Sample records for surface contamination

  1. Surface cleanliness measurement procedure

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  2. Tools for measuring surface cleanliness

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  3. Fluorescence Imaging Reveals Surface Contamination

    NASA Technical Reports Server (NTRS)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  4. The effect of contaminant on skid resistance of pavement surface

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Gultom, E. M.

    2018-03-01

    Skid resistance of the pavement surface is the force generated by the movement of the wheels of the vehicle on the surface of the pavement. Contaminants are materials that cover the surface of the pavement affecting the skid resistance of the pavement surface. The contaminant acts as a coating interface or direct contact of the pavement surface with the wheels of the vehicle which can cause adverse effects, such as the decreasing value of skid resistance of the pavement surface. This study aims to analyze the effect of some types of contaminants on skid resistance of pavement surfaces. The contaminants that used in this study were water, sand, salt, and lubricating oil. The study was conducted by direct testing on two types of pavement: flexible pavement and rigid pavement. The measurements of the skid resistance were made using the British Pendulum Tester with British Pendulum Number for two conditions: before and after the pavement surface was covered with contaminants. The results showed that there was a contaminant effect on skid resistance of pavement surface. Skid resistance of pavement surfaces decreased after the contaminants were covered in water, sand, salt, and lubricant by 20.1%, 22.8%, 37.1% and 50.5% respectively.

  5. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was the most significant factor for all the contaminants generally detected at less than 1 atom percent, or detected only occasionally (i.e., all but Si, O, and C). Flight control surfaces, including sample backsides not exposed to space radiation or atomic oxygen flux, have accumulated some contamination on flight (compared to laboratory controls), but experimentally, the LDEF exposed surface contamination levels are generally higher for the contaminants Si and O. For most materials analyzed, Si contamination levels were higher on the leading edge surfaces than on the trailing edge surfaces. This was true even for the composite samples where considerable atomic oxygen erosion of the leading edge surfaces was observed by SEM. It is probable that the return flux associated with atmospheric backscatter resulted in enhanced deposition of silicones and other contaminants on the leading edge flight surfaces relative to the trailing edge. Although the Si concentration data suggested greater on-flight deposition of contaminants on the leading edge surfaces, the XPS analyses did not conclusively show different relative total thicknesses of flight deposited contamination for leading and trailing edge surfaces. It is possible that atomic oxygen reactions on the leading edge resulted in greater volatilization of the carbon component of the deposited silicones, effectively 'thinning' the leading edge deposited overlayer. Unlike other materials, exposed polymers such as Kapton and FEP-type Teflon had very low contamination on the leading edge surfaces. SEM evidence showed that undercutting of the contaminant overlayer and damaged polymer layers occurred during atomic oxygen erosion, which would enhance loss of material from the exposed surface.

  6. Novel Laser Ablation Technology for Surface Decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquidmore » for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.« less

  7. Scatter from optical components; Proceedings of the Meeting, San Diego, CA, Aug. 8-10, 1989

    NASA Astrophysics Data System (ADS)

    Stover, John C.

    Various papers on scatter from optical components are presented. Individual topics addressed include: BRDF of SiC and Al foam compared to black paint at 3.39 microns, characterization of optical baffle materials, bidirectional transmittance distribution function of several IR materials at 3.39 microns, thermal cycling effects on the BRDF of beryllium mirrors, BTDV of ZnSe with multilayer coatings at 3.39 microns, scattering from contaminated surfaces, cleanliness correlation by BRDF and PFO instruments, contamination effects on optical surfaces, means of eliminating the effects of particulate contamination on scatter measurements of superfine optical surfaces, vacuum BRDF measurement of cryogenic optical surfaces, Monte Carlo simulation of contaminant transport to and deposition on complex spacecraft surfaces, surface particle observation and BRDF predictions, satellite material contaminant optical properties, dark field photographic techniques for documenting optical surface contamination, design of a laboratory study of contaminant film darkening in space, contamination monitoring approaches for EUV space optics.

  8. Bioinspired Surface Treatments for Improved Decontamination: Commercial Products

    DTIC Science & Technology

    2017-07-28

    simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a...treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on the surfaces and wetting angles...Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual protection

  9. Harvesting contaminants from liquid

    DOEpatents

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  10. Removal of hydrocarbon contaminant film from spacecraft optical surfaces using a radiofrequency-excited oxygen plasma.

    NASA Technical Reports Server (NTRS)

    Beverly, W. D.; Gillete, R. B.; Cruz, G. A.

    1973-01-01

    Results of a study on the feasibility of removing contaminant films from optical surfaces in vacuum, using an oxygen plasma, are discussed. Contaminant films were deposited onto optical surfaces from butadiene and methane gases at a pressure of about 4 torr in the presence of ultraviolet radiation. Optical surfaces evaluated included ultraviolet-reflecting mirrors, gratings, quartz disks, and spacecraft thermal control surfaces. In general, it was found that contaminants could be removed successfully from surfaces using an oxygen plasma. Exceptions were the white-paint thermal control surfaces, which, when contaminated, degraded further during exposure to the oxygen plasma.

  11. Mitigation of radiation induced surface contamination

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  12. Contamination analysis unit

    DOEpatents

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  13. Contamination analysis unit

    DOEpatents

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  14. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D

    2012-01-01

    Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required for modelling contaminant loads from impermeable surfaces.

  15. Study on contaminants on flight and other critical surfaces

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Hughes, Charles; Arendale, William F.

    1994-01-01

    The control of surface contamination in the manufacture of space hardware can become a critical step in the production process. Bonded surfaces have been shown to be affected markedly by contamination. It is important to insure surface cleanliness by preventing contamination prior to bonding. In this vein techniques are needed in which the contamination which may affect bonding are easily found and removed. Likewise, if materials which are detrimental to bonding are not easily removed, then they should not be used in the manufacturing process. This study will address the development of techniques to locate and quantify contamination levels of particular contaminants. With other data becoming available from MSFC and its contractors, this study will also quantify how certain contaminants affect bondlines and how easily they are removed in manufacturing.

  16. Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.).

    PubMed

    Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin

    2011-11-01

    The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. ISSUES IN UNDERSTANDING DERMAL EXPOSURES RESULTING FROM CONTACT WITH CONTAMINATED SURFACES, MEASURING SURFACE CONTAMINATION, AND CHARACTERIZING TRANSFERS

    EPA Science Inventory

    Although monitoring for surface contamination in work with radioactive materials and dermal monitoring of pesticide exposure to agricultural workers have been standard practice for 50 years, regular surface sampling and dermal monitoring methods have only been applied to indust...

  18. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    DTIC Science & Technology

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  19. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  20. Microbial and chemical contamination during and after flooding in the Ohio River-Kentucky, 2011.

    PubMed

    Yard, Ellen E; Murphy, Matthew W; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S; Hill, Vincent R

    2014-09-19

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2-4, 2011; n = 15) and after (July 25-26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water.

  1. Microbial and chemical contamination during and after flooding in the Ohio River—Kentucky, 2011

    PubMed Central

    Yard, Ellen E.; Murphy, Matthew W.; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S.; Hill, Vincent R.

    2017-01-01

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2–4, 2011; n = 15) and after (July 25–26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water. PMID:24967556

  2. Use of Ultrasonic Energy in Assessing Microbial Contamination on Surfaces

    PubMed Central

    Puleo, John R.; Favero, Martin S.; Petersen, Norman J.

    1967-01-01

    Ultrasonic tanks were evaluated for their ability to remove viable microorganisms from various surfaces for subsequent enumeration. Test surfaces were polished stainless steel, smooth glass, frosted glass, and electronic components. The position of contaminated surfaces in relation to the ultrasonic energy source, distance of the ultrasonic source from the test surfaces, and temperature of the rinse fluid were some of the factors which influenced recovery. Experimental systems included both naturally occurring microbial contamination and artificial contamination with spores of Bacillus subtilis var. niger. The results showed that ultrasonic energy was more reliable and efficient than mechanical agitation for recovering surface contaminants. Conditions which increased the number and percentage of microorganisms recovered by ultrasonic energy were: using a cold rinse fluid, placing the sample bottle on the bottom of the ultrasonic tank, and facing the contaminated surfaces toward the energy source. It was also demonstrated that ultrasonic energy could be effectively used for eluting microorganisms from cotton swabs. PMID:16349743

  3. Exploring Surface Analysis Techniques for the Detection of Molecular Contaminants on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rutherford, Gugu N.; Seasly, Elaine; Thornblom, Mark; Baughman, James

    2016-01-01

    Molecular contamination is a known area of concern for spacecraft. To mitigate this risk, projects involving space flight hardware set requirements in a contamination control plan that establishes an allocation budget for the exposure of non-volatile residues (NVR) onto critical surfaces. The purpose of this work will focus on non-contact surface analysis and in situ monitoring to mitigate molecular contamination on space flight hardware. By using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) with Raman Spectroscopy, an unlikely contaminant was identified on space flight hardware. Using traditional and surface analysis methods provided the broader view of the contamination sources allowing for best fit solutions to prevent any future exposure.

  4. Contamination analyses of technology mirror assembly optical surfaces

    NASA Technical Reports Server (NTRS)

    Germani, Mark S.

    1991-01-01

    Automated electron microprobe analyses were performed on tape lift samples from the Technology Mirror Assembly (TMA) optical surfaces. Details of the analyses are given, and the contamination of the mirror surfaces is discussed. Based on the automated analyses of the tape lifts from the TMA surfaces and the control blank, we can conclude that the particles identified on the actual samples were not a result of contamination due to the handling or sampling process itself and that the particles reflect the actual contamination on the surface of the mirror.

  5. LONG-TERM RECOVERY OF PCB-CONTAMINATED SURFACE SEDIMENTS AT THE SANGAMO-WESTON/TWELVEMILE CREEK/LAKE HARTWELL SUPERFUND SITE

    EPA Science Inventory

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contamin...

  6. Catastrophic failure of contaminated fused silica optics at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genin, F. Y., LLNL

    1996-12-03

    For years, contamination has been known to degrade the performance of optics and to sometimes initiate laser-induced damage to initiate. This study has W to quantify these effects for fused silica windows used at 355 mm Contamination particles (Al, Cu, TiO{sub 2} and ZrO{sub 2}) were artificially deposited onto the surface and damage tests were conducted with a 3 ns NdYAG laser. The damage morphology was characterized by Nomarski optical microscopy. The results showed that the damage morphology for input and output surface contamination is different. For input surface contamination, both input and output surfaces can damage. In particular, themore » particle can induce pitting or drilling of the surface where the beam exits. Such damage usually grows catastrophically. Output surface contamination is usually ablated away on the shot but can also induce catastrophic damage. Plasmas are observed during illumination and seem to play an important role in the damage mechanism. The relationship between fluence and contamination size for which catastrophic damage occurred was plotted for different contamination materials. The results show that particles even as small as 10 {micro}m can substantially decrease the damage threshold of the window and that metallic particles on the input surface have a more negative effect than oxide particles.« less

  7. Cleanliness evaluation of rough surfaces with diffuse IR reflectance

    NASA Technical Reports Server (NTRS)

    Pearson, L. H.

    1995-01-01

    Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.

  8. Methods for removing contaminant matter from a porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  9. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate

    PubMed Central

    Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua

    2013-01-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  10. Surface contamination to UV-curable acrylates in the furniture and parquet industry.

    PubMed

    Surakka, J; Lindh, T; Rosén, G; Fischer, T

    2001-03-01

    Surface contamination to ultraviolet radiation curable coatings (UV coatings), used increasingly in the parquet and furniture industry, is a matter of concern as a source for skin contamination. UV coatings contain chemically and biologically reactive acrylates, well known as skin contact irritants and sensitizers. Surface contamination may spread secondarily to equipment and other unexpected areas even outside the workplace. Yet, studies concerning this type of contamination are lacking due to lack of suitable sampling methods. Surface contamination of the work environment with risk for skin exposure to UV coating was measured employing a quantitative adhesive tape sampling method developed for this purpose. A pilot study was first performed at three workplaces to evaluate the contamination. In the main study, we wanted to locate and identify in detail the surface contamination of areas where problems exist, and to determine the extent of the problem. Measurements were performed at seven workplaces on two separate workdays (round 1 and 2) within a six-month period. Samples were collected from the workplaces based on the video monitoring of skin contact frequency with the surfaces and categorized into three groups to analyze risk. The pilot study indicated that surface contamination to TPGDA containing UV coatings was common, found in 76 percent of the surfaces, and varied with a maximum of 909 microg TPGDA 10 cm(-2) sampling area. In the main study TPGDA was found in 153 out of 196 collected samples (78.1%); for round one 78.1 percent (82 out of 105 samples) and for round two 78.0 percent (71 out of 91 samples). The average TPGDA mass on positive surface samples was on the first round 2,247 +/- 7,462 microg, and on the second round 2,960 +/- 4,590 microg. We conclude that surface contamination to uncured UV coatings at UV-curing lines is common and this involves a risk for harmful, unintentional skin exposure to acrylates.

  11. Bioinspired Surface Treatments for Improved Decontamination: Silicate-Based Slippery Liquid-Infused Porous Surfaces (SLIPS)

    DTIC Science & Technology

    2017-07-20

    methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a soapy water solution...and diisopropyl fluorophosphate following treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on...SURFACES (SLIPS) INTRODUCTION The DoD Chemical and Biological Defense Program (CBDP) seeks to provide protection of forces in a contaminated

  12. Advanced LWIR hyperspectral sensor for on-the-move proximal detection of liquid/solid contaminants on surfaces

    NASA Astrophysics Data System (ADS)

    Giblin, Jay P.; Dixon, John; Dupuis, Julia R.; Cosofret, Bogdan R.; Marinelli, William J.

    2017-05-01

    Sensor technologies capable of detecting low vapor pressure liquid surface contaminants, as well as solids, in a noncontact fashion while on-the-move continues to be an important need for the U.S. Army. In this paper, we discuss the development of a long-wave infrared (LWIR, 8-10.5 μm) spatial heterodyne spectrometer coupled with an LWIR illuminator and an automated detection algorithm for detection of surface contaminants from a moving vehicle. The system is designed to detect surface contaminants by repetitively collecting LWIR reflectance spectra of the ground. Detection and identification of surface contaminants is based on spectral correlation of the measured LWIR ground reflectance spectra with high fidelity library spectra and the system's cumulative binary detection response from the sampled ground. We present the concepts of the detection algorithm through a discussion of the system signal model. In addition, we present reflectance spectra of surfaces contaminated with a liquid CWA simulant, triethyl phosphate (TEP), and a solid simulant, acetaminophen acquired while the sensor was stationary and on-the-move. Surfaces included CARC painted steel, asphalt, concrete, and sand. The data collected was analyzed to determine the probability of detecting 800 μm diameter contaminant particles at a 0.5 g/m2 areal density with the SHSCAD traversing a surface.

  13. Contamination and Surface Preparation Effects on Composite Bonding

    NASA Technical Reports Server (NTRS)

    Kutscha, Eileen O.; Vahey, Paul G.; Belcher, Marcus A.; VanVoast, Peter J.; Grace, William B.; Blohowiak, Kay Y.; Palmieri, Frank L.; Connell, John W.

    2017-01-01

    Results presented here demonstrate the effect of several prebond surface contaminants (hydrocarbon, machining fluid, latex, silicone, peel ply residue, release film) on bond quality, as measured by fracture toughness and failure modes of carbon fiber reinforced epoxy substrates bonded in secondary and co-bond configurations with paste and film adhesives. Additionally, the capability of various prebond surface property measurement tools to detect contaminants and potentially predict subsequent bond performance of three different adhesives is also shown. Surface measurement methods included water contact angle, Dyne solution wettability, optically stimulated electron emission spectroscopy, surface free energy, inverse gas chromatography, and Fourier transform infrared spectroscopy with chemometrics analysis. Information will also be provided on the effectiveness of mechanical and energetic surface treatments to recover a bondable surface after contamination. The benefits and drawbacks of the various surface analysis tools to detect contaminants and evaluate prebond surfaces after surface treatment were assessed as well as their ability to correlate to bond performance. Surface analysis tools were also evaluated for their potential use as in-line quality control of adhesive bonding parameters in the manufacturing environment.

  14. Surface evaluation of UV-degraded contamination

    NASA Technical Reports Server (NTRS)

    Connatser, Robert; Hadaway, James B.

    1992-01-01

    Three different areas of work were accomplished under this contract: (1) contamination testing and evaluation; (2) UV irradiation testing; and (3) surface evaluation testing. Contamination testing was generally performed in the In-Situ Contamination Effects Facility at Marshall Space Flight Center (MSFC). UV irradiation testing was also performed primarily at MSFC, utilizing facilities there. Finally, the surface evaluation was done at facilities at UAH Center for Applied Optics.

  15. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  16. A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection

    NASA Technical Reports Server (NTRS)

    Gause, Raymond L.

    1989-01-01

    Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.

  17. Catalytic surface effects on contaminated space shuttle tile in a dissociated nitrogen stream

    NASA Technical Reports Server (NTRS)

    Flowers, O. L.; Stewart, D. A.

    1985-01-01

    Visual inspection revealed contamination on the surface of tiles removed from the lower section of the space shuttle orbiter after the second flight of Columbia (STS-2). Possible sources of this contamination and the effect on surface catalycity are presented.

  18. CHARACTERIZING TRANSFER OF SURFACE RESIDUES TO SKIN USING A VIDEO-FLUORESCENT IMAGING TECHNIQUE

    EPA Science Inventory

    Surface-to-skin transfer of contaminants is a complex process. For children's residential exposure, transfer of chemicals from contaminated surfaces such as floors and furniture is potentially significant. Once on the skin, residues and contaminated particles can be transferred b...

  19. Modeling of Transmittance Degradation Caused by Optical Surface Contamination by Atomic Oxygen Reaction with Adsorbed Silicones

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward

    2001-01-01

    A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.

  20. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE PAGES

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  1. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  2. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  3. Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination

    NASA Astrophysics Data System (ADS)

    Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.

    2015-02-01

    The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.

  4. Superhydrophobic coated apparatus for liquid purification by evaporative condensation

    DOEpatents

    Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

    2014-03-11

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

  5. Harnessing of radio frequency discharge for production of biologically compatible coatings for ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.

    Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less

  6. Polyphosphazine-based polymer materials

    DOEpatents

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  7. The role of the surface environment in healthcare-associated infections.

    PubMed

    Weber, David J; Anderson, Deverick; Rutala, William A

    2013-08-01

    This article reviews the evidence demonstrating the importance of contamination of hospital surfaces in the transmission of healthcare-associated pathogens and interventions scientifically demonstrated to reduce the levels of microbial contamination and decrease healthcare-associated infections. The contaminated surface environment in hospitals plays an important role in the transmission of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus spp. (VRE), Clostridium difficile, Acinetobacter spp., and norovirus. Improved surface cleaning and disinfection can reduce transmission of these pathogens. 'No-touch' methods of room disinfection (i.e., devices which produce ultraviolet light or hydrogen peroxide) and 'self-disinfecting' surfaces (e.g., copper) also show promise to decrease contamination and reduce healthcare-associated infections. Hospital surfaces are frequently contaminated with important healthcare-associated pathogens. Contact with the contaminated environment by healthcare personnel is equally as likely as direct contact with a patient to lead to contamination of the healthcare provider's hands or gloves that may result in patient-to-patient transmission of nosocomial pathogens. Admission to a room previously occupied by a patient with MRSA, VRE, Acinetobacter, or C. difficile increases the risk for the subsequent patient admitted to the room to acquire the pathogen. Improved cleaning and disinfection of room surfaces decreases the risk of healthcare-associated infections.

  8. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  9. Study on Microbial Deposition and Contamination onto Six Surfaces Commonly Used in Chemical and Microbiological Laboratories

    PubMed Central

    Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea

    2015-01-01

    The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296

  10. Detection of aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared reflectance spectroscopy.

    PubMed

    Durmuş, Efkan; Güneş, Ali; Kalkan, Habil

    2017-01-01

    Aflatoxins are toxic metabolites that are mainly produced by members of the Aspergillus section Flavi on many agricultural products. Certain agricultural products such as figs are known to be high risk products for aflatoxin contamination. Aflatoxin contaminated figs may show a bright greenish yellow fluorescence (BGYF) under ultraviolet (UV) light at a wavelength of 365 nm. Traditionally, BGYF positive figs are manually selected by workers. However, manual selection depends on the expertise level of the workers and it may cause them skin-related health problems due to UV radiation. In this study, we propose a non-invasive approach to detect aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared (FT-NIR) reflectance spectroscopy. A classification accuracy of 100% is achieved for classifying the figs into aflatoxin contaminated/uncontaminated and surface mould contaminated/uncontaminated categories. In addition, a strong correlation has been found between aflatoxin and surface mould. Combined with pattern classification methods, the NIR spectroscopy can be used to detect aflatoxin contaminated figs non-invasively. Furthermore, a positive correlation between surface mould and aflatoxin contamination leads to a promising alternative indicator for the detection of aflatoxin-contaminated figs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Passive Standoff Detection of Chemical Warfare Agents on Surfaces

    NASA Astrophysics Data System (ADS)

    Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.

    2004-11-01

    Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

  12. Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite

    USGS Publications Warehouse

    Sherrill, Marvin G.

    1977-01-01

    Door County, a recreational and fruit-growing area bordering Lake Michigan in northeastern Wisconsin, has had a long history of ground-water contamination from surface and near-surface sources. Contamination is most severe in late summer when fruit-canning operations and the influx of tourists create additional wastes. Silurian dolomite is the upper bedrock unit in the county and yields generally adequate supplies of very hard water with locally objectionable concentrations of iron and nitrate. Thin soil cover and well-fractured dolomitic bedrock give easy entry to ground-water contaminants throughout large parts of Door County. Many contaminants enter the dolomite by surface or near-surface seepage. There is little attenuation of contamination concentrations in the well-jointed dolomite, and contaminants may travel long distances underground in a relatively short time. The major source of ground-water contamination is bacteria, from individual waste-disposal systems, agricultural, industrial, and municipal wastes. Areas of the county underlain by contaminated zones include only a small percentage of the total ground-water system and are separated by large volumes of ground water free of contamination. (Woodard-USGS)

  13. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection.

    PubMed

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Jesse, Katrin; von Baum, Heike; Ostermeyer, Christiane

    2014-01-21

    Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice.

  14. Poorly processed reusable surface disinfection tissue dispensers may be a source of infection

    PubMed Central

    2014-01-01

    Background Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations. Methods Reusable tissue dispensers with different surface disinfectants were randomly collected from healthcare facilities. Solutions were investigated for bacterial contamination. The efficacy of two surface disinfectants was determined in suspension tests against two isolated species directly from a contaminated solution or after 5 passages without selection pressure in triplicate. Freshly prepared use solutions were contaminated to determine survival of isolates. Results 66 dispensers containing disinfectant solutions with surface-active ingredients were collected in 15 healthcare facilities. 28 dispensers from nine healthcare facilities were contaminated with approximately 107 cells per mL of Achromobacter species 3 (9 hospitals), Achromobacter xylosoxidans or Serratia marcescens (1 hospital each). In none of the hospitals dispenser processing had been adequately performed. Isolates regained susceptibility to the disinfectants after five passages without selection pressure but were still able to multiply in different formulations from different manufacturers at room temperature within 7 days. Conclusions Neglecting adequate processing of surface disinfectant dispensers has contributed to frequent and heavy contamination of use-solutions based on surface active ingredients. Tissue dispenser processing should be taken seriously in clinical practice. PMID:24447780

  15. Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.

    PubMed

    Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K

    2018-05-31

    This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p < 0.05). Saliva contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p < 0.05), but not for FRC (p = 0.572). Upon contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.

  16. Surface interactions relevant to space station contamination problems

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.

    1988-01-01

    The physical and chemical processes at solid surfaces which can contribute to Space Station contamination problems are reviewed. Suggested areas for experimental studies to provide data to improve contamination modeling efforts are presented.

  17. The effect of cleaning on blood contamination in the dental surgery following periodontal procedures.

    PubMed

    Edmunds, L M; Rawlinson, A

    1998-10-01

    Blood contamination of 16 surfaces in the dental surgery was investigated using the Kastle-Meyer test for haemoglobin, after three types of periodontal procedures had been performed on a total of 30 patients. The effect of cleaning surfaces contaminated by blood was investigated using the same test. Cleaning materials used in the dental surgery were tested to rule out the possibility of false positive outcomes and the sensitivity of the test was determined prior to the study. The results show a marked variation in the degree of contamination and efficacy of cleaning following treatment. Overall, root planing was associated with the most widespread and frequent blood contamination and gingival surgery the least. The surgery work surface, edge of the spittoon, aspirator tube and ultrasonic scaler handpiece into which the ultrasonic insert fits, were the most frequently contaminated surfaces. The work surface, dentist's pen, light switch and handle were cleaned most effectively. The least effectively cleaned surfaces were the water dispenser switch, aspirator tube, bracket table and ultrasonic scaler handpiece. Methods for reducing this potential source of cross-infection are discussed.

  18. Susceptibility of major aquifers to surface contamination - Holmes, Humphreys, Issaquena, Sharkey, Washington, and Yazoo Counties, Mississippi

    USGS Publications Warehouse

    Moreland, Richard S.; O'Hara, Charles G.

    1994-01-01

    A geographic information system was used to integrate digital spatial data sets describing geology, slope of the land surface, depth to water table, soil permeability, and land use/land cover to rate the relative susceptibility of unconfined parts of the Mississippi River alluvial, Cockfield, and Sparta aquifers in west-central Mississippi to contamination from surface sources. Areas were rated as having a very low, low, moderate, high, or very high susceptibility to contamination from surface sources. Less than 1 percent of the Mississippi River alluvial aquifer has a very high susceptibility to surface contamination, 35 percent has a high susceptibility, 62 percent has a moderate susceptibility, and 2 percent has a low suscepti- bility. About 43 percent of the Cockfield aquifer has a high susceptibility to surface contamination, 57 percent has a moderate susceptibility, and less than 1 percent has a low susceptibility. About 41 percent of the Sparta aquifer has a high suscepti- bility, and less than 1 percent has a low suscepti- bility, and 1 percent has a low susceptibility. For all three aquifers, less than 1 percent has a very low susceptibility to surface contamination.

  19. Systems and strippable coatings for decontaminating structures that include porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  20. An OSEE Based Portable Surface Contamination Monitor

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.

    1997-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.

  1. Contamination control engineering design guidelines for the aerospace community

    NASA Technical Reports Server (NTRS)

    Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.

    1996-01-01

    Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.

  2. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility.

    PubMed

    Schumacher, Loni L; Huss, Anne R; Cochrane, Roger A; Stark, Charles R; Woodworth, Jason C; Bai, Jianfa; Poulsen, Elizabeth G; Chen, Qi; Main, Rodger G; Zhang, Jianqiang; Gauger, Phillip C; Ramirez, Alejandro; Derscheid, Rachel J; Magstadt, Drew M; Dritz, Steve S; Jones, Cassandra K

    2017-01-01

    New regulatory and consumer demands highlight the importance of animal feed as a part of our national food safety system. Porcine epidemic diarrhea virus (PEDV) is the first viral pathogen confirmed to be widely transmissible in animal food. Because the potential for viral contamination in animal food is not well characterized, the objectives of this study were to 1) observe the magnitude of virus contamination in an animal food manufacturing facility, and 2) investigate a proposed method, feed sequencing, to decrease virus decontamination on animal food-contact surfaces. A U.S. virulent PEDV isolate was used to inoculate 50 kg swine feed, which was mixed, conveyed, and discharged into bags using pilot-scale feed manufacturing equipment. Surfaces were swabbed and analyzed for the presence of PEDV RNA by quantitative real-time polymerase chain reaction (qPCR). Environmental swabs indicated complete contamination of animal food-contact surfaces (0/40 vs. 48/48, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05) and near complete contamination of non-animal food-contact surfaces (0/24 vs. 16/18, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05). Flushing animal food-contact surfaces with low-risk feed is commonly used to reduce cross-contamination in animal feed manufacturing. Thus, four subsequent 50 kg batches of virus-free swine feed were manufactured using the same system to test its impact on decontaminating animal food-contact surfaces. Even after 4 subsequent sequences, animal food-contact surfaces retained viral RNA (28/33 positive samples/total samples), with conveying system being more contaminated than the mixer. A bioassay to test infectivity of dust from animal food-contact surfaces failed to produce infectivity. This study demonstrates the potential widespread viral contamination of surfaces in an animal food manufacturing facility and the difficulty of removing contamination using conventional feed sequencing, which underscores the importance for preventing viruses from entering and contaminating such facilities.

  3. Nano-TiO2-based photocatalytic disinfection of environmental surfaces contaminated by meticillin-resistant Staphylococcus aureus.

    PubMed

    Petti, S; Messano, G A

    2016-05-01

    Traditional cleaning and disinfection methods are inefficient for complete decontamination of hospital surfaces from meticillin-resistant Staphylococcus aureus (MRSA). Additional methods, such as nano-TiO2-based photocatalytic disinfection (PCD), could be helpful. To evaluate anti-MRSA activity of PCD on polyvinyl chloride (PVC) surfaces in natural-like conditions. Two identical PVC surfaces were used, and nano-TiO2 was incorporated into one of them. The surfaces were contaminated with MRSA isolated from hospitalized patients using a mist sprayer to simulate the mode of environmental contamination caused by a carrier. MRSA cell density was assessed before contamination until 180min after contamination using Rodac plates. The differences between test and control surfaces in terms of MRSA density and log MRSA density reduction were assessed using parametric and non-parametric statistical tests. Five strains were tested, and each strain was tested five times. The highest median MRSA densities [46.3 and 43.1 colony-forming units (cfu)/cm(2) for control and test surfaces, respectively] were detected 45min after contamination. Median MRSA densities 180min after contamination were 10.1 and 0.7cfu/cm(2) for control and test surfaces, respectively (P<0.01). Log MRSA density reduction attributable to PCD was 1.16logcfu/cm(2), corresponding to 93% reduction of the baseline MRSA contamination. The disinfectant activity remained stable throughout the 25 testing occasions, despite between-test cleaning and disinfection. The anti-MRSA activity of PCD was compatible with the benchmark for surface hygiene in hospitals (<1cfu/cm(2)), but required 3h of exposure to photocatalysis. Thus, PCD could be considered for non-clinical surfaces. However, for clinical surfaces, PCD should be regarded as supplemental to conventional decontamination procedures, rather than an alternative. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Effects of fluorine contamination on spin-on dielectric thickness in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-ryeun; Hong, Soonsang; Kim, Samyoung; Oh, Changyeol; Hwang, Sung Min

    2018-03-01

    In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production. SOD film must be uniformly thin, homogeneous and free of particle defects because it has been perfectly perserved after chemical-mechanical polishing (CMP) and etching process. Spin coating is one of the most common techniques for applying SOD thin films to substrates. In spin coating process, the film thickness and uniformity are strong function of the solution viscosity, the final spin speed and the surface properties. Especially, airborne molecular contaminants (AMCs), such as HF, HCl and NH3, are known to change to surface wetting characteristics. In this work, we study the SOD film thickness as a function of fluorine contamination on the wafer surface. To examine the effects of airborne molecular contamination, the wafers are directly exposed to HF fume followed by SOD coating. It appears that the film thickness decreases by higher contact angle on the wafer surface due to fluorine contamination. The thickness of the SOD film decreased with increasing fluorine contamination on the wafer surface. It means that the wafer surface with more hydrophobic property generates less hydrogen bonding with the functional group of Si-NH in polysilazane(PSZ)-SOD film. Therefore, the wetting properties of silicon wafer surfaces can be degraded by inorganic contamination in SOD coating process.

  5. Surface decontamination compositions and methods

    DOEpatents

    Wright,; Karen, E [Idaho Falls, ID; Cooper, David C [Idaho Falls, ID; Peterman, Dean R [Idaho Falls, ID; Demmer, Ricky L [Idaho Falls, ID; Tripp, Julia L [Pocatello, ID; Hull, Laurence C [Idaho Falls, ID

    2011-03-29

    Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.

  6. Monitoring of platinum surface contamination in seven Dutch hospital pharmacies using inductively coupled plasma mass spectrometry

    PubMed Central

    Huitema, A. D. R.; Bakker, E. N.; Douma, J. W.; Schimmel, K. J. M.; van Weringh, G.; de Wolf, P. J.; Schellens, J. H. M.; Beijnen, J. H.

    2007-01-01

    Objective: To develop, validate, and apply a method for the determination of platinum contamination, originating from cisplatinum, oxaliplatinum, and carboplatinum. Methods: Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine platinum in wipe samples. The sampling procedure and the analytical conditions were optimised and the assay was validated. The method was applied to measure surface contamination in seven Dutch hospital pharmacies. Results: The developed method allowed reproducible quantification of 0.50 ng l−1 platinum (5 pg/wipe sample). Recoveries for stainless steel and linoleum surfaces ranged between 50.4 and 81.4% for the different platinum compounds tested. Platinum contamination was reported in 88% of the wipe samples. Although a substantial variation in surface contamination of the pharmacies was noticed, in most pharmacies, the laminar-airflow (LAF) hoods, the floor in front of the LAF hoods, door handles, and handles of service hatches showed positive results. This demonstrates that contamination is spread throughout the preparation rooms. Conclusion: We developed and validated an ultra sensitive and reliable ICP-MS method for the determination of platinum in surface samples. Surface contamination with platinum was observed in all hospital pharmacies sampled. The interpretation of these results is, however, complicated. PMID:17377802

  7. Indoor radiocaesium contamination in residential houses within evacuation areas after the Fukushima nuclear accident

    PubMed Central

    Yoshida-Ohuchi, Hiroko; Kanagami, Takashi; Satoh, Yasushi; Hosoda, Masahiro; Naitoh, Yutaka; Kameyama, Mizuki

    2016-01-01

    Indoor contaminants were investigated from July 2013 to January 2015 within ninety-five residential houses in five evacuation zones, Iitate village, Odaka district, and the towns of Futaba, Okuma, and Tomioka. A dry smear test was applied to the surface of materials and structures in rooms and in the roof-space of houses. We found that 134Cs and 137Cs were the dominant radionuclides in indoor surface contamination, and there was a distance dependence from the Fukushima Daiichi nuclear power plant (FDNPP). For surface contamination in Iitate village (29–49 km from the FDNPP), 24.8% of samples exceeded the detection limit, which is quite a low value, while in Okuma (<3.0 km from the FDNPP), 99.7% of samples exceeded the detection limit and surface contamination levels exceeded 20 Bq/cm2 (the value was corrected to March 2011). In residential houses in Okuma, Futaba, and Tomioka, closer to the FDNPP than those in Odaka district and Iitate village, surface contamination was inversely proportional to the square of the distance between a house and the FDNPP. In the houses closest to the FDNPP, the contribution of surface contamination to the ambient dose equivalent rate was evaluated to be approximately 0.3 μSv/h. PMID:27212076

  8. Speedy Acquisition of Surface-Contamination Samples

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Kirschner, L. E.

    1982-01-01

    Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.

  9. 10 CFR Appendix D to Part 835 - Surface Contamination Values

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...

  10. 10 CFR Appendix D to Part 835 - Surface Contamination Values

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...

  11. 10 CFR Appendix D to Part 835 - Surface Contamination Values

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Surface Contamination Values D Appendix D to Part 835 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Pt. 835, App. D Appendix D to Part 835—Surface Contamination Values The data presented in appendix D are to be used in identifying the need for...

  12. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    EPA Science Inventory

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  13. Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Connell, John W.

    2011-01-01

    Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition.

  14. Methods To Characterize Contaminant Residuals After Environmental Dredging

    EPA Science Inventory

    Environmental dredging is a common remedial action for managing contaminated sediments. However, post dredging contaminant concentrations in surface sediment are difficult to predict prior to initiating dredging actions. In some cases, post surface concentrations have been high...

  15. NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.; Mandell, M. J.

    1978-01-01

    A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.

  16. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios.

  17. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment.

    PubMed

    Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J

    2010-11-01

    Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  18. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal blankets.

  19. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    PubMed

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  20. Study of surfaces using near infrared optical fiber spectrometry

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Arendale, W. A.; Hughes, C.

    1995-01-01

    The measurement and control of cleanliness for critical surfaces during manufacturing and in service provides a unique challenge for fulfillment of environmentally benign operations. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This presentation will provide an introduction to the use of optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. Correlation of the Near Infrared (NIR) spectroscopic results with Optical Stimulated Electron Emission (OSEE) and ellipsometry will also be presented.

  1. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula

    2011-05-01

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method.more » A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.« less

  2. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula

    2010-12-16

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 - PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5)more » sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.« less

  3. Bioinspired Surface Treatments for Improved Decontamination: Silicon and Latex Polymer SLIPS Treatments

    DTIC Science & Technology

    2017-06-27

    of the simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces...Biological Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual

  4. Investigation of the effect of contaminations and cleaning processes on the surface properties of brazing surfaces

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.

    2017-03-01

    The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.

  5. Development of inspection techniques for quantitatively measuring surface contamination on SRM hardware

    NASA Technical Reports Server (NTRS)

    Law, R. D.

    1989-01-01

    A contaminant is any material or substance which is potentially undesirable or which may adversely affect any part, component, or assembly. Contamination control of SRM hardware surfaces is a serious concern, for both Thiokol and NASA, with particular concern for contaminants which may adversely affect bonding surfaces. The purpose of this study is to develop laboratory analytical techniques which will make it possible to certify the cleanliness of any designated surface, with special focus on particulates (dust, dirt, lint, etc.), oils (hydrocarbons, silicones, plasticizers, etc.), and greases (HD-2, fluorocarbon grease, etc.). The hardware surfaces of concern will include D6AC steel, aluminum alloys, anodized aluminum alloys, glass/phenolic, carbon/phenolic, NBR/asbestos-silica, and EPDM rubber.

  6. Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.

    PubMed

    Khachikian, Crist S; Harmon, Thomas C

    2002-01-01

    This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.

  7. An overview of the on-orbit contamination of the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Stuckey, W. K.

    1993-01-01

    Contamination that leads to degradation of critical surfaces becomes a vital design issue for many spacecraft programs. One of the processes that must be considered is the on-orbit accumulation of contaminants. The Long Duration Exposure Facility (LDEF) has presented an opportunity to examine the deposits on surfaces returned from orbit in order to help in understanding the deposition processes and the current models used to predict spacecraft contamination levels. The results from various investigators on the contamination of LDEF have implications for material selection, contamination models, and contamination control plans for the design of future spacecraft.

  8. Effect of surface contamination on adhesive bonding of cast pure titanium and Ti-6Al-4V alloy.

    PubMed

    Watanabe, I; Watanabe, E; Yoshida, K; Okabe, T

    1999-03-01

    There is little information regarding bond strengths of resin cements to cast titanium surfaces contaminated by investment material. This study examined the effect of surface contamination on the shear bond strength of resin cements to cast titanium and Ti-6Al-4V alloy. Two types of disks were cast from commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy ingots using an argon-arc pressure casting unit and a phosphate-bonded Al2 O3 /LiAlSiO6 investment. After casting, disks were subjected to 3 surface treatments: (1) cast surface sandblasted (50 microm-sized Al2 O3 ) for 30 seconds; (2) metal surface sanded with silicon-carbide paper (600 grit) after grinding the contaminated cast surface (approximately 200 microm in thickness); and (3) metal surface sandblasted for 30 seconds after treatment 2. Surface structures were examined after each treatment with SEM and optical microscopy. Each type of disk was then bonded with 2 types of luting materials. Bonded specimens were subjected to thermocycling for up to 50,000 cycles, and shear bond strengths were determined after 0 (baseline) and 50,000 thermocycles. Results were statistically analyzed with 3-way ANOVA (P <.05). Microscopic observation of cast CP-Ti and Ti-6Al-4V exhibited noticeable structures on the cast surfaces apparently contaminated with investment material. However, there were no statistical differences (P >.05) in the bond strengths of both cements between contaminated (treatment 1) and uncontaminated surfaces (treatment 3) for both metals at baseline and after 50,000 thermocycles. The bond strength of specimens sanded with silicon-carbide paper (treatment 2) deteriorated dramatically after 50,000 thermocycles. Contamination of the cast metal surfaces by elements of the investment during casting did not affect bond strengths of the luting materials to CP-Ti and Ti-6Al-4V.

  9. A Portable Surface Contamination Monitor Based on the Principle of Optically Stimulated Electron Emission (OSEE)

    NASA Technical Reports Server (NTRS)

    Perey, D. F.

    1996-01-01

    Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique, based on the principle of Optically Stimulated Electron Emission (OSEE), has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it is non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be sent to an external computer for archiving or analysis.

  10. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  11. Empirical measurement and model validation of infrared spectra of contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean; Gartley, Michael; Kerekes, John; Cosofret, Bogdon; Giblin, Jay

    2015-05-01

    Liquid-contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) Model utilizes radiative transfer modeling to generate synthetic imagery. Within DIRSIG, a micro-scale surface property model (microDIRSIG) was used to calculate numerical bidirectional reflectance distribution functions (BRDF) of geometric surfaces with applied concentrations of liquid contamination. Simple cases where the liquid contamination was well described by optical constants on optically at surfaces were first analytically evaluated by ray tracing and modeled within microDIRSIG. More complex combinations of surface geometry and contaminant application were then incorporated into the micro-scale model. The computed microDIRSIG BRDF outputs were used to describe surface material properties in the encompassing DIRSIG simulation. These DIRSIG generated outputs were validated with empirical measurements obtained from a Design and Prototypes (D&P) Model 102 FTIR spectrometer. Infrared spectra from the synthetic imagery and the empirical measurements were iteratively compared to identify quantitative spectral similarity between the measured data and modeled outputs. Several spectral angles between the predicted and measured emissivities differed by less than 1 degree. Synthetic radiance spectra produced from the microDIRSIG/DIRSIG combination had a RMS error of 0.21-0.81 watts/(m2-sr-μm) when compared to the D&P measurements. Results from this comparison will facilitate improved methods for identifying spectral features and detecting liquid contamination on a variety of natural surfaces.

  12. Environmental contamination with rhinovirus and transfer to fingers of healthy individuals by daily life activity.

    PubMed

    Winther, Birgit; McCue, Karen; Ashe, Kathleen; Rubino, Joseph R; Hendley, J Owen

    2007-10-01

    Rhinovirus infection may be acquired by inoculation of virus on fingertips to conjunctiva or nose (self-inoculation). The virus contaminating the fingertips may come from hand contact with someone with a cold or from virus in mucus on environmental surfaces. This study was designed to assess rhinovirus contamination of surfaces by adults with colds and rhinovirus transfer from surfaces to fingertips during normal daily activities. Fifteen adults with natural rhinovirus colds stayed overnight in a local hotel. Ten touched sites in each room were tested for rhinovirus RNA using RT-PCR. Transfer to fingertips of five subjects was examined by drying 10 microl of virus-containing mucus from each subject onto light switches, telephone dial buttons and telephone handsets. After an interval of 1 or 18 hr the subject flipped the light switch, pressed the button, held the handset. Fingertip rinses were tested for virus. Thirty five percent of the 150 environmental sites in the rooms were contaminated. Common virus-positive sites were door handles, pens, light switches, TV remote controls, faucets, and telephones. Rhinovirus was transferred from surfaces to fingertips in 18/30 (60%) trials 1 hr after contamination and in 10/30 (33%) of trials 18 hr (overnight) after contamination. Adults with colds commonly contaminate environmental surfaces with rhinovirus; virus on surfaces can be transferred to a fingertip during normal daily activities. (c) 2007 Wiley-Liss, Inc.

