NASA Astrophysics Data System (ADS)
Hersch, Roger David; Crété, Frédérique
2004-12-01
Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In the case of offset prints, the mean difference between predictions and measurements expressed in CIE-LAB CIE-94 ΔE94 values is reduced at 100 lpi from 1.54 to 0.90 (accuracy improvement factor: 1.7) and at 150 lpi it is reduced from 1.87 to 1.00 (accuracy improvement factor: 1.8). Similar improvements have been observed for a thermal transfer printer at 600 dpi, at lineatures of 50 and 75 lpi. In the case of an ink-jet printer at 600 dpi, the mean ΔE94 value is reduced at 75 lpi from 3.03 to 0.90 (accuracy improvement factor: 3.4) and at 100 lpi from 3.08 to 0.91 (accuracy improvement factor: 3.4).
NASA Astrophysics Data System (ADS)
Hersch, Roger David; Crete, Frederique
2005-01-01
Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In the case of offset prints, the mean difference between predictions and measurements expressed in CIE-LAB CIE-94 ΔE94 values is reduced at 100 lpi from 1.54 to 0.90 (accuracy improvement factor: 1.7) and at 150 lpi it is reduced from 1.87 to 1.00 (accuracy improvement factor: 1.8). Similar improvements have been observed for a thermal transfer printer at 600 dpi, at lineatures of 50 and 75 lpi. In the case of an ink-jet printer at 600 dpi, the mean ΔE94 value is reduced at 75 lpi from 3.03 to 0.90 (accuracy improvement factor: 3.4) and at 100 lpi from 3.08 to 0.91 (accuracy improvement factor: 3.4).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, Thomas; Hin, Celine; Savara, Aditya
Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, Thomas; Hin, Celine; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10{sup −26} to 10{sup 13}. The equations have been shown to be general for any value of the adsorption equilibrium constant.« less
Danielson, Thomas; Hin, Celine; Savara, Aditya
2016-08-10
Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less
Irreversible adsorption of particles on heterogeneous surfaces.
Adamczyk, Zbigniew; Jaszczółt, Katarzyna; Michna, Aneta; Siwek, Barbara; Szyk-Warszyńska, Lilianna; Zembala, Maria
2005-12-30
Methods of theoretical and experimental evaluation of irreversible adsorption of particles, e.g., colloids and globular proteins at heterogeneous surfaces were reviewed. The theoretical models were based on the generalized random sequential adsorption (RSA) approach. Within the scope of these models, localized adsorption of particles occurring as a result of short-ranged attractive interactions with discrete adsorption sites was analyzed. Monte-Carlo type simulations performed according to this model enabled one to determine the initial flux, adsorption kinetics, jamming coverage and the structure of the particle monolayer as a function of the site coverage and the particle/site size ratio, denoted by lambda. It was revealed that the initial flux increased significantly with the site coverage theta(s) and the lambda parameter. This behavior was quantitatively interpreted in terms of the scaled particle theory. It also was demonstrated that particle adsorption kinetics and the jamming coverage increased significantly, at fixed site coverage, when the lambda parameter increased. Practically, for alpha = lambda2theta(s) > 1 the jamming coverage at the heterogeneous surfaces attained the value pertinent to continuous surfaces. The results obtained prove unequivocally that spherically shaped sites were more efficient in binding particles in comparison with disk-shaped sites. It also was predicted that for particle size ratio lambda < 4 the site multiplicity effect plays a dominant role, affecting significantly the structure of particle monolayers and the jamming coverage. Experimental results validating main aspects of these theoretical predictions also have been reviewed. These results were derived by using monodisperse latex particles adsorbing on substrates produced by covering uniform surface by adsorption sites of a desired size, coverage and surface charge. Particle deposition occurred under diffusion-controlled transport conditions and their coverage was evaluated by direct particle counting using the optical and electron microscopy. Adsorption kinetics was quantitatively interpreted in terms of numerical solutions of the governing diffusion equation with the non-linear boundary condition derived from Monte-Carlo simulations. It was proven that for site coverage as low as a few percent the initial flux at heterogeneous surfaces attained the maximum value pertinent to homogeneous surfaces. It also was demonstrated that the structure of larger particle monolayers, characterized in terms of the pair correlation function, showed much more short-range ordering than predicted for homogeneous surface monolayers at the same coverage. The last part of this review was devoted to detection of polyelectrolyte multilayers on various substrates via particle deposition experiments.
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Emtiaz, S. M.; Vidali, Gianfranco
2016-06-01
Sticking and adsorption of molecules on dust grains are two important processes in gas-grain interactions. We accurately measured both the sticking coefficient and the binding energy of several key molecules on the surface of amorphous solid water as a function of coverage.A time-resolved scattering technique was used to measure sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on non-porous amorphous solid water (np-ASW) in the low coverage limit over a wide range of surface temperatures. We found that the time-resolved scattering technique is advantageous over the conventional King-Wells method that underestimates the sticking coefficient. Based on the measured values we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy.We measured the binding energy of N2, CO, O2, CH4, and CO2 on np-ASW, and of N2 and CO on porous amorphous solid water (p-ASW). We were able to measure binding energies down to a fraction of 1% of a layer, thus making these measurements more appropriate for astrochemistry than the existing values. We found that CO2 forms clusters on np-ASW surface even at very low coverage; this may help in explaining the segregation of CO2 in ices. The binding energies of N2, CO, O2, and CH4 on np-ASW decrease with coverage in the submonolayer regime. Their values in the low coverage limit are much higher than what is commonly used in gas-grain models. An empirical formula was used to describe the coverage dependence of the binding energies. We used the newly determined binding energy distributions in a simulation of gas-grain chemistry for cold dense clouds and hot core models. We found that owing to the higher value of desorption energy in the sub-monlayer regime a fraction of all these ices stays much longer and to higher temperature on the grain surface compared to the case using single value energies as currently done in astrochemical models.This work was supported in part by a grant to GV from NSF --- Astronomy & Astrophysics Division (#1311958)
Characterization of a Planet: Dependence on Coverage Fraction
NASA Astrophysics Data System (ADS)
Lorenz, R. D.
1996-03-01
I investigate, by means of numerical experiments and a real-time quiz of colleagues (to be repeated at the poster presentation associated with this abstract), how well-characterized a planet may be considered, as a function of how much of its surface has been studied. Most measures seem to indicate that characterization quality increases steeply up to about 30% coverage. Beyond 30%, additional coverage has a lower marginal value as a 'complete' knowledge of the surface is asymptotically reached. These studies are pertinent where tradeoffs of coverage against other scientific objectives exist, for example the orbital tour design of the Cassini mission. The tour design affects how much of Titan's surface (after the Galileo mission, Titan's surface becomes the largest mappable, but unmapped, area in the solar system) may be covered by the Cassini radar. The mission has too few flybys to cover all of Titan's surface: the Radar team aims to have 30% coverage at 1km resolution or better. I also find that long, thin swaths sample a planet better than square blocks of equivalent area.
Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2016-01-01
All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367
Surface coverage with single vs. multiple gaze surface topography to fit scleral lenses.
DeNaeyer, Gregory; Sanders, Donald R; Farajian, Timothy S
2017-06-01
To determine surface coverage of measurements using the sMap3D ® corneo-scleral topographer in patients presenting for scleral lens fitting. Twenty-five eyes of 23 scleral lens patients were examined. Up-gaze, straight-gaze, and down-gaze positions of each eye were "stitched" into a single map. The percentage surface coverage between 10mm and 20mm diameter circles from corneal center was compared between the straight-gaze and stitched images. Scleral toricity magnitude was calculated at 100% coverage and at the same diameter after 50% of the data was removed. At a 10mm diameter from corneal center, the straight-gaze and stitched images both had 100% coverage. At the 14, 15, 16, 18 and 20mm diameters, the straight-gaze image only covered 68%, 53%, 39%, 18%, and 6% of the ocular surface diameters while the stitched image covered 98%, 96%, 93%, 75%, and 32% respectively. In the case showing the most scleral coverage at 16mm (straight-gaze), there was only 75% coverage (straight-gaze) compared to 100% (stitched image); the case with the least coverage had 7% (straight gaze) and 92% (stitched image). The 95% limits of agreement between the 50% and 100% coverage scleral toricity was between -1.4D (50% coverage value larger) and 1.2D (100% coverage larger), a 2.6D spread. The absolute difference between 50% to 100% coverage scleral toricity was ≥0.50D in 28% and ≥1.0D in 16% of cases. It appears that a single straight-gaze image would introduce significant measurement inaccuracy in fitting scleral lenses using the sMap3D while a 3-gaze stitched image would not. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
The impact of reforestation in the northeast United States on precipitation and surface temperature
NASA Astrophysics Data System (ADS)
Clark, Allyson
Since the 1920s, forest coverage in the northeastern United States has recovered from disease, clearing for agricultural and urban development, and the demands of the timber industry. Such a dramatic change in ground cover can influence heat and moisture fluxes to the atmosphere, as measured in altered landscapes in Australia, Israel, and the Amazon. In this study, the impacts of recent reforestation in the northeastern United States on summertime precipitation and surface temperature were quantified by comparing average modern values to 1950s values. Weak positive (negative) relationships between reforestation and average monthly precipitation and daily minimum temperatures (average daily maximum surface temperature) were found. There was no relationship between reforestation and average surface temperature. Results of the observational analysis were compared with results obtained from reforestation scenarios simulated with the BUGS5 global climate model. The single difference between the model runs was the amount of forest coverage in the northeast United States; three levels of forest were defined - a grassland state, with 0% forest coverage, a completely forested state, with approximately 100% forest coverage, and a control state, with forest coverage closely resembling modern forest coverage. The three simulations were compared, and had larger magnitude average changes in precipitation and in all temperature variables. The difference in magnitudes between the model simulations observations was much larger than the difference in the amount of reforestation in each case. Additionally, unlike in observations, a negative relationship was found between average daily minimum temperature and amount of forest coverage, implying that additional factors influence temperature and precipitation in the real world that are not accounted for in the model.
Self-organisation of adsorbed nitrogen on (100) and (410) copper faces: a SPA-LEED study
NASA Astrophysics Data System (ADS)
Sotto, M.; Croset, B.
2000-08-01
The self-organisation of nitrogen nanostructures at different coverages on a (100) copper surface is studied by spot profile analysing low energy electron diffraction (SPA-LEED). The existence of two surface states with a domain of coverage leading to coexistence of the two states as already observed by scanning tunneling microscopy (STM) [Leibsle and Robinson, Phys. Rev. B 47 (1993) 15 865; Leibsle et al., Surf. Sci. 317 (1994) 309; Leibsle, Surf. Sci. 440 (1999) L835] and low energy electron diffraction (LEED) [Sotto et al., Surf. Sci. 371 (1997) 36] is confirmed. In the first state, the surface is organised in square shape islands separated by bare copper <100> rows. This work shows that the surface periodicity depends on the preparation of the nitrogen overlayer. When nitrogen coverage is obtained by adsorption with a sample temperature near 320°C, the periodicity does not vary with coverage and is found to be equal to 55±2 Å. At coverages below 0.75±0.05 and if the nitrogen is deposited at room temperature followed by an anneal at 320°C, during long periods of time, the periodicity evolves to large values (˜97±3 Å). During thermal desorption, the long range order with decreasing coverage is maintained but the surface periodicity also evolves continuously to large values (˜100 Å). However, a surface periodicity of 55±2 Å seems to be a characteristic length of this system. The second surface state corresponds to large c(2×2)N domains separated by <110> trenches [Leibsle and Robinson, Phys. Rev. B 47 (1993) 15 865; Leibsle et al., Surf. Sci. 317 (1994) 309; Leibsle, Surf. Sci. 440 (1999) L835]. Nitrogen adsorption on a (410) stepped face induces a reconstruction into a (810) face with double step height. The complex behaviour of this film growth is discussed in the light of existing theories about the driving force leading to nanostructuration.
Saikia, Jiban; Saha, Bedabrata; Das, Gopal
2014-02-15
The work we have undertaken is to investigate the adsorption of two different proteins (BSA and BLG) having near same IEP and differing in their conformational flexibility, onto the surface of ZnS nanoparticles (ZnS NPs). BSA and BLG both have an IEP value around pH~5. BSA is more prone to conformational deformation and considered "soft" while BLG holds the conformational rigidity and considered as "hard" protein. To ascertain the differences in surface coverage and conformation of the protein onto ZnS surface (PZC ~ 3.7), we have evaluated the adsorption profile at pH 7, where the entire surface behaves negatively. An integrated approach was taken by incorporating zeta (ζ) potential, fluorescence and CD for analyzing the adsorption process. In both systems, an increase in protein surface coverage was observed with the increase in free protein concentration in the solution and ζ values approaching that of native protein at high surface coverage. An alteration in the tertiary structure was observed for both BSA and BLG. The CD spectra analysis reveals that the secondary structure of the BSA was more deviated from the native protein structure, accommodating the increased adsorption value. For BLG no such prominent structural alteration was observed. These findings help us to understand better, how adjustment of the protein adsorption amount can be achieved onto the surface of nanoparticles having like charges. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin; Li, Wenbin; Zhu, Mao
2014-03-15
The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates thatmore » self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH.« less
Molecular Engineering of Surfaces for Sensing and Detection
2005-08-01
solution was flowed in both chambers at a concentration of 0.05 mg/mL. Biotinylated single- stranded oligonucleotides ( bDNA ) were immobilized on the layer...correspondence between surface-bound bDNA and conjugate, a theoretical minimum coverage of 1.18 × 1012 molecules/cm2 of bDNA is necessary to...immobilize a monolayer of antibody. Above this bDNA coverage a monolayer of immobilized antibody should be observed. These theoretical values are
NASA Astrophysics Data System (ADS)
Kolyaie, S.; Yaghooti, M.; Majidi, G.
2011-12-01
This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.
Uptake of HNO3 on hexane and aviation kerosene soots.
Talukdar, Ranajit K; Loukhovitskaya, Ekaterina E; Popovicheva, Olga B; Ravishankara, A R
2006-08-10
The uptake of HNO(3) on aviation kerosene (TC-1) soot was measured as a function of temperature (253-295 K) and the partial pressure of HNO(3), and the uptake of HNO(3) on hexane soot was studied at 295 K and over a limited partial pressure of HNO(3). The HNO(3) uptake was mostly reversible and did not release measurable amounts of gas-phase products such as HONO, NO(3), NO(2) or N(2)O(5). The heat of adsorption of HNO(3) on soot was dependent on the surface coverage. The isosteric heats of adsorption, Delta(0)H(isosteric), were determined as a function of coverage. Delta(0)H(isosteric) values were in the range -16 to -13 kcal mol(-1). The heats of adsorption decrease with increasing coverage. The adsorption data were fit to Freundlich and to Langmuir-Freundlich isotherms. The heterogeneity parameter values were close to 0.5, which suggested that a HNO(3) molecule can occupy two sites on the surface with or without being dissociated and that the soot surface could be nonuniform. Surface FTIR studies on the interaction of soot with HNO(3) did not reveal formation of any minor product such as organic nitrate or nitro compound on the soot surface. Using our measured coverage, we calculate that the partitioning of gas-phase nitric acid to black carbon aerosol is not a significant loss process of HNO(3) in the atmosphere.
Adsorption Isotherms and Surface Reaction Kinetics
ERIC Educational Resources Information Center
Lobo, L. S.; Bernardo, C. A.
1974-01-01
Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)
Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr
NASA Astrophysics Data System (ADS)
Liu, Jian-hua; Zhan, Zhong-wei; Yu, Mei; Li, Song-mei
2013-01-01
The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 °C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (Kads) and free energy of adsorption process (ΔGads) were calculated to elaborate the mechanism of GTMS adsorption.
Tunneling electron induced chemisorption of copper phthalocyanine molecules on the Cu(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, T.; Nogami, J.
2014-02-17
The adsorption of up to one monolayer (ML) of copper phthalocyanine (CuPc) molecules on a room temperature Cu(111) surface has been studied using scanning tunneling microscopy (STM). Below 1 ML the molecules are in a fluid state and are highly mobile on the surface. At 1 ML coverage the molecules coalesce into a highly ordered 2D crystal phase. At sub-ML coverages, chemisorption of individual CuPc molecules can be induced through exposure to tunneling electrons at a tunneling bias voltage exceeding a threshold value. This tunneling electron induced effect has been exploited to perform molecular STM lithography.
NASA Astrophysics Data System (ADS)
Lousada, Cláudio M.; Korzhavyi, Pavel A.
2018-05-01
The formation of islands of O-atoms is the dominant mode of growth of the oxide in the first stages of oxidation of Al(1 1 1). It is however unknown if a similar mechanism exists for other low index surfaces of Al. We performed a density functional theory (DFT) and ab initio molecular dynamics investigation of the first stages of the oxidation of Al(1 1 0) using two distinct models: a homogeneous surface disposition of O-atoms; and a model where the O-atoms are close-spaced forming clusters or islands. We investigated the surface reactions with oxygen up to a coverage of 2 ML and found that for both models the adsorption energy per dissociating O2(g) becomes more negative with increasing coverage. Our results show that for coverages up to 1.25 ML the oxide forms clusters or islands while for coverages higher than 1.5 ML the oxide covers the surface homogeneously. This is because the O-atoms bind preferably to neighboring sites even at the minimum coverage. With increasing coverage, the clusters of O start to form stripes along the [1 1 bar 0] direction. The work function (ϕ) of the surface decreases when going from bare Al(1 1 0) to up to 1 ML coverage of O-atoms, but for coverages of 1.25 ML and higher, ϕ increases. The Al 2p surface core level shifts (SCLS) shift towards higher binding energies with increasing surface coverage of O-atoms and start to approach the values of Al 2p in Al2O3 already at a coverage of 2ML. A relation between the SCLS and the coordination number of Al to O-atoms was made. The Al 2p SCLS increases with increasing coordination to O-atoms, for single, twofold and three-fourfold coordinated cations. For the O-atoms that terminate the surface at the short-bridge sites, the SCLS of O 1s, is largely affected by the proximity to other O-atoms. These results demonstrate that the cooperative effects between surface bound O-atoms have important roles in the mechanism of growth of the oxide at Al(1 1 0), and similarly to what happens for Al(1 1 1), the initial oxidation of Al(1 1 0) proceeds via the formation of islands of O-atoms.
Interaction of diamond (111)-(1 × 1) and (2 × 1) surfaces with OH: a first principles study.
Stampfl, C; Derry, T E; Makau, N W
2010-12-01
The properties of hydroxyl groups on C(111)-(1 × 1) and reconstructed (2 × 1) surfaces at different sites and for various coverages are investigated using density functional theory. Out of the adsorption sites considered, i.e. face centred cubic, hexagonal close packed, on-top and bridge sites, the on-top site is the most stable for OH on the C(111)-(1 × 1) surface for all coverages. On the reconstructed (2 × 1) surface the on-top site is the preferred configuration. Adsorption of OH was not stable however at any site on the reconstructed C(111)-(2 × 1) relative to the (1 × 1) surface; thus adsorption of OH leads to the de-reconstruction of the former surface. Both the 0.5 and 1 monolayer (ML) coverages were able to lift the (2 × 1) surface reconstruction. Repulsion between the OH adsorbates on the (1 × 1) surface sets in for coverages greater than 0.5 ML. A general decrease in the work function with increasing OH coverage was observed on both the (1 × 1) and (2 × 1) surfaces relative to the values of their respective clean surfaces. Regarding the electronic structure, O 2p states on the reconstructed (2 × 1) surface are observed at around - 21, - 8.75 , - 5 and - 2.5 eV, while O 2s states are present at - 22.5 eV. On the (1 × 1) surface (for 0.33 ML in the on-top site), O 2p states occurred between - 8 and - 9 eV, - 5 and - 4 eV and at around - 2.5 eV. O 2s states are established between - 22.5 and - 21 eV. The valence band width is 21 eV, and a hybrid 2s/2p state that is characteristic of diamond is located at about 12.5 eV below the valence band minimum.
This paper addresses the general problem of estimating at arbitrary locations the value of an unobserved quantity that varies over space, such as ozone concentration in air or nitrate concentrations in surface groundwater, on the basis of approximate measurements of the quantity ...
Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S
2015-02-17
Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.
Surface diffusion of Sb on Ge(111) investigated by second harmonic microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, K.A.
Surface diffusion of Sb on Ge(111) has been measured with the newly-developed technique of second harmonic microscopy. In this method, concentration profiles at submonolayer coverage are imaged directly by second harmonic generation with 5 [mu]m spatial resolution. A Boltzmann-Matano analysis of the concentration profiles yields the coverage dependence of the diffusivity D without parameterization. Experiments were performed at roughly 70% of the bulk melting temperature T[sub m]. In the coverage range of 0 < [theta] < 0.6, the activation energy E[sub diff] remains constant at 47.5 [+-] 1.5 kcal/mol. The corresponding pre-exponential factor decreases from 8.7 [times] 10[sup 3[+-]0.4] tomore » 1.6 [times] 10[sup 2[+-]0.4] cm[sup 2]/sec. The results are explained in terms of a new vacancy model for surface diffusion at high-temperatures. The model accounts semiquantitatively for the large values of E[sub diff] and D[sub o], and suggest that these quantities may be manipulated by bulk doping levels and photon illumination of the surface.« less
Full-coverage film cooling. I - Comparison of heat transfer data for three injection angles
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.; Moffat, R. J.
1980-01-01
Wind tunnel experiments were carried out at Stanford between 1971 and 1977 to study the heat transfer characteristics of full-coverage film cooled surfaces with three geometries; normal-, 30 deg slant-, and 30 deg x 45 deg compound-angled injection. A flat full-coverage section and downstream recovery section comprised the heat transfer system. The experimental objectives were to determine, for each geometry, the effects on surface heat flux of injection blowing ratio, injection temperature ratio, and upstream initial conditions. Spanwise-averaged Stanton numbers were measured for blowing ratios from 0 to 1.3, and for two values of injection temperature at each blowing ratio. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. Initial momentum and enthalpy thickness Reynolds numbers were varied from 500 to about 3000.
Percent area coverage through image analysis
NASA Astrophysics Data System (ADS)
Wong, Chung M.; Hong, Sung M.; Liu, De-Ling
2016-09-01
The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.
Clothing Protection from Ultraviolet Radiation: A New Method for Assessment.
Gage, Ryan; Leung, William; Stanley, James; Reeder, Anthony; Barr, Michelle; Chambers, Tim; Smith, Moira; Signal, Louise
2017-11-01
Clothing modifies ultraviolet radiation (UVR) exposure from the sun and has an impact on skin cancer risk and the endogenous synthesis of vitamin D. There is no standardized method available for assessing body surface area (BSA) covered by clothing, which limits generalizability between study findings. We calculated the body cover provided by 38 clothing items using diagrams of BSA, adjusting the values to account for differences in BSA by age. Diagrams displaying each clothing item were developed and incorporated into a coverage assessment procedure (CAP). Five assessors used the CAP and Lund & Browder chart, an existing method for estimating BSA, to calculate the clothing coverage of an image sample of 100 schoolchildren. Values of clothing coverage, inter-rater reliability and assessment time were compared between CAP and Lund & Browder methods. Both methods had excellent inter-rater reliability (>0.90) and returned comparable results, although the CAP method was significantly faster in determining a person's clothing coverage. On balance, the CAP method appears to be a feasible method for calculating clothing coverage. Its use could improve comparability between sun-safety studies and aid in quantifying the health effects of UVR exposure. © 2017 The American Society of Photobiology.
Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos
2014-11-11
Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel
2015-09-07
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi levelmore » is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.« less
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward
2001-01-01
A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.
An Assessment of SeaWiFS and MODIS Ocean Coverage
NASA Technical Reports Server (NTRS)
Woodward, Robert H.; Gregg, Watson W.
