Homstead, Juliana; Poziomek, Edward J.

    1997-02-01

    The surface chemistry of contraband drugs is very important in many detection techniques. It is also important in choosing materials for sampling and sample handling. The chemical nature of surfaces may facilitate drug decomposition or serve to stabilize the drugs. We have developed a simple technique to study the chemistry of contraband drugs such as cocaine HCl at nanogram levels. The normal operating modes of an IONSCAN 400 ion mobility spectrometer were adjusted to allow the chemistry of the drugs to be examined in the sample chamber of the spectrometer. For example, a membrane with deposited drug is held in the sample chamber at a specified temperature up to 20 seconds with no air flow. An ON-OFF valve was placed in- line just before the carrier gas enters the desorption chamber where samples are heated. This modification allows the gas flow to be manually turned off while the sample is being heated. We have used this technique to examine the pyrolysis of cocaine hydrochloride under a variety of conditions. At the end of the designated reaction time, the air flow is turned on allowing the reaction products and any starting materials to flow into the spectrometer for analysis. This technique has allowed studies of the stability of the drugs at various temperatures on different surfaces. For example, evidence was obtained of cocaine HCl decomposition at 75 degrees for 5 seconds using Teflon as the support material. The use of this technique has also assisted us in choosing materials for pyrolysis studies in which the goal is the decompose target drugs quickly and efficiently for detection applications.

  3. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Palimi, M. J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B.

    2014-11-01

    Fe2O3 nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles.

  4. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  5. Surface chemistry and mineralogy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Banin, A.; Clark, B. C.; Waenke, H.

    1992-01-01

    The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.

  6. Surface-confined supramolecular coordination chemistry.

    PubMed

    Lin, Nian; Stepanow, Sebastian; Ruben, Mario; Barth, Johannes V

    2009-01-01

    The non-covalent synthesis of coordination compounds and networks provides promising avenues towardsmetal-containing supermolecules and nanostructured materials with ultimate feature definition. An importantfactor for their further development, and their integration and exploitation in nanoscale functional systems,is the capability to prepare or organize them at well-defined substrates or templated environments. Supramolecularengineering on atomistically controlled surfaces has been propelled by the direct insight into low-dimensionalcoordination systems provided by scanning tunneling microscopy observations. Here we discuss the principlesof surface-confined supramolecular coordination chemistry, emphasizingself-assembly protocols conducted on surface atomic lattices employing metal centers to direct the organizationof molecular ligands and the template-induced organization of prefabricated metallosupramolecular species.The presented exemplary molecular-level studies elucidate the arrangement of organic adsorbates and transitionmetal adatoms on low-index metal and graphite surfaces. They reveal the interplay between molecule-adatom,intermolecular, and adsorbate-substrate interactions, which need to be balanced for the fabricationof low-dimensional nanostructures. The control and understanding of both the nature of metal-ligandinteractions and the resulting supramolecular organization on solid surfaces is decisive for the designof advanced architectures with concomitant functions. The realized metallosupramolecular compounds andarrays combine the properties of their constituent metal ions and organic ligands, and feature versatilestructural characteristics as well as attractive functional aspects: their redox, magnetic, spin-state,and electronic transitions.

  7. Surface-Confined Supramolecular Coordination Chemistry

    NASA Astrophysics Data System (ADS)

    Lin, Nian; Stepanow, Sebastian; Ruben, Mario; Barth, Johannes V.

    The non-covalent synthesis of coordination compounds and networks provides promising avenues towards metal-containing supermolecules and nanostructured materials with ultimate feature definition. An important factor for their further development, and their integration and exploitation in nanoscale functional systems, is the capability to prepare or organize them at well-defined substrates or templated environments. Supramolecular engineering on atomistically controlled surfaces has been propelled by the direct insight into low-dimensional coordination systems provided by scanning tunneling microscopy observations. Here we discuss the principles of surface-confined supramolecular coordination chemistry, emphasizing self-assembly protocols conducted on surface atomic lattices employing metal centers to direct the organization of molecular ligands and the template-induced organization of prefabricated metallosupramolecular species. The presented exemplary molecular-level studies elucidate the arrangement of organic adsorbates and transition metal adatoms on low-index metal and graphite surfaces. They reveal the interplay between molecule-adatom, intermolecular, and adsorbate-substrate interactions, which need to be balanced for the fabrication of low-dimensional nanostructures. The control and understanding of both the nature of metal-ligand interactions and the resulting supramolecular organization on solid surfaces is decisive for the design of advanced architectures with concomitant functions. The realized metallosupramolecular compounds and arrays combine the properties of their constituent metal ions and organic ligands, and feature versatile structural characteristics as well as attractive functional aspects: their redox, magnetic, spin-state, and electronic transitions.

  8. An investigation of the surface chemistry of crown ethers: the adsorption and reaction of 12-crown-4 on palladium ( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Azad, S.; Laack, B.; Tysoe, W. T.

    2002-01-01

    The adsorption of 12-crown-4 on Pd(1 1 1) is investigated using reflection-absorption infrared spectroscopy and temperature-programmed desorption. Analysis of the infrared spectrum of 12-crown-4 suggests that it adsorbs in a flat-lying geometry with C 4v symmetry with a saturation coverage of 0.073±0.008 monolayers. This implies that the crown ether bonds to the surface via the lone pair orbitals on the ether oxygen atoms. Estimating the saturation coverage for this geometry using Van der Waals' radii yields a value of 0.088 monolayers in good agreement with the measured value. 12-crown-4 thermally decomposes to leave predominantly CO and ethylidyne species on the surface where the desorbing CO removes three of the four crown ether oxygen atoms, the fourth remaining on the surface. Small amounts of ethylene are also found to desorb along with a high molecular weight product which is tentatively assigned to the formation of C 2H 5OCH 2CHO.

  9. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    DTIC Science & Technology

    2015-06-23

    AFRL-OSR-VA-TR-2015-0191 Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters Michael Duncan UNIVERSITY OF GEORGIA RESEARCH...2015 4. TITLE AND SUBTITLE Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report Project title: Structure , Bonding and Surface Chemistry of

  10. Surface Chemistry in Electrochemical Atomic Layer Processing

    DTIC Science & Technology

    2007-11-02

    example, where a thin film of a material is formed an atomic layer at a time. That is, surface limited reactions are used to deposit individual atomic...The present studies were designed to investigate these surface limited reactions. To determine what the structures of the deposits were, and how that structure influenced subsequent deposition .

  11. Ferroelectric based catalysis: Switchable surface chemistry

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  12. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  13. The surface chemistry of cerium oxide

    SciTech Connect

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  14. The surface chemistry of cerium oxide

    DOE PAGES

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less

  15. The surface chemistry of cerium oxide

    NASA Astrophysics Data System (ADS)

    Mullins, David R.

    2015-03-01

    This review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water-gas shift reaction. Ceria's acid-base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. Most surface science studies have been conducted on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  16. Wet oxidation of ordered mesoporous carbon FDU-15 by using (NH4)2S2O8 for fast adsorption of Sr(II): An investigation on surface chemistry and adsorption mechanism

    NASA Astrophysics Data System (ADS)

    Song, Yang; Ye, Gang; Chen, Jing; Lv, Dachao; Wang, Jianchen

    2015-12-01

    Surface modification of ordered mesoporous carbon (OMC) by wet oxidation provides an oxygen-enriched platform for complexation of metal ions. Here, we present a comprehensive study on the surface chemistry and textual property of OMC FDU-15 modified by wet oxidation using (NH4)2S2O8 as a benign oxidant. And, for the first time, the adsorption behavior and mechanism of wet-oxidized OMC FDU-15 toward Sr(II) in aqueous solutions were investigated. The mesostructural regularity of the OMC FDU-15 was well-reserved under wet oxidation. Compared to OMC CMK-type counterparts prepared via nanocasting, the OMC FDU-15 by soft template method showed much-enhanced structural stability. Due to the introduction of abundant oxygen-containing species, the oxidized OMC FDU-15 exhibited excellent hydrophilicity and dispersibility in aqueous solutions. The adsorption behavior toward Sr(II) was fully investigated, showing a super-fast adsorption kinetics (< 5 min to reach equilibrium) and a Langmuir adsorption isotherm. Moreover, an in-depth X-ray photoelectron spectroscopy analysis through deconvolution of high resolution C1s and O1s spectra was implemented to identify the chemical species of the surface functional groups, while probing the adsorption mechanism. The results suggested that oxygen donor atoms in Csbnd O single bonds mainly contribute to the adsorption of Sr(II) via formation of metal-ligand complexation.

  17. The 2007 Nobel Prize in Chemistry for surface chemistry: understanding nanoscale phenomena at surfaces.

    PubMed

    Bowker, Michael

    2007-11-01

    The 2007 Nobel Prize in Chemistry was awarded to Gerhard Ertl for his seminal work in the area of surface science, particularly at the gas-solid interface. Although Ertl began his career at a time when the term "nanotechnology" was not yet known, his contributions to the field have paved the way for many future scientists in this area and led to a deeper understanding of catalysis and other surface-specific processes at the nanoscale. Here, we summarize the scientific developments that guided early progress in surface science, and we explore the major advancements in Ertl's career, including his work on adsorption and oxidation of small molecules on metal surfaces. Significant contributions of other key scientists to this rich area are also presented.

  18. Investigating expanded chemistry in CMAQ clouds

    EPA Science Inventory

    Clouds and fogs significantly impact the amount, composition, and spatial distribution of gas and particulate atmospheric species, not least of which through the chemistry that occurs in cloud droplets.ᅠ Atmospheric sulfate is an important component of fine aerosol mass an...

  19. Impact Driven Chemistry on Europa's Surface

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; NNa Mvondo, D.; Borucki, J. G.; Cruikshank, D. P.; Belisle, W. A.; Wilhite, P.; McKay, C. P.

    2005-08-01

    A new energy source for organic synthesis on simulated Europan surfaces, electrical discharge, light emission, and magnetic phenomena from impacts into the ice, has been studied [Borucki et al. J. Geophys. Res. 107 (E11) 5114 (2002)]. Part of the impactor's kinetic energy is converted into electrical potential. The mechanical disruption causes the release of energy as light, heat, and electrical and magnetic fields as secondary emissions that synthesizes complex organic material named tholin [Sagan and Khare, Nature 277, 102 (1979)] in the area of impact craters. The morphology of the impact craters indicates that tholin is the result of outflow from the fracture zone. Large pool of liquid water may exist for thousands of years as suggested for Titan [Thompson and Sagan, Eur. Space Agency Spec. Publ., ESA-SP, 338, 167 (1992)] and may also apply to Europa potentially driving prebiotic chemistry due to energy pumped in from the secondary emissions. We have detected 8.8 ppm of H2O2 from impact of a 1/4" iron bullet at 5.3 km/s over water ice at ca. -100 C. H2O2 has been detected on the surface of Europa [Carlson et al., Science 283, 2062 (1999)]. Further confirmation by Raman Scattering at 874.5 cm-1 and IR absorbance at 2854 cm-1 is continuing. Since the impactor is limited in the number of experiments we can run, other experiments used a laser induced plasma (LIP) to shock ice mixed with ammonium sulphate and methanol. We detected CH4, CO, N2O, C2H6, CH3CN, CH3COCH3, HCOOCH3 (methyl formate), and traces of HCN. LIP on a mixture of water and methanol ice produced CH4, CO, HCHO, ethanol, formic acid methylester, propanol, acetone, dimethoxyme, and possibly ethanone-1phenyl or other phenyl group. NH3 and methanol could be delivered on impact of comets while sulfur expelled from Io.

  20. Surface roughness rather than surface chemistry essentially affects insect adhesion

    PubMed Central

    England, Matt W; Sato, Tomoya; Yagihashi, Makoto; Gorb, Stanislav N

    2016-01-01

    Summary The attachment ability of ladybird beetles Coccinella septempunctata was systematically investigated on eight types of surface, each with different chemical and topographical properties. The results of traction force tests clearly demonstrated that chemical surface properties, such as static/dynamic de-wettability of water and oil caused by specific chemical compositions, had no significant effect on the attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles. PMID:27826522

  1. Surface roughness rather than surface chemistry essentially affects insect adhesion.

    PubMed

    England, Matt W; Sato, Tomoya; Yagihashi, Makoto; Hozumi, Atsushi; Gorb, Stanislav N; Gorb, Elena V

    2016-01-01

    The attachment ability of ladybird beetles Coccinella septempunctata was systematically investigated on eight types of surface, each with different chemical and topographical properties. The results of traction force tests clearly demonstrated that chemical surface properties, such as static/dynamic de-wettability of water and oil caused by specific chemical compositions, had no significant effect on the attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles.

  2. Surface chemistry: Key to control and advance myriad technologies

    PubMed Central

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359

  3. Surface chemistry: key to control and advance myriad technologies.

    PubMed

    Yates, John T; Campbell, Charles T

    2011-01-18

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field.

  4. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  5. Laboratory investigations on the role of sediment surface and ground water chemistry in transport of bacteria through a contaminated Sandy Aquifer

    USGS Publications Warehouse

    Scholl, M.A.; Harvey, R.W.

    1992-01-01

    The effects of pH and sediment surface characteristics on sorption of indigenous groundwater bacteria were determined using contaminated and uncontaminated aquifer material from Cape Cod, MA. Over the pH range of the aquifer (5-7), the extent of bacterial sorption onto sediment in uncontaminated groundwater was strongly pH-dependent, but relatively pH-insensitive in contaminated groundwater from the site. Bacterial sorption was also affected by the presence of oxyhydroxide coatings (iron, aluminum, and manganese). Surface coating effects were most pronounced in uncontaminated groundwater (pH 6.4 at 10??C). Desorption of attached bacteria (up to 14% of the total number of labeled cells added) occurred in both field and laboratory experiments upon adjustment of groundwater to pH 8. The dependence of bacterial sorption upon environmental conditions suggests that bacterial immobilization could change substantially over relatively short distances in contaminated, sandy aquifers and that effects caused by changes in groundwater geochemistry can be significant.

  6. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2015-07-01

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions.

  7. INVESTIGATING ENVIRONMENTAL SINKS OF MACROLIDE ANTIBIOTICS WITH ANALYTICAL CHEMISTRY

    EPA Science Inventory

    Possible environmental sinks (wastewater effluents, biosolids, sediments) of macrolide antibiotics (i.e., azithromycin, roxithromycin and clarithromycin)are investigated using state-of-the-art analytical chemistry techniques.

  8. Covalent-Bond Formation via On-Surface Chemistry.

    PubMed

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-01-18

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field.

  9. Surface Chemistry in Heterogeneous Catalysis: An Emerging Discipline.

    ERIC Educational Resources Information Center

    White, J. M.; Campbell, Charles T.

    1980-01-01

    Provides background data on surface chemistry as an emerging discipline. Highlights the important role which surfaces play in catalysis by focusing on the catalyzed oxidation of carbon monoxide. Provides a demonstration of how surfaces exert their influences in heterogeneous phenomena and illustrates how experimental problems in this field are…

  10. Field investigation of FGD system chemistry. Final report

    SciTech Connect

    Litherland, S.T.; Colley, J.D.; Glover, R.L.; Maller, G.; Behrens, G.P.

    1984-12-01

    Three full-scale wet limestone FGD systems were investigated to gain a better understanding of FGD system operation and chemistry. The three plants which participated in the program were South Mississippi Electric Power Association's R. D. Morrow Station, Colorado-Ute Electric Association's Craig Station, and Central Illinois Light Company's Duck Creek Station. Each FGD system was characterized with respect to SO/sub 2/ removal, liquid and solid phase chemistry, and calcium sulfite and calcium sulfate relative saturation. Mist eliminator chemistry and performance were documented at Morrow and Duck Creek. Solutions to severe mist eliminator scaling and pluggage were demonstrated at Duck Creek. A technical and econ

  11. Surface Chemistry of PdO(101)

    NASA Astrophysics Data System (ADS)

    Weaver, Jason

    2014-03-01

    The formation of palladium oxide (PdO) is thought to be responsible for the exceptional activity of supported Pd catalysts toward the complete oxidation of alkanes under oxygen-rich conditions. In this talk, I will discuss our investigations of the surface chemical properties of a PdO(101) thin film, focusing particularly on the adsorption and selective activation of alkanes. We find that n-alkanes adsorb relatively strongly on the PdO(101) surface by forming σ-complexes along rows of coordinatively-unsaturated Pd atoms, and that this adsorbed state acts as the precursor for initial C-H bond cleavage. I will discuss characteristics of the binding and activation of alkane σ-complexes on PdO(101) as determined from both experiment and density functional theory calculations. I will also discuss elementary processes involved in adsorbate oxidation on PdO(101) and make comparisons with the chemical reactivity of other late transition metal oxides.

  12. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    NASA Astrophysics Data System (ADS)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  13. Investigations in Marine Chemistry: Tide Pool Ecology.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Students investigated the salinity of tide pools at different levels in the intertidal zone. Data are analyzed collectively. Students graphed and discussed data. Included are suggestions for evaluation and further study. (Author)

  14. Probing Surface Chemistry at the Nanoscale Level

    NASA Astrophysics Data System (ADS)

    Rene-Boisneuf, Laetitia

    Studies various nanostructured materials have gained considerable interest within the past several decades. This novel class of materials has opened up a new realm of possibilities, both for the fundamental comprehension of matter, but also for innovative applications. The size-dependent effect observed for these systems often lies in their interaction with the surrounding environment and understanding such interactions is the pivotal point for the investigations undertaken in this thesis. Three families of nanoparticles are analyzed: semiconductor quantum dots, metallic silver nanoparticles and rare-earth oxide nanomaterials. The radical scavenging ability of cerium oxide nanoparticles (CeO 2) is quite controversial since they have been labeled as both oxidizing and antioxidant species for biological systems. Here, both aqueous and organic stabilized nanoparticles are examined in straightforward systems containing only one reactive oxygen species to ensure a controlled release. The apparent absence of their direct radical scavenging ability is demonstrated despite the ease at which CeO2 nanoparticles generate stable surface Ce 3+ clusters, which is used to explain the redox activity of these nanomaterials. On the contrary, CeO2 nanoparticles are shown to have an indirect scavenging effect in Fenton reactions by annihilating the reactivity of Fe 2+ salts. Cadmium selenide quantum dots (CdSe QD) constitute another highly appealing family of nanocolloids in part due to their tunable, size-dependent luminescence across the visible spectrum. The effect of elemental sulfur treatment is investigated to overcome one of the main drawbacks of CdSe QD: low fluorescence quantum yield. Herein, we report a constant and reproducible quantum yield of 15%. The effect of sulfur surface treatment is also assessed following the growth of a silica shell, as well as the response towards a solution quencher (4-amino-TEMPO). The sulfur treated QD is also tested for interaction with

  15. Graphene veils: A versatile surface chemistry for sensors.

    PubMed

    Mulvaney, Shawn P; Stine, Rory; Long, Nina C; Tamanaha, Cy R; Sheehan, Paul E

    2014-07-01

    Thin spun-coat films (~4 nm thick) of graphene oxide (GO) constitute a versatile surface chemistry compatible with a broad range of technologically important sensor materials. Countless publications are dedicated to the nuances of surface chemistries that have been developed for sensors, with almost every material having unique characteristics. There would be enormous value in a surface chemistry that could be applied generally with functionalization and passivation already optimized regardless of the sensor material it covered. Such a film would need to be thin, conformal, and allow for multiple routes toward covalent linkages. It is also vital that the film permit the underlying sensor to transduce. Here we show that GO films can be applied over a diverse set of sensor surfaces, can link biomolecules through multiple reaction pathways, and can support cell growth. Application of a graphene veil atop a magnetic sensor array is demonstrated with an immunoassay. We also present biosensing and material characterization data for these graphene veils.

  16. Quantitative evaluation of bioorthogonal chemistries for surface functionalization of nanoparticles.

    PubMed

    Feldborg, Lise N; Jølck, Rasmus I; Andresen, Thomas L

    2012-12-19

    We present here a highly efficient and chemoselective liposome functionalization method based on oxime bond formation between a hydroxylamine and an aldehyde-modified lipid component. We have conducted a systematic and quantitative comparison of this new approach with other state-of-the-art conjugation reactions in the field. Targeted liposomes that recognize overexpressed receptors or antigens on diseased cells have great potential in therapeutic and diagnostic applications. However, chemical modifications of nanoparticle surfaces by postfunctionalization approaches are less effective than in solution and often not high-yielding. In addition, the conjugation efficiency is often challenging to characterize and therefore not addressed in many reports. We present here an investigation of PEGylated liposomes functionalized with a neuroendocrine tumor targeting peptide (TATE), synthesized with a variety of functionalities that have been used for surface conjugation of nanoparticles. The reaction kinetics and overall yield were quantified by HPLC. Reactions were conducted in solution as well as by postfunctionalization of liposomes in order to study the effects of steric hindrance and possible affinity between the peptide and the liposome surface. These studies demonstrate the importance of choosing the correct chemistry in order to obtain a quantitative surface functionalization of liposomes.

  17. Gas Plasma Surface Chemistry for Biological Assays.

    PubMed

    Sahagian, Khoren; Larner, Mikki

    2015-01-01

    Biological systems respond to and interact with surfaces. Gas plasma provides a scalable surface treatment method for designing interactive surfaces. There are many commercial examples of plasma-modified products. These include well plates, filtration membranes, dispensing tools, and medical devices. This chapter presents an overview of gas plasma technology and provides a guide to using gas plasma for modifying surfaces for research or product development.

  18. Investigations in Marine Chemistry: Salinity II.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  19. Role of the surface chemistry of ceria surfaces on silicate adsorption.

    PubMed

    Seo, Jihoon; Lee, Jung Woo; Moon, Jinok; Sigmund, Wolfgang; Paik, Ungyu

    2014-05-28

    Ceria nanoparticles (NPs) have been widely explored as a promising material in various fields. As synthesized under various physicochemical conditions, it exhibits the different surface chemistry. Here, the role of hydroxyl and nitrate group on ceria surface, formed under various physicochemical conditions, for the silicate adsorption was experimentally and theoretically investigated based on the adsorption isotherms and theoretical analyses using density functional theory (DFT) calculation. Experimental results acquired from adsorption isotherms with Freundlich model indicated that the nitrate group shows a much higher affinity with silicate than the hydroxyl groups. These phenomena were demonstrated through the theoretical approaches that exhibit the binding energy of the NO3-ceria (-4.383 eV) on the SiO2 surface being much higher than that of the OH-ceria (-3.813 eV). In good agreement with the experimental and the theoretical results based on adsorption properties, the results of chemical mechanical planarization (CMP) also show that the nitrate groups significantly enhance the removal of SiO2 than the hydroxyl groups. The results investigated in this study will provide researchers, studying the ceria NPs, with guidelines on the importance of exploring the surface chemistry of ceria.

  20. Surface chemistry and tribology of MEMS.

    PubMed

    Maboudian, Roya; Carraro, Carlo

    2004-01-01

    The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.

  1. Surface chemistry and catalysis confined under two-dimensional materials.

    PubMed

    Fu, Qiang; Bao, Xinhe

    2016-10-07

    Two-dimensional (2D) materials are characterised by their strong intraplanar bonding but weak interplanar interaction. Interfaces between neighboring 2D layers or between 2D overlayers and substrate surfaces provide intriguing confined spaces for chemical processes, which have stimulated a new area of "chemistry under 2D cover". In particular, well-defined 2D material overlayers such as graphene, hexagonal boron nitride, and transition metal dichalcogenides have been deposited on solid surfaces, which can be used as model systems to understand the new chemistry. In the present review, we first show that many atoms and molecules can intercalate ultrathin 2D materials supported on solid surfaces and the space under the 2D overlayers has been regarded as a 2D nanocontainer. Moreover, chemical reactions such as catalytic reactions, surface adlayer growth, chemical vapor deposition, and electrochemical reactions occur in the 2D confined spaces, which further act as 2D nanoreactors. It has been demonstrated that surface chemistry and catalysis are strongly modulated by the 2D covers, resulting in weakened molecule adsorption and enhanced surface reactions. Finally, we conclude that the confinement effect of the 2D cover leads to new chemistry in a small space, such as "catalysis under cover" and "electrochemistry under cover". These new concepts enable us to design advanced nanocatalysts encapsulated with 2D material shells which may present improved performance in many important processes of heterogeneous catalysis, electrochemistry, and energy conversion.

  2. Supported organometallic complexes, surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1993-04-01

    Goal is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. Nature of adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecule-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  3. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  4. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  5. Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry

    PubMed Central

    Ma, Xingmao; Uddin, Sheikh

    2013-01-01

    The strong affinity of carbon nanotubes (CNTs) to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength) and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB) from multi-walled carbon nanotubes (MWNTs). The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH < 7 vs. pH > 7). In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs.

  6. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    PubMed Central

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-01-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level. PMID:28327642

  7. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons.

    PubMed

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A; Wäckerlin, Aneliia; Meyer, Ernst

    2017-03-22

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect - oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.

  8. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-03-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.

  9. Quantification of air plasma chemistry for surface disinfection

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  10. A model of Martian surface chemistry

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.

    1979-01-01

    Alkaline earth and alkali metal superoxides and peroxides, gamma-Fe2O3 and carbon suboxide polymer, are proposed to be constituents of the Martian surface material. These reactive substances explain the water modified reactions and thermal behaviors of the Martian samples demonstrated by all of the Viking Biology Experiments. It is also proposed that the syntheses of these substances result mainly from electrical discharges between wind-mobilized particles at Martian pressures; plasmas are initiated and maintained by these discharges. Active species in the plasma either combine to form or react with inorganic surfaces to create the reactive constituents.

  11. Selected Bibliography II-Diamond Surface Chemistry

    DTIC Science & Technology

    1993-09-30

    34 JNL: Surface Science REF: 1 (1964) 3-21 AUTHOR: Evans T. and James P.F. TITLE: "A Study of the Transformation of Diamond to Graphite" JNL: Proc. R... Less -ordered Carbons by X-Ray Photo-electron Spectroscopy" JNL: Trans. Faraday Soc. REF: 67 (1971) 1875 3 AUTHOR: Runciman W.A. and Carter T. TITLE...on the Diamond (111) Surface" JNL: New Diamond Sci. Technol., Proc. Int. Conf., 2nd REF: (1991) 51 69 AUTHOR: Blatter A., Boegli U., Builov L.L

  12. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    ERIC Educational Resources Information Center

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  13. Architecture and Surface Chemistry of Compound Nanoclusters

    DTIC Science & Technology

    2012-07-31

    Apparently, a strong ligand effect leads to the selective capture of this cluster size. Surface enhanced Raman spectroscopy on silver nanorods substrates...infrared optical parametric oscillator laser systems that now provide IR light across the 700-4500 cm-1 range. We have measured infrared spectroscopy for

  14. Architecture and Surface Chemistry of Compound Nanoclusters

    DTIC Science & Technology

    2012-08-01

    size. Surface enhanced Raman spectroscopy on silver nanorods substrates were undertaken to determine the structure of the Co4O4(CH3CN)6 species...parametric oscillator laser systems that now provide IR light across the 700-4500 cm-1 range. We have measured infrared spectroscopy for these systems

  15. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  16. Density Functional Theory in Surface Chemistry and Catalysis

    SciTech Connect

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  17. Density functional theory in surface chemistry and catalysis

    PubMed Central

    Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337

  18. Effects of urine application on chemistry of feedlot pen surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle feedlots can emit significant quantities of ammonia that may adversely affect air quality and decrease the fertilizer value of manure. The major source of ammonia loss may be urinary urea. We conducted three studies to evaluate the effects of urine on the chemistry of feedlot pen surface...

  19. Density functional theory in surface chemistry and catalysis.

    PubMed

    Nørskov, Jens K; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas

    2011-01-18

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges.

  20. Investigating the Relationship between Faculty Cognitive Expectations about Learning Chemistry and the Construction of Exam Questions

    ERIC Educational Resources Information Center

    Sanabria-Rios, David; Bretz, Stacey Lowery

    2010-01-01

    We have investigated chemistry faculty's cognitive expectations about learning chemistry and their influence upon the construction of exam questions in a general chemistry curriculum. Faculty cognitive expectations for learning chemistry were measured using QUIMX. Learning objectives and exam questions for a year-long general chemistry sequence…

  1. Effect of accelerated weathering on surface chemistry of modified wood

    NASA Astrophysics Data System (ADS)

    Temiz, Ali; Terziev, Nasko; Eikenes, Morten; Hafren, Jonas

    2007-04-01

    In this study, the effects of UV-light irradiation and water spray on colour and surface chemistry of scots pine sapwood samples were investigated. The specimens were treated with chromated copper arsenate (CCA), a metal-free propiconazol-based formulation, chitosan, furfuryl alcohol and linseed and tall oils. The weathering experiment was performed by cycles of 2 h UV-light irradiation followed by water spray for 18 min. The changes at the surface of the weathered samples were characterised by Fourier transform infrared spectroscopy (FT-IR); colour characterizations were performed by measuring CIELab parameters. The results show that all treatment methods except chitosan treatment provided lower colour changes than the control groups after 800 h exposure in weathering test cycle, but differences between chitosan and control were also small. The lowest colour changes were found on linseed oil (full cell process) and CCA treated wood. FT-IR results show that oil treatment (linseed and tall oil) decreased the intensities of a lignin specific peak (1500-1515 cm -1). Absorption band changes at 1630-1660 cm -1 were reduced by all treatments.

  2. Lunar surface chemistry: A new imaging technique

    USGS Publications Warehouse

    Andre, C.G.; Bielefeld, M.J.; Eliason, E.; Soderblom, L.A.; Adler, I.; Philpotts, J.A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  3. Theoretical Insights into C1 Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Neurock, Matthew

    2008-03-01

    Reforming and partial oxidation of methane as well as other C1 fuels are important processes in the production of hydrogen and synthesis gas and will likely play important roles future energy strategies. Herein we use theory and simulation to examine the reactivity of methane, methanol and dimethyl ether with CO2, H2O, or O2 over supported transition metals. We systematically probe the elementary C-H bond activation as well as the oxidation pathways involved in both reforming as the oxidation of methane and other C1 intermediates over well defined transition metal surfaces, metal alloys and metal nanoparticles. The calculations demonstrate well-established trends in C-H bond activation as the result of changes in the metal, the activating molecule (methane, methanol, and DME) as well as the reaction conditions. The reaction conditions ultimately dictate the surface coverage of carbon and oxygen which have important consequences on the surface reactivity. The theoretical and simulation results are compared with well defined experiments carried out at Berkeley over supported particles.

  4. Nanochannel array plastics with tailored surface chemistry.

    PubMed

    Rzayev, Javid; Hillmyer, Marc A

    2005-09-28

    The utilization of nanoporous substrates in applications such as selective ion transport, biomolecule separation, seeded templating, and catalysis necessitates the ability to efficiently control pore surface properties. We approached this task by preparing nanoporous polymer monoliths from ABC triblock copolymer precursors that assemble into a cylindrical morphology, where the A block constitutes matrix, C is the removable minor component, and B provides the functionality on the surface of the pores. Polystyrene-polydimethylacrylamide-polylactide (PS-PDMA-PLA) triblock copolymers were prepared by a combination of controlled ring-opening and free-radical polymerization techniques. After selective etching of the PLA cylinders from shear-aligned monoliths, a nanoporous polystyrene matrix containing a hexagonally packed array of hydrophilic, PDMA-coated channels was obtained. Extremely high degrees of alignment and order could be attained, and nanoporous substrates with second-order orientation factors of as high as 0.96 were prepared. PDMA brushes inside the pores were then hydrolyzed in a controlled fashion to introduce a desired number of carboxylic acid groups to the internal pore surface. Carbodiimide mediated couplings with amines were then used to confirm the accessibility of the interior acidic groups and to render materials with different functional content. This modular approach allows for the convenient preparation of functionalized nanoporous materials from a single block copolymer precursor.

  5. Surface fabrication of oxides via solution chemistry

    NASA Astrophysics Data System (ADS)

    Yan, Chenglin; Sun, Congting; Shi, Yong; Xue, Dongfeng

    2008-04-01

    A template- and catalyst-free strategy has been successfully designed to prepare MgO and hydrated magnesium carbonate hydroxide (Mg 5(CO 3) 4(OH) 2·4H 2O) nanosheets with different patterns (such as chrysalides- and rose-like morphology) on the substrate surface. Experimental results reveal that the temperature and substrate allow us to tune the morphology of patterns. Mg 5(CO 3) 4(OH) 2·4H 2O thermodynamically prefers to grow into the sheet-like crystal at the current solution growth environment, which has been successfully explained by using the chemical bonding theory. The predicted morphology can accord well with the current experimental results. The obtained MgO and its precursor Mg 5(CO 3) 4(OH) 2·4H 2O with novel patterns might find enhanced applications in catalysis, refractory materials, plastics, fire retardants, and functional nanodevices.

  6. Testing Grain Surface Chemistry in Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Keane, Jacqueline; Boogert, Adwin

    2008-03-01

    The key chemical reactions that produce the first generation ice mantles in dense molecular clouds are still poorly known. Within cold, dense clouds, species formed in the gas and on the grain surfaces will stick to the grains and form icy mantles. However, during star-formation, materials in the general cloud medium are subjected to numerous chemical and physical processes that are driven mostly by thermal and energetic radiation. The comparison between background stars and protostars is a proven excellent tool for this purpose. By comparing observed interstellar solid state abundances with models of grain surface chemistry it is possible to elucidate the efficiency and hence relevancy of a number of chemical reactions, in particular the CO_2 formation pathways. In part because of Spitzer, significant progress has been made towards understanding the various effects of these radiation processes on the ices around a large sample of high- and low-mass protostars. First results suggest that two different CO2 formation pathways play a role in these harsh environments. Though which reaction initially dominated the chemistry is unknown due to the numerous physical processes. Unfortunately, only a small sample of background field stars have been observed, most notably Taurus. In Taurus, only one reaction pathway appears to be efficient in quiescent regions, but this result is sample limited. We propose to take low resolution spectra from 5 to 22 microns along the line of sight toward 31 field stars behind the LDN 673 molecular cloud. Differences in near-IR ice chemistry have already been observed and we will use these mid-infrared data to provide more stringent constraints on chemical models of grain surface chemistry. With this sample it is possible to address fundamental questions in astrochemistry: what are the dominant grain surface chemistry pathways? What is the composition of the first generation ice mantles in molecular clouds?

  7. Quantum Chemistry for Surface Segregation in Metal Alloys

    SciTech Connect

    Sholl, David

    2006-08-31

    Metal alloys are vital materials for the fabrication of high-flux, high-selectivity hydrogen separation membranes. A phenomenon that occurs in alloys that does not arise in pure metals is surface segregation, where the composition of the surface differs from the bulk composition. Little is known about the strength of surface segregation in the alloys usually considered for hydrogen membranes. Despite this lack of knowledge, surface segregation may play a decisive role in the ability of appropriately chosen alloys to be resistant to chemical poisoning, since membrane poisoning is controlled by surface chemistry. The aim of this Phase I project is to develop quantum chemistry approaches to assess surface segregation in a prototypical hydrogen membrane alloy, fcc Pd{sub 75}Cu{sub 25}. This alloy is known experimentally to have favorable surface properties as a poison resistant H{sub 2} purification membrane (Kamakoti et al., Science 307 (2005) 569-573), but previous efforts at modeling surfaces of this alloy have ignored the possible role of surface segregation (Alfonso et al., Surf. Sci. 546 (2003) 12-26).

  8. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  9. Surface Chemistry and Properties of Oxides as Catalyst Supports

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar; Contescu, Cristian I

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  10. The effect of processing variables on steel surface chemistry

    SciTech Connect

    Shaw, G.S.

    1993-12-31

    Differences in processing at all stages in the steel making process can effect the surface chemistry of steel. The surface chemistry can dictate the performance of many different products and processes including electrogalvanized steel. If the steel chemistry is not controlled sufficiently, the zinc electrodeposit will be subject to hydrogen blistering. This dissertation examined the effect of many processing variables on both the organic and inorganic contaminants on steel surfaces. Processes both before the electrogalvanizing line and those after the electrogalvanizing line were examined. Mechanisms were determined for reactions of organic oils with the steel surface. Reaction between the carbonyl functionality, present as an acid or an ester, and iron hydroxide to form a tenaciously adherent iron soap was demonstrated using infrared spectroscopy and mass spectrometry. Thermodynamics and kinetics of segregation of metallic elements to the surface of the steel were determined. It was shown that the primary mechanism for segregation of elements such as aluminum, silicon, chromium, and titanium is oxidation during the anneal. Analysis of the kinetics indicated the feasibility of this mechanism. The mechanism of electrocleaning were elucidated, based on both electrochemical and physical effects. Improved methods of electrocleaning were described based upon optimization of the cleaning frequency. It was found that increasing the frequency of anodic and cathodic cycling increasing the cleaning efficiency up to about 5 Hz. Above this frequency bubbles, which provide physical scrubbing and convection near the interface, can not form rapidly enough to be effective. Increased current density was shown to be effective in improving electrocleaning.

  11. Chemistry of the surface and lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Treiman, A.

    1992-01-01

    A comprehensive overview of the chemical interactions between the atmosphere and surface of Venus is presented. Earth-based, earth-orbital, and spacecraft data on the composition of the atmosphere and surface of Venus are presented and applied to quantitative evaluations of the chemical interactions between carbon, hydrogen, sulfur, chlorine, fluorine, and nitrogen-containing gases and possible minerals on the Venus surface. The calculation results are used to predict stable minerals and mineral assemblages on the Venus surface to determine which, if any, atmospheric gases are buffered by mineral assemblages on the surface, and to critically review and assess prior work on atmosphere-surface chemistry on Venus. It is concluded that the CO2 pressure on Venus is comparable to the CO2 equilibrium partial pressure developed by the calcite + wollastonite + quartz assemblage at the mean Venus surface temperature of 740 K.

  12. Influence of surface structure and chemistry on water droplet splashing.

    PubMed

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  13. A surface-chemistry study of barium ferrite nanoplates with DBSa-modified surfaces

    NASA Astrophysics Data System (ADS)

    Lisjak, Darja; Ovtar, Simona; Kovač, Janez; Gregoratti, Luca; Aleman, Belen; Amati, Matteo; Fanetti, Mattia; Makovec, Darko

    2014-06-01

    Barium ferrite (BaFe12O19) is a ferrimagnetic oxide with a high magnetocrystalline anisotropy that can be exploited in magnetically aligned ceramics or films for self-biased magnetic applications. Magnetic alignment of the films can be achieved by the directed assembly of barium ferrite nanoplates. In this investigation the nanoplates were synthesized hydrothermally and suspended in 1-butanol using dodecylbenzene sulphonic acid (DBSa) as a surfactant. They were then deposited in an electric or magnetic field on flat substrates and exhibited a significant preferential alignment in the plane of the substrate, allowing a differentiation between the analysis of their basal and side planes using scanning photoelectron microscopy with a lateral resolution down to 100 nm. The surface chemistry of the nanoplates was additionally studied with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. For a comparison, bare barium ferrite nanoplates were also analyzed after decomposing the DBSa at 460 °C. The deviation of the surface chemistry from the stoichiometric composition was observed and the adsorption of the DBSa molecules on the nanoplates was confirmed with all three methods. Different types of bonding (physi- or chemisorption) were possible and considered with respect to the assembly of the barium ferrite nanoplates into anisotropic magnetic films.

  14. Surface Chemistry and Growth of Large Molecules in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Aikawa, Yuri; Herbst, Eric; Millar, Tom; Widicus Weaver, Susanna; Nomura, Hideko

    Protoplanetary disks are vital objects in star and planet formation, possessing all the material - dust, gas, and ice - which may form a planetary system orbiting the new star. To date, a handful of small and relatively simple molecules have been observed in nearby disks reflecting the limitations of existing telescopes. However, in the era of ALMA, the Atacama Large Millimeter/Submillimeter Array, we expect the molecular inventory of protoplanetary disks to significantly increase. Of particular interest are so-called complex organic molecules (COMs) which are thought to be necessary precursors to molecules important for prebiotic chemistry, such as, amino acids. The formation of COMs remains one of the puzzles of astrochemistry. Under the physical conditions in interstellar and circumstellar environments, COMs do not have efficient gas-phase routes to formation. Instead, they are postulated to form via association reactions on and within ice mantles on the the surfaces of dust grains and released to the gas phase via either thermal desorption (sublimation) or desorpton triggered by the absorption of UV radiation (photodesorption). In this presentation, I will discuss the synthesis of COMs in protoplanetary disks to investigate the potential origin of complex molecules in planetary systems. I will present results from exploratory models of a protoplanetary disk around a low-mass star including a large grain-surface chemical network to model the formation of large complex organic molecules. I will compare the resulting abundances of COMs in the gas phase and in the solid phase with existing observations towards nearby low-mass star-disk systems and comets, respectively. I will also discuss how the formation of COMs is influenced by the birth environment of the young stellar system.

  15. Investigation of Partially Ionized Plasma Chemistry of Hydroxylammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Kidd, Forrest; Lemmer, Kristina

    2016-10-01

    Future space missions require an efficient and versatile method of propulsion. One possibility is the use of dual-mode-propulsion. Dual-mode-propulsion combines the high specific impulse of electric propulsion with the high thrust of chemical propulsion. However, to effectively implement dual-mode-propulsion a propellant that can be used in both electric and chemical propulsion is required. Ionic liquids are one class of propellants currently being investigated for their use in dual-mode-propulsion systems. Hydroxylammonium Nitrate (HAN) is the ionic liquid of interest in this study. HAN's chemistry and decomposition have been thoroughly investigated at pressures above atmospheric pressure; however, the chemistry of partially ionized HAN is not well understood. Ab-initio modelling is used to determine the chemistry of key ion-neutral reactions and to develop a reaction network for HAN plasma. Calculations using Density Functional Theory and Coupled Cluster Singles Doubles with approximate Triples corrections are performed. This will allow for accurate modelling of HAN's interaction with thruster components and prevent premature failure.

  16. The surface coordination chemistry of cuprate high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Xu, Feng

    The goals of the research described in this dissertation were: (1) to explore the surface coordination chemistry of cuprate high-temperature superconductors (HTSCs); (2) to develop chemical methodology for directly tailoring the surface and interfacial properties of cuprate HTSCs. This thesis documents the first survey of the surface coordination chemistry of a cuprate HTSC, YBa2Cu3O7-delta. Functional groups that can chemically bind to YBa2Cu3O 7-delta have been determined using cyclic voltammetry in conjunction with a series of redox-active ferrocenyl containing adsorbate molecules. Primary alkylamines have emerged as the optimum adsorbates for HTSCs, forming stable and robust monolayer films with no apparent damage to the bulk properties of the underlying superconductors. The interactions between alkylamine adsorbates and YBa2Cu3O7-delta have been shown to involve Cu(II)-NR3 coordination chemistry. The influence of organic monolayers on the properties of YBa2Cu3O 7-delta has been examined using cyclic voltammetry, X-ray powder diffraction, atomic force microscopy, and resistivity vs. temperature measurements. The presence of H2O in the soaking solution adversely affects the adsorption process due to a competing corrosion reaction. However, stable monolayers form on HTSC substrates under rigorously dry conditions. Significantly, monolayer modified HTSCs are substantially more stable to corrosion environmental reagents. The formation kinetics of redox-active alkylamine monolayers on ceramic YBa2Cu3O7-delta are proposed to involve two major processes: a fast adsorption process and a relatively slow pore diffusion process. Surface-solution adsorbate exchange is very dynamic and reversible, which appears to occur via an associative pathway. Monolayers on c-axis-oriented thin films have been shown to be more densely-packed and stable than those on ceramic substrates. Notably, the surface alkylamine "ligands" display traits of Cu(II)-based coordination chemistry

  17. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    PubMed

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  18. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    PubMed Central

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  19. Ferroelectrics: A pathway to switchable surface chemistry and catalysis

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab; Altman, Eric I.