  13. Contamination of environmental surfaces by methicillin-resistant Staphylococcus aureus (MRSA) in rooms of inpatients with MRSA-positive body sites.

    PubMed

    Kurashige, E Jessica Ohashi; Oie, Shigeharu; Furukawa, H

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) can contaminate environmental surfaces that are frequently touched by the hands of patients with MRSA colonization/infection. There have been many studies in which the presence or absence of MRSA contamination was determined but no studies in which MRSA contamination levels were also evaluated in detail. We evaluated MRSA contamination of environmental surfaces (overbed tables, bed side rails, and curtains) in the rooms of inpatients from whom MRSA was isolated via clinical specimens. We examined the curtains within 7-14 days after they had been newly hung. The environmental surfaces were wiped using gauze (molded gauze for wiping of surface bacteria; 100% cotton, 4cm×8cm) moistened with sterile physiological saline. The MRSA contamination rate and mean counts (range) were 25.0% (6/24 samples) and 30.6 (0-255)colony-forming units (cfu)/100cm(2), respectively, for the overbed tables and 31.6% (6/19 samples) and 159.5 (0-1620)cfu/100cm(2), respectively, for the bed side rails. No MRSA was detected in 24 curtain samples. The rate of MRSA contamination of environmental surfaces was high for the overbed tables and bed side rails but low for the curtains. Therefore, at least until the 14th day of use, frequent disinfection of curtains may be not necessary. Copyright © 2016. Published by Elsevier Editora Ltda.

  14. Biocontamination and particulate detection system

    NASA Technical Reports Server (NTRS)

    Jacobs, J. M. (Inventor)

    1979-01-01

    A method for determining the characteristics and amount of microscopic contaminants lodged on a photographed surface is disclosed. An image enhanced full color photographic negative and print are taken of the contaminated surface. Three black and white prints are developed subsequently from red, green and blue separation filter overlays of the color negative. Both the color and three monochromatic prints are then scanned to extract in digital form a profile of any contaminant possibly existing on the surface. The resulting profiles are electronically analyzed and compared with data already stored relating to known contaminants.

  15. Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for Detection System Design

    DTIC Science & Technology

    2013-11-01

    STOCHASTIC RADIATIVE TRANSFER MODEL FOR CONTAMINATED ROUGH SURFACES: A...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid ...COVERED (From - To) Jan 2013 - Sep 2013 4. TITLE AND SUBTITLE Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for

  16. Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility

    PubMed Central

    Schumacher, Loni L.; Huss, Anne R.; Cochrane, Roger A.; Stark, Charles R.; Woodworth, Jason C.; Bai, Jianfa; Poulsen, Elizabeth G.; Chen, Qi; Main, Rodger G.; Zhang, Jianqiang; Gauger, Phillip C.; Ramirez, Alejandro; Derscheid, Rachel J.; Magstadt, Drew M.; Dritz, Steve S.

    2017-01-01

    New regulatory and consumer demands highlight the importance of animal feed as a part of our national food safety system. Porcine epidemic diarrhea virus (PEDV) is the first viral pathogen confirmed to be widely transmissible in animal food. Because the potential for viral contamination in animal food is not well characterized, the objectives of this study were to 1) observe the magnitude of virus contamination in an animal food manufacturing facility, and 2) investigate a proposed method, feed sequencing, to decrease virus decontamination on animal food-contact surfaces. A U.S. virulent PEDV isolate was used to inoculate 50 kg swine feed, which was mixed, conveyed, and discharged into bags using pilot-scale feed manufacturing equipment. Surfaces were swabbed and analyzed for the presence of PEDV RNA by quantitative real-time polymerase chain reaction (qPCR). Environmental swabs indicated complete contamination of animal food-contact surfaces (0/40 vs. 48/48, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05) and near complete contamination of non-animal food-contact surfaces (0/24 vs. 16/18, positive baseline samples/total baseline samples, positive subsequent samples/total subsequent samples, respectively; P < 0.05). Flushing animal food-contact surfaces with low-risk feed is commonly used to reduce cross-contamination in animal feed manufacturing. Thus, four subsequent 50 kg batches of virus-free swine feed were manufactured using the same system to test its impact on decontaminating animal food-contact surfaces. Even after 4 subsequent sequences, animal food-contact surfaces retained viral RNA (28/33 positive samples/total samples), with conveying system being more contaminated than the mixer. A bioassay to test infectivity of dust from animal food-contact surfaces failed to produce infectivity. This study demonstrates the potential widespread viral contamination of surfaces in an animal food manufacturing facility and the difficulty of removing contamination using conventional feed sequencing, which underscores the importance for preventing viruses from entering and contaminating such facilities. PMID:29095859

  17. SUDOQU, a new dose-assessment methodology for radiological surface contamination.

    PubMed

    van Dillen, Teun; van Dijk, Arjan

    2018-06-12

    A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked out demonstrating the potential applications of the methodology. . Creative Commons Attribution license.

  18. Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.

  19. Occurrence of Surface Water Contaminations: An Overview

    NASA Astrophysics Data System (ADS)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  20. Laboratory Studies on Surface Sampling of Bacillus anthracis Contamination: Summary, Gaps, and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca

    2011-11-28

    This report summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Othermore » key parameters include the ability to calculate, following contamination incidents, the (1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and (2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed and recommendations are given for future studies.« less

  1. Assessment of Surface Water Contamination from Coalbed Methane Fracturing-Derived Volatile Contaminants in Sullivan County, Indiana, USA.

    PubMed

    Meszaros, Nicholas; Subedi, Bikram; Stamets, Tristan; Shifa, Naima

    2017-09-01

    There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.

  2. Single and multiple streamer DBD micro-discharges for testing inactivation of biologically contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Prukner, Vaclav; Dolezalova, Eva; Simek, Milan

    2014-10-01

    Highly reactive environment produced by atmospheric-pressure, non-equilibrium plasmas generated by surface dielectric barrier discharges (SDBDs) may be used for inactivation of biologically contaminated surfaces. We investigated decontamination efficiency of reactive environment produced by single/multiple surface streamer micro-discharge driven by amplitude-modulated AC power in coplanar electrode geometry on biologically contaminated surface by Escherichia coli. The discharges were fed by synthetic air with water vapor admixtures at atmospheric pressure, time of treatment was set from 10 second to 10 minutes, diameters of used SDBD electrodes (single and multiple streamer) and homogeneously contaminated disc samples were equal (25 mm), the distance between the electrode and contaminated surface was 2 mm. Both a conventional cultivation and fluorescent method LIVE/DEAD Bacterial Viability kit were applied to estimate counts of bacteria after the plasma treatment. Inactivation was effective and bacteria partly lost ability to grow and became injured and viable/active but non-cultivable (VBNC/ABNC). Work was supported by the MEYS under Project LD13010, VES13 COST CZ (COST Action MP 1101).

  3. Visual Inspection of Surfaces

    NASA Technical Reports Server (NTRS)

    Hughes, David; Perez, Xavier

    2007-01-01

    This presentation evaluates the parameters that affect visual inspection of cleanliness. Factors tested include surface reflectance, surface roughness, size of the largest particle, exposure time, inspector and distance from sample surface. It is concluded that distance predictions were not great, particularly because the distance at which contamination is seen may depend on more variables than those tested. Most parameters estimates had confidence of 95% or better, except for exposure and reflectance. Additionally, the distance at which surface is visibly contaminated decreases with increasing reflectance, roughness, and exposure. The distance at which the surface is visually contaminated increased with the largest particle size. These variables were only slightly affected the observer.

  4. Method for in-situ cleaning of carbon contaminated surfaces

    DOEpatents

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2006-12-12

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.

  5. Strippable containment and decontamination coating composition and method of use

    DOEpatents

    Moore, Robert C [Edgewood, NM; Tucker, Mark D [Albuquerque, NM; Jones, Joseph A [Albuquerque, NM

    2009-04-07

    A method for containing at least a portion of radioisotopes, radionuclides, heavy metal or combination thereof contaminating a substrate wherein a containment composition is applied to the substrate. The ingredients within the containment composition interact with the contaminants on the surface of the substrate until the containment composition has polymerized to a water insoluble form containing at least a portion of the contaminates enmeshed therein. The dried composition is removed from the contaminated surface removing with the composition at least a portion of the contaminate.

  6. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.

    PubMed

    Yang, Rui; Rendell, Alistair P

    2013-05-15

    The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.

  7. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  8. USING A HEAT PULSE TO MEASURE THE FLUX BETWEEN GROUNDWATER AND SURFACE WATER

    EPA Science Inventory

    EPA estimates that 10 percent of the sediments under the surface waters of the United States are contaminated and approximately 20 percent of the superfund sites include contaminated sediments. The risk associated with these contaminated sediments is directly related to the flux...

  9. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    USGS Publications Warehouse

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  10. Surface Monitoring of CFRP Structures for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.

    2017-01-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.

  11. Payload/orbiter contamination control requirement study, volume 2, exhibit A

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Hooper, V. W.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    The computer printout data generated during the Payload/Orbiter Contamination Control Requirement Study are presented. The computer listings of the input surface data matrices, the viewfactor data matrices, and the geometric relationship data matrices for the three orbiter/spacelab configurations analyzed in this study are given. These configurations have been broken up into the geometrical surfaces and nodes necessary to define the principal critical surfaces whether they are contaminant sources, experimental surfaces, or operational surfaces. A numbering scheme was established based upon nodal numbers that relates the various spacelab surfaces to a specific surface material or function. This numbering system was developed for the spacelab configurations such that future extension to a surface mapping capability could be developed as required.

  12. Plasma cleaning of nanoparticles from EUV mask materials by electrostatics

    NASA Astrophysics Data System (ADS)

    Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.

    2008-03-01

    Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.

  13. Contamination removal using various solvents and methodologies

    NASA Technical Reports Server (NTRS)

    Jeppsen, J. C.

    1989-01-01

    Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.

  14. Active cleaning technique for removing contamination from optical surfaces in space

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.; Cruz, G. A.

    1973-01-01

    An active cleaning technique for removing contaminants from optical surfaces in space was investigated with emphasis on the feasibility of using plasma exposure as a means of in-situ cleaning. The major work accomplished includes: (1) development of an in-situ reflectometer for use in conjunction with the contaminant film deposition/cleaning facility; (2) completion of Apollo Telescope Mount (ATM) filter treatment experiments to assess the effects of plasma exposure on the UV transmittance; (3) attempts to correlate the atomic oxygen flux with cleaning rate; (4) completion of in-situ butadien contamination/plasma cleaning/UV reflectance measurement experiments; (5) carbon cleaning experiments using various gases; (6) completion of silicone contamination/cleaning experiments; and (7) experiments conducted at low chamber pressures to determine cleaning rate distribution and contamination of surfaces adjacent to those being cleaned.

  15. Study of SRM Critical Surfaces Using Near Infrared Optical Fiber Spectrometry

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Hughes, C.; Arendale, W. A.

    1997-01-01

    The measurement and control of cleanliness for critical surfaces during manufacturing and in service operations provides a unique challenge in the current thrust for environmentally benign processes. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants which are detrimental to the integrity of the bondline. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This paper will provide an introduction to the use of Near Infrared (NIR) optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. In a previous conference, experimental results for quantitative measurement of silicone and Conoco HD2 greases, and tape residues on solid rocket motor surfaces were presented. This paper will present data for metal hydroxides and discuss the use of the integrating sphere to minimize the effects of physical properties of the surfaces (such as surface roughness) on the results obtained from the chemometric methods used for quantitative analysis.

  16. Measurement of Radioactive Contamination on Work Clothing of Workers Engaged in Decontamination Operations

    NASA Astrophysics Data System (ADS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya

    To rationally judge the necessity of the contamination screening measurements required in the decontamination work regulations, a field study of the surface contamination density on the clothing of the workers engaged in decontamination operations was performed. The clothing and footwear of 20 workers was analyzed by high-purity germanium (HPGe) gamma-ray spectroscopy. The maximum radiocesium activities (134Cs + 137Cs) observed were 3600, 1300, and 2100 Bq for the work clothing, gloves, and boots, respectively, and the derived surface contamination densities were below the regulatory limit of 40 Bq/cm2. The results of this field study suggest that the upper bounds of the surface contamination density on the work clothing, gloves, and boots are predictable from the maximum soil loading density on the surface of clothing and footwear and the radioactivity concentration in soil at the site.

  17. COMPARISON OF SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY OF SURFACE FINISHES ON STAINLESS STEEL THAT REDUCE BACTERIAL ATTACHMENT

    EPA Science Inventory

    Bacteria adhere to food products and processing surfaces that can cross-contaminate other products and work surfaces (Arnold, 1998). Using materials for food processing surfaces that are resistant to bacterial contamination could enhance food safety. Stainless steel, although sus...

  18. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    PubMed

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Possible Extent and Depth of Salt Contamination in Ground Water Using Geophysical Techniques, Red River Aluminum Site, Stamps, Arkansas, April 2003

    USGS Publications Warehouse

    Stanton, Gregory P.; Kress, Wade; Hobza, Christopher M.; Czarnecki, John B.

    2003-01-01

    A surface-geophysical investigation of the Red River Aluminum site at Stamps, Arkansas, was conducted in cooperation with the Arkansas Department of Environmental Quality to determine the possible extent and depth of saltwater contamination. Water-level measurements indicate the distance to water level below land surface ranges from about 1.2 to 3.9 feet (0.37 to 1.19 meters) in shallow monitor wells and about 10.5 to 17.1 feet (3.20 to 5.21 meters) in deeper monitoring wells. The two-dimensional, direct-current resistivity method identified resistivities less than 5 ohm-meters which indicated possible areas of salt contamination occurring in near-surface or deep subsurface ground water along four resistivity lines within the site. One line located east of the site yielded data that demonstrated no effect of salt contamination. Sections from two of the five data sets were modeled. The input model grids were created on the basis of the known geology and the results and interpretations of borehole geophysical data. The clay-rich Cook Mountain Formation is modeled as 25 ohm-meters and extends from 21 meters (68.9 feet) below land surface to the bottom of the model (about 52 meters (170.6 feet)). The models were used to refine interpretation of the resistivity data and to determine extent of saltwater contamination and depth to the Cook Mountain Formation. Data from the resistivity lines indicate both near-surface and subsurface saltwater contamination. The near-surface contamination appears as low resistivity (less than 5 ohm-meters) on four of the five resistivity lines, extending up to 775 meters (2,542.8 feet) horizontally in a line that traverses the entire site south to north. Model resistivity data indicate that the total depth of saltwater contamination is about 18 meters (59 feet) below land surface. Data from four resistivity lines identified areas containing low resistivity anomalies interpreted as possible salt contamination. A fifth line located just east of the site showed no saltwater contamination.

  20. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  1. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi

    DTIC Science & Technology

    2013-09-01

    area. DOD took actions to ensure that radioactively contaminated food and bottled water did not reach the DOD-affiliated population. Military commands...material from contaminated surfaces of ships or aircraft or in water, food , or soil and dust each day while on shore. These doses were calculated for...22 2.4.4. Exposure related to Surface Contamination on Ships.......................... 22 2.4.5. Exposure from Skin Contamination

  2. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.

  3. A comparison of the surface contaminants of handwritten recycled and printed electronic parenteral nutrition prescriptions and their transfer to bag surfaces during delivery to hospital wards.

    PubMed

    Austin, Peter David; Hand, Kieran Sean; Elia, Marinos

    2014-02-01

    Handwritten recycled paper prescription for parenteral nutrition (PN) may become a concentrated source of viable contaminants, including pathogens. This study examined the effect of using fresh printouts of electronic prescriptions on these contaminants. Cellulose sponge stick swabs with neutralizing buffer were used to sample the surfaces of PN prescriptions (n = 32 handwritten recycled; n = 32 printed electronic) on arrival to the pharmacy or following printing and PN prescriptions and bags packaged together during delivery (n = 38 handwritten recycled; n = 34 printed electronic) on arrival to hospital wards. Different media plates and standard microbiological procedures identified the type and number of contaminants. Staphylococcus aureus, fungi, and mold were infrequent contaminants. nonspecific aerobes more frequently contaminated handwritten recycled than printed electronic prescriptions (into pharmacy, 94% vs 44%, fisher exact test P .001; onto wards, 76% vs 50%, p = .028), with greater numbers of colony-forming units (CFU) (into pharmacy, median 130 [interquartile range (IQR), 65260] VS 0 [075], Mann-Whitney U test, P .001; onto wards, median 120 [15320] vs 10 [040], P = .001). packaging with handwritten recycled prescriptions led to more frequent nonspecific aerobic bag surface contamination (63% vs 41%, fisher exact test P = .097), with greater numbers of CFU (median 40 [IQR, 080] VS 0 [040], Mann-Whitney U test, P = .036). The use of printed electronic PN prescriptions can reduce microbial loads for contamination of surfaces that compromises aseptic techniques.

  4. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J. Miller; T.S. Yoder

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, andmore » fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.« less

  5. Indirect latex glove contamination and its inhibitory effect on vinyl polysiloxane polymerization.

    PubMed

    Kimoto, Katsuhiko; Tanaka, Kinya; Toyoda, Minoru; Ochiai, Kent T

    2005-05-01

    The inhibitory effect of indirect latex contamination on the polymerization of vinyl polysiloxane (VPS) impression material has been previously reported. However, the transfer of specific elements that cause inhibition has not been confirmed, nor has the removal of such contaminants been reported. This study examined the surfaces of materials commonly used in restorative procedures that were contaminated by indirect latex glove contact and then evaluated for inhibition of polymerization of VPS. The effect of selected cleansing procedures was then studied. Four experimental groups (n = 8) were prepared: (1) clean vinyl gloves (control), (2) clean gingival retraction cords (control), (3) contaminated vinyl gloves, and (4) contaminated gingival retraction cord. Microscopic evaluation of the appearance and the characterization of surface particulate contamination were performed for each. Three cleansing protocols were then evaluated for efficacy in cleaning vinyl glove surfaces contaminated by latex contact (n = 10): (1) brushing with water, (2) brushing with soap/rinsing with water, (3) cleansing with rubbing alcohol. The subsequent degree of VPS polymerization inhibition was evaluated subjectively. A chi-square test was used for data analysis (alpha=.05). Particulate sulfur elements and sulfur-chloride compounds were present on the contaminated substrates. None of the 3 cleansing procedures eliminated polymerization inhibition (P =.33). Residual elemental sulfur remained on all tested surfaces. Particulate sulfur and sulfur-chloride compounds were identified as the particulate contamination that resulted in polymerization inhibition of the tested VPS dental impression material. Removal of these contaminants from the tested vinyl gloves and gingival retraction cord was not possible with the 3 cleansing protocols tested in this study.

  6. Feasibility Study of Contamination Remediation at Naval Weapons Station, Concord, California. Volume 1. Remedial Action Alternatives.

    DTIC Science & Technology

    1988-09-01

    laboratory contaminants. The surface water sampling program was augmented by clam bioaccumulation 0 studies. In these studies, clams were placed in...water and clam bioaccumulation data indicate that several of the metals found in the contaminated surface soils are also ele- vated in the surface...waters and are potentially bioavailable to aquatic organ- isms and may currently impair water quality in these areas. However, clam bioaccumulation data

  7. Contaminant trap for gas-insulated apparatus

    DOEpatents

    Adcock, James L.; Pace, Marshall O.; Christophorou, Loucas G.

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  8. Near surface geophysical techniques on subsoil contamination: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo

    2016-04-01

    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of electrical properties of the subsoil at high depths and, in some cases, a detailed assessment of dynamic processes in the subsurface environment (Binley et al., 2002). Our study confirms the link between hydrocarbons contamination and geoelectrical signal and the capability of cross-hole electrical resistivity tomographies to realize a non-invasive characterization of LNAPL contamination of the media. Although, the electrical behaviour is much more complex and the relation with the contaminants depends also by time of investigation.

  9. Sampling procedure for lake or stream surface water chemistry

    Treesearch

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  10. Multicenter evaluation of a new closed system drug-transfer device in reducing surface contamination by antineoplastic hazardous drugs.

    PubMed

    Bartel, Sylvia B; Tyler, Timothy G; Power, Luci A

    2018-02-15

    Results of a study to evaluate the effectiveness of a recently introduced closed system drug-transfer device (CSTD) in reducing surface contamination during compounding and simulated administration of antineoplastic hazardous drugs (AHDs) are reported. Wipe samples were collected from 6 predetermined surfaces in compounding and infusion areas of 13 U.S. cancer centers to establish preexisting levels of surface contamination by 2 marker AHDs (cyclophosphamide and fluorouracil). Stainless steel templates were placed over the 6 previously sampled surfaces, and the marker drugs were compounded and infused per a specific protocol using all components of the CSTD. Wipe samples were collected from the templates after completion of tasks and analyzed for both marker AHDs. Aggregated results of wipe sampling to detect preexisting contamination at the 13 study sites showed that overall, 66.7% of samples (104 of 156) had detectable levels of at least 1 marker AHD; subsequent testing after CSTD use per protocol found a sample contamination rate of 5.8% (9 of 156 samples). In the administration areas alone, the rate of preexisting contamination was 78% (61 of 78 samples); with use of the CSTD protocol, the contamination rate was 2.6%. Twenty-six participants rated the CSTD for ease of use, with 100% indicating that they were satisfied or extremely satisfied. A study involving a rigorous protocol and 13 cancer centers across the United States demonstrated that the CSTD reduced surface contamination by cyclophosphamide and fluorouracil during compounding and simulated administration. Participants reported that the CSTD was easy to use. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  11. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama, area 7

    USGS Publications Warehouse

    Mooty, W.S.

    1987-01-01

    The geohydrology and susceptibility of the seven major aquifers to surface contamination in Area 7 - Bibb, Dallas, Hale, Perry, and Wilcox Counties, are described. Aquifers in the northern part of the study area are in Paleozoic limestones and dolomite formations. Deposits in the central part of the study area are predominately of Cretaceous age and contain the Coker, Gordo, and Eutaw aquifers. Although the southern part of the study area has many deposits of Tertiary age, the Ripley Formation of Cretaceous age is the major aquifer. Contamination of any of the major aquifers is improbable because the majority of the recharge area for the primary aquifers is woodland, pasture, or farmland. Downdip from their outcrops, the major aquifers in the study area are protected from land surface contamination by relatively impermeable layers of clay and chalk. The aquifers that are highly susceptible to contamination are the ones in the limestone and dolomite formations in northern Bibb County. Sinkholes exist in the recharge area of these formations and could provide a direct link for contaminates from the land surface to the water table. An area northeast of the Selma well field is also highly susceptible to contamination. The Eutaw Formation in this area is overlain by alluvial deposits that could increase recharge to the aquifer by slowing the runoff rate of surface water. (USGS)

  12. Assessment of Potential Location of High Arsenic Contamination Using Fuzzy Overlay and Spatial Anisotropy Approach in Iron Mine Surrounding Area

    PubMed Central

    Wirojanagud, Wanpen; Srisatit, Thares

    2014-01-01

    Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest. PMID:25110751

  13. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  14. Payload/orbiter contamination control requirement study, volume 1, exhibit A

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Hooper, V. W.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    This study is to identify and quantify the expected molecular and particulate on orbit contaminant environment for selected shuttle payloads as a result of major spacelab and shuttle orbiter contaminant sources. This investigation reviews individual payload susceptibilities to contamination, identifies the combined induced environment, identifies the risk of spacelab/payload critical surface(s) degradation, and provides preliminary contamination recommendations. It also establishes limiting factors which may depend upon operational activities associated with the payloads, spacelab, and the shuttle orbiter interface or upon independent payload functional activities.

  15. Bond Testing for Effects of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Plaia, James; Evans, Kurt

    2005-01-01

    In 2003 ATK Thiokol discovered that the smocks and coveralls worn by its operations personnel for safety and contamination control were themselves contaminated with a silicone defoamer and a silicone oil. As a growing list of items have been identified as having this form of contamination, it was desirable to devise a test method to determine if the contamination level detected could cause subsequent processing concerns. The smocks and coveralls could potentially contact bonding surfaces during processing so the test method focused on dry transfer of the silicone from the clothing to the bonding surface.

  16. Model and Assessment of the Contribution of Dredged Material Disposal to Sea-Surface Contamination in Puget Sound

    DTIC Science & Technology

    1986-02-01

    DISPOSAL TO SEA-SURFACE CONTAMINATION IN PUGET SOUND J. T., Hardy Marine Research Laboratory Sequim , Washington C. E. Cowan Pacific Northwest Laboratory...spawning season. ( 1 I -"I CONCLUSIONS AND RECOMMENDATIONS Significant SSM contamination and toxicity already exists in Elliott Bay . Dredge dieposal could...disposal area of 900 ft. Typical contaminant concentrations on dredged material and baseline concentrations in the microlayer of Elliott Bay (Hardy et

  17. Estimating dermal transfer from PCB-contaminated porous surfaces.

    PubMed

    Slayton, T M; Valberg, P A; Wait, A D

    1998-06-01

    Health risks posed by dermal contact with PCB-contaminated porous surfaces have not been directly demonstrated and are difficult to estimate indirectly. Surface contamination by organic compounds is commonly assessed by collecting wipe samples with hexane as the solvent. However, for porous surfaces, hexane wipe characterization is of limited direct use when estimating potential human exposure. Particularly for porous surfaces, the relationship between the amount of organic material collected by hexane and the amount actually picked up by, for example, a person's hand touch is unknown. To better mimic PCB pickup by casual hand contact with contaminated concrete surfaces, we used alternate solvents and wipe application methods that more closely mimic casual dermal contact. Our sampling results were compared to PCB pickup using hexane-wetted wipes and the standard rubbing protocol. Dry and oil-wetted samples, applied without rubbing, picked up less than 1% of the PCBs picked up by the standard hexane procedure; with rubbing, they picked up about 2%. Without rubbing, saline-wetted wipes picked up 2.5%; with rubbing, they picked up about 12%. While the nature of dermal contact with a contaminated surface cannot be perfectly reproduced with a wipe sample, our results with alternate wiping solvents and rubbing methods more closely mimic hand contact than the standard hexane wipe protocol. The relative pickup estimates presented in this paper can be used in conjunction with site-specific PCB hexane wipe results to estimate dermal pickup rates at sites with PCB-contaminated concrete.

  18. Methamphetamine residue dermal transfer efficiencies from household surfaces.

    PubMed

    Van Dyke, Mike; Martyny, John W; Serrano, Kate A

    2014-01-01

    Methamphetamine contamination from illegal production operations poses a potential health concern for emergency responders, child protective services, law enforcement, and children living in contaminated structures. The objective of this study was to evaluate dermal transfer efficiencies of methamphetamine from contaminated household surfaces. These transfer efficiencies are lacking for methamphetamine, and would be beneficial for use in exposure models. Surfaces were contaminated using a simulated smoking method in a stainless steel chamber. Household surfaces were carpet, painted drywall, and linoleum. Dermal transfer efficiencies were obtained using cotton gloves for two hand conditions, dry or saliva moistened (wet). In addition, three contact scenarios were evaluated for both hand conditions: one, two, or three contacts with contaminated surfaces. Dermal transfer efficiencies were calculated for both hand conditions and used as inputs in a Stochastic Human Exposure and Dose Simulation model (SHEDS-Multimedia, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, N.C.). Results of this study showed that average dermal transfer efficiencies of methamphetamine ranged from 11% for dry hands to 26% for wet hands. There was a significantly higher wet transfer as compared to dry transfer for all surfaces. For wet hands, dermal transfer depended on surface type with higher transfer from carpet and linoleum as compared to drywall. Based on our estimates of dermal transfer efficiency, a surface contamination clearance level of 1.5 μg/100 cm(2) may not ensure absorbed doses remain below the level associated with adverse health effects in all cases. Additional dermal transfer studies should be performed using skin surrogates that may better predict actual skin transfer.

  19. PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION

    EPA Science Inventory

    Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...

  20. A study on EUV reticle surface molecular contamination under different storage conditions in a HVM foundry fab

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yatzor, Brett; Taylor, Ron; Wood, Obert; Mangat, Pawitter

    2017-03-01

    The prospect of EUVL (Extreme Ultraviolet Lithography) insertion into HVM (High Volume Manufacturing) has never been this promising. As technology is prepared for "lab to fab" transition, it becomes important to comprehend challenges associated with integrating EUVL infrastructure within existing high volume chip fabrication processes in a foundry fab. The existing 193nm optical lithography process flow for reticle handling and storage in a fab atmosphere is well established and in-fab reticle contamination concerns are mitigated with the reticle pellicle. However EUVL reticle pellicle is still under development and if available, may only provide protection against particles but not molecular contamination. HVM fab atmosphere is known to be contaminated with trace amounts of AMC's (Atmospheric Molecular Contamination). If such contaminants are organic in nature and get absorbed on the reticle surface, EUV photon cause photo-dissociation resulting into carbon generation which is known to reduce multilayer reflectivity and also degrades exposure uniformity. Chemical diffusion and aggregation of other ions is also reported under the e-beam exposure of a EUV reticle which is known to cause haze issues in optical lithography. Therefore it becomes paramount to mitigate absorbed molecular contaminant concerns on EUVL reticle surface. In this paper, we have studied types of molecular contaminants that are absorbed on an EUVL reticle surface under HVM fab storage and handling conditions. Effect of storage conditions (gas purged vs atmospheric) in different storage pods (Dual pods, Reticle Clamshells) is evaluated. Absorption analysis is done both on ruthenium capping layer as well as TaBN absorber. Ru surface chemistry change as a result of storage is also studied. The efficacy of different reticle cleaning processes to remove absorbed contaminant is evaluated as well.

  1. “Life-like” assessment of antimicrobial surfaces by a new touch transfer assay displays strong superiority of a copper alloy compared to silver containing surfaces

    PubMed Central

    Tofern, Sabrina; Kunz, Wladimir; Schütze, Sara; Riecke, Michael; Solbach, Werner; Wuske, Thomas

    2017-01-01

    Transmission of bacteria from inanimate surfaces in healthcare associated environments is an important source of hospital acquired infections. A number of commercially available medical devices promise to fulfill antibacterial activity to reduce environmental contamination. In this study we developed a touch transfer assay modeling fingerprint transmission to investigate the antibacterial activity of surfaces, with confirmed antibacterial activity by a modified ISO 22196 (JIS Z 2801) assay to test such surfaces under more realistic conditions. Bacteria were taken up from a dry standardized primary contaminated surface (PCS) with disinfected fingers or fingers covered with sterile and moistened cotton gloves. Subsequently, bacteria were transferred by pressing on secondary contaminated surfaces (SCS) with or without potential antibacterial activity and the relative reduction rate was determined after 24 h. A stable transmission rate between PCS and SCS was observed using moistened sterile gloves. A copper containing alloy displayed at least a tenfold reduction of the bacterial load consistently reaching less than 2.5 cfu/cm2. In contrast, no significant reduction of bacterial contamination by silver containing surfaces and matured pure silver was observed in the touch transfer assay. With the touch transfer assay we successfully established a new reproducible method modeling cross contamination. Using the new method we were able to demonstrate that several surfaces with confirmed antimicrobial activity in a modified ISO 22196 (JIS Z 2801) assay lacked effectiveness under defined ambient conditions. This data indicate that liquid based assays like the ISO 22196 should be critically reviewed before claiming antibacterial activity for surfaces in the setting of contamination of dry surfaces by contact to the human skin. We suggest the newly developed touch transfer assay as a new additional tool for the assessment of potential antimicrobial surfaces prior utilization in hospital environments. PMID:29135999

  2. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination.

    PubMed

    Otter, J A; Donskey, C; Yezli, S; Douthwaite, S; Goldenberg, S D; Weber, D J

    2016-03-01

    Viruses with pandemic potential including H1N1, H5N1, and H5N7 influenza viruses, and severe acute respiratory syndrome (SARS)/Middle East respiratory syndrome (MERS) coronaviruses (CoV) have emerged in recent years. SARS-CoV, MERS-CoV, and influenza virus can survive on surfaces for extended periods, sometimes up to months. Factors influencing the survival of these viruses on surfaces include: strain variation, titre, surface type, suspending medium, mode of deposition, temperature and relative humidity, and the method used to determine the viability of the virus. Environmental sampling has identified contamination in field-settings with SARS-CoV and influenza virus, although the frequent use of molecular detection methods may not necessarily represent the presence of viable virus. The importance of indirect contact transmission (involving contamination of inanimate surfaces) is uncertain compared with other transmission routes, principally direct contact transmission (independent of surface contamination), droplet, and airborne routes. However, influenza virus and SARS-CoV may be shed into the environment and be transferred from environmental surfaces to hands of patients and healthcare providers. Emerging data suggest that MERS-CoV also shares these properties. Once contaminated from the environment, hands can then initiate self-inoculation of mucous membranes of the nose, eyes or mouth. Mathematical and animal models, and intervention studies suggest that contact transmission is the most important route in some scenarios. Infection prevention and control implications include the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination.

    PubMed

    Yang, Yuan-Yuan; Zhao, Jian-Liang; Liu, You-Sheng; Liu, Wang-Rong; Zhang, Qian-Qian; Yao, Li; Hu, Li-Xin; Zhang, Jin-Na; Jiang, Yu-Xia; Ying, Guang-Guo

    2018-03-01

    We systematically investigated the occurrence and distribution of 93 pharmaceuticals and personal care products (PPCPs) and 5 artificial sweeteners (ASs) in surface water and groundwater of Dongjiang River basin in south China. In surface water, 52 compounds were detected with median concentrations ranging from 0.06ng/L to 504ng/L, while in groundwater, 33 compounds were detected with concentrations up to 4580ng/L for acesulfame. PPCPs and ASs were widely detected in the surface water and groundwater samples, which indicated contamination by domestic wastewater in the surface water and groundwater of Dongjiang River basin. Temporal and spatial variations of the detected chemicals were observed in surface water. Acesulfame, sucralose and cyclamate can be used as wastewater indicators to imply contamination in groundwater caused by domestic wastewater due to their hydrophilicity, anthropogenic sources and ubiquity in groundwater. Moreover, the detection of the readily degradable ASs, cyclamate, was a strong indication of untreated wastewater in groundwater. Sucralose was found to be a suitable wastewater indicator to reflect domestic wastewater contamination in surface water and groundwater qualitatively and quantitatively, and it can be used to evaluate wastewater burden in surface water and groundwater of Dongjiang River basin. The wastewater burden data from this survey implied serious contamination in surface water and groundwater by domestic wastewater at Shima River, a tributary of the Dongjiang River. The findings from this study suggest that the selected labile and conservative chemicals can be used as indication of wastewater contamination for aquatic environments qualitatively and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Vacuum Ultraviolet Radiation Desorption of Molecular Contaminants Deposited on Quartz Crystal Microbalances

    NASA Technical Reports Server (NTRS)

    Albyn, Keith; Burns, Dewitt

    2006-01-01

    Recent quartz crystal microbalance measurements made in the Marshall Space Flight Center, Photo-Deposition Facility, for several materials, recorded a significant loss of deposited contaminants when the deposition surface of the microbalance was illuminated by a deuterium lamp. These measurements differ from observations made by other investigators in which the rate of deposition increased significantly when the deposition surface was illuminated with vacuum ultraviolet radiation. These observations suggest that the accelerated deposition of molecular contaminants on optically sensitive surfaces is dependant upon the contaminant being deposited and must be addressed during the materials selection process by common material screening techniques.

  5. A study of the effectiveness of particulate cleaning protocols on intentionally contaminated niobium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.; Ciancio, Elizabeth J.; Keyes, Katharine A.

    2009-11-01

    Particulate contamination on the surface of SRF cavities limits their performance via the enhanced generation of field-emitted electrons. Considerable efforts are expended to actively clean and avoid such contamination on niobium surfaces. The protocols in active use have been developed via feedback from cavity testing. This approach has the risk of over-conservatively ratcheting an ever increasing complexity of methods tied to particular circumstances. A complementary and perhaps helpful approach is to quantitatively assess the effectiveness of candidate methods at removing intentional representative particulate contamination. Toward this end, we developed a standardized contamination protocol using water suspensions of Nb{sub 2}O{sub 5}more » and SS 316 powders applied to BCP’d surfaces of standardized niobium samples yielding particle densities of order 200 particles/mm{sup 2}. From these starting conditions, controlled application of high pressure water rinse, ultrasonic cleaning, or CO{sub 2} snow jet cleaning was applied and the resulting surfaces examined via SEM/scanning EDS with particle recognition software. Results of initial parametric variations of each will be reported.« less

  6. Influenza virus contamination of common household surfaces during the 2009 influenza A (H1N1) pandemic in Bangkok, Thailand: implications for contact transmission.

    PubMed

    Simmerman, James Mark; Suntarattiwong, Piyarat; Levy, Jens; Gibbons, Robert V; Cruz, Christina; Shaman, Jeffrey; Jarman, Richard G; Chotpitayasunondh, Tawee

    2010-11-01

    Rational infection control guidance requires an improved understanding of influenza transmission. We studied households with an influenza-infected child to measure the prevalence of influenza contamination, the effect of hand washing, and associations with humidity and temperature. We identified children with influenza and randomly assigned their households to hand washing and control arms. Six common household surfaces and the fingertips of the index patient and symptomatic family members were swabbed. Specimens were tested by real-time reverse-transcription polymerase chain reaction (rRT-PCR), and specimens with positive results were placed on cell culture. A handheld psychrometer measured meteorological data. Sixteen (17.8%) of 90 households had influenza A-positive surfaces by rRT-PCR, but no viruses could be cultured. The fingertips of 15 (16.6%) of the index patients had results positive for influenza A, and 1 virus was cultured. Index patients with seasonal influenza infections shed more virus than did patients with pandemic influenza infection. Control households had a higher prevalence of surface contamination (11 [24.4%] of 45) than did hand washing households (5 [11.1%] of 45); prevalence risk difference (PRD), 13.3%; [95% confidence interval {CI}, −2.2% to 28.9%]; P = .09). Households in which the age of the index patient was ≤8 years had a significantly higher prevalence of contamination (PRD ,19.1%; 95% CI, 5.3% -32.9%; P = .02). Within the strata of households with secondary infections, an effect of lower absolute humidity is suggested (P = .07). We documented influenza virus RNA contamination on household surfaces and on the fingertips of ill children. Homes with younger children were more likely than homes of older children to have contaminated surfaces. Lower absolute humidity favors surface contamination in households with multiple infections. Increased hand washing can reduce influenza contamination in the home.

  7. Potential of coconut shell activated carbon (CSAC) in removing contaminants for water quality improvement: A critical review

    NASA Astrophysics Data System (ADS)

    Akhir, Muhammad Fitri Mohd; Saad, Noor Aida; Zakaria, Nor Azazi

    2017-10-01

    Commonly, water contaminations occur due to human-induced conditions such as industrial discharge and urban activities. The widely identified contaminants are heavy metal. The toxicity of those heavy metal elements is high and very poisonous to humans' health and environment even at lower dose or concentration of exposure. Chronic poisoning can cause fatal or defect to one's body or environment. Organic contaminants such as oil and microbial are also found due to decomposition of organic matter. The excellent quality adsorption of contaminants is highly related to surface area, pore size, pore volume, and amount plus type of functional group on surface of CSAC. The higher the surface area and pore volume, the higher adsorption that CSAC have towards contaminants. In comparison to meso-pore and macro-pore, micro-pore is better for trapping and adsorbing water contaminants. The purpose of this article is to critically review the potential of CSAC in increasing adsorption to remove contaminants for water quality improvement. A critical review is implemented using search engine like Science Direct. Alkali-modification is shown to have good adsorption in anion elements and organic matter due to improvement of hydrophobic organic compound (HOC) while acid-modification is good in cation elements adsorption. Strong alkali impregnated solution makes CSAC more hydrophobic and positively charge especially after increasing the impregnation dosage. Strong acid of adsorbate affects the quality of adsorption by reducing the surface area, pore volume and it also breaks the Van der Waals forces between adsorbent and adsorbate. However, the formation of oxygen helps the activated carbon surface to become more hydrophilic and negative charge is produced. It helps the effectiveness of metal adsorption. Therefore, by controlling dosage and types of functional groups on surface of CSAC and the pH of adsorbate, it can contribute to high adsorption of organic and inorganic contaminants in the water.

  8. The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake.

    PubMed

    Dessouki, Tarik C E; Hudson, Jeff J; Neal, Brian R; Bogard, Matthew J

    2005-08-01

    We investigated the usefulness of phytoplankton for the removal of surface water contaminants. Nine large mesocosms (92.2m(3)) were suspended in the flooded DJX uranium pit at Cluff Lake (Saskatchewan, Canada), and filled with highly contaminated mine water. Each mesocosm was fertilized with a different amount of phosphorus throughout the 35 day experiment to stimulate phytoplankton growth, and to create a range in phosphorus load (g) to examine how contaminants may be affected by different nutrient regimes. Algal growth was rapid in fertilized mesocosms (as demonstrated by chlorophyll a profiles). As phosphorus loads increased there were significant declines (p<0.05) in the surface water concentrations of As, Co, Cu, Mn, Ni, and Zn. This decline was near significant for uranium (p=0.065). The surface water concentrations of Ra-226, Mo, and Se showed no relationship to phosphorus load. Contaminant concentrations in sediment traps suspended at the bottom of each mesocosm generally showed the opposite trend to that observed in the surface water, with most contaminants (As, Co, Cu, Mn, Ni, Ra-226, U, and Zn) exhibiting a significant positive relationship (p<0.05) with phosphorus load. Selenium and Mo did not respond to nutrient treatments. Our results suggest that phytoremediation has the potential to lower many surface water contaminants through the sedimentation of phytoplankton. Based on our results, we estimate that the Saskatchewan Surface Water Quality Objectives (SSWQO) for DJX pit would be met in approximately 45 weeks for Co, 65 weeks for Ni, 15 weeks for U, and 5 weeks for Zn.