1998-01-01
Ocean coverages of SeaWiFS and MODIS were assessed for three seasons by considering monthly mean values of surface winds speeds and cloud cover. Mean and maximum coverages combined SeaWiFS and MODIS by considering combined coverages for ten-degree increments of the MODIS orbital mean anomaly. From this analysis the mean and maximum combined coverages for SeaWiFS and MODIS were determined for one and four-day periods for spring, summer, and winter seasons. Loss of coverage due to Sun glint and cloud cover were identified for both the individual and combined cases. Our analyses indicate that MODIS will enhance ocean coverage for all three seasons examined. ne combined SeaWiFS/MODIS show an increase of coverage of 42.2% to 48.7% over SeaWiFS alone for the three seasons studied; the increase in maximum one day coverage ranges from 47.5% to 52.0%. The increase in four-day coverage for the combined case ranged from 31.0% to 35.8% for mean coverage and 33.1 % to 39.2% for maximum coverage. We computed meridional distributions of coverages by binning the data into five-degree latitude bands. Our analysis shows a strong seasonal dependence of coverage. In general the meridional analysis indicates that increase in coverages for SeaWiFS/MODIS over SeaWiFS alone are greatest near the solar declination.
Pritzkow, W; Vogl, J; Berger, A; Ecker, K; Grötzschel, R; Klingbeil, P; Persson, L; Riebe, G; Wätjen, U
2001-11-01
A thin-layer reference material for surface and near-surface analytical methods was produced and certified. The surface density of the implanted Sb layer was determined by Rutherford backscattering spectrometry (RBS), instrumental neutron activation analysis (INAA), and inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) equipped with a multi-collector. The isotopic abundances of Sb (121Sb and 123Sb) were determined by multi-collector ICP-MS and INAA. ICP-IDMS measurements are discussed in detail in this paper. All methods produced values traceable to the SI and are accompanied by a complete uncertainty budget. The homogeneity of the material was measured with RBS. From these measurements the standard uncertainty due to possible inhomogeneities was estimated to be less than 0.78% for fractions of the area increments down to 0.75 mm2 in size. Excellent agreement between the results of the three different methods was found. For the surface density of implanted Sb atoms the unweighted mean value of the means of four data sets is 4.81 x 10(16) cm(-2) with an expanded uncertainty (coverage factor k = 2) of 0.09 x 10(16) cm(-2). For the isotope amount ratio R (121Sb/123Sb) the unweighted mean value of the means of two data sets is 1.435 with an expanded uncertainty (coverage factor k = 2) of 0.006.
Retrieval of total water vapour in the Arctic using microwave humidity sounders
NASA Astrophysics Data System (ADS)
Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg
2018-04-01
Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M
We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less
Schwenger, Frédéric; Repasi, Endre
2017-02-20
The knowledge of the spatial energy (or power) distribution of light beams reflected at the dynamic sea surface is of great practical interest in maritime environments. For the estimation of the light energy reflected into a specific spatial direction a lot of parameters need to be taken into account. Both whitecap coverage and its optical properties have a large impact upon the calculated value. In published literature, for applications considering vertical light propagation paths, such as bathymetric lidar, the reflectance of sea surface and whitecaps are approximated by constant values. For near-horizontal light propagation paths the optical properties of the sea surface and the whitecaps must be considered in greater detail. The calculated light energy reflected into a specific direction varies statistically and depends largely on the dynamics of the wavy sea surface and the dynamics of whitecaps. A 3D simulation of the dynamic sea surface populated with whitecaps is presented. The simulation considers the evolution of whitecaps depending on wind speed and fetch. The radiance calculation of the maritime scene (open sea/clear sky) populated with whitecaps is done in the short wavelength infrared spectral band. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of a light beam at the sea surface in the absence of whitecaps is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For whitecaps, a specific BRDF is used by taking into account their shadowing function. To ensure the credibility of the simulation, the whitecap coverage is determined from simulated image sequences for different wind speeds and compared to whitecap coverage functions from literature. The impact of whitecaps on the radiation balance for bistatic configuration of light source and receiver is calculated for a different incident (zenith/azimuth angles) of the light beam and is presented for two different wind speeds.
NASA Astrophysics Data System (ADS)
Ikeda, H.; Sato, J.; Williams, F. A.
1995-03-01
Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.
Surface diffusion of Sb on Ge(111) monitored quantitatively with optical second harmonic microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, K.A.; Seebauer, E.G.
Surface diffusion of Sb on Ge(111) has been measured with the newly developed technique of optical second harmonic microscopy. In this method, concentration profiles at submonolayer coverage are imaged directly by surface second harmonic generation with 5 {mu} spatial resolution. A Boltzmann--Matano analysis yields the coverage dependence of the diffusivity {ital D} without parametrization. Experiments were performed at roughly 70% of the bulk melting temperature {ital T}{sub {ital m}}. In the coverage range 0{le}{theta}{le}0.6, the activation energy {ital E}{sub diff} remains constant at 47.5{plus minus}1.5 kcal/mol, but the pre-exponential factor {ital D}{sub 0} decreases from 8.7{times}10{sup 3{plus minus}0.4} to 1.6{times}10{supmore » 2{plus minus}0.4} cm{sup 2}/s. Both {ital E}{sub diff} and {ital D}{sub 0} are quite large, which is consistent with high-temperature measurements in other systems. The inadequacies of current theories for high-temperature surface diffusion are outlined, and a new vacancy model is proposed for low-coverage diffusion. The model accounts semiquantitatively for the large values of {ital E}{sub diff} and {ital D}{sub 0}, and suggests that these quantities may be manipulated using doping levels and photon illumination. An islanding mechanism is proposed to explain the decrease in {ital D}{sub 0} with {theta}.« less
Adsorption energies and prefactor determination for CH3OH adsorption on graphite.
Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H
2015-08-28
In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.
NASA Astrophysics Data System (ADS)
Samin, Adib J.; Zhang, Jinsuo
2017-05-01
An accurate characterization of lanthanide adsorption and mobility on tungsten surfaces is important for pyroprocessing. In the present study, the adsorption and diffusion of gadolinium on the (100) surface of tungsten was investigated. It was found that the hollow sites were the most energetically favorable for the adsorption. It was further observed that a magnetic moment was induced following the adsorption of gadolinium on the tungsten surface and that the system with adsorbed hollow sites had the largest magnetization. A pathway for the surface diffusion of gadolinium was determined to occur by hopping between the nearest neighbor hollow sites via the bridge site and the activation energy for the hop was calculated to be 0.75 eV. The surface diffusion process was further assessed using two distinct kinetic Monte Carlo models; one that accounted for lateral adsorbate interactions up to the second nearest neighbor and one that did not account for such interatomic interactions in the adlayer. When the lateral interactions were included in the simulations, the diffusivity was observed to have a strong dependence on coverage (for the coverage values being studied). The effects of lateral interactions were further observed in a one-dimensional simulation of the diffusion equation where the asymmetry in the surface coverage profile upon its approach to a steady state distribution was clear in comparison with the simulations which did not account for those interactions.
NASA Astrophysics Data System (ADS)
Azzoni, Roberto Sergio; Senese, Antonella; Zerboni, Andrea; Maugeri, Maurizio; Smiraglia, Claudio; Diolaiuti, Guglielmina Adele
2016-03-01
In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semi-automatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R = -0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (Cr) equal to 6 g m-2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).
NASA Astrophysics Data System (ADS)
Saulskiy, V. K.
2005-01-01
Multisatellite systems with linear structure (SLS) are defined, and their application for a continuous global or zonal coverage of the Earth’s surface is justified. It is demonstrated that in some cases these systems turned out to be better than usually recommended kinematically regular systems by G.V. Mozhaev, delta systems of J.G. Walker, and polar systems suggested by F.W. Gobets, L. Rider, and W.S. Adams. When a comparison is made using the criterion of a minimum radius of one-satellite coverage circle, the SLS beat the other systems for the majority of satellite numbers from the range 20 63, if the global continuous single coverage of the Earth is required. In the case of a zonal continuous single coverage of the latitude belt ±65°, the SLS are preferable at almost all numbers of satellites from 38 to 100, and further at any values up to 200 excluding 144.
Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3
NASA Astrophysics Data System (ADS)
Tordjman, Moshe; Weinfeld, Kamira; Kalish, Rafi
2017-09-01
An advanced charge-transfer yield is demonstrated by employing single monolayers of transition-metal oxides—tungsten trioxide (WO3) and rhenium trioxide (ReO3)—deposited on the hydrogenated diamond surface, resulting in improved p-type sheet conductivity and thermal stability. Surface conductivities, as determined by Hall effect measurements as a function of temperature for WO3, yield a record sheet hole carrier concentration value of up to 2.52 × 1014 cm-2 at room temperature for only a few monolayers of coverage. Transfer doping with ReO3 exhibits a consistent narrow sheet carrier concentration value of around 3 × 1013 cm-2, exhibiting a thermal stability of up to 450 °C. This enhanced conductivity and temperature robustness exceed those reported for previously exposed surface electron acceptor materials used so far on a diamond surface. X-ray photoelectron spectroscopy measurements of the C1s core level shift as a function of WO3 and ReO3 layer thicknesses are used to determine the respective increase in surface band bending of the accumulation layers, leading to a different sub-surface two-dimensional hole gas formation efficiency in both cases. This substantial difference in charge-exchange efficiency is unexpected since both surface acceptors have very close work functions. Consequently, these results lead us to consider additional factors influencing the transfer doping mechanism. Transfer doping with WO3 reveals the highest yet reported transfer doping efficiency per minimal surface acceptor coverage. This improved surface conductivity performance and thermal stability will promote the realization of 2D diamond-based electronic devices facing process fabrication challenges.
Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale
NASA Astrophysics Data System (ADS)
Bernstein, D. J.; Bausell, J.; Grigsby, S.; Kudela, R. M.
2015-12-01
Surface temperature and emissivity provide important insight into the ecosystem being remotely sensed. Dozier (1981) proposed a an algorithm to solve for percent coverage and temperatures of two different surface types (e.g. sea surface, cloud cover, etc.) within a given pixel, with a constant value for emissivity assumed. Here we build on Dozier (1981) by proposing an algorithm that solves for both temperature and emissivity of a water body within a satellite pixel by assuming known percent coverage of surface types within the pixel. Our algorithm generates thermal infrared (TIR) and emissivity end-member spectra for the two surface types. Our algorithm then superposes these end-member spectra on emissivity and TIR spectra emitted from four pixels with varying percent coverage of different surface types. The algorithm was tested preliminarily (48 iterations) using simulated pixels containing more than one surface type, with temperature and emissivity percent errors of ranging from 0 to 1.071% and 2.516 to 15.311% respectively[1]. We then tested the algorithm using a MASTER image from MASTER collected as part of the NASA Student Airborne Research Program (NASA SARP). Here the temperature of water was calculated to be within 0.22 K of in situ data. The algorithm calculated emissivity of water with an accuracy of 0.13 to 1.53% error for Salton Sea pixels collected with MASTER, also collected as part of NASA SARP. This method could improve retrievals for the HyspIRI sensor. [1] Percent error for emissivity was generated by averaging percent error across all selected bands widths.
Schuschke, Christian; Schwarz, Matthias; Hohner, Chantal; Silva, Thais N; Fromm, Lukas; Döpper, Tibor; Görling, Andreas; Libuda, Jörg
2018-04-19
We have studied the anchoring mechanism of a phosphonic acid on an atomically defined oxide surface. Using time-resolved infrared reflection absorption spectroscopy, we investigated the reaction of deuterated phenylphosphonic acid (DPPA, C 6 H 5 PO 3 D 2 ) with an atomically defined Co 3 O 4 (111) surface in situ during film growth by physical vapor deposition. We show that the binding motif of the phosphonate anchor group changes as a function of coverage. At low coverage, DPPA binds in the form of a chelating tridentate phosphonate, while a transition to a chelating bidentate occurs close to monolayer saturation coverage. However, the coverage-dependent change in the binding motif is not associated with a major change of the molecular orientation, suggesting that the rigid phosphonate linker always maintains the DPPA in a strongly tilted orientation irrespective of the surface coverage.
pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)-Water Interface.
Ambrosio, Francesco; Wiktor, Julia; Pasquarello, Alfredo
2018-03-28
We present a theoretical formulation for studying the pH-dependent interfacial coverage of semiconductor-water interfaces through ab initio electronic structure calculations, molecular dynamics simulations, and the thermodynamic integration method. This general methodology allows one to calculate the acidity of the individual adsorption sites on the surface and consequently the pH at the point of zero charge, pH PZC , and the preferential adsorption mode of water molecules, either molecular or dissociative, at the semiconductor-water interface. The proposed method is applied to study the BiVO 4 (010)-water interface, yields a pH PZC in excellent agreement with the experimental characterization. Furthermore, from the calculated p K a values of the individual adsorption sites, we construct an ab initio concentration diagram of all adsorbed species at the interface as a function of the pH of the aqueous solution. The diagram clearly illustrates the pH-dependent coverage of the surface and indicates that protons are found to be significantly adsorbed (∼1% of available sites) only in highly acidic conditions. The surface is found to be mostly covered by molecularly adsorbed water molecules in a wide interval of pH values ranging from 2 to 8. Hydroxyl ions are identified as the dominant adsorbed species at pH larger than 8.2.
Whitecaps, sea-salt aerosols, and climate
NASA Astrophysics Data System (ADS)
Anguelova, Magdalena Dimitrova
Oceanic whitecaps are the major source of sea-salt aerosols. Because these aerosols are dominant in remote marine air, they control the radiative properties of the clean background atmosphere by scattering sunlight, changing cloud properties and lifetime, and providing media for chemical reactions. Including sea-salt effects in climate models improves predictions, but simulating their generation is first necessary. To make the sea-salt generation function currently used in climate models more relevant for aerosol investigations, this study proposes two modifications. First, the conventional relation between whitecap coverage, W, and the 10-meter wind speed, U10, used in typical generation functions is expanded to include additional factors that affect whitecaps and sea-salt aerosol formation. Second, the sea-salt generation function is extended to smaller sizes; sea-salt aerosol with initial radii from 0.4 to 20 mum can now be modeled. To achieve these goals, this thesis develops a new method for estimating whitecap coverage on a global scale using satellite measurements of the brightness temperature of the ocean surface. Whitecap coverage evaluated with this method incorporates the effects of atmospheric stability, sea-surface temperature, salinity, wind fetch, wind duration, and the amount of surface-active material. Assimilating satellite-derived values for whitecap coverage in the sea-salt generation function incorporates the effects of all environmental factors on sea-salt production and predicts realistic sea-salt aerosol loadings into the atmosphere. An extensive database of whitecap coverage and sea-salt aerosol fluxes has been compiled with the new method and is used to investigate their spatial and temporal characteristics. The composite effect of all environmental factors suggests a more uniform latitudinal distribution of whitecaps and sea-salt aerosols than that predicted from wind speed alone. The effect of sea-surface temperature, TS, is parameterized for the first time using regression analysis. The resulting parameterization W( U10, TS) is a better predictor of whitecap coverage than the conventional W(U 10) relation. This thesis also considers the contribution of oceanic whitecaps to ocean albedo and CO2 transfer and evaluates the direct effect of sea-salt aerosols on climate, the sea-salt contribution to CCN formation, and the role of sea-salt aerosols in atmospheric chemistry.
Liang, Pingping; Canoura, Juan; Yu, Haixiang; Alkhamis, Obtin; Xiao, Yi
2018-01-31
DNA-modified gold nanoparticles (AuNPs) are useful signal-reporters for detecting diverse molecules through various hybridization- and enzyme-based assays. However, their performance is heavily dependent on the probe DNA surface coverage, which can influence both target binding and enzymatic processing of the bound probes. Current methods used to adjust the surface coverage of DNA-modified AuNPs require the production of multiple batches of AuNPs under different conditions, which is costly and laborious. We here develop a single-step assay utilizing dithiothreitol (DTT) to fine-tune the surface coverage of DNA-modified AuNPs. DTT is superior to the commonly used surface diluent, mercaptohexanol, as it is less volatile, allowing for the rapid and reproducible controlling of surface coverage on AuNPs with only micromolar concentrations of DTT. Upon adsorption, DTT forms a dense monolayer on gold surfaces, which provides antifouling capabilities. Furthermore, surface-bound DTT adopts a cyclic conformation, which reorients DNA probes into an upright position and provides ample space to promote DNA hybridization, aptamer assembly, and nuclease digestion. We demonstrate the effects of surface coverage on AuNP-based sensors using DTT-regulated DNA-modified AuNPs. We then use these AuNPs to visually detect DNA and cocaine in colorimetric assays based on enzyme-mediated AuNP aggregation. We determine that DTT-regulated AuNPs with lower surface coverage achieve shorter reaction times and lower detection limits relative to those for assays using untreated AuNPs or DTT-regulated AuNPs with high surface coverage. Additionally, we demonstrate that our DTT-regulated AuNPs can perform cocaine detection in 50% urine without any significant matrix effects. We believe that DTT regulation of surface coverage can be broadly employed for optimizing DNA-modified AuNP performance for use in biosensors as well as drug delivery and therapeutic applications.
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.
2010-10-01
The study of adsorption of oxygen on transition metal surface is important for the understanding of oxidation, heterogeneous catalysis, and metal corrosion. The structures formed on transition metal surfaces vary from simple adlayers of chemisorbed oxygen to oxygen diffusion into the sub-surface region and the formation of oxides. In this work we present the results of an ab-initio investigation of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. Calculations are also performed for the on-surface adsorption of oxygen on the unreconstructed Cu(001) surface for coverages up to one monolayer to use for comparison. The geometry of the surfaces with adsorbed oxygen is fully optimized. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy.
Studies of high coverage oxidation of the Cu(100) surface using low energy positrons
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.
2012-02-01
The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Cheol-Woo W.; Kwak, Ja Hun; Peden, Charles H.F.
2007-09-21
Modern surface science techniques have been commonly applied to understand issues arising from practical catalytic systems.[1-4] However, the applicability of most of the results obtained from model systems has been limited, due, primarily, to the vastly different conditions studies on model and practical systems are carried out (catalyst composition, reaction conditions etc.).[5, 6] Therefore, the need to conduct experiments on compositionally similar systems (model and practical) is necessary to obtain valuable information on the workings of real catalysts. In this communication we demonstrate the utility of surface science studies on model catalysts in understanding the properties of high surface area,more » BaO-based NO x storage-reduction (NSR) catalysts.[7] We present evidence for the facile formation of surface barium aluminate-like species even at very low coverages of BaO. This Ba-aluminate layer, however, can react with NO 2 resulting in the formation of a bulk-like Ba(NO 3) 2 phase. In order to construct model catalysts that are representative of the practical NO x storage systems, we first needed to estimate the BaO covareges on the high surface area catalysts. Since the publication of the work by Fanson et al.[8], BaO loadings of 8 – 10 wt.% on a γ-alumina support (200 m 2/g) have been regarded as corresponding to one monolayer (ML) coverage, based on the unit cell size of bulk BaO. The coverage equivalent of one ML, however, was significantly underestimated. Assuming complete spreading of the BaO layer and using a Ba–O distance of ~ 2.77 Å (one unit of BaO occupies 1.53 × 10 -19 m 2), 10 wt.% loading of BaO would cover only about 1/3 of the alumina surface. Table 1 shows our calculated estimates of two-dimensional BaO coverages as a function of loading on a -Al 2O 3 surface (200 m 2/g) based on the lattice parameters of bulk BaO[9] (5.54 Å). Based on these values, for our model system studies we prepared BaO/Al 2O 3/NiAl(110) materials in which the BaO coverages were very close to those of 4, 8, and 20 wt.% BaO/γ-Al 2O 3 high surface area catalysts used in prior studies.« less
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Weiss, A. H.
2013-04-01
In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazleev, N. G.; Weiss, A. H.
2013-04-19
In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sitesmore » of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.« less
The Role of Smoking and Gingival Crevicular Fluid Markers on Coronally Advanced Flap Outcomes
Kaval, Başak; Renaud, Diane E.; Scott, David A.; Buduneli, Nurcan
2015-01-01
Background This study evaluates possible effects of smoking on the following: 1) biochemical content in gingival crevicular fluid (GCF) samples from sites of gingival recession and saliva; and 2) clinical outcomes of coronally advanced flap (CAF) for root coverage. Methods Eighteen defects in 15 patients were included in each of the smoker and non-smoker groups. Baseline cotinine, basic fibroblast growth factor, vascular endothelial growth factor, platelet-derived growth factor, interleukin (IL)-8, IL-10, IL-12, tumor necrosis factor-α, matrix metalloproteinase (MMP)-8, MMP-9, and plasminogen activator inhibitor-1 levels were determined in GCF and saliva samples. CAF with microsurgery technique was applied. Plaque index, papilla bleeding index, recession depth (RD), recession width (RW), and root surface area were evaluated at baseline and postoperative months 1, 3, and 6. Probing depth, clinical attachment level (CAL), and keratinized gingival width (KGW) was recorded at baseline and month 6. Percentage of root coverage and complete root coverage were calculated at postoperative months 1, 3, and 6. Results All biochemical parameters were similar in the two groups apart from the definite difference in salivary cotinine concentrations (P = 0.000). Compared with the baseline values, RD, RW, CAL, and root surface area decreased, and KGW increased, with no significant difference between the study groups. CAL gain, percentage of root coverage, and complete root-coverage rates were similar in the study groups. Conclusion Similar baseline biochemical data and comparably high success rates of root coverage with CAF in systemically and periodontally healthy smokers versus non-smokers suggest lack of adverse effects of smoking on clinical outcomes. PMID:23725027
Aydin, Tugba; Canakci, Varol; Cicek, Yasin
2010-01-01
Abstract Background/Aim: Root surface biomodification has been used to treat gingival recession and periodontitis. The principle for this procedure is that removing the smear layer from the root surfaces exposes collagen fibers, which leads to improved healing. Clinical studies generally have failed to find any improvement in clinical parameters when using such procedures, however. The aim of this study was to evaluate and compare the outcome of gingival recession therapy using the subepithelial connective tissue graft (SCTG) with or without Nd:YAG laser application for root surface biomodification. Materials and Methods: Thirty-four teeth in 17 patients with Miller Class 1 and 2 recession were treated with SCTG with (test group) or without (control group) the application of Nd:YAG laser (1 W, 10 Hz, 100 mj, 60 s, 1064 nm). Clinical attachment level (CAL), recession depth (RD), recession width (RW), and probing depth (PD) were measured at baseline and six months postsurgery. Results: Both treatments yielded significant improvements in terms of RD and RW decrease and CAL gain compared to baseline values. For test and control groups, the average root coverage was 33% and 77%, respectively (p < 0.05), and the complete root coverage was 18% and 65%, respectively (p < 0.05). The control group showed a greater reduction in RD and RW compared with the test group (p < 0.05). Conclusions: The use of Nd:YAG laser as a root surface biomodifier negatively affected the outcome of root coverage with the SCTG. PMID:19860567
An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
NASA Astrophysics Data System (ADS)
Bakker, D. C. E.; Pfeil, B.; Smith, K.; Hankin, S.; Olsen, A.; Alin, S. R.; Cosca, C.; Harasawa, S.; Kozyr, A.; Nojiri, Y.; O'Brien, K. M.; Schuster, U.; Telszewski, M.; Tilbrook, B.; Wada, C.; Akl, J.; Barbero, L.; Bates, N. R.; Boutin, J.; Bozec, Y.; Cai, W.-J.; Castle, R. D.; Chavez, F. P.; Chen, L.; Chierici, M.; Currie, K.; de Baar, H. J. W.; Evans, W.; Feely, R. A.; Fransson, A.; Gao, Z.; Hales, B.; Hardman-Mountford, N. J.; Hoppema, M.; Huang, W.-J.; Hunt, C. W.; Huss, B.; Ichikawa, T.; Johannessen, T.; Jones, E. M.; Jones, S. D.; Jutterström, S.; Kitidis, V.; Körtzinger, A.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Manke, A. B.; Mathis, J. T.; Merlivat, L.; Metzl, N.; Murata, A.; Newberger, T.; Omar, A. M.; Ono, T.; Park, G.-H.; Paterson, K.; Pierrot, D.; Ríos, A. F.; Sabine, C. L.; Saito, S.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Sullivan, K. F.; Sun, H.; Sutton, A. J.; Suzuki, T.; Sweeney, C.; Takahashi, T.; Tjiputra, J.; Tsurushima, N.; van Heuven, S. M. A. C.; Vandemark, D.; Vlahos, P.; Wallace, D. W. R.; Wanninkhof, R.; Watson, A. J.