    2016-08-01

    It has been known for more than six decades that ferroelectricity can affect a material's surface physics and chemistry thereby potentially enhancing its catalytic properties. Ferroelectrics are a class of materials with a switchable electrical polarization that can affect surface stoichiometry and electronic structure and thus adsorption energies and modes; e.g., molecular versus dissociative. Therefore, ferroelectrics may be utilized to achieve switchable surface chemistry whereby surface properties are not fixed but can be dynamically controlled by, for example, applying an external electric field or modulating the temperature. Several important examples of applications of ferroelectric and polar materials in photocatalysis and heterogeneous catalysis are discussed. In photocatalysis, the polarization direction can control band bending at water/ferroelectric and ferroelectric/semiconductor interfaces, thereby facilitating charge separation and transfer to the electrolyte and enhancing photocatalytic activity. For gas-surface interactions, available results suggest that using ferroelectrics to support catalytically active transition metals and oxides is another way to enhance catalytic activity. Finally, the possibility of incorporating ferroelectric switching into the catalytic cycle itself is described. In this scenario, a dynamic collaboration of two polarization states can be used to drive reactions that have been historically challenging to achieve on surfaces with fixed chemical properties (e.g., direct NOx decomposition and the selective partial oxidation of methane). These predictions show that dynamic modulation of the polarization can help overcome some of the fundamental limitations on catalytic activity imposed by the Sabatier principle.

  20. Covalent surface chemistry gradients for presenting bioactive peptides.

    PubMed

    Kipper, Matt J; Kleinman, Hynda K; Wang, Francis W

    2007-04-15

    The activation of surfaces by covalent attachment of bioactive moieties is an important strategy for improving the performance of biomedical materials. Such techniques have also been used as tools to study cellular responses to particular chemistries of interest. The creation of gradients of covalently bound chemistries is a logical extension of this technique. Gradient surfaces may permit the rapid screening of a large range of concentrations in a single experiment. In addition, the biological response to the gradient itself may provide new information on receptor requirements and cell signaling. The current work describes a rapid and flexible technique for the covalent addition of bioactive peptide gradients to a surface or gel and a simple fluorescence technique for assaying the gradient. In this technique, bioactive peptides with a terminal cysteine are bound via a heterobifunctional coupling agent to primary amine-containing surfaces and gels. A gradient in the coupling agent is created on the surfaces or gels by varying the residence time of the coupling agent across the surface or gel, thereby controlling the extent of reaction. We demonstrate this technique using poly(l-lysine)-coated glass surfaces and fibrin gels. Once the surface or gel has been activated by the addition of the coupling agent gradient, the bioactive peptide is added. Quantitation of the gradient is achieved by measuring the reaction kinetics of the coupling agent with the surface or gel of interest. This can be done either by fluorescently labeling the coupling agent (in the case of surfaces) or by spectrophotometrically detecting the release of pyridine-2-thione, which is produced when the thiol-reactive portion of the coupling agent reacts. By these methods, we can obtain reasonably precise estimates for the peptide gradients without using expensive spectroscopic or radiolabeling techniques. Validation with changes in fibroblast cell migration behavior across a bioactive peptide

  1. The Role of Surface Chemistry in Filter Feeding by Zooplankton

    NASA Astrophysics Data System (ADS)

    Gerritsen, Jeroen; Porter, Karen G.

    1982-06-01

    Surface chemistry of both particles and animals is important in filter feeding at low Reynolds number. Daphnia magna, fed mixtures of three sizes of polystyrene particles, retained particles that were smaller than the mesh size of the animals (1.0 micrometer) at greater efficiencies than predicted by a sieving model. Retention efficiency of the smallest particles (0.5 micrometer) was increased when negative surface charge on the particles was neutralized, and retention was decreased when a nonionic surfactant was added to reduce wettability.

  2. Endothelial cell behavior on vascular prosthetic grafts: effect of polymer chemistry, surface structure, and surface treatment.

    PubMed

    Marois, Y; Sigot-Luizard, M F; Guidoin, R

    1999-01-01

    When implanting any vascular prosthetic grafts, one important goal to ensure long-term patency is achieving complete endothelialization of the luminal surface, a process that has rarely been observed clinically in humans. Seeding vascular grafts with endothelial cells has been seen as an attractive approach but has not been clinically convincing. A determining factor may be the type of polymer and surface structure. Using organotypic culture assays, the present investigation studied the effect of different polymers, surface structures, and surface treatments on endothelial cell behavior. The materials tested were polyester (PET), polytetrafluoroethylene (PTFE), polyesterurethane (PESU), and polyetherurethane (PETU) grafts with different surface structures. The surface treatments on the PET grafts included impregnation with cross-linked albumin, collagen, and gelatin, and treatments with fluoropolymer and electrically conducting polypyrrole polymer. Low density polyethylene (LDPE) and polydimethylsiloxane (PDMS) sheets (smooth surface, plain wall) were used as controls. After incubation for 7 days at 37 degrees C, cell adhesion and migration on the different polymers and structures were as follows: woven and knitted PET (high porosity) > PTFE, PESU, PETU hydrophobic (low porosity) > PETU hydrophilic, LDPE, PDMS (no porosity). Cell density results showed no difference between polymers and porous structures and a higher cell density on smooth nonporous surfaces. Compared with the nonimpregnated PET structures, knitted PET treated with albumin, collagen, or gelatin showed slight decreases of cell adhesion. No differences in cell migration and density were reported between any of the PET grafts, except for one polyester graft with a different chemistry than Dacron, which exhibited greater cell migration and lower cell density. Polyester grafts with a fluoropolymer treatment showed lower cell adhesion and migration and higher cell density than the nontreated PET. Finally

  3. The surface chemistry of rutile in technologically relevant environments

    NASA Astrophysics Data System (ADS)

    Song, Anqi

    The surface science of titanium dioxide, TiO2, has attracted great amount of attention due to its high profile applications. This dissertation shows the development of well-controlled rutile (110) surfaces that provide a platform for studying the chemical and photochemical reactivity of rutile in technologically relevant environments, including air and solutions. Near-perfect rutile (110) surfaces characterized by atomically flat terraces and straight steps were produced using basic peroxide solutions. The reaction produced straight steps with a different orientation, different structure, and different reactivity from those prepared in ultrahigh vacuum. The morphology was explained by a site-specific model of rutile (110) etching based on metal oxo coordination chemistry. This work shows that one of the important roles of peroxo ligands in etching and growth reactions is to destabilize neighboring bonds and increase their lability. The peroxo ligands add a degree of reversibility to the growth reaction, leading to the formation of well-ordered crystals. In addition, this near-perfect rutile (110) surface is an ideal starting point for studying surface chemistry of rutile in technologically relevant environments. Under ambient conditions atmospheric CO2 reacted with adsorbed H2O and produced a self-assembled monolayer of HCO 3 on rutile (110) surfaces. The monolayer was formed on the near-perfect rutile surfaces prepared by basic peroxide etching, indicating that surface defects, such as Ti interstitials and O vacancies, were not required. DFT calculations suggested that the nanoscale water film adsorbed on the surface solvated the adsorbates and changed the reaction energetics. The HCO 3 monolayer was very stable, even in vacuum, which was a result of the strong bidentate bonding of HCO3. The formation of the strongly bound bicarbonate monolayer suggests that HCO3, instead of CO 2, plays a key role in the photoreduction of CO2. A high-quality, self

  4. The impact of surface chemistry modification on macrophage polarisation.

    PubMed

    Rostam, Hassan M; Singh, Sonali; Salazar, Fabian; Magennis, Peter; Hook, Andrew; Singh, Taranjit; Vrana, Nihal E; Alexander, Morgan R; Ghaemmaghami, Amir M

    2016-11-01

    Macrophages are innate immune cells that have a central role in combating infection and maintaining tissue homeostasis. They exhibit remarkable plasticity in response to environmental cues. At either end of a broad activation spectrum are pro-inflammatory (M1) and anti-inflammatory (M2) macrophages with distinct functional and phenotypical characteristics. Macrophages also play a crucial role in orchestrating immune responses to biomaterials used in the fabrication of implantable devices and drug delivery systems. To assess the impact of different surface chemistries on macrophage polarisation, human monocytes were cultured for 6 days on untreated hydrophobic polystyrene (PS) and hydrophilic O2 plasma-etched polystyrene (O2-PS40) surfaces. Our data clearly show that monocytes cultured on the hydrophilic O2-PS40 surface are polarised towards an M1-like phenotype, as evidenced by significantly higher expression of the pro-inflammatory transcription factors STAT1 and IRF5. By comparison, monocytes cultured on the hydrophobic PS surface exhibited an M2-like phenotype with high expression of mannose receptor (MR) and production of the anti-inflammatory cytokines IL-10 and CCL18. While the molecular basis of such different patterns of cell differentiation is yet to be fully elucidated, we hypothesise that it is due to the adsorption of different biomolecules on these surface chemistries. Indeed our surface characterisation data show quantitative and qualitative differences between the protein layers on the O2-PS40 surface compared to PS surface which could be responsible for the observed differential macrophage polarisation on each surface.

  5. Continuous wear contact lens surface chemistry and wearability.

    PubMed

    Nicolson, Paul C

    2003-01-01

    Continuous wear (CW) contact lenses are defined as lenses composed of hydrogel polymers containing elements other than carbon, hydrogen, oxygen, and nitrogen that enhance oxygen permeability to an extent greater than water alone. Those elements are silicon and fluorine. Silicon is incorporated as siloxanes, and fluorine is used as fluoroalkyl. Despite the water present in CW lenses, they are not wearable without surface modification because of the tendency of siloxanes and fluoroakyls to move in the soft polymers, orient, and become enriched at the surface. Various methods of surface modification are discussed, with emphasis on the plasma technologies used by the two commercial CW lens products, Focus Night & Day and PureVision. Speculation about future directions in surface chemistry are also presented.

  6. The role of "inert" surface chemistry in marine biofouling prevention.

    PubMed

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-07

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short

  7. SURFACE CHEMISTRY INFLUENCE IMPLANT MEDIATED HOST TISSUE RESPONSES

    PubMed Central

    Kamath, Shwetha; Bhattacharyya, Dhiman; Padukudru, Chandana; Timmons, Richard B.; Tang, Liping

    2011-01-01

    Implant-mediated fibrotic reactions are detrimental to the performance of encapsulated cells, implanted drug release devices and sensors. To improve the implant function and longevity, research has emphasized altering cellular responses. Although material surface functional groups have been shown to be potent in affecting cellular activity in vitro and short term in vivo responses, these groups appear to have little influence on long-term in vivo fibrotic reactions, possibly as a result of insufficient interactions between recruited host cells and functional groups on the implants. To maximize the influence of functionality on cells, and to mimic drug release microspheres, functionalized micron-sized particles were created and tested for their ability in modulating tissue responses to biomaterial implants. In this work, the surfaces of polypropylene particles were controllably coated with four different functional groups, specifically –OH, -NH2, -CFx and –COOH, using a radio frequency glow discharge plasma polymerization technique. The effect of these surface functionalities on host tissue responses were then evaluated using a mice subcutaneous implantation model. Major differences were observed in contrasting tissue response to the different chemistries. Surfaces with –OH and –NH2 surface groups induced the thickest fibrous capsule accompanied with the greatest cellular infiltration into the implants. In contrast, surfaces with –CFx and –COOH exhibited the least inflammatory/fibrotic responses and cellular infiltrations. The present results clearly demonstrate that, by increasing the available functionalized surface area and spatial distribution, the effect of surface chemistry on tissue reactivity can be substantially enhanced. PMID:18022841

  8. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin.

    PubMed

    Dubacheva, Galina V; Araya-Callis, Carolina; Geert Volbeda, Anne; Fairhead, Michael; Codée, Jeroen; Howarth, Mark; Richter, Ralf P

    2017-03-09

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems.

  9. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin

    PubMed Central

    2017-01-01

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems. PMID:28234007

  10. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees

    NASA Astrophysics Data System (ADS)

    Lin, Ning; Dufresne, Alain

    2014-04-01

    The process of sulfuric acid-hydrolysis of cellulose fibers for the preparation of cellulose nanocrystals (CNs) includes an esterification reaction between acid and cellulose molecules, which induces the covalent coupling of sulfate groups on the surface of prepared CNs. Negatively charged sulfate groups play an important role in both surface chemistry and physical properties of CNs. This study explored the strategy of introducing a gradient of sulfate groups on the surface of CNs, and further investigated the effect of the sulfation degree on surface chemistry, morphology, dimensions, and physical properties of different CN samples. Based on the discussion of their surface chemistry, the selection of different cross-section models was reported to significantly affect the calculation of the degree of substitution of sulfate groups on CNs. A new ellipsoid cross-section model was proposed on the basis of AFM observations. The effect of sulfate groups on crystal properties and thermal stability was discussed and validated, and the birefringence behavior of nanocrystal suspensions was observed.The process of sulfuric acid-hydrolysis of cellulose fibers for the preparation of cellulose nanocrystals (CNs) includes an esterification reaction between acid and cellulose molecules, which induces the covalent coupling of sulfate groups on the surface of prepared CNs. Negatively charged sulfate groups play an important role in both surface chemistry and physical properties of CNs. This study explored the strategy of introducing a gradient of sulfate groups on the surface of CNs, and further investigated the effect of the sulfation degree on surface chemistry, morphology, dimensions, and physical properties of different CN samples. Based on the discussion of their surface chemistry, the selection of different cross-section models was reported to significantly affect the calculation of the degree of substitution of sulfate groups on CNs. A new ellipsoid cross-section model was

  11. Grain Surface Chemistry and the Composition of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.

    2006-01-01

    Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.

  12. Surface Chemistry Regulates Valvular Interstitial Cell Differentiation In Vitro

    PubMed Central

    Rush, Matthew N.; Coombs, Kent E.; Hedberg-Dirk, Elizabeth L.

    2015-01-01

    The primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into a diseased phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood. This study isolates the effect of substrate surface chemistry on in vitro VIC differentiation and calcified tissue formation. Using ω-functionalized alkanethiol self-assembled monolayers (SAMs) on gold [CH3 (hydrophobic), OH (hydrophilic), COOH (COO−, negative at physiological pH), and NH2 (NH3+, positive at physiological pH)], we have demonstrated that surface chemistry modulates VIC phenotype and calcified tissue deposition independent of osteoblastic-inducing media additives. Over seven days VICs exhibited surface-dependent differences in cell proliferation (COO− = NH3+> OH > CH3), morphology, and osteoblastic potential. Both NH3+and CH3-terminated SAMs promoted calcified tissue formation while COO−-terminated SAMs showed no calcification. VICs on NH3+-SAMs exhibited the most osteoblastic phenotypic markers through robust nodule formation, up-regulated osteocalcin and α-smooth muscle actin expression, and adoption of a round/rhomboid morphology indicative of osteoblastic differentiation. With the slowest proliferation, VICs on CH3-SAMs promoted calcified aggregate formation through cell detachment and increased cell death indicative of dystrophic calcification. Furthermore, induction of calcified tissue deposition on NH3+ and CH3-SAMs was distinctly different than that of media induced osteoblastic VICs. These results demonstrate that substrate surface chemistry alters VIC behavior and plays an important role in calcified tissue formation. In addition, we have identified two novel methods of calcified VIC induction in vitro. Further study of these environments may yield new models for in vitro testing of therapeutics for calcified valve stenosis, although additional studies need to be conducted

  13. Surface Chemistry and Water Dispersability of Carbon Black Materials

    SciTech Connect

    Contescu, Cristian I; Baker, Frederick S; Burchell, Timothy D

    2006-01-01

    Formulation of water-stable carbon black dispersions is a double-sided task, which requires selection of a proper dispersing agents and matching it with the properties of a specific carbon black. Among other properties that affect water dispersability of carbon blacks (particle size, surface area, and aggregate structure), surface chemistry plays a prime-order role. We have characterized physical and chemical properties of several carbon black materials, and correlated them with the stability of dispersions formed with ionic and non-ionic surfactants. In particular, chemical characterization of surface functional groups on carbon blacks based on potentiometric titration measurements (pKa spectra) provided a comprehensive picture of pH effects on dispersion stability. The results obtained were complemented by information from physical characterization methods, such as XPS and FTIR. The selection of a suitable dispersing agent able to withstand large pH variations will be discussed.

  14. Applications of mineral surface chemistry to environmental problems

    NASA Astrophysics Data System (ADS)

    White, Art F.

    1995-07-01

    Environmental surface chemistry involves processes that occur at the interface between the regolith, hydrosphere and atmosphere. The more limited scope of the present review addresses natural and anthropogenically-induced inorganic geochemical reactions between solutes in surface and ground waters and soil and aquifer substrates. Important surficial reactions include sorption, ion exchange, dissolution, precipitation and heterogeneous oxidation/reduction processes occurring at the solid/aqueous interface. Recent research advances in this field have addressed, both directly and indirectly, societal issues related to water quality, pollution, biogeochemical cycling, nutrient budgets and chemical weathering related to long term global climate change. This review will include recent advances in the fundamental and theoretical understanding of these surficial processes, breakthroughs in experimental and instrumental surface characterization, and development of methodologies for field applications.

  15. Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces.

    PubMed

    Zhang, Yu; Klittich, Mena R; Gao, Min; Dhinojwala, Ali

    2017-02-22

    Superhydrophobic surfaces are appealing as anti-icing surfaces, given their excellent water repellent performance. However, when water condenses on the surface due to high humidity, the water becomes pinned, and superhydrophobic surfaces fail to perform. Here we studied how the stability of the superhydrophobicity affected water condensation and frost formation. We created rough surfaces with the same surface structure, but with a variety of surface chemistries, and compared their antifrost properties as a function of intrinsic contact angle. Frost initiation was significantly delayed on surfaces with higher intrinsic contact angles. We coupled these macromeasurements with environmental scanning electron microscopy of water droplet initiation under high humidity conditions. These provide experimental evidence toward previous hypotheses that for a lower intrinsic-angle rough surface, Wenzel state is thermodynamically favorable, whereas the higher intrinsic-angle surface maintains a Cassie-Baxter state. Surfaces with a thermodynamically stable Cassie-Baxter state can then act both as antisteam and antifrost surfaces. This research could answer the persistent question of why superhydrophobic surfaces sometimes are not icephobic; anti-icing performance depends on the surface chemistry, which plays a critical role in the stability of the superhydrophobic surfaces.

  16. Surface chemistry modulates osteoblasts sensitivity to low fluid shear stress.

    PubMed

    Xing, Juan; Li, Yan; Lin, Manping; Wang, Jinfeng; Wu, Jinchuan; Ma, Yufei; Wang, Yuanliang; Yang, Li; Luo, Yanfeng

    2014-11-01

    Low fluid shear stress (FSS) is the mechanical environment encountered by osteoblasts in implanted bones or native bones of bed rest patients. High sensitivity of osteoblasts to low FSS is beneficial to osteogenesis. We hypothesize that this sensitivity might be regulated by chemical microenvironment provided by scaffolds. To confirm this hypothesis, self-assembled monolayers (SAMs) were used to provide various surface chemistries including OH, CH3 , and NH2 while parallel-plate fluid flow system produced low FSS (5 dynes/cm(2) ). Alterations in S-phase cell fraction, alkaline phosphatase activity, fibronectin (Fn), and collagen type I (COL I) secretion compared to those without FSS exposure were detected to characterize the sensitivity. Osteoblasts on OH and CH3 SAMs demonstrated obvious sensitivity while on NH2 SAMs negligible sensitivity was observed. Examination of the cell aspect ratio, orientation, and focal adhesions before and after FSS exposure indicates that the full spreading and robust focal adhesions on NH2 SAMs should be responsible for the negligible sensitivity through increasing the cell tolerance to low FSS. Despite the higher sensitivity, the Fn and COL I depositions on both OH and CH3 SAMs after FSS exposure were still less than on NH2 SAMs without FSS exposure. These results suggest that elaborate design of surface chemical compositions is essential for orchestration of surface chemistry with low FSS to realize both high sensitivity and high matrix secretion, facilitating the formation of functional bone tissues in implanted bone.

  17. Developing an Interactive Non-Formal Chemistry Setting and Investigating Its Effectiveness on High School Students' Attitudes towards Chemistry

    ERIC Educational Resources Information Center

    Demircioglu, Gökhan

    2016-01-01

    The main purpose of this study is to design an interactive non-formal chemistry environment and investigate its effectiveness on high school students' attitudes towards chemistry. Besides that, it is tried to determine to what extent students correlate these concepts with daily life. 14 voluntary students (5 female, 9 male) from different levels…

  18. Saltwater icephobicity: Influence of surface chemistry on saltwater icing

    PubMed Central

    Carpenter, Katherine; Bahadur, Vaibhav

    2015-01-01

    Most studies on icephobicity focus on ice formation with pure water. This manuscript presents studies to understand the influence of surfaces on saltwater ice nucleation and propagation. Experiments are conducted to quantify the influence of surface chemistry on saltwater ice nucleation and to understand the utility of superhydrophobic surfaces for saltwater icephobicity. These experiments are conducted with pure water and two sodium chloride solutions, which represent the salinity of seawater and briny produced water. It is seen that the presence of salt slows down the ice front propagation velocity significantly. Saltwater droplet impact dynamics on superhydrophobic surfaces are also different from pure water. Saltwater droplets retract more and a greater fraction of impacting liquid is repelled from the superhydrophobic surface. It is seen that the greater bounciness of saltwater droplets is a result of slower ice nucleation propagation kinetics. These experiments indicate that superhydrophobic surfaces will have better resistance to impact icing with saltwater than pure water and can remain useful at temperatures as low as −40 °C. Overall, this work is a starting point for further studies on heterogeneous nucleation in saltwater and serves as a bridge between the widely studied freshwater icephobic surfaces and saltwater-related applications. PMID:26626958

  19. Chemistry in crime investigation: sodium percarbonate effects on bloodstains detection.

    PubMed

    Castelló, Ana; Francés, Francesc; Verdú, Fernando

    2012-03-01

    Chemistry plays a leading role in crime investigation. In the study of bloodstains, chemical reactions provide the means for the detection. All these procedures have been thoroughly studied. However, recently, a new source of error has been found: washing stains with "active oxygen" detergents abrogates presumptive and human hemoglobin tests for bloodstains (although visible). The aim of this investigation was to evaluate the ability of pure sodium percarbonate-main component of detergents-to abrogate presumptive and human hemoglobin tests. Then, a solution to this problem could be found. The results demonstrate that pure sodium percarbonate-itself-is able to abrogate all tests, as well as the different degrees to which each of them is affected by the product. Consequently, faced with a stain of bloody appearance, even the preliminary tests are negative; it is advisable to analyze the DNA. Otherwise, the opportunity of obtaining valuable information is lost.

  20. Isothermal microcalorimetry to investigate non specific interactions in biophysical chemistry.

    PubMed

    Ball, Vincent; Maechling, Clarisse

    2009-07-28

    Isothermal titration microcalorimetry (ITC) is mostly used to investigate the thermodynamics of "specific" host-guest interactions in biology as well as in supramolecular chemistry. The aim of this review is to demonstrate that ITC can also provide useful information about non-specific interactions, like electrostatic or hydrophobic interactions. More attention will be given in the use of ITC to investigate polyelectrolyte-polyelectrolyte (in particular DNA-polycation), polyelectrolyte-protein as well as protein-lipid interactions. We will emphasize that in most cases these "non specific" interactions, as their definition will indicate, are favoured or even driven by an increase in the entropy of the system. The origin of this entropy increase will be discussed for some particular systems. We will also show that in many cases entropy-enthalpy compensation phenomena occur.

  1. Isothermal Microcalorimetry to Investigate Non Specific Interactions in Biophysical Chemistry

    PubMed Central

    Ball, Vincent; Maechling, Clarisse

    2009-01-01

    Isothermal titration microcalorimetry (ITC) is mostly used to investigate the thermodynamics of “specific” host-guest interactions in biology as well as in supramolecular chemistry. The aim of this review is to demonstrate that ITC can also provide useful information about non-specific interactions, like electrostatic or hydrophobic interactions. More attention will be given in the use of ITC to investigate polyelectrolyte-polyelectrolyte (in particular DNA-polycation), polyelectrolyte-protein as well as protein-lipid interactions. We will emphasize that in most cases these “non specific” interactions, as their definition will indicate, are favoured or even driven by an increase in the entropy of the system. The origin of this entropy increase will be discussed for some particular systems. We will also show that in many cases entropy-enthalpy compensation phenomena occur. PMID:20111693

  2. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    NASA Astrophysics Data System (ADS)

    Pramana, Stevin S.; Cavallaro, Andrea; Qi, Jiahui; Nicklin, Chris L.; Ryan, Mary P.; Skinner, Stephen J.

    2017-03-01

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10‑10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10‑6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  3. Understanding surface structure and chemistry of single crystal lanthanum aluminate.

    PubMed

    Pramana, Stevin S; Cavallaro, Andrea; Qi, Jiahui; Nicklin, Chris L; Ryan, Mary P; Skinner, Stephen J

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10(-10) Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10(-6) Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  4. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    PubMed Central

    Pramana, Stevin S.; Cavallaro, Andrea; Qi, Jiahui; Nicklin, Chris L.; Ryan, Mary P.; Skinner, Stephen J.

    2017-01-01

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures. PMID:28252044

  5. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  6. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  7. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    PubMed

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials.

  8. Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry.

    PubMed

    Liu, Minglu; Ma, Yuanyu; Wang, Robert Y

    2015-12-22

    We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from ∼0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand-ligand interface between neighboring NCs.

  9. Surface chemistry regulates the sensitivity and tolerability of osteoblasts to various magnitudes of fluid shear stress.

    PubMed

    Li, Yan; Wang, Jinfeng; Xing, Juan; Wang, Yuanliang; Luo, Yanfeng

    2016-12-01

    Scaffolds provide a physical support for osteoblasts and act as the medium to transfer mechanical stimuli to cells. To verify our hypothesis that the surface chemistry of scaffolds regulates the perception of cells to mechanical stimuli, the sensitivity and tolerability of osteoblasts to fluid shear stress (FSS) of various magnitudes (5, 12, 20 dynes/cm(2) ) were investigated on various surface chemistries (-OH, -CH3 , -NH2 ), and their follow-up effects on cell proliferation and differentiation were examined as well. The sensitivity was characterized by the release of adenosine triphosphate (ATP), nitric oxide (NO) and prostaglandin E2 (PGE2 ) while the tolerability was by cellular membrane integrity. The cell proliferation was characterized by S-phase cell fraction and the differentiation by ALP activity and ECM expression (fibronectin and type I collagen). As revealed, osteoblasts demonstrated higher sensitivity and lower tolerability on OH and CH3 surfaces, yet lower sensitivity and higher tolerability on NH2 surfaces. Observations on the focal adhesion formation, F-actin organization and cellular orientation before and after FSS exposure suggest that the potential mechanism lies in the differential control of F-actin organization and focal adhesion formation by surface chemistry, which further divergently mediates the sensitivity and tolerability of ROBs to FSS and the follow-up cell proliferation and differentiation. These findings are essentially valuable for design/selection of desirable surface chemistry to orchestrate with FSS stimuli, inducing appropriate cell responses and promoting bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2978-2991, 2016.

  10. Effects of wood fiber surface chemistry on strength of wood-plastic composites

    NASA Astrophysics Data System (ADS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-07-01

    Because wood-plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same conclusions were found with FTIR where WPC strength decreases as lignin peaks intensity increases. Esterification reaction of fibers with MAPE occurs on polar sites of carbohydrates, such as hydroxyls (Osbnd H). Thus, fibers with carbohydrates-rich surface, such as cellulose pulp, produced stronger WPC samples. Other factors such as mechanical interlocking and fiber morphology interfered with the effects of fiber surface chemistry.

  11. Inflammatory cytokine release is affected by surface morphology and chemistry of titanium implants.

    PubMed

    Östberg, Anna-Karin; Dahlgren, Ulf; Sul, Young-Taeg; Johansson, Carina B

    2015-04-01

    To investigate in vitro cellular cytokine expression in relation to commercially pure titanium discs, comparing a native surface to a fluorinated oxide nanotube surface. Control samples pure titanium discs with a homogenous wave of the margins and grooves and an often smeared-out surface structure. Test samples pure titanium discs with a fluorinated titanium oxide chemistry and surface morphology with nanopore/tube geometry characterized by ordered structures of nanotubes with a diameter of ≈ 120 nm, a spacing of ≈ 30 nm, and a wall thickness of ≈ 10 nm. Cross-section view showed vertically aligned nanotubes with similar lengths of ≈ 700 nm. Peripheral blood mononuclear leucocytes were cultured for 1, 3, and 6 days according to standard procedures. BioPlex Pro™ assays were used for analysis and detection of cytokines. Selected inflammatory cytokines are reported. A pronounced difference in production of the inflammatogenic cytokines was observed. Leucocytes exposed to control coins produced significantly more TNF-α, IL-1ß, and IL-6 than the test nanotube coins. The effect on the TH2 cytokine IL-4 was less pronounced at day 6 compared to days 1 and 3, and slightly higher expressed on the control coins. The morphology and surface chemistry of the titanium surface have a profound impact on basic cytokine production in vitro. Within the limitations of the present study, it seems that the fluorinated oxide nanotube surface results in a lower inflammatory response compared to a rather flat surface that seems to favour inflammation.

  12. Surface chemistry of polyimide precursors on Cu(111)

    NASA Astrophysics Data System (ADS)

    Ivanecky, J. E.; Child, C. M.; Campion, Alan

    1995-03-01

    We have investigated the bonding of the monomers pyromellitic dianhydride (PMDA) and oxydianiline (ODA) as well as model compounds, succinic anhydride, phthalic anhydride, and benzoic acid, on Cu(111) in ultrahigh vacuum. Unenhanced surface Raman spectroscopy was used to identify the adsorbed species. ODA was unreactive at 110 K; the surface vibrational features were identical to those in the condensed multilayer. In contrast, PMDA chemisorbed dissociatively to form a bidentate surface carboxylate. Succinic anhydride physisorbed at 110 K, whereas benzoic acid and phthalic anhydride both adsorbed dissociatively forming bridging surface carboxylates as was observed for PMDA. The surface Raman spectrum of PMDA showed resonance enhancement.

  13. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  14. Carbon dioxide chemistry on the surface of Titan

    NASA Astrophysics Data System (ADS)

    Hodyss, Robert; Piao, Sophie; Malaska, Michael; Cable, Morgan

    2016-10-01

    Titan possesses many of the basic elements of habitability, including a rich organic chemistry. However, the thick atmosphere of Titan shields the surface from radiation, which makes the incorporation of oxygen into organic compounds difficult, due to a reducing environment and low temperatures that slow chemical reactions. These obstacles may be overcome by impacts or cryovolcanic heating of ice, which would mix organics with liquid water and allow chemical reactions that can incorporate oxygen. However, reactions involving oxygen can occur on Titan without invoking such unusual conditions. We show that the reaction of carbon dioxide with amines can lead to oxygenated organics at Titan's surface without the need for external energy input, via the carbamation reaction: R-NH2 + CO2 → R-NH-COOH. Using a combination of micro-Raman spectroscopy and UHV FTIR spectroscopy, we examine the reaction products and kinetics of the carbamation reaction for a variety of primary and secondary amines. We have observed carbamic acid formation in mixtures of methylamine, ethylamine and dibutylamine with CO2 at cryogenic temperatures. This indicates that both primary and secondary amines can undergo carbamation at low temperatures. Reaction was observed with methylamine as low as 40 K, and with ethylamine at 100 K, demonstrating that carbamation is fast at Titan surface temperatures. We will present data on the kinetics of the carbamation reaction for a variety of amines, as well as estimates of the quantity of carbamic acids that may be produced on Titan's surface and in the atmosphere.

  15. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    PubMed

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  16. The impact of surface chemistry on the performance of localized solar-driven evaporation system

    NASA Astrophysics Data System (ADS)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-01

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  17. The impact of surface chemistry on the performance of localized solar-driven evaporation system

    PubMed Central

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561

  18. Surface chemistry studies of copper and nickel nanoparticles deposited on a titanium dioxide(110) surface

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Metal nanoparticles on oxides are important in heterogeneous catalysis due to their unique properties related to size and structure. In this study, supported Cu and Ni nanoparticles on a rutile TiO2(110) surface have been studied as model systems for 'real world' heterogeneous catalysts to understand the relationship between the size and the catalytic properties of the metal particles. All the experiments were carried out under ultrahigh vacuum conditions using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), low energy electron spectroscopy (LEED) and temperature programmed desorption (TPD) techniques. Cu and Ni grow three-dimensional particles on the TiO2(110) surface at temperatures between 295 K and 850 K. The growth of Cu and Ni is similar except that the sintering of Ni particles occurs at higher temperatures. In order to investigate the particle size effect on the catalytic reactivity of the metal particles, different sizes of Cu and Ni particles with uniform size distributions were prepared on titania by varying the metal diffusion rate (D) to deposition flux (F) ratios. The surface chemistry of these supported Cu and Ni nanoparticles was investigated with dimethyl methylphosphonate (DMMP), a simulant for chemical warfare agents and pesticides. TPD studies indicate that DMMP decomposition may be via the methoxy intermediate. The adsorbed DMMP decomposes to CH4, H2CO and H2 on the Cu nanoparticles and films, and to CH4, CO and H2 on the Ni nanoparticles and films between 295 K and 850 K. The decomposition of DMMP on Cu and Ni surfaces is not sensitive to the particle size. However, heating the Ni particles or film before DMMP adsorption causes a decrease in Ni reactivity due to the loss of active sites. The titania support plays an important role in DMMP reaction on Cu surfaces. Finally, in order to relate ultrahigh vacuum studies with real catalytic conditions usually associated with much higher pressures, the role of oxygen on

  19. Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS.

    PubMed

    Eftekhari, Fatemeh; Lee, Anna; Kumacheva, Eugenia; Helmy, Amr S

    2012-02-15

    In this Letter, we demonstrate the efficacy of hollow core photonic crystal fibers (HCPCFs) as a surface-enhanced Raman spectroscopy (SERS) platform for investigating the ligand exchange process on the surface of gold nanoparticles. Raman measurements carried out using this platform show the capability to monitor minute amounts of surface ligands on gold nanoparticles used as an SERS substrate. The SERS signal from an HCPCF exhibits a tenfold enhancement compared to that in a direct sampling scheme using a cuvette. Using exchange of cytotoxic cetyltrimethylammonium bromide with α-methoxy-ω-mercaptopoly(ethylene glycol) on the surface of gold nanorods as an exemplary system, we show the feasibility of using HCPCF SERS to monitor the change in surface chemistry of nanoparticles.

  20. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Zachwieja, J.; Lagno, M.

    1992-06-24

    To better understand the surface chemical properties of coal and mineral pyrite, studies on the effect of flotation surfactants (frother and kerosene) on the degree of hydrophobicity have been conducted. The presence of either frother or kerosene enhanced the flotability of coal and mineral pyrite with a corresponding decrease in induction time over the pH range examined. Scanning electron microscopy (SEM) results indicate a correlation exists between the sample surface morphology and crystal structure and the observed hydrophobicity. As a result of the data obtained from the surface characterization studies, controlled surface oxidation was investigated as a possible pyrite rejection scheme in microbubble column flotation.

  1. Plant surface reactions: an ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2015-07-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: how much ozone effectively enters the plant through open stomata and how much is lost by chemical reactions at the plant surface? In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too. Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way, that ozone flux through the open stomata is strongly reduced. Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  2. Surface and Interface Chemistry for Gate Stacks on Silicon

    NASA Astrophysics Data System (ADS)

    Frank, M. M.; Chabal, Y. J.

    This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.

  3. Exploring silicon surface chemistry with spectroscopy and microscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Fan

    Recent technology advances have pushed the development of silicon devices to their physical performance limits. An alternative way to keep Moore's law valid and avoid the physical limits of today's magnetic memory is to combine molecules with the silicon. Molecules possess degrees of freedom that traditional silicon devices lack, such as rotation, conformation, oxidation states, spontaneous dipole moment, and discrete energy levels. Cleverly taking advantage of these properties may lead to next generation devices that are more powerful and efficient than today's silicon devices. To realize such an ambitious goal, it is necessary to understand the surface chemistry of silicon, i.e., the adsorption, reaction, and disorder phenomena of molecules at the surface. Spectroscopy and microscopy are two complementary methods to study surface chemistry and provide insight into mechanisms for next generation silicon devices. In this thesis, the major spectroscopy method used is Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. To make full use of this technique, a new model is introduced in order to disentangle the concepts of disorder and orientation, both of which are provided by a NEXAFS measurement. The disorder information is obtained by introducing a disorder parameter sigma, whose magnitude directly measures the spread of the orientation angle around its average. This model clarifies some long existing controversial interpretations of NEXAFS measurements and provides insights into disorder-related physical properties. The second emphasis of this thesis is the development of molecular nanostructures where one-dimensional molecular arrays with strong dipole moments are formed on the Si(111) 5x2-Au surface. Scanning Tunneling Microscopy (STM) is used to characterize these nanostructures. The study shows that upward versus downward orientations of the dipole moment of the molecules can be distinguished by STM barrier height imaging. Such structures could be a

  4. Adsorption of pentacene on (100) vicinal surfaces: role of coordination, surface chemistry and vdWs effects

    NASA Astrophysics Data System (ADS)

    Matos, Jeronimo; Kara, Abdelkader

    2015-03-01

    In contrast to low miller index surfaces, vicinal surfaces are characterized by steps and step edges that not only present an interesting atomic landscape for the adsorption organic molecules, but also a unique electronic structure resulting in part from the low coordinated atoms at the step edges. The adsorption of pentacene on the stepped (511), (711), (911) surfaces (respectively 3, 4 and 5-atom wide terraces) of Cu and Ag (coinage transition metals); Pt (reactive transition metal); and Ni (reactive, magnetic transition metal) are studied using density functional theory, in order to investigate the support effects arising from differing surface chemistry. We compare the adsorption energy, adsorption geometry and electronic structure predicted by the PBE functional with those obtained from one of the optimized vdW-DF methods: optB88-vdW. Work supported by the U.S. Department of Energy Basic Energy Science under Contract No. DE-FG02-11ER16243.

  5. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5

  6. Surface chemistry of polyimide formation on Cu(111)

    NASA Astrophysics Data System (ADS)

    Child, C. M.; Fieberg, Jeffrey E.; Campion, Alan

    1997-02-01

    We have investigated the adsorption and reaction of the monomers pyromellitic dianhydride (PMDA) and oxydianiline (ODA) to form the intermediate amic acid and then polyimide adsorbed on Cu(111) using solventless vapor deposition in ultrahigh vacuum. Unenhanced surface Raman spectroscopy was used to identify the adsorbed species. The initial reaction of PMDA and ODA at 383 K created an amic acid ion that was bound to the surface via carboxylate and surface amide linkages. Upon heating the intermediate acid to 473 K, polyimide was formed; it was bound to the surface only via a surface carboxylate. The interfacial polymerization produced only relatively short polyimide chains. The surface Raman spectrum of the amic acid was resonantly enhanced.

  7. Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry.

    PubMed

    Zhang, Meining; Yu, Ping; Mao, Lanqun

    2012-04-17

    To understand the molecular basis of brain functions, researchers would like to be able to quantitatively monitor the levels of neurochemicals in the extracellular fluid in vivo. However, the chemical and physiological complexity of the central nervous system (CNS) presents challenges for the development of these analytical methods. This Account describes the rational design and careful construction of electrodes and nanoparticles with specific surface/interface chemistry for quantitative in vivo monitoring of brain chemistry. We used the redox nature of neurochemicals at the electrode/electrolyte interface to establish a basis for monitoring specific neurochemicals. Carbon nanotubes provide an electrode/electrolyte interface for the selective oxidation of ascorbate, and we have developed both in vivo voltammetry and an online electrochemical detecting system for continuously monitoring this molecule in the CNS. Although Ca(2+) and Mg(2+) are involved in a number of neurochemical signaling processes, they are still difficult to detect in the CNS. These divalent cations can enhance electrocatalytic oxidation of NADH at an electrode modified with toluidine blue O. We used this property to develop online electrochemical detection systems for simultaneous measurements of Ca(2+) and Mg(2+) and for continuous selective monitoring of Mg(2+) in the CNS. We have also harnessed biological schemes for neurosensing in the brain to design other monitoring systems. By taking advantage of the distinct reaction properties of dopamine (DA), we have developed a nonoxidative mechanism for DA sensing and a system that can potentially be used for continuously sensing of DA release. Using "artificial peroxidase" (Prussian blue) to replace a natural peroxidase (horseradish peroxidase, HRP), our online system can simultaneously detect basal levels of glucose and lactate. By substituting oxidases with dehydrogenases, we have used enzyme-based biosensing schemes to develop a physiologically

  8. Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores.

    PubMed

    Sang, Lung-Ching; Coppens, Marc-Olivier

    2011-04-14

    The interactions of proteins with the surface of cylindrical nanopores are systematically investigated to elucidate how surface curvature and surface chemistry affect the conformation and activity of confined proteins in an aqueous, buffered environment. Two globular proteins, lysozyme and myoglobin, with different catalytic functions, were used as model proteins to analyze structural changes in proteins after adsorption on ordered mesoporous silica SBA-15 and propyl-functionalized SBA-15 (C(3)SBA-15) with carefully controlled pore size. Liquid phase ATR-FTIR spectroscopy was used to study the amide I and II bands of the adsorbed proteins. The amide I bands showed that the secondary structures of free and adsorbed protein molecules differ, and that the secondary structure of the adsorbed protein is influenced by the local geometry as well as by the surface chemistry of the nanopores. The conformation of the adsorbed proteins inside the nanopores of SBA-15 and C(3)SBA-15 is strongly correlated with the local geometry and the surface properties of the nanoporous materials, which results in different catalytic activities. Adsorption by electrostatic interaction of proteins in nanopores of an optimal size provides a favorably confining and protecting environment, which may lead to considerably enhanced structural stability and catalytic activity.

  9. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Jiang, Xiumei; Ji, Yinglu; Bai, Ru; Zhao, Yuliang; Wu, Xiaochun; Chen, Chunying

    2013-08-01

    We investigated how surface chemistry influences the interaction between gold nanorods (AuNRs) and cell membranes and the subsequent cytotoxicity arising from them in a serum-free cell culture system. Our results showed that the AuNRs coated with cetyl trimethylammonium bromide (CTAB) molecules can generate defects in the cell membrane and induce cell death, mainly due to the unique bilayer structure of CTAB molecules on the surface of the rods rather than their charge. Compared to CTAB-capped nanorods, positively charged polyelectrolyte-coated, i.e. poly(diallyldimethyl ammonium chloride) (PDDAC), AuNRs show improved biocompatibility towards cells. Thus, the present results indicate that the nature of surface molecules, especially their packing structures on the surface of AuNRs rather than surface charge, play a more crucial role in determining cytotoxicity. These findings about interfacial interactions could also explain the effects of internalized AuNRs on the structures or functions of organelles. This study will help understanding of the toxic nature of AuNRs and guide rational design of the surface chemistry of AuNRs for good biocompatibility in pharmaceutical therapy.