  9. Risk analysis of Listeria spp. contamination in two types of ready-to-eat chicken meat products.

    PubMed

    Keeratipibul, Suwimon; Lekroengsin, Sumalin

    2009-01-01

    This study was conducted to determine the risk of Listeria contamination in frozen ready-to-eat roasted and steamed chicken meat in a chicken plant in Thailand. Environmental surfaces were divided into three zones. Zone 1 included surfaces in direct contact with products. Zones 2 and 3 included indirect contact surfaces; zone 2 was next to zone 1, and zone 3 was located next to zone 2 and relatively far from the product. A mathematical model for the probability of product contamination after contact with contaminated zone 1 surfaces was established. This model was augmented by an already established model for the probability of Listeria contamination on zone 1 surfaces. Sensitivity analysis revealed that the prevalence of Listeria on zone 1 surfaces before cleaning and sanitizing, production time, and concentration and contact time of sanitizer were correlated with contamination of both products. Alternative risk management measures for reducing the risk of Listeria contamination were developed using sanitizer concentrations of 0.25 to 1.25% (vol/vol), sanitizer contact times of 5 to 20 min, and production times of 5 to 20 h. The plant's risk manager chose a 0.25% (vol/vol) sanitizer concentration, a contact time of 20 min, and a production time of 20 h. After implementation of the selected risk management option, the prevalence of Listeria on roasted and steamed products was reduced by 2.19 and 2.01%, respectively. The prevalence of Listeria in zones 1, 2, and 3 was also reduced by 3.13, 11.24, and 25.66%, respectively.

  10. Residual tobacco smoke pollution in used cars for sale: air, dust, and surfaces.

    PubMed

    Matt, Georg E; Quintana, Penelope J E; Hovell, Melbourne F; Chatfield, Dale; Ma, Debbie S; Romero, Romina; Uribe, Anna

    2008-09-01

    Regular tobacco use in the enclosed environment of a car raises concerns about longer-term contamination of a car's microenvironment with residual secondhand smoke pollutants. This study (a) developed and compared methods to measure residual contamination of cars with secondhand smoke, (b) examined whether cars of smokers and nonsmokers were contaminated by secondhand smoke, and (c) how smoking behavior and restrictions affected contamination levels. Surface wipe, dust, and air samples were collected in used cars sold by nonsmokers (n = 20) and smokers (n = 87) and analyzed for nicotine. Sellers were interviewed about smoking behavior and restrictions, and car interiors were inspected for signs of tobacco use. Cars of smokers who smoked in their vehicles showed significantly elevated levels of nicotine (p < .001) in dust, on surfaces, and in the air compared with nonsmoker cars with smoking ban. When smokers imposed car smoking bans, air nicotine levels were significantly lower (p < .01), but dust and surface contamination levels remained at similar levels. Smoking more cigarettes in the car and overall higher smoking rate of the seller were significantly associated with higher secondhand smoke contamination of the car (p < .001). Use of a cutpoint for nicotine levels from surface wipe samples correctly identified 82% of smoker cars without smoking bans, 75% of smoker cars with bans, and 100% of nonsmoker cars. Surface nicotine levels provide a relatively inexpensive and accurate method to identify cars and other indoor environments contaminated with residual secondhand smoke. Disclosure requirements and smoke-free certifications could help protect nonsmoking buyers of used cars.

  11. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    EPA Science Inventory

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  12. X-ray fluorescence surface contaminant analyzer: A feasibility study

    NASA Technical Reports Server (NTRS)

    Eldridge, Hudson B.

    1988-01-01

    The bonding of liner material to the inner metal surfaces of solid rocket booster cases is adversely affected by minute amounts of impurities on the metal surface. Suitable non-destructive methods currently used for detecting these surface contaminants do not provide the means of identifying their elemental composition. The feasibility of using isotopic source excited energy dispersive X-ray fluorescence as a possible technique for elemental analysis of such contaminants is investigated. A survey is made of the elemental compositions of both D-6ac steel, a common construction material for the booster cases, and Conoco HD-2 grease, a common surface contamination. Source and detector choices that maximize signal to noise ratio in a Recessed Source Geometry are made. A Monte Carlo simulation is then made of the optimized device incorporating the latest available X-ray constants at the energy of the chosen source to determine the device's response to a D-6ac steel surface contained with Conoco HD-2 grease.

  13. Study of Pyrex and quartz insulators contamination effect on the X-ray intensity in a 4-kJ plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: mortezahabibi@aut.ac.ir; Sharifi, R.; Amrollahi, R.

    2013-12-15

    The variation of the X-ray intensity has been investigated with the Pyrex and quartz insulators surface contamination in a 4-kJ plasma focus device with argon gas at 11.5-kV charging voltage. Elemental analysis (EDAX) showed that the Cu evaporated from the electrode material and was deposited on the sleeve surface improves the breakdown conditions. A small level of sleeve contamination by copper is found to be essential for good focusing action and high HXR intensity. The SEM imaging showed the grain-type structure of Cu formed on the surface and it changed the surface property. Resistance measurements of original and coated Pyrexmore » surface proved that the copper deposition on the sleeve surface will reduce its resistance as compared to the almost infinitely large resistance of the uncontaminated sleeve. As the contamination is surpassed to some critical level, the HXR intensity from the device is deteriorated.« less

  14. Self-cleaning of superhydrophobic surfaces by spontaneously jumping condensate drops

    NASA Astrophysics Data System (ADS)

    Wisdom, Katrina; Watson, Jolanta; Watson, Gregory; Chen, Chuan-Hua

    2012-11-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a new self-cleaning mechanism, whereby condensate drops spontaneously jump upon coalescence on a superhydrophobic surface, and the merged drop self-propels away from the surface along with the contaminants. The jumping-condensate mechanism is shown to autonomously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by external wind flow. Our findings offer new insights for the development of self-cleaning materials.

  15. Contamination effects study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The in-situ optical surface measurement system is a facility designed to study the deleterious effects of particulate materials on the surface reflectivities of optical materials in the vacuum ultraviolet (VUV). This arrangement is designed to simulate the on-orbit effects of contamination and degradation of optical surfaces. This simulation is accomplished through the use of non-coherent VUV sources illuminating optical surfaces located in a high vacuum chamber. Several sources of contamination are employed. The reflectivity is measured both at the specular reflection as well as at two scattered positions, forward and reverse. The system components are described and an operating procedure is given.

  16. Limitations of the efficacy of surface disinfection in the healthcare setting.

    PubMed

    Williams, Gareth J; Denyer, Stephen P; Hosein, Ian K; Hill, Dylan W; Maillard, Jean-Yves

    2009-06-01

    We examined the efficacy of 2 commercially available wipes to effectively remove, kill, and prevent the transfer of both methicillin-resistant and methicillin-susceptible Staphylococcus aureus from contaminated surfaces. Although wipes play a role in decreasing the number of pathogenic bacteria from contaminated surfaces, they can potentially transfer bacteria to other surfaces if they are reused.

  17. The influence of salivary contamination on shear bond strength of dentin adhesive systems.

    PubMed

    Park, Jeong-won; Lee, Kyung Chae

    2004-01-01

    This study evaluated the influence of salivary contamination during dentin bonding procedures on shear bond strength and investigated the effect of contaminant-removing treatments on the recovery of bond strength for two dentin bonding agents. One hundred and ten human molars were embedded in cylindrical molds with self-curing acrylic resin. The occlusal dentin surface was exposed by wet grinding with #800 silicon carbide abrasive paper. The teeth were divided into five groups for One-step (OS) (BISCO, Inc) and six groups for Clearfil SE Bond (SE) (Kuraray Co, Ltd, Osaka, Japan). For One-step, the grinding surface was treated with 32% phosphoric acid; BAC (BISCO Inc) and divided into five groups: OS control group (uncontaminated), OS I (salivary contamination, blot dried), OS II (salivary contamination, completely dried), OS III (salivary contamination, wash and blot dried) and OS IV (salivary contamination, re-etching for 10 seconds, wash and blot dried). For SE bond, the following surface treatments were done: SE control group (primer applied to the fresh dentin surface), SE I (after salivary contamination, primer applied), SE II (primer, salivary contamination, dried), SE III (primer, salivary contamination, wash and dried), SE IV (after procedure of SE II, re-application of primer) and SE V (after procedure of SE III, re-application of primer). Each bonding agent was applied and light cured for 10 seconds. Clearfil AP-X (Kuraray Co, Ltd) composite was packed into the Ultradent mount jig mold and light cured for 40 seconds. The bonded specimens were stored for 24 hours in a 37 degrees C waterbath. The shear bond strengths were measured using an Instron testing machine (Model 4202, Instron Corp). The data for each group were subjected to one-way ANOVA followed by the Newman-Keuls test to make comparisons among the groups. The results were as follows: In the One-step groups, the OS II group showed statistically significant lower shear bond strength than the OS control, I, III and IV (p<0.05). In the Clearfil SE Bond groups, the SE II and SE III groups had decreased shear bond strength compared with the control and SE I, SE IV and SE V groups (p<0.05). In conclusion, when using One-step total etch adhesive and when the etched surface is contaminated by saliva, blotting the surface and applying the primer can recover the bond strength. Complete drying of the salivary contaminated surface should be avoided. In the Clearfil SE Bond groups, the re-priming treatment (SE IV and SE V) resulted in the recovery of shear bond strength in the specimens contaminated after priming.

  18. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.

  19. Induced Contamination Predictions for JAXA's MPAC&SEED Devices

    NASA Technical Reports Server (NTRS)

    Steagall, Courtney; Smith, Kendall; Huang, Alvin; Soares, Carlos; Mikatarian, Ron

    2008-01-01

    Externally mounted ISS payloads are exposed to the induced ISS environment, including material outgassing and thruster plume contamination. The Boeing Space Environments Team developed analytical and semiempirical models to predict material outgassing and thruster plume induced contamination. JAXA s SM/MPAC&SEED experiment provides an unique opportunity to compare induced contamination predications with measurements. Analysis results are qualitatively consistent with XPS measurements. Calculated depth of contamination within a factor of 2-3 of measured contamination. Represents extremely good agreement, especially considering long duration of experiment and number of outgassing sources. Despite XPS limitations in quantifying plume contamination, the measured and predicted results are of similar scale for the wake-facing surfaces. JAXA s JEM/MPAC&SEED experiment will also be exposed to induced contamination due to JEM and ISS hardware. Predicted material outgassing induced contamination to JEM/MPAC&SEED ranges from 44 to 262 (depending on surface temperature) for a 3 year exposure duration.

  20. MSFC Skylab contamination control systems mission evaluation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Cluster external contamination control evaluation was made throughout the Skylab Mission. This evaluation indicated that contamination control measures instigated during the design, development, and operational phases of this program were adequate to reduce the general contamination environment external to the Cluster below the threshold senstivity levels for experiments and affected subsystems. Launch and orbit contamination control features included eliminating certain vents, rerouting vents for minimum contamination impact, establishing filters, incorporating materials with minimum outgassing characteristics and developing operational constraints and mission rules to minimize contamination effects. Prior to the launch of Skylab, contamination control math models were developed which were used to predict Cluster surface deposition and background brightness levels throughout the mission. The report summarizes the Skylab system and experiment contamination control evaluation. The Cluster systems and experiments evaluated include Induced Atmosphere, Corollary and ATM Experiments, Thermal Control Surfaces, Solar Array Systems, Windows and Star Tracker.

  1. Tutorial on Atomic Oxygen Effects and Contamination

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2017-01-01

    Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.

  2. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  3. Contamination of the environment by special purpose centrifuges used in clinical laboratories.

    PubMed Central

    Harper, G J

    1981-01-01

    The generation of aerosols and the contamination of surfaces arising from the use of a number of special purpose centrifuges have been measured. Except when sealed containers were used all the equipment tested generated airborne particles and contaminated surrounding surfaces. The magnitude of this contamination was shown to be associated with several factors, and it could be considerably reduced by the use of sealed containers, and by fitting air filters. The significance of these findings and their application are discussed. PMID:7031096

  4. SURFACE DECONTAMINATION EFFICACY STUDIES FOR ...

    EPA Pesticide Factsheets

    Technical Brief This Technical Brief summarizes the findings from three studies in which the decontamination efficacy was determined for various liquid contaminants when applied to various surfaces that are contaminated with blister agents (vesicants).This may provide decision-makers with practical information on surface decontaminations options during a blister agent response.

  5. Effect of Surface Properties on Colloid Retention on Natural and Surrogate Produce Surfaces.

    PubMed

    Lazouskaya, Volha; Sun, Taozhu; Liu, Li; Wang, Gang; Jin, Yan

    2016-12-01

    Bacterial contamination of fresh produce is a growing concern in food industry. Pathogenic bacteria can attach to and colonize the surfaces of fresh produce and cause disease outbreaks among consumers. Surface properties of both bacteria and produce affect bacterial contamination; however, the effects of produce roughness, topography, and hydrophobicity on bacterial retention are still poorly understood. In this work, we used spherical polystyrene colloids as bacterial surrogates to investigate colloid retention on and removal (by rinsing) from fresh produce surfaces including tomato, orange, apple, lettuce, spinach, and cantaloupe, and from surrogate produce surface Sharklet (a micro-patterned polymer). All investigated surfaces were characterized in terms of surface roughness and hydrophobicity (including contact angle and water retention area measurements). The results showed that there was no single parameter that dominated colloid retention on fresh produce, yet strong connection was found between colloid retention and water retention and distribution on all the surfaces investigated except apple. Rinsing was generally not efficient in removing colloids from produce surfaces, which suggests the need to modify current cleaning procedures and to develop novel contamination prevention strategies. This work offers a physicochemical approach to a food safety problem and improves understanding of mechanisms leading to produce contamination. © 2016 Institute of Food Technologists®.

  6. Surface Contamination by Radon Daughters Measured by Ionization-Heat NTD Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Navick, X.-F.

    2008-05-01

    The discrimination power of the NTD ionization-heat detectors to distinguish nuclear recoils from electron recoils is affected by events interpreted as surface events. On the basis of the data from EDELWEISS I and first data taking of EDELWEISS-2, we present a coherent interpretation and direct evidence that surface events occur and are due to radon daughter deposition on detector surface and close-by surfaces. The estimation of the surface activities of contaminated surface are extracted from the new data taking.

  7. A method for Removing Surface Contamination on Ultra-pure Copper Spectrometer Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Seifert, Allen; Aalseth, Craig E.

    Spectrometers for the lowest-level radiometric measurements require materials of extreme radiopurity. Measurements of rare nuclear decays, e.g. neutrinoless double-beta decay, can require construction and shielding materials with bulk radiopurity reaching one micro-Becquerel per kilogram or less. When such extreme material purity is achieved, surface contamination, particularly solid daughters in the natural radon decay chains, can become the limiting background. High-purity copper is an important material for ultra-low-background spectrometers and thus is the focus of this work. A method for removing surface contamination at very low levels without attacking the bulk material is described. An assay method using a low-background proportionalmore » counter made of the material under examination is employed, and the resulting preliminary result of achievable surface contamination levels is presented.« less

  8. Methods for Recovering Microorganisms from Solid Surfaces Used in the Food Industry: A Review of the Literature

    PubMed Central

    Ismaïl, Rached; Aviat, Florence; Michel, Valérie; Le Bayon, Isabelle; Gay-Perret, Perrine; Kutnik, Magdalena; Fédérighi, Michel

    2013-01-01

    Various types of surfaces are used today in the food industry, such as plastic, stainless steel, glass, and wood. These surfaces are subject to contamination by microorganisms responsible for the cross-contamination of food by contact with working surfaces. The HACCP-based processes are now widely used for the control of microbial hazards to prevent food safety issues. This preventive approach has resulted in the use of microbiological analyses of surfaces as one of the tools to control the hygiene of products. A method of recovering microorganisms from different solid surfaces is necessary as a means of health prevention. No regulation exists for surface microbial contamination, but food companies tend to establish technical specifications to add value to their products and limit contamination risks. The aim of this review is to present the most frequently used methods: swabbing, friction or scrubbing, printing, rinsing or immersion, sonication and scraping or grinding and describe their advantages and drawbacks. The choice of the recovery method has to be suitable for the type and size of the surface tested for microbiological analysis. Today, quick and cheap methods have to be standardized and especially easy to perform in the field. PMID:24240728

  9. Methods for recovering microorganisms from solid surfaces used in the food industry: a review of the literature.

    PubMed

    Ismaïl, Rached; Aviat, Florence; Michel, Valérie; Le Bayon, Isabelle; Gay-Perret, Perrine; Kutnik, Magdalena; Fédérighi, Michel

    2013-11-14

    Various types of surfaces are used today in the food industry, such as plastic, stainless steel, glass, and wood. These surfaces are subject to contamination by microorganisms responsible for the cross-contamination of food by contact with working surfaces. The HACCP-based processes are now widely used for the control of microbial hazards to prevent food safety issues. This preventive approach has resulted in the use of microbiological analyses of surfaces as one of the tools to control the hygiene of products. A method of recovering microorganisms from different solid surfaces is necessary as a means of health prevention. No regulation exists for surface microbial contamination, but food companies tend to establish technical specifications to add value to their products and limit contamination risks. The aim of this review is to present the most frequently used methods: swabbing, friction or scrubbing, printing, rinsing or immersion, sonication and scraping or grinding and describe their advantages and drawbacks. The choice of the recovery method has to be suitable for the type and size of the surface tested for microbiological analysis. Today, quick and cheap methods have to be standardized and especially easy to perform in the field.

  10. Public-health assessment for Mottolo Pig Farm, Raymond, Rockingham County, New Hampshire, Region 1. CERCLIS NO. NHD980503361. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-20

    The Mottolo Pig Farm National Priorities List (NPL) Site is located east of Blueberry Hill Road, in Rockingham County, approximately three miles west of the center of Raymond, New Hampshire. Contamination at the Mottolo Pig Farm Site includes contaminated groundwater, soil, surface water, and sediments. Site contaminants consist primarily of various volatile organic compounds (VOCs). Acid and base/neutral extractable compounds (ABNs) and metals have also been identified at the site. The site was initially discovered in April of 1979 and the U.S. Environmental Protection Agency (EPA) began an emergency action to remove buried drums and pails at the site inmore » September of 1980. There are no known documented completed exposure pathways for contaminated media present at the Mottolo Pig Farm Site. Exposure pathways of potential concern include direct contact with contaminated on-site soils and surface waters; inhalation of contaminated on-site soils as fugitive dust; and incidental ingestion of contaminated on-site soils and surface waters.« less

  11. Tracking cross-contamination transfer dynamics at a mock retail deli market using GloGerm.

    PubMed

    Maitland, Jessica; Boyer, Renee; Gallagher, Dan; Duncan, Susan; Bauer, Nate; Kause, Janell; Eifert, Joseph

    2013-02-01

    Ready-to-eat (RTE) deli meats are considered a food at high risk for causing foodborne illness. Deli meats are listed as the highest risk RTE food vehicle for Listeria monocytogenes. Cross-contamination in the retail deli market may contribute to spread of pathogens to deli meats. Understanding potential cross-contamination pathways is essential for reducing the risk of contaminating various products. The objective of this study was to track cross-contamination pathways through a mock retail deli market using an abiotic surrogate, GloGerm, to visually represent how pathogens may spread through the deli environment via direct contact with food surfaces. Six contamination origination sites (slicer blade, meat chub, floor drain, preparation table, employee's glove, and employee's hands) were evaluated separately. Each site was inoculated with 20 ml of GloGerm, and a series of standard deli operations were completed (approximately 10 min of work). Photographs were then taken under UV illumination to visualize spread of GloGerm throughout the deli. A sensory panel evaluated the levels of contamination on the resulting contaminated surfaces. Five of the six contamination origination sites were associated with transfer of GloGerm to the deli case door handle, slicer blade, meat chub, preparation table, and the employee's gloves. Additional locations became contaminated (i.e., deli case shelf, prep table sink, and glove box), but this contamination was not consistent across all trials. Contamination did not spread from the floor drain to any food contact surfaces. The findings of this study reinforce the need for consistent equipment cleaning and food safety practices among deli workers to minimize cross-contamination.

  12. Consequences of Atomic Oxygen Interaction With Silicone and Silicone Contamination on Surfaces in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon K.; Haytas, Christy A.

    1999-01-01

    The exposure of silicones to atomic oxygen in low Earth orbit causes oxidation of the surface, resulting in conversion of silicone to silica. This chemical conversion increases the elastic modulus of the surface and initiates the development of a tensile strain. Ultimately, with sufficient exposure, tensile strain leads to cracking of the surface enabling the underlying unexposed silicone to be converted to silica resulting in additional depth and extent of cracking. The use of silicone coatings for the protection of materials from atomic oxygen attack is limited because of the eventual exposure of underlying unprotected polymeric material due to deep tensile stress cracking of the oxidized silicone. The use of moderate to high volatility silicones in low Earth orbit has resulted in a silicone contamination arrival at surfaces which are simultaneously being bombarded with atomic oxygen, thus leading to conversion of the silicone contaminant to silica. As a result of these processes, a gradual accumulation of contamination occurs leading to deposits which at times have been up to several microns thick (as in the case of a Mir solar array after 10 years in space). The contamination species typically consist of silicon, oxygen and carbon. which in the synergistic environment of atomic oxygen and UV radiation leads to increased solar absorptance and reduced solar transmittance. A comparison of the results of atomic oxygen interaction with silicones and silicone contamination will be presented based on the LDEF, EOIM-111, Offeq-3 spacecraft and Mir solar array in-space results. The design of a contamination pin-hole camera space experiment which uses atomic oxygen to produce an image of the sources of silicone contamination will also be presented.

  13. Effect of blood and saliva contamination on bond strength of brackets bonded with a protective liquid polish and a light-cured adhesive.

    PubMed

    Sayinsu, Korkmaz; Isik, Fulya; Sezen, Serdar; Aydemir, Bulent

    2007-03-01

    The application of a polymer coating to the labial enamel tooth surface before bonding can help keep white spot lesions from forming. Previous studies evaluating the effects of blood and saliva contamination on the bond strengths of light-cured composites showed significant reductions in bond strength values. The purpose of this study was to investigate whether the bond strength of a light-cured system (Transbond XT, 3M Unitek, Puchheim, Germany) used with a liquid polish (BisCover, Bisco, Schaumburg, Ill) is affected by contamination with blood or saliva. One hundred twenty permanent human premolars were randomly divided into 6 groups of 20. Various enamel surface conditions were studied: dry, blood contaminated, and saliva contaminated. A light-cured bonding system (Transbond XT) was used in all groups. The teeth in group 1 were bonded with Transbond XT. In the second group, BisCover polymeric resin polish was applied on the etched tooth surfaces before the brackets were bonded with Transbond XT resin. Comparison of the first and second groups showed no statistically significant difference. Groups 3 through 6 were bonded without Transbond XT. For groups 3 and 5, a layer of blood or saliva, respectively, was applied to the etched enamel followed by BisCover. In groups 4 and 6, blood or saliva, respectively, was applied on the light-cured BisCover. Shear forces were applied to the samples with a universal testing machine, and bond strengths were measured in megapascals. The protective liquid polish (BisCover) layer did not affect bond strength. Blood contamination on acid-etched surfaces affects bond strength more than saliva contamination. When a protective liquid polish (BisCover) is applied to the tooth surface, the effect of contamination by blood or saliva is prevented.

  14. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater.

    PubMed

    Ahmed, Mohammad Boshir; Zhou, John L; Ngo, Huu H; Guo, Wenshan; Chen, Mengfang

    2016-08-01

    Modified biochar (BC) is reviewed in its preparation, functionality, applications and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. The Langmuir isotherm model provides the best fit for sorption equilibria of heavy metals and anionic contaminants, while the Freundlich isotherm model is the best fit for emerging contaminants. The pseudo 2(nd) order is the most appropriate model of sorption kinetics for all contaminants. Future research should focus on industry-scale applications and hybrid systems for contaminant removal due to scarcity of data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Flight measurement of molecular contaminant deposition

    NASA Astrophysics Data System (ADS)

    Hall, David F.

    1994-10-01

    A spacecraft was instrumented with four temperature controlled quartz crystal microbalance (TQCM) contamination detectors. One TQCM, located inside the vehicle, recorded contaminant deposition that was orders of magnitude higher than did the three TQCMs located in various positions outside the vehicle. The deposition rate on the interior TQCM varied with the temperatures of interior spacecraft cavity surfaces. In particular, there is clear evidence of condensation on these surfaces and re-evaporation from these surfaces by previously outgassed contaminant molecules. The e-folding time constants of the deposition on two of the exterior TQCMs held at -50 degree(s)C are approximately 1.4 years, with extrapolated final equivalent thickness of the deposition in the 20 - 25 nm (200 - 250 angstroms) range. The third exterior TQCM, which has a significant field of view of a segmented thermal blanket, collected contamination at a greater rate. The data enable the ranking of the several contamination transport mechanisms at work and the drawing of general recommendations for spacecraft design.

  16. Contamination Effects Due to Space Environmental Interactions

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.

  17. Estimating the susceptibility of surface water in Texas to nonpoint-source contamination by use of logistic regression modeling

    USGS Publications Warehouse

    Battaglin, William A.; Ulery, Randy L.; Winterstein, Thomas; Welborn, Toby

    2003-01-01

    In the State of Texas, surface water (streams, canals, and reservoirs) and ground water are used as sources of public water supply. Surface-water sources of public water supply are susceptible to contamination from point and nonpoint sources. To help protect sources of drinking water and to aid water managers in designing protective yet cost-effective and risk-mitigated monitoring strategies, the Texas Commission on Environmental Quality and the U.S. Geological Survey developed procedures to assess the susceptibility of public water-supply source waters in Texas to the occurrence of 227 contaminants. One component of the assessments is the determination of susceptibility of surface-water sources to nonpoint-source contamination. To accomplish this, water-quality data at 323 monitoring sites were matched with geographic information system-derived watershed- characteristic data for the watersheds upstream from the sites. Logistic regression models then were developed to estimate the probability that a particular contaminant will exceed a threshold concentration specified by the Texas Commission on Environmental Quality. Logistic regression models were developed for 63 of the 227 contaminants. Of the remaining contaminants, 106 were not modeled because monitoring data were available at less than 10 percent of the monitoring sites; 29 were not modeled because there were less than 15 percent detections of the contaminant in the monitoring data; 27 were not modeled because of the lack of any monitoring data; and 2 were not modeled because threshold values were not specified.

  18. Surface sediment quality relative to port activities: A contaminant-spectrum assessment.

    PubMed

    Yu, Shen; Hong, Bing; Ma, Jun; Chen, Yongshan; Xi, Xiuping; Gao, Jingbo; Hu, Xiuqin; Xu, Xiangrong; Sun, Yuxin

    2017-10-15

    Ports are facing increasing environmental concerns with their importance to the global economy. Numerous studies indicated sediment quality deterioration in ports; however, the deterioration is not discriminated for each port activity. This study investigated a spectrum of contaminants (metals and organic pollutants) in surface sediments at 20 sampling points in Port Ningbo, China, one of the top five world ports by volume. The spectrum of contaminants (metals and organic pollutants) was quantified following marine sediment quality guidelines of China and USA and surface sediment quality was assessed according to thresholds of the two guidelines. Coupling a categorical matrix of port activities with the matrix of sedimentary contaminants revealed that contaminants were highly associated with the port operations. Ship repair posed a severe chemical risk to sediment. Operations of crude oil and coal loadings were two top activities related to organic pollutants in sediments while port operations of ore and container loadings discharged metals. Among the 20 sampling points, Cu, Zn, Pb, and DDT and its metabolites were the priority contaminants influencing sediment quality. Overall, surface sediments in Port Ningbo had relatively low environmental risks but ship repair is an environmental concern that must be addressed. This study provides a practical approach for port activity-related quality assessment of surface sediments in ports that could be applicable in many world sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids.

    PubMed

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-11-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.

  1. Pharmaceuticals, hormones, anthropogenic waste indicators, and total estrogenicity in liquid and solid samples from municipal sludge stabilization and dewatering

    USGS Publications Warehouse

    Furlong, Edward T.; Gray, James L.; Quanrud, David M.; Teske, Sondra S.; Werner, Stephen L.; Esposito, Kathleen; Marine, Jeremy; Ela, Wendell P.; Zaugg, Steven D.; Phillips, Patrick J.; Stinson, Beverley

    2012-01-01

    The ubiquitous presence of pharmaceuticals and other emerging contaminants, or trace organic compounds, in surface water has resulted in research and monitoring efforts to identify contaminant sources to surface waters and to better understand loadings from these sources. Wastewater treatment plant discharges have been identified as an important point source of trace organic compounds to surface water and understanding the transport and transformation of these contaminants through wastewater treatment process is essential to controlling their introduction to receiving waters.

  2. Colling Wipe Samples for VX Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koester, C; Hoppes, W G

    2010-02-11

    This standard operating procedure (SOP) provides uniform procedures for the collection of wipe samples of VX residues from surfaces. Personnel may use this procedure to collect and handle wipe samples in the field. Various surfaces, including building materials (wood, metal, tile, vinyl, etc.) and equipment, may be sampled based on this procedure. The purpose of such sampling is to determine whether or not the relevant surfaces are contaminated, to determine the extent of their contamination, to evaluate the effectiveness of decontamination procedures, and to determine the amount of contaminant that might present as a contact hazard.

  3. Portable outgas detection apparatus

    DOEpatents

    Haney, Steven Julian; Malinowski, Michael E.

    2004-05-11

    A portable device for detecting surface outgas contaminants of an article includes: (i) a portable housing that has a chamber which is in communication with a port that is adapted to be sealably attached to a surface of the article; (ii) a mass spectrometer that is coupled to the chamber for analyzing gaseous materials in the chamber; and (iii) means for generating a vacuum within the chamber thereby drawing outgas contaminants from the surface of the article into the chamber for analysis by the mass spectrometer. By performing a mass spectrometric analysis of the surface of interest and comparing the data with mass spectrometric data ascertained with the device from a clean surface, the type and amount of outgas contaminants, if any, can be determined.

  4. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].

    PubMed

    Cao, Hongdan; Yang, Xiaodong; Wu, Dayi; Zhang, Xingdong

    2007-04-01

    The roughness treatment of dental implant surface could improve the bone bonding and increase the success rate of implant, but the difference of diverse treatments is still unknown. In this study using scanning electron microscopy (SEM), energy disperse spectrometer (EDS) and the test of contact angle, we studied the microstructure, surface contamination and surface energy, and hence conducted a comparative analysis of the following surface roughness treatments: Polished Treatment (PT), Sandblasting with Alumina(SA), Sandblasting with Aluminia and Acid-etched (SAA), Sandblasting with Titanium Acid-etched (STA), Electro-erosion Treatment(ET). The result of SEM showed that the surface displayed irregularities after roughness treatments and that the surface properties of different roughness treatments had some distinctions. SAA and SA had some sharp edges and protrutions; the STA showed a regular pattern like honeycomb, but the ET sample treated by electric erosion exhibited the deeper pores of different sizes and the pores with a perforated secondary structure. The EDS indicated that the surface was contaminated after the treatment with foreign materials; the SA surface had some embedded contaminations even after acid etching. The measurement of water contact angle indicated that the morphology correlated with the surface treatments. These findings suggest that the distinction of surface structure and composition caused by different treatments may result in the disparity in biological behavior of dental implant.

  5. Assessment of a handheld fluorescence imaging device as a visual-aid for detection of food residues on processing surfaces

    USDA-ARS?s Scientific Manuscript database

    Contamination of food with pathogenic bacteria can lead to foodborne illnesses. Food processing surfaces can serve as a medium for cross-contamination if sanitization procedures are inadequate. Ensuring that food processing surfaces are correctly cleaned and sanitized is important in the food indust...

  6. Detection of Campylobacter on the outer surface of retail broiler meat packages and from the exudate within

    USDA-ARS?s Scientific Manuscript database

    Previous work has suggested that outer surfaces of retail broiler meat packaging may be contaminated with Campylobacter presenting a potential hazard to the consumer through direct transfer or by cross contamination of other products or surfaces. The objectives of this study were to measure the pre...

  7. Results of detailed analyses performed on boring cores extracted from the concrete floors of the Fukushima Daiichi nuclear power plant reactor buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Koji; Sasaki, S.; Kumai, M.

    Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium inmore » the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)« less

  8. Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling

    This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.

  9. Laser removal of loose uranium compound contamination from metal surfaces

    NASA Astrophysics Data System (ADS)

    Roberts, D. E.; Modise, T. S.

    2007-04-01

    Pulsed laser removal of surface contamination of uranyl nitrate and uranium dioxide from stainless steel has been studied. Most of the loosely bound contamination has been removed at fluence levels below 0.5 J cm -2, leaving about 5% fixed contamination for uranyl nitrate and 15% for uranium dioxide. Both alpha and beta activities are then sufficiently low that contaminated objects can be taken out of a restricted radiation area for re-use. The ratio of beta to alpha activity is found to be a function of particle size and changes during laser removal. In a separate experiment using technetium-99m, the collection of removed radioactivity in the filter was studied and an inventory made of removed and collected contamination.

  10. Mathematical modeling the cross-contamination of Escherichia coli O157:H7 on the surface of ready-to-eat meat product while slicing

    USDA-ARS?s Scientific Manuscript database

    Microbial cross-contamination either at home or production site is one of the major factors of causing contamination of foods and leading to the foodborne illness. The knowledge regarding Escherichia coli O157:H7 surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing diffe...

  11. Development and testing of a contamination potential mapping system for a portion of the General Separations Area, Savannah River Site, South Carolina

    USGS Publications Warehouse

    Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.

    1998-01-01

    A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.

  12. Aquifer susceptibility to perchlorate contamination in a highly urbanized environment

    USGS Publications Warehouse

    Woolfenden, Linda R.; Trefly, Michael G.

    2007-01-01

    Perchlorate contamination from anthropogenic sources has been released into the Rialto-Colton, California, USA, groundwater flow system since the 1940s during its production, distribution, storage, and use. Preliminary analysis of lithological, geophysical, and water-chemistry data provided new understanding of the pathways of perchlorate migration that aid in assessing the susceptibility of drinking-water supplies to contamination within the Rialto-Colton basin. Vertical migration of perchlorate into the main water-producing aquifers is restricted by an areally extensive old soil surface; however, perchlorate data indicate contamination below this soil surface. Possible pathways for the downward migration of the contaminated water include wellbore flow and discontinuities in the old soil surface. Horizontal migration of perchlorate is influenced by lithology and faults within the basin. The basin fill is a heterogeneous mixture of boulders, gravel, sand, silt, and clay, and internal faults may restrict perchlorate migration in some areas.

  13. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    EPA Pesticide Factsheets

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  14. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Kurokawa, Hideto; Jacobson, Craig P.; De Jonghe, Lutgard C.; Visco, Steven J.

    Chromium contamination of metal oxides and SOFC cathode catalysts is studied in the range 700-1000 °C. Samples are exposed to a moist air atmosphere saturated with volatile Cr species in the presence and absence of direct contact between the sample and ferritic stainless steel powder. Chromium contamination of the samples is observed to occur via two separate pathways: surface diffusion from the stainless steel surface and vapor deposition from the atmosphere. Surface diffusion dominates in all cases. Surface diffusion is found to be a significant source of Cr contamination for LSM and LSCF at 700, 800, and 1000 °C. Vapor deposition of Cr onto LSCF was observed at each of these temperatures, but was not observed for LSM at 700 or 800 °C. Comparison of the behavior for LSM, LSCF, and single metal oxides suggests that Mn and Co, respectively, are responsible for the Cr contamination of these catalysts.

  15. Collection and review of metals data obtained from LDEF experiment specimens and support hardware

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger; Pippin, H. Gary

    1995-01-01

    LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.

  16. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  17. The detection of blood on dental surgery surfaces and equipment following dental hygiene treatment.

    PubMed

    McColl, E; Bagg, J; Winning, S

    1994-01-22

    The Kastle-Meyer technique, a forensic test for blood, has been employed to assess the frequency and potential routes of contamination by blood between patients, staff and equipment during routine dental hygiene treatment. Fifty treatment sessions were studied and units were cleaned between patients according to the current hospital protocol. The surfaces most frequently contaminated after treatment were the 3-in-1 syringe buttons (40%), protective bibs (22%), tap handles (20%), light handles (18%) and operating cart handles (16%). Following cleaning of the units, the surfaces remaining contaminated were the 3-in-1 syringes (10%), tap handles (4%) and cart handles (2%). Modifications to the cross-infection control protocol have been made to eliminate these sources of contamination.

  18. Surface contamination analysis technology team overview

    NASA Astrophysics Data System (ADS)

    Burns, H. Dewitt, Jr.

    1996-11-01

    The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.

  19. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  20. Effects of the contamination environment on surfaces and materials

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.

    1989-01-01

    In addition to the issues that have always existed, demands are being placed on space systems for increased contamination prevention/control. Optical surveillance sensors are required to detect low radiance targets. This increases the need for very low scatter surfaces in the optical system. Particulate contamination levels typically experienced in today's working environments/habits will most likely compromise these sensors. Contamination (molecular and particulate) can also affect the survivability of space sensors in both the natural and hostile space environments. The effects of di-octyl phthalate (DOP) on sensors are discussed.

  1. Clean assembly and integration techniques for the Hubble Space Telescope High Fidelity Mechanical Simulator

    NASA Technical Reports Server (NTRS)

    Hughes, David W.; Hedgeland, Randy J.

    1994-01-01

    A mechanical simulator of the Hubble Space Telescope (HST) Aft Shroud was built to perform verification testing of the Servicing Mission Scientific Instruments (SI's) and to provide a facility for astronaut training. All assembly, integration, and test activities occurred under the guidance of a contamination control plan, and all work was reviewed by a contamination engineer prior to implementation. An integrated approach was followed in which materials selection, manufacturing, assembly, subsystem integration, and end product use were considered and controlled to ensure that the use of the High Fidelity Mechanical Simulator (HFMS) as a verification tool would not contaminate mission critical hardware. Surfaces were cleaned throughout manufacturing, assembly, and integration, and reverification was performed following major activities. Direct surface sampling was the preferred method of verification, but access and material constraints led to the use of indirect methods as well. Although surface geometries and coatings often made contamination verification difficult, final contamination sampling and monitoring demonstrated the ability to maintain a class M5.5 environment with surface levels less than 400B inside the HFMS.

  2. Simulating Mobility of Chemical Contaminants from Unconventional Gas Development for Protection of Water Resources

    NASA Astrophysics Data System (ADS)

    Kanno, C.; Edlin, D.; Borrillo-Hutter, T.; McCray, J. E.

    2014-12-01

    Potential contamination of ground water and surface water supplies from chemical contaminants in hydraulic fracturing fluids or in natural gas is of high public concern. However, quantitative assessments have rarely been conducted at specific energy-producing locations so that the true risk of contamination can be evaluated. The most likely pathways for contamination are surface spills and faulty well bores that leak production fluids directly into an aquifer. This study conducts fate and transport simulations of the most mobile chemical contaminants, based on reactivity to subsurface soils, degradation potential, and source concentration, to better understand which chemicals are most likely to contaminate water resources, and to provide information to planners who wish to be prepared for accidental releases. The simulations are intended to be most relevant to the Niobrara shale formation.

  3. Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit Studied

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2001-01-01

    Silicones have been widely used on spacecraft as potting compounds, adhesives, seals, gaskets, hydrophobic surfaces, and atomic oxygen protective coatings. Contamination of optical and thermal control surfaces on spacecraft in low Earth orbit (LEO) has been an ever-present problem as a result of the interaction of atomic oxygen with volatile species from silicones and hydrocarbons onboard spacecraft. These interactions can deposit a contaminant that is a risk to spacecraft performance because it can form an optically absorbing film on the surfaces of Sun sensors, star trackers, or optical components or can increase the solar absorptance of thermal control surfaces. The transmittance, absorptance, and reflectance of such contaminant films seem to vary widely from very transparent SiOx films to much more absorbing SiOx-based films that contain hydrocarbons. At the NASA Glenn Research Center, silicone contamination that was oxidized by atomic oxygen has been examined from LEO spacecraft (including the Long Duration Exposure Facility and the Mir space station solar arrays) and from ground laboratory LEO simulations. The findings resulted in the development of predictive models that may help explain the underlying issues and effects. Atomic oxygen interactions with silicone volatiles and mixtures of silicone and hydrocarbon volatiles produce glassy SiOx-based contaminant coatings. The addition of hydrocarbon volatiles in the presence of silicone volatiles appears to cause much more absorbing (and consequently less transmitting) contaminant films than when no hydrocarbon volatiles are present. On the basis of the LDEF and Mir results, conditions of high atomic oxygen flux relative to low contaminant flux appear to result in more transparent contaminant films than do conditions of low atomic oxygen flux with high contaminant flux. Modeling predictions indicate that the deposition of contaminant films early in a LEO flight should depend much more on atomic oxygen flux than it does later in a mission.

  4. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    EPA Science Inventory

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  5. Characteristics and mechanism of laser-induced surface damage initiated by metal contaminants

    NASA Astrophysics Data System (ADS)

    Shi, Shuang; Sun, Mingying; Shi, Shuaixu; Li, Zhaoyan; Zhang, Ya-nan; Liu, Zhigang

    2015-08-01

    In high power laser facility, contaminants on optics surfaces reduce damage resistance of optical elements and then decrease their lifetime. By damage test experiments, laser damage induced by typical metal particles such as stainless steel 304 is studied. Optics samples with metal particles of different sizes on surfaces are prepared artificially based on the file and sieve. Damage test is implemented in air using a 1-on-1 mode. Results show that damage morphology and mechanism caused by particulate contamination on the incident and exit surfaces are quite different. Contaminants on the incident surface absorb laser energy and generate high temperature plasma during laser irradiation which can ablate optical surface. Metal particles melt and then the molten nano-particles redeposit around the initial particles. Central region of the damaged area bears the same outline as the initial particle because of the shielding effect. However, particles on the exit surface absorb a mass of energy, generate plasma and splash lots of smaller particles, only a few of them redeposit at the particle coverage area on the exit surface. Most of the laser energy is deposited at the interface of the metal particle and the sample surface, and thus damage size on the exit surface is larger than that on the incident surface. The areas covered by the metal particle are strongly damaged. And the damage sites are more serious than that on the incident surface. Besides damage phenomenon also depends on coating and substrate materials.

  6. Susceptibility of ground water to surface and shallow sources of contamination, Orange County, North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, J.L.

    1999-01-01

    In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.

  7. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Design principles for contamination abatement in scientific satellites.

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1972-01-01

    It is shown that deposition of contamination films on satellite optics can be controlled by the following means: isolating critical optical surfaces from the rest of the spacecraft; avoiding or minimizing the use of nonmetallic material, particularly near or in line of sight of optical surfaces; avoiding materials with high vapor pressures; subjecting materials to vacuum baking prior to use, to drive off the volatile outgassing products; keeping the critical surfaces at temperatures above the ambient; avoiding elevated operational temperatures for nonmetallic materials; paying special attention to optics exposed to intense UV-, X-ray, or particular radiation; avoiding water-vapor sources; and directing RCS plumes away from critical surfaces. Methods of controlling particulate contaminants are also proposed.

  9. Clostridium difficile from food and surface samples in a Belgian nursing home: an unlikely source of contamination.

    PubMed

    Rodriguez, C; Korsak, N; Taminiau, B; Avesani, V; Van Broeck, J; Brach, P; Delmée, M; Daube, G

    2015-04-01

    This study investigates the contamination of foods and surfaces with Clostridium difficile in a single nursing home. C. difficile PCR-ribotype 078 was found in one food sample and in none of the tested surfaces. These results indicate that food and surfaces are an unlikely source of C. difficile infection in this setting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Removal of lead contaminated dusts from hard surfaces.