2014-03-01
The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models. Data coverage Repository-References: Individual data set files and synthesis product: doi:10.1594/PANGAEA.811776 Gridded products: doi:10.3334/CDIAC/OTG.SOCAT_V2_GRID Available at: http://www.socat.info/ Coverage: 79° S to 90° N; 180° W to 180° E Location Name: Global Oceans and Coastal Seas Date/Time Start: 16 November 1968 ate/Time End: 26 December 2011
Evaluation of different strategies for magnetic particle functionalization with DNA aptamers.
Pérez-Ruiz, Elena; Lammertyn, Jeroen; Spasic, Dragana
2016-12-25
The optimal bio-functionalization of magnetic particles is essential for developing magnetic particle-based bioassays. Whereas functionalization with antibodies is generally well established, immobilization of DNA probes, such as aptamers, is not yet fully explored. In this work, four different types of commercially available magnetic particles, coated with streptavidin, maleimide or carboxyl groups, were evaluated for their surface coverage with aptamer bioreceptors, efficiency in capturing target protein and non-specific protein adsorption on their surface. A recently developed aptamer against the peanut allergen, Ara h 1 protein, was used as a model system. Conjugation of biotinylated Ara h 1 aptamer to the streptavidin particles led to the highest surface coverage, whereas the coverage of maleimide particles was 25% lower. Carboxylated particles appeared to be inadequate for DNA functionalization. Streptavidin particles also showed the greatest target capturing efficiency, comparable to the one of particles functionalized with anti-Ara h 1 antibody. The performance of streptavidin particles was additionally tested in a sandwich assay with the aptamer as a capture receptor on the particle surface. While the limit of detection obtained was comparable to the same assay system with antibody as capture receptor, it was superior to previously reported values using the same aptamer in similar assay schemes with different detection platforms. These results point to the promising application of the Ara h 1 aptamer-functionalized particles in bioassay development. Copyright © 2016 Elsevier B.V. All rights reserved.
Colour compatibility between teeth and dental shade guides in Quinquagenarians and Septuagenarians.
Cocking, C; Cevirgen, E; Helling, S; Oswald, M; Corcodel, N; Rammelsberg, P; Reinelt, G; Hassel, A J
2009-11-01
The aim of this investigation was to determine colour compatibility between dental shade guides, namely, VITA Classical (VC) and VITA 3D-Master (3D), and human teeth in quinquagenarians and septuagenarians. Tooth colour, described in terms of L*a*b* values of the middle third of facial tooth surface of 1391 teeth, was measured using VITA Easyshade in 195 subjects (48% female). These were compared with the colours (L*a*b* values) of the shade tabs of VC and 3D. The mean coverage error and the percentage of tooth colours being within a given colour difference (DeltaE(ab)) from the tabs of VC and 3D were calculated. For comparison, hypothetical, optimized, population-specific shade guides were additionally calculated based on discrete optimization techniques for optimizing coverage. Mean coverage error was DeltaE(ab) = 3.51 for VC and DeltaE(ab) = 2.96 for 3D. Coverage of tooth colours by the tabs of VC and 3D within DeltaE(ab) = 2 was 23% and 24%, respectively, (DeltaE(ab) = 2 as clinically acceptable match). The hypothetical guides performed better and would only need seven to eight tabs to reach the same results as VC and 3D. Both guides had a mean coverage error that was too high and coverage that was too low according to an acceptable colour difference of tooth colour for these subjects. The optimized hypothetical, population-specific guides performed better indicating the possibility for improvement in colour compatibility of the guides with tooth colour in future shade guide development, allowing acceptable shade matching for most of the patients in clinical routine.
Ocean surface partitioning strategies using ocean colour remote Sensing: A review
NASA Astrophysics Data System (ADS)
Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.
2017-06-01
The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and applications of ocean surface partitioning using OCRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeill, Jason Douglas
Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. Formore » Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure information. In this case, the quantum well states examined are derived from the Xenon conduction band. Measurements of the energies as a function of coverage yield the dispersion along the axis perpendicular to the surface while angle-resolved two-photon photoemission measurements yield information about dispersion along the surface parallel. The relative importance of the image potential and the overlayer band structure also depends on the quantum number and energy of the state. Some members of the image series may have an energy which is in an energy gap of the layer material, therefore such states may tend to remain physically outside the layer and retain much of their image character even at higher coverages. This is the case for the n = 1 image state of the Xe/Ag(111) system. The energies of image states which are excluded from the layer have a complex dependence on the thickness of the layer and its dielectric constant. The population decay kinetics of excited electronic states of the layer were also determined. Lifetimes are reported for the first three excited states for 1-6 atomic layers of Xe on Ag(111). As the image states evolve into quantum well states with increasing coverage, the lifetimes undergo an oscillation which marks a change in the spatial extent of the state. For example, the n = 2 quantum well state decreases substantially at 3-5 layers as the electron probability density in the layer increases. The lifetime data are modeled by extending the two-band nearly-free-electron approximation to account for the insulating Xe layer.« less
Growth and structural evolution of Sn on Ag(001): Epitaxial monolayer to thick alloy film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Suvankar; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in
The growth and structure of Sn on Ag(001), from submonolayer to thick film coverages at room temperature, are studied using low energy electron diffraction, x-ray photoemission spectroscopy and angle-resolved photoemission spectroscopy (ARPES) techniques. The authors observe different growth modes for submonolayer Sn coverages and for higher Sn coverages. Systematic surface structural evolution, consistent with the substitution of surface Ag atoms by Sn atoms, is observed for submonolayer Sn coverages while an ordered Ag-Sn bulk alloy film is formed for higher Sn coverages with an Ag overlayer. For monolayer coverage of Sn, a pseudomorphic growth of a Sn layer without alloyingmore » is determined. ARPES results also confirm the presence of an ordered Ag overlayer on the bulk Ag-Sn alloy film, suggesting the formation of an Ag/Ag{sub 3}Sn/Ag(001) sandwich structure at the surface for higher Sn coverages. The present results illustrate the complex interplay of atomic mobilities, surface free-energies, and alloy formation energies in determining the growth and structural properties of the system.« less
Drug release through liposome pores.
Dan, Nily
2015-02-01
Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiple continuous coverage of the earth based on multi-satellite systems with linear structure
NASA Astrophysics Data System (ADS)
Saulskiy, V. K.
2009-04-01
A new and wider definition is given to multi-satellite systems with linear structure (SLS), and efficiency of their application to multiple continuous coverage of the Earth is substantiated. Owing to this widening, SLS have incorporated already well-recognized “polar systems” by L. Rider and W.S. Adams, “kinematically regular systems” by G.V. Mozhaev, and “delta-systems” by J.G. Walker, as well as “near-polar systems” by Yu.P. Ulybyshev, and some other satellite constellations unknown before. A universal method of SLS optimization is presented, valid for any values of coverage multiplicity and the number of satellites in a system. The method uses the criterion of minimum radius of a circle seen from a satellite on the surface of the globe. Among the best SLS found in this way there are both systems representing the well-known classes mentioned above and new orbit constellations of satellites.
NASA Astrophysics Data System (ADS)
Huang, J.; Chen, D.
2005-12-01
Vegetation water content (VWC) attracts great research interests in hydrology research in recent years. As an important parameter describing the horizontal expansion of vegetation, vegetation coverage is essential to implement soil effect correction for partially vegetated fields to estimate VWC accurately. Ground measurements of corn and soybeans in SMEX02 resulted in an identical expolinear relationship between vegetation coverage and leaf area index (LAI), which is used for vegetation coverage mapping. Results illustrated two parts of LAI growth quantitatively: the horizontal expansion of leaf coverage and the vertical accumulation of leaf layers. It is believed that the former part contributes significantly to LAI growth at initial vegetation growth stage and the latter is more dominant after vegetation coverage reaches a certain level. The Normalized Difference Water Index (NDWI) using short-wave infrared bands is convinced for its late saturation at high LAI values, in contrast to the Normalized Difference Vegetation Index (NDVI). NDWI is then utilized to estimate LAI, via another expolinear relationship, which is evidenced having vegetation species independency in study of corn and soybeans in SMEX02 sites. It is believed that the surface reflectance measured at satellites spectral bands are the mixed results of signals reflected from vegetation and bare soil, especially at partially vegetated fields. A simple linear mixture model utilizing vegetation coverage information is proposed to correct soil effect in such cases. Surface reflectance fractions for -rpure- vegetation are derived from the model. Comparing with ground measurements, empirical models using soil effect corrected vegetation indices to estimate VWC and dry biomass (DB) are generated. The study enhanced the in-depth understanding of the mechanisms how vegetation growth takes effect on satellites spectral reflectance with and without soil effect, which are particularly useful for modeling in hydrology, agriculture, forestry and meteorology etc.
CEOS Ocean Variables Enabling Research and Applications for Geo (COVERAGE)
NASA Astrophysics Data System (ADS)
Tsontos, V. M.; Vazquez, J.; Zlotnicki, V.
2017-12-01
The CEOS Ocean Variables Enabling Research and Applications for GEO (COVERAGE) initiative seeks to facilitate joint utilization of different satellite data streams on ocean physics, better integrated with biological and in situ observations, including near real-time data streams in support of oceanographic and decision support applications for societal benefit. COVERAGE aligns with programmatic objectives of CEOS (the Committee on Earth Observation Satellites) and the missions of GEO-MBON (Marine Biodiversity Observation Network) and GEO-Blue Planet, which are to advance and exploit synergies among the many observational programs devoted to ocean and coastal waters. COVERAGE is conceived of as 3 year pilot project involving international collaboration. It focuses on implementing technologies, including cloud based solutions, to provide a data rich, web-based platform for integrated ocean data delivery and access: multi-parameter observations, easily discoverable and usable, organized by disciplines, available in near real-time, collocated to a common grid and including climatologies. These will be complemented by a set of value-added data services available via the COVERAGE portal including an advanced Web-based visualization interface, subsetting/extraction, data collocation/matchup and other relevant on demand processing capabilities. COVERAGE development will be organized around priority use cases and applications identified by GEO and agency partners. The initial phase will be to develop co-located 25km products from the four Ocean Virtual Constellations (VCs), Sea Surface Temperature, Sea Level, Ocean Color, and Sea Surface Winds. This aims to stimulate work among the ocean VCs while developing products and system functionality based on community recommendations. Such products as anomalies from a time mean, would build on the theme of applications with a relevance to CEOS/GEO mission and vision. Here we provide an overview of the COVERAGE initiative with an emphasis on international collaborative aspects entailed with the intent of soliciting community feedback as we develop and implement
Givens, Brittany E; Diklich, Nina D; Fiegel, Jennifer; Grassian, Vicki H
2017-05-03
Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO 2 ) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO 2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO 2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO 2 nanoparticles, whereas for SiO 2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO 2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO 2 complex with a value of ca. 3 ± 1 × 10 11 molecules cm -2 . Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).
Opening and retraction of particulate soap films
NASA Astrophysics Data System (ADS)
Timounay, Yousra; Lorenceau, Elise; Rouyer, Florence
2015-07-01
We study for the first time the bursting dynamics of thin liquid films laden with hydrophobic micronic particles either with free or constrained edges. We highlight that the particles can arrange in bilayer or monolayer configurations and explore a range of particles coverage from zero to random close packing. When the particles bridge the two interfaces (monolayer configuration) of free-edge films, the hole opens intermittently. For the other cases, we observe constant retraction velocities, modeled by balancing liquid and particles inertia against surface tension as in Taylor-Culick theory. But, this approach is only valid up to a critical value of particles coverage due to the interplay between the interfaces and the friction between particles.
Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.
Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M
2015-06-30
Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.
NASA Astrophysics Data System (ADS)
Li, Guo; Neaton, Jeffrey
2015-03-01
Using van der Waals-corrected density functional theory (DFT) calculations, we study the adsorption of benzene-diamine (BDA) molecules on Au(111) surfaces. We find that at low surface coverage, the adsorbed molecules prefer to stay isolated from each other in a monomer phase, due to the inter-molecular dipole-dipole repulsions. However, when the coverage rises above a critical value of 0.9nm-2, the adsorbed molecules aggregate into linear structures via hydrogen bonding between amine groups, consistent with recent experiments [Haxton, Zhou, Tamblyn, et al, Phys. Rev. Lett. 111, 265701 (2013)]. Moreover, we find that these linear structures at high density considerably reduces the Au work function (relative to a monomer phase). Due to reduced surface polarization effects, we estimate that the resonance energy of the highest occupied molecular orbital of the adsorbed BDA molecule relative to the Au Fermi level is significantly lower than the monomer phase by more than 0.5 eV, consistent with the experimental measurements [DellAngela, Kladnik, and Cossaro, et al., Nano Lett. 10, 2470 (2010)]. This work supported by DOE (the JCAP under Award Number DE-SC000499 and the Molecular Foundry of LBNL), and computational resources provided by NERSC.
Surface diffusion of In on Ge(111) studied by optical second harmonic microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suni, I.I.; Seebauer, E.G.
Surface diffusion of In on Ge(111) has been measured by optical second harmonic microscopy. This technique employs surface second harmonic generation to directly image submonolayer surface concentration profiles. The coverage dependence of the diffusivity [ital D] can then be obtained from a Boltzmann--Matano analysis. In the coverage range 0.1[lt][theta][lt]0.48, the activation energy [ital E][sub diff] decreased with increasing coverage, ranging from 31 kcal/mol at [theta]=0.1 to 23 kcal/mol at [theta]=0.48. Over the same coverage range, the pre-exponential factor [ital D][sub 0] decreased from 5[times]10[sup 2] to 1[times]10[sup [minus]1] cm[sup 2]/s. This gradual change reflects a change in diffusion mechanism arisingmore » from the disordered nature of the Ge(111) surface. At low coverages, In adatoms sink into the top layer of Ge, and diffusion is dominated by thermal formation of adatom-vacancy pairs. At high coverages, diffusion occurs by normal site-to-site hopping. The gradual change in diffusion parameters with coverage was interrupted by an apparent phase transition at [theta]=0.16. At this point, both [ital E][sub diff] and [ital D][sub 0] peaked sharply at 41 kcal/mol and 6[times]10[sup 5] cm[sup 2]/s, respectively. The desorption energy [ital E][sub des] was measured by temperature programmed desorption. [ital E][sub des] decreased from 60 kcal/mol at submonolayer coverages to 55 kcal/mol at multilayer coverages.« less
Theoretical study of cathode surfaces and high-temperature superconductors
NASA Technical Reports Server (NTRS)
Mueller, Wolfgang
1994-01-01
The surface-dipole properties of model cathode surfaces have been investigated with relativistic scattered-wave cluster calculations. Work-function/coverage curves have been derived from these data by employing the depolarization model of interacting surface dipoles. Accurate values have been obtained for the minimum work functions of several low-work-function surfaces. In the series BaO on bcc W, hcp Os, and fcc Pt, BaO/Os shows a lower and BaO/Pt a higher work function than BaO/W, which is attributed to the different substrate crystal structures involved. Results are also presented on the electronic structure of the high-temperature superconductor YBa2Cu3O7, which has been investigated with fully relativistic calculations for the first time.
Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities.
Barnum, Thomas R; Weller, Donald E; Williams, Meghan
2017-12-01
More than one-half of the world's population lives in urban areas, so quantifying the effects of urbanization on ecological communities is important for understanding whether anthropogenic stressors homogenize communities across environmental and climatic gradients. We examined the relationship of impervious surface coverage (a marker of urbanization) and the structure of stream macroinvertebrate communities across the state of Maryland and within each of Maryland's three ecoregions: Coastal Plain, Piedmont, and Appalachian, which differ in stream geomorphology and community composition. We considered three levels of trait organization: individual traits, unique combinations of traits, and community metrics (functional richness, functional evenness, and functional divergence) and three levels of impervious surface coverage (low [<2.5%], medium [2.5% to 10%], and high [>10%]). The prevalence of an individual trait differed very little between low impervious surface and high impervious surface sites. The arrangement of trait combinations in community trait space for each ecoregion differed when impervious surface coverage was low, but the arrangement became more similar among ecoregions as impervious surface coverage increased. Furthermore, trait combinations that occurred only at low or medium impervious surface coverage were clustered in a subset of the community trait space, indicating that impervious surface affected the presence of only a subset of trait combinations. Functional richness declined with increasing impervious surface, providing evidence for environmental filtering. Community metrics that include abundance were also sensitive to increasing impervious surface coverage: functional divergence decreased while functional evenness increased. These changes demonstrate that increasing impervious surface coverage homogenizes the trait diversity of macroinvertebrate communities in streams, despite differences in initial community composition and stream geomorphology among ecoregions. Community metrics were also more sensitive to changes in the abundance rather than the gain or loss of trait combinations, showing the potential for trait-based approaches to serve as early warning indicators of environmental stress for monitoring and biological assessment programs. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Feng, Wei; Ma, Ning; Zhu, Dan
2015-03-01
The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.
Automated discovery and construction of surface phase diagrams using machine learning
Ulissi, Zachary W.; Singh, Aayush R.; Tsai, Charlie; ...
2016-08-24
Surface phase diagrams are necessary for understanding surface chemistry in electrochemical catalysis, where a range of adsorbates and coverages exist at varying applied potentials. These diagrams are typically constructed using intuition, which risks missing complex coverages and configurations at potentials of interest. More accurate cluster expansion methods are often difficult to implement quickly for new surfaces. We adopt a machine learning approach to rectify both issues. Using a Gaussian process regression model, the free energy of all possible adsorbate coverages for surfaces is predicted for a finite number of adsorption sites. Our result demonstrates a rational, simple, and systematic approachmore » for generating accurate free-energy diagrams with reduced computational resources. Finally, the Pourbaix diagram for the IrO 2(110) surface (with nine coverages from fully hydrogenated to fully oxygenated surfaces) is reconstructed using just 20 electronic structure relaxations, compared to approximately 90 using typical search methods. Similar efficiency is demonstrated for the MoS 2 surface.« less
Control of Reaction Surface in Low Temperature CVD to Enhance Nucleation and Conformal Coverage
ERIC Educational Resources Information Center
Kumar, Navneet
2009-01-01
The Holy Grail in CVD community is to find precursors that can afford the following: good nucleation on a desired substrate and conformal deposition in high AR features. Good nucleation is not only necessary for getting ultra-thin films at low thicknesses; it also offers films that are smooth at higher thickness values. On the other hand,…
Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)
NASA Astrophysics Data System (ADS)
Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu
2018-06-01
The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.
NASA Astrophysics Data System (ADS)
Zhang, K.; Brötzmann, M.; Hofsäss, H.
2012-09-01
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30° incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2×1015 Fe/cm2) over dot patterns (2-8×1015 Fe/cm2), ripples patterns (8-17×1015 Fe/cm2), pill bug structures (1.8×1016 Fe/cm2) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8×1016 Fe/cm2). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness ˜ 18 nm) to a rather flat surface (rms roughness ˜ 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8×1016 Fe/cm2, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi2. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.
NASA Astrophysics Data System (ADS)
Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng
2018-05-01
Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.
NASA Technical Reports Server (NTRS)
Susskind, J.; Reuter, D.
1986-01-01
IR and microwave remote sensing data collected with the HIRS2 and MSU sensors on the NOAA polar-orbiting satellites were evaluated for their effectiveness as bases for determining the cloud cover and cloud physical characteristics. Techniques employed to adjust for day-night alterations in the radiance fields are described, along with computational procedures applied to compare scene pixel values with reference values for clear skies. Sample results are provided for the mean cloud coverage detected over South America and Africa June 1979, with attention given to concurrent surface pressure and cloud top pressure values.
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Reed, J. A.
2011-03-01
The study of adsorption of oxygen on transition metal surface is important for the understanding of oxidation, heterogeneous catalysis, and metal corrosion. The structures formed on transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which results from diffusion of oxygen into the sub-surface regions. In this work we present the results of an ab-initio investigation of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the Cu(100) missing row reconstructed surface under conditions of high oxygen coverage. Calculations are performed for various surface and subsurface oxygen coverages ranging from 0.50 to 1.50 monolayers. Calculations are also performed for the on-surface adsorption of oxygen on the unreconstructed Cu(001) surface for coverages up to one monolayer to use for comparison. Estimates of the positron binding energy, positron work function, and annihilation characteristics reveal their sensitivity to atomic structure of the topmost layers of the surface and charge transfer. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia
2012-11-29
The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2.more » Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state was found to be Au11L52+ at lower coverage and Au11L5+ at higher coverage, respectively. A coverage-dependent electron tunneling mechanism is proposed to account for the observed reduction of charge of mass-selected multiply charged gold clusters soft landed on SAMs. The results demonstrate that one of the critical parameters that influence the chemical and physical properties of supported metal clusters, ionic charge state, may be controlled by selecting the coverage of charged species soft landed onto surfaces.« less
[Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].
Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo
2006-12-01
In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.
NASA Astrophysics Data System (ADS)
Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun
2018-04-01
Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.
42 CFR 440.335 - Benchmark-equivalent health benefits coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has an aggregate... planning services and supplies and other appropriate preventive services, as designated by the Secretary... State for purposes of comparison in establishing the aggregate actuarial value of the benchmark...
NASA Technical Reports Server (NTRS)
Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo
2013-01-01
This study investigates the impact of snow, graupel, and hail processes on simulated squall lines over the Southern Great Plains in the United States. The Weather Research and Forecasting (WRF) model is used to simulate two squall line events in Oklahoma during May 2007, and the simulations are validated against radar and surface observations. Several microphysics schemes are tested in this study, including the WRF 5-Class Microphysics (WSM5), WRF 6-Class Microphysics (WSM6), Goddard Cumulus Ensemble (GCE) Three Ice (3-ice) with graupel, Goddard Two Ice (2-ice), and Goddard 3-ice hail schemes. Simulated surface precipitation is sensitive to the microphysics scheme when the graupel or hail categories are included. All of the 3-ice schemes overestimate the total precipitation with WSM6 having the largest bias. The 2-ice schemes, without a graupel/hail category, produce less total precipitation than the 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that including graupel/hail processes increases the convective areal coverage, precipitation intensity, updraft, and downdraft intensities, and reduces the stratiform areal coverage and precipitation intensity. For vertical structures, simulations have higher reflectivity values distributed aloft than the observed values in both the convective and stratiform regions. Three-ice schemes produce more high reflectivity values in convective regions, while 2-ice schemes produce more high reflectivity values in stratiform regions. In addition, this study has demonstrated that the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF-simulated precipitation, wind, and microphysical fields in both convective and stratiform regions.
Coverage-dependent adsorption and desorption of oxygen on Pd(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra
2016-06-28
We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediatemore » temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.« less
Coverage dependent molecular assembly of anthraquinone on Au(111)
NASA Astrophysics Data System (ADS)
DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.
2017-11-01
A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.
Coverage dependent molecular assembly of anthraquinone on Au(111).
DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B
2017-11-14
A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.
Rane, Jayant P; Pauchard, Vincent; Couzis, Alexander; Banerjee, Sanjoy
2013-04-16
In an earlier study, oil-water interfacial tension was measured by the pendant drop technique for a range of oil-phase asphaltene concentrations and viscosities. The interfacial tension was found to be related to the relative surface coverage during droplet expansion. The relationship was independent of aging time and bulk asphaltenes concentration, suggesting that cross-linking did not occur at the interface and that only asphaltene monomers were adsorbed. The present study extends this work to measurements of interfacial rheology with the same fluids. Dilatation moduli have been measured using the pulsating droplet technique at different frequencies, different concentrations (below and above CNAC), and different aging times. Care was taken to apply the technique in conditions where viscous and inertial effects are small. The elastic modulus increases with frequency and then plateaus to an asymptotic value. The asymptotic or instantaneous elasticity has been plotted against the interfacial tension, indicating the existence of a unique relationship, between them, independent of adsorption conditions. The relationship between interfacial tension and surface coverage is analyzed with a Langmuir equation of state. The equation of state also enabled the prediction of the observed relationship between the instantaneous elasticity and interfacial tension. The fit by a simple Langmuir equation of state (EOS) suggests minimal effects of aging and of nanoaggregates or gel formation at the interface. Only one parameter is involved in the fit, which is the surface excess coverage Γ∞ = 3.2 molecules/nm(2) (31.25 Å(2)/molecule). This value appears to agree with flat-on adsorption of monomeric asphaltene structures consisting of aromatic cores composed of an average of six fused rings and supports the hypothesis that nanoaggregates do not adsorb on the interface. The observed interfacial effects of the adsorbed asphaltenes, correlated by the Langmuir EOS, are consistent with the asphaltene aggregation behavior in the bulk fluid expected from the Yen-Mullins model.