  10. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  11. The interfacial chemistry of organic materials on commercial glass surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Joy

    The hydrolytic stability of glass is dependent on its composition. Glasses are exposed to water during their processing and in many applications; therefore, their surface or interface with other materials must withstand hydrolytic attack. Multi-component silicate glasses are widely used but have been the least studied. In coatings-based applications, these glasses come in contact with organosilanes and organic molecules where the adsorption may be affected by surface water. For example, the influence of glass composition on the wet strength of a glass/polymer composite material is unclear, but it is presumed to be driven by the hydrolytic stability of the interfacial chemistry. Organosilanes are critical for increasing the performance of composite materials in humid environments but the precise manner by which the improvement occurs has not been verified. The current school of thought is that the application of silane coatings on a multi-component glass surface transforms the chemically heterogeneous surface into a homogenous and hydrolytically stable surface. In this study, multi-component silicate glass surfaces were silanized by both aqueous and non-aqueous methods. The effect of glass composition and surface hydration on silane coverage was quantified by X-ray Photoelectron Spectroscopy (XPS) analysis. The monolayer-level adsorption results showed that the low-sodium content glasses had greater coverage than a high-sodium content glass in dry conditions in contrast to an equivalent coverage in wet conditions. The hydrolytically-stable coverage on multi-component silicate glass surfaces by both silanization methods was found to be sub-monolayer. A thin film model in conjunction with XPS and Infrared Spectroscopy was used to probe the interfacial region of a fiberglass insulation material containing a sodium-rich multi-component silicate glass and an acrylate resin binder. Upon the application of the aqueous binder, the leaching of sodium from the glass promoted

  12. Surface chemistry of poly(p-xylylene) and nylon

    NASA Astrophysics Data System (ADS)

    Herrera-Alonso, Margarita

    The interaction of a material with its surroundings occurs at the material-environment interface, therefore, the chemical and physical characteristics of the material's surface plays a fundamental role in determining its properties, such as its biocompatibility, adhesion, and wettability, and ultimately, its technological applicability. This dissertation discusses aspects of the chemical surface modification of two polymers, poly(p-xylylene) and nylon. Chapter 2 focuses on the synthesis and wet-chemistry surface modification of poly(p-xylylene) (PPX) thin films. A series of electrophilic aromatic substitutions were studied including chlorosulfonation, chloroamidomethylation, and Friedel-Crafts catalyzed reactions. It was found that the yields and surface selectivity of the reactions studied were highly dependent on the interaction of the polymer with the reaction medium. Chapter 3 describes the use of vapor deposition polymerization in template-assisted synthesis. Poly(p-xylylene) nanotubes were synthesized by template assisted methods using porous aluminum oxide membranes as the templating material. The pore diameter showed a linear dependence with respect to the deposition time. FESEM analysis showed that PPX was deposited along the pores of the membranes. Exposure of the membranes to a reactive solution resulted in chemical functionalization of the inner walls of the nanotubes, confirmed by XPS. Chapter 4 discusses the chemical reduction of nylon film surfaces by reaction with a borane-tetrahydrofuran complex. It was observed that, while the reaction occurs in high yields, its surface-confinement is highly dependent on the segmental mobility of the polymer. The amine-rich surfaces were further used as templates for the synthesis of composite films by electrostatic adsorption of polyanions. Chapter 5 deals with the synthesis of linear polyalkyleneimines of different hydrocarbon lengths by the surface-mediated reduction of nylons. These polyalkyleneimines were

  13. Surface modification and chemistry of hematite-based catalysts for water oxidation: Model surfaces, nanomaterials, and thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Peng

    Hematite-based electrocatalysts are widely used for water oxidation, but these catalysts suffer from its low reaction kinetics. To help elucidate detailed reaction mechanisms associated with water oxidation, water chemisorption and reaction as well as structural changes induced by Ni incorporation into the alpha-Fe2O3(0001) surface was studied. Incorporation of Ni into the near-surface region of hematite changes the structure of the (0001) surface by the formation of FeO-like domains on the topmost layer. Electrochemical measurements demonstrated that Ni incorporation leads to higher current density and lower onset potential than the unmodified alpha-Fe 2O3 surface. To extend the surface science study to real catalysts, hematite nanocrystals were synthesized with continuous tuning of the aspect-ratio and fine control of the surface area ratio (from 98% to 30%) of the (0001) facet with respect to other surfaces. Ni doping forms a uniformly doped NixFe 2-xO3 surface overlayer that improves the electrocatalytic activity of water oxidation. The enhancement of water oxidation activity by Ni-doping increased as the surface area ratio of the (0001) facet of hematite nanocrystals increased, consistent with the theoretical predictions and surface science studies. Then, a composite oxide film photoelectrode comprised of alpha-Fe 2O3 and WO3 were prepared, and exhibited a water oxidation photocurrent onset potential as low as 0.43 V vs. RHE. This result represents one of the lowest onset potentials measured for hematite-based PEC water oxidation systems. The composition of the films differs between the surfaces and bulk, with tungsten found to be concentrated in the surface region. Post-reaction Raman spectroscopy characterization demonstrates that water interacts with surface WO3 crystals, an event that is associated with the formation of a hydrated form of the oxide. Lastly, the surface chemistry of H2O on hematite nanoplates is investigated by studying water adsorption and

  14. Functional surface chemistry of carbon-based nanostructures

    NASA Astrophysics Data System (ADS)

    Abdula, Daner

    The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and

  15. Coupling of Ligands to the Liposome Surface by Click Chemistry.

    PubMed

    Spanedda, Maria Vittoria; De Giorgi, Marcella; Hassane, Fatouma Saïd; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît

    2017-01-01

    Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields have been obtained in the presence of bathophenanthroline disulfonate, a water soluble copper-ion chelator, acting as a catalyst. No vesicle leakage is triggered by this conjugation reaction and the coupled mannose ligands are exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent that constraint, an example of alternative copper-free azide-alkyne click reaction has been developed. Molecular tools and results are presented here.

  16. Ion irradiation of TNO surface analogue ice mixtures: the chemistry .

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Brunetto, R.; Caniglia, G.; Fulvio, D.; Ioppolo, S.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Vis-NIR spectra of some Centaurs and Trans-Neptunian Objects (TNOs) indicate surfaces rich in H_2O, N_2, CO_2, CH_4 e CH_3OH. Cosmic ion irradiation is one of the processes driving the evolution of TNO surfaces. A main role is played by the chemistry induced by colliding ions; many molecular bonds are broken along the ion track, and this may lead to the formation of byproduct molecules. Starting from laboratory experiments, it is possible to infer the presence of molecules still undetected on TNOs. For instance, carbonic acid (H_2CO_3) is produced after irradiation of H_2O:CO_2 icy mixtures, while irradiation of H_2O:N_2 icy mixtures causes the production of N_2O, NO, and NO_2. From H_2O:CH_4:N_2 mixtures, many species are formed, such as CO, CO_2, HCN, HNCO, N_2O, and molecules including CN bonds. Moreover, ion irradiation may modify the relative intensity of NIR features, as in the case of solid methanol, whose 2.34 mu m band decreases in intensity with respect to the 2.27 mu m band, after increasing irradiation doses. We suggest that this effect may be observed on Centaur Pholus.

  17. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  18. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering

    PubMed Central

    Doğan, İlker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C. M.

    2016-01-01

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions. PMID:27389331

  19. Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Doğan, Ilker; Gresback, Ryan; Nozaki, Tomohiro; van de Sanden, Mauritius C. M.

    2016-07-01

    Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Clx and Si-Hx modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Clx and Si-Hx modes, and an emergence of Si-Ox and Si-O-Hx modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

  20. Don Quixote Pond Sediments: Surface and Subsurface Chemistry and Mineralogy

    NASA Astrophysics Data System (ADS)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2014-12-01

    Don Quixote Pond, like Don Juan Pond in the South Fork of Wright Valley, Antarctica, is a model for calcium and chlorine weathering and distribution on Mars. It is located in the western part of the North Fork about 100 m above Mean Seawater Level; its brine is seasonally frozen [1]. Field observations show zones of discoloration which grow lighter with distance from the pond edges. Four sediment cores, a set of radial surface samples, special surface samples, and samples of local rocks were obtained [2]. We report on chemical and mineral analyses of traverse samples and on two cores. Core DQ20 is a northeastern shoreline core. Its soluble salt concentration exceeds 200 micromoles/g in the top 5 cm, and then falls to less than 70 micromoles/g at the permafrost depth of 15 cm. These concentrations are low when compared to similarly positioned locations at Don Juan Pond and to cores from Prospect Mesa close to Lake Vanda, Wright Valley. Halite, soda niter, tachyhydrite and/bischovite are suggested from the ionic molar relationships Measured halite concentrations of surface samples, collected along a traverse of 35 m from the pond outwards, range from over 5% to trace amounts, decreasing with distance. Gypsum is also present in almost all of these samples ranging from 0.2% to 2.6%, but does not exhibit a trend. However, in core DQ35, located at a distance of 15 m along the traverse, gypsum decreases from 2.5% to 0.6% from the surface to the permafrost depth of 12 cm. While DQ35 and radial samples show high quartz and albite abundance, samples that contained visible encrustations and evaporites are low in these minerals and rich in highly diverse alteration products. Don Juan Basin ponds may have formed by a complex surface water mobilization of weathering products [3] and local groundwater action [4,5]. In contrast, Don Quixote pond mineralogy and chemistry may be consistent with a less complex shallow and deep groundwater system origin [1]. [1] Harris H

  1. An Investigation into the Effectiveness of Problem-Based Learning in a Physical Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…

  2. Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow

    SciTech Connect

    Nash, C.A.

    2000-07-27

    Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant.

  3. Surface chemistry and physics of deuterium retention in lithiated graphite

    SciTech Connect

    Taylor, C. N.; Krstic, Predrag S; Allain, J. P.; Heim, B.; Skinner, C. H.; Kugel, H.

    2011-01-01

    Lithium wall conditioning in TFTR, CDX-U, T-11M, TJ-II and NSTX is found to yield enhanced plasma performance manifest, in part, through improved deuterium particle control. X-ray photoelectron spectroscopy (XPS) experiments examine the affect of D irradiation on lithiated graphite and show that the surface chemistry of lithiated graphite after D ion bombardment (500 eV/amu) is fundamentally different from that of non-Li conditioned graphite. Instead of simple LiD bonding seen in pure liquid Li, graphite introduces additional complexities. XPS spectra show that Li-O-D (533.0 {+-} 0.6 eV) and Li-C-D (291.4 {+-} 0.6 eV) bonds, for a nominal Li dose of 2 {micro}m, become 'saturated' with D at fluences between 3.8 and 5.2 x 10{sup 17} cm{sup -2}. Atomistic modeling indicate that Li-O-D-C interactions may be a result of multibody effects as opposed to molecular bonding.

  4. Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM

    NASA Astrophysics Data System (ADS)

    Penna, Andrea; Careri, Maria; Spencer, Nicholas D.; Rossi, Antonella

    2015-08-01

    Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m2. These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

  5. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.; Carle, G. C.

    1977-01-01

    Earlier results reported from the Viking Lander-1 experiment are reexamined and interpreted in terms of a model of the Martian soil surface morphology and chemistry. Major events in the gas exchange experiment (GEX) first cycle are tabulated and data are presented on the sample processing and transport environments experienced by the soil samples. Oxygen and CO2 evolved from humidified Martian soil in GEX and slight changes in N2 present are investigated. A soil model involving iron oxide coating on silicate material is entertained to yield a mechanistic explanation of the experimental findings, and invocation of biotic processes is eschewed.

  6. Surface chemistry of Cu(100) in acidic sulfate solutions

    NASA Astrophysics Data System (ADS)

    Ehlers, Charles B.; Stickney, John L.

    1990-12-01

    The surface chemistry of Cu(100), in H 2SO 4 and acidic K 2SO 4 solutions, has been studied by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and thermal desorption spectroscopy (TDS). Experiments were conducted in an electrochemical cell coupled directly to a UHV surface analysis chamber. Structures formed on the Cu(100) surface emersed (removed) from sulfate solutions were the principal focus of this study. Structures and coverages were primarily dependent on sulfate concentration and the presence of coadsorbates such as Cl and K +. Emersion of Cu(100) from 1 mM H 2SO 4 resulted in a Cu(100)(2 × 2)-SO 2-4 adlattice with a {1}/{4} coverage of sulfate. A {1}/{5} coverage Cu(100)( 5 × 5) R26.6°- SO2-4 structure formed upon emersion mM H 2SO 4 containing trace Cl - contaminants, and a {1}/{3} coverage Cu(100)(2 × 100)- SO2-4 structure formed following e from 10 mM H 2SO 4. Emersion of Cu(100) from 1 mM K 2SO 4 (pH = 3.6) resulted in a Cu(100)(4 × 2 5)- SO2-4, K + surface structure, with K + and SO 2-4 coadsorbed in a 1:1 stoichiometry, each at {1}/{4} coverage. No significant potential-dependent variatio in surface structure or coverage was observed when the electrode was emersed from H 2SO 4 at potentials in the double-layer charging region. For emersion from 1 mM K 2SO 4 (pH = 3.6), a reduction in K + coverage along with a change in the surface structure to a (2 × 2) occurred at positive potentials. Comparisons were made of sulfate adsorption on the low-index planes of Cu using a Cu single crystal polished on three different faces to the (111), (110) and (100) planes. This electrode was emersed from 1 mM K 2SO 4 (pH = 3.6) at several potentials. A c(8 × 2) and a diffuse (1 × 1) LEED pattern were observed on Cu(110) and Cu(111), respectively. The K + and SO 2-4 coverages differed appreciably between the three surfaces. Significant differences were observed in the thermal desorption spectra of Cu(100) emersed from H 2SO 4 and K 2SO

  7. The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions.

    PubMed

    Ding, Yuxiao; Zhang, Liyun; Wu, Kuang-Hsu; Feng, Zhenbao; Shi, Wen; Gao, Qiang; Zhang, Bingsen; Su, Dang Sheng

    2016-10-15

    The surface chemistry of nanocarbon support can tailor chemical properties of precious metal nanoparticle/nanocarbon hybrid catalyst in heterogeneous reactions. We report on modified reduced graphene oxide (rGO) support with ionic liquid-derived carbonaceous surface for palladium nanoparticle (Pd NPs) decoration and their actions in different heterogeneous reactions. The surface chemistry of support materials was characterized in detail, and the influence of which on the formation and distribution of metal particles was further investigated. Three different types of reactions including Suzuki-Miyaura coupling reaction, CO oxidation and phenol reduction were examined in terms of reactivity and selectivity. The roles of substituted nitrogen in graphitic lattice and grafted groups on the carbon surface were exploited. Nitrogen-doping can give rise to changes in electronic properties of supported metals, and the Lewis basicity of the doped nitrogen atoms can favor the adsorption of acidic reactants in phenol reduction. The grafted groups derived a negative impact to the Suzuki-Miyaura coupling reaction, due to the involvement of larger reactant molecules, despite that they could prevent significant sintering of Pd NPs in the CO oxidation.

  8. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  9. Investigating and Theorizing Discourse during Analogy Writing in Chemistry

    ERIC Educational Resources Information Center

    Bellocchi, Alberto; Ritchie, Stephen M.

    2011-01-01

    Explanations of the role of analogies in learning science at a cognitive level are made in terms of creating bridges between new information and students' prior knowledge. In this empirical study of learning with analogies in an 11th grade chemistry class, we explore an alternative explanation at the "social" level where analogy shapes…

  10. Spatial And Temporal Variation In The Dissolved Trace Element Chemistry Of Chesapeake Bay Surface Waters

    NASA Astrophysics Data System (ADS)

    Dorval, E.; Hannigan, R.; Jones, C.

    2001-12-01

    Surface waters were collected from sea grass beds around the Chesapeake Bay of Virginia as well as from the mouths of the York, James, Potomac and Rappahannock rivers and Tangier and Smith islands. These sea grass beds represent the nursery habitats for a variety of sport fish including Spotted Sea Trout and Weakfish. Trace element ratios of fish otoliths record the unique chemistries of bodies of water in which the fish live. The data presented here represent the initial results of a "ground-truthing" investigation of the relationships between the water and otolith chemistry. Waters were collected bi-monthly (July through September) from 30 sites around the western and eastern shore of Chesapeake Bay including major tributaries and Tangier and Smith islands. Water was collected using trace metal clean procedures including filtration through a 0.45 uM filter and acidification in the field to pH < 2 with ultra-pure nitric acid. Dissolved trace element composition was measured by sector field ICP-MS. The trace element chemistry of samples show both spatial and temporal variation. Using discriminant analysis it is not possible to statistically classify samples to the respective zones (western shore, eastern shore or islands) but it is possible to separate samples from the Tangier and Smith island sites from the eastern and western shore sites. Elements that allow this classification include Ce and Th, which are found in higher concentration in the samples from the island sites than in the eastern and western shore samples. These relationships follow the trends observed in pH and dissolved oxygen likely related to a restricted flow regime between the islands and the eastern shore. Mg/Ca and Sr/Ca ratios are unique for the sea grass beds along the western shore and allow the distinction of beds located between the York and Rappahannock rivers from those between the Rappahannock and Potomac rivers. Sr and Ba concentrations are variable between sites along the eastern

  11. Investigating Titan's Atmospheric Chemistry at Low Temperature with the Titan Haze Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, E. M.; Salama, F.

    2012-12-01

    Titan, Saturn's largest satellite, possesses a dense atmosphere (1.5 bar at the surface) composed mainly of N2 and CH4. The solar radiation and electron bombardment from Saturn's magnetosphere induces a complex organic chemistry between these two constituents leading to the production of more complex molecules and subsequently to solid aerosols. These aerosols in suspension in the atmosphere form the haze layers giving Titan its characteristic orange color. Since 2004, the instruments onboard the Cassini orbiter have produced large amounts of observational data, unraveling a chemistry much more complex than what was first expected, particularly in Titan's upper atmosphere. Neutral, positively and negatively charged heavy molecules have been detected in the ionosphere of Titan, including benzene (C6H6) and toluene (C6H5CH3). The presence of these critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds suggests that PAHs might play a role in the production of Titan's aerosols. The aim of the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC facility, is to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry to benzene, and to PAHs and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan's atmospheric chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Due to the short residence time of the gas in the plasma discharge, the THS experiment can be used to probe the first and intermediate steps of Titan's chemistry by injecting different gas mixtures in the plasma. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin deposits are also produced

  12. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  13. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    PubMed

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  14. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    -support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  15. Research program to investigate the fundamental chemistry of technetium

    SciTech Connect

    Shuh, David K.; Lukens, Wayne W.; Burns, Carol J.

    2003-12-19

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry that is necessary to address challenges to the safe, long-term remediation of high-level waste posed by this element. These challenges may be divided into two categories: unexpected behavior of technetium in high-level waste tanks at the Hanford and Savannah River Sites and the behavior of technetium in waste forms.

  16. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    ERIC Educational Resources Information Center

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  17. An Investigation of College Chemistry Students' Understanding of Structure-Property Relationships

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Corley, Leah M.; Underwood, Sonia M.

    2013-01-01

    The connection between the molecular-level structure of a substance and its macroscopic properties is a fundamental concept in chemistry. Students in college-level general and organic chemistry courses were interviewed to investigate how they used structure-property relationships to predict properties such as melting and boiling points. Although…

  18. Investigating Pre-Service Chemistry Teachers' Problem Solving Strategies: Towards Developing a Framework in Teaching Stoichiometry

    ERIC Educational Resources Information Center

    Espinosa, Allen A.; Nueva España, Rebecca C.; Marasigan, Arlyne C.

    2016-01-01

    The present study investigated pre-service chemistry teachers' problem solving strategies and alternative conceptions in solving stoichiometric problems and later on formulate a teaching framework based from the result of the study. The pre-service chemistry teachers were given four stoichiometric problems with increasing complexity and they need…

  19. Using Think-Aloud Protocols to Investigate Secondary School Chemistry Teachers' Misconceptions about Chemical Equilibrium

    ERIC Educational Resources Information Center

    Cheung, Derek

    2009-01-01

    Secondary school chemistry teachers' understanding of chemical equilibrium was investigated through interviews using the think-aloud technique. The interviews were conducted with twelve volunteer chemistry teachers in Hong Kong. Their teaching experience ranged from 3 to 18 years. They were asked to predict what would happen to the equilibrium…

  20. Monsoon Season Surface Water Chemistry Response Following Wildfire: 2003 Aspen Fire in Sabino Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Einloth, S. L.; Chief, K. D.; Ekwurzel, B.; Nijssen, B.; Ferré, P. A.

    2003-12-01

    The Aspen Fire in the Coronado National Forest north of Tucson burned in excess of 80,000 acres and destroyed more than 300 structures. Exposed, burned soils are highly vulnerable to intense monsoon rains, leading to increases in surface runoff, peak flows, and erosion rates. As part of an integrated investigation of the hydrologic impacts of this fire, we rapidly mobilized a field sampling campaign during the 2003 monsoon season that began immediately following the resolution of the fire. Stream water chemistry serves as an integrated signal of many watershed processes: precipitation, runoff, infiltration, soil hydrophobic layers, ash deposition in the stream, debris flows, and subsequent water/ash chemical equilibrium reactions. The portion of the watershed that has been burned by the Aspen fire covers a wide range of elevation and vegetation zones of the Santa Catalina Mountains. Many biogeochemical and hydrological processes within this area were altered by a sudden lack of vegetation and changes in soil properties following a fire: evapotranspiration, litter volume, organic decomposition, leaching, cation exchange, anion sorption, nutrient uptake, and soil hydrophobic layers. Surface water and precipitation samples were collected following an event-based sampling strategy, while soil samples were collected in each vegetation and burn severity regime. Precipitation samples were collected to characterize temperature and elevation effects on precipitation chemistry, in particular stable isotopes. The surface water chemistry changes measured throughout each hydrograph event can be linked to air permeameter results, a rapid measurement for soil hydraulic conductivity, for the different burn severity and vegetation zone regimes. Both nutrient and suspended sediment loads greatly increased following the fire. A debris flow mobilized large diameter boulders. Stream gauge flow event peaks were larger than expected given concurrent extensive precipitation gauge network

  1. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  2. The Consequences of Surface Confinement on Free Radical Chemistry

    SciTech Connect

    Birtt, P.F.; Buchanan, A.C., III

    1999-08-22

    Mass transport limitations impact the thermochemical processing of fossil and renewable energy resources, which involves the breakdown of cross-linked, macromolecular networks. To Investigate the molecular level details of the consequences of molecular confinement on high temperature (275-500°C) free-radical reaction pathways, we have been examining the pyrolysis of model compounds attached to the surface of non-porous silica nanoparticles through a thermally robust Si-O-Caryl, tetha. Pyrolysis of silica-immobilized diphenylalkanes and related ethers have been studied in detail and compared with the corresponding behavior in fluid phases. The diffusional constraints can lead to reduced rates of radical termination on the surface, and enhancement of neophyl-like rearrangements, cyclization-dehydrogenation pathways, and ipso- aromatic substitutions. Furthermore, studies of two-component surfaces have revealed the importance of a radical relay mechanism involving rapid serial hydrogen transfer steps resulting from the molecular pre-organization on the low fractal dimension silica surface. Key findings are reviewed in this paper, and the implications of these results for fuel processing are described.

  3. Pyridine coordination chemistry for molecular assemblies on surfaces.

    PubMed

    de Ruiter, Graham; Lahav, Michal; van der Boom, Milko E

    2014-12-16

    CONSPECTUS: Since the first description of coordination complexes, many types of metal-ligand interactions have creatively been used in the chemical sciences. The rich coordination chemistry of pyridine-type ligands has contributed significantly to the incorporation of diverse metal ions into functional materials. Here we discuss molecular assemblies (MAs) formed with a variety of pyridine-type compounds and a metal containing cross-linker (e.g., PdCl2(PhCN2)). These MAs are formed using Layer-by-Layer (LbL) deposition from solution that allows for precise fitting of the assembly properties through molecular programming. The position of each component can be controlled by altering the assembly sequence, while the degree of intermolecular interactions can be varied by the level of π-conjugation and the availability of metal coordination sites. By setting the structural parameters (e.g., bond angles, number of coordination sites, geometry) of the ligand, control over MA structure was achieved, resulting in surface-confined metal-organic networks and oligomers. Unlike MAs that are constructed with organic ligands, MAs with polypyridyl complexes of ruthenium, osmium, and cobalt are active participants in their own formation and amplify the growth of the incoming molecular layer. Such a self-propagating behavior for molecular systems is rare, and the mechanism of their formation will be discussed. These exponentially growing MAs are capable of storing metal salts that can be used during the buildup of additional molecular layers. Various parameters influencing the film growth mechanism will be presented, including (i) the number of binding sites and geometry of the organic ligands, (ii) the metal and the structure of the polypyridyl complexes, (iii) the influence of the metal cross-linker (e.g., second or third row transition metals), and (iv) the deposition conditions. By systematic variation of these parameters, switching between linear and exponential growth could

  4. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    PubMed

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-04

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  5. Electronic Structure, Surface Properties, and Interface Chemistry of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Meyer, H. M.; Weaver, J. H.

    The following sections are included: * INTRODUCTION * EXPERIMENTAL * ELECTRONIC STRUCTURE OF THE HTSCs AND RELATED COMPOUNDS * SURFACE AND INTERFACE CHEMISTRY OF HTSCs AND RELATED COMPOUNDS * SUMMARY AND CONCLUSIONS * ACKNOWLEDGMENTS * REFERENCES

  6. Defects in surface chemistry--reductive coupling of benzaldehyde on rutile TiO₂(110).

    PubMed

    Clawin, Peter M; Friend, Cynthia M; Al-Shamery, Katharina

    2014-06-16

    The surface chemistry of oxygen and oxygenates on Rutile TiO2(110) is of great interest for various applications such as heterogeneous catalysis and photo catalysis. Though it is generally accepted that surface defects are active sites, the role of subsurface defects is under debate. We have therefore investigated the influence of the bulk defect density on the reductive coupling of benzaldehyde to stilbene as a model system. Using IRRAS we identify stilbene diolate as a reduction intermediate. The concentration of this intermediate is proportional to the bulk defect density, whereas adsorption of benzaldehyde at lower temperatures is not affected, which indicates a dominant role of Ti interstitials at temperatures above 400 K.

  7. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  8. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.

    PubMed

    Kilina, Svetlana V; Tamukong, Patrick K; Kilin, Dmitri S

    2016-10-18

    intact, while thiol derivatives add ligand-localized trap states to the band gap. Depending on its position, any loss of ligand from the QD's surface also introduces electron or hole traps, decreasing the QD's luminescence. TDDFT investigations of QD-ligand and QD-QD interactions provide an explanation of experimentally detected enhancement of blinking on-times in closely packed Si QDs and establish favorable conditions for hole transfer from the photoexcited CdSe QD to metal-organic dyes. While TDDFT well describes qualitative trends in optical response to stoichiometry and ligand modifications of QDs, it is unable to calculate highly correlated electronic states like biexcitons and magnetic-dopant-derived states. In these cases, multiconfiguration methods are applied to small nanoclusters and the results are extrapolated to larger-sized QDs, providing reasonable explanations of experimental observables. For light-driven dynamics, the electron-phonon couplings are important, and nonadiabatic dynamics (NAD) is applied. NAD based on first-principles calculations is a current grand challenge for the theory. However, it can be accomplished through sets of semiclassical approximations such as surface hopping (SH). We discuss validations of approximations used in photodynamics of ligated and doped QDs. Time-domain DFT-based SH-NAD reveals the ligand's role in ultrafast energy relaxation and the connection between the phonon bottleneck and the Zeno effect in CdSe QDs. The calculated results are helpful in controlling both dissipation and radiative processes in QDs via surface engineering and in explanations of experimental data.

  9. Diagnostics for the Analysis of Surface Chemistry Effects on Composite Energetic Material Reactions

    DTIC Science & Technology

    2015-10-30

    heat flow and phase change allowing chemical kinetic modeling of surface chemistry using an advanced DSC – TGA via simultaneous thermal analysis (STA...allowing chemical kinetic modeling of surface chemistry using an advanced DSC – TGA via simultaneous thermal analysis (STA). This diagnostic couples...2.00 4.00 Evan Vargas, Michelle L. Pantoya, Mohammed A Saed, Brandon L Weeks. Advanced Susceptors for Microwave Heating of Energetic Materials

  10. Fundamental surface processes in heterogeneous atmospheric chemistry: Applications to sea-salt (NaCl) and oxide particulate chemistry

    NASA Astrophysics Data System (ADS)

    Allen, Heather Cecile

    1997-10-01

    Although heterogeneous phenomena are important in many atmospheric processes, these complex systems have been difficult to study at the fundamental level. Surface- sensitive techniques are currently being utilized to probe the chemistry of heterogeneous atmospheric systems. In addition to presenting fundamental surface chemistry of several systems, this dissertation shows that surface- sensitive and electron microscopy technology can provide substantial insight into heterogeneous atmospheric processes. Transmission electron microscopy and energy dispersive spectroscopy (TEM-EDS) were used to better understand fundamental mechanisms of the reaction of sodium chloride with nitric acid vapor (and reaction with nitrogen dioxide) followed by water vapor. Results show for the first time that exposures to water vapor can lead to major reconstruction and concurrent recrystallization of the surface after reaction of NaCl(s) with HNO3(g). This has significant implications for tropospheric chemistry in polluted urban regions. The entire volume of airborne sea-salt (i.e. NaCl) particles is available for reaction due to the water-induced reorganization of the surface. Additional studies presented here include: (1) Laser induced desorption-Fourier transform mass spectrometry (LID-FTMS) studies of the reactivity of thin films of aluminum oxide (γ- Al2O3/NiAl(100)) after exposure to molecules relevant to tropospheric and stratospheric particulate chemistry, (2) TEM-EDS studies of stratospheric particles, and (3) Thermal desorption spectroscopy (TDS) of CO/NiAl(100). TDS and LID-FTMS studies reveal that non-hydroxylated γ- Al2O3/NiAl(100) is inert toward the adsorption of CF2Cl2 and HCF2Cl. LID-FTMS results show that 1,3-butadiene desorbs intact from non- hydroxylated γ- Al2O3/NiAl(100) at ~200 K. The TEM-EDS studies of stratospheric particles reveal that submicron alumina spheres are amorphous. Previous studies of submicron alumina spheres showed that γ-alumina was the

  11. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    SciTech Connect

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  12. Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment

    SciTech Connect

    Vautard, Frederic; Ozcan, Soydan; Paulauskas, Felix L; Spruiell, J. E.; Meyer III, Harry M; Lance, Michael J

    2012-01-01

    Carbon fibers made of textile and aerospace grade polyacrylonitrile precursor fibers were surface treated by a continuous gas phase thermo-chemical treatment. The surface chemistry generated by the surface treatment was characterized by X-ray photoelectron spectroscopy. The surface and the average entire micro-structure of the fibers were characterized by Raman spectroscopy and X-ray diffraction, respectively. Depending on the grade of the precursor, the final surface concentration of oxygen was comprised between 14% and 24%, whereas the typical commercial electro-chemical surface treatments led to concentrations of around 8% with the same fibers. The final concentration of oxygen was directly correlated to the size of the crystallites which was a function of the grade of the polyacrylonitrile precursor and to the corresponding surface micro-structure. The thermo-chemical surface treatment enabled a better control of the nature of the oxygen-containing functionalities as well. Whatever the grade of the precursor, desired hydroxyl groups and carboxylic acid functionalities were preferably generated, which was not observed with electro-chemical surface treatments.

  13. Surface passivation of aluminum alloy 6061 with gaseous trichlorosilane: A surface investigation

    NASA Astrophysics Data System (ADS)

    Ngongang, Rickielle; Marceau, Eric; Carrier, Xavier; Pradier, Claire-Marie; Methivier, Christophe; Blanc, Jean-Luc; Carre, Martine

    2014-02-01

    A molecular-scale investigation of the interaction at room temperature between gaseous trichlorosilane (HSiCl3), used as a passivating agent, and surfaces of aluminum alloy AA6061 in a polished or hydroxylated state is conducted. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) provide information on the topography and morphology of AA6061 before and after hydroxylation and surface passivation, while surface chemistry has been investigated by Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Oxidation and hydroxylation of the polished alloy surface in boiling water strongly modifies the roughness of the surface, with formation of platelets and needles of oxyhydroxide AlOOH. PM-IRRAS and XPS reveal that, upon adsorption, HSiCl3 dissociates and mainly forms HSiOHn(OAl)3-n, HSi(OSi)n(OAl)3-n and condensed HSiOx species, by reaction with sbnd OH groups from the AlOOH surface phase. The amount of deposited Si-containing species is larger on the rough surface of the hydroxylated alloy and this deposit is accompanied by a decrease of the amount of free sbnd OH groups evidenced by PM-IRRAS. These results can find applications in the field of functionalization of aluminum alloys. It is suggested that a homogeneous oxidation of the alloy surface prior to exposure to gaseous HSiCl3 may enhance the adsorption of the passivating agent.

  14. Phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry

    NASA Astrophysics Data System (ADS)

    Guo, Yu-qi; Pan, Jun-xing; Sun, Min-na; Zhang, Jin-jun

    2017-01-01

    We investigate the phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry. The results demonstrate that the system occurs the phase transition from a disordered structure to ordered parallel lamellae and then to the tilted layered structure as the number of rods increases. The dynamic evolution of the domain size and the order parameter of the microstructure are also examined. Furthermore, the influence of rod property, rod-phase interaction, rod-rod interaction, rod length, and polymerization degree on the behavior of the polymer system is also investigated systematically. Moreover, longer amphiphilic nanorods tend to make the polymer system form the hexagonal structure. It transforms into a perpendicular lamellar structure as the polymerization degree increases. Our simulations provide an efficient method for determining how to obtain the ordered structure on the nanometer scales and design the functional materials with optical, electronic, and magnetic properties.

  15. Rosetta/VIRTIS investigation of the chemistry and activity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bockelee-Morvan, Dominique; Drossart, Pierre; Piccioni, Giuseppe; Migliorini, Alessandra; Erard, Stéphane; Capaccioni, Fabrizio; Filacchione, Gianrico; Fougere, Nicolas; Leyrat, Cedric; Crovisier, Jacques; Capaccioni, Fabrizio

    2016-07-01

    The composition of cometary ices inside cometary nuclei provides clues to the chemistry of the protoplanetary disk where they formed, 4.6 Gyr ago. These ices sublimate when the body approches the Sun, so that the coma molecular species give insights on the nucleus surface and sub-surface composition. So far, most investigations of the coma chemical composition were performed from telescopic observations from the ground or space plateforms. Since August 2014, the ESA/Rosetta spacecraft has been investigating the nucleus and inner coma of 67P/Churyumov-Gerasimenko. This talk will present an overview of the results obtained by the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard Rosetta, focussing on observations of molecular species. VIRTIS is composed of two channels. The VIRTIS-M channel is a spectro-imager covering the 0.27-5.1 microns range, which allowed us to map the spatial distribution of H2O and CO2 (Migliorini et al. 2016, A&A in press). VIRTIS-H is a high-spectral resolution spectrometer covering the 2-5 microns range. Spectra obtained with VIRTIS-H show signatures of H2O, CO2 (both fundamental and hot bands), 13CO2, CH4 and other C-H bearing species (Bockelee-Morvan et al. A&A, 583, A6,2015). VIRTIS is a key instrument to investigate regional, diurnal and seasonal variations of the comet outgassing.

  16. Surface chemistry of the linear chromium chain complex on GaN(0001)

    SciTech Connect

    Lung, C.-H.; Peng, S.-M.; Chang, C.-C.

    2004-09-01

    Better understanding about the chemistry of the organometallic chain complexes reacting on the solid surface can foster concepts of nanowire fabrication which are central to the continued advance of the electronic and optoelectronic industries. In this study, the adsorption and thermal reactivity of a trinuclear chromium chain complex, tetrakis (2,2{sup '}-dipyridylamino)chromium(VI) chloride, on the GaN(0001) surface were investigated using x-ray photoelectron spectroscopy, temperature-programmed desorption, and static secondary ion mass spectrometry in order to obtain some insight into the bonding changes involved in the reaction of the linear metal chain complex on the compound semiconductor surface. One of the two terminal Cr-Cl bonds of the complex may be cleaved upon adsorption at 110 K, leading to the formation of the Ga-Cl bonds on the surface, although some complexes remained intact upon adsorption and bonded strongly to the surface. No ligand was dissociated from the chromium chain complex during the adsorption. The Cl-cleaved complex residue preserved its original chemical configuration. Both the Cl-cleaved and the intact complexes in the first layer were stable on the surface in the substrate temperature range between 110 and 260 K. A partial decomposition in which some ligands were dissociated from the adsorbed complex took place before the substrate temperature reaching 400 K. Additional Cr-Cl bonds were disrupted, resulting in a larger population of Ga-Cl bonds on the surface. Further thermal reaction at higher temperatures led to the dominance of the Ga-Cl bonding for the Cl presence on the surface. Surface etching of Ga by the dissociated Cl atoms started at a substrate temperature of {approx}525 K and the etching rate reached its maximum at {approx}590 K.

  17. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    PubMed

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  18. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    PubMed Central

    Nady, Norhan

    2016-01-01

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)—is presented. PMID:27096873

  19. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    EPA Science Inventory

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  20. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    PubMed Central

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-01-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70–90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties. PMID:25323067

  1. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    NASA Astrophysics Data System (ADS)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  2. The role of surface chemistry in adhesion and wetting of gecko toe pads.

    PubMed

    Badge, Ila; Stark, Alyssa Y; Paoloni, Eva L; Niewiarowski, Peter H; Dhinojwala, Ali

    2014-10-17

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  3. Role(s) of adsorbed water in the surface chemistry of environmental interfaces.

    PubMed

    Rubasinghege, Gayan; Grassian, Vicki H

    2013-04-18

    The chemistry of environmental interfaces such as oxide and carbonate surfaces under ambient conditions of temperature and relative humidity is of great interest from many perspectives including heterogeneous atmospheric chemistry, heterogeneous catalysis, photocatalysis, sensor technology, corrosion science, and cultural heritage science. As discussed here, adsorbed water plays important roles in the reaction chemistry of oxide and carbonate surfaces with indoor and outdoor pollutant molecules including nitrogen oxides, sulfur dioxide, carbon dioxide, ozone and organic acids. Mechanisms of these reactions are just beginning to be unraveled and found to depend on the details of the reaction mechanism as well as the coverage of water on the surface. As discussed here, adsorbed water can: (i) alter reaction pathways and surface speciation relative to the dry surface; (ii) hydrolyze reactants, intermediates and products; (iii) enhance surface reactivity by providing a medium for ionic dissociation; (iv) inhibit surface reactivity by blocking sites; (v) solvate ions; (vi) enhance ion mobility on surfaces and (vii) alter the stability of surface adsorbed species. In this feature article, drawing on research that has been going on for over a decade on the reaction chemistry of oxide and carbonate surfaces under ambient conditions of temperature and relative humidity, a number of specific examples showing the multi-faceted roles of adsorbed water are presented.

  4. Surface Chemistry of CWAs for Decon Enabling Sciences

    DTIC Science & Technology

    2014-11-04

    Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing . List the...Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO, The Journal of Physical Chemistry C, (07 2013): 15035. doi...tungsten filaments behind the sample platen and is controlled with an integrated power supply coupled to a proportional–integral–derivative

  5. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries

    SciTech Connect

    Aurbach, D.; Ein-Eli, Y.; Chusid, O. . Dept. of Chemistry); Carmeli, Y.; Babai, M.; Yamin, H. . Battery Div.)

    1994-03-01

    The correlation between the electrochemical properties of Li carbon intercalation electrodes and their surface chemistry in solutions was investigated. The carbons investigated were primarily graphite and petroleum coke, and the solvent systems included methyl formate (MF), propylene and ethylene carbonates, ethers and their mixtures. The surface chemistry of the electrodes was studied using mainly diffuse reflectance Fourier transform infrared spectroscopy. The following aspects were studied: (1) the effect of temperature on the buildup of the surface films; (2) the effect of additives (e.g., CO[sub 2], crown ethers), (3) the behavior when the passive layer is built in one solution followed by cycling in another; and (4) the effect of cosolvent in MF solutions. The results obtained further prove that the electrochemical behavior of these systems is surface film controlled. An understanding of the surface chemistry of these electrodes enables judicious optimization of carbon-solution systems for use in rechargeable Li batteries.

  6. Surface and coordination chemistry related to GaAs

    NASA Astrophysics Data System (ADS)

    Keys, Andrea

    The vapor phase structures of Al(tBU)3 and Ga(tBU)3 have been investigated by gas phase electron diffraction and consist of planar three-coordinate monomers. Salient structural parameters (ra) include: Al-C = 2.005(3) A, Ga-C = 2.034(2) A. The geometries are controlled by inter-ligand interactions. The electron diffraction structures are compared to those determined by ab initio calculations for M(tBU)3 (M = Al, Ga, In). To understand the most suitable linkages for the surface of GaAs, model compounds were synthesized by reacting Ga(tBU)3 and [tBu2Ga(mu-Cl]2 with one molar equivalent of varying ligands. The synthesized compounds include chlorides, benzenethiolate, dithiocarbamates, carboxylates, amides, benzohydroxamate, and phenylphosphonate. The Ga ⋯ Ga and Ga-ligand interatomic distances for these compounds, as well as Group 15 and 16 donor bridging ligands, are compared to the values for the surface of GaAs and cubic-GaS in order to determine their suitability as linkage groups for self-assembled monolayers. The most suitable linkages were determined to be benzenethiol and phenylphophonic acid, and these were used to grow self-assembled monolayers on {100} GaAs. Carboxylic acid was also used, to determine the success of the organometallic model compounds in predicting the suitability of ligands for surface reaction. Self-assembled monolayers were also grown on Al2O3, using carboxylic acids and phenylphosphonic acids as the surface linkages. Metallo-organic chemical vapor deposition was performed using single-source precursors ( tBU)2Ga(S2CNR2). The tert -butyl gallium bis-dialkyl-dithiocarbamate compounds, (tBu)Ga(S2CNR2)2, are formed as minor products via ligand disproportionation reactions. Gallium sulfide (GaS) thin films have been grown at 375-425°C by atmospheric pressure metal-organic chemical vapor deposition using compounds (tBu) 2Ga(S2CNMe2) and (tBu)2Ga(S 2CNEt2) as single source precursors. Polycrystalline samples of the chalcogenides InSe, In2Se3

  7. High-temperature vesuvianite: crystal chemistry and surface considerations

    NASA Astrophysics Data System (ADS)

    Elmi, Chiara; Brigatti, Maria Franca; Pasquali, Luca; Montecchi, Monica; Laurora, Angela; Malferrari, Daniele; Nannarone, Stefano

    2011-06-01

    A multi-methodical approach has been applied for characterizing the bulk and surface crystal chemical features of a high-temperature vesuvianite crystal from skarns of Mount Somma-Vesuvius Volcano (Naples, Italy). Vesuvianite belongs to the space group P4/ nnc with unit cell parameters a = 15.633(1) Å, c = 11.834(1) Å and chemical formula (Ca18.858 Na0.028 Ba0.004 K0.006 Sr0.005 □0.098)19.000 (Al8.813 Ti0.037 Mg2.954 Mn0.008 Fe{0.114/2+} Fe{1.375/3+} Cr0.008 B0.202)13.511 Si18.000(O0.261 F0.940 OH7.799)9.000. Structure refinement, which converges at R = 0.0328, demonstrates a strong positional disorder down the fourfold axes, indicating that the Y1 site is split into two positions (Y1A and Y1B) alternatively occupied. However, because of X4 proximity to Y1B and Y1A, X4 cannot be occupied if Y1B or Y1A are. Overall Y1 occupancy (Y1A + Y1B) reaches approximately 0.5, as common in vesuvianite and occupancy of Y1B site is extremely limited. Moreover, T1 position, limitedly occupied, accommodates the excess of cations generally related to Y position. A small quantity (0.202 apfu) of boron is sited at the T2 site that, like T1, is poorly occupied. The determination of the amount of each element on the (100) vesuvianite surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s, and Ca2p core levels, evidences that a greater amount of aluminum and a smaller amount of calcium characterize the surface with respect to the bulk. Although both of these features require further investigation, we may consider the Al increase can be related to preferential orientation of Al-rich sites on the (100) plane. Furthermore, the surface structure of vesuvianite suggests that Al, Ca, and Mg cations maintain coordination features at the surface similar to the bulk. Silica, however, while presenting fourfold coordination, shows also a [1]-fold small coordinated component at binding energy 99.85 eV, due to broken Si-O bonds at

  8. Research program to investigate the fundamental chemistry of technetium

    SciTech Connect

    McKeown, David A.; Buechele, Andrew C.; Lukens, Wayne W.; Muller, Isabelle S.; Shuh, David K.; Pegg, Ian L.

    2007-10-12

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry necessary to address challenges to the safe, long-term disposal of high-level nuclear waste posed by this element. The primary issues examined during the course of this project were the behavior of technetium and its surrogate rhenium during waste vitrification and glass corrosion. Since the redox behavior of technetium can play a large role in determining its volatility, one goal of this research was to better understand the behavior of technetium in glass as a function of the redox potential of the glass melt. In addition, the behavior of rhenium was examined, since rhenium is commonly used as a surrogate for technetium in waste vitrification studies. A number of glasses similar to Hanford Low Activity Waste (LAW) glasses were prepared under controlled atmospheres. The redox state of the glass was determined from the Fe(II)/Fe(III) ratio in the cooled glass, and the speciation of technetium and rhenium was determined by x-ray absorption fine structure (XAFS) spectroscopy. The behavior of rhenium and technetium during glass alteration was also examined using the vapor hydration test (VHT).

  9. Spectroscopic and computational investigation of actinium coordination chemistry

    SciTech Connect

    Ferrier, Maryline Ghislaine; Batista, Enrique Ricardo; Berg, John M.; Birnbaum, Eva R.; Cross, Justin Neil; Engle, Jonathan Ward; La Pierre, Henry S.; Kozimor, Stosh Anthony; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-08-17

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). Finally, these results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.

  10. Spectroscopic and computational investigation of actinium coordination chemistry

    DOE PAGES

    Ferrier, Maryline Ghislaine; Batista, Enrique Ricardo; Berg, John M.; ...