    PubMed

    Lewis, Roger D; Condoor, Sridhar; Batek, Joe; Ong, Kee Hean; Backer, Denis; Sterling, David; Siria, Jeff; Chen, John J; Ashley, Peter

    2006-01-15

    Government guidelines have widely recommended trisodium phosphate (TSP) or "lead-specific" cleaning detergents for removal of lead-contaminated dust (LCD) from hard surfaces, such as floors and window areas. The purpose of this study was to determine if low-phosphate, non-lead-specific cleaners could be used to efficiently remove LCD from 3 types of surfaces (vinyl flooring, wood, and wallpaper). Laboratory methods were developed and validated for simulating the doping, embedding, and sponge cleaning of the 3 surface types with 4 categories of cleaners: lead-specific detergents, nonionic cleaners, anionic cleaners, and trisodium phosphate (TSP). Vinyl flooring and wood were worn using artificial means. Materials were ashed, followed by ultrasound extraction, and anodic stripping voltammetry (ASV). One-way analysis of variance approach was used to evaluate the surface and detergent effects. Surface type was found to be a significant factor in removal of lead (p < 0.001). Vinyl flooring cleaned better than wallpaper by over 14% and wood cleaned better than wallpaper by 13%. There was no difference between the cleaning action of vinyl flooring and wood. No evidence was found to support the use of TSP or lead-specific detergents over all-purpose cleaning detergents for removal of lead-contaminated dusts. No-phosphate, non-lead-specific detergents are effective in sponge cleaning of lead-contaminated hard surfaces and childhood lead prevention programs should consider recommending all-purpose household detergents for removal of lead-contaminated dust after appropriate vacuuming.

  11. Optimized co-extraction and quantification of DNA from enteric pathogens in surface water samples near produce fields in California

    USDA-ARS?s Scientific Manuscript database

    Pathogen contamination of surface water is a health hazard in agricultural environments primarily due to the potential for contamination of crops. Furthermore, pathogen levels in surface water are often unreported or under reported due to difficulty with culture of the bacteria. The pathogens are of...

  12. IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS

    EPA Science Inventory

    Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...

  13. 10 CFR 835.1101 - Control of material and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control... section, material and equipment in contamination areas, high contamination areas, and airborne radioactivity areas shall not be released to a controlled area if: (1) Removable surface contamination levels on...

  14. Development of a remediation strategy for surface soils contaminated with energetic materials by thermal processes: Phases 1, 2 and 3

    DTIC Science & Technology

    2009-11-01

    Various remediation strategies are currently being studied ( phytoremediation , fire ecology, etc.) in order to address the problem of surface soils...treatments for explosives-contaminated soils: aqueous-phase bioreactor treatment, composting, land farming, phytoremediation , white rot fungus treatment...study achieved a 30 to 40 % contaminant degradation. • Phytoremediation : The U.S. Army Environmental Center (USAEC) is developing technologies to

  15. Recent Advances in the Sciences of Electrocatalysis.

    DTIC Science & Technology

    1980-11-01

    without substantial restructuring of the surface as well as chemical changes and contamination . Several research groups (30-35) have carried out... contamination . In the USA these include A. Hubbard (71,72) at the University of California at Santa Barbara, J.A. Joebstl (73,74) at Fort Belvoir, P... contamination ; and intro- duction of the Pt single crystal surfaces into the electrolyte at controlled potentials in the hydrogen adsorption region. In

  16. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi, Revision 1

    DTIC Science & Technology

    2014-04-01

    U.S. agencies were also deployed to the area. DOD took actions to ensure that radioactively contaminated food and bottled water did not reach the...material from contaminated surfaces of ships or aircraft or in water, food , or soil and dust each day while on shore. These doses were calculated for...Exposure below Deck on Ships .......................................................... 22 2.4.4. Exposure related to Radioactive Surface Contamination

  17. Surface characterization of carbon fiber reinforced polymers by picosecond laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James

    2018-02-01

    Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.

  18. Inspection Tools

    NASA Astrophysics Data System (ADS)

    1989-01-01

    A "NASA Tech Briefs" article describing an inspection tool and technique known as Optically Stimulated Electron Emission (OSEE) led to the formation of Photo Acoustic Technology, Inc. (PAT). PAT produces sensors and scanning systems which assure surface cleanliness prior to bonding, coating, painting, etc. The company's OP1000 series realtime pre-processing detection capability assures 100 percent surface quality testing. The technique involves brief exposure of the inspection surface to ultraviolet radiation. The energy interacts with the surface layer, causing free electrons to be emitted from the surface to be picked up by the detector. When contamination is present, it interferes with the electron flow in proportion to the thickness of the contaminant layer enabling measurement by system signal output. OP1000 systems operate in conventional atmospheres on all types of material and detect both organic and inorganic contamination.

  19. A far-ultraviolet contamination-irradiation facility for in situ reflectance measurements

    NASA Astrophysics Data System (ADS)

    Meier, Steven R.; Tveekrem, June L.; Keski-Kuha, Ritva A. M.

    1998-10-01

    In this article, a contamination-irradiation facility designed to measure contamination effects on far-ultraviolet optical surfaces is described. An innovative feature of the facility is the capability of depositing a contaminant, photopolymerizing the contaminant with far-ultraviolet light, and measuring the reflectance of the contaminated sample, all in situ. In addition to describing the facility, we present far-ultraviolet reflectance measurements for a contaminated mirror.

  20. Surface contamination artificially elevates initial sweat mineral concentrations

    USDA-ARS?s Scientific Manuscript database

    During exercise in the heat, sweat is initially concentrated in minerals, but serial sweat samples appear more dilute. Possible causes include reduced dermal mineral concentrations or flushing of surface contamination. PURPOSE: To simultaneously sample mineral concentrations in transdermal fluid (T...

  1. Electrostatic Return of Contaminants

    NASA Technical Reports Server (NTRS)

    Rantanen, R.; Gordon, T.

    2003-01-01

    A Model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition to results of the model will be completed to cover a wide range of potential space systems.

  2. Occurrence and potential health risk of Cryptosporidium and Giardia in different water catchments in Belgium.

    PubMed

    Ehsan, Amimul; Geurden, Thomas; Casaert, Stijn; Paulussen, Jef; De Coster, Lut; Schoemaker, Toon; Chalmers, Rachel; Grit, Grietje; Vercruysse, Jozef; Claerebout, Edwin

    2015-02-01

    Human wastewater and livestock can contribute to contamination of surface water with Cryptosporidium and Giardia. In countries where a substantial proportion of drinking water is produced from surface water, e.g., Belgium, this poses a constant threat on drinking water safety. Our objective was to monitor the presence of Cryptosporidium and Giardia in different water catchment sites in Belgium and to discriminate between (oo)cysts from human or animal origin using genotyping. Monthly samples were collected from raw water and purified drinking water at four catchment sites. Cryptosporidium and Giardia were detected using USEPA method 1623 and positive samples were genotyped. No contamination was found in purified water at any site. In three catchments, only low numbers of (oo)cysts were recovered from raw water samples (<1/liter), but raw water samples from one catchment site were frequently contaminated with Giardia (92 %) and Cryptosporidium (96 %), especially in winter and spring. Genotyping of Giardia in 38 water samples identified the presence of Giardia duodenalis assemblage AI, AII, BIV, BIV-like, and E. Cryptosporidium andersoni, Cryptosporidium suis, Cryptosporidium horse genotype, Cryptosporidium parvum, and Cryptosporidium hominis were detected. The genotyping results suggest that agriculture may be a more important source of surface water contamination than human waste in this catchment. In catchment sites with contaminated surface water, such as the Blankaart, continuous monitoring of treated water for the presence of Cryptosporidium and Giardia would be justified and (point) sources of surface water contamination should be identified.

  3. Comparison of Spacecraft Contamination Models with Well-Defined Flight Experiment

    NASA Technical Reports Server (NTRS)

    Pippin, G. H.

    1998-01-01

    The report presents analyzed surface areas on particular experiment trays from the Long Duration Exposure Facility (LDEF) for silicone-based molecular contamination. The trays for examination were part of the Ultra-Heavy Cosmic Ray Experiment (UHCRE). These particular trays were chosen because each tray was identical to the others in construction, and the materials on each tray were well known, documented, and characterized. In particular, a known specific source of silicone contamination was present on each tray. Only the exposure conditions varied from tray to tray. The results of post-flight analyses of surfaces of three trays were compared with the predictions of the three different spacecraft molecular contamination models. Phase one tasks included: 1) documenting the detailed geometry of the hardware; 2) determining essential properties of the anodized aluminum, Velcro(Tm), silverized Teflon(Tm), silicone gaskets, and DC6-1104(Tm) silicone adhesive materials used to make the trays, tray covers, and thermal control blankets; 3) selecting and removing areas from each tray; and 4) beginning surface analysis of the selected tray walls. Phase two tasks included: 1) completion of surface analysis measurements of the selected tray surface, 2) obtaining auger depth profiles at selected locations, and 3) running versions of the ISEM, MOFLUX, and PLIMP (Plume Impingement) contamination prediction models and making comparisons with experimental results.

  4. Determining high touch areas in the operating room with levels of contamination.

    PubMed

    Link, Terri; Kleiner, Catherine; Mancuso, Mary P; Dziadkowiec, Oliwier; Halverson-Carpenter, Katherine

    2016-11-01

    The Centers for Disease Control and Prevention put forth the recommendation to clean areas considered high touch more frequently than minimal touch surfaces. The operating room was not included in these recommendations. The purpose of this study was to determine the most frequently touched surfaces in the operating room and their level of contamination. Phase 1 was a descriptive study to identify high touch areas in the operating room. In phase 2, high touch areas determined in phase 1 were cultured to determine if high touch areas observed were also highly contaminated and if they were more contaminated than a low touch surface. The 5 primary high touch surfaces in order were the anesthesia computer mouse, OR bed, nurse computer mouse, OR door, and anesthesia medical cart. Using the OR light as a control, this study demonstrated that a low touch area was less contaminated than the high touch areas with the exception of the OR bed. Based on information and data collected in this study, it is recommended that an enhanced cleaning protocol be established based on the most frequently touched surfaces in the operating room. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. A sampling device with a capped body and detachable handle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and outmore » of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.« less

  6. Shear bond strength of orthodontic brackets and disinclusion buttons: effect of water and saliva contamination.

    PubMed

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea

    2013-01-01

    The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.

  7. Public health assessment for Petro-Chemical, Inc. (Turtle Bayou) Liberty, Liberty County, Texas, Region 6. CERCLIS No. TXD980873350. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-30

    The Petro-Chemical Systems, Inc. site, located near Liberty, Texas, is a site where unauthorized disposal of petroleum-based oils has taken place. Although there is evidence of past exposure to site contaminants, the best available evidence does not indicate that humans are currently being exposed to site contaminants at levels that could cause adverse health effects. Contaminated ground water, surface water, soils, and surface water sediments have been found on the site. Although sampling was done for 144 priority pollutants, the primary contaminants of concern are benzene, ethylbenzene, xylene, naphthalene, polycyclic aromatic hydrocarbons, and lead. Because the greatest threat to publicmore » health would be contamination of drinking water, the Agency for Toxic Substances and Disease Registry (ATSDR) has recommended that necessary actions are taken to insure that private wells do not become contaminated with site contaminants.« less

  8. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  9. Screening for Groundwater Contaminants Discharging to Urban Streams

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Bickerton, G.; Voralek, J.

    2009-05-01

    Groundwater contaminated with urban pollutants can adversely affect freshwater aquatic ecosystems where it discharges to streams, lakes or wetlands. Generally such occurrences have been revealed following the discovery of contaminated groundwater plumes at a particular site or from wells in the area. Thus, this contaminant pathway tends to be dealt with on a site-specific and aquifer-focused basis. In contrast, surface water contaminant monitoring typically relies on bulk water concentrations from one or a small set of locations, thus ignoring the spatial variation in contaminant loading, potential losses to sediment or the atmosphere, and the full range of benthic components of the aquatic ecosystem. There are few studies outlining the extent of this contamination from the perspective of the surface water body's deeper benthic community, which might be expected to experience the greatest contaminant concentrations, on more than a local-scale. In this study, we report on an approach to stream-reach-screening for urban contaminants in discharging groundwater, with the focus on detection rather than accurate quantification. The methodology consists of a drive-point technique for sampling groundwater from below the stream bed (e.g. typically 50 cm) along a chosen reach at intervals of about 10 m. Groundwater samples were then analyzed for a wide range of common urban contaminants and general chemistry. This screening method was performed in three urban settings in Canada with known groundwater contamination, covering sections of about 140 to >500 m. The known contaminant plumes at each site were detected and roughly delineated. In addition, potential areas of previously-unknown groundwater contamination were also identified at each site. Contaminants included BTEX and other petroleum hydrocarbons, various chlorinated solvent compounds, nitrate, 1,4-dioxane, MTBE and elevated chloride (likely indicating road salt). These preliminary findings suggest that this approach may be useful for quickly assessing the cumulative threat to aquatic ecosystems of potentially multiple groundwater contaminant sources discharging to surface water bodies in urban settings.

  10. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens.

    PubMed

    Mokhtari, Amir; Oryang, David; Chen, Yuhuan; Pouillot, Regis; Van Doren, Jane

    2018-01-08

    We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  11. Cleaning, disinfection and sterilization of surface prion contamination.

    PubMed

    McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E

    2013-12-01

    Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Contamination of grazing incidence EUV mirrors - An assessment

    NASA Technical Reports Server (NTRS)

    Osantowski, John F.; Fleetwood, C. F.

    1988-01-01

    Contamination assessment for space optical systems requires an understanding of the sensitivity of component performance, e.g. mirror reflectance, to materials deposited on the mirror surface. In a previous study, the sensitivity of typical normal incidence mirror coatings to surface deposits of generic hydrocarbons was reported. Recent activity in the development of grazing incidence telescopes for extreme ultraviolet space astronomy has stimulated the need for a similar assessment in the spectral region extending from approximately 100 A to 1000 A. The model used for analysis treats the contamination layer as a continuous thin film deposited on the mirror surface. The mirror surfaces selected for this study are opaque vacuum deposited gold and the uncoated and polished Zerodur. Scatter caused by film irregularities or particulates are not included in this assessment. Parametric evaluations at 100, 500, and 1000 A determine the sensitivity of mirror reflectance to a range of optical constants selected for the generic contaminants. This sensitivity analysis combined with the limited amount of optical data in the EUV for hydrocarbons, is used to select representative optical constants for the three wavelength regions. Reflectance versus contamination layer thickness curves are then calculated and used to determine critical thickness limits based on allowable reflectance change. Initial observations indicate that thickness limits will be highly dependent on the real part of the complex index of refraction of the contaminant film being less than 1.0. Preliminary laboratory measurements of samples contaminated with some commonly encountered hydrocarbons confirm trends indicated in the analytical studies.

  13. Metagenomes of Microbial Communities in Arsenic- and Pathogen-Contaminated Well and Surface Water from Bangladesh

    PubMed Central

    Layton, Alice C.; Chauhan, Archana; Williams, Daniel E.; Mailloux, Brian; Knappett, Peter S. K.; Ferguson, Andrew S.; McKay, Larry D.; Alam, M. Jahangir; Matin Ahmed, Kazi; van Geen, Alexander

    2014-01-01

    The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport. PMID:25414497

  14. Assessing the biological impact of exposure to environmental surface waters with cell-based lipidomics

    EPA Science Inventory

    Environmental surface waters often contain a variety of chemical contaminants from different sources including wastewater treatment plants, concentrated animal feeding operations, agricultural runoff and other human-related activities. Exposure to these contaminants may pose a th...

  15. A Model to Predict the Breathing Zone Concentrations of Particles Emitted from Surfaces

    EPA Science Inventory

    Activity based sampling (ABS) is typically performed to assess inhalation exposure to particulate contaminants known to have low, heterogeneous concentrations on a surface. Activity based sampling determines the contaminant concentration in a person's breathing zone as they perfo...

  16. An Exercise in Evaluating the Contamination Potential of Surface Impoundments.

    ERIC Educational Resources Information Center

    Tinker, John R., Jr.

    1982-01-01

    Outlines a laboratory procedure which enables students to evaluate the contamination potential of surface impoundments and apply basic principles of hydrogeology to the land disposal of waste material. Includes a list of materials needed and directions for the instructor. (Author/DC)

  17. SUDOQU: a new dose model to derive criteria for surface contamination of non-food (consumer) goods, containers and conveyances.

    PubMed

    van Dillen, Teun

    2015-04-01

    The Fukushima nuclear accident (Japan, 11 March 2011) revealed the need for well-founded criteria for surface contamination and associated screening levels related to the import of non-food (consumer) goods, containers and conveyances. The only available European-harmonised criteria are those laid down in the IAEA transport regulations, but these criteria date back from the early 1960s and only apply to the safe transport of radioactive materials. The main problem is that a generic dose-assessment model for consumer products is missing. Therefore, RIVM (National Institute for Public Health and the Environment) developed a new methodology entitled SUDOQU (SUrface DOse QUantification) to calculate the annual effective dose for both consumers and non-radiological workers, addressing issues of removability of surface contamination. The methodology can be used to derive criteria and screening levels for surface contamination and could serve as a useful tool for policy-makers and radiation-protection specialists. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud

    NASA Astrophysics Data System (ADS)

    Zeng, Chao; Long, Di; Shen, Huanfeng; Wu, Penghai; Cui, Yaokui; Hong, Yang

    2018-07-01

    Land surface temperature (LST) is one of the most important parameters in land surface processes. Although satellite-derived LST can provide valuable information, the value is often limited by cloud contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed. First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy balance equation-based procedure is used to correct for the filled values. With shortwave irradiation data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation results indicate that the proposed method can recover LST in different surface types with mean average errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST images has a greater impact on the results than the size of the contaminated area.

  19. Contamination assessment and control in scientific satellites

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    Techniques for assessment and control of the contamination environment for both particulates and condensible vapors in the vicinity of spacecraft are developed. An analysis of the deposition rate on critical surfaces is made considering sources within the line of sight of the surface in question as well as those obscured from the line of sight. The amount of contamination returned by collision with the surrounding atmosphere is estimated. Scattering and absorption from the induced atmosphere of gases and particulates around the spacecraft are estimated. Finally, design techniques developed for Skylab to reduce the contamination environment to an acceptable level are discussed.

  20. Delineating Landfill Leachate Discharge To An Arsenic Contaminated Waterway

    EPA Science Inventory

    Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arseni...

  1. Method and system for gas flow mitigation of molecular contamination of optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and amore » purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.« less

  2. Emulsification of hydrocarbons by subsurface bacteria

    USGS Publications Warehouse

    Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

    1991-01-01

    Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions, indicating a high probability of biosurfactant production.

  3. Treatment of Chlorinated Aliphatic Contamination of Groundwater by Horizontal Recirculation Wells and by Constructed Vertical Flow Wetlands

    DTIC Science & Technology

    2002-03-01

    groundwater laden with contaminants. Once the contaminated water is at the surface, it must be treated for contaminant destruction, generally by...treatment walls only work under very specific hydrogeologic conditions (relatively shallow water table, no seasonal fluctuations in groundwater flow...GCWs Elevation Schematic Water Table Contaminated Groundwater Contaminated Groundwater Treated Groundwater Treated Groundwater Reactive Porous Medium

  4. Arcobacter butzleri in sheep ricotta cheese at retail and related sources of contamination in an industrial dairy plant.

    PubMed

    Scarano, Christian; Giacometti, Federica; Manfreda, Gerardo; Lucchi, Alex; Pes, Emanuela; Spanu, Carlo; De Santis, Enrico Pietro Luigi; Serraino, Andrea

    2014-11-01

    This study aimed to evaluate Arcobacter species contamination of industrial sheep ricotta cheese purchased at retail and to establish if the dairy plant environment may represent a source of contamination. A total of 32 sheep ricotta cheeses (1.5 kg/pack) packed in a modified atmosphere were purchased at retail, and 30 samples were collected in two sampling sessions performed in the cheese factory from surfaces in contact with food and from surfaces not in contact with food. Seven out of 32 samples (21.9%) of ricotta cheese collected at retail tested positive for Arcobacter butzleri at cultural examination; all positive samples were collected during the same sampling and belonged to the same batch. Ten surface samples (33.3%) collected in the dairy plant were positive for A. butzleri. Cluster analysis identified 32 pulsed-field gel electrophoresis (PFGE) patterns. The same PFGE pattern was isolated from more than one ricotta cheese sample, indicating a common source of contamination, while more PFGE patterns could be isolated in single samples, indicating different sources of contamination. The results of the environmental sampling showed that A. butzleri may be commonly isolated from the dairy processing plant investigated and may survive over time, as confirmed by the isolation of the same PFGE pattern in different industrial plant surface samples. Floor contamination may represent a source of A. butzleri spread to different areas of the dairy plant, as demonstrated by isolation of the same PFGE pattern in different production areas. Isolation of the same PFGE pattern from surface samples in the dairy plant and from ricotta cheese purchased at retail showed that plant surfaces may represent a source of A. butzleri postprocessing contamination in cheeses produced in industrial dairy plants. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations.

    PubMed

    Gross, Sherilyn A; Avens, Heather J; Banducci, Amber M; Sahmel, Jennifer; Panko, Julie M; Tvermoes, Brooke E

    2013-04-01

    Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater While benzene can occur naturally in groundwater sources, spills and migration of chemicals used for hydraulic fracturing activities have recently been thought to be a main source of benzene contamination in groundwater. However, there is little scientific literature to support that claim. Therefore, we accessed a publically available database and tracked the number of reported surface spills with potential groundwater impact over a 1-year period. Although the number of surface spills was minimal, our analysis provides scientific evidence that benzene can contaminate groundwater sources following surface spills at active well sites.

  6. Combined wet and dry cleaning of SiGe(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less

  7. Apparatus for in situ cleaning of carbon contaminated surfaces

    DOEpatents

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2004-08-10

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.

  8. Assessment of arsenic surface contamination in a museum anthropology department.

    PubMed

    Gribovich, Andrey; Lacey, Steven; Franke, John; Hinkamp, David

    2013-02-01

    To assess potential arsenic (As) contamination of work surfaces to improve upon the control strategy at an anthropology department in a large natural history museum. Work practices were observed and control strategy reviewed to inform an occupational hygiene assessment strategy utilizing surface wipe sampling. A total of 35 sampling targets were identified, focusing on surfaces that receive high touch traffic, including workstations, artifact transport carts, and elevator buttons. Arsenic sampling and analysis were performed using reference method Occupational Safety and Health Administration ID-125G. Four of the sampling areas returned detectable levels of As, ranging from 0.052 to 0.350 μg/100 cm. Workplace observations and wipe sampling data enabled the development of recommendations to help to further reduce potential occupational exposure to As. Continuous reduction of surface contamination is prudent for known human carcinogens.

  9. Assessment of groundwater pathways and contaminant transport in Florida and Georgia using multiple chemical and microbiological indicators

    USGS Publications Warehouse

    Mahon, Gary L.

    2011-01-01

    The hydrogeology of Florida, especially in the northern part of the state, and southwestern Georgia is characterized by a predominance of limestone aquifers overlain by varying amounts of sands, silts, and clays. This karstic system of aquifers and their associated springs is particularly vulnerable to contamination from various anthropogenic activities at the land surface. Numerous sinkholes, disappearing streams, and conduit systems or dissolution pathways, often associated with large spring systems, allow rapid movement of contaminants from the land surface to the groundwater system with little or no attenuation or degradation. The fate of contaminants in the groundwater system is not fully understood, but traveltimes from sources are greatly reduced when conduits are intercepted by pumping wells and springs. Contaminant introduction to groundwater systems in Florida and Georgia is not limited to seepage from land surface, but can be associated with passive (drainage wells) and forced subsurface injection (aquifer storage and recovery, waste-water disposal).

  10. Research of polishing process to control the iron contamination on the magnetorheological finished KDP crystal surface.

    PubMed

    Chen, Shaoshan; Li, Shengyi; Peng, Xiaoqiang; Hu, Hao; Tie, Guipeng

    2015-02-20

    A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing a KDP crystal. MRF polishing is easy to result in the embedding of carbonyl iron (CI) powders; meanwhile, Fe contamination on the KDP crystal surface will affect the laser induced damage threshold seriously. This paper puts forward an appropriate MRF polishing process to avoid the embedding. Polishing results show that the embedding of CI powders can be avoided by controlling the polishing parameters. Furthermore, on the KDP crystal surface, magnetorheological fluids residua inevitably exist after polishing and in which the Fe contamination cannot be removed completely by initial ultrasonic cleaning. To solve this problem, a kind of ion beam figuring (IBF) polishing is introduced to remove the impurity layer. Then the content of Fe element contamination and the depth of impurity elements are measured by time of flight secondary ion mass spectrometry. The measurement results show that there are no CI powders embedding in the MRF polished surface and no Fe contamination after the IBF polishing process, respectively. That verifies the feasibility of MRF polishing-IBF polishing (cleaning) for processing a KDP crystal.

  11. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria

    2003-01-01

    The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.

  12. Theoretical contamination of cryogenic satellite telescopes

    NASA Technical Reports Server (NTRS)

    Murakami, M.

    1978-01-01

    The state of contaminant molecules, the deposition rate on key surfaces, and the heat transfer rate were estimated by the use of a zeroth-order approximation. Optical surfaces of infrared telescopes cooled to about 20 K should be considered to be covered with at least several deposition layers of condensible molecules without any contamination controls. The effectiveness of the purge gas method of contamination controls was discussed. This method attempts to drive condensible molecules from the telescope tube by impacts with a purge gas in the telescope tube. For this technique to be sufficiently effective, the pressure of the purge gas must be more than 2 x .000001 torr. The influence caused by interactions of the purged gas with the particulate contaminants was found to slightly increase the resident times of the particulate contaminants within the telescope field of view.

  13. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  14. Removal of Microbial Contamination from Surface by Plasma

    NASA Astrophysics Data System (ADS)

    Feng, Xinxin; Liu, Hongxia; Shen, Zhenxing; Wang, Taobo

    2018-01-01

    Microbial contamination is closely associated with human and environmental health, they can be tested on food surfaces, medical devices, packing material and so on. In this paper the removal of the microbial contamination from surface using plasma treatment is investigated. The Escherichia coli (E. coli) has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Oxygen gas was as the working gas. The plasma RF power, plasma exposition time, gas flow and the concentration of organic pollutant were varied in order to see the effect of the plasma treatment on the Gram-negative germ removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the plasma treatment on Gram-negative germ removal. The kinetics and mathematical model of removal were studied after plasma treatment, and then the removing course of E. coli was analyzed. This work is meaningful for deepening our understanding of the fundamental scientific principles regarding microbial contamination from surface by plasma.

  15. Determination of platinum surface contamination in veterinary and human oncology centres using inductively coupled plasma mass spectrometry.

    PubMed

    Janssens, T; Brouwers, E E M; de Vos, J P; de Vries, N; Schellens, J H M; Beijnen, J H

    2015-09-01

    The objective of this study was to determine the surface contamination with platinum-containing antineoplastic drugs in veterinary and human oncology centres. Inductively coupled plasma mass spectrometry was used to measure platinum levels in surface samples. In veterinary and human oncology centres, 46.3 and 68.9% of the sampled surfaces demonstrated platinum contamination, respectively. Highest platinum levels were found in the preparation rooms (44.6 pg cm(-2)) in veterinary centres, while maximal levels in human centres were found in oncology patient-only toilets (725 pg cm(-2)). Transference of platinum by workers outside areas where antineoplastic drugs were handled was observed in veterinary and human oncology centres. In conclusion, only low levels of platinum contamination attributable to carboplatin were found in the sampled veterinary oncology centres. However, dispersion of platinum outside areas where antineoplastic drugs were handled was detected in veterinary and human oncology centres. Consequently, not only personnel, but also others may be exposed to platinum. © 2013 Blackwell Publishing Ltd.

  16. Nipah Virus Contamination of Hospital Surfaces during Outbreaks, Bangladesh, 2013–2014

    PubMed Central

    Sazzad, Hossain M.S.; Luby, Stephen P.; Sturm-Ramirez, Katharine; Bhuiyan, Mejbah Uddin; Rahman, Mohammed Ziaur; Islam, Md Muzahidul; Ströher, Ute; Sultana, Sharmin; Kafi, Mohammad Abdullah Heel; Daszak, Peter; Rahman, Mahmudur; Gurley, Emily S.

    2018-01-01

    Nipah virus (NiV) has been transmitted from patient to caregivers in Bangladesh presumably through oral secretions. We aimed to detect whether NiV-infected patients contaminate hospital surfaces with the virus. During December 2013–April 2014, we collected 1 swab sample from 5 surfaces near NiV-infected patients and tested surface and oral swab samples by real-time reverse transcription PCR for NiV RNA. We identified 16 Nipah patients; 12 cases were laboratory-confirmed and 4 probable. Of the 12 laboratory-confirmed cases, 10 showed NiV RNA in oral swab specimens. We obtained surface swab samples for 6 Nipah patients; 5 had evidence of NiV RNA on >1 surface: 4 patients contaminated towels, 3 bed sheets, and 1 the bed rail. Patients with NiV RNA in oral swab samples were significantly more likely than other Nipah patients to die. To reduce the risk for fomite transmission of NiV, infection control should target hospital surfaces. PMID:29260663

  17. Nipah Virus Contamination of Hospital Surfaces during Outbreaks, Bangladesh, 2013-2014.

    PubMed

    Hassan, Md Zakiul; Sazzad, Hossain M S; Luby, Stephen P; Sturm-Ramirez, Katharine; Bhuiyan, Mejbah Uddin; Rahman, Mohammed Ziaur; Islam, Md Muzahidul; Ströher, Ute; Sultana, Sharmin; Kafi, Mohammad Abdullah Heel; Daszak, Peter; Rahman, Mahmudur; Gurley, Emily S

    2018-01-01

    Nipah virus (NiV) has been transmitted from patient to caregivers in Bangladesh presumably through oral secretions. We aimed to detect whether NiV-infected patients contaminate hospital surfaces with the virus. During December 2013-April 2014, we collected 1 swab sample from 5 surfaces near NiV-infected patients and tested surface and oral swab samples by real-time reverse transcription PCR for NiV RNA. We identified 16 Nipah patients; 12 cases were laboratory-confirmed and 4 probable. Of the 12 laboratory-confirmed cases, 10 showed NiV RNA in oral swab specimens. We obtained surface swab samples for 6 Nipah patients; 5 had evidence of NiV RNA on >1 surface: 4 patients contaminated towels, 3 bed sheets, and 1 the bed rail. Patients with NiV RNA in oral swab samples were significantly more likely than other Nipah patients to die. To reduce the risk for fomite transmission of NiV, infection control should target hospital surfaces.

  18. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  19. Contamination profile of Listeria spp. in three types of ready-to-eat chicken meat products.

    PubMed

    Lekroengsin, Sumalin; Keeratipibul, Suwimon; Trakoonlerswilai, Kasame

    2007-01-01

    This study investigated contamination sources of Listeria spp. in frozen, ready-to-eat, roasted, steamed, and fried chicken meat products from a plant in Thailand, as well as the correlation between Listeria contamination in the production environment and the finished product. The cooking processes used in this factory (with a product core temperature of 80 degrees C for 1 min) were confirmed as adequate for eliminating Listeria spp. However, Listeria spp. were detected at the packing stage of roasted and steamed chicken products. An environmental swab test was conducted by means of the zone concept, whereby surfaces in the production area were divided into three zones. Zone 1 was made up of the equipment surfaces that came into direct contact with the products. Zone 2 consisted of equipment surfaces that were not in direct contact with the products, including surfaces that were difficult to be cleaned. Zone 3 included surfaces that did not come in direct contact with the products and were located far from the products. The results showed that the prevalence of Listeria spp. in roasted and steamed products was affected by the prevalence of Listeria contamination in all zones, especially zone 1, which demonstrated the highest correlation. In addition, the prevalence of Listeria contamination in zones 2 and 3 affected the prevalence of Listeria in zone 1. A correlation between Listeria on roasted chicken products and the surfaces of zone 1 at the start of production was also established.

  20. Indoor and Outdoor Surface-Growing Fungi Contamination at Higher Institutional Buildings in a Malaysian University

    NASA Astrophysics Data System (ADS)

    Er, C. M.; Sunar, N. M.; Leman, A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Surface-growing indoor and outdoor fungi were assessed using swabbing method to investigate the indoor contamination. The painted wall surface samples were collected from two institutional buildings (B1 and B2) of a university in southern Peninsular Malaysia; indoors and outdoors. The mould concentrations varied widely between indoor and outdoor surface samples of both buildings. The total indoor surface-growing mould concentration (8776.49 CFU/cm2) is significantly higher (p<0.05) than the total concentration of outdoor surface growing mould (209.91 CFU/cm2). Respectively, the mean concentration of indoor surface-growing mould (18920.13 CFU/cm2 for B1 and 3704.67 CFU/cm2 for B2) is significantly higher than their outdoor counterparts (99.95 CFU/cm2 for b1 and for 319.86 CFU/cm2 b2) at these buildings. Besides, various air quality parameters (relative humidity, temperature and air velocity) were also measured indoors and outdoors during the study and violation of the guideline provided by ICOP-IAQ 2010 were proven in indoor environment in both buildings. The results of this assessment showed that the indoor environments of both institutional buildings were contaminated by the surface-growing mould. It also suggested the faulty designs and/or usages of building material in these institutional buildings contributed toward the contamination. An innovative solution is needed to correct the problems.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Haruhiko, E-mail: hohashi@spring8.or.jp; Senba, Yasunori; Yumoto, Hirokatsu

    We studied typical forms of contamination on X-ray mirrors that cause degradation of beam quality, investigated techniques to remove the contaminants, and propose methods to eliminate the sources of the contamination. The total amount of carbon-containing substances on various materials in the vicinity of a mirror was measured by thermal desorption-gas chromatography/mass spectrometry and thermal desorption spectroscopy. It was found that cleanliness and ultra-high vacuum techniques are required to produce the contamination-free surfaces that are essential for the propagation of high-quality X-ray beams. The reduction of carbonaceous residue adsorbed on the surfaces, and absorbed into the bulk, of the materialsmore » in the vicinity of the mirrors is a key step toward achieving contamination-free X-ray optics.« less

  2. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula [Livermore, CA; Zalk, David [San Jose, CA; Hoffman, D Mark [Livermore, CA

    2011-04-12

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  3. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2012-07-10

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  4. Modeling contamination migration on the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Swartz, Douglas A.; Anderson, Scot K.; Chen, Kenny C.; Giordano, Rino J.; Knollenberg, Perry J.; Morris, Peter A.; Plucinsky, Paul P.; Tice, Neil W.; Tran, Hien

    2005-01-01

    During its first 5 years of operation, the cold (-60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), on board the Chandra X-ray Observatory, has accumulated a contaminating layer that attenuates the low-energy x rays. To assist in assessing the likelihood of successfully baking off the contaminant, members of the Chandra Team developed contamination-migration simulation software. The simulation follows deposition onto and (temperature-dependent) vaporization from surfaces comprising a geometrical model of the Observatory. A separate thermal analysis, augmented by on-board temperature monitoring, provides temperatures for each surface of the same geometrical model. This paper describes the physical basis for the simulations, the methodologies, and the predicted migration of the contaminant for various bake-out scenarios and assumptions.

  5. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    PubMed Central

    Sun, Laixi; Shao, Ting; Shi, Zhaohua; Huang, Jin; Ye, Xin; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2018-01-01

    The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique. PMID:29642571

  6. Microbial air quality and bacterial surface contamination in ambulances during patient services.

    PubMed

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-03-01

    We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson's correlation coefficient with a p-value of less than 0.050 considered significant. The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m(3) and 522±581cfu/m(3), respectively. Bacterial counts during patient services were 468±607cfu/m(3) and fungal counts were 656±612cfu/m(3). Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm(2) and 1.3±1.1cfu/cm(2), respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and fungal counts in ambulance air showed a significantly positive correlation with the bacterial surface contamination on medical instruments and allocated areas. Further studies should be conducted to determine the optimal intervention to reduce microbial contamination in the ambulance environment.

  7. International Space Station External Contamination Status

    NASA Technical Reports Server (NTRS)

    Mikatarian, Ron; Soares, Carlos

    2000-01-01

    PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.

  8. Modelling Urban diffuse pollution in groundwater

    NASA Astrophysics Data System (ADS)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  9. A prospective survey of air and surface fungal contamination in a medical mycology laboratory at a tertiary care university hospital.

    PubMed

    Sautour, Marc; Dalle, Frédéric; Olivieri, Claire; L'ollivier, Coralie; Enderlin, Emilie; Salome, Elsa; Chovelon, Isabelle; Vagner, Odile; Sixt, Nathalie; Fricker-Pap, Véronique; Aho, Serge; Fontaneau, Olivier; Cachia, Claire; Bonnin, Alain

    2009-04-01

    Invasive filamentous fungi infections resulting from inhalation of mold conidia pose a major threat in immunocompromised patients. The diagnosis is based on direct smears, cultural symptoms, and culturing fungi. Airborne conidia present in the laboratory environment may cause contamination of cultures, resulting in false-positive diagnosis. Baseline values of fungal contamination in a clinical mycology laboratory have not been determined to date. A 1-year prospective survey of air and surface contamination was conducted in a clinical mycology laboratory during a period when large construction projects were being conducted in the hospital. Air was sampled with a portable air system impactor, and surfaces were sampled with contact Sabouraud agar plates. The collected data allowed the elaboration of Shewhart graphic charts. Mean fungal loads ranged from 2.27 to 4.36 colony forming units (cfu)/m(3) in air and from 0.61 to 1.69 cfu/plate on surfaces. Strict control procedures may limit the level of fungal contamination in a clinical mycology laboratory even in the context of large construction projects at the hospital site. Our data and the resulting Shewhart graphic charts provide baseline values to use when monitoring for inappropriate variations of the fungal contamination in a mycology laboratory as part of a quality assurance program. This is critical to the appropriate management of the fungal risk in hematology, cancer and transplantation patients.

  10. 49 CFR 177.843 - Contamination of vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Contamination of vehicles. 177.843 Section 177.843... and Unloading § 177.843 Contamination of vehicles. (a) Each motor vehicle used for transporting Class... surface contamination is not greater than the level prescribed in § 173.443(a) of this subchapter. (b...

  11. Surveillance of bacterial contamination in small animal veterinary hospitals with special focus on antimicrobial resistance and virulence traits of enterococci.

    PubMed

    KuKanich, Kate S; Ghosh, Anuradha; Skarbek, Jennifer V; Lothamer, Kale M; Zurek, Ludek

    2012-02-15

    To determine the prevalence of bacterial contamination on 4 surfaces of 4 types of standard equipment in small animal veterinary hospitals. Surveillance study. 10 small animal veterinary hospitals. Each hospital was visited 3 times at 4-month intervals; at each visit, a cage door, stethoscope, rectal thermometer, and mouth gag were swabbed. Swab samples were each plated onto media for culture of enterococci and organisms in the family Enterobacteriaceae. Enterococci were identified via a species-specific PCR assay and sodA gene sequencing; species of Enterobacteriaceae were identified with a biochemical test kit. Antimicrobial susceptibility was assessed via the disk diffusion method. Enterococci were screened for virulence traits and genotyped to assess clonality. Among the 10 hospitals, enterococci were isolated from cage doors in 7, from stethoscopes in 7, from thermometers in 6, and from mouth gags in 1; contamination with species of Enterobacteriaceae was rare. Enterococci were mainly represented by Enterococcus faecium (35.4%), Enterococcus faecalis (33.2%), and Enterococcus hirae (28.3%). Antimicrobial resistance was common in E. faecium, whereas virulence traits were present in 99% of E. faecalis isolates but not in E. faecium isolates. Clonal multidrug-resistant E. faecium was isolated from several surfaces at 1 hospital over multiple visits, whereas sporadic nonclonal contamination was detected in other hospitals. Contamination of surfaces in small animal veterinary hospitals with multidrug-resistant enterococci is a potential concern for pets and humans contacting these surfaces. Implementing precautions to minimize enterococcal contamination on these surfaces is recommended.

  12. 21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Physical... contamination of components, dietary supplements, or contact surfaces. The methods for adequate ground... constitute a source of contamination in areas where components, dietary supplements, or contact surfaces are...

  13. 21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PRACTICE IN MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Physical... contamination of components, dietary supplements, or contact surfaces. The methods for adequate ground... constitute a source of contamination in areas where components, dietary supplements, or contact surfaces are...

  14. TESTING ANTIMICROBIAL PAINT EFFICACY ON GYPSUM WALLBOARD CONTAMINATED WITH STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Often mold contaminated building materials are not properly removed, some surface cleaning is performed and paint is applied in an attempt to alleviate the problem. The efficacy of antimicrobial paints to eliminate or control mold regrowth on surfaces can easily be tested on non-...

  15. MICROFRACTURE SURFACE GEOCHEMISTRY AND ADHERENT MICROBIAL POPULATION METABOLISM IN TCE-CONTAMINATED COMPETENT BEDROCK

    EPA Science Inventory

    A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture (MF) surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE bi...

  16. Overview of Chemicals of Emerging Concern

    EPA Science Inventory

    Contaminants of emerging concern or environmental emerging contaminants, are chemicals, products and materials that are detected with increasing frequency in all environmental media including surface, ground water and drinking water. Examples of these contaminants include pharmac...

  17. Preservation of Thermal Control Specular Gold Baffle Surface on the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC)

    NASA Technical Reports Server (NTRS)

    MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III

    2010-01-01

    Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources

  18. Preservation of thermal control specular gold baffle surface on the James Webb Space Telescope (JWST) integrated science instrument module (ISIM) electronics compartment (IEC)

    NASA Astrophysics Data System (ADS)

    Montt de Garcia, Kristina; Patel, Jignasha; Perry, Radford, III

    2010-08-01

    Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources.

  19. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    USGS Publications Warehouse

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  20. Contamination of optical surfaces in Earth orbit

    NASA Technical Reports Server (NTRS)

    Kinser, Donald L.; Weller, Robert A.; Mendenhall, M. H.; Wiedlocher, D. E.; Nichols, R.; Tucker, D.; Whitaker, A.