Zhu, Ma-Guang; Si, Jia; Zhang, Zhiyong; Peng, Lian-Mao
2018-06-01
The main challenge for application of solution-derived carbon nanotubes (CNTs) in high performance field-effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution-derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on-state current I on of 290 µA µm -1 (V ds = -1.5 V and V gs = -2 V) and peak transconductance g m of 150 µS µm -1 , which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2010-09-21
This graphic, constructed from data obtained by NASA Cassini spacecraft, shows the percentage of cloud coverage across the surface of Saturn moon Titan. The color scale from black to yellow signifies no cloud coverage to complete cloud coverage.
EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models
NASA Astrophysics Data System (ADS)
Laxton, John; Sen, Marcus; Passmore, James
2013-04-01
EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be constructed to calculate, for example, the thickness between two surfaces in a 3D model or the depth from ground surface to the top of a particular geologic unit. In the first version of the service a simple interface showing some example queries has been implemented in order to show the potential of the technologies. The project aims to develop the services available in light of user feedback, both in terms of the data available, the functionality and the interface. User feedback on the services guides the software and standards development aspects of the project, leading to enhanced versions of the software which will be implemented in upgraded versions of the services during the lifetime of the project.
Molecular-level Design of Heterogeneous Chiral Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilfred T. Tysoe
2007-04-25
It has been shown previously that the adsorption of a chiral 2-butanol template on Pd(111) leads to enantioselective adsorption of chiral propylene oxide probe molecules. Enantioselectivity is expressed over a narrow coverage range where the maximum value of enantioselectivity ratio (ER defined as Θ(R-propylene oxide)/Θ(S-propylene oxide), where Θ is the coverage) reaches ~2. Probe coverages in this case were measured using either reflection-absorption infrared spectroscopy (RAIRS) or temperature-programmed desorption (TPD) [1,2]. The enantioselectivity disappears when the 2-butanol-covered surface was heated to ~200 K since the adsorbed butoxy species decomposes by a β-hydride elimination reaction to yield a non-chiral ketone. Montemore » Carlo calculations of the effect of chiral modifiers have yielded results that are consistent with these experimental observations [3,4]. Similar experiments using 2-methyl butanoic acid as a template, where the chiral center is identical to that in 2-butanol but is now anchored by a carboxylate group rather than by an alkoxide, shows no enantioselectivity. In this case, propylene oxide coverages were measured using the King and Wells method. RAIRS experiments and density functional calculations suggest that the 2-butyl group of the 2-butoxy species is oriented parallel to the surface. A possible origin for the lack of enantioselectivity of a 2-methyl butanoic acid-covered surface may be that the 2-butyl group is farther from the surface, allowing it to rotate more freely, averaging out any asymmetry, resulting in a loss of chirality. In order to test this idea, the alkyl group on the carboxylic acid was functionalized with an amine to anchor the chiral center to the surface. Using the amino-acids alanine and 2-amino butanoic acid as templates restored the enantioselectivity and yielded ER values of 2.0 ± 0.2 and 1.75 ± 0.15 respectively. These results suggest that a two-point attachment of the chiral template is required, one for surface adsorption and the other to allow the enantioselectivity to be expressed. Low-energy electron diffraction (LEED) intensity versus energy (I/E) measurements are used to measure the structure of templates and probes on the Pd(111) surface, where these results will be compared with calculations carried out by the Sholl group. Since the aminoacids are relatively large, initial experiments were carried out to determine the structure of carboxylates on the surface to determine the carboxylate group anchoring site. Since carboxylates do not form ordered structures on Pd(111), we have exploited a method recently developed in collaboration with Professor Saldin to measure structures of disordered overlayers [5]. Results show that the formate OCO plane is oriented perpendicular to the surface with the oxygen atoms located across a short bridge on the (111) surface. The effect of the size of the functional group on the amino acid template (RCH(NH2)COOH) was also investigated where the maximum ER values obtained using propylene oxide were 2.0 ± 0.2 (R=CH3), 1.75 ± 0.15 (R=C2H5), 1.65 ± 0.15 (R=C3H6) and 1.30 ± 0.15 (R=CH2CH(CH3)2) thus showing a decreasing trend with increasing size of the side chain. The enantioselectivity of S-(1-naphthyl) ethylamine-covered surfaces have been explored using propylene oxide as a probe, but these systems showed no enantioselectivity. However, using 2-butanol as a probe lead to enantioselective chemisorption implying that one-to-one modification requires a direct hydrogen-bonding interaction between the probe and modifier. 1. Enantioselective Chemisorption on a Chirally Patterned Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxy-Covered Pd(111), D. Stacchiola, L. Burkholder and W.T. Tysoe, J. Am. Chem. Soc., 124, 8984 (2002) 2. Enantioselective Chemisorption on a Chirally Modified Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxide-Covered Pd(111), Darío Stacchiola, Luke Burkholder and Wilfred T. Tysoe, J. Mol. Catal A: Chemical, 216, 215 (2004) 3. Theoretical Analysis of the Coverage Dependence of Enantioselective Chemisorption on a Chirally Patterned Surface, F. Roma, D. Stacchiola, G. Zgrablich and W. T. Tysoe, Journal of Chemical Physics, 118, 6030 (2003) 4. Lattice-gas Modeling of Enantioselective Adsorption by Template Chiral Substrates, F. Romá, D. Stacchiola, W.T. Tysoe and G. Zgrablich, Physica A., 338, 493 (2004) 5. Structure Determination of Disordered Organic Molecules on Surfaces from the Bragg Spots of Low Energy Electron Diffraction and Total Energy Calculations, H. C. Poon, M. Weinert, D. K. Saldin, D. Stacchiola, T. Zheng and W. T. Tysoe, Phys. Rev. B., 69, 35401 (2004)« less
Tyan, Kevin; Jin, Katherine; Kang, Jason; Kyle, Aaron M
2018-04-18
Bleach sprays suffer from poor surface coverage, dry out before reaching proper contact time, and can be inadvertently over-diluted to ineffective concentrations. Highlight ® , a novel color additive for bleach that fades to indicate elapsed contact time, maintained >99.9% surface coverage over full contact time and checked for correct chlorine concentration. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Wu, Wei-Te; Chen, Chien-Hsing; Chiang, Chang-Yue; Chau, Lai-Kwan
2018-05-31
A simple theoretical model was developed to analyze the extinction spectrum of gold nanoparticles (AuNPs) on the fiber core and glass surfaces in order to aid the determination of the surface coverage and surface distribution of the AuNPs on the fiber core surface for sensitivity optimization of the fiber optic particle plasmon resonance (FOPPR) sensor. The extinction spectrum of AuNPs comprises of the interband absorption of AuNPs, non-interacting plasmon resonance (PR) band due to isolated AuNPs, and coupled PR band of interacting AuNPs. When the surface coverage is smaller than 12.2%, the plasmon coupling effect can almost be ignored. This method is also applied to understand the refractive index sensitivity of the FOPPR sensor with respect to the non-interacting PR band and the coupled PR band. In terms of wavelength sensitivity at a surface coverage of 18.6%, the refractive index sensitivity of the coupled PR band (205.5 nm/RIU) is greater than that of the non-interacting PR band (349.1 nm/RIU). In terms of extinction sensitivity, refractive index sensitivity of the coupled PR band (-3.86/RIU) is similar to that of the non-interacting PR band (-3.93/RIU). Both maximum wavelength and extinction sensitivities were found at a surface coverage of 15.2%.
42 CFR 440.335 - Benchmark-equivalent health benefits coverage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Benchmark-equivalent health benefits coverage. 440... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has an aggregate...
42 CFR 440.335 - Benchmark-equivalent health benefits coverage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 4 2011-10-01 2011-10-01 false Benchmark-equivalent health benefits coverage. 440... and Benchmark-Equivalent Coverage § 440.335 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has an aggregate...
Delaunay Triangulation as a New Coverage Measurement Method in Wireless Sensor Network
Chizari, Hassan; Hosseini, Majid; Poston, Timothy; Razak, Shukor Abd; Abdullah, Abdul Hanan
2011-01-01
Sensing and communication coverage are among the most important trade-offs in Wireless Sensor Network (WSN) design. A minimum bound of sensing coverage is vital in scheduling, target tracking and redeployment phases, as well as providing communication coverage. Some methods measure the coverage as a percentage value, but detailed information has been missing. Two scenarios with equal coverage percentage may not have the same Quality of Coverage (QoC). In this paper, we propose a new coverage measurement method using Delaunay Triangulation (DT). This can provide the value for all coverage measurement tools. Moreover, it categorizes sensors as ‘fat’, ‘healthy’ or ‘thin’ to show the dense, optimal and scattered areas. It can also yield the largest empty area of sensors in the field. Simulation results show that the proposed DT method can achieve accurate coverage information, and provides many tools to compare QoC between different scenarios. PMID:22163792
NASA Astrophysics Data System (ADS)
Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.
2015-10-01
The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.
42 CFR 457.430 - Benchmark-equivalent health benefits coverage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 4 2011-10-01 2011-10-01 false Benchmark-equivalent health benefits coverage. 457... STATES State Plan Requirements: Coverage and Benefits § 457.430 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has...
42 CFR 457.430 - Benchmark-equivalent health benefits coverage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Benchmark-equivalent health benefits coverage. 457... STATES State Plan Requirements: Coverage and Benefits § 457.430 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has...
42 CFR 457.430 - Benchmark-equivalent health benefits coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Benchmark-equivalent health benefits coverage. 457... STATES State Plan Requirements: Coverage and Benefits § 457.430 Benchmark-equivalent health benefits coverage. (a) Aggregate actuarial value. Benchmark-equivalent coverage is health benefits coverage that has...
Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...
2014-11-04
A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less
DNA surface hybridization regimes
Gong, Ping; Levicky, Rastislav
2008-01-01
Surface hybridization reactions, in which sequence-specific recognition occurs between immobilized and solution nucleic acids, are routinely carried out to quantify and interpret genomic information. Although hybridization is fairly well understood in bulk solution, the greater complexity of an interfacial environment presents new challenges to a fundamental understanding, and hence application, of these assays. At a surface, molecular interactions are amplified by the two-dimensional nature of the immobilized layer, which focuses the nucleic acid charge and concentration to levels not encountered in solution, and which impacts the hybridization behavior in unique ways. This study finds that, at low ionic strengths, an electrostatic balance between the concentration of immobilized oligonucleotide charge and solution ionic strength governs the onset of hybridization. As ionic strength increases, the importance of electrostatics diminishes and the hybridization behavior becomes more complex. Suppression of hybridization affinity constants relative to solution values, and their weakened dependence on the concentration of DNA counterions, indicate that the immobilized strands form complexes that compete with hybridization to analyte strands. Moreover, an unusual regime is observed in which the surface coverage of immobilized oligonucleotides does not significantly influence the hybridization behavior, despite physical closeness and hence compulsory interactions between sites. These results are interpreted and summarized in a diagram of hybridization regimes that maps specific behaviors to experimental ranges of ionic strength and probe coverage. PMID:18381819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Leebyn; Lai, Yungchieh; Gray, McMahan
Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less
Chong, Leebyn; Lai, Yungchieh; Gray, McMahan; ...
2017-06-16
Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, K.; Broetzmann, M.; Hofsaess, H.
We investigate pattern formation on Si by sputter erosion under simultaneous co-deposition of Fe atoms, both at off-normal incidence, as function of the Fe surface coverage. The patterns obtained for 5 keV Xe ion irradiation at 30 Degree-Sign incidence angle are analyzed with atomic force microscopy. Rutherford backscattering spectroscopy of the local steady state Fe content of the Fe-Si surface layer allows a quantitative correlation between pattern type and Fe coverage. With increasing Fe coverage the patterns change, starting from a flat surface at low coverage (< 2 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}) over dot patterns (2-8 Multiplication-Sign 10{sup 15}more » Fe/cm{sup 2}), ripples patterns (8-17 Multiplication-Sign 10{sup 15} Fe/cm{sup 2}), pill bug structures (1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}) and a rather flat surface with randomly distributed weak pits at high Fe coverage (>1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}). Our results confirm the observations by Macko et al. for 2 keV Kr ion irradiation of Si with Fe co-deposition. In particular, we also find a sharp transition from pronounced ripple patterns with large amplitude (rms roughness {approx} 18 nm) to a rather flat surface (rms roughness {approx} 0.5 nm). Within this transition regime, we also observe the formation of pill bug structures, i.e. individual small hillocks with a rippled structure on an otherwise rather flat surface. The transition occurs within a very narrow regime of the steady state Fe surface coverage between 1.7 and 1.8 Multiplication-Sign 10{sup 16} Fe/cm{sup 2}, where the composition of the mixed Fe-Si surface layer of about 10 nm thickness reaches the stoichiometry of FeSi{sub 2}. Phase separation towards amorphous iron silicide is assumed as the major contribution for the pattern formation at lower Fe coverage and the sharp transition from ripple patterns to a flat surface.« less
Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.
Kumar, Gaurav; Van Cleve, Timothy; Park, Jiyun; van Duin, Adri; Medlin, J Will; Janik, Michael J
2018-06-05
We investigate the structure and binding energy of alkanethiolate self-assembled monolayers (SAMs) on Pd (111), Pd (100), and Pd (110) facets at different coverages. Dispersion-corrected density functional theory calculations are used to correlate the binding energy of alkanethiolates with alkyl chain length and coverage. The equilibrium coverage of thiolate layers strongly prefers 1/3 monolayer (ML) on the Pd (111) surface. The coverage of thiolates varies with chemical potential on Pd (100) and Pd (110), increasing from 1/3 to 1/2 ML on (100) and from 1/4 to 1/2 ML on (110) as the thiol chemical potential is increased. Higher coverages are driven by attractive dispersion interactions between the extended alkyl chains, such that transitions to higher coverages occur at lower thiol chemical potentials for longer chain thiolates. Stronger adsorption to the Pd (100) surface causes the equilibrium Wulff construction of Pd particles to take on a cubic shape upon saturation with thiols. The binding of H, O, and CO adsorbates is weakened as the thiolate coverage is increased, with saturation coverages causing unfavorable binding of O and CO on Pd (100) and weakened binding on other facets. Temperature-dependent CO diffuse reflectance infrared Fourier transform spectroscopy experiments are used to corroborate the weakened binding of CO in the presence of thiolate SAMs of varying surface density. Preliminary results of multiscale modeling efforts on the Pd-thiol system using a reactive force field, ReaxFF, are also discussed.
Local modification of the surface state properties at dilute coverages: CO/Cu(111)
NASA Astrophysics Data System (ADS)
Zaum, Ch.; Meyer-auf-der-Heide, K. M.; Morgenstern, K.
2018-04-01
We follow the diffusion of CO molecules on Cu(111) by time-lapsed low-temperature scanning tunneling microscopy. The diffusivity of individual CO molecules oscillates with the distance to its nearest neighbor due to the long-range interaction mediated by the surface state electrons. The markedly different wavelengths of the oscillation at a coverage of 0.6% ML as compared to the one at 6% ML coverage correspond to two different wavelengths of the surface state electrons, consistent with a shift of the surface state by 340 meV. This surprisingly large shift as compared to results of averaging methods suggests a local modification of the surface state properties.
NASA Astrophysics Data System (ADS)
Szykman, J.; Kondragunta, S.; Zhang, H.; Dickerson, P.; van Donkelaar, A.; Martin, R. V.; Pasch, A. N.; White, J. E.; DeWinter, J. L.; Zahn, P. H.; Dye, T. S.; Haderman, M. D.
2012-12-01
The U.S. Environmental Protection Agency's (EPA) Air Quality Index (AQI) relies on hourly measurements of ground-based surface PM2.5 (particles smaller than 2.5 μm in median diameter) to develop daily AQI index maps. The EPA is improving the accuracy of AQI information and extending its coverage for reporting to the public by incorporating National Aeronautics and Space Administration (NASA) satellite-derived surface PM2.5 concentrations into daily AQI maps. The additional coverage will provide air quality information in regions without dense monitoring networks. The AirNow Satellite Data Processor (ASDP) uses daily PM2.5 estimates and uncertainties derived from average Aqua and Terra MODerate resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) in near real-time over the United States. The algorithm to derive surface PM2.5 from MODIS AOD relies on linear relationships between AOD and PM2.5 generated from multi-year GEOS-Chem model simulations (van Donkelaar et al., 2012). Parameters from the regression equation (slopes and intercepts) are saved in a lookup table (LUT) with 4 km spatial resolution for each day of a given year. To improve data accuracy and continuity, a filter is applied to remove MODIS AOD with low accuracy (e.g., over bright surfaces) and an inverse distance weighted average is applied to fill in gaps created by cloud coverage. Daily surface PM2.5 estimates and their uncertainties are generated at the National Oceanic and Atmospheric Administration (NOAA) using the van Donkelaar et al. algorithm and near real-time MODIS AOD products from Terra and Aqua and are provided to the EPA through its Infusing satellite Data into Environmental Applications (IDEA) website. The Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28, 2011, and similar to MODIS, provides AOD products for real-time applications. NOAA plans to explore the value of VIIRS AOD products to improve AQI. This presentation will focus on a description of ASDP, including an overview of the algorithm used to estimate surface PM2.5 using satellite data and examples of high resolution VIIRS AOD products and their value to the ASDP. Disclaimer: Although this work was reviewed by the U.S. Environmental Protection Agency and approved for publication, it may not necessarily reflect official Agency policy.
Zhang, Mingfu; Hao, Jingcheng; Neyman, Alevtina; Wang, Yifeng; Weinstock, Ira A
2017-03-06
Metal oxide cluster-anion (polyoxometalate, or POM) protecting ligands, [α-PW 11 O 39 ] 7- (1), modify the rates at which 14 nm gold nanoparticles (Au NPs) catalyze an important model reaction, the aerobic (O 2 ) oxidation of CO to CO 2 in water. At 20 °C and pH 6.2, the following stoichiometry was observed: CO + O 2 + H 2 O = CO 2 + H 2 O 2 . After control experiments verified that the H 2 O 2 product was sufficiently stable and did not react with 1 under turnover conditions, quantitative analysis of H 2 O 2 was used to monitor the rates of CO oxidation, which increased linearly with the percent coverage of the Au NPs by 1 (0-64% coverage, with the latter value corresponding to 211 ± 19 surface-bound molecules of 1). X-ray photoelectron spectroscopy of Au NPs protected by a series of POM ligands (K + salts): 1, the Wells-Dawson ion [α-P 2 W 18 O 62 ] 6- (2) and the monodefect Keggin anion [α-SiW 11 O 39 ] 8- (3) revealed that binding energies of electrons in the Au 4f 7/2 and 4f 5/2 atomic orbitals decreased as a linear function of the POM charge and percent coverage of Au NPs, providing a direct correlation between the electronic effects of the POMs bound to the surfaces of the Au NPs and the rates of CO oxidation by O 2 . Additional data show that this effect is not limited to POMs but occurs, albeit to a lesser extent, when common anions capable of binding to Au-NP surfaces, such as citrate or phosphate, are present.
Use of ERTS-1 pictures in coastal oceanography in British Columbia
NASA Technical Reports Server (NTRS)
Gower, J. F. R.
1973-01-01
The ERTS-1 color composite picture of the Vancouver-Victoria region illustrates the value of ERTS data for coastal oceanography. The water of the Fraser River plume which is so clearly visible in the center of the scene has been of interest to oceanographers on the west coast of Canada for a long time as an easily visible tracer of surface water circulation in the strait of Georgia. Maps of the plume at different states of the tide and with different river flow and weather were compiled from oblique aerial photographs in 1950 and used in the siting of sewage and other outfalls in the Vancouver area. More recently high level aerial photomosaics have been used to map the plume area, but the plume can spread over distances of 30 to 40 miles and many photographs, with the uneven illumination inherent in wide angle coverage, are needed for the mosaic. The ERTS satellite gives the first complete view of the plume area. Electronic enhancement of the images shows that the satellite's narrow angle coverage allows very weak surface turbidity features to be made visible to give information on surface currents over a wide area.
Self-healing gold mirrors and filters at liquid-liquid interfaces
NASA Astrophysics Data System (ADS)
Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.
2016-03-01
The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k
Gelation And Mechanical Response of Patchy Rods
NASA Astrophysics Data System (ADS)
Kazem, Navid; Majidi, Carmel; Maloney, Craig
We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang
2015-08-07
Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWsmore » is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.« less
Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel
2017-03-29
Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.
Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C
2015-06-23
We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.
Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng
2018-03-01
Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.
The effect of EDTA in attachment gain and root coverage.
Kassab, Moawia M; Cohen, Robert E; Andreana, Sebastiano; Dentino, Andrew R
2006-06-01
Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P<.01).
Wet formation and structural characterization of quasi-hexagonal monolayers.
Batys, Piotr; Weroński, Paweł; Nosek, Magdalena
2016-01-01
We have presented a simple and efficient method for producing dense particle monolayers with controlled surface coverage. The method is based on particle sedimentation, manipulation of the particle-substrate electrostatic interaction, and gentle mechanical vibration of the system. It allows for obtaining quasi-hexagonal structures under wet conditions. Using this method, we have produced a monolayer of 3 μm silica particles on a glassy carbon substrate. By optical microscopy, we have determined the coordinates of the particles and surface coverage of the obtained structure to be 0.82. We have characterized the monolayer structure by means of the pair-correlation function and power spectrum. We have also compared the results with those for a 2D hexagonal monolayer and monolayer generated by random sequential adsorption at the coverage 0.50. We have found the surface fractal dimension to be 2.5, independently of the monolayer surface coverage. Copyright © 2015 Elsevier Inc. All rights reserved.
Adsorption of Poly(methyl methacrylate) on Concave Al2O3 Surfaces in Nanoporous Membranes
Nunnery, Grady; Hershkovits, Eli; Tannenbaum, Allen; Tannenbaum, Rina
2009-01-01
The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below ~120 000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries. PMID:19415910
2012-01-01
Introduction The aim of this study was to clinically assess the capacity of a novel bovine pericardium based, non-cross linked collagen matrix in root coverage. Methods 62 gingival recessions of Miller class I or II were treated. The matrix was adapted underneath a coronal repositioned split thickness flap. Clinical values were assessed at baseline and after six months. Results The mean recession in each patient was 2.2 mm at baseline. 6 Months after surgery 86.7% of the exposed root surfaces were covered. On average 0,3 mm of recession remained. The clinical attachment level changed from 3.5 ± 1.3 mm to 1,8 ( ± 0,7) mm during the observational time period. No statistically significant difference was found in the difference of probing depth. An increase in the width of gingiva was significant. With a baseline value of 1.5 ± 0.9 mm an improvement of 2.4 ± 0.8 mm after six month could be observed. 40 out of 62 recessions were considered a thin biotype at baseline. After 6 months all 62 sites were assessed thick. Conclusions The results demonstrate the capacity of the bovine pericardium based non-cross linked collagen matrix for successful root coverage. This material was able to enhance gingival thickness and the width of keratinized gingiva. The percentage of root coverage achieved thereby is comparable to existing techniques. This method might contribute to an increase of patient's comfort and an enhanced aesthetical outcome. PMID:22390875
Schlee, Markus; Ghanaati, Shahram; Willershausen, Ines; Stimmlmayr, Michael; Sculean, Anton; Sader, Robert A
2012-03-05
The aim of this study was to clinically assess the capacity of a novel bovine pericardium based, non-cross linked collagen matrix in root coverage. 62 gingival recessions of Miller class I or II were treated. The matrix was adapted underneath a coronal repositioned split thickness flap. Clinical values were assessed at baseline and after six months. The mean recession in each patient was 2.2 mm at baseline. 6 Months after surgery 86.7% of the exposed root surfaces were covered. On average 0,3 mm of recession remained. The clinical attachment level changed from 3.5 ± 1.3 mm to 1,8 ( ± 0,7) mm during the observational time period. No statistically significant difference was found in the difference of probing depth. An increase in the width of gingiva was significant. With a baseline value of 1.5 ± 0.9 mm an improvement of 2.4 ± 0.8 mm after six month could be observed. 40 out of 62 recessions were considered a thin biotype at baseline. After 6 months all 62 sites were assessed thick. The results demonstrate the capacity of the bovine pericardium based non-cross linked collagen matrix for successful root coverage. This material was able to enhance gingival thickness and the width of keratinized gingiva. The percentage of root coverage achieved thereby is comparable to existing techniques. This method might contribute to an increase of patient's comfort and an enhanced aesthetical outcome. © 2012 Schlee et al; licensee BioMed Central Ltd.