    2016-08-17

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-raymore » absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). Finally, these results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.« less

  11. Spectroscopic and computational investigation of actinium coordination chemistry.

    PubMed

    Ferrier, Maryline G; Batista, Enrique R; Berg, John M; Birnbaum, Eva R; Cross, Justin N; Engle, Jonathan W; La Pierre, Henry S; Kozimor, Stosh A; Lezama Pacheco, Juan S; Stein, Benjamin W; Stieber, S Chantal E; Wilson, Justin J

    2016-08-17

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, Ac(III) reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between Ac(III) and Am(III) in HCl solutions indicate Ac(III) coordinates more inner-sphere Cl(1-) ligands (3.2±1.1) than Am(III) (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique Ac(III) chemical behaviour.

  12. Spectroscopic and computational investigation of actinium coordination chemistry

    NASA Astrophysics Data System (ADS)

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-08-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac-Cl and Ac-OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1- ligands (3.2+/-1.1) than AmIII (0.8+/-0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour.

  13. Spectroscopic and computational investigation of actinium coordination chemistry

    PubMed Central

    Ferrier, Maryline G.; Batista, Enrique R.; Berg, John M.; Birnbaum, Eva R.; Cross, Justin N.; Engle, Jonathan W.; La Pierre, Henry S.; Kozimor, Stosh A.; Lezama Pacheco, Juan S.; Stein, Benjamin W.; Stieber, S. Chantal E.; Wilson, Justin J.

    2016-01-01

    Actinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply. Hence, AcIII reactivity is often inferred from the lanthanides and minor actinides (that is, Am, Cm), with limited success. Here we overcome these challenges and characterize actinium in HCl solutions using X-ray absorption spectroscopy and molecular dynamics density functional theory. The Ac–Cl and Ac–OH2O distances are measured to be 2.95(3) and 2.59(3) Å, respectively. The X-ray absorption spectroscopy comparisons between AcIII and AmIII in HCl solutions indicate AcIII coordinates more inner-sphere Cl1– ligands (3.2±1.1) than AmIII (0.8±0.3). These results imply diverse reactivity for the +3 actinides and highlight the unexpected and unique AcIII chemical behaviour. PMID:27531582

  14. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration.

    PubMed

    Shen, Yang; Gao, Min; Ma, Yunlong; Yu, Hongchi; Cui, Fu-zhai; Gregersen, Hans; Yu, Qingsong; Wang, Guixue; Liu, Xiaoheng

    2015-02-01

    The migration of vascular endothelial cells (ECs) is essential for reendothelialization after implantation of cardiovascular biomaterials. Reendothelialization is largely determined by surface properties of implants. In this study, surfaces modified with various chemical functional groups (CH3, NH2, COOH, OH) prepared by self-assembled monolayers (SAMs) were used as model system. Expressions and distributions of critical proteins in the integrin-induced signaling pathway were examined to explore the mechanisms of surface chemistry regulating EC migration. The results showed that SAMs modulated cell migration were in the order CH3>NH2>OH>COOH, determined by differences in the expressions of focal adhesion components and Rho GTPases. Multiple integrin subunits showed difference in a surface chemistry-dependent manner, which induced a stepwise activation of signaling cascades associated with EC migration. This work provides a broad overview of surface chemistry regulated endothelial cell migration and establishes association among the surface chemistry, cell migration behavior and associated integrin signaling events. Understanding the relationship between these factors will help us to understand the surface/interface behavior between biomaterials and cells, reveal molecular mechanism of cells sensing surface characterization, and guide surface modification of cardiovascular implanted materials.

  15. Hierarchical hydrodynamic flow confinement: efficient use and retrieval of chemicals for microscale chemistry on surfaces.

    PubMed

    Autebert, Julien; Kashyap, Aditya; Lovchik, Robert D; Delamarche, Emmanuel; Kaigala, Govind V

    2014-04-01

    We devised, implemented, and tested a new concept for efficient local surface chemistry that we call hierarchical hydrodynamic flow confinement (hierarchical HFC). This concept leverages the hydrodynamic shaping of multiple layers of liquid to address challenges inherent to microscale surface chemistry, such as minimal dilution, economical consumption of reagent, and fast liquid switching. We illustrate two modes of hierarchical HFC, nested and pinched, by locally denaturing and recovering a 26 bp DNA with as little as 2% dilution and by efficiently patterning an antibody on a surface, with a 5 μm resolution and a 100-fold decrease of reagent consumption compared to microcontact printing. In addition, valveless switching between nanoliter volumes of liquids was achieved within 20 ms. We believe hierarchical HFC will have broad utility for chemistry on surfaces at the microscale.

  16. NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2013-03-01

    NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  17. Work function changes and surface chemistry of oxygen, hydrogen, and carbon on indium tin oxide

    NASA Astrophysics Data System (ADS)

    Chaney, John A.; Pehrsson, Pehr E.

    2001-08-01

    The surface chemistry of indium tin oxide (ITO) has been investigated with Auger electron spectroscopy (AES) and high resolution electron energy loss spectroscopy (HREELS). A vibrating Kelvin probe (KP) with a graphite reference was used to monitor the absolute work function ( Φ) of ITO as a function of chemical modification. The ITO was exposed in situ to molecular hydrogen (H 2), hot-filament-activated oxygen ( O2∗), and hot-filament-activated deuterium ( D2∗). The initial Φ of ITO was determined to be 5.2 eV, and surface chemical changes had strong effects on this value, as seen by KP. Exposure of clean ITO to O2∗ increased Φ to ˜5.6 eV, but the increase was short-lived. The changes in Φ over time were correlated with the uptake of carbon impurities in ultra high vacuum (UHV), as monitored by AES. The HREELS of ITO revealed significant hydrocarbon impurities. Chemical reduction of ITO produced a metallic surface and dehydrogenated the adsorbed hydrocarbons. Both re-oxidation of metallic ITO and oxidation of clean ITO temporarily removed adventitious carbon from the surface, but oxidized ITO adsorbed an even larger quantity of carbon over time.

  18. ESCA studies of lunar surface chemistry. [Electron Spectroscopic Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1975-01-01

    We have used ESCA to compare the composition of the natural exterior surface in lunar fines samples with that of the interior surface exposed by crushing. Even though the exterior surfaces have been exposed to air a significant amount of Fe in them is reduced. In addition, Ca, Al, and Mg are strongly depleted in exterior surfaces relative to Si, Ti, and Fe. Preferential sputtering by the solar wind is a possible explanation for these changes.

  19. Chemistry of Stream Sediments and Surface Waters in New England

    USGS Publications Warehouse

    Robinson,, Gilpin R.; Kapo, Katherine E.; Grossman, Jeffrey N.

    2004-01-01

    Summary -- This online publication portrays regional data for pH, alkalinity, and specific conductance for stream waters and a multi-element geochemical dataset for stream sediments collected in the New England states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. A series of interpolation grid maps portray the chemistry of the stream waters and sediments in relation to bedrock geology, lithology, drainage basins, and urban areas. A series of box plots portray the statistical variation of the chemical data grouped by lithology and other features.

  20. Tuning filler shape, surface chemistry and ion content in nanofilled polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha V. N. R.

    We investigate how nanofiller surface chemistry and aspect ratio affect the performance of nanofilled solid polymer electrolytes. Polymer-based electrolytes are an attractive alternative to the organic electrolytes currently used in lithium ion batteries. We characterize acidic nanoparticle filled electrolytes and compare them to neutral particle-filled electrolytes previously measured in our lab. Dielectric spectroscopy measurements indicate that the highest increase in conductivity occurs at the eutectic composition (EO/Li=10) and is independent of filler surface chemistry. We measure PEO dynamics using quasi-elastic neutron scattering and do not observe any change in polymer dynamics with particle surface chemistry. When we examine the elastic incoherent structure factor associated with the rotational process, fillers are found to restrict the rotation of the highly conducting PEO6:LiClO4 tunnels. At the eutectic composition, these tunnels are stabilized at the filler surface even above PEO melting temperature. Marginal stability theory predicts formation of alternating layers of coexisting phases at the eutectic composition. We propose a new mechanism, via stabilization of alternating layers of PEO and highly conducting PEO 6:LiClO4 tunnels at the filler surface. When compared to spherical particles, more such structures would be stabilized at a filler surface with high aspect ratio. Consistent with this hypothesis, neutral gamma-Al2O3 nanowhiskers (2-4 nm in diameter and 200-400 nm in length) intensify the effect of neutral gamma-Al 2O3 nanoparticles. The diameters of the two fillers are similar, but the change in aspect ratio (1 to 100) improves conductivity by a factor of 5. This enhancement occurs at battery operation temperatures! Although the change in aspect ratio does not affect thermal transitions and segmental dynamics at optimal whisker loading, the rotation of PEO6 remnants is distinct at the eutectic composition. Because the mechanism by which

  1. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    ERIC Educational Resources Information Center

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  2. Surface chemistry of black phosphorus under a controlled oxidative environment

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zemlyanov, Dmitry Y.; Milligan, Cory A.; Du, Yuchen; Yang, Lingming; Wu, Yanqing; Ye, Peide D.

    2016-10-01

    Black phosphorus (BP), the bulk counterpart of monolayer phosphorene, is a relatively stable phosphorus allotrope at room temperature. However, monolayer phosphorene and ultra-thin BP layers degrade in ambient atmosphere. In this paper, we report the investigation of BP oxidation and discuss the reaction mechanism based on the x-ray photoelectron spectroscopy (XPS) data. The kinetics of BP oxidation was examined under various well-controlled conditions, namely in 5% O2/Ar, 2.3% H2O/Ar, and 5% O2 and 2.3% H2O/Ar. At room temperature, the BP surface is demonstrated not to be oxidized at a high oxidation rate in 5% O2/Ar nor in 2.3% H2O/Ar, according to XPS, with the thickness of the oxidized phosphorus layer <5 Å for 5 h. On the other hand, in the O2/H2O mixture, a 30 Å thickness oxide layer was detected already after 2 h of the treatment. This result points to a synergetic effect of water and oxygen in the BP oxidation. The oxidation effect was also studied in applications to the electrical measurements of BP field-effect transistors (FETs) with or without passivation. The electrical performance of BP FETs with atomic layer deposition (ALD) dielectric passivation or h-BN passivation formed in a glove-box environment are also presented.

  3. Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Mellish, Benjamin P.; Miller, Fletcher J.; Tien, James S.

    2005-01-01

    In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2.

  4. THE EFFECTS OF SURFACE CHEMISTRY ON THE PROPERTIES OF PROTEINS CONFINED IN NANO-POROUS MATERIALS

    SciTech Connect

    Garrett, L. M.; O'Neill, H.

    2007-01-01

    The entrapment of proteins using the sol-gel route provides a means to retain its native properties and artifi cially reproduce the molecular crowding and confi nement experienced by proteins in the cell allowing investigation of the physico-chemical and structural properties of biomolecules at the biotic/abiotic interface. The biomolecules are spatially separated and ‘caged’ in the gel structure but solutes can freely permeate the matrix. Thus, properties such as the folding of ensembles of individual molecules can be examined in the absence of aggregation effects that can occur in solution studies. Green fl uorescent protein from Aequorea coerulescens was used as a model protein to examine the unfolding/re-folding properties of protein in silica gels. The recombinant protein was isolated and purifi ed from Escherichia coli extracts by cell lysis, three-phase partitioning, dialysis, and anion exchange chromatography. The purity of the protein was greater than 90% as judged by SDS PAGE gel analysis. Sol-gels were synthesized using tetramethylorthosilicate (TMOS) in combination with, methyltrimethoxyorthosilane (MTMOS), ethyltrimethoxyorthosilane (ETMOS), 3-aminopropyltriethoxysilane (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS). The acid induced denaturation and renaturation of GFP was analyzed by UV-visible, fl uorescence, and circular dichroism (CD) spectroscopies. No renaturation was observed in gels that were made with TMOS only, and in the presence of APTES, MTMOS, and ETMOS. However, in gels that were made with GPTMS, the CD and UV-visible spectra indicated that the protein had refolded. The fl uorescence emission spectrum indicated that approximately 20% of fl uorescence had returned. This study highlights the importance of the surface chemistry of the silica gels for the refolding properties of the entrapped GFP. Future studies will investigate the effect of surface chemistry on the thermal and solvent stability of the entrapped protein.

  5. Switchable Surface Wettability by Using Boronic Ester Chemistry.

    PubMed

    Taleb, Sabri; Noyer, Elisabeth; Godeau, Guilhem; Darmanin, Thierry; Guittard, Frédéric

    2016-01-18

    Here, we report for the first time the use of a boronic ester as an efficient tool for reversible surface post-functionalization. The boronic ester bond allows surfaces to be reversibly switched from hydrophilic to hydrophobic. Based on the well-known boronic acid/glycol affinity, this strategy offers the opportunity to play with surface hydrophobic properties by adding various boronic acids onto substrates bearing glycol groups. The post-functionalization can then be reversed to regenerate the starting glycol surface. This pathway allows for the preparation of various switchable surfaces for a large range of applications in biosensors, liquid transportation, and separation membranes.

  6. Control of pyrite surface chemistry in physical coal cleaning. Final report

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Richardson, P.E.

    1993-05-19

    In Part I, Surface Chemistry of Coal Pyrite the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn.

  7. (90377) Sedna: Investigation of Surface Compositional Variation

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Morea Dalle Ore, C.; Alvarez-Candal, A.; de Bergh, C.; Merlin, F.; Dumas, C.; Cruikshank, D.

    2010-12-01

    The dwarf planet (90377) Sedna is one of the most remote solar system objects accessible to investigations. To better constrain its surface composition and to investigate the possible heterogeneity of the surface of Sedna, several observations have been carried out at ESO-VLT with the powerful spectrometer SINFONI observing simultaneously the H and K bands. The analyzed spectra (obtained in 2005, 2007, and 2008) show a non-uniform spectral signature, particularly in the K band. Spectral modeling using the Shkuratov radiative transfer code for surface scattering has been performed using the various sets of data, including previous observations at visible wavelengths and photometry at 3.6 and 4.5 μm by the Spitzer Space Telescope. The visible and near-infrared spectra can be modeled with organic materials (triton and titan tholin), serpentine, and H2O ice in fairly significant amounts, and CH4, N2, and C2H6 in varying trace amounts. One of the spectra obtained in 2005 October shows a different signature in the K band and is best modeled with CH3OH in place of CH4, with reduced amounts of serpentine and with the addition of olivine. The compositional surface heterogeneity can give input on the past history as well clues to the origin of this peculiar, distant object. Based on observations obtained at the VLT Observatory Cerro Paranal of European Southern Observatory, ESO, Chile, in the framework of proposal 275.C-5055 and Large Program 178-C-0036/0867.

  8. (90377) SEDNA: INVESTIGATION OF SURFACE COMPOSITIONAL VARIATION

    SciTech Connect

    Barucci, M. A.; De Bergh, C.; Merlin, F.; Morea Dalle Ore, C.; Cruikshank, D.; Alvarez-Candal, A.; Dumas, C.

    2010-12-15

    The dwarf planet (90377) Sedna is one of the most remote solar system objects accessible to investigations. To better constrain its surface composition and to investigate the possible heterogeneity of the surface of Sedna, several observations have been carried out at ESO-VLT with the powerful spectrometer SINFONI observing simultaneously the H and K bands. The analyzed spectra (obtained in 2005, 2007, and 2008) show a non-uniform spectral signature, particularly in the K band. Spectral modeling using the Shkuratov radiative transfer code for surface scattering has been performed using the various sets of data, including previous observations at visible wavelengths and photometry at 3.6 and 4.5 {mu}m by the Spitzer Space Telescope. The visible and near-infrared spectra can be modeled with organic materials (triton and titan tholin), serpentine, and H{sub 2}O ice in fairly significant amounts, and CH{sub 4}, N{sub 2}, and C{sub 2}H{sub 6} in varying trace amounts. One of the spectra obtained in 2005 October shows a different signature in the K band and is best modeled with CH{sub 3}OH in place of CH{sub 4}, with reduced amounts of serpentine and with the addition of olivine. The compositional surface heterogeneity can give input on the past history as well clues to the origin of this peculiar, distant object.

  9. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    SciTech Connect

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; Prinz, Friedrich B.; Lee, Wonyoung

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created with yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.

  10. Hydrophobicity of protein surfaces: Separating geometry from chemistry.

    PubMed

    Giovambattista, Nicolas; Lopez, Carlos F; Rossky, Peter J; Debenedetti, Pablo G

    2008-02-19

    To better understand the role of surface chemical heterogeneity in natural nanoscale hydration, we study via molecular dynamics simulation the structure and thermodynamics of water confined between two protein-like surfaces. Each surface is constructed to have interactions with water corresponding to those of the putative hydrophobic surface of a melittin dimer, but is flattened rather than having its native "cupped" configuration. Furthermore, peripheral charged groups are removed. Thus, the role of a rough surface topography is removed, and results can be productively compared with those previously observed for idealized, atomically smooth hydrophilic and hydrophobic flat surfaces. The results indicate that the protein surface is less hydrophobic than the idealized counterpart. The density and compressibility of water adjacent to a melittin dimer is intermediate between that observed adjacent to idealized hydrophobic or hydrophilic surfaces. We find that solvent evacuation of the hydrophobic gap (cavitation) between dimers is observed when the gap has closed to sterically permit a single water layer. This cavitation occurs at smaller pressures and separations than in the case of idealized hydrophobic flat surfaces. The vapor phase between the melittin dimers occupies a much smaller lateral region than in the case of the idealized surfaces; cavitation is localized in a narrow central region between the dimers, where an apolar amino acid is located. When that amino acid is replaced by a polar residue, cavitation is no longer observed.

  11. Hexametaphosphate effects on tooth surface conditioning film chemistry--in vitro and in vivo studies.

    PubMed

    Busscher, Henk J; White, Donald J; van der Mei, Henny C; Baig, Arif A; Kozak, Kathy M

    2002-01-01

    These studies compared the effects of Crest Dual Action Whitening dentifrice with sodium hexametaphosphate and control commercial dentifrices on the surface chemistry of conditioning film-coated dental enamel in vitro and in vivo. Conditioning film chemistry was studied by measurements of film thickness, ability to wet the surface/surface energy, conditioning film chemical composition and zeta potential. Laboratory and in vivo studies demonstrated that brushing and chemical-only treatment of pellicle-coated enamel surfaces produced marked changes in surface chemistry. Brushing of surfaces with all commercial dentifrices significantly reduced pellicle film quantity. Effects on non-brushed areas, of significance in the clinical situation, were different for different dentifrices. For dentifrice chemical treatments, calcium phosphate surface active builders, such as pyrophosphate and hexametaphosphate, produced stronger effects than standard (non-tartar control) dentifrices, peroxide baking soda dentifrices and dentifrices formulated with carboxylate polymers, viz. Colgate Total with copolymer. Crest Dual Action Whitening hexametaphosphate dentifrice removed more pellicle conditioning film, produced a lower zeta potential, produced the largest changes in film composition and had the greatest impact on surface free energies of the tested dentifrices. Crest Dual Action Whitening dentifrice also produced lasting changes in the reacquisition of pellicle conditioning film, as established by in vitro cycling immersion studies. Crest Dual Action Whitening dentifrice produced stronger and more lasting effects on surface film chemistry than low molecular weight pyrophosphate (Crest Tartar Control) or other polymeric-based dentifrice systems (Colgate Total). These surface chemistries may contribute to the unique clinical actions of hexametaphosphate established in recently reported, randomized clinical studies of tartar control, stain prevention and stain removal effects.

  12. Tailoring the surface chemistry of activated carbon cloth by electrochemical methods.

    PubMed

    Tabti, Zakaria; Ruiz-Rosas, Ramiro; Quijada, César; Cazorla-Amorós, Diego; Morallón, Emilia

    2014-07-23

    This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.

  13. Surface chemistry of metal-organic frameworks at the liquid-solid interface.

    PubMed

    Zacher, Denise; Schmid, Rochus; Wöll, Christof; Fischer, Roland A

    2011-01-03

    Metal-organic frameworks (MOFs) are a fascinating class of novel inorganic-organic hybrid materials. They are essentially based on classic coordination chemistry and hold much promise for unique applications ranging from gas storage and separation to chemical sensing, catalysis, and drug release. The evolution of the full innovative potential of MOFs, in particular for nanotechnology and device integration, however requires a fundamental understanding of the formation process of MOFs. Also necessary is the ability to control the growth of thin MOF films and the positioning of size- and shape-selected crystals as well as MOF heterostructures on a given surface in a well-defined and oriented fashion. MOFs are solid-state materials typically formed by solvothermal reactions and their crystallization from the liquid phase involves the surface chemistry of their building blocks. This Review brings together various key aspects of the surface chemistry of MOFs.

  14. Geochemistry and Organic Chemistry on the Surface of Titan

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  15. Polyoxoanion chemistry moves toward the future: From solids and solutions to surfaces

    SciTech Connect

    Klemperer, W.G.; Wall, C.G.

    1998-01-01

    In the context of modern surface science, current understanding of polyoxoanion surface chemistry is truly modest from a structural/mechanistic point of view. Only three techniques have received any attention to date, and none of them has been developed to anywhere near its full potential. The quartz crystal microbalance (QCM) has proven to be a useful qualitative tool for in situ monitoring of polyoxoanion adsorption and adsorption kinetics. A second technique that has shown great potential for in situ study of polyoxoanion surface chemistry at solid-liquid interfaces is modulated infrared spectroscopy. The third and final in situ surface analytical technique that has shown great promise but is yet to be exploited to its full potential is scanning probe microscopy. Sections of the paper discuss scanning probe microscopy; single crystal surfaces; evaporative solution deposition on graphite; electrochemical deposition onto graphite; and self-assembly on metal surfaces.

  16. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Zachwieja, J.B.; Lagno, M.L.

    1992-06-24

    Correlation of the hydrophobicity measurements of coal and mineral pyrite with changes in the surface composition of the samples as determined by x-ray photoelectron spectroscopy (XPS) reveals that similar surface oxidation products are found on both mineral and coal pyrite samples. The surface oxidation layer of these samples is comprised of different amounts of hydrophilic species (iron hydroxy-oxides and/or iron oxides) and hydrophobic species (polysulfide or elemental sulfur). The resulting hydrophobicity of these samples may be attributed to the ratio of hydrophilic (surface oxides) to hydrophobic (sulfur-containing) species in the surface oxidation layer. Also, coal pyrite samples were found to exhibit a greater degree of superficial oxidation and a less hydrophobic character as compared to the mineral pyrite samples.

  17. Macroform and microform-induced change in redox-sensitive chemistries of river channel surface sediments

    NASA Astrophysics Data System (ADS)

    Byrne, P.; Zhang, H.; Heathwaite, A. L.; Binley, A.; Ullah, S.; Kaeser, D.; Heppell, C. M.; Lansdown, K.; Trimmer, M.

    2012-04-01

    In-stream geomorphological features such as riffle-pool sequences (macroforms) can produce steep hydraulic gradients which induce flow in and out of the riverbed - hyporheic exchange flow (HEF). The acceleration of flow over channel obstacles such as large cobbles and boulders (microforms) can create variation in surface-subsurface pressure gradients and generation of HEF. HEF in shallow surface sediments affect the transformation of redox-sensitive chemical forms and, therefore, the attenuation or release of nutrients in river systems. Here, we examine the relationship between stream geomorphological environment (microform and macroform) and concentration profiles of redox-sensitive species (nitrate, sulphate, iron, manganese) in shallow (15cm) subsurface sediments. In-situ passive samplers (diffusive equilibrium in thin films - DET) are used to obtain biogeochemical data from armoured environments at fine scale (cm) depth resolution where there is strong upwelling. The probes were deployed in a 50m reach of the River Eden, Cumbria, UK, during baseflow conditions. The experimental setup allowed for the assessment of differences in redox-sensitive chemistries between a riffle and pool environment and between smooth and rough bed surfaces in the pool. The passive sensing basis of the DET methodology provided a means for investigating how HEF systems generated at two different geomorphological scales influence the concentration and spatial patterns of redox-sensitive species. DET's capability of measuring at high spatial resolution allowed the extent of hyporheic mixing to be targeted, even though it is often limited to the top few centimetres of sediment.

  18. Investigating Students' Engagement in Epistemic and Narrative Practices of Chemistry in the Context of a Story on Gas Behavior

    ERIC Educational Resources Information Center

    Pabuccu, A.; Erduran, S.

    2016-01-01

    This study investigated secondary school students' engagement in epistemic and narrative practices of chemistry in the context of a chemistry story on gas behavior. Argumentation is an example of an epistemic practice in science and stories are one kind of narrative (Ricoeur, 1981). By using a chemistry story, the authors hoped to engage students…

  19. Surface chemistry controls crystallinity of ZnSnanoparticles

    SciTech Connect

    Gilbert, Benjamin; Huang, Feng; Lin, Zhang; Goodell, Carmen; Zhang, Hengzhong; Banfield Jillian F.

    2005-12-20

    Combined small-angle and high energy wide-angle x-ray scattering measurements of nanoparticle size and structure permit interior strain and disorder to be directly observed in the real-space pair distribution function (PDF). PDF analysis showed that samples of ZnS nanoparticle with similar mean diameters (3.2-3.6 nm) but synthesized and treated differently possess a dramatic range of interior disorder. We used Fourier transform infra-red spectroscopy to detect the surface species and the nature of surface chemical interactions. Our results suggest that there is a direct correlation between the strength of surface-ligand interactions and interior crystallinity.

  20. The surface chemistry of metal-organic frameworks.

    PubMed

    McGuire, Christina V; Forgan, Ross S

    2015-03-28

    Metal-organic frameworks (MOFs) have received particular attention over the last 20 years as a result of their attractive properties offering potential applications in a number of areas. Typically, these characteristics are tuned by functionalisation of the bulk of the MOF material itself. This Feature Article focuses instead on modification of MOF particles at their surfaces only, which can also offer control over the bulk properties of the material. The differing surface modification techniques available to the synthetic chemist will be discussed, with a focus on the effect of surface modification of MOFs on their fundamental properties and application in adsorption, catalysis, drug delivery and other areas.

  1. Supported organometallic complexes, surface chemistry, spectroscopy, and catalysis. Progress report, September 15, 1992--November 14, 1993

    SciTech Connect

    Marks, T.J.

    1993-04-01

    Goal is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. Nature of adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecule-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  2. Effects of Surface Chemistry on the Porous Structure of Coal

    SciTech Connect

    Radovic, Ljubisa R; Hatcher, Patrick G

    1997-05-01

    In this report, 129 Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe some poorly understood features of coal microporous structure, particularly in establishing that a connected network exists, the type of connectivity, and its changes with the rank of coal. Micropore size scale and distribution are also considered. Two methods are developed which are new and versatile tools for the investigation of porous structure. Both utilize xenon gas that is in motion, while undergoing diffusion or exchange in coal, to describe the connectivity of the micropore structure of coal. Time tracking of the adsorption process by NMR, selective saturation, and saturation transfer techniques were used to obtain new information on the coal rank dependence of porous structure. In addition, an existing 129 Xe chemical shift-pore diameter model was used to calculate micropore diameters for coals, as well as for a microporous carbon, before and after pore-size alteration. In the initial study performed, straightforward 129 Xe NMR spectra at equilibrium xenon adsorption at a series of pressures were acquired for a rank-varied set of six coals. Acquisition of the NMR signal as an echo was tested and found to improve spectral quality. The spectra were used to calculate micropore diameters for the six coals. These range from 5.6 to 7.5 and exhibit a minimum value for the intermediate coal rank. The smallest pores occur in coals of about 82-85% carbon; at both lower and higher coal ranks, the average micropore size tends to be larger. The changes in the spectra with coal rank and surface area were explored. Signal linewidths were found to decrease with increasing coal rank and were interpreted in terms of increasing chemical or physical homogeneity of the coal as rank increases. The packing density of powdered coal was found to alter the spectral appearance in a high volatile bituminous coal, which is preliminary evidence that exchange affects the

  3. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    NASA Technical Reports Server (NTRS)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  4. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Lagno, M.L.

    1991-01-01

    The removal of pyrite from coal by flotation or any other surface- based separation process is often hampered by the apparent hydrophobicity of the mineral. Microflotation tests and induction time measurements conducted under different conditions showed that the hydrophobicity of coal pyrite is due to superficial oxidation of the mineral surface. X-ray photoelectron spectroscopy (XPS) analysis of the oxidized pyrite samples suggests that the sulfur-rich surfaces formed during oxidation may be responsible for the hydrophobicity of both coal pyrite and mineral pyrite. Based on these findings, an oxidation mechanism is proposed in which metal polysulfides and iron oxides-hydroxides are produced. The floatability of both coal pyrite and mineral pyrite can be correlated with the atomic ration between these hydrophobic and hydrophilic species that are formed on the surface. 14 refs., 7 figs., 1 tab.

  5. From helical to planar chirality by on-surface chemistry.

    PubMed

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Chocholoušová, Jana Vacek; Jančařík, Andrej; Rybáček, Jiří; Kosmider, Krzysztof; Stará, Irena G; Jelínek, Pavel; Starý, Ivo

    2017-03-01

    The chirality of molecular structures is paramount in many phenomena, including enantioselective reactions, molecular self-assembly, biological processes and light or electron-spin polarization. Flat prochiral molecules, which are achiral in the gas phase or solution, can exhibit adsorption-induced chirality when deposited on surfaces. The whole array of such molecular adsorbates is naturally racemic as spontaneous global mirror-symmetry breaking is disfavoured. Here we demonstrate a chemical method of obtaining flat prochiral molecules adsorbed on the solid achiral surface in such a way that a specific adsorbate handedness globally dominates. An optically pure helical precursor is flattened in a cascade of on-surface reactions, which enables chirality transfer. The individual reaction products are identified by high-resolution scanning-probe microscopy. The ultimate formation of globally non-racemic assemblies of flat molecules through stereocontrolled on-surface synthesis allows for chirality to be expressed in as yet unexplored types of organic-inorganic chiral interfaces.

  6. From helical to planar chirality by on-surface chemistry

    NASA Astrophysics Data System (ADS)

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Chocholoušová, Jana Vacek; Jančařík, Andrej; Rybáček, Jiří; Kosmider, Krzysztof; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo

    2016-11-01

    The chirality of molecular structures is paramount in many phenomena, including enantioselective reactions, molecular self-assembly, biological processes and light or electron-spin polarization. Flat prochiral molecules, which are achiral in the gas phase or solution, can exhibit adsorption-induced chirality when deposited on surfaces. The whole array of such molecular adsorbates is naturally racemic as spontaneous global mirror-symmetry breaking is disfavoured. Here we demonstrate a chemical method of obtaining flat prochiral molecules adsorbed on the solid achiral surface in such a way that a specific adsorbate handedness globally dominates. An optically pure helical precursor is flattened in a cascade of on-surface reactions, which enables chirality transfer. The individual reaction products are identified by high-resolution scanning-probe microscopy. The ultimate formation of globally non-racemic assemblies of flat molecules through stereocontrolled on-surface synthesis allows for chirality to be expressed in as yet unexplored types of organic-inorganic chiral interfaces.

  7. Surface Physics and Chemistry of Electrical Contact Phenomena.

    DTIC Science & Technology

    1980-06-01

    terms of a simple outgassing model that involves bulk diffusion of sulfur to the surface and its precipitation there. Clearly locally high...on diffusion controlled " outgassing " in which the sulfur segregated to the surface instead of vaporizing. The activation energies for this process for...increased slightly with temperature. tially identical to that involved in the outgassing of materials However, only for the Ag/Cu alloy, above 500’C the

  8. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    SciTech Connect

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A. Paul

    2008-12-02

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, and XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.

  9. Effect of surface chemistry on in vitro actomyosin motility

    NASA Astrophysics Data System (ADS)

    Hanson, Kristi L.; Solana, Gerardin; Nicolau, Dan V.

    2005-02-01

    A variety of surface coatings were evaluated for their ability to promote in vitro actomyosin motility. Rabbit skeletal muscle heavy meromyosin (HMM) was adsorbed to uncoated glass and to surfaces coated with nitrocellulose, poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), poly(tert-butyl methacrylate (PtBMA), polystyrene (PS) and hexamethyldisilazane (HMDS), and the myosin driven movement of fluorescently labeled actin filaments was recorded using epifluorescence microscopy. HMDS and uncoated glass did not support actomyosin motility, while mean velocities on other surfaces ranged from 1.7 μm sec-1 (PtBMA) to 3.5 μm sec-1 (NC). Nitrocellulose supported the highest proportion of motile filaments (75%), while 47 - 61% of filaments were motile on other surfaces. Within the methacrylate polymers, average filament velocities increased with decreasing hydrophobicity of the surface. Distributions of instantaneous acceleration values and angle deviations suggested more erratic and stuttered movement on the methacrylates and polystyrene than on NC, in line with qualitative visual observations. Despite the higher velocities and high proportion of motile filaments on NC, this surface resulted in a high proportion of small filaments and high rates of filament breakage during motility. Similar effects were observed on PS and PtBMA, while PBMA and PMMA supported longer filaments with less observed breakage.

  10. Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry.

    PubMed

    Roman, Gregory T; Culbertson, Christopher T

    2006-04-25

    We report the coating of poly(dimethylsiloxane) (PDMS) microchannels using transition metal sol-gel chemistry and the subsequent characterization of the coatings. The channels were created using soft polymer lithography, and three metal alkoxide sol-gel precursors were investigated, titanium isopropoxide, zirconium isopropoxide, and vanadium triisobutoxide oxide. The metal alkoxides were diffused into the sidewalls of a PDMS channel and subsequently hydrolyzed using water vapor. This procedure resulted in the formation of durable metal oxide surfaces of titania, zirconia, or vanadia. The resulting surfaces were characterized using contact angle, X-ray photoelectron spectroscopy (XPS), Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electroosmotic mobility (EOM) measurements. All of the metal oxide-modified PDMS surfaces were significantly more hydrophilic than native PDMS. Contact angles for the coatings were 90 degrees for PDMS-ZrO2, 61 degrees for PDMS-TiO2, and 19 degrees for PDMS-vanadia. XPS showed the presence of titania, zirconia, and vanadia on the PDMS surface. XPS spectra also showed no chemical modification of the PDMS after the in situ deposition of the particles either in the Si-O, Si-C, or C-H bonds of the PDMS. The particles deposited in situ were imaged with TEM and were found to be homogeneously distributed throughout the bulk of the PDMS. EOM measurements of the inorganic coatings were stable over a period of at least 95 days. Both cathodic and anodic EOMs could be generated depending upon buffer pH used. The points of net zero charge for PDMS-TiO2, PDMS-ZrO2, and PDMS-vanadia channels were calculated using EOM versus pH measurements and were found to be 4.1 +/- 0.25, 6.1 +/- 0.2, and 7.0 +/- 0.43, respectively. In addition to modifying PDMS channels with inorganic coatings, these inorganic coatings were derivatized with various organic functionalities including oligoethylene

  11. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  12. Aspects of goethite surface microtopography, structure, chemistry, and reactivity

    SciTech Connect

    Rakovan, J.; Becker, U.; Hochella, M.F. Jr.

    1999-05-01

    Goethite (010), (110), and (111) growth faces and (010) cleavage surfaces of large, natural single crystals, as well as a high surface area synthetic sample were characterized using various surface sensitive microscopies and spectroscopies. Differential interference contrast and atomic force microscopy characterization of the natural single crystal faces showed microtopography indicative of growth, dissolution, and cleavage. Low energy electron diffraction patterns of the goethite (010) surface exhibit sharp, intense diffraction spots, indicating long-range order on this important surface. Ultra-high vacuum scanning tunneling microscopy was performed on (010) cleavage faces, although the tunneling properties of the surface were very heterogeneous. Atomic resolution was not obtained; however, microtopographic images are identical to those collected with AFM. XPS spectra from the (010) faces of two natural samples as well as the synthetic powder all have peak maxima for Fe(2p{sub 3/2}) at 711.5 {+-} 0.1 eV. The O(1s) line originating from the goethite can be fit with two peaks with a chemical shift of 1.3 eV. The peak at higher binding energy represents the protonated oxygen in the structure, and the peak at lower binding energy represents the proton-free oxygen in the structure. Ab initio and semi-empirical models of the (010) surface suggest that cleavage occurs through the hydroxide plane at 1/4 b in the structure. This is contrary to cleavage through the oxide plane at 1/2 b, which has been assumed in several previous studies.

  13. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model

    NASA Astrophysics Data System (ADS)

    Fraser, Annemarie; Chan Miller, Christopher; Palmer, Paul I.; Deutscher, Nicholas M.; Jones, Nicholas B.; Griffith, David W. T.

    2011-10-01

    We investigate the Australian methane budget from 2005-2008 using the GEOS-Chem 3D chemistry transport model, focusing on the relative contribution of emissions from different sectors and the influence of long-range transport. To evaluate the model, we use in situ surface measurements of methane, methane dry air column average (XCH4) from ground-based Fourier transform spectrometers (FTSs), and train-borne surface concentration measurements from an in situ FTS along the north-south continental transect. We use gravity anomaly data from Gravity Recovery and Climate Experiment to describe the spatial and temporal distribution of wetland emissions and scale it to a prior emission estimate, which better describes observed atmospheric methane variability at tropical latitudes. The clean air sites of Cape Ferguson and Cape Grim are the least affected by local emissions, while Wollongong, located in the populated southeast with regional coal mining, samples the most locally polluted air masses (2.5% of the total air mass versus <1% at other sites). Averaged annually, the largest single source above background of methane at Darwin is long-range transport, mainly from Southeast Asia, accounting for ˜25% of the change in surface concentration above background. At Cape Ferguson and Cape Grim, emissions from ruminant animals are the largest source of methane above background, at approximately 20% and 30%, respectively, of the surface concentration. At Wollongong, emissions from coal mining are the largest source above background representing 60% of the surface concentration. The train data provide an effective way of observing transitions between urban, desert, and tropical landscapes.

  14. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    USGS Publications Warehouse

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  15. Trends in the chemistry of precipitation and surface water in a national network of small watersheds

    USGS Publications Warehouse

    Aulenbach, Brent T.; Hooper, R.P.; Bricker, O.P.

    1996-01-01

    Trends in precipitation and surface water chemistry at a network of 15 small watersheds ( < 10 km2) in the USA were evaluated using a statistical test for monotonic trends (the seasonal Kendall test) and a graphical smoothing technique for the visual identification of trends. Composite precipitation samples were collected weekly and surface water samples were collected at least monthly. Concentrations were adjusted before trend analysis, by volume for precipitation samples and by flow for surface water samples. A relation between precipitation and surface water trends was not evident either for individual inorganic solutes or for solute combinations, such as ionic strength, at most sites. The only exception was chloride, for which there was a similar trend at 60% of the sites. The smoothing technique indicated that short-term patterns in precipitation chemistry were not reflected in surface waters. The magnitude of the short-term variations in surface water concentration was generally larger than the overall long-term trend, possibly because flow adjustment did not adequately correct for climatic variability. Detecting the relation between precipitation and surface water chemistry trends may be improved by using a more powerful sampling strategy and by developing better methods of concentration adjustment to remove the effects of natural variation in surface waters.

  16. [Ocular surface investigations in dry eye].

    PubMed

    Labbé, A; Brignole-Baudouin, F; Baudouin, C

    2007-01-01

    Dry eye is a complex clinicopathological entity involving tear film, lacrimal glands, eyelids, and a wide spectrum of ocular surface cells, including epithelial, inflammatory, immune, and goblet cells. From the tightly regulated lacrimal film functions and structure, a large variety of investigations have been developed, including tear meniscus measurements, fluorophotometry, meibometry, interference pattern analysis, evaporation rate, tear osmolarity, and thermography. Dry eye conditions also interfere with the ocular surface, causing corneal irregularities that may be explored using the techniques of videokeratography and in vivo confocal microscopy, or optical impairment, as confirmed by aberrometry. At the level of ocular surface cells, impression cytology remains a standard for assessing cell alterations. It has greatly benefited from new confocal microscopy, molecular biology, and flow cytometry techniques. Biological assessment of tear proteins or other mediators is also useful. Major limits should be acknowledged, however, such as technical issues in tear film collection, especially in dry eyes, and the lack of standardization of most measurements. Tear osmolarity, electrophoresis, and dosage of normal tear proteins, such as lysozyme or lactoferrin, remain the most useful tests. Finally, some extraocular explorations such as accessory gland biopsy or serum antinuclear antibody dosage may be useful for assessing the diagnosis of Sjögren's syndrome.

  17. Mussel-Inspired Surface Chemistry for Multifunctional Coatings

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Dellatore, Shara M.; Miller, William M.; Messersmith, Phillip B.

    2007-10-01

    We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

  18. Delivery of minimally dispersed liquid interfaces for sequential surface chemistry.

    PubMed

    Ostromohov, N; Bercovici, M; Kaigala, G V

    2016-08-02

    We present a method for sequential delivery of reagents to a reaction site with minimal dispersion of their interfaces. Using segmented flow to encapsulate the reagents as droplets, the dispersion between reagent plugs remains confined in a limited volume, while being transmitted to the reaction surface. In close proximity to the target surface, we use a passive array of microstructures for removal of the oil phase such that the original reagent sequence is reconstructed, and only the aqueous phase reaches the reaction surface. We provide a detailed analysis of the conditions under which the method can be applied and demonstrate maintaining a transition time of 560 ms between reagents transported to a reaction site over a distance of 60 cm. We implemented the method using a vertical microfluidic probe on an open surface, allowing contact-free interaction with biological samples, and demonstrated two examples of assays implemented using the method: measurements of receptor-ligand reaction kinetics and of the fluorescence response of immobilized GFP to local variations in pH. We believe that the method can be useful for studying the dynamic response of cells and proteins to various stimuli, as well as for highly automated multi-step assays.

  19. Surface chemistry and rheology of polysulfobetaine-coated silica.

    PubMed

    Starck, Pierre; Mosse, Wade K J; Nicholas, Nathan J; Spiniello, Marisa; Tyrrell, Johanna; Nelson, Andrew; Qiao, Greg G; Ducker, William A

    2007-07-03

    We have measured the viscosity of suspensions of colloidal silica particles (d = 300 nm) and the properties of silica surfaces in solutions of a polymer consisting of zwitterionic monomer groups, poly(sulfobetaine methacrylate), polySBMA. This polymer has potential use in modifying surface properties because the polymer is net uncharged and therefore does not generate double-layer forces. The solubility of the polymer can be controlled and varies from poor to good by the addition of sodium chloride salt. Ellipsometry was used to demonstrate that polySBMA adsorbs to silica and exhibits an increase in surface excess at lower salt concentration, which is consistent with a smaller area per molecule at low salt concentration. Neutron reflectivity measurements show that the adsorbed polymer has a thickness of about 3.7 nm and is highly hydrated. The polymer can be used to exercise considerable control over suspension rheology. When silica particles are not completely covered in polymer, the suspension produces a highly viscous gel. Atomic force microscopy was used to show this is caused by bridging of polymer between the particles. At higher surface coverage, the polymer can produce either a high or very low viscosity slurry depending on the sodium chloride concentration. At high salt concentration, the suspension is stable, and the viscosity is lower. This is probably because the entrainment of many small ions renders the polymer film highly hydrophilic, producing repulsive surface forces and lubricating the flow of particles. At low salt concentrations, the polymer is barely soluble and more densely adsorbed. This produces less stable and more viscous solutions, which we attribute to attractive interactions between the adsorbed polymer layers.

  20. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  1. Investigating Massive Dust Events Using a Coupled Weather-Chemistry Model

    NASA Astrophysics Data System (ADS)

    Raman, A.; Arellano, A. F.