    1992-01-01

    Glass and glass ceramic samples exposed to the low earth orbit environment for approximately 5.5 years on the Long Duration Exposure Facility (LDEF) were found to display limited degradation in optical transmission. Commercial optical quality fused silica samples display decreases in transmission in the 200 to 400 nm wavelength region, and this degradation appears to be a consequence of surface contamination. The contamination, found only on internal surfaces of samples, was measured by medium energy backscattering spectrometry and found to be primarily carbon. Additional thin film contamination by a species with atomic mass near 64, which was present at the level of about 8 x 10 exp 14/sq. cm has not been identified. These observations are consistent with the interpretation that organic binders used in the black absorbing paint (Chem Glaze Z-306) inside the sample holding tray were concentrated in the vicinity of the samples and photolytically cracked by solar UV radiation. The resulting decomposition products were deposited on the interior sample surface and gave rise to the optical transmission loss. No detectable contamination was observed on the external or space exposed surface of the samples. No measurable damage was detected which could be attributed to the direct action of gamma or UV radiation on the glass samples. These results emphasize the need for special precautions in the preparation of spacecraft carrying precision optical components on long duration missions.

  1. Printed Circuit Board Surface Finish and Effects of Chloride Contamination, Electric Field, and Humidity on Corrosion Reliability

    NASA Astrophysics Data System (ADS)

    Conseil-Gudla, Hélène; Jellesen, Morten S.; Ambat, Rajan

    2017-02-01

    Corrosion reliability is a serious issue today for electronic devices, components, and printed circuit boards (PCBs) due to factors such as miniaturization, globalized manufacturing practices which can lead to process-related residues, and global usage effects such as bias voltage and unpredictable user environments. The investigation reported in this paper focuses on understanding the synergistic effect of such parameters, namely contamination, humidity, PCB surface finish, pitch distance, and potential bias on leakage current under different humidity levels, and electrochemical migration probability under condensing conditions. Leakage currents were measured on interdigitated comb test patterns with three different types of surface finish typically used in the electronics industry, namely gold, copper, and tin. Susceptibility to electrochemical migration was studied under droplet conditions. The level of base leakage current (BLC) was similar for the different surface finishes and NaCl contamination levels up to relative humidity (RH) of 65%. A significant increase in leakage current was found for comb patterns contaminated with NaCl above 70% to 75% RH, close to the deliquescent RH of NaCl. Droplet tests on Cu comb patterns with varying pitch size showed that the initial BLC before dendrite formation increased with increasing NaCl contamination level, whereas electrochemical migration and the frequency of dendrite formation increased with bias voltage. The effect of different surface finishes on leakage current under humid conditions was not very prominent.

  2. Characterisation of CFRP surface contamination by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Sawczak, Miroslaw; Wandowski, Tomasz; Ostachowicz, Wieslaw M.; Cenian, Adam

    2014-03-01

    The application of Carbon Fibre Reinforced Polymers (CFRP) in aeronautics has been increasing. The CFRP elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. This research is focused on characterization of surfaces before bonding. In-situ examination of large surface materials, determine the group of methods that are preferred. The analytical methods should be non-destructive, enabling large surface analysis in relatively short time. In this work a spectroscopic method was tested that can be potentially applied for surface analysis. Four cases of surface condition were investigated that can be encountered either in the manufacturing process or during aircraft service. The first case is related to contamination of CFRP surface with hydraulic fluid. This fluid reacts with water forming a phosphoric acid that can etch the CFRP. Second considered case was related to silicone-based release agent contamination. These agents are used during the moulding process of composite panels. Third case involved moisture content in CFRP. Moisture content lowers the adhesion quality and leads to reduced performance of CFRP resulting in reduced performance of the adhesive bond. The last case concentrated on heat damage of CFRP. It was shown that laser induced fluorescence method can be useful for non-destructive evaluation of CFRP surface and some of the investigated contaminants can be easily detected.

  3. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  4. In situ plasma removal of surface contaminants from ion trap electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haltli, Raymond A.

    2015-05-01

    In this thesis, the construction and implementation of an in situ plasma discharge designed to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results. In recent years, many advances have been made in using ion traps for quantum information processing. All of the criteria defined by DiVincenzo for using ion traps for implementing a quantum computer have been individually demonstrated, and in particular surface traps provide a scalable platform for ions. In order to be used for quantum algorithms, trapped ions need to be cooled to their motional (quantum mechanical) ground state. One ofmore » the hurdles in integrating surface ion traps for a quantum computer is minimizing electric field noise, which causes the ion to heat out of its motional ground state and which increases with smaller ion-to-electrode distances realized with surface traps. Surface contamination of trap electrodes is speculated to be the primary source of electric field noise. The main goal achieved by this work was to implement an in situ surface cleaning solution for surface electrode ion traps, which would not modify the ion trap electrode surface metal. Care was taken in applying the RF power in order to localize a plasma near the trap electrodes. A method for characterizing the energy of the plasma ions arriving at the ion trap surface is presented and results for plasma ion energies are shown. Finally, a method for quantifying the effectiveness of plasma cleaning of trap electrodes, using the surface analysis technique of X-ray photoelectron spectroscopy for measuring the amount and kind of surface contaminants, is described. A significant advantage of the trap electrode surface cleaning method presented here is the minimal changes necessary for implementation on a working ion trap experimental system.« less

  5. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    USGS Publications Warehouse

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).

  6. Mie Scattering of Growing Molecular Contaminants

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2007-01-01

    Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers and to produce many roughly hemispherical "islands" of contamination on the surface. The mathematics of the hemispherical scattering is simplified by introducing a Virtual source below the plane of the optic, in this case a mirror, allowing the use of Mie theory to produce a solution for the resulting sphere .in transmission. Experimentally, a fixed wavelength in the vacuum ultraviolet was used as the illumination source and scattered light from the polished and coated glass mirrors was detected at a fixed angle as the contamination islands grew in time.

  7. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825

  8. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 415: Project 57 No. 1 Plutonium Dispersion (NTTR), Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick; Burmeister, Mark

    2014-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 415, Project 57 No. 1 Plutonium Dispersion (NTTR). CAU 415 is located on Range 4808A of the Nevada Test and Training Range (NTTR) and consists of one corrective action site: NAFR-23-02, Pu Contaminated Soil. The CAU 415 site consists of the atmospheric release of radiological contaminants to surface soil from the Project 57 safety experiment conducted in 1957. The safety experiment released plutonium (Pu), uranium (U), and americium (Am) to the surface soil over an area of approximately 1.9 squaremore » miles. This area is currently fenced and posted as a radiological contamination area. Vehicles and debris contaminated by the experiment were subsequently buried in a disposal trench within the surface-contaminated, fenced area and are assumed to have released radiological contamination to subsurface soils. Potential source materials in the form of pole-mounted electrical transformers were also identified at the site and will be removed as part of closure activities.« less

  9. Effect of airborne contaminants on the wettability of supported graphene and graphite

    NASA Astrophysics Data System (ADS)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  10. Effect of airborne contaminants on the wettability of supported graphene and graphite.

    PubMed

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  11. FastICA peel-off for ECG interference removal from surface EMG.

    PubMed

    Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping

    2016-06-13

    Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.

  12. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower East Tampa Bay

    EPA Science Inventory

    Contaminant concentrations are reported for surface water, sediment, seagrass, mangroves, Florida Crown conch, blue crabs and fish collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay. Concentrations of trace metals, chlorinated pesticides, atrazine, total ...

  13. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms

    USDA-ARS?s Scientific Manuscript database

    Cross-contamination of fresh produce and other foods from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a rapid, waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its abili...

  14. Transport and transformation of pharmaceuticals and other contaminants of emerging concern from wastewater discharge through surface water to drinking water intake and treatment

    EPA Science Inventory

    The ubiquitous presence of pharmaceuticals, hormones, and other contaminants of emerging concern (CECs) in surface-water resources have necessitated research that better elucidates pathways of transport and transformation for these compounds from their discharged wastewater, thro...

  15. Evaluation of Salmonella biofilm cell transfer from contact surfaces to beef products

    USDA-ARS?s Scientific Manuscript database

    Introduction: Meat contamination by Salmonella enterica is a serious food safety concern. One common transmission route that leads to cross contamination in meat plants is bacteria transfer from biofilms on contact surfaces to meat products via direct contact. Many factors could affect biofilm tra...

  16. 7 CFR 319.8-23 - Treatment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fumigation of cotton and covers (other than high density cotton free of surface contamination) will be... only lint, linters, or waste, and the bales of which are compressed to a density of 28 or more pounds per cubic foot and are free of surface contamination. (b) An inspector may authorize the substitution...

  17. 7 CFR 319.8-23 - Treatment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fumigation of cotton and covers (other than high density cotton free of surface contamination) will be... only lint, linters, or waste, and the bales of which are compressed to a density of 28 or more pounds per cubic foot and are free of surface contamination. (b) An inspector may authorize the substitution...

  18. 7 CFR 319.8-23 - Treatment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... fumigation of cotton and covers (other than high density cotton free of surface contamination) will be... only lint, linters, or waste, and the bales of which are compressed to a density of 28 or more pounds per cubic foot and are free of surface contamination. (b) An inspector may authorize the substitution...

  19. ENVIRONMENTAL TECHNOLOGY INITIATIVE: CHEMICAL-FREE CLEANING OF SEMICONDUCTORS BY THE RADIANCE PROCESS

    EPA Science Inventory

    The Radiance Process is a patented dry process for removing contaminants from surfaces. It uses light, usually from a pulsed laser and a gas inert to the surface, to entrain released contaminants. The focus of this effort is to assess the applicability of the Radiance Process t...

  20. Health assessment for Love's Container Landfill, Buckingham, Virginia, Region 3. CERCLIS No. VAD089027973. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-05

    Love's Container Service Landfill covers eight acres in a rural area near the town of Buckingham, Virginia. Sampling indicated that on-site groundwater and off-site residential well water are contaminated by chromium and beryllium. There does not appear to be any indication of contamination in the surface soil, the surface water, nor the private wells. The monitoring wells indicate only trace levels of contamination. The site does not appear to present any threat to human health.

  1. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  2. Operational level for unconditional release of contaminated property from affected areas around Fukushima Daiichi nuclear power plant

    PubMed Central

    Ogino, Haruyuki; Hattori, Takatoshi

    2013-01-01

    This paper focuses on the surface contamination control of slightly contaminated property after the Fukushima nuclear accident. The operational level for the unconditional release of contaminated properties is calculated in counts per minute (cpm) to enable the use of a typical Geiger-Muller (GM) survey meter with a 50-mm bore, on the basis of the surficial clearance level of 10 Bq cm−2 for 134Cs and 137Cs derived in the previous studies of the authors. By applying a factor for the conversion of the unit surface contamination to the count rate of a survey meter widely used after the Fukushima accident, the operational level for the unconditional release of contaminated properties was calculated to be 2300 cpm on average and 23 000 cpm at the highest-contamination part. The calculated numerical values of the operational levels are effective as long as the typical GM survey meter is used in the radiation measurement. PMID:23778575

  3. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings, roads, and so on) during the Site closure efforts resulted in major changes to surface and shallow groundwater flow. Consistent with previous documentation of uranium operations and contamination, only very small amounts of highly enriched uranium are found in a small number of water samples, generally from the former Solar Ponds complex and central Industrial Area. Depleted uranium is more widely distributed at the site, and water samples exhibit the full range of depleted plus natural uranium mixtures. However, one third of the samples are found to contain only natural uranium, and three quarters of the samples are found to contain more than 90% natural uranium - substantial fractions given that the focus of these analyses was on evaluating potentially contaminated waters. Following site closure, uranium concentrations have increased at some locations, particularly for surface water samples. Overall, isotopic ratios at individual locations have been relatively consistent, indicating that the increases in concentrations are due to decreases in dilution flow following removal of impermeable surfaces and buildings.

  4. Maintenance of contamination sensitive surfaces on board long-term space vehicles

    NASA Technical Reports Server (NTRS)

    Phillips, A.; Maag, C.

    1984-01-01

    In the current age, highly sensitive instruments are being flown on spacecraft, and questions of contamination have become important. The present investigation is concerned with the available approaches which can provide long-term protection for contamination sensitive surfaces. Aspects and sources of spacecraft contamination are examined, taking into account materials outgassing, particulates, propulsion system interaction, overboard venting, man-made and cosmic debris, and atomic oxygen/ambient atmosphere interaction. Suitable protection approaches provided by current technology are discussed, giving attention to aperture covers, a possibility for a retractable cover design, gaseous purges, options for prolonging the lifetime of the thermal control system, and plume shields. Some new possibilities considered are related to an early warning system for excessive amounts of contamination, a molecular/wake shield, and the use of atomic oxygen.

  5. Environmental Verification Experiment for the Explorer Platform (EVEEP)

    NASA Technical Reports Server (NTRS)

    Norris, Bonnie; Lorentson, Chris

    1992-01-01

    Satellites and long-life spacecraft require effective contamination control measures to ensure data accuracy and maintain overall system performance margins. Satellite and spacecraft contamination can occur from either molecular or particulate matter. Some of the sources of the molecular species are as follows: mass loss from nonmetallic materials; venting of confined spacecraft or experiment volumes; exhaust effluents from attitude control systems; integration and test activities; and improper cleaning of surfaces. Some of the sources of particulates are as follows: leaks or purges which condense upon vacuum exposure; abrasion of movable surfaces; and micrometeoroid impacts. The Environmental Verification Experiment for the Explorer Platform (EVEEP) was designed to investigate the following aspects of spacecraft contamination control: materials selection; contamination modeling of existing designs; and thermal vacuum testing of a spacecraft with contamination monitors.

  6. Linking otolith microchemistry and surface water contamination from natural gas mining.

    PubMed

    Keller, David H; Zelanko, Paula M; Gagnon, Joel E; Horwitz, Richard J; Galbraith, Heather S; Velinsky, David J

    2018-09-01

    Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01-1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Purvis, C. K.

    1980-01-01

    Satellites in geosynchronous orbits have been found to be charged to significant negative voltages during encounters with geomagnetic substorms. When satellite surfaces are charged, there is a probability of enhanced contamination from charged particles attracted back to the satellite by electrostatic forces. This could be particularly disturbing to large satellites using sensitive optical systems. In this study the NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged-particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.

  8. Emerging contaminants in surface waters in China—a short review

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Fan, Maohong; Zhang, Guangming

    2014-07-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L-1 to μg L-1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched.

  9. Contamination of X-ray Cassettes with Methicillin-resistant Staphylococcus aureus and Methicillin-resistant Staphylococcus haemolyticus in a Radiology Department

    PubMed Central

    Kim, Han-Sung; Park, Ji-Young; Koo, Hyun-Sook; Choi, Chul-Sun; Song, Wonkeun; Cho, Hyoun Chan; Lee, Kyu Man

    2012-01-01

    Background We performed surveillance cultures of the surfaces of X-ray cassettes to assess contamination with methicillin-resistant Staphylococcus aureus (MRSA). Methods The surfaces of 37 X-ray cassettes stored in a radiology department were cultured using mannitol salt agar containing 6 µg/mL oxacillin. Suspected methicillin-resistant staphylococcal colonies were isolated and identified by biochemical testing. Pulsed-field gel electrophoresis (PFGE) analysis was performed to determine the clonal relationships of the contaminants. Results Six X-ray cassettes (16.2%) were contaminated with MRSA. During the isolation procedure, we also detected 19 X-ray cassettes (51.4%) contaminated with methicillin-resistant Staphylococcus haemolyticus (MRSH), identified as yellow colonies resembling MRSA on mannitol salt agar. PFGE analysis of the MRSA and MRSH isolates revealed that most isolates of each organism were identical or closely related to each other, suggesting a common source of contamination. Conclusions X-ray cassettes, which are commonly in direct contact with patients, were contaminated with MRSA and MRSH. In hospital environments, contaminated X-ray cassettes may serve as fomites for methicillin-resistant staphylococci. PMID:22563556

  10. Contamination of X-ray cassettes with methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus haemolyticus in a radiology department.

    PubMed

    Kim, Jae-Seok; Kim, Han-Sung; Park, Ji-Young; Koo, Hyun-Sook; Choi, Chul-Sun; Song, Wonkeun; Cho, Hyoun Chan; Lee, Kyu Man

    2012-05-01

    We performed surveillance cultures of the surfaces of X-ray cassettes to assess contamination with methicillin-resistant Staphylococcus aureus (MRSA). The surfaces of 37 X-ray cassettes stored in a radiology department were cultured using mannitol salt agar containing 6 µg/mL oxacillin. Suspected methicillin-resistant staphylococcal colonies were isolated and identified by biochemical testing. Pulsed-field gel electrophoresis (PFGE) analysis was performed to determine the clonal relationships of the contaminants. Six X-ray cassettes (16.2%) were contaminated with MRSA. During the isolation procedure, we also detected 19 X-ray cassettes (51.4%) contaminated with methicillin-resistant Staphylococcus haemolyticus (MRSH), identified as yellow colonies resembling MRSA on mannitol salt agar. PFGE analysis of the MRSA and MRSH isolates revealed that most isolates of each organism were identical or closely related to each other, suggesting a common source of contamination. X-ray cassettes, which are commonly in direct contact with patients, were contaminated with MRSA and MRSH. In hospital environments, contaminated X-ray cassettes may serve as fomites for methicillin-resistant staphylococci.

  11. Control of contaminants on sensors. Report 1: Interdirectorate working group on earth observation sensors

    NASA Technical Reports Server (NTRS)

    Hovis, W.; Smith, D.; Mcculloch, A.; Goldberg, I. L.; Ostrow, H.; Seidenberg, B.

    1973-01-01

    Examples of contamination of sensors from various sources during space missions are presented. Design precautions to provide access to optical surfaces and venting of outgassing products are recommended as methods for coping with contamination. The effects of the sensor materials on sensor contamination are analyzed. Actions to be taken during transportation, storage, and testing of sensors to avoid contamination are discussed.

  12. Evaluation of standardized sample collection, packaging, and decontamination procedures to assess cross-contamination potential during Bacillus anthracis incident response operations

    PubMed Central

    Calfee, M. Worth; Tufts, Jenia; Meyer, Kathryn; McConkey, Katrina; Mickelsen, Leroy; Rose, Laura; Dowell, Chad; Delaney, Lisa; Weber, Angela; Morse, Stephen; Chaitram, Jasmine; Gray, Marshall

    2016-01-01

    Sample collection procedures and primary receptacle (sample container and bag) decontamination methods should prevent contaminant transfer between contaminated and non-contaminated surfaces and areas during bio-incident operations. Cross-contamination of personnel, equipment, or sample containers may result in the exfiltration of biological agent from the exclusion (hot) zone and have unintended negative consequences on response resources, activities and outcomes. The current study was designed to: (1) evaluate currently recommended sample collection and packaging procedures to identify procedural steps that may increase the likelihood of spore exfiltration or contaminant transfer; (2) evaluate the efficacy of currently recommended primary receptacle decontamination procedures; and (3) evaluate the efficacy of outer packaging decontamination methods. Wet- and dry-deposited fluorescent tracer powder was used in contaminant transfer tests to qualitatively evaluate the currently-recommended sample collection procedures. Bacillus atrophaeus spores, a surrogate for Bacillus anthracis, were used to evaluate the efficacy of spray- and wipe-based decontamination procedures. Both decontamination procedures were quantitatively evaluated on three types of sample packaging materials (corrugated fiberboard, polystyrene foam, and polyethylene plastic), and two contamination mechanisms (wet or dry inoculums). Contaminant transfer results suggested that size-appropriate gloves should be worn by personnel, templates should not be taped to or removed from surfaces, and primary receptacles should be selected carefully. The decontamination tests indicated that wipe-based decontamination procedures may be more effective than spray-based procedures; efficacy was not influenced by material type but was affected by the inoculation method. Incomplete surface decontamination was observed in all tests with dry inoculums. This study provides a foundation for optimizing current B. anthracis response procedures to minimize contaminant exfiltration. PMID:27362274

  13. Evaluation of standardized sample collection, packaging, and decontamination procedures to assess cross-contamination potential during Bacillus anthracis incident response operations.

    PubMed

    Calfee, M Worth; Tufts, Jenia; Meyer, Kathryn; McConkey, Katrina; Mickelsen, Leroy; Rose, Laura; Dowell, Chad; Delaney, Lisa; Weber, Angela; Morse, Stephen; Chaitram, Jasmine; Gray, Marshall

    2016-12-01

    Sample collection procedures and primary receptacle (sample container and bag) decontamination methods should prevent contaminant transfer between contaminated and non-contaminated surfaces and areas during bio-incident operations. Cross-contamination of personnel, equipment, or sample containers may result in the exfiltration of biological agent from the exclusion (hot) zone and have unintended negative consequences on response resources, activities and outcomes. The current study was designed to: (1) evaluate currently recommended sample collection and packaging procedures to identify procedural steps that may increase the likelihood of spore exfiltration or contaminant transfer; (2) evaluate the efficacy of currently recommended primary receptacle decontamination procedures; and (3) evaluate the efficacy of outer packaging decontamination methods. Wet- and dry-deposited fluorescent tracer powder was used in contaminant transfer tests to qualitatively evaluate the currently-recommended sample collection procedures. Bacillus atrophaeus spores, a surrogate for Bacillus anthracis, were used to evaluate the efficacy of spray- and wipe-based decontamination procedures. Both decontamination procedures were quantitatively evaluated on three types of sample packaging materials (corrugated fiberboard, polystyrene foam, and polyethylene plastic), and two contamination mechanisms (wet or dry inoculums). Contaminant transfer results suggested that size-appropriate gloves should be worn by personnel, templates should not be taped to or removed from surfaces, and primary receptacles should be selected carefully. The decontamination tests indicated that wipe-based decontamination procedures may be more effective than spray-based procedures; efficacy was not influenced by material type but was affected by the inoculation method. Incomplete surface decontamination was observed in all tests with dry inoculums. This study provides a foundation for optimizing current B. anthracis response procedures to minimize contaminant exfiltration.

  14. Can the design of glove dispensing boxes influence glove contamination?

    PubMed

    Assadian, O; Leaper, D J; Kramer, A; Ousey, K J

    2016-11-01

    Few studies have explored the microbial contamination of glove boxes in clinical settings. The objective of this observational study was to investigate whether a new glove packaging system in which single gloves are dispensed vertically, cuff end first, has lower levels of contamination on the gloves and on the surface around the box aperture compared with conventional glove boxes. Seven participating sites were provided with vertical glove dispensing systems (modified boxes) and conventional boxes. Before opening glove boxes, the surface around the aperture was sampled microbiologically to establish baseline levels of superficial contamination. Once the glove boxes were opened, the first pair of gloves in each box was sampled for viable bacteria. Thereafter, testing sites were visited on a weekly basis over a period of six weeks and the same microbiological assessments were made. The surface near the aperture of the modified boxes became significantly less contaminated over time compared with the conventional boxes (P<0.001), with an average of 46.7% less contamination around the aperture. Overall, gloves from modified boxes showed significantly less colony-forming unit contamination than gloves from conventional boxes (P<0.001). Comparing all sites over the entire six-week period, gloves from modified boxes had 88.9% less bacterial contamination. This simple improvement to glove box design reduces contamination of unused gloves. Such modifications could decrease the risk of microbial cross-transmission in settings that use gloves. However, such advantages do not substitute for strict hand hygiene compliance and appropriate use of non-sterile, single-use gloves. Copyright © 2016 The Healthcare Infection Society. All rights reserved.

  15. Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements.

    PubMed

    Baize, D; Sterckeman, T

    2001-01-08

    In order to evaluate the contamination of the Dornach (Switzerland) site within the framework of the CEEM-Soil project, each participating team was allowed to take a maximum of 15 samples. The French team's sampling was organized in such a way as to answer the following questions: (i) what is the natural concentration of the soils at this site (local pedo-geochemical background content)?; (ii) what are the levels of Cd, Cu, Pb and Zn contamination of the soil?; (iii) what is the depth reached by the surface contamination that is derived from atmospheric fallout?; (iv) how is the contamination spread along the longest axis of the area under study? The relationships between total Fe and the trace metals have allowed local variations in the natural pedo-geochemical background content to be detected and thus permitted the anthropogenic contamination to be estimated. There would appear to be a low level of Pb contamination over all the site investigated (an increase of the order of 5-10 mg kg(-1) on the background level), limited to the surface humus-bearing layers. There is also a significant contamination by Cu over all of the site (an increase of the order of 30-40 mg kg(-1)). This contamination has remained in the surface horizons (0-20 cm). Very high Zn and Cd concentrations have been found in the four surface (0-4 cm) and deep horizons (15-70 cm) taken under the forest and very much lower values in the samples taken from cultivated soils. The most likely explanation is an unequal inheritance between the upper part of the site (wooded with thinner very clayey soils) and the lower cultivated part of the site (with thicker less clayey soils developed in a loamy material). For various reasons, it seems unlikely that a contamination of the wooded part should be so much higher than the cultivated part due to the interception of atmospheric dust by the trees. The local pedo-geochemical background Cd and Zn content of the upper wooded part proved to be clearly higher than that which would be encountered in most soils of Switzerland and France. Given this evaluation of the background content, it seems that only the surface horizons have been affected by Zn contamination (an addition of approx. 60-100 mg kg(-1)). In the case of Cd, the increase in concentrations is only 0.5-1 mg kg(-1) for the ploughed horizons, as well as the for the A horizons.

  16. Recoveries of trace pseudoephedrine and methamphetamine residues from impermeable household surfaces: implications for sampling methods used during remediation of clandestine methamphetamine laboratories.

    PubMed

    Abdullah, A F Lim; Miskelly, Gordon M

    2010-04-15

    Evaluation of the risk posed by contaminants present during and after decontamination of clandestine methamphetamine laboratories requires a connection between the levels of contaminants measured and those actually present at the scene. The recoveries of pseudoephedrine and methamphetamine from glass, stainless steel, and a range of impermeable surfaces likely to be found in a clandestine laboratory were examined, using GC-MS of derivatized samples as the analytical method. When surfaces had been cleaned prior to drug deposition, wiping with water-dampened filter paper can recover 60-80% of pseudoephedrine immediately after deposition, and at least 50% of the pseudoephedrine still present on a surface after 2 days when deposited at a surface concentration of 2.5 microg/100 cm(2). Wiping with methanol-dampened filter paper could recover 60-90% of the methamphetamine immediately after deposition, and could recover at least 50-60% of the methamphetamine still present after 2 days when 0.6 microg/100 cm(2) was initially deposited on the surface. Recoveries were lower for surfaces that had not been pre-cleaned. Methamphetamine and pseudoephedrine showed significant volatility in both the free base and hydrochloride forms, with experiments in an enclosed format showing up to half the recovered drug being present on a glass plate held about 4mm above a substrate contaminated with one of the drugs at the above surface concentrations after 2 days. It is therefore important to remove any visible bulk contaminants and remove obvious pseudoephedrine or methamphetamine-contaminated surfaces prior to heating, ventilation or sealing of a clandestine laboratory to avoid redistribution of material around the site. A revised method for pseudoephedrine analysis was developed that could also detect the pseudoephedrine-formaldehyde adduct that can form from trace pseudoephedrine present at clandestine laboratories. (c) 2009 Elsevier B.V. All rights reserved.

  17. Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan

    NASA Astrophysics Data System (ADS)

    Xanke, Julian; Liesch, Tanja; Goeppert, Nadine; Klinger, Jochen; Gassen, Niklas; Goldscheider, Nico

    2017-09-01

    Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.

  18. Effect of blood contamination with 1-step self-etching adhesives on microtensile bond strength to dentin.

    PubMed

    Yoo, H M; Pereira, P N R

    2006-01-01

    This study evaluated the effect of blood contamination and decontamination methods on the microtensile bond strength of 1-step self-etching adhesive systems to dentin contaminated after adhesive application and light curing. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt L-Pop) and 1 resin composite (Clearfil AP-X) were used. Third molars that had been stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to the 3 adhesive systems. The adhesive systems were used under 3 conditions: no contamination, which was the control (C); contamination of the light-cured adhesive surface with blood and reapplication of adhesive (Contamination 1) and contamination of the light-cured adhesive surface with blood, then washing, drying and reapplication of the adhesive (Contamination 2). Following light curing of the adhesive, the resin composite was placed in 3 increments up to a 5-mm-thick layer on the bonded surface. All specimens were stored in distilled water at 37 degrees C for 24 hours. The microtensile bond strength was measured using a universal testing machine (EZ test), and data were analyzed by 1-way ANOVA followed by the Duncan test to make comparisons among the groups (p=0.05). After debonding, 5 specimens were selected from each group and examined in a scanning electron microscope to evaluate the modes of fracture. For all adhesives, contamination groups showed lower bond strength than the control (p<0.05). There was no statistically significant difference among the control groups (p>0.05). For Xeno III and Adper Prompt L-Pop, contamination group #2 showed the lowest bond strength among the groups (p<0.05). For One Up Bond F, contamination group #2 showed higher bond strength than contamination group #1 but showed no statistical significance between them (p>0.05).

  19. Gas Shielding Technology for Welding and Brazing

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  20. Surface microbial contamination in hospitals: A pilot study on methods of sampling and the use of proposed microbiologic standards.

    PubMed

    Claro, Tânia; O'Reilly, Marese; Daniels, Stephen; Humphreys, Hilary

    2015-09-01

    Contamination of hospital surfaces by bacteria is increasingly recognized. We assessed commonly touched surfaces using contact plates and Petrifilms (3M, St. Paul, MN) and compared the results against proposed microbiology standards. Toilet door handles were the most heavily contaminated (7.97 ± 0.68 colony forming units [CFU]/cm(2)) and exceeded proposed standards on 74% of occasions. Petrifilms detected statistically higher CFU from bedside lockers. Further research is required on the use of standards and methods of sampling. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Weathering of radiocaesium contamination on urban streets, walls and roofs.

    PubMed

    Andersson, K G; Roed, J; Fogh, C L

    2002-01-01

    Recent investigations in Russia have emphasised the significance of dose contributions from contamination on urban streets and roof pavings, and, typically to a lesser extent, walls in the urban environment. The crucial factor determining the magnitude of these contributions is the retention of the contamination by the different types of urban surface. Since the Chernobyl accident, a series of long-term field studies has been carried out on urban streets, walls and roofs, to examine the weathering processes of 137Cs on the various surface types. The derived time-functions are applied to estimate resultant long-term doses to inhabitants of an urban centre. The paper highlights the effect on caesium retention of surface material characteristics.

  2. Health assessment for Neal's Dump, Spencer, Owen County, Indiana, Region 5. CERCLIS No. IND980794549. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Neal's Dump (the site) is located four miles south of Spencer, Indiana, on Pottersville Road. The site is 1/2 acre in size and 20 feet deep. Neal's Dump served as a waste disposal site from approximately 1958 to the early seventies. The Westinghouse Electric Corporation, Bloomington, Indiana, disposed of an unknown amount of capacitors, rage, and sawdust contaminated with polychlorinated biphenyls (PCBs). The contaminated soil on-site has been found to contain very high levels of PCBs. In November 1980, the Environmental Protection Agency (EPA) collected soil samples at Neal's Dump. Results indicated a high concentration of PCBs. Several other organicmore » contaminants have been found on-site. There are several environmental pathways of concern. The migration of PCBs off-site via contaminated groundwater potentially contaminate private residential wells. Also of concern is potential surface water contamination. Additional pathways include contamination of fish and other wildlife from surface water run-off or direct contact with contaminated sediments and soils and wind-driven contaminated soil. This site is of public health concern because a risk to human health exists from exposure to hazardous substances at concentrations that may result in adverse human health effects.« less

  3. Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska; a hydrogeochemical and microbiological investigation workplan

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.

    1998-01-01

    Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight into ground-water/surface-water interactions in the subsurface. Characterization of the unsaturated zone will improve our understanding of interactions among ground water, the unsaturated zone, and the atmosphere. The interactions likely of importance to this study include the migration of water, dissolved contaminants, nutrients, and gases (oxygen, carbon dioxide, and methane) between the saturated and unsaturated zones. We will use the results of ground-water chemical analyses to determine the spatial and temporal distribution of (1) chlorinated-hydrocarbon contaminants and their degradation products, (2) oxidation-reduction indicators, (3) nutrients, and (4) major ground-water ions. These water-quality data will provide insight into ground-water flow directions, interactions between ground water and surface water, attenuation of contaminant concentrations caused by dispersion, and intrinsic microbiological processes. Microbiological analyses will indicate whether microorganisms at the site are capable of degrading the contaminants of interest, and will allow us to estimate their potential to attenuate existing contamination. Physical and chemical data interpreted as part of the analysis of ground water and surface water mixing will improve our understanding of the relationship between water quality and contaminant source mixing.

  4. Assessment of post-contamination treatments affecting different bonding stages to dentin

    PubMed Central

    Elkassas, Dina; Arafa, Abla

    2016-01-01

    Objectives: To assess the effect of cleansing treatments following saliva and blood contamination at different bonding stages to dentin. Materials and Methods: Labial surfaces of 168 permanent maxillary central incisors were ground flat exposing superficial dentin. Specimens were divided into: uncontaminated control (A), contamination after etching (B), contamination after adhesive application (C), contamination after adhesive polymerization (D). Groups were further subdivided according to cleansing treatments into: rinsing (B1, C1, D1), re-etching (B2, D3), sodium hypochlorite application (B3), ethyl alcohol application (C2), acetone application (C3), rinsing and rebonding (D2), re-etching and rebonding (D4). Composite microcylinders were bonded to treated substrates and shear loaded micro-shear bond strength (μSBS) until failure and treated surfaces were examined with scanning electron microscope. Debonded surfaces were classified as adhesive, cohesive or mixed failure. The data were analyzed using one-way ANOVA and Tukey's post hoc test. Results: The μSBS values were ranked as follow; Group B: A > B3 > B2 > B1 > B, Group C: A > C3 > C2 > C1 > C, Group D: A > D4 > D1 = D2 ≥ D3. Debonded surfaces showed adhesive failure in Group B while cohesive failure in Groups C and D. Conclusions: Cleansing treatments differ according to bonding step; re-etching then rebonding suggested if etched substrate or polymerized adhesive were contaminated while acetone application decontaminated affected unpolymerized adhesive. PMID:27403048

  5. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms

    PubMed Central

    Ghantoji, Shashank S.; Stibich, Mark; Stachowiak, Julie; Cantu, Sherry; Adachi, Javier A.; Raad, Issam I.

    2015-01-01

    The standard for Clostridium difficile surface decontamination is bleach solution at a concentration of 10 % of sodium hypochlorite. Pulsed xenon UV light (PX-UV) is a means of quickly producing germicidal UV that has been shown to be effective in reducing environmental contamination by C. difficile spores. The purpose of this study was to investigate whether PX-UV was equivalent to bleach for decontamination of surfaces in C. difficile infection isolation rooms. High-touch surfaces in rooms previously occupied by C. difficile infected patients were sampled after discharge but before and after cleaning using either bleach or non-bleach cleaning followed by 15 min of PX-UV treatment. A total of 298 samples were collected by using a moistened wipe specifically designed for the removal of spores. Prior to disinfection, the mean contamination level was 2.39 c.f.u. for bleach rooms and 22.97 for UV rooms. After disinfection, the mean level of contamination for bleach was 0.71 c.f.u. (P = 0.1380), and 1.19 c.f.u. (P = 0.0017) for PX-UV disinfected rooms. The difference in final contamination levels between the two cleaning protocols was not significantly different (P = 0.9838). PX-UV disinfection appears to be at least equivalent to bleach in the ability to decrease environmental contamination with C. difficile spores. Larger studies are needed to validate this conclusion. PMID:25627208

  6. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London.

    PubMed

    Otter, J A; French, G L

    2009-12-01

    To investigate bacterial contamination on hand-touch surfaces in the public transport system and in public areas of a hospital in central London. Dipslides were used to sample 118 hand-touch surfaces in buses, trains, stations, hotels and public areas of a hospital in central London. Total aerobic counts were determined, and Staphylococcus aureus isolates were identified and characterized. Bacteria were cultured from 112 (95%) of sites at a median concentration of 12 CFU cm(-2). Methicillin-susceptible Staph. aureus (MSSA) was cultured from nine (8%) of sites; no sites grew methicillin-resistant Staph. aureus (MRSA). Hand-touch sites in London are frequently contaminated with bacteria and can harbour MSSA, but none of the sites tested were contaminated with MRSA. Hand-touch sites can become contaminated with staphylococci and may be fomites for the transmission of bacteria between humans. Such sites could provide a reservoir for community-associated MRSA (CA-MRSA) in high prevalence areas but were not present in London, a geographical area with a low incidence of CA-MRSA.

  7. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.

  8. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA.

    PubMed

    Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W

    2014-10-01

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.

  9. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA

    DOE PAGES

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...

    2014-06-07

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  10. Investigation into the effects of surface stripping ZnO nanosheets.

    PubMed

    Barnett, Chris J; Jackson, Georgina; Jones, Daniel R; Lewis, Aled R; Welsby, Kathryn; Evans, Jon E; McGettrick, James D; Watson, Trystan; Maffeis, Thierry G G; Dunstan, Peter R; Barron, Andrew R; Cobley, Richard J

    2018-04-20

    ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.

  11. Investigation into the effects of surface stripping ZnO nanosheets

    NASA Astrophysics Data System (ADS)

    Barnett, Chris J.; Jackson, Georgina; Jones, Daniel R.; Lewis, Aled R.; Welsby, Kathryn; Evans, Jon E.; McGettrick, James D.; Watson, Trystan; Maffeis, Thierry G. G.; Dunstan, Peter R.; Barron, Andrew R.; Cobley, Richard J.

    2018-04-01

    ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.

  12. Modeling Surface Cross-contamination of Salmonella spp. on Ready-to-Eat Meat via Slicing Operation

    USDA-ARS?s Scientific Manuscript database

    Food pathogen cross-contamination occurring at home, retail food service or production site is one of the major factors causing foodborne illness. Studies on Salmonella Typhimurium surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing RTE products are needed to ensure RTE...

  13. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella and Escherichia coli 0157:H7

    USDA-ARS?s Scientific Manuscript database

    Cross-contamination of fresh produce from persistent pathogen reservoirs is a known risk factor in processing environments. Industry requires a waterless, zero-contact, chemical-free method for removing pathogens from food-contact surfaces. Cold plasma was tested for its ability to remove biofilms f...

  14. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    NASA Astrophysics Data System (ADS)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  15. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration.

    PubMed

    Lee, Sang-Bae; González-Cabezas, Carlos; Kim, Kwang-Mahn; Kim, Kyoung-Nam; Kuroda, Kenichi

    2015-08-10

    This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe(3+) additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe-catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives.

  16. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration

    PubMed Central

    2015-01-01

    This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe3+ additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe–catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives. PMID:26176305

  17. Field based plastic contamination sensing

    USDA-ARS?s Scientific Manuscript database

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  18. ASSESSMENT OF STACHYBOTRYS REGROWTH ON CONTAMINATED WALLBOARD AFTER TREATMENT WITH COMMON SURFACE CLEANERS/DISINFECTANTS

    EPA Science Inventory

    The paper describes results of experiments assessing the efficacy of treating mold-contaminated gypsum wallboard with cleaners and/or disinfectants. Although the accepted recommendations for handling Stachybotrys chartarum contaminated gypsum wallboard are removal and replacement...

  19. THE TREATMENT OF CONTAMINATED WATER AT REMEDIAL WOOD PRESERVING SITES

    EPA Science Inventory

    Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain,...

  20. Laser cleaning of the contaminations on the surface of tire mould

    NASA Astrophysics Data System (ADS)

    Ye, Yayun; Jia, Baoshen; Chen, Jing; Jiang, Yilan; Tang, Hongping; Wang, Haijun; Luan, Xiaoyu; Liao, Wei; Zhang, Chuanchao; Yao, Caizhen

    2017-07-01

    During the manufacturing of tires, surface pollutants on tire mould will lead to the production of unqualified tires. Tire moulds need to be regularly cleaned. Laser cleaning is recognized as a non-destructive, effective, precise and environmental friendly method. In this paper, laser cleaning was used to remove contaminants on tire mould surface. First, laser induced damage experiments were performed. The results showed that the roughness and hardness of the cast steel sample surface seldom changed under the energy range of 140.1-580.2 mJ laser irradiation 1 pulse and the energy range of 44.7-168.9 mJ laser irradiation 100 pulses. In the laser cleaning experiments, the cleaning thresholds and the optimal cleaning parameters were obtained. Results indicated that laser cleaning was safe and effective for tire mould contamination removal.

  1. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-07-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  2. Organic contamination analysis: High resolution mass spectrometric analysis of surface organics on selected areas of Surveyor 3

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Burlingame, A. L.

    1972-01-01

    The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.

  3. In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.

    1990-01-01

    NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.

  4. Methods for microbial filtration of fluids

    DOEpatents

    Carman, Margaret L.; Jackson, Kenneth J.; Knapp, Richard B.; Knezovich, John P.; Shah, Nilesh N.; Taylor, Robert T.

    1996-01-01

    Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides.

  5. Chlamydia and gonorrhoea contamination of clinic surfaces.

    PubMed

    Lewis, Natasha; Dube, Gail; Carter, Christine; Pitt, Rachel; Alexander, Sarah; Ison, Catherine A; Harding, Jan; Brown, Louise; Fryer, John; Hodson, James; Ross, Jonathan

    2012-10-01

    Nucleic acid amplification tests, with their ability to detect very small amounts of nucleic acid, have become the principle diagnostic tests for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC) in many sexual health clinics. The aim of this study was to investigate the extent of surface contamination with CT and GC within a city centre sexual health clinic and to evaluate the potential for contamination of containers used for the collection of self-taken swabs. Surface contamination with CT and GC was assessed by systematically sampling 154 different sites within one clinic using transcription-mediated amplification (TMA), quantitative PCR and culture. The caps of containers used by patients to collect self-taken samples were also tested for CT and GC using TMA. Of the 154 sites sampled, 20 (13.0%) tested positive on TMA. Of these, five (3.2%) were positive for CT alone, 11 (7.1%) for GC alone and four (2.6%) for both CT and GC. The proportion of GC TMA-positive test results differed by gender, with 11 (18.3%) positive results from the male patient clinic area compared with one (1.6%) from the female area (p=0.002). Positive samples were obtained from a variety of locations in the clinic, but the patient toilets were more likely to be contaminated than examination rooms (p=0.015). Quantitative PCR and culture assays were negative for all samples. 46 caps of the containers used for self-taken swabs were negative for both CT and GC on TMA testing. Surface contamination with chlamydial and gonococcal rRNA can occur within sexual health clinics, but the quantity of nucleic acid detected is low and infection risk to patients and staff is small. There remains a potential risk of contamination of patient samples leading to false-positive results.

  6. Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment

    NASA Astrophysics Data System (ADS)

    Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.

    2013-12-01

    We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.

  7. Measurement of surface contamination by certain antineoplastic drugs using high-performance liquid chromatography: applications in occupational hygiene investigations in hospital environments.