Gutiérrez Sánchez, Cristina; Su, Qiang; Schönherr, Holger; Grininger, Martin; Nöll, Gilbert
2015-01-01
In this paper the multiple (re)programming of protein-DNA nanostructures comprising generation, deletion, and reprogramming on the same flavin-DNA-modified surface is introduced. This work is based on a systematic study of the binding affinity of the multi-ligand-binding flavoprotein dodecin on flavin-terminated DNA monolayers by surface plasmon resonance and quartz crystal microbalance with dissipation (QCM-D) measurements, surface plasmon fluorescence spectroscopy (SPFS), and dynamic AFM force spectroscopy. Depending on the flavin surface coverage, a single apododecin is captured by one or more surface-immobilized flavins. The corresponding complex binding and unbinding rate constants kon(QCM) = 7.7 × 10(3) M(-1)·s(-1) and koff(QCM) = 4.5 × 10(-3) s(-1) (Kd(QCM) = 580 nM) were determined by QCM and were found to be in agreement with values for koff determined by SPFS and force spectroscopy. Even though a single apododecin-flavin bond is relatively weak, stable dodecin monolayers were formed on flavin-DNA-modified surfaces at high flavin surface coverage due to multivalent interactions between apododecin bearing six binding pockets and the surface-bound flavin-DNA ligands. If bi- or multivalent flavin ligands are adsorbed on dodecin monolayers, stable sandwich-type surface-DNA-flavin-apododecin-flavin ligand arrays are obtained. Nevertheless, the apododecin flavin complex is easily and quantitatively disassembled by flavin reduction. Binding and release of apododecin are reversible processes, which can be carried out alternatingly several times to release one type of ligand by an external redox trigger and subsequently replace it with a different ligand. Hence the versatile concept of reprogrammable functional biointerfaces with the multi-ligand-binding flavoprotein dodecin is demonstrated.
Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej
2006-09-12
Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer oxygen-containing species, at least below 0.5 V vs RHE. Both higher coverage of Os than Ru and the higher potentials are required to provide a sufficient number of active oxygen-containing species for the effective removal of the site-blocking CO from the catalyst surface when the methanol electrooxidation process occurs.
Coverage Dependent Assembly of Anthraquinone on Au(111)
NASA Astrophysics Data System (ADS)
Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel
A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Kamarudin, A. F.; Rosli, S.; Fauziah, A.; Akmal, M. A. K.; Aziman, M.; Azhar, A. T. S.; Ashraf, M. I. M.; Shaylinda, M. Z. N.; Rais, Y.; Ishak, M. F.; Alel, M. N. A.
2018-04-01
Geotechnical site investigation as known as subsurface profile evaluation is the process of subsurface layer characteristics determination which finally used for design and construction phase. Traditionally, site investigation was performed using drilling technique thus suffers from several limitation due to cost, time, data coverage and sustainability. In order to overcome those problems, this study adopted surface techniques using seismic refraction and ambient vibration method for subsurface profile depth evaluation. Seismic refraction data acquisition and processing was performed using ABEM Terraloc and OPTIM software respectively. Meanwhile ambient vibration data acquisition and processing was performed using CityShark II, Lennartz and GEOPSY software respectively. It was found that studied area consist of two layers representing overburden and bedrock geomaterials based on p-wave velocity value (vp = 300 – 2500 m/s and vp > 2500 m/s) and natural frequency value (Fo = 3.37 – 3.90 Hz) analyzed. Further analysis found that both methods show some good similarity in term of depth and thickness with percentage accuracy at 60 – 97%. Consequently, this study has demonstrated that the application of seismic refractin and ambient vibration method was applicable in subsurface profile depth and thickness estimation. Moreover, surface technique which consider as non-destructive method adopted in this study was able to compliment conventional drilling method in term of cost, time, data coverage and environmental sustainaibility.
Yeo, Sang Chul; Lo, Yu Chieh; Li, Ju; Lee, Hyuck Mo
2014-10-07
Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.
NASA Astrophysics Data System (ADS)
Li, Chen; Maidaniuk, Yurii; Kuchuk, Andrian V.; Shetty, Satish; Ghosh, Pijush; White, Thomas P.; Morgan, Timothy Al.; Hu, Xian; Wu, Yang; Ware, Morgan E.; Mazur, Yuriy I.; Salamo, Gregory J.
2018-05-01
We report the effects of nitrogen (N) plasma and indium (In) flux on the In adatom adsorption/desorption kinetics on a GaN(0001) surface at the relatively high plasma-assisted molecular beam epitaxy-growth temperature of 680 °C. We experimentally demonstrate that under an active N flux, the (√{3 }×√{3 })R 30 ° surface reconstruction containing In and N quickly appears and the dynamically stable In adlayers sitting on this surface exhibit a continuous change from 0 to 2 MLs as a function of In flux. Compared to the bare GaN 1 ×1 surface which is stable during In exposure without an active N flux, we observed a much faster desorption for the bottom In adlayer and the absence of an In flux window corresponding to an In coverage of 1 ML. Moreover, when the In coverage exceeds 2 MLs, the desorption rates become identical for both surfaces. Finally, the importance of In surface coverage before GaN capping was shown by growing a series of InN/GaN multiple quantum well samples. The photoluminescence data show that a consistent quantum well structure is only formed if the surface is covered by excess In droplets before GaN capping.
NASA Astrophysics Data System (ADS)
Piao, H.; Adib, K.; Barteau, Mark A.
2004-05-01
Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.
Sentinel-3 coverage-driven mission design: Coupling of orbit selection and instrument design
NASA Astrophysics Data System (ADS)
Cornara, S.; Pirondini, F.; Palmade, J. L.
2017-11-01
The first satellite of the Sentinel-3 series was launched in February 2016. Sentinel-3 payload suite encompasses the Ocean and Land Colour Instrument (OLCI) with a swath of 1270 km, the Sea and Land Surface Temperature Radiometer (SLSTR) yielding a dual-view scan with swaths of 1420 km (nadir) and 750 km (oblique view), the Synthetic Aperture Radar Altimeter (SRAL) working in Ku-band and C-band, and the dual-frequency Microwave Radiometer (MWR). In the early stages of mission and system design, the main driver for the Sentinel-3 reference orbit selection was the requirement to achieve a revisit time of two days or less globally over ocean areas with two satellites (i.e. 4-day global coverage with one satellite). The orbit selection was seamlessly coupled with the OLCI instrument design in terms of field of view (FoV) definition driven by the observation zenith angle (OZA) and sunglint constraints applied to ocean observations. The criticality of the global coverage requirement for ocean monitoring derives from the sunglint phenomenon, i.e. the impact on visible channels of the solar ray reflection on the water surface. This constraint was finally overcome thanks to the concurrent optimisation of the orbit parameters, notably the Local Time at Descending Node (LTDN), and the OLCI instrument FoV definition. The orbit selection process started with the identification of orbits with short repeat cycle (2-4 days), firstly to minimise the time required to achieve global coverage with existing constraints, and then to minimise the swath required to obtain global coverage and the maximum required OZA. This step yielded the selection of a 4-day repeat cycle orbit, thus allowing 2-day coverage with two adequately spaced satellites. Then suitable candidate orbits with higher repeat cycles were identified in the proximity of the selected altitudes and the reference orbit was ultimately chosen. Rationale was to keep the swath for global coverage as close as possible to the previous optimum value, but to tailor the repeat cycle length (i.e. the ground-track grid) to optimise the topography mission performances. The final choice converged on the sun-synchronous orbit 14 + 7/27, reference altitude ∼800 km, LTDN = 10h00. Extensive coverage analyses were carried out to characterise the mission performance and the fulfilment of the requirements, encompassing revisit time, number of acquisitions, observation viewing geometry and swath properties. This paper presents a comprehensive overview of the Sentinel-3 orbit selection, starting from coverage requirements and highlighting the close interaction with the instrument design activity.
Dehydration and Dehydrogenation of Ethylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek
2013-08-07
The interactions of ethylene glycol (EG) with partially reduced rutile TiO2(110) surface have been studied using temperature programmed desorption (TPD). The saturation coverage on the surface Ti rows is determined to be 0.43 monolayer (ML), slightly less than one EG per two Ti sites. Most of the adsorbed ethanol (~80%) undergoes further reactions to other products. Two major channels are observed, dehydration yielding ethylene and water and dehydrogenation yielding acetaldehyde and hydrogen. Hydrogen formation is rather surprising as it has not been observed previously on TiO2(110) from simple organic molecules. The coverage dependent yields of ethylene and acetaldehyde correlate wellmore » with that of water and hydrogen, respectively. Dehydration dominates at lower EG coverages (< 0.2 ML) and plateaus as the coverage is increased to saturation. Dehydrogenation is observed primarily at higher EG coverages (>0.2 ML). Our results suggest that the observed dehydration and dehydrogenation reactions proceed via different surface intermediates.« less
Katsanos, Nicholas A; Kapolos, John; Gavril, Dimitrios; Bakaoukas, Nicholas; Loukopoulos, Vassilios; Koliadima, Athanasia; Karaiskakis, George
2006-09-15
The reversed-flow gas chromatography (RF-GC) technique has been applied to measure the adsorption entropy over time, when gaseous pentane is adsorbed on the surface of two solids (gamma-alumina and a silica supported rhodium catalyst) at 393.15 and 413.15K, respectively. Utilizing experimental chromatographic data, this novel methodology also permits the simultaneous measurement of the local adsorption energy, epsilon, local equilibrium adsorbed concentration, c(s)(*), and local adsorption isotherm, theta(p, T, epsilon) in a time resolved way. In contrast with other inverse gas chromatographic methods, which determine the standard entropy at zero surface coverage, the present method operates over a wide range of surface coverage taking into account not only the adsorbate-adsorbent interaction, but also the adsorbate-adsorbate interaction. One of the most interesting observations of the present work is the fact that the interaction of n-pentane is spontaneous on the Rh/SiO(2) catalyst for a very short time interval compared to that on gamma-Al(2)O(3). This can explain the different kinetic behavior of each particular gas-solid system, and it can be attributed to the fact that large amounts of n-C(5)H(12) are present on the active sites of the Rh/SiO(2) catalyst compared to those on gamma-Al(2)O(3), as the local equilibrium adsorbed concentration values, c(s)(*), indicate.
Pauchard, Vincent; Rane, Jayant P; Banerjee, Sanjoy
2014-11-04
In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough. This simulates the rapid increase in interfacial asphaltene concentration that occurs during coalescence events. For the contraction of droplets aged in asphaltene solutions, deviation from the EOS consistently occurs at a surface pressure value ∼21 mN/m corresponding to a surface coverage ∼80%. At this point droplets lose the shape required for validity of the Laplace-Young equation, indicating solidlike surface behavior. On further contraction wrinkles appear, which disappear when the droplet is held at constant volume. Surface pressure also decreases down to an equilibrium value near that measured for slow adsorption experiments. This behavior appears to be due to a transition to a glassy interface on contraction past the packing limit, followed by relaxation toward equilibrium by desorption at constant volume. This hypothesis is supported by cycling experiments around the close-packed limit where the transition to and from a solidlike state appears to be both fast and reversible, with little hysteresis. Also, the soft glass rheology model of Sollich is shown to capture previously reported shear behavior during adsorption. The results suggest that the mechanism by which asphaltenes stabilize water-in-oil emulsions is by blocking coalescence due to rapid formation of a glassy interface, in turn caused by interfacial asphaltenes rapidly increasing in concentration beyond the glass transition point.
NASA Astrophysics Data System (ADS)
Chen, Zhaoxia; He, Yangming
2018-04-01
Dynamic plastic deformation (DPD) has been induced in the surface of pure Cu by ultrasonic impact treating (UIT) with the varied impact current and coverage percentage. The microstructures of the treated surface were analyzed by a scanning electron microscope (SEM). And the wear resistance of pure Cu was experimentally researched both with the treated and untreated specimens. The effect of DPD on the hardness was also investigated using microhardness tester. The results show that the grains on the top surfaces of pure Cu are highly refined. The maximum depth of the plastic deformation layer is approximately 1400 µm. The larger the current and coverage percentage, the greater of the microhardness and wear resistance the treated surface layer of pure Cu will be. When the impact current is 2 A and coverage percentage is 300%, the microhardness and wear resistance of the treated sample is about 276.1% and 68.8% higher than that of the untreated specimen, respectively. But the properties of the treated sample deteriorate when the UIT current is 3 A and the coverage percentage is 300% because of the formation of a new phase forms in the treated surface.
NASA Technical Reports Server (NTRS)
Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.
1991-01-01
Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.
Operation and performance of the mars exploration rover imaging system on the martian surface
Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.
2005-01-01
The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.
Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces
Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.
2011-01-01
We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481
Negative electron affinity from aluminium on the diamond (1 0 0) surface: a theoretical study
NASA Astrophysics Data System (ADS)
James, Michael C.; Croot, Alex; May, Paul W.; Allan, Neil L.
2018-06-01
Density functional theory calculations were performed to model the adsorption of up to 1 monolayer (ML) of aluminium on the bare and O-terminated (1 0 0) diamond surface. Large adsorption energies of up to ‑6.36 eV per atom are observed for the Al-adsorbed O-terminated diamond surface. Most adsorption sites give a negative electron affinity (NEA), with the largest NEAs ‑1.47 eV on the bare surface (1 ML coverage) and ‑1.36 eV on the O-terminated surface (0.25 ML coverage). The associated adsorption energies per Al atom for these sites are ‑4.11 eV and ‑5.24 eV, respectively. Thus, with suitably controlled coverage, Al on diamond shows promise as a thermally-stable surface for electron emission applications.
Thermal desorption study of physical forces at the PTFE surface
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Pepper, S. V.
1987-01-01
Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.
Thermal desorption study of physical forces at the PTFE surface
NASA Technical Reports Server (NTRS)
Wheeler, D. R.; Pepper, S. V.
1985-01-01
Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.
Towards Semantic Web Services on Large, Multi-Dimensional Coverages
NASA Astrophysics Data System (ADS)
Baumann, P.
2009-04-01
Observed and simulated data in the Earth Sciences often come as coverages, the general term for space-time varying phenomena as set forth by standardization bodies like the Open GeoSpatial Consortium (OGC) and ISO. Among such data are 1-d time series, 2-D surface data, 3-D surface data time series as well as x/y/z geophysical and oceanographic data, and 4-D metocean simulation results. With increasing dimensionality the data sizes grow exponentially, up to Petabyte object sizes. Open standards for exploiting coverage archives over the Web are available to a varying extent. The OGC Web Coverage Service (WCS) standard defines basic extraction operations: spatio-temporal and band subsetting, scaling, reprojection, and data format encoding of the result - a simple interoperable interface for coverage access. More processing functionality is available with products like Matlab, Grid-type interfaces, and the OGC Web Processing Service (WPS). However, these often lack properties known as advantageous from databases: declarativeness (describe results rather than the algorithms), safe in evaluation (no request can keep a server busy infinitely), and optimizable (enable the server to rearrange the request so as to produce the same result faster). WPS defines a geo-enabled SOAP interface for remote procedure calls. This allows to webify any program, but does not allow for semantic interoperability: a function is identified only by its function name and parameters while the semantics is encoded in the (only human readable) title and abstract. Hence, another desirable property is missing, namely an explicit semantics which allows for machine-machine communication and reasoning a la Semantic Web. The OGC Web Coverage Processing Service (WCPS) language, which has been adopted as an international standard by OGC in December 2008, defines a flexible interface for the navigation, extraction, and ad-hoc analysis of large, multi-dimensional raster coverages. It is abstract in that it does not anticipate any particular protocol. One such protocol is given by the OGC Web Coverage Service (WCS) Processing Extension standard which ties WCPS into WCS. Another protocol which makes WCPS an OGC Web Processing Service (WPS) Profile is under preparation. Thereby, WCPS bridges WCS and WPS. The conceptual model of WCPS relies on the coverage model of WCS, which in turn is based on ISO 19123. WCS currently addresses raster-type coverages where a coverage is seen as a function mapping points from a spatio-temporal extent (its domain) into values of some cell type (its range). A retrievable coverage has an identifier associated, further the CRSs supported and, for each range field (aka band, channel), the interpolation methods applicable. The WCPS language offers access to one or several such coverages via a functional, side-effect free language. The following example, which derives the NDVI (Normalized Difference Vegetation Index) from given coverages C1, C2, and C3 within the regions identified by the binary mask R, illustrates the language concept: for c in ( C1, C2, C3 ), r in ( R ) return encode( (char) (c.nir - c.red) / (c.nir + c.red), H˜DF-EOS\\~ ) The result is a list of three HDF-EOS encoded images containing masked NDVI values. Note that the same request can operate on coverages of any dimensionality. The expressive power of WCPS includes statistics, image, and signal processing up to recursion, to maintain safe evaluation. As both syntax and semantics of any WCPS expression is well known the language is Semantic Web ready: clients can construct WCPS requests on the fly, servers can optimize such requests (this has been investigated extensively with the rasdaman raster database system) and automatically distribute them for processing in a WCPS-enabled computing cloud. The WCPS Reference Implementation is being finalized now that the standard is stable; it will be released in open source once ready. Among the future tasks is to extend WCPS to general meshes, in synchronization with the WCS standard. In this talk WCPS is presented in the context of OGC standardization. The author is co-chair of OGC's WCS Working Group (WG) and Coverages WG.
[Development of an Enterococcus faecalis periapical biofilm model for in vitro morphological study].
Cao, Ridan; Hou, Benxiang
2014-08-01
This study aims to develop and observe a model system of the periapical biofilm structure of Enterococcus faecalis (E. faecalis). A total of 24 intact human single-rooted premolars extracted for orthodontic reasons were collected and randomly divided into eight groups (n = 3). The specimens were subjected to ultraviolet disinfection, inoculated with E. faecalis (ATCC 29212) suspension adjusted to 1 x 10(8) CFU x mL(-1), and incubated at 37 degrees C for 1, 2, and 7 d. Specimen groups were prepared for scanning electron microscope to examine the biofilm formation. The specimens in the confocal laser scanning microscope (CLSM) groups were stained with propidium iodide (PI) and ConA-fluorescein isothiocyanate (ConA-FITC) to examine the biofilm formation. The images were randomized, and biofilm coverage (%) was assessed using Photoshop CS5. The biofilm coverage (%) on the cementum increased with increasing incubation period. The biofilm coverage of the 7 d group was significantly higher than those of the 1 and 2 d groups (P < 0.05). The values of the latter two groups were not significantly different (P > 0.05). Dense aggregations composed of E. faecalis and the amorphous matrix were observed on the root cementum surfaces of the specimens in the 7 d group. The bacteria were stained red by PI, and the matrix was stained green by ConA-FITC under CLSM observation. The biofilm coverage (%) on the samples in the 7 d group was 17.23% +/- 1.52%, showing multi-level space structure and water channels. E. faecalis forms bacterial biofilms on the root cementum surface in 7 d. The biofilms were composed of E. faecalis and the amorphous matrix.
A Comparison of Coverage Restrictions for Biopharmaceuticals and Medical Procedures.
Chambers, James; Pope, Elle; Bungay, Kathy; Cohen, Joshua; Ciarametaro, Michael; Dubois, Robert; Neumann, Peter J
2018-04-01
Differences in payer evaluation and coverage of pharmaceuticals and medical procedures suggest that coverage may differ for medications and procedures independent of their clinical benefit. We hypothesized that coverage for medications is more restricted than corresponding coverage for nonmedication interventions. We included top-selling medications and highly utilized procedures. For each intervention-indication pair, we classified value in terms of cost-effectiveness (incremental cost per quality-adjusted life-year), as reported by the Tufts Medical Center Cost-Effectiveness Analysis Registry. For each intervention-indication pair and for each of 10 large payers, we classified coverage, when available, as either "more restrictive" or as "not more restrictive," compared with a benchmark. The benchmark reflected the US Food and Drug Administration label information, when available, or pertinent clinical guidelines. We compared coverage policies and the benchmark in terms of step edits and clinical restrictions. Finally, we regressed coverage restrictiveness against intervention type (medication or nonmedication), controlling for value (cost-effectiveness more or less favorable than a designated threshold). We identified 392 medication and 185 procedure coverage decisions. A total of 26.3% of the medication coverage and 38.4% of the procedure coverage decisions were more restrictive than their corresponding benchmarks. After controlling for value, the odds of being more restrictive were 42% lower for medications than for procedures. Including unfavorable tier placement in the definition of "more restrictive" greatly increased the proportion of medication coverage decisions classified as "more restrictive" and reversed our findings. Therapy access depends on factors other than cost and clinical benefit, suggesting potential health care system inefficiency. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Joyce, Paul; Kempson, Ivan; Prestidge, Clive A
2015-09-22
Quartz crystal microbalance with dissipation (QCM-D) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide insights into the relationship between lipid adsorption kinetics and molecular behavior in porous silica particles of varying hydrophobicities on lipase activity. Lipase (an interfacial enzyme that cleaves ester bonds to break down lipids to fatty acids and monoglycerides) activity was controlled by loading triglycerides at different surface coverages in hydrophilic and hydrophobic porous silica particles. The rate of lipid adsorption increased 2-fold for the hydrophobic surface compared to the hydrophilic surface. However, for submonolayer lipid coverage, the hydrophilic surface enhanced lipase activity 4-fold, whereas the hydrophobic surface inhibited lipase activity 16-fold, compared to lipid droplets in water. A difference in lipid orientation for low surface coverage, evidenced by ToF-SIMS, indicated that lipid adsorbs to hydrophilic silica in a conformation promoting hydrolysis. Multilayer coverage on hydrophobic and hydrophilic surfaces was indistinguishable with ToF-SIMS analysis. Increased lipid adsorption for both substrates facilitated digestion kinetics comparable to a conventional emulsion. Improved understanding of the interfacial adsorption and orientation of lipid and its digestibility in porous silica has implications in improving the uptake of pharmaceuticals and nutrients from lipid-based delivery systems.
EEG source localization: Sensor density and head surface coverage.
Song, Jasmine; Davey, Colin; Poulsen, Catherine; Luu, Phan; Turovets, Sergei; Anderson, Erik; Li, Kai; Tucker, Don
2015-12-30
The accuracy of EEG source localization depends on a sufficient sampling of the surface potential field, an accurate conducting volume estimation (head model), and a suitable and well-understood inverse technique. The goal of the present study is to examine the effect of sampling density and coverage on the ability to accurately localize sources, using common linear inverse weight techniques, at different depths. Several inverse methods are examined, using the popular head conductivity. Simulation studies were employed to examine the effect of spatial sampling of the potential field at the head surface, in terms of sensor density and coverage of the inferior and superior head regions. In addition, the effects of sensor density and coverage are investigated in the source localization of epileptiform EEG. Greater sensor density improves source localization accuracy. Moreover, across all sampling density and inverse methods, adding samples on the inferior surface improves the accuracy of source estimates at all depths. More accurate source localization of EEG data can be achieved with high spatial sampling of the head surface electrodes. The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Sonesson, Andreas W; Callisen, Thomas H; Brismar, Hjalmar; Elofsson, Ulla M
2008-02-15
The adsorption and activity of Thermomyces lanuginosus lipase (TLL) was measured with dual polarization interferometry (DPI) and confocal microscopy at a hydrophilic and hydrophobic surface. In the adsorption isotherms, it was evident that TLL both had higher affinity for the hydrophobic surface and adsorbed to a higher adsorbed amount (1.90 mg/m(2)) compared to the hydrophilic surface (1.40-1.50mg/m(2)). The thickness of the adsorbed layer was constant (approximately 3.5 nm) on both surfaces at an adsorbed amount >1.0mg/m(2), but decreased on the hydrophilic surface at lower surface coverage, which might be explained by partially unfolding of the TLL structure. However, a linear dependence of the refractive index of the adsorbed layer on adsorbed amount of TLL on C18 surfaces indicated that the structure of TLL was similar at low and high surface coverage. The activity of adsorbed TLL was measured towards carboxyfluorescein diacetate (CFDA) in solution, which upon lipase activity formed a fluorescent product. The surface fluorescence intensity increase was measured in a confocal microscope as a function of time after lipase adsorption. It was evident that TLL was more active on the hydrophilic surface, which suggested that a larger fraction of adsorbed TLL molecules were oriented with the active site facing the solution compared to the hydrophobic surface. Moreover, most of the activity remained when the TLL surface coverage decreased. Earlier reports on TLL surface mobility on the same surfaces have found that the lateral diffusion was highest on hydrophilic surfaces and at low surface coverage of TLL. Hence, a high lateral mobility might lead to a longer exposure time of the active site towards solution, thereby increasing the activity against a water-soluble substrate.