    2012-12-01

    Prediction of local to regional scale dust events is challenging due to the complex nature of key processes driving emission, transport, and deposition of mineral dust. In particular, it is difficult to map precisely the sources of mineral dust across heterogeneous land surface properties and land-use changes. This is especially true for Arizona haboobs. These dust storm events are typically driven by thunderstorms and down-bursts over arid regions generating high atmospheric loading of dust in the order of hundreds to thousands of microgram per cubic meter. Modeling and prediction of these events are further complicated by the limitations in satellite-derived and in-situ measurements of dust and related geophysical variables. Here, we investigate the capability of a coupled weather-chemistry model in predicting Arizona haboobs. In particular, this research focuses on the simulation of July 5, 2011 Phoenix haboob using Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and Goddard Chemistry Aerosol Radiation and Transport Model (GOCART) dust scheme. We evaluate the ability of WRF-Chem in simulating the haboob using satellite retrievals of aerosol extinction properties and mass concentrations from Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and high resolution SEVIRI false color dust product, in conjunction with in-situ PM10 and PM2.5 measurements. The study uses a nested modeling domain covering Utah, California and Arizona at a horizontal resolution of 5.4 km (outer) and 1.8 km (inner). Boundary conditions for the model are obtained from NOAA Global Forecasting System six-hourly forecast. We present results illustrating the key features of the haboobs, such as the cold pools and surface wind speeds driving the horizontal and vertical structure of the dust, as well as the patterns of dust transport and deposition. Although the spatio-temporal patterns of the haboob

  2. An Investigation of the Value of Using Concept Maps in General Chemistry.

    ERIC Educational Resources Information Center

    Nicoll, Gayle; Francisco, Joseph; Nakhleh, Mary B.

    2001-01-01

    Reports on a qualitative investigation of the effects of integrating concept maps into freshman-level general chemistry curriculum. Indicates that students in the experimental section had significantly more links and nodes in their concept maps than students in the traditional section. There were no significant differences between the two sections…

  3. Investigation of High School Chemistry Students' Concepts of Chemical Symbol, Formula, and Equation: Students' Prescientific Conceptions.

    ERIC Educational Resources Information Center

    Al-Kunifed, Ali; And Others

    The purpose of this study was to assess the impact of eighteen 11th grade high school chemistry students' prior mathematical knowledge on their understanding of certain chemical concepts (symbol, formula, and equation). It also investigated students' ideas about the meaning of plus sign, reaction sign, and the relationships between subscript, and…

  4. Inquiry-Based Arson Investigation for General Chemistry Using GC-MS

    ERIC Educational Resources Information Center

    Maurer, Marta K.; Bukowski, Michael R.; Menachery, Mary D.; Zatorsky, Adam R.

    2010-01-01

    We have developed a two-week guided-inquiry laboratory in which first-semester general chemistry students investigate a suspected arson using gas chromatography--mass spectrometry and paper chromatography. In the process of evaluating evidence from the crime scene, students develop and test hypotheses and learn the fundamentals of chromatography,…

  5. Investigating the Effectiveness of an Analogy Activity in Improving Students' Conceptual Change for Solution Chemistry Concepts

    ERIC Educational Resources Information Center

    Calik, Muammer; Ayas, Alipasa; Coll, Richard K.

    2009-01-01

    This paper reports on an investigation on the use of an analogy activity and seeks to provide evidence of whether the activity enables students to change alternative conceptions towards views more in accord with scientific views for aspects of solution chemistry. We were also interested in how robust any change was and whether these changes in…

  6. Facile modification of silica substrates provides a platform for direct-writing surface click chemistry.

    PubMed

    Oberhansl, Sabine; Hirtz, Michael; Lagunas, Anna; Eritja, Ramon; Martinez, Elena; Fuchs, Harald; Samitier, Josep

    2012-02-20

    Please click here: a facile two-step functionalization strategy for silicon oxide-based substrates generates a stable platform for surface click chemistry via direct writing. The suitability of the obtained substrates is proven by patterning with two different direct-writing techniques and three different molecules.

  7. Challenges in Teaching "Colloid and Surface Chemistry"--A Danish Experience

    ERIC Educational Resources Information Center

    Kontogeorgis, Georgios M.; Vigild, Martin E.

    2009-01-01

    Seven years ago we were asked, as one of our first teaching duties at the Technical University of Denmark (DTU), to teach a 5 ECTS point course on "Colloid and Surface Chemistry". The topic is itself at the same time exciting and demanding, largely due to its multidisciplinary nature. Several "local" requirements posed…

  8. Mechanical work makes important contributions to surface chemistry at steps

    PubMed Central

    Francis, M. F.; Curtin, W. A.

    2015-01-01

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical energy change can be larger than, and of opposite sign than, the energy changes due to electronic effects and leads to a violation of trends predicted by the widely accepted electronic ‘d-band’ model. This trend has a direct impact on catalytic activity, which is demonstrated here for methanation, where biaxial tension is predicted to shift the activity of nickel significantly, reaching the peak of the volcano plot and comparable to cobalt and ruthenium. PMID:25677075

  9. Mechanical work makes important contributions to surface chemistry at steps

    NASA Astrophysics Data System (ADS)

    Francis, M. F.; Curtin, W. A.

    2015-02-01

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical energy change can be larger than, and of opposite sign than, the energy changes due to electronic effects and leads to a violation of trends predicted by the widely accepted electronic ‘d-band’ model. This trend has a direct impact on catalytic activity, which is demonstrated here for methanation, where biaxial tension is predicted to shift the activity of nickel significantly, reaching the peak of the volcano plot and comparable to cobalt and ruthenium.

  10. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis

    SciTech Connect

    Boffa, Alexander Bowman

    1994-07-01

    The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO2 hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

  11. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes--a review.

    PubMed

    Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana

    2015-10-01

    Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.

  12. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    PubMed

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  13. Surface chemistry at Swiss Universities of Applied Sciences.

    PubMed

    Brodard, Pierre; Pfeifer, Marc E; Adlhart, Christian D; Pieles, Uwe; Shahgaldian, Patrick

    2014-01-01

    In the Swiss Universities of Applied Sciences, a number of research groups are involved in surface science, with different methodological approaches and a broad range of sophisticated characterization techniques. A snapshot of the current research going on in different groups from the University of Applied Sciences and Arts Western Switzerland (HES-SO), the Zurich University of Applied Sciences (ZHAW) and the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) is given.

  14. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  15. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  16. Global Transcriptomic Analysis of Model Human Cell Lines Exposed to Surface-Modified Gold Nanoparticles: The Effect of Surface Chemistry

    PubMed Central

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14,000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. PMID:25491924

  17. Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles.

    PubMed

    Andriotis, Antonis N; Mpourmpakis, Giannis; Broderick, Scott; Rajan, Krishna; Datta, Somnath; Sunkara, Mahendra; Menon, Madhu

    2014-03-07

    A data driven discovery strategy based on statistical learning principles is used to discover new correlations between electronic structure and catalytic activity of metal surfaces. From the quantitative formulations derived from this informatics based model, a high throughput computational framework for predicting binding energy as a function of surface chemistry and adsorption configuration that bypasses the need for repeated electronic structure calculations has been developed.

  18. An organometallic guide to the chemistry of hydrocarbon moieties on transition metal surfaces

    SciTech Connect

    Zaera, F.

    1995-12-01

    In this review what is known about the chemistry of hydrocarbon molecules on transition metal surfaces will be surveyed. Here the authors discuss the results reported to date on the structure and reactivity of the different types of hydrocarbon moieties that form on transition metal surfaces. One of the goals of this review is to provide an organometallic guide for the possible interactions of hydrocarbons with transition metals with the idea of examining their relation to the corresponding surface chemistry. The authors however limit the review of the organometallic literature to the information relevant to the surface systems, and also narrow the field to cover only molecules with carbon and hydrogen atoms; compounds containing other atoms (O, S, N) will be excluded. The present review is organized in the following manner. First, a brief discussion of the experimental techniques used to characterize both organometallic and surface systems is presented. A discussion of the coordination and structure of the different types of organic moieties, first in organometallic compounds and then on metal surfaces, follows. Here the systems are classified according to the type of bonding between the molecules and the metals. Next, the different elementary steps that such systems can undergo are summarized: C-H and C-C bond-breaking and bond-forming reactions, isomerizations, and others. Again, the chemistry of organometallic compounds is discussed first, and the surface chemistry is presented subsequently. A brief description of a few key nonelementary reactions is also given, including some catalytic processes. Lastly, a brief discussion on the main similarities and differences found so far between surface and organometallic systems, and on possible future directions for this field, is offered.

  19. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  20. Investigation of the ion beryllium surface interaction

    SciTech Connect

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M.

    1995-09-01

    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T{sub irr}.> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power {approximately} 5 MW/m{sup 2}). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses {ge} 5x10{sup 22} m{sup -2} the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10{sup 25}m{sup -2}.

  1. Theoretical investigation of gas-surface interactions

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1994-01-01

    The goal of this project was to develop computational tools for the calculation of the electronic structure of molecules containing heavy atoms, and to use these tools in the study of catalytic processes, with the overall objective of gaining an understanding of the catalytic process which could be used to design more efficient catalysts. The main catalytic system of interest was the combustion of hydrogen on platinum surfaces. Under this project, a flexible Dirac-Hartree-Fock (DHF) program has been developed, a code to calculate DHF correlation energies at the second-order Moeller-Plesset perturbation (PP2) level is almost complete, and code to include correlation at the MCSCF and MCSCF/MP2 level is planned. The tools so far developed have been validated and used to calibrate some more approximate methods, and applied to investigate the importance of relativistic effects in the bonding of hydrogen to platinum.

  2. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    SciTech Connect

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2016-01-25

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature T{sub v}, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that T{sub v} has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  3. Investigation of ammonia air-surface exchange processes in a ...

    EPA Pesticide Factsheets

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  4. Surface Chemistry of Trimethyl Phosphate on α-Fe2O3

    SciTech Connect

    Henderson, Michael A.

    2011-12-01

    The chemistry of trimethyl phosphate (TMP) was examined on the (012) crystallographic face of hematite (α-Fe2O3) using temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), static secondary ion mass spectrometry (SSIMS) and Auger electron spectroscopy (AES). TMP binds to Fe3+ sites on the clean α-Fe2O3(012) surface through lone pairs on the P=O oxygen atom. A small portion of adsorbed TMP desorbs without decomposition, however, the majority of adsorbed TMP decomposes in a two step process on the clean surface. The first step, occurring at or below room temperature (RT), likely involves displacement or substitution of one –OCH3 group to form surface methoxy groups and adsorbed dimethyl phosphate (DMP). In the second step, DMP decomposes above 500 K to a 1:1 ratio of gaseous methanol and formaldehyde with phosphate left on the surface. Identification of these steps was confirmed using the chemistry of methanol on the clean surface. Coadsorption of TMP and water led to a small degree of hydrolysis between these two molecules in the multilayer, but no significant change in the chemistry on the surface. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Zachwieja, J.; Lagno, M.

    1990-01-17

    To better understand the flotation behavior of coal pyrite, studies have been initiated to characterize the floatability of coal pyrite and mineral pyrite. The hydrophobicity of coal material pyrite was examined over a range of pH and oxidation times. The results indicate that surface oxidation plays an important role in coal and mineral pyrite hydrophobicity. The hydrophobicity of mineral pyrite decreases with increasing oxidation time (20 min. to 5 hr.) and increasing pH (pH 4.6 to 9.2), with maximum depression occurring at pH 9.2. However, coal pyrite exhibited low floatability, even at the lowest oxidation time, over the entire pH range. X-ray photoelectron spectroscopy (XPS) results suggest the growth of an oxidized iron layer as being responsible for the deterioration in floatability, while a sulfur-containing species present on the sample surfaces may promote floatability. Preliminary studies of the effect of frother indicate an enhancement in the floatability of both coal and mineral pyrite over the entire pH range.

  6. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Yoon, R.H.; Richardson, P.R.

    1992-01-01

    Over the past 10 years, much research has provided convincing evidence that one major difficulty in using froth flotation to separate pyrite from coal is the self-induced'' flotation of pyrite. Numerous studies have attempted to identify reactions that occur under moderate oxidizing conditions, which lead to self-induced flotation, and to identify the oxidization products. During the past two report periods, it was established that: (1) freshly fractured pyrite surfaces immediately assume, at fracture, an electrode potential several hundred millivolts more negative than the usual steady state mixed potentials. Within minutes after fracture, the electrodes oxidize and reach higher steady state potentials. It was also shown, by photocurrent measurements, that a negative surface charge (upward band bending) already exists on freshly fractured pyrite, and (2) particle bed electrodes can be used to control the oxidation of pyrite and to precisely determine the electrochemical conditions where flotation occurs, or is depressed. By circulating the solution phase to an ultraviolet spectrometer, soluble products produced on pyrite by oxidation and reduction can be determined, e.g., HS[sup [minus

  7. Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms.

    PubMed

    Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel

    2017-03-15

    We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au(3+) ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.

  8. Understanding Surface and Interfacial Chemistry in Functional Nanomaterials via Solid-State NMR.

    PubMed

    Marchetti, Alessandro; Chen, Juner; Pang, Zhenfeng; Li, Shenhui; Ling, Daishun; Deng, Feng; Kong, Xueqian

    2017-03-01

    Surface and interfacial chemistry is of fundamental importance in functional nanomaterials applied in catalysis, energy storage and conversion, medicine, and other nanotechnologies. It has been a perpetual challenge for the scientific community to get an accurate and comprehensive picture of the structures, dynamics, and interactions at interfaces. Here, some recent examples in the major disciplines of nanomaterials are selected (e.g., nanoporous materials, battery materials, nanocrystals and quantum dots, supramolecular assemblies, drug-delivery systems, ionomers, and graphite oxides) and it is shown how interfacial chemistry can be addressed through the perspective of solid-state NMR characterization techniques.

  9. Studies of the surface reactivity of metal oxyhydroxides and sulfides with relevance to environmental chemistry

    NASA Astrophysics Data System (ADS)

    Pierre-Louis, Andro-Marc

    With the benefits of an ever increasing advance of industrialization around the globe come formidable environmental problems. Three environmental problems that have relevance to the research described in this thesis are the 1) buildup of atmospheric CO2 gas through the burning of fossil fuels, 2) eutrophication of aquatic systems, and 3) the acidification of environments from acid mine drainage (AMD) resulting from coal-mining activities. In particular research is presented in this thesis that investigated the surface chemistry of CO2 and phosphate (PO43-) on a suite of environmentally relevant iron oxyhydroxide materials and the chemistry of phospholipid molecules on environmentally relevant iron sulfide surfaces to suppress AMD. To develop a microscopic understanding of the surface chemistry of the different systems, an array of experimental and computational techniques were used in the research. Techniques included X-ray photoelectron spectroscopy, atomic adsorption, X-ray diffraction, scanning transmission microscopy with electron dispersive X-ray spectroscopy (STEM/EDS), ion chromatography (IC), and attenuated total reflectance Fourier transform Infrared (ATR-FTIR). Results from the latter technique were interpreted with the aid of density function theory (DFT) calculations. Iron oxyhydroxides, which consisted of ferrihydrite (FeOOH), goethite (α-FeOOH), ferrimagnetic ferrihydrite (FerriFh), and aluminum-doped iron oxyhydroxide (content from 0-100 mol%) were synthesized and studied before and after exposure to gaseous CO2, CO32-, and PO43- species. FeOOH and mixed Al/Fe oxyhydroxide surfaces showed high affinities for the formation of carbonate and bicarbonate species upon exposure to gaseous CO2. Within the Al/Fe oxyhydroxide circumstance, a low Al level of incorporation in the iron oxyhydroxide structure caused a slight increase in surface area and increase in the amount of oxyanion (e.g., CO32- or PO43-) adsorption up to an Al level of 30 mol%. Significant

  10. Heterogeneous chemistry of HOBR on surfaces characteristic of atmospheric aerosols

    SciTech Connect

    Abbatt, J.P.D.

    1995-12-31

    The heterogeneous interactions of HOBr, HBr and HCl with ice and supercooled sulfuric acid solutions have been studied in a low temperatures low pressure flow tube coupled to a mass spectrometer. The heterogeneous reactions HOBr + HCl {yields} BrCl + H{sub 2}O and HOBr + HBr {yields} Br{sub 2} + H{sub 2}O have been demonstrated to proceed readily on these surfaces, and it has been shown that both HOBr and HBr are more easily partitioned to the condensed phase than their chlorine analogues. These heterogeneous reactions represent routes for the activation of halogen species in the atmosphere. In particular, the implications of this research to the depletion of stratospheric ozone after the Mt. Pinatubo volcanic eruption and to the depletion of ozone in the springtime Arctic boundary layer will be discussed.

  11. Surface-water chemistry in the wintertime southwest Indian Ocean

    SciTech Connect

    Chen, C.T.A.

    1986-01-01

    In the 1984 austral winter (July), the first cruise of the joint French-US INDIVAT (Indien Valorisation de Transite) program was successfully accomplished. Surface data were collected during transit from La Reunion to Crozet, Kerguelen, Amsterdam Island and back to La Reunion Aboard the French antarctic research/supply vessel Marion Dufresne. The subtropical front was found to be near 40/sup 0/S and the antarctic front was near 47/sup 0/S during INDIVAT 1. Many chemical properties, especially when normalized to a constant salinity to remove the effects of evaporation and precipitation, are known to correlate linearly with temperature. This paper reports normalized values for nitrate, alkalinity, pH, and carbon dioxide. Production of organic carbon as soft tissue is also discussed.

  12. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    NASA Astrophysics Data System (ADS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-11-01

    Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH2) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such zwitterion modified PP surface.

  13. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    DTIC Science & Technology

    2012-12-11

    demonstrated that carbon -modified Mo(1 1 0), C–Mo(1 1 0), is up to 15 times more selective for the dehydrogenation of formic acid than Mo(1 1 0...Reflection absorption infrared spectroscopy (RAIRS) indicates that carbidic carbon blocks active sites for C–O bond cleavage, decreasing the rate of... hydrothermally synthesized single-crystalline hematite (α-Fe2O3) nanorods and investigated them as an anode material for Li-ion batteries. Electrodes prepared with

  14. The effect of injection molding conditions on the near-surface rubber morphology, surface chemistry, and adhesion performance of semi-crystalline and amorphous polymers

    NASA Astrophysics Data System (ADS)

    Weakley-Bollin, Shannon Christine

    This thesis investigated the effect of injection molding processing variables, resin formulation and mold material on the resulting morphology and properties of semi-crystalline and amorphous polymers in parts molded on large presses with fully developed flow. Five different polymer resins and two different coating types were investigated, and the near-surface morphology was found to be dependent on material formulation, processing parameters, and geometry. For painted TPO, changes in the near-surface rubber morphology and surface chemistry based on material and processing conditions had no significant effect on the adhesion performance. For metal plated ABS, the adhesion performance was found to be heavily dependent on the rubber surface morphology, which varied with material formulation and processing conditions. One of the most significant findings was that forged aluminum injection molding tooling had little effect on the surface morphology or adhesion performance of either polypropylene or the two TPO formulations examined, despite the five-fold increase in thermal conductivity over traditional tool steel. Surface chemistry, however, was found to be affected by cooling rate, depending on material formulation. A UV stabilizer additive was found concentrated at 2.5 atomic percent on the surface of the aluminum molded part, but not the steel molded part, demonstrating a possible opportunity for using additives and aluminum tooling to create "designer surfaces". Processing conditions were found to have a competing role in metal plated ABS, where conditions that lowered surface stress and improved adhesion by a factor of 15 also increased the amount of bulk molded-in stress by nearly 7%. Both factors were found to play an important role in adhesion performance due to the effect of surface stress on the quality of the resulting etch structure. The bulk stress must be minimized to due to the large mechanical and thermal mismatch between the polymer and metal layers

  15. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany.

    PubMed

    Bonten, Luc T C; Groenenberg, Jan E; Meesenburg, Henning; de Vries, Wim

    2011-10-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well.

  16. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.; Zachwieja, J.B.; Lagno, M.L.

    1990-01-01

    Several pyrite depressants have been evaluated for their effectiveness in depressing coal pyrite. A novel reagent, NVT, has been synthesized and shown to be selective for the separation of coal from coal pyrite by froth flotation. This organic reagent contains no sulfur group in its structure and exhibits a stronger affinity toward pyrite than toward coal. The effects of a number of parameters such as pH, reagent concentration and flotation time on flotation response were investigated in a microflotation cell and a bench-scale Denver flotation cell. The reagent has demonstrated good performance at relatively low concentrations when compared to the commercially available sulfur-based pyrite depressants. 8 figs.

  17. Facile functionalization of PDMS elastomer surfaces using thiol-ene click chemistry.

    PubMed

    Zhang, Jianfeng; Chen, Yang; Brook, Michael A

    2013-10-08

    A variety of methods have been developed for polydimethylsiloxane (PDMS) elastomer surface functionalization, particularly for the improvement of hydrophilicity. However, in addition to difficulties in avoiding undesired physical changes to the modified surface, including surface cracking, "hydrophobic recovery" frequently leads hydrophilically modified surfaces to completely return over time to their hydrophobic nature, with accompanying loss of accessible functional groups. Thiol-ene chemistry provides a mild and robust technology for synthetic elaboration. We demonstrate the introduction of thiol groups onto the PDMS surface via base-catalyzed equilibration of MTS ((MeO)3Si(CH2)3SH). Thiols in the product elastomer were shown to be located primarily at the air interface using EDX, XPS, and fluorescence labeling initially, and after extended periods of time: total thiol concentrations at the surface and in the bulk were established by complementary chemical titrations with DTDP (4,4'-dithiodipyridine) and iodine titrations in different solvents. The surface density of thiols was readily controlled by reaction conditions: the rate of hydrophobic recovery, which led to incomplete loss of accessible functional groups, was determined. Thiol-ene click chemistry was then used to introduce a variety of hydrophilic moieties onto the surface including a silicone surfactant and maleic anhydride, respectively. In the latter case, molecular functionalization with both small (fluorescent labels) and polymeric nucleophiles (poly(ethylene glycol), chitosan) could be subsequently induced by simple ring-opening nucleophilic attack leading to permanently functional surfaces.

  18. Cytocompatibility of Wood-derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry.

    PubMed

    Rashad, Ahmad; Mustafa, Kamal; Heggset, Ellinor Bœvre; Syverud, Kristin

    2017-03-06

    The current study aims to demonstrate the influence of the surface chemistry of wood-derived cellulose nanofibril (CNF) hydrogels on fibroblasts for tissue engineering applications. TEMPO-mediated oxidation or carboxymethylation pretreatments were employed to produce hydrogels with different surface chemistry. This study demonstrates, firstly, the gelation of CNF with cell culture medium and formation of stable hydrogels with improved rheological properties. Secondly, the response of mouse fibroblasts cultured on the surface of the hydrogels or sandwiched within the materials with respect to cytotoxicity, cell attachment, proliferation, morphology and migration. Indirect cytotoxicity tests showed no toxic effect of either hydrogel. The direct contact with the caroxymethylated hydrogel adversely influenced the morphology of the cells and limited their spreading, while typical morphology and spreading of cells was observed with the TEMPO-oxidized hydrogel. The porous fibrous structure may be a key to cell proliferation and migration in the hydrogels.

  19. Giant magnetoresistive biosensors for molecular diagnosis: surface chemistry and assay development

    NASA Astrophysics Data System (ADS)

    Yu, Heng; Osterfeld, Sebastian J.; Xu, Liang; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2008-08-01

    Giant magnetoresistive (GMR) biochips using magnetic nanoparticle as labels were developed for molecular diagnosis. The sensor arrays consist of GMR sensing strips of 1.5 μm or 0.75 μm in width. GMR sensors are exquisitely sensitive yet very delicate, requiring ultrathin corrosion-resistive passivation and efficient surface chemistry for oligonucleotide probe immobilization. A mild and stable surface chemistry was first developed that is especially suitable for modifying delicate electronic device surfaces, and a practical application of our GMR biosensors was then demonstrated for detecting four most common human papillomavirus (HPV) subtypes in plasmids. We also showed that the DNA hybridization time could potentially be reduced from overnight to about ten minutes using microfluidics.

  20. Organometallic Chemistry and catalysis on gold metal surfaces

    SciTech Connect

    Angelici, Robert J.

    2007-11-21

    As in transition metal complexes, C{triple_bond}N-R ligands adsorbed on powdered gold undergo attack by amines to give putative diaminocarbene groups on the gold surface. This reaction forms the basis for the discovery of a gold metal-catalyzed reaction of C{triple_bond}N-R, primary amines (R{prime}NH{sub 2}) and O{sub 2} to give carbodiimides (R{prime}-N{double_bond}C{double_bond}N-R). An analogous reaction of C{triple_bond}O, RNH{sub 2}, and O{sub 2} gives isocyanates (R-N{double_bond}C{double_bond}O), which react with additional amine to give urea (RNH){sub 2}C{double_bond}O products. The gold-catalyzed reaction of C{triple_bond}N-R with secondary amines (HNR{prime}{sub 2}) and O{sub 2} gives mixed ureas RNH(CO)NR{prime}{sub 2}. In another type of gold-catalyzed reaction, secondary amines HN(CH{sub 2}R){sub 2} react with O{sub 2} to undergo dehydrogenation to the imine product, RCH{double_bond}N(CH{sub 2}R). Of special interest is the high catalytic activity of gold powder, which is otherwise well-known for its poor catalytic properties.

  1. Control of pyrite surface chemistry in physical coal cleaning

    SciTech Connect

    Yoon, R.H.; Richardson, P.R.

    1992-06-24

    One of the most difficult separations in minerals processing involves the differential flotation of pyrite and coal. Under practical flotation conditions, they are both hydrophobic and no cost-effective method has been developed to efficiently reject the pyrite. The problem arises from inherent floatability of coal and pyrite. Coal is naturally hydrophobic and remains so under practical flotation. Although pyrite is believed to be naturally hydrophilic under practical flotation conditions it undergoes a relatively rapid incipient oxidation reaction that causes self-induced'' flotation. The oxidation product responsible for self-induced'' flotation is believed to be a metal polysulfide, excess sulfur in the lattice, or in some cases elemental sulfur. It is believed that if incipient oxidation of pyrite could be prevented, good pyrite rejection could be obtained. In order to gain a better understanding of how pyrite oxidizes, a new method of preparing fresh, unoxidized pyrite surfaces and a new method of studying pyrite oxidation have been developed this reporting period.

  2. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.

    1985-01-01

    Burner rig tests were conducted under the following conditions: 900 C, hourly thermal cycling, 0.5 ppm sodium as MaCl in the gas stream, velocity 0.3 Mach. The alloys are Udiment 700, Rene 80, uncoated and with RT21, Codep, or NiCoCrAlY coatings. These tests were completed for specimens in the as-processed condition and after aging at 1100 C in oxidizing or inert evnivronments for time up to 600 hours. Coil inductance changes used for periodic nondestructive inspection of specimens were useful in following the course of corrosion. Typical sulfidation was observed in all cases, structurally similar to that observed for service-run turbine components. Aging at cuased a severe decrease in hot corrosion life of RT21 and Codep coatings and a significant but less decrease in the life of the NiCoCrAlY coating. The extent of these decreases was much greater for all three coatings on U700 substrates than on Rene 80 substrates. Coating/substrate interdiffusion rather than by surface oxidation.

  3. Catalyst design for enhanced sustainability through fundamental surface chemistry.

    PubMed

    Personick, Michelle L; Montemore, Matthew M; Kaxiras, Efthimios; Madix, Robert J; Biener, Juergen; Friend, Cynthia M

    2016-02-28

    Decreasing energy consumption in the production of platform chemicals is necessary to improve the sustainability of the chemical industry, which is the largest consumer of delivered energy. The majority of industrial chemical transformations rely on catalysts, and therefore designing new materials that catalyse the production of important chemicals via more selective and energy-efficient processes is a promising pathway to reducing energy use by the chemical industry. Efficiently designing new catalysts benefits from an integrated approach involving fundamental experimental studies and theoretical modelling in addition to evaluation of materials under working catalytic conditions. In this review, we outline this approach in the context of a particular catalyst-nanoporous gold (npAu)-which is an unsupported, dilute AgAu alloy catalyst that is highly active for the selective oxidative transformation of alcohols. Fundamental surface science studies on Au single crystals and AgAu thin-film alloys in combination with theoretical modelling were used to identify the principles which define the reactivity of npAu and subsequently enabled prediction of new reactive pathways on this material. Specifically, weak van der Waals interactions are key to the selectivity of Au materials, including npAu. We also briefly describe other systems in which this integrated approach was applied.

  4. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels

    PubMed Central

    Syverud, Kristin

    2014-01-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. PMID:24713295

  5. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.

    PubMed

    Chinga-Carrasco, Gary; Syverud, Kristin

    2014-09-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms.

  6. Surface chemistry of electrospun cellulose nitrate nanofiber membranes.

    PubMed

    Nartker, Steven; Askeland, Per; Wiederoder, Sara; Drzal, Lawrence T

    2011-02-01

    Electrospinning is a rapidly developing technology that provides a unique way to produce novel polymer nanofibers with controllable diameters. Cellulose nitrate non-woven mats of submicron-sized fibers with diameters of 100-1200 nm were prepared. The effects of processing equipment collector design void gap, and steel drum coated with polyvinylidene dichloride (PVDC) were investigated. The PVDC layer applied to the rotating drum aided in fiber harvesting. Electron microscopy (FESEM and ESEM) studies of as-spun fibers revealed that the morphology of cellulose nitrate fibers depended on the collector type and solution viscosity. When a rotating steel drum was employed a random morphology was observed, while the void gap collector produced aligned fiber mats. Increases in viscosity lead to larger diameter fibers. The fibers collected were free from all residual solvents and could undergo oxygen plasma treatment to increase the hydropholicity.

  7. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    DOE PAGES

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; ...

    2015-02-23

    We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interactionmore » with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.« less

  8. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    SciTech Connect

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; Biener, Juergen; Biener, Monika M.; Lein, Pamela J.; Seker, Erkin

    2015-02-23

    We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interaction with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.

  9. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    PubMed Central

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; Biener, Juergen; Biener, Monika M.; Lein, Pamela J.; Seker, Erkin

    2015-01-01

    Designing neural-electrode interfaces that maintain close physical coupling of neurons to the electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron-electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interaction with cortical neuron-glia co-cultures, we demonstrate that the nanostructure of np-Au is achieving close physical coupling of neurons through maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations of the dealloying conditions. Our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage, and may enhance the neuron-electrode coupling through nanostructure-mediated suppression of scar tissue formation. PMID:25706691

  10. Enabling organosilicon chemistries on inert polymer surfaces with a vapor-deposited silica layer.

    PubMed

    Anderson, A; Ashurst, W R

    2009-10-06

    Given the large surface area-to-volume ratios commonly encountered in microfluidics applications, the ability to engineer the chemical properties of surfaces encountered in these applications is critically important. However, as various polymers are rapidly replacing glass and silicon as the chosen materials for microfluidics devices, the ability to easily modify the surface chemistry has been diminished by the relatively inert nature of some commonly employed polymer surfaces, such as poly(methyl methacrylate) (PMMA), polystyrene, and polydimethylsiloxane (PDMS). This paper describes the low-temperature, vapor-phase deposition of robust silica layers to PMMA, polystyrene, and PDMS surfaces, which enables the functionalization of these surfaces by standard organosilane chemistries. Attenuated total reflection infrared spectroscopy, contact angle goniometry, ellipsometry, and atomic force microscopy are used to characterize the silica layers that form on these surfaces. Aqueous immersion experiments indicate that the silica layer has excellent stability in aqueous environments, which is a prerequisite for microfluidics applications, but for PMMA surfaces, low adhesion of the silica layer to the underlying substrate is problematic. For PDMS substrates, the presence of the silica layer helps to slow the process of hydrophobic recovery, which is an additional advantage.

  11. An investigation of student understanding in the undergraduate organic chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Grutsch, John Leo, Jr.

    Laboratory activities in organic chemistry involve a mixture of sophisticated logic and empirical observation that requires the integration of mechanistic thought, laboratory technique, and problem-solving skills. In an effort to understand how students develop the thought processes and problem-solving skills necessary for laboratory work in organic chemistry, student understanding of how the interaction between a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), provides a result of interest (yield, selectivity, purity, etc.) for an experiment performed in the organic chemistry laboratory was investigated through the collection of responses to questions posed on pre-laboratory quizzes followed by in-depth interviews during which student volunteers discussed their responses along with their experiences in the laboratory. The conceptual change theory of learning which assumes new conceptions are understood, judged, acquired, or rejected in a conceptual context was used as a theoretical paradigm to examine students responses to questions posed on pre-laboratory quizzes and transcripts of the interviews with student volunteers. Students were found to not have developed a mechanistic understanding of how the interaction between a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), provides a result of interest (yield, selectivity, purity, etc.) for an experiment performed in the organic chemistry laboratory. However, students' prior exposure to and understanding of chemical concepts was found to simultaneously assist and hinder in their development of a partial mechanistic understanding of how a reaction system (reactants or starting material(s), reagent(s), and/or solvent), experimental variables (pH, temperature, concentrations, etc), interact to provide a result of interest (yield

  12. Role of the surface chemistry of activated carbons in dye removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Hua-lei; Zhen, Wen-juan; Zhu, Qian; Wu, Xiao-bin; Chang, Zhi-dong; Li, Wen-jun

    2015-07-01

    Commercial activated carbons were modified by a series of chemical or physical treatments using H2O2, NH3, and heating under N2 flow without notably changing their pore structures. The resultant carbons were characterized by N2 adsorption and Bohem titration and then used to remove Ponceau 4R, methyl orange and brilliant blue from aqueous solutions. Surface chemistry was found to play a significantly different role in removing these three compounds. The removal of anionic Ponceau 4R increases with increasing carbon surface basicity due to the predominant dispersive interaction mechanism. In contrast, surface chemistry has little effect on the removal of anionic methyl orange, which can be explained by two parallel mechanisms involving electrostatic and dispersive interactions due to the basic amine group in a dye molecule. The influence of surface chemistry on the removal of amphoteric brilliant blue dye can also be ignored due to a weak interaction between the carbons and dye molecules, which is resulted from strong cohesive energy from electrostatic forces inside amphoteric dye molecules.

  13. Investigation of Enhanced Surface Spray Cooling

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2004-01-01

    Experiments were conducted to study the effects of enhanced surfaces on heat transfer during spray cooling. The surface enhancements consisted of cubic pin fins, pyramids, and straight fins (uniform cross sectional straight fins) machined on the top surface of copper heater blocks. Each had a cross-sectional area of 2.0 square cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa ) and gassy conditions (chamber with N2 gas at 101 kPa). The results show that the straight fins had the largest enhancement in heat flow. Critical heat flux (CHF) for this surface showed an increase of 55% in comparison to the flat surface for the nominally degassed condition. The cubic pin finned and pyramid surfaces provided slightly more than half the heat flux enhancement (30% - 40% greater than the flat surface) of the straight fins. The gassy case showed that the straight fins again provided the largest enhancement (48%) in CHF relative to the flat surface. This was followed by the cubic pin fins, and pyramids which had increases of 31% and 18% respectively. No significant effect was observed in the surface temperature at which CHF occurs for either portion of the study.

  14. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry.

    PubMed

    Kim, Hyo Won; McCloskey, Bryan D; Choi, Tae Hwan; Lee, Changho; Kim, Min-Joung; Freeman, Benny D; Park, Ho Bum

    2013-01-23

    Material surface engineering has attracted great interest in important applications, including electronics, biomedicine, and membranes. More recently, dopamine has been widely exploited in solution-based chemistry to direct facile surface modification. However, unsolved questions remain about the chemical identity of the final products, their deposition kinetics and their binding mechanism. In particular, the dopamine oxidation reaction kinetics is a key to improving surface modification efficiency. Here, we demonstrate that high O(2) concentrations in the dopamine solution lead to highly homogeneous, thin layer deposition on any material surfaces via accelerated reaction kinetics, elucidated by Le Chatelier's principle toward dopamine oxidation steps in a Michael-addition reaction. As a result, highly uniform, ultra-smooth modified surfaces are achieved in much shorter deposition times. This finding provides new insights into the effect of reaction kinetics and molecular geometry on the uniformity of modifications for surface engineering techniques.

  15. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    SciTech Connect

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  16. Exploitation of desilylation chemistry in tailor-made functionalization on diverse surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Yongchun; Chen, Songjie; Kuzume, Akiyoshi; Rudnev, Alexander; Huang, Cancan; Kaliginedi, Veerabhadrarao; Baghernejad, Masoud; Hong, Wenjing; Wandlowski, Thomas; Decurtins, Silvio; Liu, Shi-Xia

    2015-03-01

    Interface engineering to attain a uniform and compact self-assembled monolayer at atomically flat surfaces plays a crucial role in the bottom-up fabrication of organic molecular devices. Here we report a promising and operationally simple approach for modification/functionalization not only at ultraflat single-crystal metal surfaces, M(111) (M=Au, Pt, Pd, Rh and Ir) but also at the highly oriented pyrolytic graphite surface, upon efficient in situ cleavage of trimethylsilyl end groups of the molecules. The obtained self-assembled monolayers are ultrastable within a wide potential window. The carbon-surface bonding on various substrates is confirmed by shell-isolated nanoparticle-enhanced Raman spectroscopy. Application of this strategy in tuning surface wettability is also demonstrated. The most valuable finding is that a combination of the desilylation with the click chemistry represents an efficient method for covalent and tailor-made functionalization of diverse surfaces.

  17. Exploitation of desilylation chemistry in tailor-made functionalization on diverse surfaces

    PubMed Central

    Fu, Yongchun; Chen, Songjie; Kuzume, Akiyoshi; Rudnev, Alexander; Huang, Cancan; Kaliginedi, Veerabhadrarao; Baghernejad, Masoud; Hong, Wenjing; Wandlowski, Thomas; Decurtins, Silvio; Liu, Shi-Xia

    2015-01-01

    Interface engineering to attain a uniform and compact self-assembled monolayer at atomically flat surfaces plays a crucial role in the bottom-up fabrication of organic molecular devices. Here we report a promising and operationally simple approach for modification/functionalization not only at ultraflat single-crystal metal surfaces, M(111) (M=Au, Pt, Pd, Rh and Ir) but also at the highly oriented pyrolytic graphite surface, upon efficient in situ cleavage of trimethylsilyl end groups of the molecules. The obtained self-assembled monolayers are ultrastable within a wide potential window. The carbon–surface bonding on various substrates is confirmed by shell-isolated nanoparticle-enhanced Raman spectroscopy. Application of this strategy in tuning surface wettability is also demonstrated. The most valuable finding is that a combination of the desilylation with the click chemistry represents an efficient method for covalent and tailor-made functionalization of diverse surfaces. PMID:25758661

  18. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    PubMed

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  19. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  20. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    NASA Astrophysics Data System (ADS)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how

  1. The Physical-Organic Chemistry of Surfaces, and Its Relevance to Molecular Recognition

    DTIC Science & Technology

    1989-11-01

    THE PHYSICAL-ORGANiC CHEMISTRY OF SURFACES , 0AND ITS RELEVANCE TO MOLECULAR RECOGNITION L N George M. Whitesides and Hans Biebuyck Department of...DEFENSE ADVANCED RESEARCH PROJECTS AGENCY 1400 Wilson Boulevard Arlington VA 22209 DEPARTMENT OF THE NAVY Offic- of Naval Research , Code 1130P 800...Advanced Research Projects Agency or the U.S. Government. LDIST-R-UTI ,j STAApprovcd for pu8bU Y9 1e; 9 Dibu fonl Unlimited SECURITY CLASSIFICATION OF THIS

  2. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  3. Effect of Gold Nanorod Surface Chemistry on Cellular Interactions In Vitro

    DTIC Science & Technology

    2010-09-01

    properties of GNRs on cells. Previous studies on the cytotoxicity of various nanoparticles indicated that surface chemistry has a strong influence on cell...supplemented with 10% fetal bovine serum (FBS, ATCC) and 1% penicillin/streptomycin (pen/strep, Sigma). For nanoparticle exposure, media was supplemented...reagent ( phenazine ethosulfate; PES). Metabolically active cells reduce the MTS compound into a colored formazan product that is soluble in tissue

  4. Surface Modification of Polydivinylbenzene Microspheres with a Fluorinated Glycopolymer Using Thiol-Halogen Click Chemistry.

    PubMed

    Song, Wentao; Granville, Anthony M

    2016-01-01

    Distillation-precipitation polymerization of divinylbenzene was applied to obtain uniform-sized polymeric microspheres. The microspheres were then modified with polypentafluorostyrene chains utilizing surface-initiated atom transfer radical polymerization techniques. The hydrophobic fluoropolymer-coated microsphere was then converted to a hydrophilic biopolymer by performing thiol-halogen click chemistry between polypentafluorostyrene and 1-thio-β-D-glucose sodium salt. The semi-fluorinated glycopolymer showed good binding ability with Concanavalin A as determined by confocal microscopy and turbidity experiments.

  5. Regulating Biocompatibility of Carbon Spheres via Defined Nanoscale Chemistry and a Careful Selection of Surface Functionalities

    PubMed Central

    Misra, Santosh K.; Chang, Huei-Huei; Mukherjee, Prabuddha; Tiwari, Saumya; Ohoka, Ayako; Pan, Dipanjan

    2015-01-01

    A plethora of nanoarchitectures have been evaluated preclincially for applications in early detection and treatment of diseases at molecular and cellular levels resulted in limited success of their clinical translation. It is important to identify the factors that directly or indirectly affect their use in human. We bring a fundamental understanding of how to adjust the biocompatibility of carbon based spherical nanoparticles (CNPs) through defined chemistry and a vigilant choice of surface functionalities. CNPs of various size are designed by tweaking size (2–250 nm), surface chemistries (positive, or negatively charged), molecular chemistries (linear, dendritic, hyperbranched) and the molecular weight of the coating agents (MW 400–20 kDa). A combination of in vitro assays as tools were performed to determine the critical parameters that may trigger toxicity. Results indicated that hydrodynamic sizes are potentially not a risk factor for triggering cellular and systemic toxicity, whereas the presence of a highly positive surface charge and increasing molecular weight enhance the chance of inducing complement activation. Bare and carboxyl-terminated CNPs did present some toxicity at the cellular level which, however, is not comparable to those caused by positively charged CNPs. Similarly, negatively charged CNPs with hydroxyl and carboxylic functionalities did not cause any hemolysis. PMID:26462751

  6. Effects of surface chemistry on the optical properties and cellular interaction of lanthanide-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco J.; Avalos, Julio C.; Mimun, Lawrence C.; Yust, Brian G.; Tsin, Andrew; Sardar, Dhiraj K.

    2015-03-01

    Fluorescent nanoparticles (NPs) such as KYb2F7:Tm3+ potential in biomedical applications due to their ability to absorb and emit within the biological window, where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. Another big factor in determining their ability to perform in a biological setting is the surface chemistry. Biocompatible coatings, including polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), pluronic and folic acid are commonly used because they pose several advantages such as ease of functionalization, better dispersion, and higher cellular uptake. To study the effects of the NP surface chemistry, KYb2F7:Tm3+ a solvothermal method using PEG, PVP, pluronic acid, and folic acid as a capping agent, followed by thorough optical characterizations. Optical changes were thoroughly studied and compared using absorption, emission, and quantum yield data. Cell viability was obtained by treating Rhesus Monkey Retinal Endothelial cells (RhREC) with KYb2F7:Tm3+ and counting viable cells following a 24 hour uptake period. The work presented will compare the optical properties and toxicity dependency on the surface chemistry on KYb2F7:Tm3+. The results will also indicate that KYb2F7:Tm3+ nanoparticles are viable candidates for various biomedical applications.

  7. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    NASA Astrophysics Data System (ADS)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-05-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.

  8. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces.

  9. Investigating the Surface Roughness of Mercury

    NASA Astrophysics Data System (ADS)

    Susorney, H. C. M.; Barnouin, O. S.; Ernst, C. M.

    2014-12-01

    The Mercury Laser Altimeter (MLA) on the MErcury, Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER) spacecraft has acquired high-resolution topographic measurements of Mercury's northern hemisphere. These measurements permit the quantification of surface roughness on Mercury over baselines between 500 m and 200 km. In contrast to previous studies of Mercury's surface roughness, which have employed median differential surface slope, we calculate surface roughness as the root mean square (RMS) deviation of the difference in height. If the topography is self-affine or fractal, a power law can be fit to the RMS deviation as a function of baseline length. The exponent of this fit is called the Hurst exponent. This Hurst exponent describes whether or not a surface is self-affine, which occurs when processes produce a surface roughness that is inherently random. The surface roughness of Mercury's northern hemisphere reflects the observed bimodal nature of Mercury: the northern smooth plains have lower roughness values than the rougher heavily cratered terrain and intercrater plains. The relationship between RMS height and baseline length on Mercury shows two fractal sections, one between lengths of 500 m and 1 km, and another between lengths of 1 km and 20 km. We also find that the northern rise is indistinguishable from the surrounding smooth plains across all measured baselines, implying that the rise did not alter its surface topography at the baselines used in this study. Craters that host radar-bright deposits have similar roughness values to craters that do not host such deposits. Finally, fresh crater ejecta within the smooth plains have similar roughness values (particularly at the 1 km baseline) to the intercrater plains, supporting the interpretation that the intercrater plains may result from the modification of volcanic plains via cratering.