    PubMed

    Rubino, F M; Floridia, L; Pietropaolo, A M; Tavazzani, M; Colombi, A

    1999-01-01

    Within the context of continuing interest in occupational hygiene of hospitals as workplaces, the authors report the results of a preliminary study on surface contamination by certain antineoplastic drugs (ANDs), recently performed in eight cancer departments of two large general hospitals in Milan, Italy. Since reliable quantitative information on the exposure levels to individual drugs is mandatory to establish a strong interpretative framework for correctly assessing the health risks associated with manipulation of ANDs and rationally advise intervention priorities for exposure abatement, two automated analytical methods were set up using reverse-phase high-performance liquid chromatography for the measurement of contamination by 1) methotrexate (MTX) and 2) the three most important nucleoside analogue antineoplastic drugs (5-fluorouracil 5FU, Cytarabin CYA, Gemcytabin GCA) on surfaces such as those of preparation hoods and work-benches in the pharmacies of cancer wards. The methods are characterized by short analysis time (7 min) under isocratic conditions, by the use of a mobile phase with a minimal content of organic solvent and by high sensitivity, adequate to detect surface contamination in the 5-10 micrograms/m2 range. To exemplify the performance of the analytical methods in the assessment of contamination levels from the target analyte ANDs, data are reported on the contamination levels measured on various surfaces (such as on handles, floor surfaces and window panes, even far from the preparation hood). Analyte concentrations corresponding to 0.8-1.5 micrograms of 5FU were measured on telephones, 0.85-28 micrograms/m2 of CYA were measured on tables, 1.2-1150 micrograms/m2 of GCA on furniture and floors. Spillage fractions between 1-5% of the used ANDs (daily use 5FU 7-13 g; CYA 0.1-7.1 g; GCA 0.2-5 g) were measured on the disposable polythene-backed paper cover sheet of the preparation hood.

  8. Microbial Air Quality and Bacterial Surface Contamination in Ambulances During Patient Services

    PubMed Central

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-01-01

    Objectives We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. Methods We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram’s stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson’s correlation coefficient with a p-value of less than 0.050 considered significant. Results The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m3 and 522±581cfu/m3, respectively. Bacterial counts during patient services were 468±607cfu/m3 and fungal counts were 656±612cfu/m3. Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm2 and 1.3±1.1cfu/cm2, respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. Conclusions This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and fungal counts in ambulance air showed a significantly positive correlation with the bacterial surface contamination on medical instruments and allocated areas. Further studies should be conducted to determine the optimal intervention to reduce microbial contamination in the ambulance environment. PMID:25960835

  9. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  10. Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida

    USGS Publications Warehouse

    Goerlitz, D.F.; Troutman, D.E.; Godsy, E.M.; Franks, B.J.

    1985-01-01

    Operation of a wood-preserving facility for nearly 80 years at Pensacola, FL, contaminated the near-surface groundwater with creosote and pentachlorophenol. The major source of aquifer contamination was unlined surface impoundments that were in direct hydraulic contact with the groundwater. Episodes of overtopping the impoundments and overland flow of treatment liquor and waste were also significant to the migration and contamination of the groundwater. Solutes contaminating the ground-water are mainly naphthalene and substituted phenols. Sorption did not influence retardation of solutes in transport in the groundwater. Phenol and the mono substituted methylphenols appear to be undergoing bio-transformation. Pentachlorophenol (PCP) was not found in significant concentrations in the groundwater possibly because the solubility of PCP is approximately 5 mg/L at pH 6, near the average acidity for the groundwater.

  11. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects

    NASA Astrophysics Data System (ADS)

    Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.

    2013-09-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.

  12. Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.

    2009-01-01

    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.

  13. Norovirus: U.S. Trends and Outbreaks

    MedlinePlus

    ... Norovirus outbreaks can also occur from fecal (stool) contamination of certain foods at their source. For example, oysters harvested from ... norovirus can be brought on board in contaminated food or water or by passengers who ... contamination. This is because norovirus can persist on surfaces ...

  14. A protocol for evaluation of the role of disinfectants in limiting pathogens and weed moulds in commercial mushroom production.

    PubMed

    Abosriwil, Salem O; Clancy, Kevin J

    2002-03-01

    In vitro and in vivo evaluations of the effects of three commercial disinfectants on isolates of Trichoderma harzianum Rifai and Cladobotryum dendroides (Bull) W Gams & Hoozemans were combined in the development of methodologies for realistic assessment of disinfectant performance. 'Environ' and 'Purogene' incorporated into agar media at 50 mg AI litre-1 were effective in totally preventing the mycelial growth of T harzianum and C dendroides isolates, whereas with 'Sudol' a concentration of 500 mg AI litre-1 was required. Evaluation of a model in vivo system was combined with observations on the fungicidal effects of disinfectants. Spore suspensions of T harzianum (Th1), T harzianum (Th2) and C dendroides prepared from culture washings with sterilised distilled water were used as contaminating inoculum. Environ, Sudol and Purogene in aqueous solutions at 1000 mg AI litre-1 were sprayed onto these building structure surfaces before or after artificial contamination with spore suspensions. Re-isolation from surfaces was carried out using agar swabs, which were prepared in visking tubing, applied to treated surfaces and incubated at 25 degrees C for 24, 48, 72 or 96 h. Environ and Purogene were more effective than Sudol in limiting the recovery of Trichoderma spp and C dendroides. All three disinfectants applied 12 h after artificial contamination onto wood, concrete or glazed surfaces were able to reduce the recovery of these isolates more effectively than when they were applied 12 h before artificial contamination. Greater persistence of contamination was noted on the rougher surfaces (wood and concrete) than on the smoother glazed surface. It was concluded in this in vivo evaluation that, in many cases, the protection achieved by the physical nature of the smooth glazed tile surfaces was equivalent to that available from the application of disinfectants, thus highlighting the attention needed to the nature of building surfaces in the structures used in the mushroom industry. The artificial contamination and re-isolation techniques allowed significant comparison between disinfectant materials, timings and surface types. In the in vivo experiments using a single standardised test concentration, the relative fungicidal effects of the disinfectants, which varied in the complexity of their active ingredients, were better discriminated than the effects observed in vitro, although the general trend was similar.

  15. Higher Storage Temperature Causes Greater Salmonella enterica Serovar Typhimurium Internal Penetration of Artificially Contaminated, Commercially Available, Washed Free Range Eggs.

    PubMed

    Whiley, Alice; Fallowfield, Howard; Ross, Kirstin; McEvoy, Vanessa; Whiley, Harriet

    2016-07-01

    Foodborne salmonellosis is a major public health concern, with contaminated eggs identified as a significant source of infection. In Australia, the most prevalent cause of salmonellosis from eggs is Salmonella enterica subsp. enterica serovar Typhimurium. This study explored the effect of temperature after 1, 7, 14, 21, and 28 days of storage on commercially available washed free range eggs, artificially contaminated with Salmonella Typhimurium on the external surface. At each time point, the external surface of the egg, the crushed eggshell, and the internal egg yolk and albumen were analyzed for Salmonella. After 28 days of storage, 25% of eggs stored at 4°C, 50% of eggs stored at 14°C, and 100% of eggs stored at 23 and 35°C were internally contaminated with Salmonella. After 1 day of storage, more than 50% of all eggs had Salmonella present in the crushed shell after the external surface had been disinfected with ethanol. This is the first study to demonstrate that refrigeration reduced the potential for Salmonella Typhimurium to penetrate the eggshell membrane and internally contaminate table eggs commercially available in Australia. It also suggests that the processes of cracking eggs may be a source of cross-contamination within the kitchen.

  16. [Parameters optimization and cleaning efficiency evaluation of attrition scrubbing remediation of Pb-contaminated soil].

    PubMed

    Yang, Wen; Huang, Jin-lou; Peng, Hui-qing; Li, Si-tuo

    2013-09-01

    Attrition scrubbing was used to remediate lead contaminated-site soil, and the main purpose was to remove fine particles and lead contaminants from the surface of sand. The optimal parameters of attrition scrubbing were determined by orthogonal experiment, and three soil samples with different lead concentration were subjected to attrition scrubbing experiments. The results showed that the optimal scrubbing parameters were: a solid ratio of 70% dry matter, a temperature of 25 degrees C, an attrition time of 30 min, and an attrition speed of 1200 r x min(-1). Before attrition scrubbing, the screening and analysis of soil showed that in all three soil samples, lead was mainly enriched on sand and fine particles, and the distribution of lead was highly correlated to the organic matter. After attrition scrubbing, the washing efficiency of the original state lead contaminated sand soil in triplicates was 67.61%, 31.71% and 41.01%, respectively, which indicates that attrition scrubbing can remove part of the fine soil and lead contaminants from the surface of sand, to accomplish the purpose of pollutants enrichment. Scanning electron microscopy (SEM) analysis showed that the sand surface became smooth after attrition scrubbing. The results above show that attrition scrubbing has a good washing effect for the remediation of lead contaminated sand soil.

  17. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  18. Installation Restoration Program. Remedial Investigation Report. Minnesota Air National Guard Base Duluth International Airport, Duluth, Minnesota. Volume 3

    DTIC Science & Technology

    1990-01-01

    Migration 5-7 5.2.3 Contaminant Persistence 5-8 5.2.4 Contaminant Mobility and Migration 5-9 5.2.4.1 Contaminant Migration in Surface Water 5-9...of Contaminant 5-11 5.3.2 Potential Routes of Migration 5-11 5.3.3 Contaminant Persistence 5-12 5.3.4 Contaminant Mobility and Migration 5-13 5.3.4.1...Contaminant Mobility and Migration in Soil 5-18 5.6 CONTAMINANT FATE AND TRANSPORT 5-18 AT SITE 10 5.6.1 Summary of Contaminants 5-18 5.6.2 Potential Routes

  19. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.

    PubMed

    Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng

    2006-02-15

    The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

  20. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    PubMed

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Risk Factors and Level of Listeria monocytogenes Contamination of Raw Pork in Retail Markets in China.

    PubMed

    Li, Hua; Wang, Pengfei; Lan, Ruiting; Luo, Lijuan; Cao, Xiaolong; Wang, Yi; Wang, Yan; Li, Hui; Zhang, Lu; Ji, Shunshi; Ye, Changyun

    2018-01-01

    Listeria monocytogenes can contaminate various foods via food processing environments and contamination of raw materials. There is a limited understanding of L. monocytogenes transmission in retail market and the role of insects in L. monocytogenes transmission in the retail environments. To better understand the risk factors of raw pork contamination, the prevalence of L. monocytogenes was examined in raw pork, retail environments and insects in a retail market over a 6-month period from March to August in 2016 in Beijing, China. A total of 2,789 samples were collected, including 356 raw pork samples, 1,392 meat contact surface swabs (MCS), 712 non-meat contact surface swabs (NMCS) and 329 insect samples. Overall, 424 (15.20%) of the samples were found to be contaminated by L. monocytogenes . Analyzed by serotyping, multilocus sequence typing and pulsed-field gel electrophoresis, the 424 L. monocytogenes isolates were divided into three serotypes (1/2c, 1/2a and 3a), 15 pulsotypes (PTs) and nine sequence types (STs), 1/2c/PT4/ST9 (244/424, 58%) was the most prevalent type of L. monocytogenes strains. The raw pork, MCS of the environments and insects were contaminated with higher levels of L. monocytogenes than NMCS of the environments, which suggested that cross contamination of L. monocytogenes between raw pork and the environment existed in the retail market, and long-term contaminated surfaces and vector insects would act as high risk factors to transmit L. monocytogenes to raw pork. Thus more effective strategies are needed to reduce the risk of retail pork meat contamination by L. monocytogenes and prevent foodborne human listeriosis.

  2. Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill.

    PubMed

    Ke, L; Wong, Teresa W Y; Wong, Y S; Tam, Nora F Y

    2002-01-01

    The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m x 10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2,135 ng g(-1), and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2,135 (30 days) to 1,196 ng g(-1) (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3-0.4).

  3. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    NASA Technical Reports Server (NTRS)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International Space Station Experiment - X (MISSE-X), and Doppler Aerosol Wind Lidar (DAWN).

  4. Purification system

    NASA Technical Reports Server (NTRS)

    Flanagan, David T. (Inventor); Gibbons, Randall E. (Inventor)

    1992-01-01

    A system for prolonging the life of a granulated activated charcoal (GAC) water treatment device is disclosed in which an ultraviolet light transparent material is used to constrain water to flow over carbon surfaces. It is configured to receive maximum flux from a UV radiation source for the purpose of preventing microbial proliferation on the carbon surfaces; oxidizing organic contaminants adsorbed from the water onto the carbon surfaces and from biodegradation of adsorbed microbial forms; disinfecting water; and oxidizing organic contaminants in the water.

  5. Environmental survey to assess viral contamination of air and surfaces in hospital settings.

    PubMed

    Carducci, A; Verani, M; Lombardi, R; Casini, B; Privitera, G

    2011-03-01

    The presence of pathogenic viruses in healthcare settings represents a serious risk for both staff and patients. Direct viral detection in the environment poses significant technical problems and the indirect indicators currently in use suffer from serious limitations. The aim of this study was to monitor surfaces and air in hospital settings to reveal the presence of hepatitis C virus, human adenovirus, norovirus, human rotavirus and torque teno virus by nucleic acid assays, in parallel with measurements of total bacterial count and haemoglobin presence. In total, 114 surface and 62 air samples were collected. Bacterial contamination was very low (<1 cfu/cm(2)) on surfaces, whereas the 'medium' detected value in air was 282 cfu/m(3). Overall, 19 (16.7%) surface samples tested positive for viral nucleic acids: one for norovirus, one for human adenovirus and 17 (14.9%) for torque teno virus (TTV). Only this latter virus was directly detected in 10 air samples (16.1%). Haemoglobin was found on two surfaces. No relationship was found between viral, biochemical or bacterial indicators. The data obtained confirm the difficulty of assessing viral contamination using bacterial indicators. The frequent detection of TTV suggests its possible use as an indicator for general viral contamination of the environment. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. J series thruster isolator failure analysis

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Bechtel, R. T.; Brophy, J. R.

    1982-01-01

    Three Hg propellant isolators (two cathode and one main) failed during testing in the Mission Profile Life Test. These failures involved contamination of the surface of the alumina insulating body which resulted in heating of the vaporizer by leakage current from the high voltage supply, with subsequent loss of propellant flow rate control. Failure analysis of the isolators showed the surface resistance was temperature dependent and that the alumina could be restored to its original insulating state by grit blasting the surface. The contaminant was identified as carbon and the most likely sources identified as ambient facility hydrocarbons, directed back-sputtered facility materials, and outgassing from organic insulating materials within the thruster envelope. Methods to eliminate contamination from each of these sources are described.

  7. Effect of inoculum size, bacterial species, type of surfaces and contact time to the transfer of foodborne pathogens from inoculated to non-inoculated beef fillets via food processing surfaces.

    PubMed

    Gkana, E; Chorianopoulos, N; Grounta, A; Koutsoumanis, K; Nychas, G-J E

    2017-04-01

    The objective of the present study was to determine the factors affecting the transfer of foodborne pathogens from inoculated beef fillets to non-inoculated ones, through food processing surfaces. Three different levels of inoculation of beef fillets surface were prepared: a high one of approximately 10 7  CFU/cm 2 , a medium one of 10 5  CFU/cm 2 and a low one of 10 3  CFU/cm 2 , using mixed-strains of Listeria monocytogenes, or Salmonella enterica Typhimurium, or Escherichia coli O157:H7. The inoculated fillets were then placed on 3 different types of surfaces (stainless steel-SS, polyethylene-PE and wood-WD), for 1 or 15 min. Subsequently, these fillets were removed from the cutting boards and six sequential non-inoculated fillets were placed on the same surfaces for the same period of time. All non-inoculated fillets were contaminated with a progressive reduction trend of each pathogen's population level from the inoculated fillets to the sixth non-inoculated ones that got in contact with the surfaces, and regardless the initial inoculum, a reduction of approximately 2 log CFU/g between inoculated and 1st non-inoculated fillet was observed. S. Typhimurium was transferred at lower mean population (2.39 log CFU/g) to contaminated fillets than E. coli O157:H7 (2.93 log CFU/g), followed by L. monocytogenes (3.12 log CFU/g; P < 0.05). Wooden surfaces (2.77 log CFU/g) enhanced the transfer of bacteria to subsequent fillets compared to other materials (2.66 log CFU/g for SS and PE; P < 0.05). Cross-contamination between meat and surfaces is a multifactorial process strongly depended on the species, initial contamination level, kind of surface, contact time and the number of subsequent fillet, according to analysis of variance. Thus, quantifying the cross-contamination risk associated with various steps of meat processing and food establishments or households can provide a scientific basis for risk management of such products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection

    PubMed Central

    Tuladhar, Era; Hazeleger, Wilma C.; Koopmans, Marion; Zwietering, Marcel H.; Beumer, Rijkelt R.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested. PMID:22941071

  9. Residual viral and bacterial contamination of surfaces after cleaning and disinfection.

    PubMed

    Tuladhar, Era; Hazeleger, Wilma C; Koopmans, Marion; Zwietering, Marcel H; Beumer, Rijkelt R; Duizer, Erwin

    2012-11-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log(10) for poliovirus and close to 4 log(10) for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log(10) reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.

  10. Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: a case study in Sichuan province, Southwest China.

    PubMed

    Ling, Chengpeng; Zhang, Qiang

    2017-04-01

    As a primary disposal mean of municipal solid waste in China, the landfill has been recognized as one of the major threats to the surrounding surface water and groundwater environment due to the emission of leachate. The aim of this study was to determine the impact of leachate on the surface water and groundwater environment of the region of the Chang'an landfill, which is located in Sichuan province, China. The surface water and groundwater were sampled for hydrochemical analysis. Three electrical resistivity tomography profiles were conducted to evaluate the impact of leachate on the groundwater environment, and several laboratory tests were carried out to build the relationship between the soil bulk resistivity and the void fluid resistivity. The results showed that a seasonal creek named Longfeng creek, which crosses the landfill site, was contaminated by the leachate. The concentrations of COD, BOD5, and chlorides (Cl) of surface water samples increased by 12.3-105.7 times. The groundwater quality in the surface loose sediments along the valley deteriorated obviously from the landfill to 500 m downstream area. The laboratory tests of soil samples indicated that the resistivity value of 13 Ωm is a critical value whether the groundwater in the loose sediments is polluted. The groundwater at the site adjacent to the spillway in the landfill was partially contaminated by the emission of leachate. The groundwater contamination zones at 580 m downstream of the landfill were recognized at the shallow zones from 60 m left bank to 30 m right bank of Longfeng creek. The improved understanding of groundwater contamination around the landfill is beneficial for the landfill operation and groundwater environment remediation.

  11. Methods for microbial filtration of fluids

    DOEpatents

    Carman, M.L.; Jackson, K.J.; Knapp, R.B.; Knezovich, J.P.; Shah, N.N.; Taylor, R.T.

    1996-01-30

    Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides. 8 figs.

  12. Influence of soil structure on contaminant leaching from injected slurry

    USDA-ARS?s Scientific Manuscript database

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persi...

  13. Contaminants Of Emerging Concern Within The Ohio River And Its Tributaries

    EPA Science Inventory

    Contaminants of emerging concern such as PPCPs, alkylphenols, EDCs, and PFCs in waterways have been increasing public concern. The extent and persistence of their occurrence in surface waters remains unclear. Though ther are many sources of these contaminants, research has focu...

  14. Residual Silicone Detection. [external tank and solid rocket booster surfaces

    NASA Technical Reports Server (NTRS)

    Smith, T.

    1980-01-01

    Both photoelectron emission and ellipsometry proved successful in detecting silicone contamination on unpainted and epoxy painted metal surfaces such as those of the external tank and the solid rocket booster. Great success was achieved using photoelectron emission (PEE). Panels were deliberately contaminated to controlled levels and then mapped with PEE to reveal the areas and levels that were contaminated. The panels were then tested with regard to adhesive properties. Tapes were bonded over the contaminated and uncontaminated regions and the peel force was measured, or the contaminated panels were bonded (with CPR 483 foam) to uncontaminated panels and made into lap shear specimens. Other panels were bonded and made into wedge specimens for hydrothermal stress endurance tests. Strong adhesion resulted if the PEE signal fell within an acceptance window, but was poor outside the acceptance window. A prototype instrument is being prepared which can automatically be scanned over the external liquid hydrogen tank and identify those regions that are contaminated and will cause bond degradation.

  15. Contamination Effects on EUV Optics

    NASA Technical Reports Server (NTRS)

    Tveekrem, J.

    1999-01-01

    During ground-based assembly and upon exposure to the space environment, optical surfaces accumulate both particles and molecular condensibles, inevitably resulting in degradation of optical instrument performance. Currently, this performance degradation (and the resulting end-of-life instrument performance) cannot be predicted with sufficient accuracy using existing software tools. Optical design codes exist to calculate instrument performance, but these codes generally assume uncontaminated optical surfaces. Contamination models exist which predict approximate end-of-life contamination levels, but the optical effects of these contamination levels can not be quantified without detailed information about the optical constants and scattering properties of the contaminant. The problem is particularly pronounced in the extreme ultraviolet (EUV, 300-1,200 A) and far (FUV, 1,200-2,000 A) regimes due to a lack of data and a lack of knowledge of the detailed physical and chemical processes involved. Yet it is in precisely these wavelength regimes that accurate predictions are most important, because EUV/FUV instruments are extremely sensitive to contamination.

  16. Health assessment for Ninth Avenue Dump National Priorities List (NPL) Site, Gary, Indiana, Region 5. CERCLIS No. IND980794432. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-18

    The Ninth Avenue Dump is a 17-acre National Priorities List Site located in an industrialized area within the city limits of Gary, Indiana. A number of contaminants were detected in on-site and off-site ground water, surface water, sediments, and soil samples. Contaminants of concern at the Ninth Avenue Dump Site include: chromium, lead, benzene, polychlorinated biphenyls, 2-butanone, ethylbenzene, toluene, trichloroethylene, vinyl chloride, and xylenes. The pathways for human exposure to site contaminants is through the dermal absorption, ingestion, or inhalation of contaminants from ground water, surface water, soil, air, or contaminated food-chain entities. There is currently no documented exposure tomore » site contaminants. However, the site is considered to be of potential public health concern because of the potential risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.« less

  17. Resistance of Pseudomonas aeruginosa to liquid disinfectants on contaminated surfaces before formation of biofilms.

    PubMed

    Sagripanti, J L; Bonifacino, A

    2000-01-01

    A comparison was made of the effectiveness of popular disinfectants (Cavicide, Cidexplus, Clorox, Exspor, Lysol, Renalin, and Wavicide) under conditions prescribed for disinfection in the respective product labels on Pseudomonas aeruginosa either in suspension or deposited onto surfaces of metallic or polymeric plastic devices. The testing also included 7 nonformulated germicidal agents (glutaraldehyde, formaldehyde, peracetic acid, hydrogen peroxide, sodium hypochlorite, phenol, and cupric ascorbate) commonly used in disinfection and decontamination. Results showed that P. aeruginosa is on average 300-fold more resistant when present on contaminated surfaces than in suspension. This increase in resistance agrees with results reported in studies of biofilms, but unexpectedly, it precedes biofilm formation. The surface to which bacteria are attached can influence the effectiveness of disinfectants. Viable bacteria attached to devices may require dislodging through more than a one-step method for detection. The data, obtained with a sensitive and quantitative test, suggest that disinfectants are less effective on contaminated surfaces than generally acknowledged.

  18. Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal

    NASA Astrophysics Data System (ADS)

    O'Keeffe, H. M.; Burritt, T. H.; Cleveland, B. T.; Doucas, G.; Gagnon, N.; Jelley, N. A.; Kraus, C.; Lawson, I. T.; Majerus, S.; McGee, S. R.; Myers, A. W.; Poon, A. W. P.; Rielage, K.; Robertson, R. G. H.; Rosten, R. C.; Stonehill, L. C.; VanDevender, B. A.; Van Wechel, T. D.

    2011-12-01

    Four methods for determining the composition of low-level uranium- and thorium-chain surface contamination are presented. One method is the observation of Cherenkov light production in water. In two additional methods a position-sensitive proportional counter surrounding the surface is used to make both a measurement of the energy spectrum of alpha particle emissions and also coincidence measurements to derive the thorium-chain content based on the presence of short-lived isotopes in that decay chain. The fourth method is a radiochemical technique in which the surface is eluted with a weak acid, the eluate is concentrated, added to liquid scintillator and assayed by recording beta-alpha coincidences. These methods were used to characterize two 'hotspots' on the outer surface of one of the 3He proportional counters in the Neutral Current Detection array of the Sudbury Neutrino Observatory experiment. The methods have similar sensitivities, of order tens of ng, to both thorium- and uranium-chain contamination.

  19. Inactivation of Burkholderia pseudomallei on environmental surfaces using spray-applied, common liquid disinfectants.

    PubMed

    Calfee, M W; Wendling, M

    2015-11-01

    Five commercially available liquid antimicrobials were evaluated for their ability to decontaminate common environmental surface materials, contaminated with Burkholderia pseudomallei, using a spray-based disinfectant delivery procedure. Tests were conducted at both an ambient temperature (c. 20°C) and a lower temperature (c. 12°C) condition. Nonporous materials (glass and aluminium) were more easily decontaminated than porous materials (wood, concrete and carpet). Citric acid (1%) demonstrated poor efficacy in all test conditions. Bleach (pH-adjusted), ethanol (70%), quaternary ammonium and PineSol®, demonstrated high (>6 log10 reduction) efficacies on glass and aluminium at both temperatures, but achieved varying results for wood, carpet and concrete. Temperature had minimal effect on decontamination efficacy during these tests. Much of the antimicrobial efficacy data for pathogenic micro-organisms are generated with testing that utilizes hard nonporous surface materials. These data are not directly translatable for decontaminant selection following an incident whereby complex and porous environmental surfaces are contaminated. This study presents efficacy data for spray-applied antimicrobial liquids, when used to decontaminate common environmental surfaces contaminated with Burkholderia pseudomallei. These data can help responders develop effective remediation strategies following an environmental contamination incident involving B. pseudomallei. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  20. NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Purvis, C. K.

    1980-01-01

    The NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced spacecraft contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.

  1. Progress in standoff surface contaminant detector platform

    NASA Astrophysics Data System (ADS)

    Dupuis, Julia R.; Giblin, Jay; Dixon, John; Hensley, Joel; Mansur, David; Marinelli, William J.

    2017-05-01

    Progress towards the development of a longwave infrared quantum cascade laser (QLC) based standoff surface contaminant detection platform is presented. The detection platform utilizes reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. The platform employs an ensemble of broadband QCLs with a spectrally selective detector to interrogate target surfaces at 10s of m standoff. A version of the Adaptive Cosine Estimator (ACE) featuring class based screening is used for detection and discrimination in high clutter environments. Detection limits approaching 0.1 μg/cm2 are projected through speckle reduction methods enabling detector noise limited performance. The design, build, and validation of a breadboard version of the QCL-based surface contaminant detector are discussed. Functional test results specific to the QCL illuminator are presented with specific emphasis on speckle reduction.

  2. Contamination of the Clinical Microbiology Laboratory with Vancomycin-Resistant Enterococci and Multidrug- Resistant Enterobacteriaceae: Implications for Hospital and Laboratory Workers

    PubMed Central

    Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.

    2001-01-01

    We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615

  3. High-touch surfaces: microbial neighbours at hand.

    PubMed

    Cobrado, L; Silva-Dias, A; Azevedo, M M; Rodrigues, A G

    2017-11-01

    Despite considerable efforts, healthcare-associated infections (HAIs) continue to be globally responsible for serious morbidity, increased costs and prolonged length of stay. Among potentially preventable sources of microbial pathogens causing HAIs, patient care items and environmental surfaces frequently touched play an important role in the chain of transmission. Microorganisms contaminating such high-touch surfaces include Gram-positive and Gram-negative bacteria, viruses, yeasts and parasites, with improved cleaning and disinfection effectively decreasing the rate of HAIs. Manual and automated surface cleaning strategies used in the control of infectious outbreaks are discussed and current trends concerning the prevention of contamination by the use of antimicrobial surfaces are taken into consideration in this manuscript.

  4. Radiostrontium hot spot in the Russian Arctic: ground surface contamination by (90)Sr at the "Kraton-3" underground nuclear explosion site.

    PubMed

    Ramzaev, Valery; Mishine, Arkady; Basalaeva, Larisa; Brown, Justin

    2007-01-01

    Strontium-90 activity concentrations in surface soils and areal deposition densities have been studied at a site contaminated by an accidental release to atmosphere from the underground nuclear explosion "Kraton-3" conducted near the Polar Circle (65.9 degrees N, 112.3 degrees E) within the territory of the former USSR in 1978. In 2001-2002, the ground surface contamination at 14 plots studied ranged from 20 to 15 000 kBq m(-2), which significantly exceeds the value of 0.44 kBq m(-2) deduced for three background plots. The zone with substantial radiostrontium contamination extends, at least, 2.5 km in a north-easterly direction from the borehole. The average (137)Cs/(90)Sr ratio in the ground contamination originated from the "Kraton-3" fallout was estimated to be 0.55, which is significantly different from the ratio of 2.05 evaluated for background plots contaminated mostly from global fallout. Although vertical migration of (90)Sr in all undisturbed soil profiles studied is more rapid than that for (137)Cs, the depth of percolation of both radionuclides into the ground is mostly limited to the top 10-20 cm, which may be explained, primarily, by permafrost conditions. The horizontal migration rate of radiostrontium in the aqueous phase exceeds the radiocaesium migration rate by many times. This phenomenon seems to be a reason for the significant enrichment of the soil surface layers by radiostrontium at some sites, with variations occurring in accordance with small-scale irregularities of landscape.

  5. Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

    2013-06-01

    The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less

  6. Quantification issues of trace metal contaminants on silicon wafers by means of TOF-SIMS, ICP-MS, and TXRF

    NASA Astrophysics Data System (ADS)

    Rostam-Khani, P.; Hopstaken, M. J. P.; Vullings, P.; Noij, G.; O'Halloran, O.; Claassen, W.

    2004-06-01

    Measurement of surface metal contamination on silicon wafers is essential for yield enhancement in IC manufacturing. Vapor phase decomposition coupled with either inductively coupled plasma mass spectrometry (VPD-ICP-MS), or total reflection X-ray fluorescence (VPD-TXRF), TXRF and more recently time of flight secondary ion mass spectrometry (TOF-SIMS) are used to monitor surface metal contamination. These techniques complement each other in their respective strengths and weaknesses. For reliable and accurate quantification, so-called relative sensitivity factors (RSF) are required for TOF-SIMS analysis. For quantification purposes in VPD, the collection efficiency (CE) is important to ensure complete collection of contamination. A standard procedure has been developed that combines the determination of these RSFs as well as the collection efficiency using all the analytical techniques mentioned above. Therefore, sample wafers were intentionally contaminated and analyzed (by TOF-SIMS) directly after preparation. After VPD-ICP-MS, several scanned surfaces were analyzed again by TOF-SIMS. Comparing the intensities of the specific metals before and after the VPD-DC procedure on the scanned surface allows the determination of so-called removing efficiency (RE). In general, very good agreement was obtained comparing the four analytical techniques after updating the RSFs for TOF-SIMS. Progress has been achieved concerning the CE evaluation as well as determining the RSFs more precisely for TOF-SIMS.

  7. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  8. Sampling methods for recovery of human enteric viruses from environmental surfaces.

    PubMed

    Turnage, Nicole L; Gibson, Kristen E

    2017-10-01

    Acute gastroenteritis causes the second highest infectious disease burden worldwide. Human enteric viruses have been identified as leading causative agents of acute gastroenteritis as well as foodborne illnesses in the U.S. and are generally transmitted by fecal-oral contamination. There is growing evidence of transmission occurring via contaminated fomite including food contact surfaces. Additionally, human enteric viruses have been shown to remain infectious on fomites over prolonged periods of time. To better understand viral persistence, there is a need for more studies to investigate this phenomenon. Therefore, optimization of surface sampling methods is essential to aid in understanding environmental contamination to ensure proper preventative measures are being applied. In general, surface sampling studies are limited and highly variable among recovery efficiencies and research parameters used (e.g., virus type/density, surface type, elution buffers, tools). This review aims to discuss the various factors impacting surface sampling of viruses from fomites and to explore how researchers could move towards a more sensitive and standard sampling method. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Surface wastewater in Samara and their impact on water basins as water supply sources

    NASA Astrophysics Data System (ADS)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  10. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  11. Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm.

    PubMed

    Bien-Aimé, K; Belin, C; Gallais, L; Grua, P; Fargin, E; Néauport, J; Tovena-Pecault, I

    2009-10-12

    The impact of storage conditions on laser induced damage density at 351 nm on bare fused polished silica samples has been studied. Intentionally outgassing of polypropylene pieces on silica samples was done. We evidenced an important increase of laser induced damage density on contaminated samples demonstrating that storage could limit optics lifetime performances. Atomic Force Microscopy (AFM) and Gas Chromatography -Mass Spectrometry (GC-MS) have been used to identify the potential causes of this effect. It shows that a small quantity of organic contamination deposited on silica surface is responsible for this degradation. Various hypotheses are proposed to explain the damage mechanism. The more likely hypothesis is a coupling between surface defects of optics and organic contaminants.

  12. The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon.

    PubMed

    Garcia, Jose; Markovski, Jasmina; McKay Gifford, J; Apul, Onur; Hristovski, Kiril D

    2017-05-15

    The overarching goal of this study was to ascertain the changes in intraparticle mass transport rates for organic contaminants resulting from nano-enabled hybridization of commercially available granular activated carbon (GAC). Three different nano-enabled hybrid media were fabricated by in-situ synthesizing titanium dioxide nanoparticles inside the pores of GAC sorbent, characterized, and evaluated for removal of two model organic contaminants under realistic conditions to obtain the intraparticle mass transport (pore and surface diffusion) coefficients. The results validated the two hypotheses that: (H1) the pore diffusion rates of organic contaminants linearly decrease with decrease in cumulative pore volume caused by increase in metal (hydr)oxide nanoparticle content inside the pores of the hybrid GAC sorbent; and (H2) introduction of metal (hydr)oxide nanoparticles initially increases surface diffusivity, but additional loading causes its decrease as the increase in metal (hydr)oxide nanoparticles content continues to reduce the porosity of the GAC sorbent. Nano-enabled hybridization of commercially available GAC with metal (hydr)oxides has the potential to significantly increase the intraparticle mass transport limitations for organic contaminants. Introduction of metal (hydr)oxide nanoparticles inside the pores of a pristine sorbent causes the pore diffusion rates of organic contaminants to decrease as the cumulative pore volume is reduced. In contrast, the introduction of limited amounts of metal (hydr)oxide nanoparticles appears to facilitate the surface diffusion rates of these contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transfer efficiencies of pesticides from household flooring surfaces to foods.

    PubMed

    Rohrer, Cynthia A; Hieber, Thomas E; Melnyk, Lisa J; Berry, Maurice R

    2003-11-01

    The transfer of pesticides from household surfaces to foods was measured to determine the degree of excess dietary exposure that occurs when children's foods contact contaminated surfaces prior to being eaten. Three household flooring surfaces (ceramic tile, hardwood, and carpet) were contaminated with an aqueous emulsion of commercially available pesticides (diazinon, heptachlor, malathion, chlorpyrifos, isofenphos, and cis- and trans-permethrin) frequently found in residential environments. A surface wipe method, as typically used in residential exposure studies, was used to measure the pesticides available on the surfaces as a basis for calculating transfer efficiency to the foods. Three foods (apple, bologna, and cheese) routinely handled by children before eating were placed on the contaminated surfaces and transfers of pesticides were measured after 10 min contact. Other contact durations (1 and 60 min) and applying additional contact force (1500 g) to the foods were evaluated for their impact on transferred pesticides. More pesticides transferred to the foods from the hard surfaces, that is, ceramic tile and hardwood flooring, than from carpet. Mean transfer efficiencies for all pesticides to the three foods ranged from 24% to 40% from ceramic tile and 15% to 29% from hardwood, as compared to mostly non-detectable transfers from carpet. Contact duration and applied force notably increased pesticide transfer. The mean transfer efficiency for the seven pesticides increased from around 1% at 1 min to 55- 83% when contact duration was increased to 60 min for the three foods contacting hardwood flooring. Mean transfer efficiency for 10-min contact increased from 15% to 70% when a 1500 g force was applied to bologna placed on hardwood flooring. Contamination of food occurs from contact with pesticide-laden surfaces, thus increasing the potential for excess dietary exposure of children.

  14. Long-term recovery of PCB-contaminated surface sediments at the Sangamo-westonl Twelvemile Creek/lake Hartwell Superfund Site.

    PubMed

    Brenner, Richard C; Magar, Victor S; Ickes, Jennifer A; Foote, Eric A; Abbott, James E; Bingler, Linda S; Crecelius, Eric A

    2004-04-15

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contaminant transport into the food chain by limiting bioturbation of contaminated surface or near-surface sediments. This study evaluated the natural recovery of surface sediments contaminated with polychlorinated biphenyls (PCBs) at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (Lake Hartwell), Pickens County, SC. The primary focus was on sediment recovery resulting from natural capping processes. Total PCB (t-PCB), lead-210 (210Pb), and cesium-137 (137Cs) sediment core profiles were used to establish vertical t-PCB concentration profiles, age date sediments, and determine surface sedimentation and surface sediment recovery rates in 18 cores collected along 10 transects. Four upgradient transects in the headwaters of Lake Hartwell were impacted by historical sediment releases from three upgradient sediment impoundments. These transects were characterized by silt/ clay and sand layering. The highest PCB concentrations were associated with silt/clay layers (1.8-3.5% total organic carbon (TOC)), while sand layers (0.05-0.32% TOC) contained much lower PCB concentrations. The historical sediment releases resulted in substantial burial of PCB-contaminated sediment in the vicinity of these four cores; each core contained less than 1 mg/kg t-PCBs in the surface sand layers. Cores collected from six downgradient Lake Hartwell transects consisted primarily of silt and clay (0.91-5.1% TOC) and were less noticeably impacted by the release of sand from the impoundments. Vertical t-PCB concentration profiles in these cores began with relatively low PCB concentrations at the sediment-water interface and increased in concentration with depth until maximum PCB concentrations were measured at approximately 30-60 cm below the sediment-water interface, ca. 1960-1980. Maximum t-PCB concentrations were followed by progressively decreasing concentrations with depth until the t-PCB concentrations approached the detection limit, where sediments were likely deposited before the onset of PCB use at the Sangamo-Weston plant. The sediments containing the maximum PCB concentrations are associated with the period of maximum PCB release into the watershed. Sedimentation rates averaged 2.1 +/- 1.5 g/(cm2 yr) for 12 of 18 cores collected. The 1994 Record of Decision cleanup requirement is 1.0 mg/kg; two more goals (0.4 and 0.05 mg/kg t-PCBs) also were identified. Average surface sedimentation requirements to meet the three goals were 1.4 +/- 3.7, 11 +/- 4.2, and 33 +/- 11 cm, respectively. Using the age dating results, the average recovery dates to meet these goals were 2000.6 +/- 2.7, 2007.4 +/- 3.5, and 2022.7 +/- 11 yr, respectively. (The 95% prediction limits for these values also are provided.) Despite the reduction in surface sediment PCB concentrations, PCB concentrations measured in largemouth bass and hybrid bass filets continue to exceed the 2.0 mg/kg FDA fish tolerance level.

  15. Potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs) in a sensitive bedrock aquifer (Canada)

    NASA Astrophysics Data System (ADS)

    Levison, Jana; Novakowski, Kent; Reiner, Eric J.; Kolic, Terry

    2012-03-01

    It is necessary to understand the presence, movement, and persistence of contaminants in aquifers to develop adequate groundwater protection plans. Fractured bedrock aquifers with thin overburden cover are very sensitive to contamination, and little is known about transport processes from the ground surface to depth in this setting. This study was undertaken to investigate the potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs), which are flame retardants, in a natural fractured bedrock aquifer in Canada proven to be sensitive to contamination. PBDEs, which had not been previously measured in groundwater in detail, were detected in the study aquifer at concentrations greater than those observed in surface-water bodies. Potential sources include manure, septic tanks, and the atmosphere. From this scoping study, it is evident that additional surveys of PBDE concentrations in groundwater are warranted, especially in settings with high potential source concentrations coupled with sensitive aquifers.

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Projectmore » at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.« less

  17. Engineering Non-Wetting Antimicrobial Fabrics

    NASA Astrophysics Data System (ADS)

    van den Berg, Desmond

    This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.

  18. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry

    PubMed Central

    De Vito, Saverio; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Di Francia, Girolamo

    2017-01-01

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios. PMID:28368338

  19. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination.

    PubMed

    Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko

    2013-05-01

    As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 10(11) molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.

  20. Laboratory investigations on the role of sediment surface and ground water chemistry in transport of bacteria through a contaminated Sandy Aquifer

    USGS Publications Warehouse

    Scholl, M.A.; Harvey, R.W.

    1992-01-01

    The effects of pH and sediment surface characteristics on sorption of indigenous groundwater bacteria were determined using contaminated and uncontaminated aquifer material from Cape Cod, MA. Over the pH range of the aquifer (5-7), the extent of bacterial sorption onto sediment in uncontaminated groundwater was strongly pH-dependent, but relatively pH-insensitive in contaminated groundwater from the site. Bacterial sorption was also affected by the presence of oxyhydroxide coatings (iron, aluminum, and manganese). Surface coating effects were most pronounced in uncontaminated groundwater (pH 6.4 at 10??C). Desorption of attached bacteria (up to 14% of the total number of labeled cells added) occurred in both field and laboratory experiments upon adjustment of groundwater to pH 8. The dependence of bacterial sorption upon environmental conditions suggests that bacterial immobilization could change substantially over relatively short distances in contaminated, sandy aquifers and that effects caused by changes in groundwater geochemistry can be significant.

  1. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry.

    PubMed

    Vito, Saverio De; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Francia, Girolamo Di

    2017-04-02

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios.

  2. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination

    NASA Astrophysics Data System (ADS)

    Hassan, Moinuddin; Tan, Xin; Welle, Elissa; Ilev, Ilko

    2013-05-01

    As a potential major source of biochemical contamination, medical device surfaces are of critical safety concerns in the clinical practice and public health. The development of innovative sensing methods for accurate and real-time detection of medical device surface contamination is essential to protect patients from high risk infection. In this paper, we demonstrate an alternative fiber-optic Fourier Transform Infrared (FTIR) spectroscopy based sensing approach for remote, non-contact, and label-free detection of biochemical contaminants in the mid-infrared (mid-IR) region. The sensing probe is designed using mid-IR hollow fibers and FTIR measurements are carried out in reflection mode. Bovine Serum Albumin (BSA) and bacterial endotoxin of different concentrations under thoroughly dry condition are used to evaluate the detection sensitivity. The devised system can identify ≤0.0025% (≤4 × 1011 molecules) BSA and 0.5% (0.5 EU/ml) endotoxin concentration. The developed sensing approach may be applied to detect various pathogens that pose public health threats.

  3. Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use.

    PubMed

    Vystavna, Y; Diadin, D; Grynenko, V; Yakovlev, V; Vergeles, Y; Huneau, F; Rossi, P M; Hejzlar, J; Knöller, K

    2017-09-18

    Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15 N-NO 3 and δ 18 O-NO 3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L -1 in surface water and from 0.5 to 100 mg L -1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.