NASA Technical Reports Server (NTRS)
Mehandru, S. P.; Anderson, A. B.
1985-01-01
An atom superposition and electron delocalization molecular orbital study of CO adsorption on the Cr(110) surface shows a high coordinate lying down orientation is favored. This is a result of the large number of empty d-band energy levels in chromium, which allows the antibonding counterparts to sigma and pi donation bonds to the surface to be empty. When lying down, backbonding to CO pi sup * orbitals is enhanced. Repulsive interactions cause additional CO to stand upright at 1/4 monolyer coverage. The results confirm the recent experimental study of Shinn and Madey.
NASA Astrophysics Data System (ADS)
Amorim, Patrícia; Atchoi, Elizabeth; Berecibar, Estibaliz; Tempera, Fernando
2015-06-01
This work presents the first climatologic maps of diffuse attenuation of down-welling solar radiation (KdPAR and Kd490 coefficients) for the Azores derived from full resolution (FR) MERIS satellite imagery. Associating this information with a new mesoscale bathymetry compilation permits estimating the percentage of surface light reaching the seabed. A video annotation dataset derived from a deep kelp survey conducted on the Formigas Bank is subsequently used to estimate the light levels experienced by these bionomically-crucial frondose algae. Empirical light-based thresholds for the lower infralittoral boundary in the Azores are derived from the deepest kelp occurrences. This information is eventually used to map the geographical extent of this major marine biological zone in the archipelago, yielding an area estimate of 894.7 km2. The average depth of the infralittoral limit in the Azores is established at 69 m. It is determined that the present Azores marine protected area (MPA) network already covers 28.9% of the region's infralittoral grounds. However, island-specific values highlight that MPA percentage coverage varies between islands with values ranging from a marginal coverage of 7.3% (on Terceira Island) to 100% coverage around the island of Corvo and the Formigas Bank. These results suggest that conservation managers may make use of the current spatially-based protection framework of the archipelago to, on the whole and for this specific major habitat, surpass the goals suggested by international conventions and conservation fora for MPA coverage. However, an analysis of the statutory MPA regulations further reveals that measures in place are insufficient to provide a no-take and no-disturbance protection of infralittoral biotopes. In order to achieve the recommended strict protection of the currently protected infralittoral zones, conservation measures ought to be enhanced.
A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods
NASA Astrophysics Data System (ADS)
Pedersen, Janne; Jettestuen, Espen; Madland, Merete V.; Hildebrand-Habel, Tania; Korsnes, Reidar I.; Vinningland, Jan Ludvig; Hiorth, Aksel
2016-01-01
In this paper, we propose a model for evolution of reactive surface area of minerals due to surface coverage by precipitating minerals. The model is used to interpret results from an experiment where a chalk core was flooded with MgCl2 for 1072 days, giving rise to calcite dissolution and magnesite precipitation. The model successfully describes both the long-term behavior of the measured effluent concentrations and the more or less homogeneous distribution of magnesite found in the core after 1072 days. The model also predicts that precipitating magnesite minerals form as larger crystals or aggregates of smaller size crystals, and not as thin flakes or as a monomolecular layer. Using rate constants obtained from literature gave numerical effluent concentrations that diverged from observed values only after a few days of flooding. To match the simulations to the experimental data after approximately 1 year of flooding, a rate constant that is four orders of magnitude lower than reported by powder experiments had to be used. We argue that a static rate constant is not sufficient to describe a chalk core flooding experiment lasting for nearly 3 years. The model is a necessary extension of standard rate equations in order to describe long term core flooding experiments where there is a large degree of textural alteration.
Surface Coverage and Metallicity of ZnO Surfaces from First-Principles Calculations
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Schleife, Andre; The Schleife research Group Team
Zinc oxide (ZnO) surfaces are widely used in different applications such as catalysis, biosensing, and solar cells. These surfaces are, in many cases, chemically terminated by hydroxyl groups. In experiment, a transition of the ZnO surface electronic properties from semiconducting to metallic was reported upon increasing the hydroxyl coverage to more than approximately 80 %. The reason for this transition is not well understood yet. We report on first-principles calculations based on density functional theory for the ZnO [ 10 1 0 ] surface, taking different amounts of hydroxyl coverage into account. We calculated band structures for fully relaxed configurations and verified the existence of this transition. However, we only find the fully covered surface to be metallic. We thus explore the possibility for clustering of the surface-terminating hydroxyl groups based on total-energy calculations. We also found that the valence band maximum consists of oxygen p states from both the surface hydroxyl groups and the surface oxygen atoms of the material. The main contribution to the metallicity is found to be from the hydroxyl groups.
NASA Astrophysics Data System (ADS)
Sexton, J. Z.; Kummel, A. C.
2004-10-01
Scanning tunneling microscopy (STM) was employed to study the mechanism for the oxidation of Al(111) with thermal O2 and NO in the 20%-40% monolayer coverage regime. Experiments show that the islands formed upon exposure to thermal O2 and NO have dramatically different shapes, which are ultimately dictated by the dynamics of the gas surface interaction. The circumference-to-area ratio and other island morphology statistics are used to quantify the average difference in the two island types. Ultrahigh-vacuum STM was employed to make the following observations: (1) Oxygen islands on the Al(111) surface, formed upon exposure to thermal oxygen, are elongated and noncompact. (2) Mixed O/N islands on the Al(111) surface, formed upon exposure to thermal nitric oxide (NO), are round and compact. (3) STM movies acquired during thermal O2 exposure indicate that a complex mechanism involving chemisorption initiated rearrangement of preexisting oxygen islands leads to the asymmetric and elongated island shapes. The overall mechanism for the oxidation of the Al(111) surface can be summarized in three regimes. Low coverage is dominated by widely isolated small oxygen features (<3 O atoms) where normal dissociative chemisorption and oxygen abstraction mechanisms are present. At 20%-40% monolayer coverage, additional oxygen chemisorption induces rearrangement of preexisting islands to form free-energy minimum island shapes. At greater than ˜40% monolayer coverage, the apparent surface oxygen coverage asymptotes corresponding to the conversion of the 2D islands to 3D Al2O3 surface crystallites. The rearrangement of oxygen islands on the surface to form the observed islands indicates that there is a short-range oxygen-oxygen attractive potential and a long-range oxygen-oxygen repulsive potential.
1988-08-01
self-supporting films, and aqueous slurries. IR spectra were obtained for kaolinite and montmorillonite clays as well as for p-xylene adsorbed on...proportional to OC and Xs. They also reported that the sorption of chloroethanes on sand, montmorillonite , and kaolinite was too small (< 2 ng/g soil...Ca- montmorillonite and Ca-kaolin at fractional surface coverages of only 0.65 and 0.35, respectively. C values for their montmorillonite and kaolinite
Fluorinated silica microchannel surfaces
Kirby, Brian J.; Shepodd, Timothy Jon
2005-03-15
A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.
Limiting diffusion current at rotating disk electrode with dense particle layer.
Weroński, P; Nosek, M; Batys, P
2013-09-28
Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.
Quantized Advantages to a Proposed Satellite at L5 from Simulated Synoptic Magnetograms
NASA Astrophysics Data System (ADS)
Schwarz, A. M.; Petrie, G. J. D.
2017-12-01
The dependency the Earth and its inhabitants have on the Sun is delicate and complex and sometimes dangerous. At the NSO, we provide 24/7 coverage of the full-disk solar magnetic field used in solar forecasting, however this only includes data from the Sun's Earth facing side. Ideally we would like to have constant coverage of the entire solar surface, however we are limited in our solar viewing angle. Our project attempts to quantify the advantages of full-disk magnetograms from a proposed satellite at L5. With instrumentation at L5 we would have an additional 60 degrees of solar surface coverage not seen from Earth. These 60 degrees crucially contain the solar longitudes that are about to rotate towards Earth. Using a full-surface flux-transport model of the evolving solar photospheric field, I created a simulation of full-disk observations from Earth and L5. Using standard solar forecasting tools we quantify the relative accuracy of the Earth-Only and Earth plus L5 forecasts relative to the "ground truth" of the full surface field model, the ideal case. My results gauge exactly how much polar coverage is improved, contrast the spherical multipoles of each model, and use a Potential-Field Source-Surface (PFSS) magnetic field analysis model to find comparisons in the neutral lines and open field coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, Sang Chul; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr; Lo, Yu Chieh
2014-10-07
Ammonia (NH{sub 3}) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (E{sub b}) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (E{sub b}) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH{sub 3} nitridation rate onmore » the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH{sub 3} nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH{sub 3} nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH{sub 3} nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.« less
Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen
Park, Jewook; Park, Changwon; Yoon, Mina; ...
2016-12-01
Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. We report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principlesmore » calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. This study offers new insights into the chemical control of magnetism in low-dimensional systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreil, Justin; Ellingsworth, Edward; Szulczewski, Greg
A series of para-substituted, halogenated (F, Cl, Br, and I) benzoic acid monolayers were prepared on the native oxide of aluminum surfaces by solution self-assembly and spin-coating techniques. The monolayers were characterized by x-ray photoelectron spectroscopy (XPS) and water contact angles. Several general trends are apparent. First, the polarity of the solvent is critical to monolayer formation. Protic polar solvents produced low coverage monolayers; in contrast, nonpolar solvents produced higher coverage monolayers. Second, solution deposition yields a higher surface coverage than spin coating. Third, the thickness of the monolayers determined from XPS suggests the plane of the aromatic ring ismore » perpendicular to the surface with the carboxylate functional group most likely binding in a bidentate chelating geometry. Fourth, the saturation coverage (∼2.7 × 10{sup 14} molecules cm{sup −2}) is independent of the para-substituent.« less
Nanopatterning of Si(001) for bottom-up fabrication of nanostructures.
Hu, Yanfang; Kalachahi, Hedieh Hosseinzadeh; Das, Amal K; Koch, Reinhold
2012-04-27
The epitaxial growth of Si on Si(001) under conditions at which the (2 × n) superstructure is forming has been investigated by scanning tunneling microscopy and Monte Carlo simulations. Our experiments reveal a periodic change of the surface morphology with the surface coverage of Si. A regular (2 × n) stripe pattern is observed at coverages of 0.7-0.9 monolayers that periodically alternates with less dense surface structures at lower Si surface coverages. The MC simulations show that the growth of Si is affected by step-edge barriers, which favors the formation of a rather uniform two-dimensional framework-like configuration. Subsequent deposition of Ge onto the (2 × n) stripe pattern yields a dense array of small Ge nanostructures.
Water adsorption on the Fe3O4(111) surface: dissociation and network formation.
Zaki, Eman; Mirabella, Francesca; Ivars-Barceló, Francisco; Seifert, Jan; Carey, Spencer; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Li, Xiaoke; Paier, Joachim; Sauer, Joachim
2018-06-13
We monitored adsorption of water on a well-defined Fe3O4(111) film surface at different temperatures as a function of coverage using infrared reflection-absorption spectroscopy, temperature programmed desorption, and single crystal adsorption calorimetry. Additionally, density functional theory was employed using a Fe3O4(111)-(2 × 2) slab model to generate 15 energy minimum structures for various coverages. Corresponding vibrational properties of the adsorbed water species were also computed. The results show that water molecules readily dissociate on regular surface Fetet1-O ion pairs to form "monomers", i.e., terminal Fe-OH and surface OH groups. Further water molecules adsorb on the hydroxyl covered surface non-dissociatively and form "dimers" and larger oligomers, which ultimately assemble into an ordered (2 × 2) hydrogen-bonded network structure with increasing coverage prior to the formation of a solid water film.
Land and federal mineral ownership coverage for southern Wyoming
Biewick, L.H.; Mercier, T.J.; Saber, T.T.; Urbanowski, S.R.; Neasloney, Larry
1999-01-01
This Arc/Info coverage contains land status and Federal mineral ownership for approximately 37,800 square miles in southern Wyoming. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and the Wyoming State Bureau of Land Management (BLM) at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment and National Coal Resource Assessment Projects in the Northern Rocky Mountains/Great Plains Region.
Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.
Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A
2012-02-15
The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Balss, Karin Maria
The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential gradients is discussed. Electrochemical reactions other than electrosorption of alkanethiols were demonstrated with over-potential deposition of copper onto gold films. One application of these patterns is to control the movement of supermolecular objects. As a first step towards this goal, biological cells were seeded onto gradient patterns containing adhesion promoters and inhibitors. The morphology and adhesion was investigated as a function of concentration along the gradient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang,Z.; Fenter, P.; Cheng, L.
2006-01-01
The X-ray standing wave technique was used to probe the sensitivity of Zn{sup 2+} and Sr{sup 2+} ion adsorption to changes in both the adsorbed ion coverage and the background electrolyte species and concentrations at the rutile ({alpha}-TiO{sub 2}) (110)-aqueous interface. Measurements were made with various background electrolytes (NaCl, NaTr, RbCl, NaBr) at concentrations as high as 1 m. The results demonstrate that Zn{sub 2+} and Sr{sub 2+} reside primarily in the condensed layer and that the ion heights above the Ti-O surface plane are insensitive to ionic strength and the choice of background electrolyte (with <0.1 Angstroms changes overmore » the full compositional range). The lack of any specific anion coadsorption upon probing with Br{sup -}, coupled with the insensitivity of Zn{sup 2+} and Sr{sup 2+} cation heights to changes in the background electrolyte, implies that anions do not play a significant role in the adsorption of these divalent metal ions to the rutile (110) surface. Absolute ion coverage measurements for Zn{sup 2+} and Sr{sup 2+} show a maximum Stern-layer coverage of {approx}0.5 monolayer, with no significant variation in height as a function of Stern-layer coverage. These observations are discussed in the context of Gouy-Chapman-Stern models of the electrical double layer developed from macroscopic sorption and pH-titration studies of rutile powder suspensions. Direct comparison between these experimental observations and the MUltiSIte Complexation (MUSIC) model predictions of cation surface coverage as a function of ionic strength revealed good agreement between measured and predicted surface coverages with no adjustable parameters.« less
Corrosion Prevention of Aluminum Nanoparticles by a Polyurethane Coating.
Nishimura, Toshiyasu; Raman, Vedarajan
2014-06-19
In order to prevent corrosion, aluminum nanoparticles were coated with a polyurethane polymer. The coverage of the polyurethane polymer was controlled from 0 to 100%, which changed the corrosion rate of the nanoparticles quantitatively. The surface of the polymer coating was investigated by Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), and the corrosion resistance of the nanoparticles was estimated by a wet/dry corrosion test on a Pt plate with a NaCl solution. From a TEM with EDAX analysis, the 10 mass% polymer coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, the 3 mass% polymer coated Al was almost 40% covered by a film. In the AFM, the potential around the Al particles had a relatively low value with the polymer coating, which indicated that the conductivity of the Al was isolated from the Pt plate by the polymer. Both the corrosion and H₂ evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of the 10 mass% coated sample, there was no corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Moreover, the reaction rate of Al nanoparticles was suppressed in proportion to the coverage percentage of the coating. Thus, to conclude, it was found that the corrosion rate of Al nanoparticles could be quantitatively suppressed by the coverage percentage of the polymer coating.
NASA Astrophysics Data System (ADS)
Mei, Donghai; Ge, Qingfeng; Neurock, Matthew; Kieken, Laurent; Lerou, Jan
First-principles-based kinetic Monte Carlo simulation was used to track the elementary surface transformations involved in the catalytic decomposition of NO over Pt(100) and Rh(100) surfaces under lean-burn operating conditions. Density functional theory (DFT) calculations were carried out to establish the structure and energetics for all reactants, intermediates and products over Pt(100) and Rh(100). Lateral interactions which arise from neighbouring adsorbates were calculated by examining changes in the binding energies as a function of coverage and different coadsorbed configurations. These data were fitted to a bond order conservation (BOC) model which is subsequently used to establish the effects of coverage within the simulation. The intrinsic activation barriers for all the elementary reaction steps in the proposed mechanism of NO reduction over Pt(100) were calculated by using DFT. These values are corrected for coverage effects by using the parametrized BOC model internally within the simulation. This enables a site-explicit kinetic Monte Carlo simulation that can follow the kinetics of NO decomposition over Pt(100) and Rh(100) in the presence of excess oxygen. The simulations are used here to model various experimental protocols including temperature programmed desorption as well as batch catalytic kinetics. The simulation results for the temperature programmed desorption and decomposition of NO over Pt(100) and Rh(100) under vacuum condition were found to be in very good agreement with experimental results. NO decomposition is strongly tied to the temporal number of sites that remain vacant. Experimental results show that Pt is active in the catalytic reaction of NO into N2 and NO2 under lean-burn conditions. The simulated reaction orders for NO and O2 were found to be +0.9 and -0.4 at 723 K, respectively. The simulation also indicates that there is no activity over Rh(100) since the surface becomes poisoned by oxygen.
Infrared spectroscopy and surface chemistry of beta-Ga(2)O(3) nanoribbons.
Bermudez, V M; Prokes, S M
2007-12-04
The structure and surface chemistry of crystalline beta-Ga2O3 nanoribbons (NRs), deposited in a thin layer on various metallic and dielectric substrates (mainly on Au), have been characterized using vibrational spectroscopy. The results have been analyzed with the aid of a previous ab initio theoretical model for the beta-Ga2O3 surface structure. Raman spectra and normal-incidence infrared (IR) transmission data show little if any difference from corresponding results for bulk single crystals. For a layer formed on a metallic substrate, IR reflection-absorption spectroscopy (IRRAS) shows longitudinal-optic (LO) modes that are red-shifted by approximately 37 cm-1 relative to those of a bulk crystal. Evidence is also seen for a bonding interaction at the Ga2O3/Au interface following heating in room air. Polarization-modulated IRRAS has been used to study the adsorption of pyridine under steady-state conditions in ambient pressures as high as approximately 5 Torr. The characteristic nu19b and nu8a modes of adsorbed pyridine exhibit little or no shift from the corresponding gas-phase values. This indicates that the surface is only weakly acidic, consistent with the theoretical prediction that singly unsaturated octahedral Ga sites are the only reactive cation sites on the NR surface. However, evidence for adsorption at defect sites is seen in the form of more strongly shifted modes that saturate in intensity at low pyridine coverage. The effect of H atoms, formed by thermal cracking of H2, has also been studied. No Ga-H or O-H bonds are observed on the pristine NR surface. This suggests that the previously reported presence of such species on Ga2O3 powders heated in H2 is a result of a partial reduction of the oxide surface. The heat of adsorption of atomic H on the pristine beta-Ga2O3(100) surface at 0 K is computed to be -1.79 eV per H at saturation (average of Ga-H and O-H sites), whereas a value of +0.45 eV per H is found for the dissociative adsorption of H2. This suggests that rapid recombinative desorption of H2 may limit the coverage of chemisorbed H on this surface.
Rant, Ulrich; Arinaga, Kenji; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard; Tornow, Marc
2004-11-09
We present optical investigations on the conformation of oligonucleotide layers on Au surfaces. Our studies concentrate on the effect of varying surface coverage densities on the structural properties of layers of 12- and 24mer single-stranded DNA, tethered to the Au surface at one end while being labeled with a fluorescent marker at the opposing end. The distance-dependent energy transfer from the marker dye to the metal surface, which causes quenching of the observed fluorescence, is used to provide information on the orientation of the DNA strands relative to the surface. Variations in the oligonucleotide coverage density, as determined from electrochemical quantification, over 2 orders of magnitude are achieved by employing different preparation conditions. The observed enhancement in fluorescence intensity with increasing DNA coverage can be related to a model involving mutual steric interactions of oligonucleotides on the surface, as well as fluorescence quenching theory. Finally, the applicability of the presented concepts for investigations of heterogeneous monolayers is demonstrated by means of studying the coadsorption of mercaptohexanol onto DNA-modified Au surfaces.
Early stages of Cs adsorption mechanism for GaAs nanowire surface
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu
2018-03-01
In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.
Romley, John A; Sanchez, Yuri; Penrod, John R; Goldman, Dana P
2012-04-01
Generous coverage of specialty drugs for cancer and other diseases may be valuable not only for sick patients currently using these drugs, but also for healthy people who recognize the potential need for them in the future. This study estimated how healthy people value insurance coverage of specialty drugs, defined as high-cost drugs that treat cancer and other serious health conditions like multiple sclerosis, by quantifying willingness to pay via a survey. US adults were estimated to be willing to pay an extra $12.94 on average in insurance premiums per month for generous specialty-drug coverage--in effect, $2.58 for every dollar in out-of-pocket costs that they would expect to pay with a less generous insurance plan. Given the value that people assign to generous coverage of specialty drugs, having high cost sharing on these drugs seemingly runs contrary to what people value in their health insurance.
Laser-induced desorption determinations of surface diffusion on Rh(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seebauer, E.G.; Schmidt, L.D.
Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 < theta < 0.33, the pre-exponential factor D/sub 0/ - 8 x 10/sup -2/ cm/sup 2//s, with a diffusion activation energy 3.7 < E/sub diff/ < 4.3 kcal/mol. For CO, E/sub diff/ = 7 kcal/mol, but D/sub 0/ rises from 10/sup -3/ to 10/sup -2/ cm/sup 2//s between theta = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear tomore » correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab.« less
22 CFR 126.5 - Canadian exemptions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... such persons publicly available through the Internet Web site of the Directorate of Defense Trade... coverage area on the surface of the earth less than 200 nautical miles in diameter, where “coverage area” is defined as that area on the surface of the earth that is illuminated by the main beam width of the...
NASA Astrophysics Data System (ADS)
Rosenow, Phil; Tonner, Ralf
2016-05-01
The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenow, Phil; Tonner, Ralf, E-mail: tonner@chemie.uni-marburg.de
2016-05-28
The extent of hydrogen coverage of the Si(001) c(4 × 2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. Themore » on-set of H{sub 2} desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computational treatment of chemical reactions under typical metal organic vapor phase epitaxy conditions on Si(001).« less
Using Amphiphilic Copolymers and Nanoparticles to Organize Charged Biopolymers
NASA Astrophysics Data System (ADS)
Park, Jung Hyun; McConnell, Marla; Sun, Yujie; Goldman, Yale; Composto, Russell
2009-03-01
Nanoparticles (NPs) on amphiphilic random copolymers control filamentous actin (F-actin) attachment. 3-aminopropyltriethoxysilane (APTES) coated silica NPs are selectively bonded to acrylic acid groups on the surface of a poly(styrene-r-acrylic acid) (PS-r-PAA) film. By changing the concentration of NPs in the medium, the surface density of positively charged anchors is tuned. Using total internal reflection fluorescence (TIRF) microscopy, immobilization of F-actin is observed via electrostatic interaction with NPs at high NP coverages. Below a critical coverage, F-actin is weakly attached and undergoes thermal fluctuations near the surface. Another method to tune F-actin attachment is to use APTES to cross-link and create positive charge in PAA films. Here, the surface coverage of F-actin decreases as APTES concentration increases. This observation is attributed to an increase in surface roughness and hydrophobicity that reduces the effective surface sites that attract F-actin. In addition, in-situ G-actin polymerization to F-actin is observed on both the NP and cross-linked PAA templates.