  10. Investigation of Surfaces after Non Conventional Machining

    NASA Astrophysics Data System (ADS)

    Micietova, Anna; Neslusan, Miroslav; Cillikova, Maria

    2016-12-01

    This paper deals with analysis of surface integrity of steel after electro discharge machining (EDM), water jet machining, (WJM) laser beam machining (LBM) and plasma beam machining (PBM). The paper discusses surface integrity expressed in surface roughness, sample precision expressed in perpendicularity deviation as well as stress state. This study also demonstrates influence of the various non-conventional methods on structure transformations and reports about sensitivity of the different non-conventional methods of machining with regard to variable thickness of machined samples.

  11. The influences of the transfer method and particle surface chemistry on the dispersion of nanoparticles in nanocomposites

    NASA Astrophysics Data System (ADS)

    Pravaz, Olivier; Droz, Benoît; Schurtenberger, Peter; Dietsch, Hervé

    2012-10-01

    The synthesis via in situ polymerization and characterization of nanocomposites (NCs) made from silica (SiO2) nanoparticles in a methyl methacrylate (MMA) monomer matrix is reported. We first investigate the transfer of well-defined spherical silica nanoparticles (NPs) (average radius R = 24.2 +/- 3.2 nm) into the monomer solvent. We study the influence of two transfer methods and different surface chemistries on the resulting colloidal stability. The first transfer method consists of drying the silica particles into powder before dispersing them via ultrasonication in the MMA matrix. The second is based on repetitive centrifugations to exchange NPs from their synthetic milieu to pure MMA, avoiding the dried powder state. These transfer methods are compared for two kinds of NP surface chemistry, natural silanol (Si-OH) groups of the silica NPs and an additional silane coupling agent, namely 3-(trimethoxysilyl)propyl methacrylate (TPM), which mimics the monomeric group of the MMA dispersing milieu. We then characterize the morphology of the resulting nanocomposites prepared via in situ polymerization at a fixed amount of dispersed NPs (2.2 wt%; 1 vol%) using a combination of transmission electron microscopy (TEM) from ultramicrotomed nanocomposite films, thermogravimetry (TGA) and small angle X-ray scattering (SAXS).The synthesis via in situ polymerization and characterization of nanocomposites (NCs) made from silica (SiO2) nanoparticles in a methyl methacrylate (MMA) monomer matrix is reported. We first investigate the transfer of well-defined spherical silica nanoparticles (NPs) (average radius R = 24.2 +/- 3.2 nm) into the monomer solvent. We study the influence of two transfer methods and different surface chemistries on the resulting colloidal stability. The first transfer method consists of drying the silica particles into powder before dispersing them via ultrasonication in the MMA matrix. The second is based on repetitive centrifugations to exchange NPs from

  12. Tuning optoelectronic properties of small semiconductor nanocrystals through surface ligand chemistry

    NASA Astrophysics Data System (ADS)

    Lawrence, Katie N.

    Semiconductor nanocrystals (SNCs) are a class of material with one dimension <100 nm, which display size, shape, and composition dependent photophysical (absorption and emission) properties. Ultrasmall SNCs are a special class of SNCs whose diameter is <3.0 nm and are strongly quantum confined leading to a high surface to volume ratio. Therefore, their electronic and photophysical properties are fundamentally dictated by their surface chemistry, and as such, even a minute variation of the surface ligation can have a colossal impact on these properties. Since the development of the hot injection-method by Bawendi et al., the synthetic methods of SNCs have evolved from high-temperature, highly toxic precursors to low-temperature, relatively benign precursors over the last 25 years. Unfortunately, optimization of their synthetic methods by appropriate surface ligation is still deficient. The deficiency lies in the incomplete or inappropriate surface passivation during the synthesis and/or post-synthetic modification procedure, which due to the high surface to volume ratio of ultrasmall SNCs, is a significant problem. Currently, direct synthetic methods produce SNCs that are either soluble in an aqueous media or soluble in organic solvents therefore limiting their applicability. In addition, use of insulating ligands hinder SNCs' transport properties and thus their potential application in solid state devices. Appropriate choice of surface ligation can provide 1) solubility, 2) stability, and 3) facilitate exciton delocalization. In this dissertation, the effects of appropriate surface ligation on strongly quantum confined ultrasmall SNCs was investigated. Due to their high surface to volume ratio, we are able to highly control their optical and electronic properties through surface ligand modification. Throughout this dissertation, we utilized a variety of ligands (e.g. oleylamine, cadmium benzoate, and PEGn-thiolate) in order to change the solubility of the SNC as

  13. The role of surface chemistry in the cytotoxicity profile of graphene.

    PubMed

    Majeed, Waqar; Bourdo, Shawn; Petibone, Dayton M; Saini, Viney; Vang, Kieng Bao; Nima, Zeid A; Alghazali, Karrer M; Darrigues, Emilie; Ghosh, Anindya; Watanabe, Fumiya; Casciano, Daniel; Ali, Syed F; Biris, Alexandru S

    2017-04-01

    Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd.

  14. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion.

    PubMed

    Zhang, Liudi; Casey, Brendan; Galanakis, Dennis K; Marmorat, Clement; Skoog, Shelby; Vorvolakos, Katherine; Simon, Marcia; Rafailovich, Miriam H

    2017-03-02

    Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry.

  15. Induced Charge Electrokinetics Over ``Controllably Contaminated'' Surfaces: The Effects of Dielectric Thin Films and Surface Chemistry on Slip Velocity

    NASA Astrophysics Data System (ADS)

    Pascall, Andrew; Squires, Todd

    2009-11-01

    Microfluidics has renewed interest in utilizing electrokinetics (EK) for transporting fluids on small scales, and has subjected EK theories and understanding to new challenges. For example, induced-charge electro-osmosis (ICEO), a non-linear EK effect in which an externally applied AC electric field both induces and drives a layer of charged fluid near an electrically conductive surface, could provide an on-chip means to drive high pressures with low voltage [1]. Experimental data on ICEO and related phenomena have shown that the standard theory consistently overpredicts slip velocities by up to a factor of 1000[2]. Here we present experiments in which we controllably ``contaminate'' the metallic surface with a thin dielectric film or Au-thiol self assembled monolayer, and derive a theory for ICEO that incorporates both dielectric effects and surface chemistry, which both act to decrease the slip velocity relative to a `clean' metal. Data for over a thousand combinations of electric field strength and frequency, electrolyte composition, dielectric thickness and surface chemistry show essentially unprecedented quantitative agreement with our theory. [1] Squires & Bazant. J. Fluid Mech. 2004 [2] Bazant, et al. arXiv. 0903.4790

  16. Impact of Surface Chemistry on Grain Boundary Induced Intrinsic Stress Evolution during Polycrystalline Thin Film Growth

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Sheldon, B. W.; Guo, H.; Xiao, X.; Kothari, A. K.

    2009-02-01

    First principles calculations were integrated with cohesive zone and growth chemistry models to demonstrate that adsorbed species can significantly alter stresses associated with grain boundary formation during polycrystalline film growth. Using diamond growth as an example, the results show that lower substrate temperatures increase the hydrogen content at the surface, which reduces tensile stress, widens the grain boundary separations, and permits additional atom insertions that can induce compressive stress. More generally, this work demonstrates that surface heteroatoms can lead to behavior which is not readily described by existing models of intrinsic stress evolution.

  17. Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse Pt(x)Ni(1-x) Nanoparticles

    SciTech Connect

    Wang, Chao; Chi, Miaofang; Wang, Guofeng; Van der Vliet, Dennis; Li, Dongguo; More, Karren Leslie; Wang, Hsien-Hua; Schlueter, John; Markovic, Nenad; Stamenkovic, Vojislav

    2011-01-01

    Monodisperse and homogeneous Pt{sub x}Ni{sub 1-x} alloy nanoparticles of various compositions are synthesized via an organic solution approach in order to reveal the correlation between surface chemistry and their electrocatalytic properties. Atomic-level microscopic analysis of the compositional profile and modeling of nanoparticle structure are combined to follow the dependence of Ni dissolution on the initial alloy composition and formation of the Pt-skeleton nanostructures. The developed approach and acquired knowledge about surface structure-property correlation can be further generalized and applied towards the design of advanced functional nanomaterials.

  18. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  19. Preparation of Ni-doped carbon nanospheres with different surface chemistry and controlled pore structure

    NASA Astrophysics Data System (ADS)

    Zubizarreta, L.; Arenillas, A.; Pis, J. J.

    2008-04-01

    In classic carbon supports is very difficult to control pore size, pore size distribution, and surface chemical properties at the same time. In this work microporous carbons derived from furfuryl alcohol are used as support to prepare Ni-doped carbon materials. The N 2 flow rate used during the carbonisation process of the precursor influences on the size of the nanospheres obtained but not in their textural properties. Microporous carbon nanospheres have been synthesised with a narrow pore size distribution centred in 5.5 Å. The surface chemistry of these materials can be easily modified by different treatments without detriment of the pore structure of the doped carbon nanospheres.

  20. Modification of surface chemistry by lattice Sn doping in BiFeO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Sobhan, M.; Xu, Q.; Zhao, J.; Franklin, A.; Hu, Y.; Tse, J. S.; Wu, P.

    2015-07-01

    Results on X-ray near edge structure (XANES) study on Sn-doped BiFeO3 (BFO) nanofibers with varying Sn concentrations of 1%, 3%, and 5% are reported. The results indicate that the oxidation state of Sn ions in the BFO structure is +4. In addition, we observe a bismuth peak (Bi M 1) at 4000 eV in the XANES spectrum, suggesting the diffusion of Bi ions onto the surface of BFO nanostructure. The diffusion is attributed to the charge compensation between donor electrons from the Sn atoms and Bi vacancies. These findings are of high relevance to surface chemistry reactions in sensing and catalytic applications.

  1. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    PubMed

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  2. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism.

    PubMed

    Wilson, Eric H; Atreya, Sushil K; Kaiser, Ralf I; Mahaffy, Paul R

    2016-08-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4(-)). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 10(7) molecules cm(-2) s(-1) sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  3. The surface as molecular reagent: organic chemistry at the semiconductor interface

    NASA Astrophysics Data System (ADS)

    Filler, Michael A.; Bent, Stacey F.

    2003-09-01

    Methods for the incorporation of organic functionality onto semiconductor surfaces have seen immense progress in recent years. Of the multiple methods developed, the direct, covalent attachment of organic moieties is valuable because it allows for excellent control of the interfacial properties. This review article will focus on a number of synthetic strategies that have been developed to exploit the unique reactivity of group-IV surfaces under vacuum. A picture of the semiconductor surface and its reactions will be developed within the standard framework of organic chemistry with emphasis on the importance of combined experimental and theoretical approaches. Three broad areas of organic chemistry will be highlighted, including nucleophilic/electrophilic, pericyclic, and aromatic reactions. The concept of nucleophilicity and electrophilicity will be discussed within the context of dative bonding and proton transfer of amines and alcohols. Pericyclic reactions cover the [4 + 2] or Diels-Alder cycloaddition, [2 + 2] cycloaddition, dipolar, and ene reactions. Examples include the reactions of alkenes, dienes, ketones, nitriles, and related multifunctional molecules at the interface. Aromaticity and the use of directing groups to influence the distribution of surface products will be illustrated with benzene, xylene, and heteroaromatic compounds. Finally, multifunctional molecules are used to describe the competition and selectively observed among different surface reactions.

  4. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism

    NASA Astrophysics Data System (ADS)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-08-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm-2 s-1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  5. Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug.

    PubMed

    Puri, Vibha; Dantuluri, Ajay K; Kumar, Mahesh; Karar, N; Bansal, Arvind K

    2010-05-12

    The present study compares energetics of wetting behavior of crystalline and amorphous forms of a poorly water soluble drug, celecoxib (CLB) and attempts to correlate it to their surface molecular environment. Wettability and surface free energy were determined using sessile drop contact angle technique and water vapor sorption energetics was measured by adsorption calorimetry. The surface chemistry was elucidated by X-ray photoelectron spectroscopy (XPS) and crystallographic evaluation. The two solid forms displayed distinctly different wetting with various probe liquids and in vitro dissolution media. The crystalline form surface primarily exhibited dispersive surface energy (47.3mJ/m(2)), while the amorphous form had a slightly reduced dispersive (45.2mJ/m(2)) and a small additional polar (4.8mJ/m(2)) surface energy. Calorimetric measurements, revealed the amorphous form to possess a noticeably high differential heat of absorption, suggesting hydrogen bond interactions between its polar energetic sites and water molecules. Conversely, the crystalline CLB form was found to be inert to water vapor sorption. The relatively higher surface polarity of the amorphous form could be linked to its greater oxygen-to-fluorine surface concentration ratio of 1.27 (cf. 0.62 for crystalline CLB), as determined by XPS. The crystallographic studies of the preferred cleavage plane (020) of crystalline CLB further supported its higher hydrophobicity. In conclusion, the crystalline and amorphous forms of CLB exhibited disparate surface milieu, which in turn can have implications on the surface mediated events.

  6. Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors.

    PubMed

    Kisner, Alexandre; Heggen, Marc; Mayer, Dirk; Simon, Ulrich; Offenhäusser, Andreas; Mourzina, Yulia

    2014-05-21

    Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH3, -NH2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer.

  7. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Nieto-Perez, M.; Skinner, C. H.; Kugel, H. W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-06-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  8. Investigation of Semiconductor Surface Structure by Transmission Ion Channeling.

    NASA Astrophysics Data System (ADS)

    Lyman, Paul Francis

    The primary thrust of this dissertation is the investigation of the composition and structure of two important surface systems on Si, and the study of how this structure evolves under the influence of ion bombardment or film growth. I have studied the initial stages of oxidation of Si immediately following removal of a surface oxide by an HF etch. I have also studied the structure of Ge deposited on clean Si(100) at low temperatures. These systems are of considerable technological interest, but were chosen because they naturally pose fundamental questions regarding physical and chemical processes at surfaces. In the study of the oxidation of Si, I have focused on the influence of the bombarding ion beam in altering the structure and composition of the surface layer. Thus, the system then provides a natural vehicle to study ion-induced chemistry. In the study of low-temperature growth of Ge, I have focused on the structure of the Ge layer and the evolution of that structure upon further deposition or upon heating. This simple system is a model one for observing strained semiconductor heteroepitaxial growth. The primary probe for these studies was transmission channeling of MeV ions. The sensitivity of this technique to correlations between the substrate and an overlayer allowed us to make the following observations. The O, Si and H bound in the thin oxide formed after an HF etch and H_2O rinse occupy preferred positions with respect to the Si matrix. Upon ion bombardment, the O further reacts with the Si (the reaction proceeds linearly with the ion fluence) and the portion of the H that is uncorrelated to the substrate is preferentially desorbed. For the case of Ge growth on Si(100)-(2 x 1) at room temperature, a substantial fraction of the Ge films is strained to occupy sites having the lattice constant of the Si substrate (pseudomorphic growth). A model for film growth is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a

  9. Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers.

    PubMed

    George, Steven M; Yoon, Byunghoon; Dameron, Arrelaine A

    2009-04-21

    The fabrication of many devices in modern technology requires techniques for growing thin films. As devices miniaturize, manufacturers will need to control thin film growth at the atomic level. Because many devices have challenging morphologies, thin films must be able to coat conformally on structures with high aspect ratios. Techniques based on atomic layer deposition (ALD), a special type of chemical vapor deposition, allow for the growth of ultra-thin and conformal films of inorganic materials using sequential, self-limiting reactions. Molecular layer deposition (MLD) methods extend this strategy to include organic and hybrid organic-inorganic polymeric materials. In this Account, we provide an overview of the surface chemistry for the MLD of organic and hybrid organic-inorganic polymers and examine a variety of surface chemistry strategies for growing polymer thin films. Previously, surface chemistry for the MLD of organic polymers such as polyamides and polyimides has used two-step AB reaction cycles using homo-bifunctional reactants. However, these reagents can react twice and eliminate active sites on the growing polymer surface. To avoid this problem, we can employ alternative precursors for MLD based on hetero-bifunctional reactants and ring-opening reactions. We can also use surface activation or protected chemical functional groups. In addition, we can combine the reactants for ALD and MLD to grow hybrid organic-inorganic polymers that should display interesting properties. For example, using trimethylaluminum (TMA) and various diols as reactants, we can achieve the MLD of alucone organic-inorganic polymers. We can alter the chemical and physical properties of these organic-inorganic polymers by varying the organic constituent in the diol or blending the alucone MLD films with purely inorganic ALD films to build a nanocomposite or nanolaminate. The combination of ALD and MLD reactants enlarges the number of possible sequential self-limiting surface

  10. INLAND DISSOLVED SALT CHEMISTRY: STATISTICAL EVALUATION OF BIVARIATE AND TERNARY DIAGRAM MODELS FOR SURFACE AND SUBSURFACE WATERS

    EPA Science Inventory

    We compared the use of ternary and bivariate diagrams to distinguish the effects of atmospheric precipitation, rock weathering, and evaporation on inland surface and subsurface water chemistry. The three processes could not be statistically differentiated using bivariate models e...

  11. Instructional practices in chemistry classrooms across North Carolina: An investigation of inquiry-oriented instruction

    NASA Astrophysics Data System (ADS)

    McDuffie, Sarah Faye

    teachers who represented various levels on the Inquiry-Oriented Instructional Scale. Results of this study showed that most of the chemistry teachers in North Carolina public high schools used some inquiry-oriented instructional strategies during the 1998--99 school year. There was no statistically significant relationship between the levels of inquiry-oriented instruction and any of the demographic factors investigated.

  12. Surface defects and chemistry on the SnO2(110) surface

    NASA Technical Reports Server (NTRS)

    Cox, David F.

    1990-01-01

    A variety of ultrahigh vacuum (UHV) surface science techniques have been used to characterize the structural, electronic and chemical properties of SnO2(110), a model catalytic surface. Two types of surface oxygen vacancies have been identified, each associated with different band gap (defect) electronic states. Adsorption experiments show that the interaction of simple gases with this surface occurs primarily through these oxygen vacancies and can show site-specificity to only one of the two types of vacancies.

  13. Surface-initiated Polymerization of Azidopropyl Methacrylate and its Film Elaboration via Click Chemistry.

    PubMed

    Saha, Sampa; Bruening, Merlin L; Baker, Gregory L

    2012-11-27

    Azidopropyl methacrylate (AzPMA), a functional monomer with a pendent azido group, polymerizes from surfaces and provides polymer brushes amenable to subsequent elaboration via click chemistry. In DMF at 50 °C, click reactions between poly(AzPMA) brushes and an alkynylated dye proceed with >90% conversion in a few minutes. However, in aqueous solutions, reaction with an alkyne-containing poly(ethylene glycol) methyl ether (mPEG, Mn=5000) gives <10% conversion after a 12-h reaction at room temperature. Formation of copolymers with AzPMA and polyethylene glycol methyl ether methacrylate (mPEGMA) enables control over the hydrophilicity and functional group density in the copolymer to increase the yield of aqueous click reactions. The copolymers show reaction efficiencies as high as 60%. These studies suggest that for aqueous applications such as bioconjugation via click chemistry, control over brush hydrophilicity is vital.

  14. Ab Initio Study of the Effects of Surface Chemistry and Size on Xray Absorption Spectra of CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Prendergast, David; Ogitsu, Tadashi; Schwegler, Eric

    2009-03-01

    The specificity of their opto-electronic properties with respect to size, shape, and surface chemistry, as well as cost-effective solution based methods of synthesis, make CdSe nanoparticles a material of choice for use in novel opto-electronic devices, such as photovoltaics and field effect transistors. Developing methods by which these nanomaterials can be systematically engineered to meet specific device goals is largely dependent on understanding how surface passivation and reconstruction affect the properties of a given nanomaterial. Xray absorption spectroscopy (XAS) is an ideal method for structural analysis, but its application to studying nanomaterial surfaces is nontrivial due to the convolution of the absorption of surface atoms with those within the nanomaterial. We utilize ab initio methods to investigate the dependence of the Cd L-edge xray absorption cross-section on the size and passivation for Cd atoms both at the surface and within the core of CdSe nanomaterials. We aim to enable routine surface characterization of CdSe nanomaterials via XAS. Prepared by LLNL under Contract DE-AC52 07NA27344.

  15. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    DOE PAGES

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less

  16. IR investigations of surfaces and adsorbates

    SciTech Connect

    Gwyn Williams

    2001-12-10

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  17. Crystallographic Structure, Intermolecular Packing Energetics, Crystal Morphology and Surface Chemistry of Salmeterol Xinafoate (Form I).

    PubMed

    Moldovan, Alexandru A; Rosbottom, Ian; Ramachandran, Vasuki; Pask, Christopher M; Olomukhoro, Oboroghene; Roberts, Kevin J

    2017-03-01

    Single crystals of salmeterol xinafoate (form I), prepared from slow cooled supersaturated propan-2-ol solutions, crystallize in a triclinic P1¯ symmetry with 2 closely related independent salt pairs within the asymmetric unit, with an approximately double-unit cell volume compared with the previously published crystal structure. Synthonic analysis of the bulk intermolecular packing confirms the similarity in packing energetics between the 2 salt pairs. The strongest synthons, as expected, are dominated by coulombic interactions. Morphologic prediction reveals a plate-like morphology, dominated by the {001}, {010}, and {100} surfaces, consistent with experimentally grown crystals. Although surface chemistry of the slow-growing {001} face comprises large sterically hindering phenyl groups, although weaker coulombic interactions still prevail from the alcohol group present on the phenyl and hydroxymethyl groups. The surface chemistry of the faster growing {010} and {100} faces are dominated by the significantly stronger cation/anion interactions occurring between the carboxylate and protonated secondary ammonium ion groups. The importance of understanding the cohesive and adhesive nature of the crystal surfaces of an active pharmaceutical ingredient, with respect to their interaction with other active pharmaceutical ingredient crystals and how that may affect formulation design, is highlighted.

  18. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    PubMed

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  19. Ground- and Surface-Water Chemistry of Handcart Gulch, Park County, Colorado, 2003-2006

    USGS Publications Warehouse

    Verplanck, Philip L.; Manning, Andrew H.; Kimball, Briant A.; McCleskey, R. Blaine; Runkel, Robert L.; Caine, Jonathan Saul; Adams, Monique; Gemery-Hill, Pamela A.; Fey, David L.

    2008-01-01

    As part of a multidisciplinary project to determine the processes that control ground-water chemistry and flow in mineralized alpine environments, ground- and surface-water samples from Handcart Gulch, Colorado were collected for analysis of inorganic solutes and water and dissolved sulfate stable isotopes in selected samples. The primary aim of this study was to document variations in ground-water chemistry in Handcart Gulch and to identify changes in water chemistry along the receiving stream of Handcart Gulch. Water analyses are reported for ground-water samples collected from 12 wells in Handcart Gulch, Colorado. Samples were collected between August 2003 and October 2005. Water analyses for surface-water samples are reported for 50 samples collected from Handcart Gulch and its inflows during a low-flow tracer injection on August 6, 2003. In addition, water analyses are reported for three other Handcart Gulch stream samples collected in September 2005 and March 2006. Reported analyses include field parameters (pH, specific conductance, temperature, dissolved oxygen, and Eh), major and trace constituents, oxygen and hydrogen isotopic composition of water and oxygen and sulfur isotopic composition of dissolved sulfate. Ground-water samples from this study are Ca-SO4 type and range in pH from 2.5 to 6.8. Most of the samples (75 percent) have pH values between 3.3 and 4.3. Surface water samples are also Ca-SO4 type and have a narrower range in pH (2.7?4.0). Ground- and surface-water samples vary from relatively dilute (specific conductance of 68 ?S/cm) to concentrated (specific conductance of 2,000 ?S/cm).

  20. Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health.

    PubMed

    Carling, Gregory T; Richards, David C; Hoven, Heidi; Miller, Theron; Fernandez, Diego P; Rudd, Abigail; Pazmino, Eddy; Johnson, William P

    2013-01-15

    We collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters. The extensive sampling campaign provides a broad assessment of Great Salt Lake wetlands, including a range of conditions from reference to highly degraded. We used nonmetric multidimensional scaling (NMS) to characterize the wetland sites based on the multiple parameters measured in surface water, pore water, and sediment. NMS results showed that the impounded wetlands fall along a gradient of high salinity/low trace element concentrations to low salinity/high trace element concentrations, whereas the sheet flow wetlands have both elevated salinity and high trace element concentrations, reflecting either different sources of element loading or different biogeochemical/hydrological processes operating within the wetlands. Other geochemical distinctions were found among the wetlands, including Fe-reducing conditions at two sites and sulfate-reducing conditions at the remaining sites. Plant community health metrics in the impounded wetlands showed negative correlations with specific metal concentrations in sediment (THg, Cu, Zn, Cd, Sb, Pb, Ag, Tl), and negative correlations with nutrient concentrations in surface water (nitrite, phosphate, nitrate). In the sheet flow wetlands, invasive plant species were inversely correlated with pore water salinity. These results indicate that sediment and pore water chemistry play an important role in wetland plant community health, and that monitoring and

  1. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    NASA Astrophysics Data System (ADS)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to

  2. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.

    PubMed

    Vaithilingam, Jayasheelan; Prina, Elisabetta; Goodridge, Ruth D; Hague, Richard J M; Edmondson, Steve; Rose, Felicity R A J; Christie, Steven D R

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM-AF surface was observed to be porous with an average surface roughness (Ra) of 17.6±3.7μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour.

  3. The influences of the transfer method and particle surface chemistry on the dispersion of nanoparticles in nanocomposites.

    PubMed

    Pravaz, Olivier; Droz, Benoît; Schurtenberger, Peter; Dietsch, Hervé

    2012-11-07

    The synthesis via in situ polymerization and characterization of nanocomposites (NCs) made from silica (SiO(2)) nanoparticles in a methyl methacrylate (MMA) monomer matrix is reported. We first investigate the transfer of well-defined spherical silica nanoparticles (NPs) (average radius R = 24.2 ± 3.2 nm) into the monomer solvent. We study the influence of two transfer methods and different surface chemistries on the resulting colloidal stability. The first transfer method consists of drying the silica particles into powder before dispersing them via ultrasonication in the MMA matrix. The second is based on repetitive centrifugations to exchange NPs from their synthetic milieu to pure MMA, avoiding the dried powder state. These transfer methods are compared for two kinds of NP surface chemistry, natural silanol (Si-OH) groups of the silica NPs and an additional silane coupling agent, namely 3-(trimethoxysilyl)propyl methacrylate (TPM), which mimics the monomeric group of the MMA dispersing milieu. We then characterize the morphology of the resulting nanocomposites prepared via in situ polymerization at a fixed amount of dispersed NPs (2.2 wt%; 1 vol%) using a combination of transmission electron microscopy (TEM) from ultramicrotomed nanocomposite films, thermogravimetry (TGA) and small angle X-ray scattering (SAXS).

  4. Surface and interfacial chemistry of high-k dielectric and interconnect materials on silicon

    NASA Astrophysics Data System (ADS)

    Kirsch, Paul Daniel

    Surfaces and interfaces play a critical role in the manufacture and function of silicon based integrated circuits. It is therefore reasonable to study the chemistries at these surfaces and interfaces to improve existing processes and to develop new ones. Model barium strontium titanate high-k dielectric systems have been deposited on ultrathin silicon oxynitride in ultrahigh vacuum. The resulting nanostructures are characterized with secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS). An interfacial reaction between Ba and Sr atoms and SiOxNy was found to create silicates, BaSixOy or SrSi xOy. Inclusion of N in the interfacial oxide decreased silicate formation in both Ba and Sr systems. Furthermore, inclusion of N in the interfacial oxide decreased the penetration of Ba and Sr containing species, such as silicides and silicates. Sputter deposited HfO2 was studied on nitrided and unnitrided Si(100) surfaces. XPS and SIMS were used to verify the presence of interfacial HfSixOy and estimate its relative amount on both nitrided and unnitrided samples. More HfSixOy formed without the SiNx interfacial layer. These interfacial chemistry results are then used to explain the electrical measurements obtained from metal oxide semiconductor (MOS) capacitors. MOS capacitors with interfacial SiNx exhibit reduced leakage current and increased capacitance. Lastly, surface science techniques were used to develop a processing technique for reducing thin films of copper (II) and copper (I) oxide to copper. Deuterium atoms (D*) and methyl radicals (CH3*) were shown to reduce Cu 2+ and/or Cu1+ to Cu0 within 30 min at a surface temperature of 400 K under a flux of 1 x 1015 atoms/cm2s. Temperature programmed desorption experiments suggest that oxygen leaves the surface as D2O and CO2 for the D* and CH3* treated surfaces, respectively.

  5. Saturn Magnetospheric Impact on Surface Molecular Chemistry and Astrobiological Potential of Enceladus

    NASA Technical Reports Server (NTRS)

    Cooper, Paul D.; Cooper, John F.; Sittler, Edward C.; Burger, Matthew H.; Sturner, Steven J.; Rymer, Abigail M.

    2008-01-01

    The active south polar surface of Enceladus is exposed to strong chemical processing by direct interaction with charged plasma and energetic particles in the local magnetospheric environment of this icy moon. Chemical oxidation activity is suggested by detection of H202 at the surface in this region and less directly by substantial presence of C02, CO, and N2 in the plume gases. Molecular composition of the uppermost surface, including ejecta from plume activity, is radiolytically transformed mostly by penetrating energetic electrons with lesser effects from more depleted populations of energetic protons. The main sources of molecular plasma ions and E-ring dust grains in the magnetospheric environment are the cryovolcanic plume emissions from Enceladus. These molecular ions and the dust grains are chemically processed by magnetospheric interactions that further impact surface chemistry on return to Enceladus. For example, H20 neutrals dominating the emitted plume gas return to the surface mostly as H30+ ions after magnetospheric processing. Surface oxidant loading is further increased by return of radiolytically processed ice grains from the E-ring. Plume frost deposition and micrometeoroid gardening protect some fraction of newly produced molecular species from destruction by further irradiation. The evident horizontal and vertical mobility of surface ices in the south polar region drive mixing of these processed materials into the moon interior with potential impacts on deep ice molecular chemistry and plume gas production. Similarly as suggested previously for Europa, the externally driven source of radiolytic oxidants could affect evolution of life in any subsurface liquid water environments of Enceladus.

  6. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  7. Limnological Investigations: Lake Koocanusa, Montana. Part 5. Phosphorus Chemistry of Sediments

    DTIC Science & Technology

    1981-07-01

    these lake sediments; i.e., the eous sediments of Lake Kocanusa , where Ox-Fe variability in CaCO, does not account for any - appears t6 be the...the CRREL SpeciAlReport- series wider the-overall title Limliologicalin- vest igatiohs: Lake Kbocahusa, Moritana; Part 1: Pie-inioibundtnhentstudy: q96...NUMBER V 4 ~Special c’t115 lo iq I 6 IMNOLOGICAL INVESTIGATIONS: LAKE KOOCANUSA,// , ,JONTANA. /’- uS ~ 9~// 7ART 5. PHOSPHORUS CHEMISTRY OF SEDIMENTS

  8. Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper.

    PubMed

    Ashori, Alireza; Cordeiro, Nereida; Faria, Marisa; Hamzeh, Yahya

    2013-07-01

    The use of non-wood fibers in the paper industry has been an economical and environmental necessity. The application of dry-strength agents has been a successful method to enhance the strength properties of paper. The experimental results evidencing the potential of chitosan and cationic starch utilization in bagasse paper subjected to hot water pre-extraction has been presented in this paper. The research analyzes the surface properties alterations due to these dry-strength agents. Inverse gas chromatography was used to evaluate the properties of surface chemistry of the papers namely the surface energy, active sites, surface area as well as the acidic/basic character. The results of the study revealed that the handsheets process causes surface arrangement and orientation of chemical groups, which induce a more hydrophobic and basic surface. The acid-base surface characteristics after the addition of dry-strength agents were the same as the bagasse handsheets with and without hot water pre-extraction. The results showed that the dry-strength agent acts as a protecting film or glaze on the surfaces of bagasse paper handsheets.

  9. A First Principles Investigation of Proton Chemistry in Perovskite-Type Oxides

    NASA Astrophysics Data System (ADS)

    Tauer, Tania Allison

    Certain acceptor-doped perovskite-type oxides show significant promise for deployment into a number of electrochemical device applications, including fuel cells, batteries, and electrolyzers, owing to their rapid proton conductivities at high temperatures. However, limitations in bulk material hydration and slow grain boundary conductivities have reduced the viability of these materials in intermediate temperatures applications. This thesis work uses density functional theory to gain a fundamental understanding of proton and defect chemistry within various perovskite environments in order to identify strategies to increase proton concentration and improve overall proton conductivity. First, material hydration was probed within yttrium-doped barium cerate (BCY) to examine how the thermodynamics of material hydration are influenced by dopant concentration. A model was derived from solely first principle techniques to describe hydration within BCY as a function of dopant concentration, temperature, and partial pressure of water. The resulting model can be used to screen for favorable perovskite-dopant combinations with enhanced hydration capabilities. Next, defect segregation was investigated in the more complex interfacial environment to probe the origin of low proton conductivity across perovskite grain boundaries (GB). The results of this study suggest that screening for perovskite-dopant combinations with strong dopant-oxygen bond strengths may reduce the segregation of dopant ions and oxygen vacancies to the GB interface, mitigating the development of a positive GB core and enhancing proton conduction across the GB. Finally, proton stability was assessed at various interfacial regions within the perovskite material. An examination of proton adsorption at the BaZrO3-vacuum interface reveals a destabilization of protons in the first subsurface layer of the perovskite, yielding a potential barrier for proton diffusion into and out of the perovskite membrane. An

  10. Surface chemistry and friction behavior of the silicon carbide (0001) surface at temperatures to 1500 deg C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    X-ray photoelectron and Auger electron spectroscopy analyses and friction studies were conducted with a silicon carbide (0001) surface in contact with iron at various temperatures to 1200 or 1500 C in a vacuum of 10 to the minus 8th power Pa. The results indicate that there is a significant temperature influence on both the surface chemistry and friction properties of silicon carbide. The principal contaminant of adsorbed amorphous carbon on the silicon carbide surface in the as received state is removed by simply heating to 400 C. Above 400 C, graphite and carbide type carbine are the primary species on the silicon carbide surface, in addition to silicon. The coefficients of friction of polycrystalline iron sliding against a single crystal silicon carbide (0001) surface were high at temperatures to 800 C. Similar coefficients of friction were obtained at room temperature after the silicon carbide was preheated at various temperatures up 800 C. When the friction experiments were conducted above 800 C or when the specimens were preheated to above 800 C, the coefficients of friction were dramatically lower. At 800 C the silicon and carbide type carbon are at a maximum intensity in the XPS spectra. With increasing temperature above 800 C, the concentration of the graphite increases rapidly on the surface, whereas those of the carbide type carbon and silicon decrease rapidly.

  11. Driving Surface Chemistry at the Nanometer Scale Using Localized Heat and Stress.

    PubMed

    Raghuraman, Shivaranjan; Elinski, Meagan B; Batteas, James D; Felts, Jonathan R

    2017-03-10

    Driving and measuring chemical reactions at the nanoscale is crucial for developing safer, more efficient and environ-ment-friendly reactors and for surface engineering. Quantitative understanding of surface chemical reactions in real operating environments is challenging due to resolution and environmental limitations of existing techniques. Here we report an atomic force microscope technique that can measure reaction kinetics driven at the nanoscale by multi-physical stimuli in an ambient environment. We demonstrate the technique by measuring local reduction of graphene oxide as a function of both temperature and force at the sliding contact. Kinetic parameters measured with this technique reveal alternative reaction pathways of graphene oxide reduction previously unexplored with bulk processing techniques. This technique can be extended to understand and precisely tailor the nanoscale surface chemistry of any two-dimensional material in response to a wide range of external, multi-physical stimuli.

  12. Surface modification of silicon nanowires via copper-free click chemistry.

    PubMed

    Henriksson, Anders; Friedbacher, Gernot; Hoffmann, Helmuth

    2011-06-21

    A two-step process based on copper-free click chemistry is described, by which the surface of silicon nanowires can be functionalized with specific organic substituents. A hydrogen-terminated nanowire surface is first primed with a monolayer of an α,ω-diyne and thereby turned into an alkyne-terminated, clickable platform, which is subsequently coupled with an overlayer of an organic azide carrying the desired terminal functionality. The reactive, electron-deficient character of the employed diyne enabled a quantitative coupling reaction at 50 °C without metal catalysis, which opens up a simple and versatile route for surface functionalization under mild conditions without any potentially harmful additives.

  13. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  14. Nanoporous anodic alumina platforms: engineered surface chemistry and structure for optical sensing applications.

    PubMed

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-07-07

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.

  15. Effects of extreme pressure additive chemistry on rolling element bearing surface durability

    SciTech Connect

    Evans, Ryan D.; Nixon, H. P.; Darragh, Craig V.; Howe, Jane Y; Coffey, Dorothy W

    2007-01-01

    Lubricant additives have been known to affect rolling element bearing surface durability for many years. Tapered roller bearings were used in fatigue testing of lubricants formulated with gear oil type additive systems. These systems have sulfur- and phosphoruscontaining compounds used for gear protection as well as bearing lubrication. Several variations of a commercially available base additive formulation were tested having modified sulfur components. The variations represent a range of ''active'' extreme pressure (EP) chemistries. The bearing fatigue test results were compared with respect to EP formulation and test conditions. Inner ring near-surface material in selected test bearings was evaluated on two scales: the micrometer scale using optical metallography and the nanometer scale using transmission electron microscopy (TEM). Focused-ion beam (FIB) techniques were used for TEM specimen preparation. Imaging and chemical analysis of the bearing samples revealed near-surface material and tribofilm characteristics. These results are discussed with respect to the relative fatigue lives.

  16. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  17. Influence of mineral oil and additives on microhardness and surface chemistry of magnesium oxide (001) surface

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Shigaki, H.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted with cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved into specimens along the /001/ surface, and indentations were made on the cleaved surface in laboratory air, in nitrogen gas, or in degassed mineral oil with and without an additive while not exposing specimen surface to any other environment. The various additives examined contained sulfur, phosphorus, chlorine, or oleic acid. The sulfur-containing additive exhibited the highest hardness and smallest dislocation patterns evidencing plastic deformation; the chlorine-containing additive exhibited the lowest hardness and largest dislocation patterns evidencing plastic deformation. Hydrocarbon and chloride (MgCl2) films formed on the magnesium oxide surface. A chloride film was responsible for the lowest measured hardness.

  18. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  19. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    NASA Astrophysics Data System (ADS)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M.

    2015-12-01

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.

  20. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients

    NASA Astrophysics Data System (ADS)

    Popescu, M. N.; Uspal, W. E.; Dietrich, S.

    2017-04-01

    Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate ‘point-particle’ analysis, we show analytically that—owing to this kind of induced active response (chemi-osmosis) of the wall—such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial ‘swimmers’ exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with ‘source’ chemical reactions on one half of the surface and either ‘inert’ or ‘sink’ reactions over the other half.

  1. The influence of the surface chemistry of silver nanoparticles on cell death

    NASA Astrophysics Data System (ADS)

    Sur, Ilknur; Altunbek, Mine; Kahraman, Mehmet; Culha, Mustafa

    2012-09-01

    The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity.

  2. The role of aragonite matrix surface chemistry on the chondrogenic differentiation of mesenchymal stem cells.

    PubMed

    Gross-Aviv, Talia; Vago, Razi

    2009-02-01

    In the present research we study the effects of surface chemistry of an aragonite crystalline biomatrix on the chondrogenesis of mesenchymal stem cells (MSCs). An aragonite matrix obtained from the coral Porites lutea and a gold-coated P. lutea matrix were seeded with MSCs, with and without the addition of growth factors (GFs). Scanning electron microscopy, histochemical staining, immunofluorescence, biochemical analyses and quantitative polymerase chain reaction showed that the chemistry of the matrix influenced the differentiation process of the MSCs. The calcium carbonate composition of the coral promoted osteogenesis, while impeding cell-material contact (by gold coating) altered the differentiation lineage of MSCs towards chondrogenic fate. Supplementation of the culture medium with GFs intensified the influence of the surface composition on the differentiation of MSCs, and the synergistic effect of the biomatrix surface composition and the GFs induced chondrogenesis and facilitated maintenance of the chondrocyte phenotype. Therefore, we suggest that scaffolding material candidates for tissue engineering should be examined for their effects on the MSCs differentiation process and their effect on signal transduction events in the cells.

  3. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.

    PubMed

    Bandyopadhyay, Debjyoti; Prashar, Deepali; Luk, Yan-Yeung

    2011-05-17

    This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.

  4. Bidirectional diffusion of ammonium and sodium cations in forward osmosis: role of membrane active layer surface chemistry and charge.

    PubMed

    Lu, Xinglin; Boo, Chanhee; Ma, Jun; Elimelech, Menachem

    2014-12-16

    Systematic fundamental understanding of mass transport in osmosis-driven membrane processes is important for further development of this emerging technology. In this work, we investigate the role of membrane surface chemistry and charge on bidirectional solute diffusion in forward osmosis (FO). In particular, bidirectional diffusion of ammonium (NH4(+)) and sodium (Na(+)) is examined using FO membranes with different materials and surface charge characteristics. Using an ammonium bicarbonate (NH4HCO3) draw solution, we observe dramatically enhanced cation fluxes with sodium chloride feed solution compared to that with deionized water feed solution for thin-film composite (TFC) FO membrane. However, the bidirectional diffusion of cations does not change, regardless of the type of feed solution, for cellulose triacetate (CTA) FO membrane. We relate this phenomenon to the membrane fixed surface charge by employing different feed solution pH to foster different protonation conditions for the carboxyl groups on the TFC membrane surface. Membrane surface modification is also carried out with the TFC membrane using ethylenediamine to alter carboxyl groups into amine groups. The modified TFC membrane, with less negatively charged groups, exhibits a significant decrease in the bidirectional diffusion of cations under the same conditions employed with the pristine TFC membrane. Based on our experimental observations, we propose Donnan dialysis as a mechanism responsible for enhanced bidirectional diffusion of cations in TFC membranes.

  5. Characterization of peptide immobilization on an acetylene terminated surface via click chemistry

    NASA Astrophysics Data System (ADS)

    Shamsi, Fahimeh; Coster, Hans; Jolliffe, Katrina A.

    2011-10-01

    Peptide (A-A-A-A-G-G-G-E-R-G-D)1A: Alanine; D: Glutamic acid; E: Aspartic acid; G: Glycine; R: Arginine. conjugated surfaces were prepared on silicon surfaces through click chemistry. The amino acid sequence RGD is the cellular attachment site of a large number of extracellular matrices such as blood and cell surface proteins. Recent research has focused on developing RGD peptides which mimic cell adhesion proteins and integrins [1,2].The steps involved the formation of an alkyne-terminated monolayer on Si(111), followed by linking the peptide to 4-azidophenyl isothiocyanate via a specific and gentle reaction. This was followed by the attachment of the azido peptide to the surface-bound alkynes using the Cu (I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The surface structures of the alkyne terminated monolayer and the attached peptide were characterized using high resolution impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (ATR-FTIR) Spectroscopy. EIS characterization revealed the alkyne layer and the hydrophobic and polar regions of the attached peptide. XPS analysis showed a high surface coverage of the peptide on the silicon substrates and this was confirmed by FTIR.Our results confirmed a specific covalent attachment of the peptide on the silicon surfaces. This approach offers a versatile, experimentally simple, method for the specific attachment of peptide ligands. This approach would have applications for cell attachment and biosensors.

  6. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  7. Investigating asteroid surface thermal inertias with NEOWISE

    NASA Astrophysics Data System (ADS)

    Nugent, C.; Mainzer, A.; Masiero, J.; Lysek, M.; Grav, T.; Bauer, J.; Cutri, R.; Wright, E.