  4. PHYTOREMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVATIVES: GREENHOUSE AND FIELD EVALUATIONS

    EPA Science Inventory

    Phytoremediation was evaluated as a potential treatment for the creosote-contaminated surface soil at the McCormick and Baxter (M&B) Superfund Site in Portland, OR. Soil a the M&B site is contaminated with pentachlorophenol (PCP) and polyaromatic hydrocarbons (PAHs). Eight indivi...

  5. Contaminants Of Emerging Concern Within The Mainstem Of The Ohio River And its Tributaries

    EPA Science Inventory

    Contaminants of emerging concern such as PPCPs, alkylphenols, EDCs, and PFCs in waterways have been of increasing public concern. The extent and persistence of their occurrence in surface waters remains unclear. Though there are many sources of these contaminants, research has ...

  6. Shear stress cleaning for surface departiculation

    NASA Technical Reports Server (NTRS)

    Musselman, R. P.; Yarbrough, T. W.

    1986-01-01

    A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.

  7. Transport and transformations of chlorinated-solvent contamination in a saprolite and fractured rock aquifer near a former wastewater-treatment plant, Greenville, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Bradley, P.M.; Lane, J.W.; Robertson, J.F.

    1997-01-01

    The transport and fate of chlorinated-ethene contamination was investigated in a fractured-rock aquifer downgradient from a wastewater-treatment plant at a gas-turbine manufacturing facility in Greenville, South Carolina. A vapor-diffusion-sampler technique, developed for this investigation, located fracture zones that discharged contaminated ground water to surface water. The distribution of chlorinated compounds and sulfate, comparison of borehole geophysical data, driller's logs, and the aquifer response to pumpage allowed subsurface contaminant-transport pathways to be delineated.The probable contaminant-transport pathway from the former aeration lagoon was southward. The probable pathway of contaminant transport from the former sludge lagoon was southward to and beneath Little Rocky Creek. South of the creek, the major pathway of contaminant transport appeared to be at a depth of approximately 80 to 107 feet below land surface. The contaminant-transport pathway from the former industrial lagoon was not readily discernible from existing data. A laboratory investigation, as well as examination of ground- water-chemistry data collected during this investigation and concentrations of chlorinated compounds collected during previous investigations,indicates that higher chlorinated compounds are being degraded to lower-chlorinated compounds in the contaminated aquifer. The approaches used in this investigation, as well as the findings, have potential application to other fractured-rock aquifers contaminated by chlorinated ethenes.

  8. An evaluation of the infection control potential of a UV clinical podiatry unit.

    PubMed

    Humphreys, Paul N; Davies, Chris S; Rout, Simon

    2014-02-28

    Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne contamination and secondly to determine its ability to remove microbes from contaminated surfaces and instruments. A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard microbiological techniques were used to determine the nature and extent of microbial airborne contamination. Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination. Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus. Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced (p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers, remaining contaminated. Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused.

  9. An evaluation of the infection control potential of a UV clinical podiatry unit

    PubMed Central

    2014-01-01

    Background Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne contamination and secondly to determine its ability to remove microbes from contaminated surfaces and instruments. Method A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard microbiological techniques were used to determine the nature and extent of microbial airborne contamination. Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination. Results Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus. Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced (p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers, remaining contaminated. Conclusions Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused. PMID:24576315

  10. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  11. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; area 12

    USGS Publications Warehouse

    Scott, J.C.; Cobb, R.H.

    1988-01-01

    This report delineates and describes the geohydrology and susceptibility of major aquifers to contamination in Coffee, Dale, Henry, Houston, and Geneva Counties, Alabama. The major aquifers are the Upper Floridan, Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers. Estimated groundwater withdrawals for public water supplies are about 42 million gal/day. Maximum withdrawals for irrigation are 15 to 20 million gal/day. Withdrawals for self-supplied industrial and domestic uses are estimated to be 3 and 2.5 million gal/day, respectively. Long-term withdrawals of water from the Nanafalia-Clayton aquifer have resulted in significant declines in the potentiometric surface in Coffee, Dale, and Houston Counties. Significant declines in the potentiometric surfaces of the other major aquifers are not apparent. Recharge areas for all major aquifers are susceptible to contamination, but the probability of contamination of the Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers is low because the recharge areas are remote from areas of withdrawal. The recharge area for the Floridan aquifer, which consists largely of flat, sandy farmland , coincides with the area of use. This area is highly susceptible to contamination from insecticides and herbicides. (USGS)

  12. Modeling the surface cross-contamination of Salmonella spp. on ready-to-eat meat via a slicing operation

    USDA-ARS?s Scientific Manuscript database

    Food pathogen cross-contamination occurring in the home or at retail food service or the production site is a major factor contributing to food-borne illness. Studies on Salmonella spp. surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing RTE products are needed to ensur...

  13. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  14. Design of equipment for lunar dust removal

    NASA Technical Reports Server (NTRS)

    Belden, Lacy; Cowan, Kevin; Kleespies, Hank; Ratliff, Ryan; Shah, Oniell; Shelburne, Kevin

    1991-01-01

    NASA has a long range goal of constructing a fully equipped, manned lunar base on the near side of the moon by the year 2015. During the Apollo Missions, lunar dust coated and fouled equipment surfaces and mechanisms exposed to the lunar environment. In addition, the atmosphere and internal surfaces of the lunar excursion module were contaminated by lunar dust which was brought in on articles passed through the airlock. Consequently, the need exists for device or appliance to remove lunar dust from surfaces of material objects used outside of the proposed lunar habitat. Additionally, several concepts were investigated for preventing the accumulation of lunar dust on mechanisms and finished surfaces. The character of the dust and the lunar environment present unique challenges for the removal of contamination from exposed surfaces. In addition to a study of lunar dust adhesion properties, the project examines the use of various energy domains for removing the dust from exposed surfaces. Also, prevention alternatives are examined for systems exposed to lunar dust. A concept utilizing a pressurized gas is presented for dust removal outside of an atmospherically controlled environment. The concept consists of a small astronaut/robotic compatible device which removes dust from contaminated surfaces by a small burst of gas.

  15. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    USGS Publications Warehouse

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke R.; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  16. Three decades of TBT contamination in sediments around a large scale shipyard.

    PubMed

    Kim, Nam Sook; Shim, Won Joon; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Shin, Kyung Hoon

    2011-08-30

    Tributyltin (TBT) contamination in sediments was investigated in the vicinity of a large-scale shipyard in the years after the implementation of a total ban on the use of TBT based antifouling paints in Korea. Extremely high level of TBT (36,292ng Sn/g) in surface sediment was found at a station in front of a drydock and near surface runoff outfall of the shipyard. TBT concentration in surface sediments of Gohyeon Bay, where the shipyard is located, showed an apparent decreased TBT concentration gradient from the shipyard towards the outer bay. The vertical distribution of TBT contamination derived from a sediment core analysis demonstrated a significant positive correlation (r(2)=0.88; p<0.001) with the annual tonnage of ship-construction in the shipyard within the past three decades. TBT concentrations at six stations surveyed before (2003) and seven years after (2010) the total ban showed no significant differences (p>0.05). Despite the ban on the use of TBT, including ocean going vessels, surface sediments are still being heavily contaminated with TBT, and its levels well exceeded the sediment quality guideline or screening values. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    NASA Astrophysics Data System (ADS)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  18. IUS solid rocket motor contamination prediction methods

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Kearnes, J. H.

    1980-01-01

    A series of computer codes were developed to predict solid rocket motor produced contamination to spacecraft sensitive surfaces. Subscale and flight test data have confirmed some of the analytical results. Application of the analysis tools to a typical spacecraft has provided early identification of potential spacecraft contamination problems and provided insight into their solution; e.g., flight plan modifications, plume or outgassing shields and/or contamination covers.

  19. Contamination study

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Herren, Kenneth A.

    1990-09-01

    The time dependence of the angular reflectance from molecularly contaminated optical surfaces in the Vacuum Ultraviolet (VUV) is measured. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using non-coherent VUV sources with the predominant wavelengths being the Krypton resonance lines at 1236 and 1600 A. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (Bidirectional Reflectance Distribution Functions) experiment is described and details of the ongoing program to characterize optical materials exposed to the space environment is reported.

  20. Health assessment for Skinner Landfill, West Chester, Butler County, Ohio, Region 5. CERCLIS No. OHD063963714. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-10

    The Skinner Landfill is a former landfill in West Chester, Butler County, Ohio. On-site soil, groundwater, and surface water are contaminated with volatile organic compounds (VOCs), semivolatile organic compounds, pesticides, arsenic, and lead. Off-site contamination is minimal. The Skinner Landfill site poses an indeterminate public health hazard. Potential exposure pathways of concern are the ingestion of surface soils containing lead and the ingestion of VOCs in groundwater. Groundwater is a potential exposure pathway because there are uncertainties concerning the potential for contaminated groundwater to move off site.

  1. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    EPA Science Inventory

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  2. 75 FR 59748 - Notice of License Amendment for the Sequoyah Fuels Corporation's Facility at Gore, OK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... The purpose of this proposed CAP is to remediate existing groundwater contamination and to facilitate... decommissioning, disposal cell construction, and surface reclamation, the CAP addresses residual contamination in... placed in hydrologically strategic positions to intercept groundwater contamination remaining onsite. The...

  3. SPATIAL AND TEMPORAL DYNAMICS IN ARSENIC SPECIATION ACROSS THE GROUND WATER-SURFACE WATER TRANSITION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground-water plume contains elevated levels of arsenic and hydrocarbon contaminants derived from historical disposal of process wastes ...

  4. TESTING ACUTE TOXICITY OF CONTAMINATED SEDIMENT IN JINZHOU BAY WITH MARINE AMPHIPODS

    EPA Science Inventory

    Sediments in some areas of Jinzhou Bay are contaminated seriously by heavy metals and organic contaminants. To assess the biological effects of these compounds in the sediment, seven surface samples of sediment were collected at an interval of about 2km between sampling stations ...

  5. Comparison between visible/ NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses

    USDA-ARS?s Scientific Manuscript database

    The U. S. Department of Agriculture, Agricultural Research Service has been developing a method and system to detect fecal contamination on processed poultry carcasses with hyperspectral and multispectral imaging systems. The patented method utilizes a three step approach to contaminant detection. S...

  6. PERCHLORATE ENVIRONMENTAL CONTAMINATION: TOXICOLOGICAL REVIEW AND RISK CHARACTERIZATION (EXTERNAL REVIEW DRAFT) 2002

    EPA Science Inventory

    Perchlorate (ClO4-) is an anion that originates as a contaminant in ground water and surface waters when the salts of ammonium, potassium, magnesium, or sodium dissolve in water. One major source of contamination is the manufacture or improper disposal of ammonium perchlorate th...

  7. Methicillin-Resistant Staphylococcus aureus (MRSA) Contamination in Bedside Surfaces of a Hospital Ward and the Potential Effectiveness of Enhanced Disinfection with an Antimicrobial Polymer Surfactant

    PubMed Central

    Yuen, John W. M.; Chung, Terence W. K.; Loke, Alice Y.

    2015-01-01

    The aim in this study was to assess the effectiveness of a quaternary ammonium chloride (QAC) surfactant in reducing surface staphylococcal contamination in a routinely operating medical ward occupied by patients who had tested positive for methicillin-resistant Staphylococcus aureus (MRSA). The QAC being tested is an antibacterial film that is sprayed onto a surface and can remain active for up to 8 h. A field experimental study was designed with the QAC plus daily hypochlorite cleaning as the experimental group and hypochlorite cleaning alone as the control group. The method of swabbing on moistened surfaces was used for sampling. It was found that 83% and 77% of the bedside surfaces of MRSA-positive and MRSA-negative patients respectively were contaminated with staphylococci at 08:00 hours, and that the staphylococcal concentrations increased by 80% at 1200 h over a 4-hour period with routine ward and clinical activities. Irrespective of the MRSA status of the patients, high-touch surfaces around the bed-units within the studied medical ward were heavily contaminated (ranged 1 to 276 cfu/cm2 amongst the sites with positive culture) with staphylococcal bacteria including MRSA, despite the implementation of daily hypochlorite wiping. However, the contamination rate dropped significantly from 78% to 11% after the application of the QAC polymer. In the experimental group, the mean staphylococcal concentration of bedside surfaces was significantly (p < 0.0001) reduced from 4.4 ± 8.7 cfu/cm2 at 08:00 hours to 0.07 ± 0.26 cfu/cm2 at 12:00 hours by the QAC polymer. The results of this study support the view that, in addition to hypochlorite wiping, the tested QAC surfactant is a potential environmental decontamination strategy for preventing the transmission of clinically important pathogens in medical wards. PMID:25768241

  8. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    NASA Astrophysics Data System (ADS)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  9. Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant.

    PubMed

    Yuen, John W M; Chung, Terence W K; Loke, Alice Y

    2015-03-11

    The aim in this study was to assess the effectiveness of a quaternary ammonium chloride (QAC) surfactant in reducing surface staphylococcal contamination in a routinely operating medical ward occupied by patients who had tested positive for methicillin-resistant Staphylococcus aureus (MRSA). The QAC being tested is an antibacterial film that is sprayed onto a surface and can remain active for up to 8 h. A field experimental study was designed with the QAC plus daily hypochlorite cleaning as the experimental group and hypochlorite cleaning alone as the control group. The method of swabbing on moistened surfaces was used for sampling. It was found that 83% and 77% of the bedside surfaces of MRSA-positive and MRSA-negative patients respectively were contaminated with staphylococci at 08:00 hours, and that the staphylococcal concentrations increased by 80% at 1200 h over a 4-hour period with routine ward and clinical activities. Irrespective of the MRSA status of the patients, high-touch surfaces around the bed-units within the studied medical ward were heavily contaminated (ranged 1 to 276 cfu/cm2 amongst the sites with positive culture) with staphylococcal bacteria including MRSA, despite the implementation of daily hypochlorite wiping. However, the contamination rate dropped significantly from 78% to 11% after the application of the QAC polymer. In the experimental group, the mean staphylococcal concentration of bedside surfaces was significantly (p<0.0001) reduced from 4.4±8.7 cfu/cm2 at 08:00 hours to 0.07±0.26 cfu/cm2 at 12:00 hours by the QAC polymer. The results of this study support the view that, in addition to hypochlorite wiping, the tested QAC surfactant is a potential environmental decontamination strategy for preventing the transmission of clinically important pathogens in medical wards.

  10. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.

    PubMed

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-02-21

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.

  11. Unusual Nature of Fingerprints and the Implications for Easy-to-Clean Coatings.

    PubMed

    Stoehr, Bastian; McClure, Stuart; Höflich, Alexander; Al Kobaisi, Mohammad; Hall, Colin; Murphy, Peter J; Evans, Drew

    2016-01-19

    Irrespective of the technology, we now rely on touch to interact with devices such as smart phones, tablet computers, and control panels. As a result, touch screen technologies are frequently in contact with body grease. Hence, surface deposition arises from localized inhomogeneous finger-derived contaminants adhering to a surface, impairing the visual/optical experience of the user. In this study, we examined the contamination itself in order to understand its static and dynamic behavior with respect to deposition and cleaning. A process for standardized deposition of fingerprints was developed. Artificial sebum was used in this process to enable reproducibility for quantitative analysis. Fingerprint contamination was shown to be hygroscopic and to possess temperature- and shear-dependent properties. These results have implications for the design of easily cleanable surfaces.

  12. Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1

    NASA Astrophysics Data System (ADS)

    Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.

    2018-04-01

    In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.

  13. Tips and traps in the 14C bio-AMS preparation laboratory

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Freeman, Stewart P. H. T.; Haack, Kurt W.; Vogel, John S.

    2000-10-01

    Maintaining a contamination free sample preparation lab for biological 14C AMS requires the same or more diligence as a radiocarbon dating prep lab. Isotope ratios of materials routinely range over 4-8 orders of magnitude in a single experiment, dosing solutions contain thousands of DPM and gels used to separate proteins possess 14C ratios of 1 amol 14C/mg C. Radiocarbon contamination is a legacy of earlier tracer work in most biological laboratories, even if they were never hot labs. Removable surface contamination can be found and monitored using swipes. Contamination can be found on any surface routinely touched: door knobs, light switches, drawer handles, water faucets. In general, all surfaces routinely touched need to be covered with paper, foil or plastic that can be changed frequently. Shared air supplies can also present problems by distributing hot aerosols throughout a building. Aerosols can be monitored for 14C content using graphitized coal or fullerene soot mixed with metal powder as an absorber. The monitors can be set out in work spaces for 1-2 weeks and measured by AMS with regular samples. Frequent air changes help minimize aerosol contamination in many cases. Cross-contamination of samples can be minimized by using disposable plastic or glassware in the prep lab, isolating samples from the air when possible and using positive displacement pipettors.

  14. Investigation of contamination of thin-film aluminum filters by MMH-NTO plumes exposed to UV radiation

    NASA Astrophysics Data System (ADS)

    Gupta, Vaibhav; Wieman, Seth; Didkovsky, Leonid; Haiges, Ralf; Yao, Yuhan; Wu, Wei; Gruntman, Mike; Erwin, Dan

    2015-09-01

    Thin-film aluminum filters degrade in space with significant reduction of their Extreme Ultraviolet (EUV) transmission. This degradation was observed on the EUV Spectrophotometer (ESP) onboard the Solar Dynamics Observatory's EUV Variability Experiment and the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory. One of the possible causes for deterioration of such filters over time is contamination of their surfaces from plumes coming from periodic firing of their satellite's Monomethylhydrazine (MMH) - Nitrogen Tetroxide (NTO) thrusters. When adsorbed by the filters, the contaminant molecules are exposed to solar irradiance and could lead to two possible compositions. First, they could get polymerized leading to a permanent hydrocarbon layer buildup on the filter's surface. Second, they could accelerate and increase the depth of oxidation into filter's bulk aluminum material. To study the phenomena we experimentally replicate contamination of such filters in a simulated environment by MMH-NTO plumes. We apply, Scanning Electron Microscopy and X-Ray photoelectron spectroscopy to characterize the physical and the chemical changes on these contaminated sample filter surfaces. In addition, we present our first analysis of the effects of additional protective layer coatings based on self-assembled carbon monolayers for aluminum filters. This coverage is expected to significantly decrease their susceptibility to contamination and reduce the overall degradation of filter-based EUV instruments over their mission life.

  15. Plasma-based water treatment: development of a general mechanistic model to estimate the treatability of different types of contaminants

    NASA Astrophysics Data System (ADS)

    Mededovic Thagard, Selma; Stratton, Gunnar R.; Dai, Fei; Bellona, Christopher L.; Holsen, Thomas M.; Bohl, Douglas G.; Paek, Eunsu; Dickenson, Eric R. V.

    2017-01-01

    To determine the types of applications for which plasma-based water treatment (PWT) is best suited, the treatability of 23 environmental contaminants was assessed through treatment in a gas discharge reactor with argon bubbling, termed the enhanced-contact reactor. The contaminants were treated in a mixture to normalize reaction conditions and convective transport limitations. Treatability was compared in terms of the observed removal rate constant (k obs). To characterize the influence of interfacial processes on k obs, a model was developed that accurately predicts k obs for each compound, as well as the contributions to k obs from each of the three general degradation mechanisms thought to occur at or near the gas-liquid interface: ‘sub-surface’, ‘surface’ and ‘above-surface’. Sub-surface reactions occur just underneath the gas-liquid interface between the contaminants and dissolved plasma-generated radicals, contributing significantly to the removal of compounds that lack surfactant-like properties and so are not highly concentrated at the interface. Surface reactions occur at the interface between the contaminants and dissolved radicals, contributing significantly to the removal of surfactant-like compounds that have high interfacial concentrations. The contaminants’ interfacial concentrations were calculated using surface-activity parameters determined through surface tension measurements. Above-surface reactions are proposed to take place in the plasma interior between highly energetic plasma species and exposed portions of compounds that extend out of the interface. This mechanism largely accounts for the degradation of surfactant-like contaminants that contain highly hydrophobic perfluorocarbon groups, which are most likely to protrude from the interface. For a few compounds, the degree of exposure to the plasma interior was supported by new and previously reported molecular dynamics simulations results. By reviewing the predicted contributions from the three general mechanisms, it was determined that surface concentration is the dominant factor determining a compound’s treatability. These insights indicate that PWT would be most viable for the treatment of surfactant-like contaminants. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Selma Mededovic Thagard was selected by the Editorial Board of J. Phys. D as an Leader.

  16. Surface Spills at Unconventional Oil and Gas Sites: a Contaminant Transport Modeling Study for the South Platte Alluvial Aquifer

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Kanno, C.; McLaughlin, M.; Blotevogel, J.; Borch, T.

    2016-12-01

    Hydraulic fracturing has revolutionized the U.S.'s energy portfolio by making shale reservoirs productive and commercially viable. However, the public is concerned that the chemical constituents in hydraulic fracturing fluid, produced water, or natural gas itself could potentially impact groundwater. Here, we present fate and transport simulations of aqueous fluid surface spills. Surface spills are the most likely contamination pathway to occur during oil and gas production operations. We have three primary goals: 1) evaluate whether or not these spills pose risks to groundwater quality in the South Platte aquifer system, 2) develop a screening level methodology that could be applied at other sites and for various pollutants, and 3) demonstrate the potential importance of co-contaminant interactions using selected chemicals. We considered two types of fluid that can be accidentally released at oil and gas sites: produced water and hydraulic fracturing fluid. Benzene was taken to be a representative contaminant of interest for produced water. Glutaraldehyde, polyethylene glycol, and polyacrylamide were the chemical additives considered for spills of hydraulic fracturing fluid. We focused on the South Platte Alluvial Aquifer, which is located in the greater Denver metro area and overlaps a zone of high-density oil and gas development. Risk of groundwater pollution was based on predicted concentration at the groundwater table. In general, results showed groundwater contamination due to produced water and hydraulic fracturing fluid spills is low in most areas of the South Platte system for the contaminants and spill conditions investigated. Substantial risk may exist in certain areas where the groundwater table is shallow (less than 10 ft below ground surface) and when large spills and large post-spill storms occur. Co-chemical interactions are an important consideration in certain cases when modeling hydraulic fracturing fluid spills. By helping to identify locations in the Front Range of Colorado that are at low or high risk for groundwater contamination due to a surface spill, this work will aid in improving prevention and mitigation practices so that decision-makers can be better prepared to address accidental releases in Colorado.

  17. A Study of Space Station Contamination Effects. [conference

    NASA Technical Reports Server (NTRS)

    Torr, M. R. (Editor); Spann, J. F. (Editor); Moorehead, T. W. (Editor)

    1988-01-01

    A workshop was held with the specific objective of reviewing the state-of-knowledge regarding Space Station contamination, the extent to which the various categories of contamination can be predicted, and the extent to which the predicted levels would interfere with onboard scientific investigations or space station functions. The papers presented at the workshop are compiled and address the following topics: natural environment, plasma electromagnetic environment, optical environment, particulate environment, spacecraft contamination, surface physics processes, laboratory experiments and vented chemicals/contaminants.

  18. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power of the Water Resources Commission to control pollution of ground water, in effect has introduced the doctrine of reasonable use into the law of the State. Excluding controls administered by the Department of Conservation on activities of the oil and gas industry, however, legal controls have not been used abate intrusion of natural saline waters into fresh-water aquifers in response to pumping and other manmade changes in the hydrologic regimen.

  19. Assessment of Environmental Contamination with Pathogenic Bacteria at a Hospital Laundry Facility.

    PubMed

    Michael, Karen E; No, David; Daniell, William E; Seixas, Noah S; Roberts, Marilyn C

    2017-11-10

    Little is known about exposure to pathogenic bacteria among industrial laundry workers who work with soiled clinical linen. To study worker exposures, an assessment of surface contamination was performed at an industrial laundry facility serving hospitals in Seattle, WA, USA. Surface swab samples (n = 240) from the environment were collected during four site visits at 3-month intervals. These samples were cultured for Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE). Voluntary participation of 23 employees consisted of nasal swabs for detection of MRSA, observations during work, and questionnaires. Contamination with all three pathogens was observed in both dirty (laundry handling prior to washing) and clean areas (subsequent to washing). The dirty area had higher odds of overall contamination (≥1 pathogen) than the clean area (odds ratio, OR = 18.0, 95% confidence interval 8.9-36.5, P < 0.001). The odds of contamination were high for each individual pathogen: C. difficile, OR = 15.5; MRSA, OR = 14.8; and VRE, OR = 12.6 (each, P < 0.001). The highest odds of finding surface contamination occurred in the primary and secondary sort areas where soiled linens were manually sorted by employees (OR = 63.0, P < 0.001). The study substantiates that the laundry facility environment can become contaminated by soiled linens. Workers who handle soiled linen may have a higher risk of exposure to C. difficile, MRSA, and VRE than those who handle clean linens. Improved protocols for prevention and reduction of environmental contamination were implemented because of this study. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Elimination of Porcine Epidemic Diarrhea Virus in an Animal Feed Manufacturing Facility.

    PubMed

    Huss, Anne R; Schumacher, Loni L; Cochrane, Roger A; Poulsen, Elizabeth; Bai, Jianfa; Woodworth, Jason C; Dritz, Steve S; Stark, Charles R; Jones, Cassandra K

    2017-01-01

    Porcine Epidemic Diarrhea Virus (PEDV) was the first virus of wide scale concern to be linked to possible transmission by livestock feed or ingredients. Measures to exclude pathogens, prevent cross-contamination, and actively reduce the pathogenic load of feed and ingredients are being developed. However, research thus far has focused on the role of chemicals or thermal treatment to reduce the RNA in the actual feedstuffs, and has not addressed potential residual contamination within the manufacturing facility that may lead to continuous contamination of finished feeds. The purpose of this experiment was to evaluate the use of a standardized protocol to sanitize an animal feed manufacturing facility contaminated with PEDV. Environmental swabs were collected throughout the facility during the manufacturing of a swine diet inoculated with PEDV. To monitor facility contamination of the virus, swabs were collected at: 1) baseline prior to inoculation, 2) after production of the inoculated feed, 3) after application of a quaternary ammonium-glutaraldehyde blend cleaner, 4) after application of a sodium hypochlorite sanitizing solution, and 5) after facility heat-up to 60°C for 48 hours. Decontamination step, surface, type, zone and their interactions were all found to impact the quantity of detectable PEDV RNA (P < 0.05). As expected, all samples collected from equipment surfaces contained PEDV RNA after production of the contaminated feed. Additionally, the majority of samples collected from non-direct feed contact surfaces were also positive for PEDV RNA after the production of the contaminated feed, emphasizing the potential role dust plays in cross-contamination of pathogen throughout a manufacturing facility. Application of the cleaner, sanitizer, and heat were effective at reducing PEDV genomic material (P < 0.05), but did not completely eliminate it.

  1. Examining factors that influence the effectiveness of cleaning antineoplastic drugs from drug preparation surfaces: a pilot study.

    PubMed

    Hon, Chun-Yip; Chua, Prescillia Ps; Danyluk, Quinn; Astrakianakis, George

    2014-06-01

    Occupational exposure to antineoplastic drugs has been documented to result in various adverse health effects. Despite the implementation of control measures to minimize exposure, detectable levels of drug residual are still found on hospital work surfaces. Cleaning these surfaces is considered as one means to minimize the exposure potential. However, there are no consistent guiding principles related to cleaning of contaminated surfaces resulting in hospitals to adopt varying practices. As such, this pilot study sought to evaluate current cleaning protocols and identify those factors that were most effective in reducing contamination on drug preparation surfaces. Three cleaning variables were examined: (1) type of cleaning agent (CaviCide®, Phenokil II™, bleach and chlorhexidine), (2) application method of cleaning agent (directly onto surface or indirectly onto a wipe) and (3) use of isopropyl alcohol after cleaning agent application. Known concentrations of antineoplastic drugs (either methotrexate or cyclophosphamide) were placed on a stainless steel swatch and then, systematically, each of the three cleaning variables was tested. Surface wipes were collected and quantified using high-performance liquid chromatography-tandem mass spectrometry to determine the percent residual of drug remaining (with 100% being complete elimination of the drug). No one single cleaning agent proved to be effective in completely eliminating all drug contamination. The method of application had minimal effect on the amount of drug residual. In general, application of isopropyl alcohol after the use of cleaning agent further reduced the level of drug contamination although measureable levels of drug were still found in some cases.

  2. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: a systematic review.

    PubMed

    Louropoulou, Anna; Slot, Dagmar E; Van der Weijden, Fridus

    2015-07-01

    The objective of this systematic review was to evaluate the effect of mechanical instruments on the biocompatibility of titanium dental implant surfaces. MEDLINE, Cochrane-CENTRAL and EMBASE databases were searched up to December 2013, to identify controlled studies on the ability of cells to adhere and colonize non-contaminated and contaminated, smooth and rough, titanium surfaces after instrumentation with different mechanical instruments. A comprehensive search identified 1893 unique potential papers. Eleven studies met the inclusion criteria and were selected for this review. All studies were in vitro studies. Most studies used titanium discs, strips and cylinders. The air abrasive was the treatment mostly evaluated. The available studies had a high heterogeneity which precluded any statistical analysis of the data. Therefore, the conclusions are not based on quantitative data. Instrumentation seems to have a selective influence on the attachment of different cells. In the presence of contamination, plastic curettes, metal curettes, rotating titanium brushes and an ultrasonic scaling system with a carbon tip and polishing fluid seem to fail to restore the biocompatibility of rough titanium surfaces. The air-powder abrasive system with sodium bicarbonate powder does not seem to affect the fibroblast-titanium surface interaction after treatment of smooth or rough surfaces, even in the presence of contamination. The available data suggest that treatment with an air-powder abrasive system with sodium bicarbonate powder does not seem to adversely affect the biocompatibility of titanium dental implant surfaces. However, the clinical impact of these findings requires further clarification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    NASA Astrophysics Data System (ADS)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    SummaryA reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations at shallow depths and close to streams.

  4. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay.

    PubMed

    Gut, Ian M; Bartlett, Ryan A; Yeager, John J; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul; Karaolis, David K R

    2016-05-01

    Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies,Yersinia pestis persistence as a function of surface type at 21 °C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay

    PubMed Central

    Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul

    2016-01-01

    ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have utilized large liquid droplet deposition to provide persistence data. As a result, methods were developed to deposit aerosols containing bacteria onto indoor surfaces, reproducibly enumerate bacteria harvested from coupons, and determine surface decay utilizing Y. pestis. The results of this study provide foundational methods required to evaluate surface decay of bacteria and potentially other biological agents, such as viruses, in aerosol particles as a function of surface type and environment. Integrating the data from both aerosol and liquid deposition surface decay studies will provide medical and public health personnel with a more complete understanding of agent persistence on surfaces in contaminated areas for assessment of health risks and to inform decontamination decisions. PMID:26944839

  6. Controlling Surface Chemistry to Deconvolute Corrosion Benefits Derived from SMAT Processing

    NASA Astrophysics Data System (ADS)

    Murdoch, Heather A.; Labukas, Joseph P.; Roberts, Anthony J.; Darling, Kristopher A.

    2017-07-01

    Grain refinement through surface plastic deformation processes such as surface mechanical attrition treatment has shown measureable benefits for mechanical properties, but the impact on corrosion behavior has been inconsistent. Many factors obfuscate the particular corrosion mechanisms at work, including grain size, but also texture, processing contamination, and surface roughness. Many studies attempting to link corrosion and grain size have not been able to decouple these effects. Here we introduce a preprocessing step to mitigate the surface contamination effects that have been a concern in previous corrosion studies on plastically deformed surfaces; this allows comparison of corrosion behavior across grain sizes while controlling for texture and surface roughness. Potentiodynamic polarization in aqueous NaCl solution suggests that different corrosion mechanisms are responsible for samples prepared with the preprocessing step.

  7. 'No touch' technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems.

    PubMed

    Weber, David J; Kanamori, Hajime; Rutala, William A

    2016-08-01

    This article reviews 'no touch' methods for disinfection of the contaminated surface environment of hospitalized patients' rooms. The focus is on studies that assessed the effectiveness of ultraviolet (UV) light devices, hydrogen peroxide systems, and self-disinfecting surfaces to reduce healthcare-associated infections (HAIs). The contaminated surface environment in hospitals plays an important role in the transmission of several key nosocomial pathogens including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Clostridium difficile, Acinetobacter spp., and norovirus. Multiple clinical trials have now demonstrated the effectiveness of UV light devices and hydrogen peroxide systems to reduce HAIs. A limited number of studies have suggested that 'self-disinfecting' surfaces may also decrease HAIs. Many studies have demonstrated that terminal cleaning and disinfection with germicides is often inadequate and leaves environmental surfaces contaminated with important nosocomial pathogens. 'No touch' methods of room decontamination (i.e., UV devices and hydrogen peroxide systems) have been demonstrated to reduce key nosocomial pathogens on inoculated test surfaces and on environmental surfaces in actual patient rooms. Further UV devices and hydrogen peroxide systems have been demonstrated to reduce HAI. A validated 'no touch' device or system should be used for terminal room disinfection following discharge of patients on contact precautions. The use of a 'self-disinfecting' surface to reduce HAI has not been convincingly demonstrated.

  8. Personal and household hygiene, environmental contamination, and health in undergraduate residence halls in New York City, 2011.

    PubMed

    Miko, Benjamin A; Cohen, Bevin; Haxall, Katharine; Conway, Laurie; Kelly, Nicole; Stare, Dianne; Tropiano, Christina; Gilman, Allan; Seward, Samuel L; Larson, Elaine

    2013-01-01

    While several studies have documented the importance of hand washing in the university setting, the added role of environmental hygiene remains poorly understood. The purpose of this study was to characterize the personal and environmental hygiene habits of college students, define the determinants of hygiene in this population, and assess the relationship between reported hygiene behaviors, environmental contamination, and health status. 501 undergraduate students completed a previously validated survey assessing baseline demographics, hygiene habits, determinants of hygiene, and health status. Sixty survey respondents had microbiological samples taken from eight standardized surfaces in their dormitory environment. Bacterial contamination was assessed using standard quantitative bacterial culture techniques. Additional culturing for coagulase-positive Staphylococcus and coliforms was performed using selective agar. While the vast majority of study participants (n = 461, 92%) believed that hand washing was important for infection prevention, there was a large amount of variation in reported personal hygiene practices. More women than men reported consistent hand washing before preparing food (p = .002) and after using the toilet (p = .001). Environmental hygiene showed similar variability although 73.3% (n = 367) of subjects reported dormitory cleaning at least once per month. Contamination of certain surfaces was common, with at least one third of all bookshelves, desks, refrigerator handles, toilet handles, and bathroom door handles positive for >10 CFU of bacteria per 4 cm(2) area. Coagulase-positive Staphylococcus was detected in three participants' rooms (5%) and coliforms were present in six students' rooms (10%). Surface contamination with any bacteria did not vary by frequency of cleaning or frequency of illness (p>.05). Our results suggest that surface contamination, while prevalent, is unrelated to reported hygiene or health in the university setting. Further research into environmental reservoirs of infectious diseases may delineate whether surface decontamination is an effective target of hygiene interventions in this population.

  9. Personal and Household Hygiene, Environmental Contamination, and Health in Undergraduate Residence Halls in New York City, 2011

    PubMed Central

    Haxall, Katharine; Conway, Laurie; Kelly, Nicole; Stare, Dianne; Tropiano, Christina; Gilman, Allan; Seward, Samuel L.; Larson, Elaine

    2013-01-01

    Background While several studies have documented the importance of hand washing in the university setting, the added role of environmental hygiene remains poorly understood. The purpose of this study was to characterize the personal and environmental hygiene habits of college students, define the determinants of hygiene in this population, and assess the relationship between reported hygiene behaviors, environmental contamination, and health status. Methods 501 undergraduate students completed a previously validated survey assessing baseline demographics, hygiene habits, determinants of hygiene, and health status. Sixty survey respondents had microbiological samples taken from eight standardized surfaces in their dormitory environment. Bacterial contamination was assessed using standard quantitative bacterial culture techniques. Additional culturing for coagulase-positive Staphylococcus and coliforms was performed using selective agar. Results While the vast majority of study participants (n = 461, 92%) believed that hand washing was important for infection prevention, there was a large amount of variation in reported personal hygiene practices. More women than men reported consistent hand washing before preparing food (p = .002) and after using the toilet (p = .001). Environmental hygiene showed similar variability although 73.3% (n = 367) of subjects reported dormitory cleaning at least once per month. Contamination of certain surfaces was common, with at least one third of all bookshelves, desks, refrigerator handles, toilet handles, and bathroom door handles positive for >10 CFU of bacteria per 4 cm2 area. Coagulase-positive Staphylococcus was detected in three participants' rooms (5%) and coliforms were present in six students' rooms (10%). Surface contamination with any bacteria did not vary by frequency of cleaning or frequency of illness (p>.05). Conclusions Our results suggest that surface contamination, while prevalent, is unrelated to reported hygiene or health in the university setting. Further research into environmental reservoirs of infectious diseases may delineate whether surface decontamination is an effective target of hygiene interventions in this population. PMID:24312303

  10. Giardia & Pets

    MedlinePlus

    ... dog or cat Rolling and playing in contaminated soil Licking its body after contact with a contaminated ... coming into contact with infected feces (poop) or soil. Clean household surfaces regularly. Clean and disinfect areas ...

  11. Semianalytical solutions for contaminant transport under variable velocity field in a coastal aquifer

    NASA Astrophysics Data System (ADS)

    Koohbor, Behshad; Fahs, Marwan; Ataie-Ashtiani, Behzad; Simmons, Craig T.; Younes, Anis

    2018-05-01

    Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of the Fourier-Galerkin method is developed to efficiently solve the coupled flow, salt and contaminant transport equations. Various illustrative examples are generated and the semi-analytical solutions are compared against an in-house numerical code. The Fourier series are used to evaluate relevant metrics characterizing contaminant transport such as the discharge flux to the sea, amount of contaminant persisting in the groundwater and solute flux from the source. These metrics represent quantitative data for numerical code validation and are relevant to understand the effect of seawater intrusion on contaminant transport. It is observed that, for the surface contamination scenario, seawater intrusion limits the spread of the contaminant but intensifies the contaminant discharge to the sea. For the landward contamination scenario, moderate seawater intrusion affects only the spatial distribution of the contaminant plume while extreme seawater intrusion can increase the contaminant discharge to the sea. The developed semi-analytical solution presents an efficient tool for the verification of numerical models. It provides a clear interpretation of the contaminant transport processes in coastal aquifers subject to seawater intrusion. For practical usage in further studies, the full open source semi-analytical codes are made available at the website https://lhyges.unistra.fr/FAHS-Marwan.

  12. Analysis of Leading Edge and Trailing Edge Cover Glass Samples Before and After Treatment with Advanced Satellite Contamination Removal Techniques

    DTIC Science & Technology

    1993-04-01

    surface analysis, 40 contamination control, ANCC ( Aerogel Mesh Contamination Collector) iPRICECODE 17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION...operational parameter space (temperature, vibration, radiation, vacuum and micrometorite environments). One embodiment of this device, the Aerogel Mesh...Lippey and Dan Demeo of Hughes Aircraft Corporation for their kind hospitality and research collaboration on the contamination removal phase of this work

  13. Water Remedial Investigation Report, Version 2.2. Volume 1

    DTIC Science & Technology

    1989-03-01

    Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in Second Sandstone, Alluvium Saturated, Shale at the Aluvial - Bedrock Contact) C...sorption of contaminants onto channel sediments . The addit;on of rain water and snow melt may also dilute contaminant concentrations. Contaminant...surface water and potentially contaminated sediments are transported from South Plants north into Basin A, W RI -4 03/14/89 4-28 southeast into Lower Derby

  14. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    PubMed

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  15. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface (ER200422)

    DTIC Science & Technology

    2008-01-01

    discharge to surface water associated with groundwater leachate from coastal landfills, and (3) assessment of remedy effectiveness for treatment of...reduce contaminant concentrations to levels where natural attenuation (NA) and the phytoremediation plantation can effectively control the... phytoremediation plantation was established in March 2002. The in situ chemical oxidation (ISCO) system, which operated from March 2003 to October 2003, was

  16. Decontaminating the DOE-STD-3013 Inner Container to Meet 10-CFR-835 Appendix D Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, H.E.; Nelson, T.O.; Rivera, Y.M.

    The United States Department of Energy (DOE) has published a standard that specifies the criteria for preparation and packaging of plutonium metals and oxides for safe long-term storage (DOE-STD-3013-96). This standard is followed for the packaging of materials resulting from the disassembly of nuclear weapons at Los Alamos National Laboratory under the Advanced Retirement and Integrated Extraction System (ARIES) project. Declassified plutonium metal or oxide material from the ARES project is packaged into doubly contained and welded type 304L stainless steel containers that comply with the DOE standard. The 3013-96 standard describes requirements for maximum contamination limits on the outermore » surface of the sealed inner container. These limits are 500 dpm per 100 cm2 for direct measurements and 20 dpm per 100 cm2 for removable contamination. For containers filled, welded, and handled inside a highly contaminated glovebox line, these limits are difficult to obtain. Simple handling within the line is demonstrated to contaminate surfaces from 10,000 to 10,000,000 dpm alpha per 100 cm2. To routinely achieve contamination levels below the maximum contamination levels specified by the 3013-96 standard within a processing operation, a decontamination step must be included. In the ARIES line, this decontamination step is an electrolytic process that produces a controlled uniform etch of the container surfaces. Decontamination of the 3013-96 compliant ARIES inner container is well demonstrated. Within 30 to 50 minutes electrolysis time, tixed contamination is reduced to hundreds of dpm generally occurring only at electrode contact points and welds. Removable contamination is routinely brought to non-detectable levels. The total process time for the cycle (includes electrolysis, rinse, and dry stages) is on the order of 1.5 to 2 hours per container. The ARIES inner container decontamination system highly automated and consists of a plumbing loop, electronic controls and process monitors, and a decontamination chamber or "fixture". The tixture is situated like an air lock between a contaminated and an uncontaminated section of a processing glovebox. The welded and leak tested container is placed into the fixture through a door on the contaminated side and the electrolysis process is run, including rinse and dry cycles. The container is then removed through a second door into the uncontaminated side where it is monitored for surface alpha contamination, leak checked, and reweighed.« less

  17. Surface speciation and interactions between adsorbed chloride and water on cerium dioxide

    NASA Astrophysics Data System (ADS)

    Sutherland-Harper, Sophie; Taylor, Robin; Hobbs, Jeff; Pimblott, Simon; Pattrick, Richard; Sarsfield, Mark; Denecke, Melissa; Livens, Francis; Kaltsoyannis, Nikolas; Arey, Bruce; Kovarik, Libor; Engelhard, Mark; Waters, John; Pearce, Carolyn

    2018-06-01

    Ceria particles with different specific surface areas (SSA) were contaminated with chloride and water, then heat treated at 500 and 900 °C to investigate sorption behaviour of these species on metal oxides. Results from x-ray photoelectron spectroscopy and infrared spectroscopy showed chloride and water adsorption onto particles increased with surface area and that these species were mostly removed on heat treatment (from 6.3 to 0.8 at% Cl- on high SSA and from 1.4 to 0.4 at% on low SSA particles). X-ray diffraction revealed that chloride was not incorporated into the bulk ceria structure, but crystal size increased upon contamination. Ce LIII-edge x-ray absorption spectroscopy confirmed that chloride was not present in the first co-ordination sphere around Ce(IV) ions, so was not bonded to Ce as chloride in the bulk structure. Sintering of contaminated high SSA particles occurred with heat treatment at 900 °C, and they resembled low SSA particles synthesised at this temperature. Physical chloride-particle interactions were investigated using electron microscopy and energy dispersive x-ray analysis, showing that chloride was homogeneously distributed on ceria and that reduction of porosity did not trap surface-sorbed chloride inside the particles as surface area was reduced during sintering. This has implications for stabilisation of chloride-contaminated PuO2 for long term storage.