Research on the effect of coverage rate on the surface quality in laser direct writing process
NASA Astrophysics Data System (ADS)
Pan, Xuetao; Tu, Dawei
2017-07-01
Direct writing technique is usually used in femtosecond laser two-photon micromachining. The size of the scanning step is an important factor affecting the surface quality and machining efficiency of micro devices. According to the mechanism of two-photon polymerization, combining the distribution function of light intensity and the free radical concentration theory, we establish the mathematical model of coverage of solidification unit, then analyze the effect of coverage on the machining quality and efficiency. Using the principle of exposure equivalence, we also obtained the analytic expressions of the relationship among the surface quality characteristic parameters of microdevices and the scanning step, and carried out the numerical simulation and experiment. The results show that the scanning step has little influence on the surface quality of the line when it is much smaller than the size of the solidification unit. However, with increasing scanning step, the smoothness of line surface is reduced rapidly, and the surface quality becomes much worse.
Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate
Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.; ...
2017-11-21
Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less
Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.
Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less
Maximizing tibial coverage is detrimental to proper rotational alignment.
Martin, Stacey; Saurez, Alex; Ismaily, Sabir; Ashfaq, Kashif; Noble, Philip; Incavo, Stephen J
2014-01-01
Traditionally, the placement of the tibial component in total knee arthroplasty (TKA) has focused on maximizing coverage of the tibial surface. However, the degree to which maximal coverage affects correct rotational placement of symmetric and asymmetric tibial components has not been well defined and might represent an implant design issue worthy of further inquiry. Using four commercially available tibial components (two symmetric, two asymmetric), we sought to determine (1) the overall amount of malrotation that would occur if components were placed for maximal tibial coverage; and (2) whether the asymmetric designs would result in less malrotation than the symmetric designs when placed for maximal coverage in a computer model using CT reconstructions. CT reconstructions of 30 tibial specimens were used to generate three-dimensional tibia reconstructions with attention to the tibial anatomic axis, the tibial tubercle, and the resected tibial surface. Using strict criteria, four commercially available tibial designs (two symmetric, two asymmetric) were placed on the resected tibial surface. The resulting component rotation was examined. Among all four designs, 70% of all tibial components placed in orientation maximizing fit to resection surface were internally malrotated (average 9°). The asymmetric designs had fewer cases of malrotation (28% and 52% for the two asymmetric designs, 100% and 96% for the two symmetric designs; p < 0.001) and less malrotation on average (2° and 5° for the asymmetric designs, 14° for both symmetric designs; p < 0.001). Maximizing tibial coverage resulted in implant malrotation in a large percentage of cases. Given similar amounts of tibial coverage, correct rotational positioning was more likely to occur with the asymmetric designs. Malrotation of components is an important cause of failure in TKA. Priority should be given to correct tibial rotational positioning. This study suggested that it is easier to balance rotation and coverage with asymmetric tibial baseplates; clinical research will need to determine whether the observed difference affects patellar tracking, loosening rates, or the likelihood of revisions after TKA.
Multi-Objective Optimization of Spacecraft Trajectories for Small-Body Coverage Missions
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2017-01-01
Visual coverage of surface elements of a small-body object requires multiple images to be taken that meet many requirements on their viewing angles, illumination angles, times of day, and combinations thereof. Designing trajectories capable of maximizing total possible coverage may not be useful since the image target sequence and the feasibility of said sequence given the rotation-rate limitations of the spacecraft are not taken into account. This work presents a means of optimizing, in a multi-objective manner, surface target sequences that account for such limitations.
Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I
2012-12-14
Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices.
Surface sensitization mechanism on negative electron affinity p-GaN nanowires
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-03-01
The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.
Titration of submonolayer Au growth on Si(111)
NASA Astrophysics Data System (ADS)
Kautz, J.; Copel, M. W.; Gordon, M. S.; Tromp, R. M.; van der Molen, S. J.
2014-01-01
We study and analyze the growth of submonolayers of Au on Si(111) by a complementary set of surface techniques. Specifically, we focus on the 5×2 and the α√3 ×√3 structures. We determine the gold coverage of these structures as a function of temperature by means of low energy electron diffraction (LEED) and low energy electron microscopy (LEEM). These results are independently calibrated by ex-situ ion scattering experiments. This allows us to present a phase diagram for this system. Remarkably, for all temperatures considered (820-1040 K), we find a coverage for the 5×2 phase that is significantly (≈10%) higher than the value of 0.6 monolayers which is assumed in the latest structural models. Therefore, a further refinement of the present picture of the quasi-one-dimensional 5×2 structure is required.
A diffuse radar scattering model from Martian surface rocks
NASA Technical Reports Server (NTRS)
Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.
1987-01-01
Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.
Wettability of modified silica layers deposited on glass support activated by plasma
NASA Astrophysics Data System (ADS)
Terpiłowski, Konrad; Rymuszka, Diana; Goncharuk, Olena V.; Sulym, Iryna Ya.; Gun'ko, Vladimir M.
2015-10-01
Fumed silica modified by hexamethyldisilazane [HDMS] and polydimethylsiloxane [PDMS] was dispersed in a polystyrene/chloroform solution. To increase adhesion between deposited silica layers and a glass surface, the latter was pretreated with air plasma for 30 s. The silica/polystyrene dispersion was deposited on the glass support using a spin coater. After deposition, the plates were dried in a desiccator for 24 h. Water advancing and receding contact angles were measured using the tilted plate method. The apparent surface free energy (γS) was evaluated using the contact angle hysteresis approach. The surface topography was determined using the optical profilometry method. Contact angles changed from 59.7° ± 4.4 (at surface coverage with trimethylsilyl groups Θ = 0.14) to 155° ± 3.1 at Θ = 1. The value of γS decreased from 51.3 ± 2.8 mJ/m2 (for the sample at the lowest value of Θ) to 1.0 ± 0.4 mJ/m2 for the most hydrophobic sample. Thus, some systems with a high degree of modification by HDMS showed superhydrophobicity, and the sliding angle amounted to about 16° ± 2.1.
Abejón, David; Rueda, Pablo; del Saz, Javier; Arango, Sara; Monzón, Eva; Gilsanz, Fernando
2015-04-01
Neurostimulation is the process and technology derived from the application of electricity with different parameters to activate or inhibit nerve pathways. Pulse width (Pw) is the duration of each electrical impulse and, along with amplitude (I), determines the total energy charge of the stimulation. The aim of the study was to test Pw values to find the most adequate pulse widths in rechargeable systems to obtain the largest coverage of the painful area, the most comfortable paresthesia, and the greatest patient satisfaction. A study of the parameters was performed, varying Pw while maintaining a fixed frequency at 50 Hz. Data on perception threshold (Tp ), discomfort threshold (Td ), and therapeutic threshold (Tt ) were recorded, applying 14 increasing Pw values ranging from 50 µsec to 1000 µsec. Lastly, the behavior of the therapeutic range (TR), the coverage of the painful area, the subjective patient perception of paresthesia, and the degree of patient satisfaction were assessed. The findings after analyzing the different thresholds were as follows: When varying the Pw, the differences obtained at each threshold (Tp , Tt , and Td ) were statistically significant (p < 0.05). The differences among the resulting Tp values and among the resulting Tt values were statistically significant when varying Pw from 50 up to 600 µsec (p < 0.05). For Pw levels 600 µsec and up, no differences were observed in these thresholds. In the case of Td , significant differences existed as Pw increased from 50 to 700 µsec (p ≤ 0.05). The coverage increased in a statistically significant way (p < 0.05) from Pw values of 50 µsec to 300 µsec. Good or very good subjective perception was shown at about Pw 300 µsec. The patient paresthesia coverage was introduced as an extra variable in the chronaxie-rheobase curve, allowing the adjustment of Pw values for optimal programming. The coverage of the patient against the current chronaxie-rheobase formula will be represented on three axes; an extra axis (z) will appear, multiplying each combination of Pw value and amplitude by the percentage of coverage corresponding to those values. Using this new comparison of chronaxie-rheobase curve vs. coverage, maximum Pw values will be obtained different from those obtained by classic methods. © 2014 International Neuromodulation Society.
Land and federal mineral ownership coverage for northwestern Colorado
Biewick, L.H.; Mercier, T.J.; Levitt, Pam; Deikman, Doug; Vlahos, Bob
1999-01-01
This Arc/Info coverage contains land status and Federal mineral ownership for approximately 26,800 square miles in northwestern Colorado. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and three Colorado State Bureau of Land Management (BLM) former district offices at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.
NASA Astrophysics Data System (ADS)
Jones, G. Scott; Barteau, Mark A.; Vohs, John M.
1999-01-01
The reactions of iodoethane (ICH 2CH 3) on clean and oxygen-covered Ag(110) surfaces were investigated using temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). Iodoethane adsorbs dissociatively at 150 K to produce surface ethyl groups on both clean and oxygen-covered Ag(110) surfaces. The ethyl species couple to form butane on both surfaces, with the desorption peak maximum located between 218 and 238 K, depending on the ethyl coverage. In addition to butane, a number of oxidation products including diethyl ether, ethanol, acetaldehyde, surface acetate, ethylene, carbon dioxide and water were formed on the oxygen-dosed Ag(110) surface. Diethyl ether was the major oxygenate produced at all ethyl:oxygen ratios, and the peak temperature for ether evolution varied from 220 to 266 K depending on the relative coverages of these reactants. The total combustion products, CO 2 and H 2O, were primarily formed at low ethyl coverages in the presence of excess oxygen. The formation of ethylene near 240 K probably involves an oxygen-assisted dehydrogenation pathway since ethylene is not formed from ethyl groups on the clean surface. Acetaldehyde and ethanol evolve coincidentally with a peak centered at 270-280 K, and are attributed to the reactions of surface ethoxide species. The surface acetate which decomposes near 620 K is formed from subsequent reactions of acetaldehyde with oxygen atoms. The addition of ethyl to oxygen to form surface ethoxides was verified by HREELS results. The yields of all products exhibited a strong dependence on the relative coverages of ethyl and oxygen.
Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study
NASA Astrophysics Data System (ADS)
Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun
2018-04-01
To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.
NASA Astrophysics Data System (ADS)
Bouklah, M.; Hammouti, B.; Aouniti, A.; Benkaddour, M.; Bouyanzer, A.
2006-07-01
The effect of addition of 4',4-dihydroxychalcone (P 1), 4-aminochalcone (P 2) and 4-bromo, 4'-methoxychalcone (P 3) on the corrosion of steel in 0.5 M sulphuric acid has been studied by weight loss measurements, potentiodynamic and EIS measurements. We investigate the synergistic effect of iodide ions on the corrosion inhibition of steel in the presence of chalcone derivatives. The corrosion rates of the steel decrease with the increase of the chalcones concentration, while the inhibition efficiencies increase. The addition of iodide ions enhances the inhibition efficiency considerably. The presence of iodide ions increases the degree of surface coverage. The synergism parameters SΘ and SI, calculated from surface coverage and the values of inhibition efficiency, in the case of chalcone derivatives are found to be larger than unity. The enhanced inhibition efficiency in the presence of iodide ions is only due to synergism and there is a definite contribution from the inhibitors molecules. E (%) obtained from the various methods is in good agreement. Polarisation measurements show also that the compounds act as cathodic inhibitors.
Photon-enhanced thermionic emission from p-GaAs with nonequilibrium Cs overlayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, A. G.; Romanov, A. S.; Alperovich, V. L., E-mail: alper@isp.nsc.ru
2014-12-22
Photon-enhanced thermionic emission (PETE), which is promising for increasing the efficiency of solar energy conversion, is studied during cesium deposition on the As- and Ga-rich p-GaAs(001) surfaces and subsequent relaxation in the nonequilibrium Cs overlayer by means of photoemission quantum yield spectroscopy adapted for systems with time-variable parameters. Along with direct photoemission of “hot” electrons excited by light above the vacuum level, the spectra contain PETE contribution of “thermalized” electrons, which are excited below the vacuum level and emit in vacuum due to thermalization up in energy by phonon absorption. Comparing the measured and calculated spectra, the effective electron affinitymore » and escape probabilities of hot and thermalized electrons are obtained as functions of submonolayer Cs coverage. The minima in the affinity and pronounced peaks in the escape probabilities are observed for Cs deposition on both the As- and Ga-rich surfaces. Possible reasons for the low mean values of the electron escape probabilities and for the observed enhancement of the probabilities at certain Cs coverages are discussed, along with the implications for the PETE device realization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, Forrest E.; Kingery, Joseph E.
2015-06-17
Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8° lateral expansion angled at 30° to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquiredmore » at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5%, and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aero-combustor (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the aero-combustor turbulence condition are reduced to as low as 20% of low turbulence values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number, show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped hole film cooling with elevated turbulence levels and acceleration. IR measurements were performed for the two lowest turbulence levels to document the spanwise variation in film cooling effectiveness and heat transfer.« less
Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions
NASA Astrophysics Data System (ADS)
Singh, Bimal P.; Jena, Jayadev; Besra, Laxmidhar; Bhattacharjee, Sarama
2007-10-01
The dispersion characteristics of nanosize silicon carbide (SiC) suspension were investigated in terms of surface charge, particle size, rheological measurement and adsorption study. Ammonium polycarboxylate has been used as dispersant to stabilize the suspension. It was found that the isoelectric point (iep) of SiC powder was pHiep (4.9). The surface charge of powder changed significantly in presence of the ammonium polycarboxylate dispersant and iep shifted significantly towards lower acidic pH (3.6). The shift in iep has been quantified in terms of Δ G 0 SP, the specific free energy of adsorption between the surface sites and the adsorbing polyelectrolyte (APC). The values of Δ G 0 SP (-10.85 RT unit) estimated by the electro kinetic data compare well with those obtained from adsorption isotherms (-9.521 RT unit). The experimentally determined optimum concentration of dispersant required for maximizing the dispersion was found to be 2.4 mg/g of SiC (corresponding to an adsorbed amount of 1.10 mg/g), at pH 7.5. This is much below the full monolayer coverage (corresponding to adsorbed amount of 1.75 mg/g) of the particles surface by the dispersant. The surface charge quantity, rheological, pH, electro kinetic and adsorption isotherm results were used to explain and correlate the stability of the nanosize silicon carbide in aqueous media. At pH 7.5, where both SiC surface and APC are negatively charged, the adsorption of APC was low because of limited availability of favourable adsorption sites. In addition, the brush-like configuration of the adsorbed polymer prevented close approach of any additional dispersant; hence stabilization of the slurry happens at a comparatively lower concentration than the monolayer coverage.
Wehrmeister, Fernando C; da Silva, Inácio Crochemore M; Barros, Aluisio J D; Victora, Cesar G
2017-01-01
To assess associations between national characteristics, including governance indicators, with a proxy for universal health coverage in reproductive, maternal, newborn and child health (RMNCH). Ecological analysis based on data from national standardised cross-sectional surveys. Low-income and middle-income countries with a Demographic and Health Survey or a Multiple Indicator Cluster Survey since 2005. 1 246 710 mothers and 2 129 212 children from 80 national surveys. Gross domestic product (GDP), country surface area, population, Gini index and six governance indicators (control of corruption, political stability and absence of violence, government effectiveness, regulatory quality, rule of law, and voice and accountability). Levels and inequality in the composite coverage index (CCI), a weighted average of eight RMNCH interventions. Relative and absolute inequalities were measured through the concentration index (CIX) and slope index of inequality (SII) for CCI, respectively. The average values of CCI (70.5% (SD=13.3)), CIX (5.3 (SD=5.1)) and mean slope index (19.8 (SD=14.7)) were calculated. In the unadjusted analysis, all governance variables and GDP were positively associated with the CCI and negatively with inequalities. Country surface showed inverse associations with both inequality indices. After adjustment, among the governance indicators, only political stability and absence of violence was directly related to CCI (β=6.3; 95% CI 3.6 to 9.1; p<0.001) and inversely associated with relative (CIX; β=-1.4; 95% CI -2.4 to -0.4; p=0.007) and absolute (SII; β=-5.3; 95% CI -8.9 to -1.7; p=0.005) inequalities. The strongest associations with governance indicators were found in the poorest wealth quintile. Similar patterns were observed for GDP. Country surface area was inversely related to inequalities on CCI. Levels and equity in RMNCH interventions are positively associated with political stability and absence of violence, and with GDP, and inversely associated with country surface area.
Wehrmeister, Fernando C; da Silva, Inácio Crochemore M; Barros, Aluisio J D; Victora, Cesar G
2017-01-01
Objective To assess associations between national characteristics, including governance indicators, with a proxy for universal health coverage in reproductive, maternal, newborn and child health (RMNCH). Design Ecological analysis based on data from national standardised cross-sectional surveys. Setting Low-income and middle-income countries with a Demographic and Health Survey or a Multiple Indicator Cluster Survey since 2005. Participants 1 246 710 mothers and 2 129 212 children from 80 national surveys. Exposures of interest Gross domestic product (GDP), country surface area, population, Gini index and six governance indicators (control of corruption, political stability and absence of violence, government effectiveness, regulatory quality, rule of law, and voice and accountability). Main outcomes Levels and inequality in the composite coverage index (CCI), a weighted average of eight RMNCH interventions. Relative and absolute inequalities were measured through the concentration index (CIX) and slope index of inequality (SII) for CCI, respectively. Results The average values of CCI (70.5% (SD=13.3)), CIX (5.3 (SD=5.1)) and mean slope index (19.8 (SD=14.7)) were calculated. In the unadjusted analysis, all governance variables and GDP were positively associated with the CCI and negatively with inequalities. Country surface showed inverse associations with both inequality indices. After adjustment, among the governance indicators, only political stability and absence of violence was directly related to CCI (β=6.3; 95% CI 3.6 to 9.1; p<0.001) and inversely associated with relative (CIX; β=−1.4; 95% CI −2.4 to −0.4; p=0.007) and absolute (SII; β=−5.3; 95% CI –8.9 to −1.7; p=0.005) inequalities. The strongest associations with governance indicators were found in the poorest wealth quintile. Similar patterns were observed for GDP. Country surface area was inversely related to inequalities on CCI. Conclusions Levels and equity in RMNCH interventions are positively associated with political stability and absence of violence, and with GDP, and inversely associated with country surface area. PMID:29225951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Syh, J; Patel, B
Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less
Influence of surface coverage on the chemical desorption process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr
2014-07-07
In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorptionmore » efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.« less
Desorption of oxygen from alloyed Ag/Pt(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankowski, Maciej; Wormeester, Herbert, E-mail: h.wormeester@utwente.nl; Zandvliet, Harold J. W.
2014-06-21
We have investigated the interaction of oxygen with the Ag/Pt(111) surface alloy by thermal desorption spectroscopy (TDS). The surface alloy was formed during the deposition of sub-monolayer amounts of silver on Pt(111) at 800 K and subsequent cooling to 300 K. The low-temperature phase of the surface alloy is composed of nanometer-sized silver rich stripes, embedded within platinum-rich domains, which were characterized with spot profile analysis low energy electron diffraction. The TDS measurements show that oxygen adsorption is blocked on Ag sites: the saturation coverage of oxygen decreases with increasing Ag coverage. Also, the activation energy for desorption (E{sub des})more » decreases with Ag coverage. The analysis of the desorption spectra from clean Pt(111) shows a linear decay of E{sub des} with oxygen coverage, which indicates repulsive interactions between the adsorbed oxygen atoms. In contrast, adsorption on alloyed Ag/Pt(111) leads to an attractive interaction between adsorbed oxygen atoms.« less
L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yitamben, E. N.; Clayborne, A.; Darling, Seth B.
2015-05-21
The present article investigates the adsorption and molecular orientation of L-Tryptophan, which is both an essential amino acid important for protein synthesis and of particular interest for the development of chiral molecular electronics and biocompatible processes and devices, on Cu(111) using scanning tunneling microscopy and spectroscopy at 55 K and at room temperature. The arrangement of chemisorbed L-Tryptophan on the copper surface varies with both temperature and surface coverage. At low coverage, small clusters form on the surface irrespective of temperature, while at high coverage an ordered chain structure emerges at room temperature, and a tightly packed structure forms amore » molecular labyrinth at low temperature. The dominating superstructure of the adsorbates arises from intermolecular hydrogen bonding, and pi-bonding interactions between the indole groups of neighboring molecules and the Cu surface.« less
NASA Astrophysics Data System (ADS)
Hu, Dianyin; Gao, Ye; Meng, Fanchao; Song, Jun; Wang, Rongqiao
2018-04-01
Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.
Zhang, Di; Savandi, Ali S.; Demarco, John J.; Cagnon, Chris H.; Angel, Erin; Turner, Adam C.; Cody, Dianna D.; Stevens, Donna M.; Primak, Andrew N.; McCollough, Cynthia H.; McNitt-Gray, Michael F.
2009-01-01
The larger coverage afforded by wider z-axis beams in multidetector CT (MDCT) creates larger cone angles and greater beam divergence, which results in substantial surface dose variation for helical and contiguous axial scans. This study evaluates the variation of absorbed radiation dose in both cylindrical and anthropomorphic phantoms when performing helical or contiguous axial scans. The approach used here was to perform Monte Carlo simulations of a 64 slice MDCT. Simulations were performed with different radiation profiles (simulated beam widths) for a given collimation setting (nominal beam width) and for different pitch values and tube start angles. The magnitude of variation at the surface was evaluated under four different conditions: (a) a homogeneous CTDI phantom with different combinations of pitch and simulated beam widths, (b) a heterogeneous anthropomorphic phantom with one measured beam collimation and various pitch values, (c) a homogeneous CTDI phantom with fixed beam collimation and pitch, but with different tube start angles, and (d) pitch values that should minimize variations of surface dose—evaluated for both homogeneous and heterogeneous phantoms. For the CTDI phantom simulations, peripheral dose patterns showed variation with percent ripple as high as 65% when pitch is 1.5 and simulated beam width is equal to the nominal collimation. For the anterior surface dose on an anthropomorphic phantom, the percent ripple was as high as 40% when the pitch is 1.5 and simulated beam width is equal to the measured beam width. Low pitch values were shown to cause beam overlaps which created new peaks. Different x-ray tube start angles create shifts of the peripheral dose profiles. The start angle simulations showed that for a given table position, the surface dose could vary dramatically with minimum values that were 40% of the peak when all conditions are held constant except for the start angle. The last group of simulations showed that an “ideal” pitch value can be determined which reduces surface dose variations, but this pitch value must take into account the measured beam width. These results reveal the complexity of estimating surface dose and demonstrate a range of dose variability at surface positions for both homogeneous cylindrical and heterogeneous anthropomorphic phantoms. These findings have potential implications for small-sized dosimeter measurements in phantoms, such as with TLDs or small Farmer chambers. PMID:19378763
2012-12-19
VANDENBERG AFB, Calif.-- The truck transporting NASA's Landsat Data Continuity Mission, or LDCM, satellite backs into the processing facility at Vandenberg Air Force Base, Calif. for prelaunch checkout. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2013-01-12
VANDENBERG AFB, Calif. – The Landsat Data Continuity Mission, or LDCM, spacecraft stands in the Astrotech processing facility at Vandenberg Air Force Base in Calif., during fueling operations. The Landsat Data Continuity Mission is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: VAFB
2012-12-21
VANDENBERG AFB, Calif. -- Technicians unload and rotate NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif.-- Technicians use a crane to move NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- NASA's Landsat Data Continuity Mission, or LDCM, satellite arrives by transport truck at Vandenberg Air Force Base, Calif. for prelaunch processing. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif.-- Technicians use a crane to move NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- NASA's Landsat Data Continuity Mission, or LDCM, satellite arrives by transport truck at Vandenberg Air Force Base, Calif. for prelaunch processing. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- The truck transporting NASA's Landsat Data Continuity Mission, or LDCM, satellite backs into the processing facility at Vandenberg Air Force Base, Calif. for prelaunch checkout. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif.-- Technicians begin checkout of NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif. -- Technicians unload NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif. -- Technicians inspect NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif.-- Technicians unload NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif.-- Technicians use a crane to move NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- Technicians position the transport container with NASA's Landsat Data Continuity Mission, or LDCM, satellite at the prelaunch processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- NASA's Landsat Data Continuity Mission, or LDCM, satellite arrives by transport truck at the Vandenberg Air Force Base, Calif. for prelaunch processing. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif. -- NASA's Landsat Data Continuity Mission, or LDCM, satellite during post-arrival inspections at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- The truck transporting NASA's Landsat Data Continuity Mission, or LDCM, satellite backs into the processing facility at Vandenberg Air Force Base, Calif. for prelaunch checkout. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
Effective elastic properties of a van der Waals molecular monolayer at a metal surface
NASA Astrophysics Data System (ADS)
Sun, Dezheng; Kim, Dae-Ho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jonathan; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat S.; Hyldgaard, Per; Bartels, Ludwig
2010-11-01
Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young’s modulus of 1.5 GPa and a Poisson ratio ≈0.1 . These values suggest interpretation of the molecular monolayer as a porous material—in marked congruence with our microscopic observations.