    2014-07-01

    NEOWISE, the asteroid-hunting mission that employs the Wide-field Infrared Survey Explorer (WISE) spacecraft, has observed over 150,000 minor planets over four infrared wavelength bands (Mainzer et al. 2011). Several of these asteroids have also been observed by radar, and have associated shapes and spin states (e.g., Busch et al. 2011, see current list maintained by L. Benner at http://echo.jpl.nasa.gov/˜lance/shapes/ asteroid_shapes.html). We combine these datasets via thermophysical modeling, a technique that combines 3-D asteroid shapes, a model of heat transport, and infrared observations to determine the thermal inertia of an asteroid (e.g., Leyrat et al. 2011). Thermal inertia measurements can constrain regolith composition and density, which can be linked to collisional history and dynamical evolution. Measurements of thermal conductivity and heat capacity (components of thermal inertia), can refine predictions of the Yarkovsky drift, a non-gravitational force that can change asteroid orbits (Bottke et al. 2006). We present thermal inertia measurements derived from the NEOWISE dataset, such as surface thermal inertia measurements of 2008 EV5 (see figure).

  8. Lidar measurements from space for tropospheric chemistry investigations: Summary of workshop overview presentation

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.

    1987-01-01

    Over the past decade, NASA has played a lead role in defining the scientific objectives and technology requirements for spaceborne lidar investigations of the atmosphere. An assessment of the potential for conducting lidar measurements from space for investigations that pertain specifically to tropospheric chemistry is presented. A description of potential lidar measurement techniques is given, and the scientific requirements for tropospheric chemistry are reviewed. The current status of airborne lidar measurements of aerosols, O3, and H2O is discussed, and a brief description of the evolution of lidar technology to space is given. Also, the measurement of tropospheric gases with a spaceborne lidar system is evaluated for a wide range of gas species. From this general assessment, it appears feasible to measure aerosols, H2O, O3, NH3, CO, CH4, NO2, atmospheric pressure and temperature, and wind with a lidar from space provided that the appropriate laser and receiver technology is available. For the mid-1990's, it is expected that lidar technology will be available for the measurement of aerosols, H2O, and O3 from a space platform.

  9. Changes in surface chemistry of silicon carbide (0001) surface with temperature and their effect on friction

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Friction studies were conducted with a silicon carbide (0001) surface contacting polycrystalline iron. The surface of silicon carbide was pretreated: (1) by bombarding it with argon ions for 30 minutes at a pressure of 1.3 pascals; (2) by heating it at 800 C for 3 hours in vacuum at a pressure of 10 to the minus eighth power pascal; or (3) by heating it at 1500 C for 3 hours in a vacuum of 10 to the minus eighth power pascal. Auger emission spectroscopy was used to determine the presence of silicon and carbon and the form of the carbon. The surfaces of silicon carbide bombarded with argon ions or preheated to 800 C revealed the main Si peak and a carbide type of C peak in the Auger spectra. The surfaces preheated to 1500 C revealed only a graphite type of C peak in the Auger spectra, and the Si peak had diminished to a barely perceptible amount. The surfaces of silicon carbide preheated to 800 C gave a 1.5 to 3 times higher coefficient of friction than did the surfaces of silicon carbide preheated to 1500 C. The coefficient of friction was lower in the 11(-2)0 direction than in the 10(-1)0 direction; that is, it was lower in the preferred crystallographic slip direction.

  10. Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO

    NASA Astrophysics Data System (ADS)

    Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)

    2014-11-01

    Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.

  11. Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry.

    PubMed

    Lv, Tong; Cheng, Zhongjun; Zhang, Enshuang; Kang, Hongjun; Liu, Yuyan; Jiang, Lei

    2017-01-01

    Recently, self-healing superhydrophobic surfaces have become a new research focus due to their recoverable wetting performances and wide applications. However, until now, on almost all reported surfaces, only one factor (surface chemistry or microstructure) can be restored. In this paper, a new superhydrophobic surface with self-healing ability in both crushed microstructure and damaged surface chemistry is prepared by creating lotus-leaves-like microstructure on the epoxy shape memory polymer (SMP). Through a simple heating process, the crushed surface microstructure, the damaged surface chemistry, and the surface superhydrophobicity that are destroyed under the external pressure and/or O2 plasma action can be recovered, demonstrating that the obtained superhydrophobic surface has a good self-healing ability in both of the two factors that govern the surface wettability. The special self-healing ability is ascribed to the good shape memory effect of the polymer and the reorganization effect of surface molecules. This paper reports the first use of SMP material to demonstrate the self-healing ability of surface superhydrophobicity, which opens up some new perspectives in designing self-healing superhydrophobic surfaces. Given the properties of this surface, it could be used in many applications, such as self-cleaning coatings, microfluidic devices, and biodetection.

  12. CHEMICAL MODELING OF INFRARED DARK CLOUDS: THE ROLE OF SURFACE CHEMISTRY

    SciTech Connect

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric; Linz, H.

    2012-06-01

    We simulate the chemistry of infrared dark clouds (IRDCs) with a model in which the physical conditions are homogeneous and time independent. The chemistry is solved as a function of time with three networks: one purely gas phase, one that includes accretion and desorption, and one, the complete gas-grain network, that includes surface chemistry in addition. We compare our results with observed molecular abundances for two representative IRDCs-IRDC013.90-1 and IRDC321.73-1-using the molecular species N{sub 2}H{sup +}, HC{sub 3}N, HNC, HCO{sup +}, HCN, C{sub 2}H, NH{sub 3}, and CS. IRDC013.90-1 is a cold IRDC, with a temperature below 20 K, while IRDC321.73-1 is somewhat warmer, in the range 20-30 K. We find that the complete gas-grain model fits the data very well, but that the goodness of fit is not sharply peaked at a particular temperature. Surface processes are important for the explanation of the high gas-phase abundance of N{sub 2}H{sup +} in IRDC321.73-1. The general success of the zero-dimensional model in reproducing single-dish observations of our limited sample of eight species shows that it is probably sufficient for an explanation of this type of data. To build and justify more complicated models, including spatial temperature and density structure, contraction, and heating, we require high-resolution interferometric data.

  13. Theoretical investigation of gas-surface interactions

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1992-01-01

    The investigation into the appearance of intruder states from the negative continuum when some of the two-electron integrals were omitted was completed. The work shows that, provided all integrals involving core contracted functions in an atomic general contraction are included, or that the core functions are radially localized, meaningful results are obtained and intruder states do not appear. In the area of program development, the Dirac-Hartree-Fock (DHF) program for closed-shell polyatomic molecules was extended to permit Kramers-restricted open-shell DHF calculations with one electron in an open shell or one hole in a closed shell, or state-averaged DHF calculations over several particle or hole doublet states. One application of the open-shell code was to the KO molecule. Another major area of program development is the transformation of integrals from the scalar basis in which they are generated to the 2-spinor basis employed in parts of the DHF program, and hence to supermatrix form. Particularly concerning the omission of small component integrals, and with increase in availability of disk space, it is now possible to consider transforming the integrals. The use of ordered integrals, either in the scalar basis or in the 2-spinor basis, would considerably speed up the construction of the Fock matrix, and even more so if supermatrices were constructed. A considerable amount of effort was spent on analyzing the integral ordering and tranformation for the DHF program. The work of assessing the reliability of the relativistic effective core potentials (RECPs) was continued with calculation of the group IV monoxides. The perturbation of the metal atom provided by oxygen is expected to be larger than that provided by hydrogen and thus provide a better test of the qualification of the RECPs. Calculations on some platinum hydrides were carried out at nonrelativistic (NR), perturbation theory (PT) and DHF levels. Reprints of four papers describing this work are

  14. A new combinatorial method for synthesizing, screening, and discovering antifouling surface chemistries.

    PubMed

    Imbrogno, Joseph; Williams, Matthew D; Belfort, Georges

    2015-02-04

    A set of diverse monomers were synthesized using combinatorial chemistry and tested using our unique high-throughput screening platform. The versatility of our platform is exemplified by possible applications in reducing biological fouling on ship hulls, filtration membranes, and surgical instruments, to name a few. To demonstrate its efficacy, the novel monomers were graft-polymerized onto light sensitive poly(ether sulfone) (PES) membranes via atmospheric-pressure plasma polymerization. A diverse library was synthesized by reacting a common vinyl ester linker with a library of maleimides containing various different functional groups. This allowed us to produce a library of many different surfaces and graft them all using the same linker chemistry. The modified surfaces were then tested and screened for the best antiprotein adsorption (nonfouling) properties. Membranes, functionalized with carboxylic acid, zwitterionic, and ester groups, had the lowest protein adhesion compared with that of an unmodified control PES membrane after a static fouling test. After dynamic fouling, these same functionalities as well as a hydroxyl group exhibited the highest permeability. These monomers performed better than our best previously synthesized amide monomers as well as our best poly(ethylene glycol) monomers, which are known to have very high protein resistance. Hansen solubility parameters qualitatively predicted which monomers performed best, indicating favorable interactions with water molecules.

  15. Exploration of surface chemistry and structure of catalysts under reaction condition and during catalysis with surface-sensitive in-situ techniques

    NASA Astrophysics Data System (ADS)

    Tao, Franklin (Feng)

    2014-03-01

    In heterogeneous catalysis, each catalytic event occurs on a catalytic site. The catalytic site typically consists of a couple of or a few atoms of a catalyst which pack into a structure to offer specific electronic state to turn on a catalytic reaction. Surface structure and chemistry are the key for understanding a catalytic mechanism. From thermodynamic point of view, the surface structure of a catalyst depends on the environment of reactant gases or liquid around the catalyst. Thus, the surface chemistry and structure of a catalyst under a reaction condition or during catalysis (in an environment of reactant(s) with certainly pressure) could be different from those from ex-situ studies. In-situ surface science characterization techniques have been developed for disclosing the hidden surface chemistry and structure of catalysts under reaction conditions or during catalysis. In-situ ambient pressure XPS (AP-XPS) and ambient pressure STM (AP-STM) are two of these surface-sensitive techniques appropriate for exploring surface chemistry and structure, respectively. In this talk, I will present the origin of pressure dependent surface chemistry and structure from thermodynamic point of view. AP-XPS and AP-STM techniques will be introduced briefly. I will focus on (1) the evolution of surface composition and oxidation state of a reducible oxide and how the evolution is correlated to the corresponding catalytic performances, (2) the distribution of surface elements on surface of a bimetallic catalyst under a reaction condition and how a restructuring is used to generate a new surface with different catalytic performance, and (3) geometric restructuring of a metal catalyst surface at atomic scale and how it is related to its catalytic performances. This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under the grant DE-FG02-12ER1635.

  16. An Investigation of the Factors Influencing Student Performance in Physical Chemistry.

    ERIC Educational Resources Information Center

    Nicoll, Gayle; Francisco, Joseph S.

    2001-01-01

    Studies students in two physical chemistry classes to determine what factors influenced their performance, what their perceptions were of their own abilities, and what factors they believe influence student performance. Concludes that achievement in a physical chemistry course designed for chemistry fields is significantly related to students'…

  17. Investigating the Impact of Adding an Environmental Focus to a Developmental Chemistry Course

    ERIC Educational Resources Information Center

    Robelia, Beth; McNeill, Kristopher; Wammer, Kristine; Lawrenz, Frances

    2010-01-01

    This study explores how adding environmental perspectives to a developmental chemistry course affected student learning of both general chemistry and environmental chemistry concepts. In addition to measuring learning changes, changes in students' environmental attitudes and behaviors were also measured. A pretest-posttest design measured…

  18. Laboratory Investigations of Heterogeneous Chemistry Important to Ozone Depletion in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Renyi

    Results of laboratory investigations of heterogeneous chemistry important to ozone depletion in the stratosphere are presented. Thermodynamic properties (such as melting points, enthalpies of fusion, etc.) for acids which are present in the stratosphere (HCl, HNO_3 , and H_2SO_4 ) are studied using laboratory-assembled apparatus of electrical conductivity and differential thermal analysis and using a commercial differential scanning calorimeter (DSC). Vapor pressures and infrared spectra of liquid and supercooled solutions, and of liquid-solid and solid -solid coexistence mixtures for the HCl/H_2 O and H_2SO_4 /H_2O binary systems are investigated. Equilibrium constants and standard enthalpies of formation for the pure crystalline hydrates of those acids as well as their corresponding liquid compositions are determined from the vapor pressure and calorimetric data. A theoretical approach, which allows determination of vapor pressures for two adjacent hydrates in thermodynamic equilibrium and for the coexistence systems involving a hydrate and ice in a binary system, is presented in terms of chemical equilibrium principles and compared with the experimental data for thermodynamic consistence. Vapor pressures of HNO_3 and HCl over H_2SO_4 /HNO_3/H_2 O and H_2SO_4 /HCl/H_2O solutions as well as over H_2SO_4/HNO _3/HCl/H_2O solutions are also measured in order to predict incorporation of stratospheric acids into the background sulfate aerosols. From the data, the Henry's law solubility constants for those systems are determined and the equilibrium compositions of aqueous stratospheric aerosols are predicted as a function of ambient temperature and mixing ratios of H_2 O and HNO_3. The results indicate that at the low temperatures characteristic of the stratosphere at high latitudes in the winter and spring, the HNO_3 content reaches levels of the order of 10% wt in the background sulfate aerosols. The results also reveal that the amount of dissolved HCl in the

  19. Biophysical chemistry.

    PubMed

    Häussinger, Daniel; Pfohl, Thomas

    2010-01-01

    Biophysical chemistry at the Department of Chemistry, University of Basel, covers the NMR analysis of protein-protein interaction using paramagnetic tags and sophisticated microscopy techniques investigating the dynamics of biological matter.

  20. Surface Chemistry Effects on the Reactivity and Properties of Nanoconfined Bisphenol M Dicyanate Ester in Controlled Pore Glass

    NASA Astrophysics Data System (ADS)

    Simon, Sindee; Li, Qingxiu

    2009-03-01

    The influence of nanoconfinement on the cure kinetics and glass transition temperature of a bisphenol M dicyanate ester/polycyanurate material is investigated as a function of surface chemistry and nanoconfinement size in controlled pore glass (CPG). The glass transition temperature and conversion as a function of cure time is investigated using differential scanning calorimetry. The native CPG surface accelerates the cure of bisphenol M dicyanate to a larger extent compared to the silanized hydrophobic CPG presumably because of the catalytic nature of surface hydroxyl groups of the native pores. Two Tgs are observed for both monomer and polycyanurates confined in the native CPGs. For the fully cured polycyanurate, the primary Tg is depressed by 60 K at 11.5 nm, and the secondary Tg is 10 to 33 K above the primary Tg. The length scale associated with the secondary Tg is approximately 0.8 nm. Based on the measurements of both Tg and sol content as a function of conversion, the network structure does not change upon nanoconfinement.

  1. Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Chen, Jinshe; Cai, Tingting; Jing, Xiaohui; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2016-12-01

    The amorphous NiB nanoparticles were synthesized and a novel type of NiB/Hβ catalyst was prepared for the isomerization of n-hexane. The optimum preparation conditions were investigated and the effect of preparation conditions on the surface chemistry information of catalysts was characterized by XRD, N2 sorption studies, XPS, TPD and other related means. It was demonstrated that the loading amounts of NiB have effect on textural properties and the acid properties of surface. The loading amounts of NiB were also related to the amount of strong Lewis acid sites and the ratios of weak acid to strong acid of samples. Meanwhile, calcination temperatures of samples were closely associated with the structure of active components that function as metal centers. When the loading amount of NiB was 5 wt.% and calcination temperature was 200 °C, the catalyst had proper surface acidity sites and metal active sites to provide suitable synergistic effects. The mechanism for n-hexane isomerization was also investigated and the existence of unique structure of Bsbnd Nisbnd H was proved, which could provide good hydrogenation-dehydrogenation functions.

  2. The UV Surface Environment on Young Planets: Implications for Prebiotic Chemistry & Life on Other Worlds

    NASA Astrophysics Data System (ADS)

    Ranjan, Sukrit; Simons Collaboration on the Origin of Life, Harvard Origins of Life Initiative

    2017-01-01

    Understanding the origin of life (abiogenesis) on Earth is key to understanding how it might start elsewhere. Recent laboratory studies suggest UV light may have played a critical role in the synthesis of molecules relevant to abiogenesis (prebiotic chemistry), such as RNA. I show that UV light interacts with prebiotic chemistry in ways that may be sensitive to the spectral shape and overall amplitude of irradiation. I use radiative transfer models to constrain the UV environment on early Earth (3.9 Ga). I find that the surface UV is insensitive to much of the considerable uncertainty in the atmospheric state, enabling me to constrain the UV environment for prebiotic chemistry on early Earth. Some authors have suggested Mars as a venue for prebiotic chemistry. Therefore, I explore plausible UV spectral fluences on Mars at 3.9 Ga. I find that the early Martian UV environment is comparable to Earth’s under conventional assumptions about the atmosphere. However, if the atmosphere was dusty or SO2 levels were high, UV fluence would have been strongly suppressed. Intriguingly, despite overall attenuation of UV fluence, SO2 preferentially attenuates destructive FUV radiation over prebiotically-useful NUV radiation, meaning high-SO2 epochs may have been more clement for the origin of life. Better measurements of the spectral dependence of prebiotic photoprocesses are required to constrain this hypothesis. Finally, I calculate the UV fluence on planets orbiting M-dwarfs. I find that UV irradiation on such planets is low compared to Earth. Laboratory studies are required to understand whether prebiotic photoprocesses that worked on Earth can function on low-UV M-dwarf planets. My work 1) provides initial conditions for laboratory studies of prebiotic chemistry, 2) constrains the inhabitability of Mars and planets orbiting M-dwarfs, and 3) demonstrates the need for laboratory studies to characterize the impact of variations in irradiating intensity and spectral shape on

  3. Comparative Experimental Investigation of Titan's Atmospheric Chemistry Driven by Solar EUV Radiation and Energetic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Lavvas, P.; Yelle, R. V.; Smith, M. A.

    2010-10-01

    The observations by the Cassini Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) clearly demonstrate the importance of complex organic chemistry in the upper atmosphere of Titan; a complex coupling of neutral and ion chemistry for organic aerosol generation induced by EUV photons and Saturn's magnetospheric charged particles. To understand the dominant energy source for aerosol formation and its formation chemistry, we comparatively investigate the chemical mechanism in N2/CH4 gas mixtures resulting from EUV-VUV synchrotron radiation (50-150 nm) and tunable mono-energetic electron beam irradiation (5 eV - 2000 eV). These excitation energy sources cover the dominant energy source available in Titan's upper atmosphere. Our previous study of the EUV-VUV photolysis of N2/CH4 gas mixtures revealed the unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons and in the major nitrogen fixation process in Titan's upper atmosphere (Imanaka and Smith, 2007, 2009, 2010). However, relative roles of ion-molecule reactions and radical/neutral reactions in such complex chemistry remain to be determined. We characterized the electron energy distribution by conducting the Langmuir probe measurements. Degradation of the primary photoelectron from N2 photoionization at 20.6 eV photons is clearly observed, and the electron density rapidly decreases down to 109-10 cm-3, which suggests the complex coupling of ion-molecular reactions and dissociative ion-electron recombination reactions for the observed development of complex organic molecules. The electron beam irradiation experiments at energy larger than 200 eV shows distinct gaseous product distribution with nitrogenated gaseous species from those with EUV irradiation products. The generation of secondary electrons and multiple inelastic collisions of fast electrons might increases the nitrogen fixation efficiency. The much less stringent spin selection rules could

  4. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    NASA Astrophysics Data System (ADS)

    Yang, L.; Song, X.; Zhang, Y.; Han, D.; Zhang, B.; Long, D.

    2012-11-01

    The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers) and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl- in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells) based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3) seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60-70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  5. Stability of carbon fiber surface chemistry under temperature and its influence on interfacial adhesion with polymer matrices

    SciTech Connect

    Vautard, Frederic; Grappe, Hippolyte A; Ozcan, Soydan

    2013-01-01

    The thermal stability of the surface chemistry of a surface treated carbon fiber was investigated by X-ray Photoelectron Spectroscopy. Within a range of temperatures from room temperature to 400 C, the only surface functionalities that decomposed were carboxylic acids and dangling nitrogen containing functionalities like amines, amides or nitriles. Significant amounts of water were desorbed as well. This study enabled the testing of the coherence our the fitting of the C(1s), O(1s) and N(1s) peaks. Particularly, when considering the fitting of in the O(1s) peak, carboxylic acids were shown to be included in a single component peak centered at a binding energy of 532.1 eV. The reaction of the carbon fiber surface and an acrylate resin at high temperature, because of the decomposition of carboxylic acids, was highlighted by Differential Scanning Calorimetry. The thermal history of the composite material during its manufacture appeared to be a major influence on the nature of the interactions generated at the fiber-matrix interface and the resulting mechanical properties.

  6. Controlling the stability and reversibility of micropillar assembly by surface chemistry.

    PubMed

    Matsunaga, Mariko; Aizenberg, Michael; Aizenberg, Joanna

    2011-04-13

    For many natural and synthetic self-assembled materials, adaptive behavior is central to their function, yet the design of such systems has mainly focused on the static form rather than the dynamic potential of the final structure. Here we show that, following the initial evaporation-induced assembly of micropillars determined by the balance between capillarity and elasticity, the stability and reversibility of the produced clusters are highly sensitive to the adhesion between the pillars, as determined by their surface chemistry and further regulated by added solvents. When the native surface of the epoxy pillars is masked by a thin gold layer and modified with monolayers terminated with various chemical functional groups, the resulting effect is a graded influence on the stability of cluster formation, ranging from fully disassembled clusters to an entire array of stable clusters. The observed assembly stabilization effect parallels the order of the strengths of the chemical bonds expected to form by the respective monolayer end groups: NH(2) ≈ OH < COOH < SH. For each functional group, the stability of the clusters can be further modified by varying the carbon chain length of the monolayer molecules and by introducing solvents into the clustered samples, allowing even finer tuning as well as temporal control of disassembly. Using these features together with microcontact printing, we demonstrate straightforward patterning of the microstructured surfaces with clusters that can be erased and regenerated at will by the addition of appropriate solvents. Subtle modifications to surface and solvent chemistry provide a simple way to tune the balance between adhesion and elasticity in real time, enabling structures to be designed for dynamic, responsive behavior.

  7. Oxide/Water Interfaces: How the Surface Chemistry Modifies the Electronic Energy Alignment

    NASA Astrophysics Data System (ADS)

    Sprik, Michiel

    2014-03-01

    The minimum of the d-electron conduction band of an aqueous transition metal oxide electrode is typically no more than a few 100 mV away from the standard hydrogen electrode (SHE). Because of this favourable alignment of the electronic energy levels (near) metallic transition metal oxides with partly filled d bands can be used as electrocatalysts while the compounds with finite electronic gap can be used as photocatalysts. However, because of their ionic character, transition metal-oxide surfaces also show amphiphilic acid-base activity. At low pH the basic sites are protonated and at high pH the acidic sites deprotonated creating an electrical double layer with corresponding surface potential. The alignment of the electronic energy levels, and by implication their redox activity, is therefore pH dependent. In fact, even in absence of protonic surface charge, the coordination with water molecules is already capable of shifting the electronic energy levels of the oxide by 1 eV or more. Computation of the electronic energies in transition metal oxide electrodes requires therefore a detailed modeling of their aqueous surface chemistry. The solvation energy of the proton is the common energy reference for both redox potentials on the SHE scale and acidity constants (pKa). Computation of the H+ solvation energy is therefore a key component in a unified treatment of redox and acid-base chemistry. In this talk we outline the Density Functional Theory based Molecular Dynamics (DFTMD) method we have developed for this purpose. The central tool of our approach is a method for reversible insertion of protons in the aqueous part of the DFTMD model system. As an illustration we discuss the application to the rutile TiO2/water and MnO2/water interface.

  8. Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS

    SciTech Connect

    Yao, Yunxi; Zaera, Francisco

    2016-01-15

    The thermal surface chemistry of copper(I)-N,N′-di-sec-butylacetamidinate, [Cu({sup s}Bu-amd)]{sub 2}, a metalorganic complex recently proposed for the chemical-based deposition of copper films, has been characterized on SiO{sub 2} films under ultrahigh vacuum conditions by x-ray photoelectron spectroscopy (XPS). Initial adsorption at cryogenic temperatures results in the oxidation of the copper centers with Cu 2p{sub 3/2} XPS binding energies close to those seen for a +2 oxidation state, an observation that the authors interpret as the result of the additional coordination of oxygen atoms from the surface to the Cu atoms of the molecular acetamidinate dimer. Either heating to 300 K or dosing the precursor directly at that temperature leads to the loss of one of its two ligands, presumably via hydrogenation/protonation with a hydrogen/proton from a silanol group, or following a similar reaction on a defect site. By approximately 500 K the Cu 2p{sub 3/2}, C 1s, and N 1s XPS data suggest that the remaining acetamidinate ligand is displaced from the copper center and bonds to the silicon oxide directly, after which temperatures above 900 K need to be reached to promote further (and only partial) decomposition of those organic moieties. It was also shown that the uptake of the Cu precursor is self-limiting at either 300 or 500 K, although the initial chemistry is somewhat different at the two temperatures, and that the nature of the substrate also defines reactivity, with the thin native silicon oxide layer always present on Si(100) surfaces being less reactive than thicker films grown by evaporation, presumably because of the lower density of surface nucleation sites.

  9. Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface

    SciTech Connect

    Ma, Qiang; Zaera, Francisco

    2015-01-01

    The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect{sup ®} copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210 K, and the evolution of Cu(II)-KI5{sub 2} was established to take place at 280 K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430 K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the C–N bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430 K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions.

  10. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  11. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    NASA Astrophysics Data System (ADS)

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  12. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Driver, M. Sky; Emesh, Ismail; Shaviv, Roey; Kelber, Jeffry A.

    2016-10-01

    In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1-3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H2 or NH3 plasma cleaning of Co, and He or NH3 plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiOxNy), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp3 adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  13. Toward Cell Selective Surfaces: Cell Adhesion and Proliferation on Breath Figures with Antifouling Surface Chemistry.

    PubMed

    Martínez-Campos, Enrique; Elzein, Tamara; Bejjani, Alice; García-Granda, Maria Jesús; Santos-Coquillat, Ana; Ramos, Viviana; Muñoz-Bonilla, Alexandra; Rodríguez-Hernández, Juan

    2016-03-01

    We report the preparation of microporous functional polymer surfaces that have been proven to be selective surfaces toward eukaryotic cells while maintaining antifouling properties against bacteria. The fabrication of functional porous films has been carried out by the breath figures approach that allowed us to create porous interfaces with either poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2,3,4,5,6-pentafluorostyrene (5FS). For this purpose, blends of block copolymers in a polystyrene homopolymer matrix have been employed. In contrast to the case of single functional polymer, using blends enables us to vary the chemical distribution of the functional groups inside and outside the formed pores. In particular, fluorinated groups were positioned at the edges while the hydrophilic PEGMA groups were selectively located inside the pores, as demonstrated by TOF-SIMS. More interestingly, studies of cell adhesion, growth, and proliferation on these surfaces confirmed that PEGMA functionalized interfaces are excellent candidates to selectively allow cell growth and proliferation while maintaining antifouling properties.

  14. Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen

    SciTech Connect

    Kumaran, K.; Babu, V.

    2009-04-15

    In this numerical study, the influence of chemistry models on the predictions of supersonic combustion in a model combustor is investigated. To this end, 3D, compressible, turbulent, reacting flow calculations with a detailed chemistry model (with 37 reactions and 9 species) and the Spalart-Allmaras turbulence model have been carried out. These results are compared with earlier results obtained using single step chemistry. Hydrogen is used as the fuel and three fuel injection schemes, namely, strut, staged (i.e., strut and wall) and wall injection, are considered to evaluate the impact of the chemistry models on the flow field predictions. Predictions of the mass fractions of major species, minor species, dimensionless stagnation temperature, dimensionless static pressure rise and thrust percentage along the combustor length are presented and discussed. Overall performance metrics such as mixing efficiency and combustion efficiency are used to draw inferences on the nature (whether mixing- or kinetic-controlled) and the completeness of the combustion process. The predicted values of the dimensionless wall static pressure are compared with experimental data reported in the literature. The calculations show that multi step chemistry predicts higher and more wide spread heat release than what is predicted by single step chemistry. In addition, it is also shown that multi step chemistry predicts intricate details of the combustion process such as the ignition distance and induction distance. (author)

  15. Metal plasma immersion ion implantation and deposition (MePIIID) on screw-shaped titanium implant: The effects of ion source, ion dose and acceleration voltage on surface chemistry and morphology.

    PubMed

    Kang, Byung-Soo; Sul, Young-Taeg; Jeong, Yongsoo; Byon, Eungsun; Kim, Jong-Kuk; Cho, Suyeon; Oh, Se-Jung; Albrektsson, Tomas

    2011-07-01

    The present study investigated the effect of metal plasma immersion ion implantation and deposition (MePIIID) process parameters, i.e., plasma sources of magnesium and calcium, ion dose, and acceleration voltage on the surface chemistry and morphology of screw-type titanium implants that have been most widely used for osseointegrated implants. It is found that irrespective of plasma ion source, surface topography and roughness showed no differences at the nanometer level; that atom concentrations increased with ion dose but decreased with acceleration voltage. Data obtained from X-ray photoelectron spectroscopy and auger electron spectroscopy suggested that MePIIID process produces 'intermixed' layer of cathodic arc deposition and plasma immersion ion implantation. The MePIIID process may create desired bioactive surface chemistry of dental and orthopaedic implants by tailoring ion and plasma sources and thus enable investigations of the effect of the surface chemistry on bone response.

  16. Surface Chemistry and Tribology of Copper Surfaces in Carbon Dioxide and Water Vapor Environments

    DTIC Science & Technology

    2011-02-23

    the state-of-the-art ambient pressure X-ray spectroscopy (AP-XPS), we have revealed that metallic copper, cuprous oxide (Cu20) and cupric oxide (CuO... cuprous oxide (CU2O, formed under zero or small positive voltages), and cupric oxide (CuO, at positive bias voltages of+ 100 mV and above). With XPS...bicarbonate ions that mimic the conditions of the wet brush-rotor contact. Electrochemical control of the surface by cyclic voltammetry makes it

  17. Surface chemistry of InP ridge structures etched in Cl{sub 2}-based plasma analyzed with angular XPS

    SciTech Connect

    Bouchoule, Sophie Cambril, Edmond; Guilet, Stephane; Chanson, Romain; Pageau, Arnaud; Rhallabi, Ahmed; Cardinaud, Christophe

    2015-09-15

    Two x-ray photoelectron spectroscopy configurations are proposed to analyze the surface chemistry of micron-scale InP ridge structures etched in chlorine-based inductively coupled plasma (ICP). Either a classical or a grazing configuration allows to retrieve information about the surface chemistry of the bottom surface and sidewalls of the etched features. The procedure is used to study the stoichiometry of the etched surface as a function of ridge aspect ratio for Cl{sub 2}/Ar and Cl{sub 2}/H{sub 2} plasma chemistries. The results show that the bottom surface and the etched sidewalls are P-rich, and indicate that the P-enrichment mechanism is rather chemically driven. Results also evidence that adding H{sub 2} to Cl{sub 2} does not necessarily leads to a more balanced surface stoichiometry. This is in contrast with recent experimental results obtained with the HBr ICP chemistry for which fairly stoichiometric surfaces have been obtained.

  18. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    SciTech Connect

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  19. Photografting of perfluoroalkanes onto polyethylene surfaces via azide/nitrene chemistry

    NASA Astrophysics Data System (ADS)

    Siegmann, Konstantin; Inauen, Jan; Villamaina, Diego; Winkler, Martin

    2017-02-01

    The purpose of this study is to render polyethylene surfaces strongly and permanently hydrophobic. Polyethylene is a common plastic and, because of its inertness, difficult to graft. We chose polyethylene as example because of its ubiquity and model character. As graft chains linear perfluoroalkyl residues (-C4F9, -C6F13, -C8F17 and -C10F21) were chosen, and photografting was selected as grafting method. Photolytically generated nitrenes can insert into carbon-hydrogen bonds and are therefore suited for binding to polyethylene. Hydrophobic photo reactive surface modifiers based on azide/nitrene chemistry are designed, synthesized in high yield and characterized. Four new molecules are described. Water contact angles exceeding 110° were achieved on grafted polyethylene. One problem is to demonstrate that the photografted surface modifiers are bound covalently to the polyethylene. Abrasion tests show that all new molecules, when photografted to polyethylene, have a higher abrasion resistance than a polyethylene surface coated with a long-chain perfluoroalkane. Relative abrasion resitances of 1.4, 2.0, 2.1 and 2.5 compared to the fluoroalkane coating were obtained for the four compounds. An abrasion model using ice is developed. Although all four compounds have the same λmax of 266 nm in acetonitrile solution, their molar extincition coefficients increase from 1.6·104 to 2.2·104 with increasing length of the fluorotelomer chain. Exitonic coupling of the chromophores of the surface modifiers is observed for specific molecules in the neat state. A linear correlation of water contact angle with fluorine surface content, as measured by photoelectron spectroscopy, in grafted polyethylene surfaces is established.

  20. Using a Dialogical Approach to Examine Peer Feedback During Chemistry Investigative Task Discussion

    NASA Astrophysics Data System (ADS)

    Gan Joo Seng, Mark; Hill, Mary

    2014-10-01

    Peer feedback is an inherent feature of classroom collaborative learning. Students invariably turn to their peers for feedback when carrying out an investigative task, and this feedback is usually implicit, unstructured and may positively or negatively influence students' learning when they work on a task. This study explored the characteristics of verbal peer feedback during a collaborative investigative chemistry task involving New Zealand Year 13 students. During the planning stage of the students' investigation, the discussions of five pairs of students were recorded and then transcribed. Analysis of transcribed verbal data focused on interactions that involved peer feedback along two dimensions, interactive/non-interactive and dialogic/authoritative (Mortimer and Scott, 2003). The findings indicated that although students adopted a predominantly interactive/authoritative communicative approach, with peer feedback as confirmation or evaluation, they are also capable of a more interactive/dialogic exchange, characterised by elaborative peer feedback. We discuss how this dialogic perspective on peer feedback provides an alternative approach to the analysis and study of student-student interactions during science investigations. The findings should be interpreted in light of the limitations in terms of sample size, grouping and specificity of the coding scheme. Implications for teacher practice are discussed in relation to facilitating peer feedback discourse in the science classroom.

  1. FTIR and XPS studies of surface chemistry of pyrite in flotation

    SciTech Connect

    Leppinen, J.; Laajalehto, K.; Kartio, I.; Suoninen, E.

    1995-12-31

    Efficient separation of pyrite is of great importance for the metallurgical performance of flotation processes. Presently, separation of pyrite by flotation is becoming more and more important for reduction of sulfur in coal. In this work Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) were used to study the surface chemistry of pyrite in depression, activation and xanthate adsorption under conditions of controlled potential. Modifications of pyrite surfaces after treatment with depressants (lime, sulfur dioxide, sodium cyanide) and after activation with metal ions (Cu, Pb) were studied. The principal adsorption product identified on pyrite was dixanthogen whose formation started at about +0.15 V and +0.25 V (vs, SHE) in ethyl and amyl xanthate solutions, respectively. Copper xanthate was formed on copper(II) activated pyrite. Activation mechanism of pyrite by copper(II) salts is likely to be electrochemical where copper occurs as copper(I) on the surface of pyrite. Effective depression is achieved by sulfur dioxide and sodium cyanide. Depression at high pH is due to formation of iron(III) hydroxides. Calcium ions do not affect the electrochemistry but adsorb on pyrite and reduce the surface sites for dixanthogen adsorption.

  2. SURFACE CHEMISTRY INFLUENCE CANCER KILLING EFFECT OF TiO2 NANOPARTICLES

    PubMed Central

    Thevenot, Paul; Cho, Jai; Wavhal, Dattatray; Timmons, Richard B.; Tang, Liping

    2008-01-01

    Photocatalyzed TiO2 nanoparticles have been shown to eradicate cancer cells. However the required in situ introduction of UV light limits the use of such a therapy in patients. In the present study, the non-photocatalyic anti-cancer effect of surface functionalized TiO2 was examined. Nanoparticles bearing -OH, -NH2, or –COOH surface groups, were tested for their effect on in vitro survival of several cancer and control cell lines. The cells tested included B16F10 melanoma, Lewis lung carcinoma (LLC), JHU prostate cancer cells, and 3T3 fibroblasts. Cell viability was observed to depend on particle concentrations, cell types, and surface chemistry. Specifically, -NH2 and -OH groups exhibited significantly higher toxicity than -COOH. Microscopic and spectrophotometric studies revealed nanoparticle-mediated cell membrane disruption leading to cell death. The results suggest that functionalized TiO2, and presumably other nanoparticles, may be surface engineered for targeted cancer therapy. PMID:18502186

  3. Chemistry in disks. IV. Benchmarking gas-grain chemical models with surface reactions

    NASA Astrophysics Data System (ADS)

    Semenov, D.; Hersant, F.; Wakelam, V.; Dutrey, A.; Chapillon, E.; Guilloteau, St.; Henning, Th.; Launhardt, R.; Piétu, V.; Schreyer, K.

    2010-11-01

    Context. We describe and benchmark two sophisticated chemical models developed by the Heidelberg and Bordeaux astrochemistry groups. Aims: The main goal of this study is to elaborate on a few well-described tests for state-of-the-art astrochemical codes covering a range of physical conditions and chemical processes, in particular those aimed at constraining current and future interferometric observations of protoplanetary disks. Methods: We considered three physical models: a cold molecular cloud core, a hot core, and an outer region of a T Tauri disk. Our chemical network (for both models) is based on the original gas-phase osu_03_2008 ratefile and includes gas-grain interactions and a set of surface reactions for the H-, O-, C-, S-, and N-bearing molecules. The benchmarking was performed with the increasing complexity of the considered processes: (1) the pure gas-phase chemistry, (2) the gas-phase chemistry with accretion and desorption, and (3) the full gas-grain model with surface reactions. The chemical evolution is modeled within 109 years using atomic initial abundances with heavily depleted metals and hydrogen in its molecular form. Results: The time-dependent abundances calculated with the two chemical models are essentially the same for all considered physical cases and for all species, including the most complex polyatomic ions and organic molecules. This result, however, required a lot of effort to make all necessary details consistent through the model runs, e.g., definition of the gas particle density, density of grain surface sites, or the strength and shape of the UV radiation field. Conclusions: The reference models and the benchmark setup, along with the two chemical codes and resulting time-dependent abundances are made publicly available on the internet. This will facilitate and ease the development of other astrochemical models and provide nonspecialists with a detailed description of the model ingredients and requirements to analyze the cosmic

  4. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    SciTech Connect

    Matthew Neurock

    2006-09-11

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental

  5. Investigation of nonfouling polypeptides of poly(glutamic acid) with lysine side chains synthesized by EDC·HCl/HOBt chemistry.

    PubMed

    Yang, Qinghua; Li, Wenchen; Wang, Longgang; Wang, Guangzhi; Wang, Zhen; Liu, Lingyun; Chen, Shengfu

    2014-01-01

    Nonfouling polypeptides with homogenous alternating charges draw peoples' attentions for their potential capability in biodegradation. Homogenous glutamic acid (E) and lysine (K) polypeptides were proposed and synthesized before. In this work, a new polypeptide formed by poly(glutamic acid) with lysine side chains (poly(E)-K) was synthesized by facile EDC·HCl/HOBt chemistry and investigated. Results show that these polypeptides also have good nonspecific protein resistance determined by enzyme-linked immunosorbent assay. The lowest nonspecific adsorption of the model proteins, anti-IgG and fibrinogen (Fg), on the self-assembling monolayers (SAMs) surface of poly(E)-K was only 3.3 ± 1.8 and 4.4 ± 1.6%, respectively, when protein adsorption on tissue culture polystyrene surface was set as 100%. And, the relative nonspecific protein adsorption increases when the polypeptide molecular weight increases due to the repression of low density polymer brushes. Moreover, almost no obvious cytotoxicity and hemolytic activity in vitro were detected. This work suggests that polypeptides with various formats of homogenous balanced charges could achieve excellent nonspecific protein resistance, which might be the intrinsic reason for the coexistence of high concentration serum proteins in blood.

  6. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.

    PubMed

    Ranjan, Sukrit; Sasselov, Dimitar D

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO2, fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO2 also means that the UV surface fluence is insensitive to plausible levels of CH4, O2, and O3. At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO2 levels. However, if SO2 and/or H2S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H2O is a robust UV shield for λ < 198 nm. This means that regardless of the levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H2O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H2O and CO2 levels. Key Words: Radiative transfer-Origin of life

  7. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2- and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  8. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  9. Macrophage Serum-Based Adhesion to Plasma-Processed Surface Chemistry is Distinct from That Exhibited by Fibroblasts

    PubMed Central

    Godek, Marisha L.; Malkov, Galiya Sh.; Fisher, Ellen R.; Grainger, David W.

    2007-01-01

    Summary Plasma-polymerized films deposited from AlAm, HxAm, NVP, NVFA, AA and FC were compared to TCPS and PS surfaces in supporting cellular attachment, viability, and proliferation in serum-based culture in vitro for extended periods of time (>7 d). Surface patterns were created using multi-step depositions with physical masks. Cell adhesion in the presence of serum was compared for (monocyte-) macrophage and fibroblast cell lines. Cellular response was tracked over time, reporting adhesive behavior, proliferative rates, and morphological changes as a function of surface chemistry. Micropatterned surfaces containing different surface chemistries and functional groups (e.g. –NH2, –COOH, –CF3) produced differential cell adhesive patterns for NIH 3T3 fibroblasts compared to J774A.1, RAW 264.7 or IC-21 (monocyte-) macrophage cell types. Significantly, macrophage adhesion is substantial on surfaces where fibroblasts do not adhere under identical culture conditions. PMID:17417668

  10. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    SciTech Connect

    Koontz, S.L.; Leger, L.J.; Wu, C.; Cross, J.B.; Jurgensen, C.W. |

    1994-05-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen `spin-off` or `dual use` technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  11. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  12. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo

    PubMed Central

    Wan, Jiali; Wang, Jia-Hong; Liu, Ting; Xie, Zhixiong; Yu, Xue-Feng; Li, Wenhua

    2015-01-01

    Gold nanorods are a promising nanoscale material in clinical diagnosis and treatment. The physicochemical properties of GNRs, including size, shape and surface features, are crucial factors affecting their cytotoxicity. In this study, we investigated the effects of different aspect ratios and surface modifications on the cytotoxicity and cellular uptake of GNRs in cultured cells and in mice. The results indicated that the surface chemistry but not the aspect ratio of GNRs mediates their biological toxicity. CTAB-GNRs with various aspect ratios had similar abilities to induce cell apoptosis and autophagy by damaging mitochondria and activating intracellular reactive oxygen species (ROS). However, GNRs coated with CTAB/PSS, CTAB/PAH, CTAB/PSS/PAH or CTAB/PAH/PSS displayed low toxicity and did not induce cell death. CTAB/PAH-coated GNRs caused minimally abnormal cell morphology compared with CTAB/PSS and CTAB/PSS/PAH coated GNRs. Moreover, the intravenous injection of CTAB/PAH GNRs enabled the GNRs to reach tumor tissues through blood circulation in animals and remained stable, with a longer half-life compared to the other GNRs. Therefore, our results demonstrated that further coating can prevent cytotoxicity and cell death upon CTAB-coated GNR administration, similar to changing the GNR aspect ratio and CTAB/PAH coated GNRs show superior biological properties with better biocompatibility and minimal cytotoxicity. PMID:26096816

  13. Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111).

    PubMed

    Bauer, Udo; Mohr, Susanne; Döpper, Tibor; Bachmann, Philipp; Späth, Florian; Düll, Fabian; Schwarz, Matthias; Brummel, Olaf; Fromm, Lukas; Pinkert, Ute; Görling, Andreas; Hirsch, Andreas; Bachmann, Julien; Steinrück, Hans-Peter; Libuda, Jörg; Papp, Christian

    2017-01-31

    We have investigated the surface chemistry of the polycyclic valence-isomer pair norbornadiene (NBD) and quadricyclane (QC) on Pt(111). The NBD/QC system is considered to be a prototype for energy storage in strained organic compounds. By using a multimethod approach, including UV photoelectron, high-resolution X-ray photoelectron, and IR reflection-absorption spectroscopic analysis and DFT calculations, we could unambiguously identify and differentiate between the two molecules in the multilayer phase, which implies that the energy-loaded QC molecule is stable in this state. Upon adsorption in the (sub)monolayer regime, the different spectroscopies yielded identical spectra for NBD and QC at 125 and 160 K, when multilayer desorption takes place. This behavior is explained by a rapid cycloreversion of QC to NBD upon contact with the Pt surface. The NBD adsorbs in a η(2) :η(1) geometry with an agostic Pt-H interaction of the bridgehead CH2 subunit and the surface. Strong spectral changes are observed between 190 and 220 K because the hydrogen atom that forms the agostic bond is broke. This reaction yields a norbornadienyl intermediate species that is stable up to approximately 380 K. At higher temperatures, the molecule dehydrogenates and decomposes into smaller carbonaceous fragments.