  18. The influence of surface contamination on the ion emission from nanosecond-pulsed laser ablation of Al and Cu

    NASA Astrophysics Data System (ADS)

    Ullah, S.; Dogar, A. H.; Qayyum, H.; Rehman, Z. U.; Qayyum, A.

    2018-04-01

    Ions emitted from planar Al and Cu targets irradiated with a 1064 nm pulsed laser were investigated with the help of a time-resolving Langmuir probe. It was found that the intensity of the ions emitted from a target area rapidly decreases with the increasing number of laser shots, and seems to reach saturation after about 10 laser shots. The saturated intensity of Al and Cu ions was approximately 0.1 and 0.3 times the intensity of the respective ions measured at the first laser shot, respectively. The higher target ion intensity for the first few shots is thought to be due to the enhanced ionization of target atoms by vacuum-ultraviolet radiations emitted from the thermally excited/ionized surface contaminants. The reduction of target ion intensity with an increasing number of laser shots thus indicates the removal of contaminants from the irradiated surface area. Laser-cleaned Al and Cu surfaces were then allowed to be recontaminated with residual vacuum gases and the ion intensity was measured at various time delays. The prolonged exposure of the cleaned target to vacuum residual gases completely restores the ion intensity. Regarding surface contaminants removal, laser shots of higher intensities were found to be more effective than a higher number of laser shots having lower intensities.

  19. Energy level alignment and molecular conformation at rubrene/Ag interfaces: Impact of contact contaminations on the interfaces

    NASA Astrophysics Data System (ADS)

    Sinha, Sumona; Wang, C.-H.; Mukherjee, M.

    2017-07-01

    This paper addresses the impact of electrode contaminations on the interfacial energy level alignment, the molecular conformation, orientation and surface morphology deposited organic film at organic semiconductor/noble metal interfaces by varying of film thickness from sub-monolayer to multilayer, which currently draws significant attention with regard to its application in organic electronics. The UHV clean Ag and unclean Ag were employed as substrate whereas rubrene was used as an organic semiconducting material. The photoelectron spectroscopy (XPS and UPS) was engaged to investigate the evolution of interfacial energetics; polarization dependent near edge x-ray absorption fine structure spectroscopy (NEXAFS) was employed to understand the molecular conformation as well as orientation whereas atomic force microscopy (AFM) was used to investigate the surface morphologies of the films. The adventitious contamination layer was acted as a spacer layer between clean Ag substrate surface and rubrene molecular layer. As a consequence, hole injection barrier height, interface dipole as well as molecular-conformation, molecular-orientation and surface morphology of rubrene thin films were found to depend on the cleanliness of Ag substrate. The results have important inferences about the understanding of the impact of substrate contamination on the energy level alignment, the molecular conformation as well as orientation and surface morphology of deposited rubrene thin film at rubrene/Ag interfaces and are beneficial for the improvement of the device performance.

  20. Phyt'Eaux Cités: application and validation of a programme to reduce surface water contamination with urban pesticides.

    PubMed

    Botta, Fabrizio; Fauchon, Nils; Blanchoud, Hélène; Chevreuil, Marc; Guery, Bénédicte

    2012-01-01

    This paper presents first results of Phyt'Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d'Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km(2)). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt'Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L(-1). They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular, glyphosate showed a decrease of the load above 60% in 2008, partly related to the Phyt'Eaux Cités action. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Long-term PAH monitoring results from the Anacostia River active capping demonstration using polydimethylsiloxane (PDMS) fibers.

    PubMed

    Lampert, David J; Lu, Xiaoxia; Reible, Danny D

    2013-03-01

    In this paper, the long-term monitoring results for hydrophobic organic compounds, specifically polycyclic aromatic hydrocarbons (PAHs), from a field demonstration of capping contaminated sediments at the Anacostia River in Washington DC are presented and analyzed. In situ pore water concentrations in field-contaminated sediments in the demonstration caps were quantified using a polydimethylsiloxane (PDMS)-based passive sampling device. High resolution vertical pore water concentration profiles were measured using the device and were used to infer fate and transport of polycyclic aromatics hydrocarbons (PAHs) at the site. The derived pore water concentrations were compared with observed bioaccumulation and solid-phase concentration profiles to infer contaminant migration rates and mechanisms. Observed pore water concentrations were found to be a better predictor of bioaccumulation than solid-phase concentrations. Solid-phase concentrations were low in cores which implied containment of contamination; however pore water profiles showed that contaminant migration had occurred in the first few years after cap placement. The discrepancy is the result of the low sorption capacity of the sand. Because of surface re-contamination, low sorption capacity in the demonstration caps and strong tidal pumping effects, steady state contaminant profiles were reached in the caps several years after placement. Despite re-contamination at the surface, steady state concentrations in the capped areas showed decreased contamination levels relative to the control area.

  2. Do Contaminants Originating from State-of-the-Art Treated Wastewater Impact the Ecological Quality of Surface Waters?

    PubMed Central

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive. PMID:23593263

  3. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    PubMed

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0-100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive.

  4. Near and far field contamination modeling in a large scale enclosure: Fire Dynamics Simulator comparisons with measured observations.

    PubMed

    Ryder, Noah L; Schemel, Christopher F; Jankiewicz, Sean P

    2006-03-17

    The occurrence of a fire, no matter how small, often exposes objects to significant levels of contamination from the products of combustion. The production and dispersal of these contaminants has been an issue of relevance in the field of fire science for many years, though little work has been done to examine the contamination levels accumulated within an enclosure some time after an incident. This phenomenon is of great importance when considering the consequences associated with even low level contamination of sensitive materials, such as food, pharmaceuticals, clothing, electrical equipment, etc. Not only does such exposure present a localized hazard, but also the shipment of contaminated goods places distant recipients at risk. It is the intent of this paper to use a well-founded computational fluid dynamic (CFD) program, the Fire Dynamics Simulator (FDS), a large eddy simulation (LES) code developed by National Institute of Standards and Technology (NIST), to model smoke dispersion in order to assess the subject of air contamination and post fire surface contamination in a warehouse facility. Measured results are then compared with the results from the FDS model. Two components are examined: the production rate of contaminates and the trajectory of contaminates caused by the forced ventilation conditions. Each plays an important role in determining the extent to which the products of combustion are dispersed and the levels to which products are exposed to the contaminants throughout the enclosure. The model results indicate a good first-order approximation to the measured surface contamination levels. The proper application of the FDS model can provide a cost and time efficient means of evaluating contamination levels within a defined volume.

  5. CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL

    NASA Astrophysics Data System (ADS)

    Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.

    2008-12-01

    A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated waters.

  6. Elimination and molecular identification of endophytic bacterial contaminants during in vitro propagation of Bambusa balcooa.

    PubMed

    Ray, Syandan Sinha; Ali, Md Nasim; Mukherjee, Shibasis; Chatterjee, Gautam; Banerjee, Maitreyi

    2017-02-01

    Bambusa balcooa is an economically important, multipurpose bamboo species, decidedly used in construction industry. Availability of natural bamboo is depleting very rapidly due to accelerated deforestation and its unrestrained use. The large number and timely supply of saplings are the need of the hour for the restoration of bamboo stands. Micropropagation, being the potent alternative for season independent rapid regeneration, is restricted in bamboo because of endophytic contamination. An in vitro attempt has been taken to overcome the endophytic contamination by using broad spectrum antibiotics as surface sterilant as well as a media component. Ampicillin sodium salt (5 mg/ml for 30 min) as a surface sterilant was found as the best treatment for high bud breaking (80%) coupled with high branching and low contamination (20%) but it was found ineffective to control the contamination during multiplication stage. Then, two endophytes were isolated and minimum inhibitory concentration was determined through antibiotic susceptibility test for successful eradication at multiplication stage. Finally, contamination free cultures were obtained when streptocycline (100 μg/ml) and gentamicin sulphate (75 μg/ml) were added into the medium. The two isolated endophytes, BB1 and BB2, were identified through 16S rDNA techniques and NCBI-BLAST algorithm with 99% sequence similarity with those of Janibacter sp. (KX423734) and Serratia marcescens strain (KX423735). To our knowledge, this is the first report for B. balcooa where antibiotics were used as surface sterilant as well as medium component, to control endophytic bacterial contaminants, followed by their identification.

  7. The effect of storage conditions, contamination modes and cleaning procedures on the resin bond strength to lithium disilicate ceramic.

    PubMed

    Klosa, Karsten; Wolfart, Stefan; Lehmann, Frank; Wenz, Hans-Jürgen; Kern, Matthias

    2009-04-01

    The purpose of this in-vitro study was to evaluate the resin bond strength to pre-etched lithium disilicate ceramic using different cleaning methods after two contamination modes (saliva or saliva and silicone). Plexiglas tubes filled with composite resin (MultiCore Flow) were bonded to etched and silanized ceramic disks made of lithium disilicate ceramic (IPS e.max Press) using a luting resin (Multilink Automix). Either etched or unetched ceramic surfaces were contaminated with saliva or with saliva followed by a disclosing silicone. Groups of 16 specimens each were bonded after pretreatment using 4 surface cleaning agents (37% phosphoric acid, 5% hydrofluoric acid, 96% isopropanol, air polishing device with sodium bicarbonate) in different combinations. Before measuring tensile bond strength, specimens were stored for 3 or 150 days with thermocycling. After 150 days of storage, etching of saliva-contaminated surfaces with 5% hydrofluoric acid and/or 37% phosphoric acid provided statistically significantly higher bond strengths (37.9 to 49.5 MPa) than the other cleaning methods (1.7 to 15.5 MPa). After saliva and silicone contamination, etching with 5% hydrofluoric acid provided statistically significantly higher bond strengths (44.5 to 50.3 MPa) than all other cleaning methods (0.3 to 13.5 MPa). Ceramic cleaning methods after try-in procedures have a significant influence on the resin bond strength and are dependent on the type of contamination. Re-etching lithium disilicate ceramic with 5% hydrofluoric acid is most effective in removing contamination with saliva and/or a silicone disclosing medium.

  8. Arsenic contamination in the Kanker district of central-east India: geology and health effects.

    PubMed

    Pandey, P K; Sharma, R; Roy, M; Roy, S; Pandey, M

    2006-10-01

    This paper identifies newer areas of arsenic contamination in the District Kanker, which adjoins the District Rajnandgaon where high contamination has been reported earlier. A correlation with the mobile phase episodes of arsenic contamination has been identified, which further hinges on the complex geology of the area. Arsenic concentrations in both surface and groundwater, aquatic organisms (snail and water weeds) soil and vegetation of Kanker district and its adjoining area have been reported here. The region has been found to contain an elevated level of arsenic. All segments of the ecoysystem are contaminated with arsenic at varying degrees. The levels of arsenic vary constantly depending on the season and location. An analysis of groundwater from 89 locations in the Kanker district has shown high values of arsenic, iron and manganese (mean: 144, 914 and 371 microg L(-1), respectively). The surface water of the region shows elevated levels of arsenic, which is influenced by the geological mineralised zonation. The most prevalent species in the groundwater is As(III), whereas the surface water of the rivers shows a significant contamination with the As(V) species. The analysis shows a bio-concentration of the toxic metals arsenic, nickel, copper and chromium. Higher arsenic concentrations (groundwater concentrations greater than 50 microg L(-1)) are associated with sedimentary deposits derived from volcanic rocks, hence mineral leaching appears to be the source of arsenic contamination. Higher levels of arsenic and manganese in the Kanker district have been found to cause impacts on the flora and fauna. A case study of episodic arsenical diarrhoea is presented.

  9. Vaccination of chickens decreased Newcastle disease virus contamination in eggs.

    PubMed

    Sá E Silva, Mariana; Susta, Leonardo; Moresco, Kira; Swayne, David E

    2016-01-01

    Newcastle disease is an important health issue of poultry causing major economic losses and inhibits trade worldwide. Vaccination is used as a control measure, but it is unknown whether vaccination will prevent virus contamination of eggs. In this study, hens were sham-vaccinated or received one or two doses of inactivated LaSota vaccine, followed three weeks later by virulent Newcastle disease virus (NDV) challenge. Eggs were collected daily and shell, albumen and yolk were subjected to virus isolation, as were oral and cloacal swabs at 2 and 4 days post-challenge (dpc). A second experiment evaluated the distribution of the virus in the reproductive tract of non-vaccinates. All vaccinated chickens survived challenge, and the levels of virus shed from cloacal swabs were decreased significantly when compared to shams. In non-vaccinated hens, virus was detected in the ovary and all segments of the oviduct. Yolk, albumen and eggshell surface from eggs laid at day 4 and 5 post-infection by sham-vaccinated hens were positive for NDV, but eggs from LaSota vaccinated hens lacked virus in internal egg components (i.e. yolk and albumen) and had reduction in the number of positive eggshell surfaces. These results indicate virulent NDV can replicate in the reproductive tract of hens and contaminate internal components of eggs and eggshell surface, but vaccination was able to prevent internal egg contamination, reducing eggshell surface contamination, and reducing shedding from digestive and respiratory tracts in virulent NDV challenged hens.

  10. Understanding Sources of Contaminants of Emerging Concern: An Evaluation of Land Use with Occurrence of Aquatic Contaminants

    USDA-ARS?s Scientific Manuscript database

    The occurrence of pharmaceuticals, antibiotics, hormones, and other contaminants of emerging concern (CEC) in surface waters, nationally and internationally, raises questions of their source, fate, and potential ecological and human health effects. A number of CECs have been shown to disrupt the nor...

  11. THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES

    EPA Science Inventory

    The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...

  12. Ounce of Prevention Keeps the Germs Away: Seven Keys to a Safer Healthier Home

    MedlinePlus

    ... while rinsing. SEPARATE: Don’t cross-contaminate one food with another Cross-contamination occurs when bacteria spread from a food to ... a surface to another food . . . or from one food to another. You’re helping to prevent cross-contamination when you: • Separate raw meat, poultry, seafood and ...

  13. 76 FR 44585 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... resources affecting the human food chain, contamination of surface water used for recreation or potable water consumption, and contamination of ambient air. EPA Regional offices work with States to determine... population at risk, the hazard potential of the substances, as well as the potential for contamination of...

  14. 10 CFR 850.31 - Release criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... lowest contamination level practicable, but not to exceed the levels established in paragraphs (b) and (c... contamination level of equipment or item surfaces does not exceed the higher of 0.2 µg/100 cm 2 or the... the equipment or item and its future use and the nature of the beryllium contamination. (c) Before...

  15. Health assessment for Lang Property National Priorities List (NPL) site, Pemberton Township, Burlington County, New Jersey, Region 2. CERCLIS No. NJD980505382. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-17

    The Lang Property National Priorities List Site is located in Pemberton Township, Burlington County, New Jersey. Unauthorized disposal of hazardous wastes occurred on approximately two acres of the 40-acre site. The contaminant classes that were identified on the site are volatile organic compounds (VOCs), semi-volatile organic compounds (semi-VOCs), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and metals. The contaminant classes of concern are PCBs, VOCs, and semi-VOCs for on-site ground water. VOCs is the contaminant class of concern for sediments and surface water. The on-site ground water is highly contaminated; at the maximum chemical concentrations detected, use of thismore » water without treatment would pose a human health concern. The potential does exist for human exposure to ground water contaminants by ingestion, inhalation of volatilized VOCs from ground water, and dermal absorption. The surface soils are also highly contaminated and represent a current possible as well as future human health concern for trespassers, blueberry farm workers and harvesters, and construction and remedial workers.« less

  16. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.

    PubMed

    Dror, Ishai; Jacov, Osnat Merom; Cortis, Andrea; Berkowitz, Brian

    2012-07-25

    A new composite material based on deposition of nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented, for catalytic transformation of organic contaminants in water. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours. A field experiment where contaminated groundwater containing a mixture of industrial and agricultural persistent pollutants was conducted together with a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions.

  17. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4more » Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.« less

  18. Determination of the external contamination and cross-contamination by cytotoxic drugs on the surfaces of vials available on the Swiss market.

    PubMed

    Fleury-Souverain, Sandrine; Nussbaumer, Susanne; Mattiuzzo, Marc; Bonnabry, Pascal

    2014-04-01

    The external contamination and cross-contamination by cytotoxic drugs on the surface (outside and septum) of 133 vials from various manufacturers and available on the Swiss market were evaluated. All of the tested vials contained one of the following active ingredients: cyclophosphamide, cytarabine, doxorubicin, epirubicin, etoposide phosphate, gemcitabine, ifosfamide, irinotecan, methotrexate or vincristine. The validated wiping liquid chromatography-mass spectrometry method used in this study allowed for the simultaneous determination of these 10 cytotoxic drugs in less than 30 min. External contamination by cytotoxic drugs was detected on 63% of tested vials (outside and septum). The highest contamination level was observed on etoposide phosphate vials with 1896.66 ng of active ingredient on the outside of the vial. Approximately 20% of the contaminated vials had greater than 10 ng of cytotoxic drugs. Chemical contamination on the septum was detected on 38% of the vials. No contamination or very low levels of cytotoxic drugs, less than 1 ng per vial, were detected on the vials protected by plastic shrink-wrap. Traces of cytotoxic drugs different from the active ingredient were detected on 35% of the tested vials. Handling cytotoxic vials with gloves and having a procedure for the decontamination of vials are of the utmost importance for reducing exposure to cytotoxic drugs. Moreover, manufacturers must improve their procedures to provide products free from any contamination.

  19. Issues and Effects of Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Sechkar, Edward; Stueber, Thomas; Snyder, Aaron; deGroh, Kim; Haytas, Christy; Brinker, David

    2000-01-01

    The continued presence and use of silicones on spacecraft in low Earth orbit (LEO) has been found to cause the deposition of contaminant films on surfaces which are also exposed to atomic oxygen. The composition and optical properties of the resulting SiO(x)- based (where x is near 2) contaminant films may be dependent upon the relative rates of arrival of atomic oxygen, silicone contaminant and hydrocarbons. This paper presents results of in-space silicone contamination tests, ground laboratory simulation tests and analytical modeling to identify controlling processes that affect contaminant characteristics.

  20. A review of diazinon use, contamination in surface waters, and regulatory actions in California across water years 1992-2014.

    PubMed

    Wang, Dan; Singhasemanon, Nan; Goh, Kean S

    2017-07-01

    Diazinon is an organophosphorus insecticide that has been widely used in the USA and in California resulting in contamination of surface waters. Several federal and state regulations have been implemented with the aim of reducing its impact to human health and the environment, e.g., the cancellation of residential use products by the USEPA and dormant spray regulations by the California Department of Pesticide Regulation. This study reviewed the change in diazinon use and surface water contamination in accordance with the regulatory actions implemented in California over water years 1992-2014. We observed that use amounts began declining when agencies announced the intention to regulate certain use patterns and continued to decline after the implementation of those programs and regulations. The reduction in use amounts led to a downward trend in concentration data and exceedance frequencies in surface waters. Moreover, we concluded that diazinon concentrations in California's surface waters in recent years (i.e., water years 2012-2014) posed a de minimis risk to aquatic organisms.

  1. Use of ATP Readings to Predict a Successful Hygiene Intervention in the Workplace to Reduce the Spread of Viruses on Fomites.

    PubMed

    Sifuentes, Laura Y; Fankem, Sonia L M; Reynolds, Kelly; Tamimi, Akrum H; Gerba, Charles P; Koenig, David

    2017-03-01

    The purpose of this study was to validate the use of adenosine triphosphate (ATP) for evaluating hygiene intervention effectiveness in reducing viral dissemination in an office environment. The bacterial virus MS-2 was used to evaluate two scenarios, one where the hand of an individual was contaminated and another where a fomite was contaminated. MS-2 was selected as a model because its shape and size are similar to many human pathogenic viruses. Two separate experiments were conducted, one in which the entrance door push plate was inoculated and the other in which the hand of one selected employee was inoculated. In both scenarios, 54 selected surfaces in the office were tested to assess the dissemination of the virus within the office. Associated surface contamination was also measured employing an ATP meter. More than half of the tested hands and surfaces in the office were contaminated with MS-2 within 4 h. Next, an intervention was conducted, and each scenario was repeated. Half of the participating employees were provided hand sanitizer, facial tissues, and disinfecting wipes, and were instructed in their use. A significant (p < 0.05) reduction was observed in the number of surfaces contaminated with virus. This reduction in viral spread was evident from the results of both viral culture and the surface ATP measurements, although there was no direct correlation between ATP measurements with respect to viral concentration. Although ATP does not measure viruses, these results demonstrate that ATP measurements could be useful for evaluating the effectiveness of hygiene interventions aimed at preventing viral spread in the workplace.

  2. Determination of geohydrologic framework and extent of d- water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre

    1986-01-01

    Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)

  3. Carbapenem-Resistant Acinetobacter baumannii: Concomitant Contamination of Air and Environmental Surfaces.

    PubMed

    Shimose, Luis A; Masuda, Eriko; Sfeir, Maroun; Berbel Caban, Ana; Bueno, Maria X; dePascale, Dennise; Spychala, Caressa N; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Doi, Yohei; Munoz-Price, L Silvia

    2016-07-01

    OBJECTIVE To concomitantly determine the differential degrees of air and environmental contamination by Acinetobacter baumannii based on anatomic source of colonization and type of ICU layout (single-occupancy vs open layout). DESIGN Longitudinal prospective surveillance study of air and environmental surfaces in patient rooms. SETTING A 1,500-bed public teaching hospital in Miami, Florida. PATIENTS Consecutive A. baumannii-colonized patients admitted to our ICUs between October 2013 and February 2014. METHODS Air and environmental surfaces of the rooms of A. baumannii-colonized patients were sampled daily for up to 10 days. Pulsed-field gel electrophoresis (PFGE) was used to type and match the matching air, environmental, and clinical A. baumannii isolates. RESULTS A total of 25 A. baumannii-colonized patients were identified during the study period; 17 were colonized in the respiratory tract and 8 were colonized in the rectum. In rooms with rectally colonized patients, 38.3% of air samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 13.1% of air samples were positive (P=.0001). In rooms with rectally colonized patients, 15.5% of environmental samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 9.5% of environmental samples were positive (P=.02). The rates of air contamination in the open-layout and single-occupancy ICUs were 17.9% and 21.8%, respectively (P=.5). Environmental surfaces were positive in 9.5% of instances in open-layout ICUs versus 13.4% in single-occupancy ICUs (P=.09). CONCLUSIONS Air and environmental surface contaminations were significantly greater among rectally colonized patients; however, ICU layout did not influence the rate of contamination. Infect Control Hosp Epidemiol 2016;37:777-781.

  4. Decontamination of clothing and building materials associated with the clandestine production of methamphetamine.

    PubMed

    Serrano, Kate A; Martyny, John W; Kofford, Shalece; Contreras, John R; Van Dyke, Mike V

    2012-01-01

    This study was designed to determine how easily methamphetamine can be removed from clothing and building materials, utilizing different cleaning materials and methods. The study also addressed the penetration of methamphetamine into drywall and the ability of paints to encapsulate the methamphetamine on drywall. Clothing and building materials were contaminated in a stainless steel chamber by aerosolizing methamphetamine in a beaker heater. The amount of methamphetamine surface contamination was determined by sampling a grid pattern on the material prior to attempting to clean the materials. After cleaning, the materials were again sampled, and the degree of decontamination noted. We found that household clothing and response gear worn by first responders was easily decontaminated using a household detergent in a household washing machine. A single wash removed over 95% of the methamphetamine from these materials. The study also indicated that methamphetamine-contaminated, smooth non-porous surfaces can be easily cleaned to below detectable levels using only mild cleaners. More porous surfaces such as plywood and drywall were unlikely to be decontaminated to below regulatory levels even with three washes using a mild cleaner. This may be due to methamphetamine penetration into the paint on these surfaces. Evaluation of methamphetamine contamination on drywall indicated that approximately 40% of the methamphetamine was removed using a wipe, while another 60% remained in the paint layer. Stronger cleaners such as those with active ingredients including sodium hypochlorite or quaternary ammonia and commercial decontamination agents were more effective than mild detergent-based cleaners and may reduce methamphetamine contamination to below regulatory levels. Results from the encapsulation studies indicate that sprayed on oil-based paint will encapsulate methamphetamine on drywall and plywood surfaces up to 4.5 months, while latex paints were less effective.

  5. Comparison of Two Surface Contamination Sampling Techniques Conducted for the Characterization of Two Pajarito Site Manhattan Project National Historic Park Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    Technical Area-18 (TA-18), also known as Pajarito Site, is located on Los Alamos National Laboratory property and has historic buildings that will be included in the Manhattan Project National Historic Park. Characterization studies of metal contamination were needed in two of the four buildings that are on the historic registry in this area, a “battleship” bunker building (TA-18-0002) and the Pond cabin (TA-18-0029). However, these two buildings have been exposed to the elements, are decades old, and have porous and rough surfaces (wood and concrete). Due to these conditions, it was questioned whether standard wipe sampling would be adequate tomore » detect surface dust metal contamination in these buildings. Thus, micro-vacuum and surface wet wipe sampling techniques were performed side-by-side at both buildings and results were compared statistically. A two-tail paired t-test revealed that the micro-vacuum and wet wipe techniques were statistically different for both buildings. Further mathematical analysis revealed that the wet wipe technique picked up more metals from the surface than the microvacuum technique. Wet wipes revealed concentrations of beryllium and lead above internal housekeeping limits; however, using an yttrium normalization method with linear regression analysis between beryllium and yttrium revealed a correlation indicating that the beryllium levels were likely due to background and not operational contamination. PPE and administrative controls were implemented for National Park Service (NPS) and Department of Energy (DOE) tours as a result of this study. Overall, this study indicates that the micro-vacuum technique may not be an efficient technique to sample for metal dust contamination.« less

  6. Quality of volatile organic compound data from groundwater and surface water for the National Water-Quality Assessment Program, October 1996–December 2008

    USGS Publications Warehouse

    Bender, David A.; Zogorski, John S.; Mueller, David K.; Rose, Donna L.; Martin, Jeffrey D.; Brenner, Cassandra K.

    2011-01-01

    This report describes the quality of volatile organic compound (VOC) data collected from October 1996 to December 2008 from groundwater and surface-water sites for the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The VOC data described were collected for three NAWQA site types: (1) domestic and public-supply wells, (2) monitoring wells, and (3) surface-water sites. Contamination bias, based on the 90-percent upper confidence limit (UCL) for the 90th percentile of concentrations in field blanks, was determined for VOC samples from the three site types. A way to express this bias is that there is 90-percent confidence that this amount of contamination would be exceeded in no more than 10 percent of all samples (including environmental samples) that were collected, processed, shipped, and analyzed in the same manner as the blank samples. This report also describes how important native water rinsing may be in decreasing carryover contamination, which could be affecting field blanks. The VOCs can be classified into four contamination categories on the basis of the 90-percent upper confidence limit (90-percent UCL) concentration distribution in field blanks. Contamination category 1 includes compounds that were not detected in any field blanks. Contamination category 2 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is about an order of magnitude lower than the concentration distribution of the environmental samples. Contamination category 3 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is within an order of magnitude of the distribution in environmental samples. Contamination category 4 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is at least an order of magnitude larger than the concentration distribution of the environmental samples. Fifty-four of the 87 VOCs analyzed in samples from domestic and public-supply wells were not detected in field blanks (contamination category 1), and 33 VOC were detected in field blanks. Ten of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 10 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative of the sources of contamination bias affecting the environmental samples for these 10 VOCs. Seven VOCs had a 90-percent UCL concentration distribution of the field blanks that was within an order of magnitude of the concentration distribution of the environmental samples (contamination category 3). Sixteen VOCs had a 90-percent UCL concentration distribution in the field blanks that was at least an order of magnitude greater than the concentration distribution of the environmental samples (contamination category 4). Field blanks for these 16 VOCs appear to be nonrepresentative of the sources of contamination bias affecting the environmental samples because of the larger concentration distributions (and sometimes higher frequency of detection) in field blanks than in environmental samples. Forty-three of the 87 VOCs analyzed in samples from monitoring wells were not detected in field blanks (contamination category 1), and 44 VOCs were detected in field blanks. Eight of the 44 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than concentrations in environmental samples (contamination category 2). These eight VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Seven VOCs had a 90-percent UCL concentration distribution in field blanks that was of the same order of magnitude as the concentration distribution of the environmental samples (contamination category 3). Twenty-nine VOCs had a 90-percent UCL concentration distribution in the field blanks that was an order of magnitude greater than the distribution of the environmental samples (contamination category 4). Field blanks for these 29 VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. Fifty-four of the 87 VOCs analyzed in surface-water samples were not detected in field blanks (category 1), and 33 VOC were detected in field blanks. Sixteen of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 16 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Ten VOCs had a 90-percent UCL concentration distribution in field blanks that was similar to the concentration distribution of environmental samples (contamination category 3). Seven VOCs had a 90-percent UCL concentration distribution in the field blanks that was greater than the concentration distribution in environmental samples (contamination category 4). Field-blank samples for these seven VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. The relation between the detection of a compound in field blanks and the detection in subsequent environmental samples appears to be minimal. The median minimum percent effectiveness of native water rinsing is about 79 percent for the 19 VOCs detected in more than 5 percent of field blanks from all three site types. The minimum percent effectiveness of native water rinsing (10 percent) was for toluene in surface-water samples, likely because of the large detection frequency of toluene in surface-water samples (about 79 percent) and in the associated field-blank samples (46.5 percent). The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study. The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study.

  7. Apparatus for Sampling Surface Contamination

    NASA Technical Reports Server (NTRS)

    Wells, Mark

    2008-01-01

    An apparatus denoted a swab device has been developed as a convenient means of acquiring samples of contaminants from surfaces and suspending the samples in liquids. (Thereafter, the liquids can be dispensed, in controlled volumes, into scientific instruments for analysis of the contaminants.) The swab device is designed so as not to introduce additional contamination and to facilitate, simplify, and systematize the dispensing of controlled volumes of liquid into analytical instruments. The swab device is a single apparatus into which are combined all the equipment and materials needed for sampling surface contamination. The swab device contains disposable components stacked together on a nondisposable dispensing head. One of the disposable components is a supply cartridge holding a sufficient volume of liquid for one complete set of samples. (The liquid could be clean water or another suitable solvent, depending on the application.) This supply of liquid is sealed by Luer valves. At the beginning of a sampling process, the user tears open a sealed bag containing the supply cartridge. A tip on the nondisposable dispensing head is engaged with a Luer valve on one end of the supply cartridge and rotated, locking the supply cartridge on the dispensing head and opening the valve. The swab tip includes a fabric swab that is wiped across the surface of interest to acquire a sample. A sealed bag containing a disposable dispensing tip is then opened, and the swab tip is pushed into the dispensing tip until seated. The dispensing head contains a piston that passes through a spring-loaded lip seal. The air volume displaced by this piston forces the liquid out of the supply cartridge, over the swab, and into the dispensing tip. The piston is manually cycled to enforce oscillation of the air volume and thereby to cause water to flow to wash contaminants from the swab and cause the resulting liquid suspension of contaminants to flow into the dispensing tip. After several cycles to ensure adequate mixing, liquid containing the suspended contaminant sample is dispensed. The disposable components are then removed from the dispensing head, which may then be reused with a fresh set of disposable components.

  8. Occupational Exposure to Chemotherapy of Pharmacy Personnel at a Single Centre

    PubMed Central

    Ramphal, Raveena; Bains, Tejinder; Goulet, Geneviève; Vaillancourt, Régis

    2015-01-01

    Background: Cyclophosphamide is one of the most commonly used chemotherapy drugs worldwide. Data concerning environmental contamination and biological exposure of pharmacy personnel to this and other chemotherapy drugs are limited. Objectives: To determine whether pharmacy personnel involved in preparing and checking cyclophosphamide doses were more likely to have detectable levels of this drug in their urine than non-oncology pharmacy personnel with no known contact with the drug, and to compare the degree of surface contamination with cyclophosphamide, methotrexate, and ifosfamide in the oncology pharmacy of a tertiary care pediatric hospital, where chemotherapy doses were prepared, and the main (control) pharmacy in the same institution, where no chemotherapy was prepared. Methods: Biological exposure to cyclophosphamide was compared between pharmacy personnel who did and did not handle this drug by determining whether participants had detectable amounts of cyclophosphamide in their urine. Environmental exposure to chemotherapy drugs was assessed by using surface wipes to determine the degree of surface contamination with various chemotherapy agents in the oncology pharmacy and the main (control) pharmacy. Results: On initial testing, cyclophosphamide was detected in the urine of all pharmacy personnel (n = 7 oncology personnel, n = 5 control personnel). However, it was determined that all control personnel had been exposed to the oncology pharmacy on the day of testing. Repeat testing of these individuals revealed no positive samples among those not exposed to the oncology pharmacy on the day of repeat testing. The sole positive result on retesting of control personnel was for a participant who had been exposed to the oncology pharmacy on the retest day. Surface wipe testing revealed contamination of the oncology pharmacy with cyclophosphamide and methotrexate before and after cleaning, as well as contamination with ifosfamide after cleaning. The main (control) pharmacy showed no evidence of contamination with cyclophosphamide, methotrexate, or ifosfamide. Conclusions: The findings suggest that environmental contamination plays a role in biological exposure to cyclophosphamide. Measures to reduce environmental contamination from chemotherapy and biological exposure of pharmacy personnel when handling chemotherapy agents should be identified and implemented as a priority. PMID:25964681

  9. The application of ionizers in domestic refrigerators for reduction in airborne and surface bacteria.

    PubMed

    Kampmann, Y; Klingshirn, A; Kloft, K; Kreyenschmidt, J

    2009-12-01

    To investigate the antimicrobial effect of ionization on bacteria in household refrigerators. Ionizer prototypes were tested with respect to their technical requirements and their ability to reduce surface and airborne contamination in household refrigerators. Ion and ozone production of the tested prototypes were measured online by an ion meter and an ozone analyser. The produced negative air ion (NAI) and ozone amounts were between 1.2 and 3.7 x 10(6) NAI cm(-3) and 11 and 19 ppb O(3), respectively. To test the influence of ionization on surface contamination, different materials like plastic, glass and nutrient agar for simulation of food were inoculated with bacterial suspensions. The reduction rate was dependent on surface properties. The effect on airborne bacteria was tested by nebulization of Bacillus subtilis- suspension (containing spores) aerosols in refrigerators with and without an ionizer. A clear reduction in air contamination because of ionization was measured. The antimicrobial effect is dependent on several factors, such as surface construction and airflow patterns within the refrigerator. Ionization seems to be an effective method for reduction in surface and airborne bacteria. This study is an initiation for a new consumer tool to decontaminate domestic refrigerators.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  11. Protists from a sewage‐contaminated aquifer on cape cod, Massachusetts

    USGS Publications Warehouse

    Novarino, Gianfranco; Warren, Alan; Kinner, Nancy E.; Harvey, Ronald W.

    1994-01-01

    Several species of flagellates (genera Bodo, Cercomonas, Cryptaulax, Cyathomonas, Goniomonas, Spumella) have been identified in cultures from a plume of organic contamination (treated sewage effluent) within an aquifer on Cape Cod, Massachusetts. Amoebae and numerous unidentifiable 2‐ to 3‐μm flagellates have also been observed. As a rule, flagellates were associated with solid surfaces, or were capable of temporary surface attachment, corroborating earlier observations from in situ and column transport experiments suggesting that protists in the Massachusetts aquifer have a high propensity for association with sediment grain surfaces. Based on the fact that cultures from the uncontaminated part of the aquifer yielded only a few species of protists, it is hypothesized that the greater abundance and variety of food sources in the contaminant plume is capable of supporting a greater number of protistan species.

  12. Assessing occupational exposure to sea lamprey pesticides.

    PubMed

    Ceballos, Diana M; Beaucham, Catherine C; Kurtz, Kristine; Musolin, Kristin

    2015-01-01

    Sea lampreys are parasitic fish found in lakes of the United States and Canada. Sea lamprey is controlled through manual application of the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and Bayluscide(TM) into streams and tributaries. 3-Trifluoromethyl-4-nitrophenol may cause irritation and central nervous system depression and Bayluscide may cause irritation, dermatitis, blisters, cracking, edema, and allergic skin reactions. To assess occupational exposures to sea lamprey pesticides. We developed a wipe method for evaluating surface and skin contamination with these pesticides. This method was field tested at a biological field station and at a pesticide river application. We also evaluated exposures using control banding tools. We verified TFM surface contamination at the biological station. At the river application, we found surfaces and worker's skin contaminated with pesticides. We recommended minimizing exposures by implementing engineering controls and improved use of personal protective equipment.

  13. Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren

    2007-09-01

    ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.

  14. The biofilm-positive Staphylococcus epidermidis isolates in raw materials, foodstuffs and on contact surfaces in processing plants.

    PubMed

    Schlegelová, J; Babák, V; Holasová, M; Dendis, M

    2008-01-01

    Isolates from the "farm to fork" samples (182 isolates from 2779 samples) were examined genotypically (icaAB genes) and phenotypically (in vitro biofilm formation, typical growth on Congo red agar; CRA) with the aim to assess the risk of penetration of virulent strains of Staphylococcus epidermidis into the food chain. The contamination of meat and milk products was significantly higher in comparison with raw materials. Contamination of contact surfaces in the meat-processing plants was significantly lower than that of contact surfaces in the dairy plants. The ica genes (which precondition the biofilm formation) were concurrently detected in 20 isolates that also showed a typical growth on CRA. Two ica operon-negative isolates produced biofilm in vitro but perhaps by an ica-independent mechanism. The surfaces in the dairy plants and the milk products were more frequently contaminated with ica operon-positive strains (2.3 and 1.2 % samples) than the other sample types (0-0.6 % samples).

  15. Transuranic contamination of stainless steel in nitric acid

    NASA Astrophysics Data System (ADS)

    Kerry, Timothy; Banford, Anthony W.; Thompson, Olivia R.; Carey, Thomas; Schild, Dieter; Geist, Andreas; Sharrad, Clint A.

    2017-09-01

    Stainless steels coupons have been exposed to transuranic species in conditions representative of those found in a spent nuclear fuel reprocessing plant. Stainless steel was prepared to different surface finishes and exposed to nitric acid of varying concentrations containing 237Np, 239Pu or 243Am for one month at 50 °C. Contamination by these transuranics has been observed on all surfaces exposed to the solution through the use of autoradiography. This technique showed that samples held in 4 M HNO3 bind 2-3 times as much radionuclide as those held in 10.5 M HNO3. It was also found that the polished steel surfaces generally took up more transuranic contamination than the etched and "as received" steel finishes. The extent of corrosion on the steel surfaces was found, by scanning electron microscopy, to be greater in solutions containing Np and Pu in comparison to that observed from contact with Am containing solutions, indicating that redox activity of transuranics can influence the mechanism of stainless steel corrosion.

  16. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Multari, Rosalie A; Cremers, David A; Dupre, Jo Anne M; Gustafson, John E

    2013-09-11

    The rapid detection of biological contaminants, such as Escherichia coli O157:H7 and Salmonella enterica , on foods and food-processing surfaces is important to ensure food safety and streamline the food-monitoring process. Laser-induced breakdown spectroscopy (LIBS) is an ideal candidate technology for this application because sample preparation is minimal and results are available rapidly (seconds to minutes). Here, multivariate regression analysis of LIBS data is used to differentiate the live bacterial pathogens E. coli O157:H7 and S. enterica on various foods (eggshell, milk, bologna, ground beef, chicken, and lettuce) and surfaces (metal drain strainer and cutting board). The type (E. coli or S. enterica) of bacteria could be differentiated in all cases studied along with the metabolic state (viable or heat killed). This study provides data showing the potential of LIBS for the rapid identification of biological contaminants using spectra collected directly from foods and surfaces.

  17. Chemical analyses of provided samples

    NASA Technical Reports Server (NTRS)

    Becker, Christopher H.

    1993-01-01

    A batch of four samples were received and chemical analysis was performed of the surface and near surface regions of the samples by the surface analysis by laser ionization (SALI) method. The samples included four one-inch diameter optics labeled windows no. PR14 and PR17 and MgF2 mirrors 9-93 PPPC exp. and control DMES 26-92. The analyses emphasized surface contamination or modification. In these studies, pulsed desorption by 355 nm laser light and single-photon ionization (SPI) above the sample by coherent 118 nm radiation (at approximately 5 x 10(exp 5) W/cm(sup 2)) were used, emphasizing organic analysis. For the two windows with an apparent yellowish contaminant film, higher desorption laser power was needed to provide substantial signals, indicating a less volatile contamination than for the two mirrors. Window PR14 and the 9-93 mirror showed more hydrocarbon components than the other two samples. The mass spectra, which show considerable complexity, are discussed in terms of various potential chemical assignments.

  18. Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination.

    PubMed

    van Druenen, Maart; Collins, Gillian; Glynn, Colm; O'Dwyer, Colm; Holmes, Justin D

    2018-01-17

    Monolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO 2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (∼2 × 10 20 atoms/cm 3 ). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO 2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.

  19. Surface contamination detection by means of near-infrared stimulation of thermal luminescence

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Roese, Erik S.

    2006-02-01

    A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.

  20. Characteristics of Chernobyl-derived radionuclides in particulate form in surface waters in the exclusion zone around the Chernobyl Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Matsunaga, Takeshi; Ueno, Takashi; Amano, Hikaru; Tkatchenko, Y.; Kovalyov, A.; Watanabe, Miki; Onuma, Yoshikazu

    1998-12-01

    The distribution of Chernobyl-derived radionuclides in river and lake water bodies at 6-40 km from the Chernobyl Nuclear Power Plant was studied. Current levels of radionuclides (Cesium-137, Strontium-90, Plutonium, Americium and Curium isotopes) in water bodies and their relation to the ground contamination are presented. The investigation of the radionuclide composition of aqueous and ground contamination revealed that radionuclides on suspended solids (particulate form) originate mainly from the erosion of the contaminated surface soil layer in the zone. Apparent distribution ratios between particulate and dissolved forms are compared to known distribution coefficients.

Top