  14. A theoretical investigation of the (0001) covellite surfaces

    SciTech Connect

    Gaspari, Roberto; Manna, Liberato; Cavalli, Andrea

    2014-07-28

    We report on the properties of the (0001) covellites surfaces, which we investigate by periodic slab density functional theory calculations. The absolute surface energies have been computed for all bulk terminations, showing that surfaces terminated by the flat CuS layer are associated with the lowest surface energy. Cleavage is predicted to occur across the [0001] interlayer Cu–S bond. The surfaces obtained by lowest energy cleavage are analyzed in terms of the atomic vertical relaxation, workfunction, and surface band structure. Our study predicts the presence of a shallow p{sub z}-derived surface state located 0.26 eV below the Fermi level, which is set to play an important role in the surface reactivity of covellite.

  15. GaN surface states investigated by electrochemical studies

    NASA Astrophysics Data System (ADS)

    Winnerl, Andrea; Garrido, Jose A.; Stutzmann, Martin

    2017-03-01

    We present a systematic study of electrochemically active surface states on MOCVD-grown n-type GaN in aqueous electrolytes using cyclic voltammetry and impedance spectroscopy over a wide range of potentials and frequencies. In order to alter the surface states, the GaN samples are either etched or oxidized, and the influence of the surface treatment on the defect-mediated charge transfer to the electrolyte is investigated. Etching in HCl removes substoichiometric GaO x , and leads to a pronounced density of electrochemically active surface states. Oxidation effectively removes these surface states.

  16. Surface composition, chemistry, and structure of polystyrene modified by electron-beam-generated plasma.

    PubMed

    Lock, Evgeniya H; Petrovykh, Dmitri Y; Mack, Paul; Carney, Tim; White, Richard G; Walton, Scott G; Fernsler, Richard F

    2010-06-01

    Polystyrene (PS) surfaces were treated by electron-beam-generated plasmas in argon/oxygen, argon/nitrogen, and argon/sulfur hexafluoride environments. The resulting modifications of the polymer surface energy, morphology, and chemical composition were analyzed by a suite of complementary analytical techniques: contact angle goniometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and reflection electron energy loss spectroscopy (REELS). The plasma treatments produced only minimal increases in the surface roughness while introducing the expected chemical modifications: oxygen-based after Ar/O(2) plasma, oxygen- and nitrogen-based after Ar/N(2) plasma, and fluorine-based after Ar/SF(6) plasma. Fluorinated PS surfaces became hydrophobic and did not significantly change their properties over time. In contrast, polymer treated in Ar/O(2) and Ar/N(2) plasmas initially became hydrophilic but underwent hydrophobic recovery after 28 days of aging. The aromatic carbon chemistry in the top 1 nm of these aged surfaces clearly indicated that the hydrophobic recovery was produced by reorientation/diffusion of undamaged aromatic polymer fragments from the bulk rather than by contamination. Nondestructive depth profiles of aged plasma-treated PS films were reconstructed from parallel angle-resolved XPS (ARXPS) measurements using a maximum-entropy algorithm. The salient features of reconstructed profiles were confirmed by sputter profiles obtained with 200 eV Ar ions. Both types of depth profiles showed that the electron-beam-generated plasma modifications are confined to the topmost 3-4 nm of the polymer surface, while valence band measurements and unsaturated carbon signatures in ARXPS and REELS data indicated that much of the PS structure was preserved below 9 nm.

  17. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces.

    PubMed

    Owen, Jonathan S; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A Paul

    2008-09-17

    The surface chemistry of cadmium selenide nanocrystals, prepared from tri-n-octylphosphine selenide and cadmium octadecylphosphonate in tri-n-octylphosphine oxide, was studied with 1H and {1H}31P NMR spectroscopy as well as ESI-MS and XPS. The identity of the surface ligands was inferred from reaction of nanocrystals with Me3Si-X (X = -S-SiMe3, -Se-SiMe3, -Cl and -S-(CH2CH2O)4OCH3)) and unambiguous assignment of the organic byproducts, O,O'-bis(trimethylsilyl)octadecylphosphonic acid ester and O,O'-bis(trimethylsilyl)ocatdecylphosphonic acid anhydride ester. Nanocrystals isolated from these reactions have undergone exchange of the octadecylphosphonate ligands for -X as was shown by 1H NMR (X = -S-(CH2CH2O)4OCH3) and XPS (X = -Cl). Addition of free thiols to as prepared nanocrystals results in binding of the thiol to the particle surface and quenching of the nanocrystal fluorescence. Isolation of the thiol-ligated nanocrystals shows this chemisorption proceeds without displacement of the octadecylphosphonate ligands, suggesting the presence of unoccupied Lewis-acidic sites on the particle surface. In the presence of added triethylamine, however, the octadecylphosphonate ligands are readily displaced from the particle surface as was shown with 1H and {1H}31P NMR. These results, in conjunction with previous literature reports, indicate that as-prepared nanocrystal surfaces are terminated by X-type binding of octadecylphosphonate moieties to a layer of excess cadmium ions.

  18. Gold nanoparticles: role of size and surface chemistry on blood protein adsorption

    NASA Astrophysics Data System (ADS)

    Benetti, F.; Fedel, M.; Minati, L.; Speranza, G.; Migliaresi, C.

    2013-06-01

    Material interaction with blood proteins is a critical issue, since it could influence the biological processes taking place in the body following implantation/injection. This is particularly important in the case of nanoparticles, where innovative properties, such as size and high surface to volume ratio can lead to a behavioral change with respect to bulk macroscopic materials and could be responsible for a potential risk for human health. The aim of this work was to compare gold nanoparticles (AuNP) and planar surfaces to study the role of surface curvature moving from the macro- to the nano-size in the process of blood protein adsorption. In the course of the study, different protocols were tested to optimize the analysis of protein adsorption on gold nanoparticles. AuNP with different size (10, 60 and 200 nm diameter) and surface coatings (citrate and polyethylene glycol) were carefully characterized. The stabilizing action of blood proteins adsorbed on AuNP was studied measuring the variation of size and solubility of the nanoparticles following incubation with single protein solutions (human serum albumin and fibrinogen) and whole blood plasma. In addition, we developed a method to elute proteins from AuNP to study the propensity of gold materials to adsorb plasma proteins in function of dimensional characteristics and surface chemistry. We showed a different efficacy of the various eluting media tested, proving that even the most aggressive agent cannot provide a complete detachment of the protein corona. Enhanced protein adsorption was evidenced on AuNP if compared to gold laminae (bare and PEGylated) used as macroscopic control, probably due to the superior AuNP surface reactivity.

  19. Investigation of differential surface removal due to electropolishing at JLab

    SciTech Connect

    Marhauser, Frank; Folkie, James; Reece, Charles

    2015-09-01

    Surface chemistry carried out for Superconducting Radio Frequency (SRF) cavities such as Buffered Chemical Polishing (BCP) and Electropolishing (EP) aims to uniformly remove the internal surface of a cavity along the entire structure and within each cell from equator to iris in order to obtain an equally etched surface. A uniform removal, however, is not readily achievable due to the complex fluid flow and varying temperatures of the acid mixture, which can lead to differential etching. This needs to be considered when envisaging a certain surface damage removal throughout the interior. The process-specific differential etching influences the target frequency set at the manufacturing stage as well as the field flatness and length of the as-built cavity. We report on analyses of JLab's present EP system using experimental data for six nine-cell cavities that have been processed recently in the frame of the LCLS-II high-Q development plan. In conjunction with numerical simulations, the differential etching and the impact on field flatness is assessed.

  20. The influence of oxygen on the surface chemistry of 1,2-propanediol on Pd(111)

    NASA Astrophysics Data System (ADS)

    Williams, Rhea M.; Medlin, J. Will

    2014-01-01

    The surface chemistry of 1,2-propanediol (PDO) has been studied on oxygen precovered Pd(111) using temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Adsorbed 1,2-propanedioxy (-OCH(CH3)CH2O-) forms from the activation of the O-H bonds. When the concentration of O(a) is large compared to 1,2-propanedioxy, no H2 is produced and the dialkoxide reacts to form H2O, CO through decarbonylation, and CO2 through decarboxylation. Unreacted oxygen also desorbs as O2 at high temperature. Conversely, when the concentration of O(a) is small relative to 1,2-propanedioxy, the dialkoxide reacts to form decomposition products (H2, CO), oxidation products (H2O, glyoxal, methylglyoxal, formaldehyde) and deoxygenation products (ethylene, propylene). Co-adsorbed oxygen increases the overall coverage of PDO that can undergo decomposition, which in turn strongly influences decomposition activation barriers and products.

  1. Effect of the Filter Surface Chemistry on the Filtration of Aluminum

    NASA Astrophysics Data System (ADS)

    Voigt, Claudia; Fankhänel, Beate; Jäckel, Eva; Aneziris, Christos G.; Stelter, Michael; Hubálková, Jana

    2015-04-01

    The influence of the filter surface chemistry of alumina skeletons on the filtration effect was tested with five different oxide coating materials (Al2O3, spinel, mullite, TiO2, and SiO2). All prepared filters were casted successfully under industrial conditions. The casted aluminum samples showed no contamination caused by the filters. The evaluation of the casted filters by means of SEM and EDX showed that the amount of inclusions in the area of the run in is larger than in the middle and the run out of the filter. The most non-metallic inclusions were found in the casted filters Al2O3+Al2O3 and Al2O3+spinel. The wetting experiments yielded for all tested materials a non-wetting behavior whereby Al2O3 and spinel showed higher wetting angle than mullite, TiO2, and SiO2.

  2. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater. 3. Lead

    NASA Astrophysics Data System (ADS)

    Maring, H. B.; Duce, R. A.

    1990-04-01

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm-2 yr-1 at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate paniculate lead can be reinjected into the atmosphere during sea salt aerosol production.

  3. Sulfobetaine-Vinylimidazole Block Copolymers: A Robust Quantum Dot Surface Chemistry Expanding Bioimaging's Horizons.

    PubMed

    Tasso, Mariana; Giovanelli, Emerson; Zala, Diana; Bouccara, Sophie; Fragola, Alexandra; Hanafi, Mohamed; Lenkei, Zsolt; Pons, Thomas; Lequeux, Nicolas

    2015-11-24

    Long-term inspection of biological phenomena requires probes of elevated intra- and extracellular stability and target biospecificity. The high fluorescence and photostability of quantum dot (QD) nanoparticles contributed to foster their promise as bioimaging tools that could overcome limitations associated with traditional fluorophores. However, QDs' potential as a bioimaging platform relies upon a precise control over the surface chemistry modifications of these nano-objects. Here, a zwitterion-vinylimidazole block copolymer ligand was synthesized, which regroups all anchoring groups in one compact terminal block, while the rest of the chain is endowed with antifouling and bioconjugation moieties. By further application of an oriented bioconjugation approach with whole IgG antibodies, QD nanobioconjugates were obtained that display outstanding intra- and extracellular stability as well as biorecognition capacity. Imaging the internalization and intracellular dynamics of a transmembrane cell receptor, the CB1 brain cannabinoid receptor, both in HEK293 cells and in neurons, illustrates the breadth of potential applications of these nanoprobes.

  4. Surface Chemistry Exchange of Alloyed Germanium Nanocrystals: A Pathway Toward Conductive Group IV Nanocrystal Films.

    PubMed

    Ruddy, Daniel A; Erslev, Peter T; Habas, Susan E; Seabold, Jason A; Neale, Nathan R

    2013-02-07

    We present an expansion of the mixed-valence iodide reduction method for the synthesis of Ge nanocrystals (NCs) to incorporate low levels (∼1 mol %) of groups III, IV, and V elements to yield main-group element-alloyed Ge NCs (Ge1-xEx NCs). Nearly every main-group element (E) that surrounds Ge on the periodic table (Al, P, Ga, As, In, Sn, and Sb) may be incorporated into Ge1-xEx NCs with remarkably high E incorporation into the product (>45% of E added to the reaction). Importantly, surface chemistry modification via ligand exchange allowed conductive films of Ge1-xEx NCs to be prepared, which exhibit conductivities over large distances (25 μm) relevant to optoelectronic device development of group IV NC thin films.

  5. High school students' enactment of chemistry knowing in open-entry laboratory investigations

    NASA Astrophysics Data System (ADS)

    Pilane, Sentsetsa M.

    2003-10-01

    This study is an exploration of student meaning making in a non-traditional, high activity, hands-on grade 12 high school chemistry setting. The study focused on a sequence of three "open-entry" laboratory investigations (i.e., iodine clock reaction, pop-can cell and electroplating). These open-entry laboratory investigations were designed to be flexible and to take place in settings where students could make an impact. Students were responsible for devising their own problem and entry strategy, for making decisions about what reagents to use, what variables to manipulate, and how to proceed to develop the problem to a resolution acceptable to them and to the teacher. To explore students' meaning making in open-entry laboratory settings, their interactions were video taped and samples of their written laboratory reports were collected from time to time. Students were also requested to write reflective notes on their experiences of each investigation, some students were interviewed at the end of the course. This thesis consists of accounts and interpretations of what students did and said as they made meaning in these open-entry, hands-on laboratory investigations. The research uses an enactivist perspective to explore the meanings emerging from the study. From an enactivist view, cognition is seen as perceptually guided action in which a knower brings forth a world of significance with others. Enactivism suggests that students do not only express their knowing in what they say or write but also in their actions with others within this learning community. The research revealed that meaning making in these circumstances was highly complex. It involved systematic trial and error at various levels within the multiple iterative feedback loops. Students' interactions in this setting were mediated by the culture of chemistry which is embodied in the practices of the discipline. With students having to make decisions with every action, their meaning making was not only

  6. Investigation of Atmospheric Chemistry in the Tropical UTLS with NASA's Global Hawk UAS during ATTREX

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Atlas, E. L.; Cheung, R.; Chipperfield, M.; Colosimo, S. F.; Deutschmann, T.; Daube, B. C.; Gao, R. S.; Elkins, J. W.; Fahey, D. W.; Feng, W.; Hossaini, R.; Navarro, M. A.; Pittman, J. V.; Raecke, R.; Scalone, L.; Spolaor, M.; Tricoli, U.; Thornberry, T. D.; Tsai, J. Y.; Werner, B.; Wofsy, S. C.; Pfeilsticker, K.

    2015-12-01

    Bromine species play an important role in ozone chemistry in the tropical upper troposphere / lower stratosphere (UTLS). The tropical UTLS also serves as a gate to the stratosphere, and the vertical transport of organic and inorganic bromine species is an important source of halogens that impact stratospheric ozone chemistry. An accurate quantification of the sources, sinks, and chemical transformation of bromine species is thus crucial to the understanding of the bromine and ozone budget in the UTLS and the stratosphere. However, the investigation of the composition of the tropical UTLS is challenging, as the altitude of this region of 15 - 20 km requires high-altitude aircraft, or balloons. In recent years a new aircraft has become available to penetrate into this region: NASA's Global Hawk (GH) Unmanned Aircraft System (UAS). The GH has a ceiling altitude of 20 km and a 24h endurance with a full complement of scientific experiments. The GH provides a new and exciting platform that allows unique insights into atmospheric processes in the UTLS. Here we present observations of CH4, BrO, NO2, and ozone made on-board the GH during the 2011, 2013, and 2014 Airborne Tropical TRopopause EXperiment (ATTREX) in the pacific tropical UTLS. We will discuss the details of UV-vis remote sensing measurements of BrO and NO2 by the UCLA/HD limb scanning Differential Optical Absorption Spectroscopy instrument. We also present observations of organic bromine species from the University of Miami's Whole Air Sampler, in-situ ozone measurement by NOAA, and CH4 measurements by the Harvard Picarro instrument and the NOAA UCATS gas chromatograph. Methods to determine vertical trace gas profiles through aircraft maneuvers and by scanning the mini-DOAS telescope in viewing elevation will be discussed. The combination of the observations with calculations using the TOMCAT/SLIMCAT 3-D model allows quantification and interpretation of the bromine and ozone budget in the UTLS.

  7. Surface chemistry and properties of carbon overcoats for magnetic data storage

    NASA Astrophysics Data System (ADS)

    Yun, Yang

    The surface chemistry and properties of amorphous carbon films used in magnetic hard disk data storage media were studied in this thesis. This thesis includes two projects: vapor phase lubrication of hydrogenated amorphous carbon (a-CHx) films and thermal stability analysis of fluorinated amorphous carbon (a-CFx) films. The surface heterogeneity of a-CHx film was probed through the use of temperature programmed desorption of small fluorocarbon models of Fomblin Zdol lubricants. Surface oxidation by exposing a-CHx film to air or O2 strengthens the hydrogen bond between the hydroxyl endgroups of Fomblin Zdol lubricant molecules and the a-CHx film surfaces. Thus the interaction between Fomblin Zdol lubricant molecules and the a-CHx film surfaces can be tailored by controlled oxidation of a-CHx film surfaces prior to vapor phase lubrication. Methods for the preparation of high thermal stability a-CFx films were evaluated by our analysis of a-CFx film thermal stability. a-CFx films having high concentrations of CF3 and CF 2 have better thermal stability than those with high fractions of CF. Oxidation, however, jeopardizes the thermal stability of a-CFx films and thus should be avoided in application. The oxidation of a-CHx films and a-CFx films and its kinetics were studied by analysis of the fresh carbon film surfaces before and after controlled oxidized. The most surprising observation has been that the exposure of a-CHx films and a-CFx films to low pressures (<10-3 Torr) of O2 or air leads to a higher level of oxidation than exposure to high pressures (100--1000 Torr) of O2 or air. It may be that this decrease in apparent oxidation during the exposure to high pressures of O2 or air is due to complete oxidation of surface carbon to CO or CO2 which desorbs from the surface ("ablation"). In essence this changes the surface composition during the oxidation process.

  8. Quantum Chemistry in Nanoscale Environments: Insights on Surface-Enhanced Raman Scattering and Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Olivares-Amaya, Roberto

    The understanding of molecular effects in nanoscale environments is becoming increasingly relevant for various emerging fields. These include spectroscopy for molecular identification as well as in finding molecules for energy harvesting. Theoretical quantum chemistry has been increasingly useful to address these phenomena to yield an understanding of these effects. In the first part of this dissertation, we study the chemical effect of surface-enhanced Raman scattering (SERS). We use quantum chemistry simulations to study the metal-molecule interactions present in these systems. We find that the excitations that provide a chemical enhancement contain a mixed contribution from the metal and the molecule. Moreover, using atomistic studies we propose an additional source of enhancement, where a transition metal dopant surface could provide an additional enhancement. We also develop methods to study the electrostatic effects of molecules in metallic environments. We study the importance of image-charge effects, as well as field-bias to molecules interacting with perfect conductors. The atomistic modeling and the electrostatic approximation enable us to study the effects of the metal interacting with the molecule in a complementary fashion, which provides a better understanding of the complex effects present in SERS. In the second part of this dissertation, we present the Harvard Clean Energy Project, a high-throughput approach for a large-scale computational screening and design of organic photovoltaic materials. We create molecular libraries to search for candidates structures and use quantum chemistry, machine learning and cheminformatics methods to characterize these systems and find structure-property relations. The scale of this study requires an equally large computational resource. We rely on distributed volunteer computing to obtain these properties. In the third part of this dissertation we present our work related to the acceleration of electronic structure

  9. Surface Chemistry, Microstructure, and Tribological Properties of Cubic Boron Nitride Films

    NASA Technical Reports Server (NTRS)

    Watanabe, Shuichi; Wheeler, Donald R.; Abel, Phillip B.; Street, Kenneth W.; Miyoshi, Kazuhisa; Murakawa, Masao; Miyake, Shojiro

    1998-01-01

    This report deals with the surface chemistry, microstructure, bonding state, morphology, and friction and wear properties of cubic boron nitride (c-BN) films that were synthesized by magnetically enhanced plasma ion plating. Several analytical techniques - x-ray photoelectron spectroscopy, transmission electron microscopy and electron diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, and surface profilometry - were used to characterize the films. Sliding friction experiments using a ball-on-disk configuration were conducted for the c-BN films in sliding contact with 440C stainless-steel balls at room temperature in ultrahigh vacuum (pressure, 10(exp -6), in ambient air, and under water lubrication. Results indicate that the boron-to-nitrogen ratio on the surface of the as-deposited c-BN film is greater than 1 and that not all the boron is present as boron nitride but a small percentage is present as an oxide. Both in air and under water lubrication, the c-BN film in sliding contact with steel showed a low wear rate, whereas a high wear rate was observed in vacuum. In air and under water lubrication, c-BN exhibited wear resistance superior to that of amorphous boron nitride, titanium nitride, and titanium carbide.

  10. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    SciTech Connect

    Oleson, Timothy A.; Sahai, Nita; Wesolowski, David J; Dura, Joseph A; Majkrzak, Charles F; Giuffre, Anthony J.

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  11. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells

    SciTech Connect

    Ahamed, Maqusood; Karns, Michael; Goodson, Michael; Rowe, John; Hussain, Saber M.; Schlager, John J.

    2008-12-15

    Silver nanoparticles (Ag NPs) have recently received much attention for their possible applications in biotechnology and life sciences. Ag NPs are of interest to defense and engineering programs for new material applications as well as for commercial purposes as an antimicrobial. However, little is known about the genotoxicity of Ag NPs following exposure to mammalian cells. This study was undertaken to examine the DNA damage response to polysaccharide surface functionalized (coated) and non-functionalized (uncoated) Ag NPs in two types of mammalian cells; mouse embryonic stem (mES) cells and mouse embryonic fibroblasts (MEF). Both types of Ag NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and phosphorylated-H2AX expression. Furthermore both of them induced cell death as measured by the annexin V protein expression and MTT assay. Our observations also suggested that the different surface chemistry of Ag NPs induce different DNA damage response: coated Ag NPs exhibited more severe damage than uncoated Ag NPs. The results suggest that polysaccharide coated particles are more individually distributed while agglomeration of the uncoated particles limits the surface area availability and access to membrane bound organelles.

  12. Surface chemistry of InP quantum dots: a comprehensive study.

    PubMed

    Cros-Gagneux, Arnaud; Delpech, Fabien; Nayral, Céline; Cornejo, Alfonso; Coppel, Yannick; Chaudret, Bruno

    2010-12-29

    Advanced (1)H, (13)C, and (31)P solution and solid-state NMR studies combined with IR spectroscopy were used to probe, at the molecular scale, the composition and the surface chemistry of indium phosphide (InP) quantum dots (QDs) prepared via a non-coordinating solvent strategy. This nanomaterial can be described as a core-multishell object: an InP core, with a zinc blende bulk structure, is surrounded first by a partially oxidized surface shell, which is itself surrounded by an organic coating. This organic passivating layer is composed, in the first coordination sphere, of tightly bound palmitate ligands which display two different bonding modes. A second coordination sphere includes an unexpected dialkyl ketone and residual long-chain non-coordinating solvents (ODE and its isomers) which interact through weak intermolecular bonds with the alkyl chains of the carboxylate ligands. We show that this ketone is formed during the synthesis process via a decarboxylative coupling route and provides oxidative conditions which are responsible for the oxidation of the InP core surface. This phenomenon has a significant impact on the photoluminescence properties of the as-synthesized QDs and probably accounts for the failure of further growth of the InP core.

  13. The nucleation rate surfaces design over diagram of phase equilibria and their applications for computational chemistry

    NASA Astrophysics Data System (ADS)

    Anisimov, M. P.

    2016-12-01

    One can find in scientific literature a pretty fresh idea of the nucleation rate surfaces design over the diagrams of phase equilibria. That idea looks like profitable for the nucleation theory development and for various practical applications where predictions of theory have no high enough accuracy for today. The common thermodynamics has no real ability to predict parameters of the first order phase transition. Nucleation experiment can be provided in very local nucleation conditions even the nucleation takes place from the critical line (in two-component case) down to the absolute zero temperature limit and from zero nucleation rates at phase equilibria up to the spinodal conditions. Theory predictions have low reliability as a rule. The computational chemistry has chance to make solution of that problem easier when a set of the used axiomatic statements will adapt enough progressive assumptions [1]. Semiempirical design of the nucleation rate surfaces over diagrams of phase equilibria have a potential ability to provide a reasonable quality information on nucleation rate for each channel of nucleation. Consideration and using of the nucleation rate surface topologies to optimize synthesis of a given phase of the target material can be available when data base on nucleation rates over diagrams of phase equilibria will be created.

  14. Combined experiment and theory approach in surface chemistry: Stairway to heaven?

    NASA Astrophysics Data System (ADS)

    Exner, Kai S.; Heß, Franziska; Over, Herbert; Seitsonen, Ari Paavo

    2015-10-01

    In this perspective we discuss how an intimate interaction of experiments with theory is able to deepen our insight into the catalytic reaction system on the molecular level. This strategy is illustrated by discussing various examples from our own research of surface chemistry and model catalysis. The particular examples were carefully chosen to balance the specific strength of both approaches - theory and experiment - and emphasize the benefit of this combined approach. We start with the determination of complex surface structures, where diffraction techniques in combination with theory are clear-cut. The promoter action of alkali metals in heterogeneous catalysis is rationalized with theory and experiment for the case of CO coadsorption. Predictive power of theory is limited as demonstrated with the apparent activity of chlorinated TiO2(110) in the oxidation of HCl: Even if we know all elementary reaction steps of a catalytic reaction mechanism, the overall kinetics may remain elusive and require the application kinetic Monte Carlo simulations. Catalysts are not always stable under reaction conditions and may chemically transform as discussed for the CO oxidation reaction over ruthenium. Under oxidizing reaction conditions ruthenium transforms into RuO2, a process which is hardly understood on the molecular level. Lastly we focus on electrochemical reactions. Here theory is clearly ahead since spectroscopic methods are not available to resolve the processes at the electrode surface.

  15. Structure and surface chemistry in crystalline mesoporous (CeO(2-δ))-YSZ.

    PubMed

    Somacescu, Simona; Parvulescu, Viorica; Osiceanu, Petre; Calderon-Moreno, Jose Maria; Su, Bao-Lian

    2011-11-01

    Mesoporous metal oxides (CeO(2-δ))-YSZ have been synthesized by a versatile direct synthesis method using ionic cetyltrimethylammonium bromide (CTAB) and different nonionic (block copolymers) as surfactants and urea as hydrolyzing agent. The synthesis was realized at pH=9 using tetraethylammonium hydroxide (TEAOH) as pH mediator. Calcination at 550 °C led to the formation of crystalline metal oxides with uniform mesoporosity. The obtained materials have been characterized by thermogravimetric analysis (TG-DTG), wide and small-angle X-ray diffraction (XRD), Raman spectroscopy, Brunauer, Emmett and Teller (BET) surface area analysis, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All the obtained materials exhibits mesoporous structure, crystalline structure indexed in a cubic symmetry, showing a high surface area, a uniform and narrow pore size distribution, spherical morphology typical for the mesoporous materials. The crystalline and mesoporous structures, surface chemistry and stoichiometry for the samples synthesized using ionic and nonionic surfactants have been discussed.

  16. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    DOE PAGES

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; ...

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less

  17. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    SciTech Connect

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.

  18. Friction and surface chemistry of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  19. Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron

    NASA Astrophysics Data System (ADS)

    Spadaro, F.; Rossi, A.; Lainé, E.; Woodward, P.; Spencer, N. D.

    2017-02-01

    Understanding the interactions among the various additives in a lubricant is important because they can have a major influence on the performance of blends under tribological conditions. The present investigation is focused on the interactions occurring between ZnDTP and dispersant molecules in an oil formulation, and on their reactivity under purely thermal conditions in the presence of air-oxidized iron surfaces. Nuclear magnetic resonance spectroscopy (NMR) was performed on undiluted blends at different temperatures, while angle-resolved X-ray photoelectron spectroscopy (ARXPS) was exploited to investigate the surface reactivity on oxidized iron surfaces. The results indicate that the dispersant, generally added to blends for preventing the deposition of sludge, varnish and soot on the surface, might also inhibit the reaction of all other additives with the steel surface.

  20. Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces: role of solution and surface chemistry.

    PubMed

    Asadishad, Bahareh; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-06-04

    Metal oxides such as ferric or aluminum oxides can play an important role in the retention of bacteria in granular aquatic environments; however, their role in bacterial inactivation is not well understood. Herein, we examined the role of water chemistry and surface chemistry on the short-term inactivation rates of three bacteria when adhered to surfaces. To evaluate the role of water chemistry on the inactivation of attached bacteria, the loss in membrane integrity of bacteria attached to an iron oxide (Fe2O3) surface was measured over a range of water ionic strengths of either monovalent or divalent salts in the absence of a growth substrate. The influence of surface chemistry on the inactivation of attached bacteria was examined by measuring the loss in membrane integrity of cells attached to three surfaces (SiO2, Fe2O3, and Al2O3) at a specific water chemistry (10 mM KCl). Bacteria were allowed to attach onto the SiO2 or metal oxide coated slides mounted in a parallel-plate flow cell, and their inactivation rate (loss in membrane integrity) was measured directly without removing the cells from the surface and without disturbing the system. X-ray photoelectron spectroscopy analysis revealed a high correlation between the amounts of C-metal or O-metal bonds and the corresponding bacterial inactivation rates for each surface. Finally, for all three surfaces, a consistent increase in inactivation rate was observed with the type of bacterium in the order: Enterococcus faecalis, Escherichia coli O157:H7, and Escherichia coli D21f2.

  1. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    PubMed Central

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  2. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  3. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry.

    PubMed

    Jones, A P

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of 'polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm 'carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  4. Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2016-01-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: can surface reactions limit the stomatal uptake of ozone and therefore reduce its detrimental effects to plants?In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety-dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by a prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too.Fluid dynamic calculations were used to model ozone distribution in the diffusion-limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way that the ozone flux through the open stomata is strongly reduced.Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  5. Effect of the nature of the substrate on the surface chemistry of atomic layer deposition precursors.

    PubMed

    Yao, Yunxi; Coyle, Jason P; Barry, Seán T; Zaera, Francisco

    2017-02-07

    The thermal chemistry of Cu(I)-sec-butyl-2-iminopyrrolidinate, a promising copper amidinate complex for atomic layer deposition (ALD) applications, was explored comparatively on several surfaces by using a combination of surface-sensitive techniques, specifically temperature-programmed desorption and x-ray photoelectron spectroscopy (XPS). The substrates explored include single crystals of transition metals (Ni(110) and Cu(110)), thin oxide films (NiO/Ni(110) and SiO2/Ta), and oxygen-treated metals (O/Cu(110)). Decomposition of the pyrrolidinate ligand leads to the desorption of several gas-phase products, including CH3CN, HCN and butene from the metals and CO and CO2 from the oxygen-containing surfaces. In all cases dehydrogenation of the organic moieties is accompanied by hydrogen removal from the surface, in the form of H2 on metals and mainly as water from the metal oxides, but the threshold for this chemistry varies wildly, from 270 K on Ni(110) to 430 K on O/Cu(110), 470 K on Cu(110), 500 K on NiO/Ni(110), and 570 K on SiO2/Ta. Copper reduction is also observed in both the Cu 2p3/2 XPS and the Cu L3 VV Auger (AES) spectra, reaching completion by 300 K on Ni(110) but occurring only between 500 and 600 K on Cu(110). On NiO/Ni(110), both Cu(I) and Cu(0) coexist between 200 and 500 K, and on SiO2/Ta a change happens between 500 and 600 K but the reduction is limited, with the copper atoms retaining a significant ionic character. Additional experiments to test adsorption at higher temperatures led to the identification of temperature windows for the self-limiting precursor uptake required for ALD between approximately 300 and 450 K on both Ni(110) and NiO/Ni(110); the range on SiO2 had been previously determined to be wider, reaching an upper limit at about 500 K. Finally, deposition of copper metal films via ALD cycles with O2 as the co-reactant was successfully accomplished on the Ni(110) substrate.

  6. Effect of the nature of the substrate on the surface chemistry of atomic layer deposition precursors

    NASA Astrophysics Data System (ADS)

    Yao, Yunxi; Coyle, Jason P.; Barry, Seán T.; Zaera, Francisco

    2017-02-01

    The thermal chemistry of Cu(I)-sec-butyl-2-iminopyrrolidinate, a promising copper amidinate complex for atomic layer deposition (ALD) applications, was explored comparatively on several surfaces by using a combination of surface-sensitive techniques, specifically temperature-programmed desorption and x-ray photoelectron spectroscopy (XPS). The substrates explored include single crystals of transition metals (Ni(110) and Cu(110)), thin oxide films (NiO/Ni(110) and SiO2/Ta), and oxygen-treated metals (O/Cu(110)). Decomposition of the pyrrolidinate ligand leads to the desorption of several gas-phase products, including CH3CN, HCN and butene from the metals and CO and CO2 from the oxygen-containing surfaces. In all cases dehydrogenation of the organic moieties is accompanied by hydrogen removal from the surface, in the form of H2 on metals and mainly as water from the metal oxides, but the threshold for this chemistry varies wildly, from 270 K on Ni(110) to 430 K on O/Cu(110), 470 K on Cu(110), 500 K on NiO/Ni(110), and 570 K on SiO2/Ta. Copper reduction is also observed in both the Cu 2p3/2 XPS and the Cu L3 VV Auger (AES) spectra, reaching completion by 300 K on Ni(110) but occurring only between 500 and 600 K on Cu(110). On NiO/Ni(110), both Cu(I) and Cu(0) coexist between 200 and 500 K, and on SiO2/Ta a change happens between 500 and 600 K but the reduction is limited, with the copper atoms retaining a significant ionic character. Additional experiments to test adsorption at higher temperatures led to the identification of temperature windows for the self-limiting precursor uptake required for ALD between approximately 300 and 450 K on both Ni(110) and NiO/Ni(110); the range on SiO2 had been previously determined to be wider, reaching an upper limit at about 500 K. Finally, deposition of copper metal films via ALD cycles with O2 as the co-reactant was successfully accomplished on the Ni(110) substrate.

  7. Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries.

    PubMed

    Laurens, Lieve M L; Dempster, Thomas A; Jones, Howland D T; Wolfrum, Edward J; Van Wychen, Stefanie; McAllister, Jordan S P; Rencenberger, Michelle; Parchert, Kylea J; Gloe, Lindsey M

    2012-02-21

    Algal biomass compositional analysis data form the basis of a large number of techno-economic process analysis models that are used to investigate and compare different processes in algal biofuels production. However, the analytical methods used to generate these data are far from standardized. This work investigated the applicability of common methods for rapid chemical analysis of biomass samples with respect to accuracy and precision. This study measured lipids, protein, carbohydrates, ash, and moisture of a single algal biomass sample at 3 institutions by 8 independent researchers over 12 separate workdays. Results show statistically significant differences in the results from a given analytical method among laboratories but not between analysts at individual laboratories, suggesting consistent training is a critical issue for empirical analytical methods. Significantly different results from multiple lipid and protein measurements were found to be due to different measurement chemistries. We identified a set of compositional analysis procedures that are in best agreement with data obtained by more advanced analytical procedures. The methods described here and used for the round robin experiment do not require specialized instrumentation, and with detailed analytical documentation, the differences between laboratories can be markedly reduced.

  8. Algal Biomass Constituent Analysis: Method Uncertainties and Investigation of the Underlying Measuring Chemistries

    SciTech Connect

    Laurens, L. M. L.; Dempster, T. A.; Jones, H. D. T.; Wolfrum, E. J.; Van Wychen, S.; McAllister, J. S. P.; Rencenberger, M.; Parchert, K. J.; Gloe, L. M.

    2012-02-21

    Algal biomass compositional analysis data form the basis of a large number of techno-economic process analysis models that are used to investigate and compare different processes in algal biofuels production. However, the analytical methods used to generate these data are far from standardized. This work investigated the applicability of common methods for rapid chemical analysis of biomass samples with respect to accuracy and precision. This study measured lipids, protein, carbohydrates, ash, and moisture of a single algal biomass sample at 3 institutions by 8 independent researchers over 12 separate workdays. Results show statistically significant differences in the results from a given analytical method among laboratories but not between analysts at individual laboratories, suggesting consistent training is a critical issue for empirical analytical methods. Significantly different results from multiple lipid and protein measurements were found to be due to different measurement chemistries. We identified a set of compositional analysis procedures that are in best agreement with data obtained by more advanced analytical procedures. The methods described here and used for the round robin experiment do not require specialized instrumentation, and with detailed analytical documentation, the differences between laboratories can be markedly reduced.

  9. An Investigation into the Relationship between Academic Risk Taking and Chemistry Laboratory Anxiety in Turkey

    ERIC Educational Resources Information Center

    Öner Sünkür, Meral

    2015-01-01

    This study evaluates the relationship between academic risk taking and chemistry laboratory anxiety using a relational scanning model. The research sample consisted of 127 undergraduate students (sophomores, juniors and seniors) in the Chemistry Teaching Department at Dicle University. This research was done in the spring semester of the 2012 to…

  10. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  11. Investigating Art Objects through Collaborative Student Research Projects in an Undergraduate Chemistry and Art Course

    ERIC Educational Resources Information Center

    Wells, Gary; Haaf, Michael

    2013-01-01

    Inspired in part by Chemistry Collaborations, Workshops, and Community of Scholars workshops, the Chemistry and Art course offered at Ithaca College is team-taught by a chemist and an art historian, underscoring the complementary nature of the two disciplines. The course, populated primarily by nonscience majors, highlights the importance of using…

  12. Benzenethiol chemistry on the Ni(111) surface: The influence of coadsorbed species

    SciTech Connect

    Kane, S.M.; Rufael, T.S.; Gland, J.L.; Huntley, D.R.

    1996-10-01

    The effect of several coadsorbed species on the reactions of benzenethiol on the Ni(111) surface has been characterized. On the clean surface, benzenethiol is adsorbed as phenylthiolate with an orientation tilted form the surface normal, and hydrogenolysis to form benzene at 260 K is the primary reaction. H{sub 2} preadsorption onto the surface affects reaction selectivity at submonolayer coverages. Higher thiol coverages show no change in hydrogenolysis kinetics, either under either UHV conditions as measured by isothermal TPD or at H{sub 2} pressures up to 7X10{sup {minus}3} torr (measured by FYNES). HREELS indicates that coadsorbed hydrogen induces a change in the orientation of the phenylthiolate. Coadsorbed oxygen is shown to remove surface hydrogen by water formation and broadens the benzene desorption state. A novel reaction between coadsorbed methanethiol and benzethiol to form toluene, and the role of surface hydrogen and oxygen on this reaction, have been investigated.

  13. A Comprehensive Study of Surface Chemistry for Application to Engine NOx Aftertreatment

    SciTech Connect

    Aceves, S M; Piggot, T; Pitz, W; Mundy, C; Kuo, W; Havstad, M

    2004-02-19

    aftertreatment. NO{sub x} adsorbing catalysts operate by adsorbing the NO{sub x} in the exhaust stream during regular engine operation. After a period of time (1 minute), the catalyst saturates and has to be regenerated. Regeneration is achieved by injecting a reductant (typically fuel, although hydrogen or ammonia can also be used) into the catalyst. The adsorbed NO{sub x} desorbs under rich conditions, and then reacts with the reductant, producing molecular nitrogen, water and carbon dioxide. The regeneration cycle typically lasts about 2 seconds. After the regeneration cycle, the catalyst is ready for a new adsorption cycle. Intermittent regeneration of the catalytic surfaces is a complex process, and much of the basic science behind this process is not understood. Unsolved scientific problems include the development of chemical kinetic mechanisms for surface chemistry; the analysis of sulfur poisoning of the catalyst surfaces and the phenomenon of thermal aging of the catalyst materials. The adsorption and regeneration processes are dependent on gaseous flow rate, surface chemical kinetics and converter geometry. A comprehensive study of this process is of great importance to achieve the desired system efficiency for NO{sub x} reduction. The possibilities and future market opportunities are enormous. This project supports the DOE mission by improving national security through reduced dependence on foreign oil. This work also provides an opportunity for enhancing our surface chemistry analysis capabilities, which have great applicability to missile reentry, fuel cells, and sensors for chemical warfare agents and explosives detection. In addition to this, we will help the US industry remain competitive and will help clean up the environment.

  14. Investigation of UV Laser Triggered, Nanosecond, Surface Flashover Switches

    SciTech Connect

    Nunnally, W C; Neurath, R; Holmes, C; Sampayan, S; Caporaso, G

    2003-06-03

    Triggered, multi-channel, surface discharges or surface flashover switching have been investigated as a low inductance, low pulse rate switch for conducting large currents. This paper discusses the investigation of UV (355 nm) laser triggered, single channel, low inductance, ns closure and sub-ns jitter switches for applications in switching high dielectric constant, compact pulse forming lines into accelerator loads. The experimental arrangement for evaluating the switch performance and for measuring the high field dielectric constant of the pulse forming lines is presented. Experimental results of delay and jitter measurements versus optical energy on the flashover surface and dc electric field charge.

  15. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella; Salama, Farid

    2013-01-01

    Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.

  16. A UNIFIED MONTE CARLO TREATMENT OF GAS-GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. II. A MULTIPHASE GAS-SURFACE-LAYERED BULK MODEL

    SciTech Connect

    Vasyunin, A. I.; Herbst, Eric E-mail: eh2ef@virginia.edu

    2013-01-10

    The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth- and first-order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on the warm-up chemistry is explored. The use of a multilayer ice structure has a mixed impact on the abundances of organic species formed during the warm-up phase. For example, the abundance of gaseous HCOOCH{sub 3} is lower in the multilayer model than in previous grain models that do not distinguish between layers (so-called two phase models). Other gaseous organic species formed in the warm-up phase are affected slightly. Finally, we find that the entrapment of volatile species in water ice can explain the two-jump behavior of H{sub 2}CO previously found in observations of protostars.

  17. Nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} synthesized using a chelating route for use in IT-SOFC cathodes: Microstructure, surface chemistry and electrical conductivity

    SciTech Connect

    Scurtu, Rares; Somacescu, Simona; Calderon-Moreno, Jose Maria; Culita, Daniela; Bulimestru, Ion; Popa, Nelea; Gulea, Aurelian; Osiceanu, Petre

    2014-02-15

    Nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} powders were synthesized by a chelating route using different polyfunctional H{sub x}APC acids (APC=aminopolycarboxylate; x=3, 4, 5). Different homologous aminopolycarboxylic acids, namely nitrilotriacetic (H{sub 3}nta), ethylenediaminetetraacetic (H{sub 4}edta), 1,2-cyclohexanediaminetetracetic (H{sub 4}cdta) and diethylenetriaminepentaacetic (H{sub 5}dtpa) acid, were used as chelating agents to combine Sm, Sr, Co elements into a perovskite structure. The effects of the chelating agents on the crystalline structure, porosity, surface chemistry and electrical properties were investigated. The electrical properties of the perovskite-type materials emphasized that their conductivities in the temperature range of interest (600–800 °C) depend on the nature of the precursors as well as on the presence of a residual Co oxide phase as shown by XRD and XPS analysis. The surface chemistry and the surface stoichiometries were determined by XPS revealing a complex chemical behavior of Sr that exhibits a peculiar “surface phase” and “bulk phase” chemistry within the detected volume (<10 nm). - Graphical abstract: Synthesis of nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} powders by a chelating route and the investigation of the microstructure, surface chemistry and electrical properties. Display Omitted - Highlights: • Nanocrystalline Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3−δ} obtained by a chelating synthesis route. • Cubic perovskite structures with crystallite sizes ∼23±2 nm. • The porous nature revealed by N{sub 2} adsorption/desorption (BET). • The surface chemistry and the surface stoichiometries highlighted by XPS. • A complex chemical behavior of Sr exhibits a peculiar “surface phase” and “bulk phase” chemistry.

  18. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment.

    PubMed

    Feinberg, Adam W; Wilkerson, Wade R; Seegert, Charles A; Gibson, Amy L; Hoipkemeier-Wilson, Leslie; Brennan, Anthony B

    2008-08-01

    We examined how variations in elastic modulus, surface chemistry and the height