2012-12-21
VANDENBERG AFB, Calif.-- Technicians begin checkout of NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif. -- Technicians unload NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- Technicians position the transport container with NASA's Landsat Data Continuity Mission, or LDCM, satellite at the prelaunch processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif. -- NASA's Landsat Data Continuity Mission, or LDCM, satellite during post-arrival inspections at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-21
VANDENBERG AFB, Calif. -- Technicians inspect NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Huijun; Gordon, J. James; Siebers, Jeffrey V.
2011-02-15
Purpose: A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D{sub v} exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structuresmore » meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Methods: Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals {omega} (e.g., {omega}=1 deg., 2 deg., 5 deg., 10 deg., 20 deg.). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment {omega}{sub eff}. In each direction, the DM was calculated by moving the structure in radial steps of size {delta}(=0.1,0.2,0.5,1 mm) until the specified isodose was crossed. Coverage estimation accuracy {Delta}Q was quantified as a function of the sampling parameters {omega} or {omega}{sub eff} and {delta}. Results: The accuracy of coverage estimates depends on angular and radial DMD sampling parameters {omega} or {omega}{sub eff} and {delta}, as well as the employed sampling technique. Target |{Delta}Q|<1% and OAR |{Delta}Q|<3% can be achieved with sampling parameters {omega} or {omega}{sub eff}=20 deg., {delta}=1 mm. Better accuracy (target |{Delta}Q|<0.5% and OAR |{Delta}Q|<{approx}1%) can be achieved with {omega} or {omega}{sub eff}=10 deg., {delta}=0.5 mm. As the number of sampling points decreases, the isotropic sampling method maintains better accuracy than fixed angular sampling. Conclusions: Coverage estimates for post-planning evaluation are essential since coverage values of targets and OARs often differ from the values implied by the static margin-based plans. Finer sampling of the DMD enables more accurate assessment of the effect of geometric uncertainties on coverage estimates prior to treatment. DMD sampling with {omega} or {omega}{sub eff}=10 deg. and {delta}=0.5 mm should be adequate for planning purposes.« less
Xu, Huijun; Gordon, J James; Siebers, Jeffrey V
2011-02-01
A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D, exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structures meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals w (e.g., w = 1 degree, 2 degrees, 5 degrees, 10 degrees, 20 degrees). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment omega eff. In each direction, the DM was calculated by moving the structure in radial steps of size delta (=0.1, 0.2, 0.5, 1 mm) until the specified isodose was crossed. Coverage estimation accuracy deltaQ was quantified as a function of the sampling parameters omega or omega eff and delta. The accuracy of coverage estimates depends on angular and radial DMD sampling parameters omega or omega eff and delta, as well as the employed sampling technique. Target deltaQ/ < l% and OAR /deltaQ/ < 3% can be achieved with sampling parameters omega or omega eef = 20 degrees, delta =1 mm. Better accuracy (target /deltaQ < 0.5% and OAR /deltaQ < approximately 1%) can be achieved with omega or omega eff = 10 degrees, delta = 0.5 mm. As the number of sampling points decreases, the isotropic sampling method maintains better accuracy than fixed angular sampling. Coverage estimates for post-planning evaluation are essential since coverage values of targets and OARs often differ from the values implied by the static margin-based plans. Finer sampling of the DMD enables more accurate assessment of the effect of geometric uncertainties on coverage estimates prior to treatment. DMD sampling with omega or omega eff = 10 degrees and delta = 0.5 mm should be adequate for planning purposes.
Lange, Benjamin A; Flores, Hauke; Michel, Christine; Beckers, Justin F; Bublitz, Anne; Casey, John Alec; Castellani, Giulia; Hatam, Ido; Reppchen, Anke; Rudolph, Svenja A; Haas, Christian
2017-11-01
There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan-Arctic scale. We sampled sea ice cores from MYI and first-year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m 2 , a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice-algal biomass and represent a reliable ice-algal habitat due to the (quasi-) permanent low-snow surface of these features. We identified an ice-algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice-algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice-algal habitat within the MYI-covered region of 0.54 million km 2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km 2 (0.3% of total ice area) determined using the conventional block-model classification, which assigns single-parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice-algal habitat during spring when food is sparse and many organisms depend on ice-algae. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Single-Isocenter Multiple-Target Stereotactic Radiosurgery: Risk of Compromised Coverage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roper, Justin, E-mail: justin.roper@emory.edu; Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, Georgia; Chanyavanich, Vorakarn
2015-11-01
Purpose: To determine the dosimetric effects of rotational errors on target coverage using volumetric modulated arc therapy (VMAT) for multitarget stereotactic radiosurgery (SRS). Methods and Materials: This retrospective study included 50 SRS cases, each with 2 intracranial planning target volumes (PTVs). Both PTVs were planned for simultaneous treatment to 21 Gy using a single-isocenter, noncoplanar VMAT SRS technique. Rotational errors of 0.5°, 1.0°, and 2.0° were simulated about all axes. The dose to 95% of the PTV (D95) and the volume covered by 95% of the prescribed dose (V95) were evaluated using multivariate analysis to determine how PTV coverage was relatedmore » to PTV volume, PTV separation, and rotational error. Results: At 0.5° rotational error, D95 values and V95 coverage rates were ≥95% in all cases. For rotational errors of 1.0°, 7% of targets had D95 and V95 values <95%. Coverage worsened substantially when the rotational error increased to 2.0°: D95 and V95 values were >95% for only 63% of the targets. Multivariate analysis showed that PTV volume and distance to isocenter were strong predictors of target coverage. Conclusions: The effects of rotational errors on target coverage were studied across a broad range of SRS cases. In general, the risk of compromised coverage increased with decreasing target volume, increasing rotational error and increasing distance between targets. Multivariate regression models from this study may be used to quantify the dosimetric effects of rotational errors on target coverage given patient-specific input parameters of PTV volume and distance to isocenter.« less
NASA Astrophysics Data System (ADS)
Xu, Ya; Sakurai, Junya; Teraoka, Yuden; Yoshigoe, Akitaka; Demura, Masahiko; Hirano, Toshiyuki
2017-01-01
The initial oxidation behavior of a clean Ni3Al (210) surface was studied at 300 K using a supersonic O2 molecular beam (O2 SSMB) having an O2 translational energy of 2.3 eV, and real-time photoemission spectroscopy performed with high-brilliance synchrotron radiation. The evolution behaviors of the O 1s, Ni 2p, Al 2p, and Ni 3p spectra were examined during irradiation with the O2 SSMB. The spectral analysis revealed that both the Al atoms and the Ni atoms on the surface were oxidized; however, the oxidation of Al progressed much faster than that of Ni. The oxidation of Al began to occur and AlOx was formed at an oxygen coverage of 0.26 monolayer (ML) (1 ML was defined as the atomic density of the Ni3Al (210) surface) and saturated at an oxygen coverage of 2.5 ML. In contrast, the oxidation of Ni commenced a little late at an oxygen coverage of 1.6 ML and slowly progressed to saturation, which occurred at an oxygen coverage of 4.89 ML.
Management of gingival recession by the use of an acellular dermal graft material: a 12-case series.
Santos, A; Goumenos, G; Pascual, A
2005-11-01
Different soft tissue defects can be treated by a variety of surgical procedures. Most of these techniques require the palatal area as a donor site. Recently, an acellular dermal graft has become available that can substitute for palatal donor tissue. This study describes the surgical technique for gingival augmentation and root coverage and the results of 12 clinical cases. A comparison between the three most popular mucogingival procedures for root coverage is also presented. The results of the 12 patients and the 26 denuded surfaces have shown that we can obtain a mean root coverage of 74% with the acellular dermal graft. Thirteen out of the 26 denuded surfaces had complete root coverage. The average increase in keratinized tissue was 1.19 mm. It seems that the long-term results of the cases are stable. The proposed technique of root coverage with an acellular dermal graft can be a good alternative to soft tissue grafts for root coverage, and it should be part of our periodontal plastic surgery armamentarium.
Topoclimatological and snowhydrological survey of Switzerland
NASA Technical Reports Server (NTRS)
Winiger, M. (Principal Investigator)
1980-01-01
The author has identified the following significant results. Low temperature zones depend on the topography and the terrain coverage type (besides the meteorological situation). The usual pattern of cold zones at the bottom of the valleys, warmer belts along the valley slopes, and cold mountain tops is modified by the terrain coverage type. Rural and forested areas normally have different surface temperatures, but along a vertical profile the temperature decrease (or increase) is often of the same order of magnitude. Because there is also a close correlation between the topography and terrain coverage (high percentage of forested areas at the valley slopes up to the timber line, much less along the valley floors), the surface temperature of the warm slope zone is increased compared to a valley profile with uniform coverage.
Friction force microscopy at a regularly stepped Au(665) electrode: Anisotropy effects
NASA Astrophysics Data System (ADS)
Podgaynyy, Nikolay; Iqbal, Shahid; Baltruschat, Helmut
2015-01-01
Using friction force microscopy, friction was determined for the AFM-tip scanning parallel and vertically to the monoatomic steps of Au(665) electrode for different coverages of Cu in sulfuric acid. When the tip was scanning parallel to the steps, the results were similar to those obtained before for a Au(111) surface: a higher coverage of Cu leads to an increased friction. However, differently from Au(111), no transitions in the friction coefficient were observed with increasing load. Atomic stick slip was observed both for the Au surface and the √{ 3} × √{ 3} honeycomb Cu adlayer with a Cu coverage of 2/3. When the tip was scanning perpendicular to the steps, friction did not depend much on coverage; astonishingly, atomic stick slip was also observed.
Impact of coverage on the reliability of a fault tolerant computer
NASA Technical Reports Server (NTRS)
Bavuso, S. J.
1975-01-01
A mathematical reliability model is established for a reconfigurable fault tolerant avionic computer system utilizing state-of-the-art computers. System reliability is studied in light of the coverage probabilities associated with the first and second independent hardware failures. Coverage models are presented as a function of detection, isolation, and recovery probabilities. Upper and lower bonds are established for the coverage probabilities and the method for computing values for the coverage probabilities is investigated. Further, an architectural variation is proposed which is shown to enhance coverage.
7 CFR 3560.105 - Insurance and taxes.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Windstorm Coverage. (ii) Earthquake Coverage. (iii) Sinkhole Insurance or Mine Subsidence Insurance. (3) For... the total insured value. (iv) Earthquake Coverage. In the event that the borrower obtains earthquake... insurance or mine subsidence insurance should be similar to what would be required for earthquake insurance...
7 CFR 3560.105 - Insurance and taxes.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Windstorm Coverage. (ii) Earthquake Coverage. (iii) Sinkhole Insurance or Mine Subsidence Insurance. (3) For... the total insured value. (iv) Earthquake Coverage. In the event that the borrower obtains earthquake... insurance or mine subsidence insurance should be similar to what would be required for earthquake insurance...
7 CFR 3560.105 - Insurance and taxes.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Windstorm Coverage. (ii) Earthquake Coverage. (iii) Sinkhole Insurance or Mine Subsidence Insurance. (3) For... the total insured value. (iv) Earthquake Coverage. In the event that the borrower obtains earthquake... insurance or mine subsidence insurance should be similar to what would be required for earthquake insurance...
7 CFR 3560.105 - Insurance and taxes.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Windstorm Coverage. (ii) Earthquake Coverage. (iii) Sinkhole Insurance or Mine Subsidence Insurance. (3) For... the total insured value. (iv) Earthquake Coverage. In the event that the borrower obtains earthquake... insurance or mine subsidence insurance should be similar to what would be required for earthquake insurance...
7 CFR 3560.105 - Insurance and taxes.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Windstorm Coverage. (ii) Earthquake Coverage. (iii) Sinkhole Insurance or Mine Subsidence Insurance. (3) For... the total insured value. (iv) Earthquake Coverage. In the event that the borrower obtains earthquake... insurance or mine subsidence insurance should be similar to what would be required for earthquake insurance...
Soft Landing of Bare Nanoparticles with Controlled Size, Composition, and Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Grant E.; Colby, Robert J.; Laskin, Julia
2015-01-01
A kinetically-limited physical synthesis method based on magnetron sputtering and gas aggregation has been coupled with size-selection and ion soft landing to prepare bare metal nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of bare nanoparticles soft landed onto flat glassy carbon and silicon as well as stepped graphite surfaces may be controlled through size-selection with a quadrupole mass filter and the length of deposition, respectively. The bare nanoparticles are observed with AFM to bind randomly to the flat glassymore » carbon surface when soft landed at relatively low coverage (1012 ions). In contrast, on stepped graphite surfaces at intermediate coverage (1013 ions) the soft landed nanoparticles are shown to bind preferentially along step edges forming extended linear chains of particles. At the highest coverage (5 x 1013 ions) examined in this study the nanoparticles are demonstrated with both AFM and SEM to form a continuous film on flat glassy carbon and silicon surfaces. On a graphite surface with defects, however, it is shown with SEM that the presence of localized surface imperfections results in agglomeration of nanoparticles onto these features and the formation of neighboring depletion zones that are devoid of particles. Employing high resolution scanning transmission electron microscopy in the high angular annular dark field imaging mode (STEM-HAADF) and electron energy loss spectroscopy (EELS) it is demonstrated that the magnetron sputtering/gas aggregation synthesis technique produces single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with clearly defined core-shell structure. Therefore, this kinetically-limited physical synthesis technique, when combined with ion soft landing, is a versatile complementary method for preparing a wide range of bare supported nanoparticles with selected properties that are free of the solvent, organic capping agents, and residual reactants present with nanoparticles synthesized in solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2013-10-17
The chemical and photochemical properties of three butene molecules (cis-butene, trans-butene and isobutene) were explored on the clean rutile TiO 2(110) surface using temperature programmed desorption (TPD) and photon simulated desorption (PSD). At the low coverage limit, trans-butene was the most strongly bound butene on the TiO 2(110) surface, desorbing at ~ 210 K, however increased intermolecular repulsions between trans-butene molecules at higher coverage diminished its binding. Both cis-butene and isobutene saturated the first layer on TiO 2(110) at a coverage of ~0.50 ML in a single TPD feature at 184 and 192 K, respectively. In contrast, the maximum coveragemore » that trans-butene could achieve in its 210 K peak was ~1/3 ML, with higher coverages resulting a low temperature desorption at ~137 K. Coverages of these molecules above 0.50 ML resulted in population of second layer and multilayer states. The instability of trans-butene at a coverage of 0.5 ML on the surface was linked to the inversion center in its symmetry. In the absence of coadsorbed oxygen, the primary photochemical pathway of each butene molecule on TiO 2(110) was photodesorption. The photoactivities of these molecules on TiO 2(110) at an initial coverage of 0.50 ML followed the trend: isobutene > cis-butene > trans-butene. In contrast, the photoactivities of low coverages of cis-butene and trans-butene exceeded those measured at 0.50 ML. These data suggest that intermolecular interactions (repulsions) play a significant role in diminishing the photoactivities of weakly bound molecules on TiO 2 photocatalysts. Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences, and performed in the Williams R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC05-76RL01830.« less
Code of Federal Regulations, 2013 CFR
2013-10-01
...: Actuarial value (AV) means the percentage paid by a health plan of the percentage of the total allowed costs... 1302(c) of the Affordable Care Act; and (3) A bronze, silver, gold, or platinum level of coverage as... values as defined by section 1302(d)(1) of the Affordable Care Act of plan coverage. Percentage of the...
Peano-like paths for subaperture polishing of optical aspherical surfaces.
Tam, Hon-Yuen; Cheng, Haobo; Dong, Zhichao
2013-05-20
Polishing can be more uniform if the polishing path provides uniform coverage of the surface. It is known that Peano paths can provide uniform coverage of planar surfaces. Peano paths also contain short path segments and turns: (1) all path segments have the same length, (2) path segments are mutually orthogonal at the turns, and (3) path segments and turns are uniformity distributed over the domain surface. These make Peano paths an attractive candidate among polishing tool paths because they enhance multidirectional approaches of the tool to each surface location. A method for constructing Peano paths for uniform coverage of aspherical surfaces is proposed in this paper. When mapped to the aspherical surface, the path also contains short path segments and turns, and the above attributes are approximately preserved. Attention is paid so that the path segments are still well distributed near the vertex of the surface. The proposed tool path was used in the polishing of a number of parabolic BK7 specimens using magnetorheological finishing (MRF) and pitch with cerium oxide. The results were rather good for optical lenses and confirm that a Peano-like path was useful for polishing, for MRF, and for pitch polishing. In the latter case, the surface roughness achieved was 0.91 nm according to WYKO measurement.
Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; ...
2015-02-23
We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interactionmore » with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.« less
NASA Astrophysics Data System (ADS)
Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul
2018-03-01
Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.
Surface states and annihilation characteristics of positrons trapped at the oxidized Cu(100) surface
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Weiss, A. H.
2013-06-01
In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Oxidation of the Cu(100) surface has been studied by performing an ab-initio investigation of the stability and electronic structure of the Cu(100) missing row reconstructed surface at various on-surface and subsurface oxygen coverages ranging from 0.5 to 1.5 monolayers using density functional theory (DFT). All studied structures have been found to be energetically more favorable as compared to structures formed by purely on-surface oxygen adsorption. The observed decrease in the positron work function when oxygen atoms occupy on-surface and subsurface sites has been attributed to a significant charge redistribution within the first two layers, buckling effects within each layer and an interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of the surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). The results presented provide an explanation for the changes observed in the probability of annihilation of surface trapped positrons with Cu 3p core-level electrons as a function of annealing temperature.
Exposing Coverage Data to the Semantic Web within the MELODIES project: Challenges and Solutions
NASA Astrophysics Data System (ADS)
Riechert, Maik; Blower, Jon; Griffiths, Guy
2016-04-01
Coverage data, typically big in data volume, assigns values to a given set of spatiotemporal positions, together with metadata on how to interpret those values. Existing storage formats like netCDF, HDF and GeoTIFF all have various restrictions that prevent them from being preferred formats for use over the web, especially the semantic web. Factors that are relevant here are the processing complexity, the semantic richness of the metadata, and the ability to request partial information, such as a subset or just the appropriate metadata. Making coverage data available within web browsers opens the door to new ways for working with such data, including new types of visualization and on-the-fly processing. As part of the European project MELODIES (http://melodiesproject.eu) we look into the challenges of exposing such coverage data in an interoperable and web-friendly way, and propose solutions using a host of emerging technologies like JSON-LD, the DCAT and GeoDCAT-AP ontologies, the CoverageJSON format, and new approaches to REST APIs for coverage data. We developed the CoverageJSON format within the MELODIES project as an additional way to expose coverage data to the web, next to having simple rendered images available using standards like OGC's WMS. CoverageJSON partially incorporates JSON-LD but does not encode individual data values as semantic resources, making use of the technology in a practical manner. The development also focused on it being a potential output format for OGC WCS. We will demonstrate how existing netCDF data can be exposed as CoverageJSON resources on the web together with a REST API that allows users to explore the data and run operations such as spatiotemporal subsetting. We will show various use cases from the MELODIES project, including reclassification of a Land Cover dataset client-side within the browser with the ability for the user to influence the reclassification result by making use of the above technologies.
NASA Astrophysics Data System (ADS)
Valentini, Paolo; Schwartzentruber, Thomas E.; Cozmuta, Ioana
2011-12-01
Atomic-level Grand Canonical Monte Carlo (GCMC) simulations equipped with a reactive force field (ReaxFF) are used to study atomic oxygen adsorption on a Pt(111) surface. The off-lattice GCMC calculations presented here rely solely on the interatomic potential and do not necessitate the pre-computation of surface adlayer structures and their interpolation. As such, they provide a predictive description of adsorbate phases. In this study, validation is obtained with experimental evidence (steric heats of adsorption and isotherms) as well as DFT-based state diagrams available in the literature. The ReaxFF computed steric heats of adsorption agree well with experimental data, and this study clearly shows that indirect dissociative adsorption of O2 on Pt(111) is an activated process at non-zero coverages, with an activation energy that monotonically increases with coverage. At a coverage of 0.25 ML, a highly ordered p(2 × 2) adlayer is found, in agreement with several low-energy electron diffraction observations. Isotherms obtained from the GCMC simulations compare qualitatively and quantitatively well with previous DFT-based state diagrams, but are in disagreement with the experimental data sets available. ReaxFF GCMC simulations at very high coverages show that O atoms prefer to bind in fcc hollow sites, at least up to 0.8 ML considered in the present work. At moderate coverages, little to no disorder appears in the Pt lattice. At high coverages, some Pt atoms markedly protrude out of the surface plane. This observation is in qualitative agreement with recent STM images of an oxygen covered Pt surface. The use of the GCMC technique based on a transferable potential is particularly valuable to produce more realistic systems (adsorbent and adsorbate) to be used in subsequent dynamical simulations (Molecular Dynamics) to address recombination reactions (via either Eley-Rideal or Langmuir-Hinshelwood mechanisms) on variously covered surfaces. By using GCMC and Molecular Dynamics simulations, the ReaxFF force field can be a valuable tool for understanding heterogeneous catalysis on a solid surface. Finally, the use of a reactive potential is a necessary requirement to investigate problems where dissociative adsorption occurs, as typical of many important catalytic processes.
Distribution, characterization, and exposure of MC252 oil in the supratidal beach environment.
Lemelle, Kendall R; Elango, Vijaikrishnah; Pardue, John H
2014-07-01
The distribution and characteristics of MC252 oil:sand aggregates, termed surface residue balls (SRBs), were measured on the supratidal beach environment of oil-impacted Fourchon Beach in Louisiana (USA). Probability distributions of 4 variables, surface coverage (%), size of SRBs (mm(2) of projected area), mass of SRBs per m(2) (g/m(2)), and concentrations of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in the SRBs (mg of crude oil component per kg of SRB) were determined using parametric and nonparametric statistical techniques. Surface coverage of SRBs, an operational remedial standard for the beach surface, was a gamma-distributed variable ranging from 0.01% to 8.1%. The SRB sizes had a mean of 90.7 mm(2) but fit no probability distribution, and a nonparametric ranking was used to describe the size distributions. Concentrations of total PAHs ranged from 2.5 mg/kg to 126 mg/kg of SRB. Individual PAH concentration distributions, consisting primarily of alkylated phenanthrenes, dibenzothiophenes, and chrysenes, did not consistently fit a parametric distribution. Surface coverage was correlated with an oil mass per unit area but with a substantial error at lower coverage (i.e., <2%). These data provide probabilistic risk assessors with the ability to specify uncertainty in PAH concentration, exposure frequency, and ingestion rate, based on SRB characteristics for the dominant oil form on beaches along the US Gulf Coast. © 2014 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafti, Matías; Imbihl, Ronald, E-mail: imbihl@pci.uni-hannover.de
2014-12-07
By means of photoemission electron microscopy as spatially resolving method, the effect of high coverages of coadsorbed potassium (0.16 ≤ θ{sub K} ≤ 0.21) on the dynamical behavior of the H{sub 2} + O{sub 2} reaction over a Rh(110) surface was investigated. We observe that the originally bistable system is transformed into an excitable system as evidenced by the formation of target patterns and spiral waves. At K coverages close to saturation (θ{sub K} ≈ 0.21) mass transport of potassium with pulses is seen.
Surface Chirality of Gly-Pro Dipeptide Adsorbed on a Cu(110) Surface.
Cruguel, Hervé; Méthivier, Christophe; Pradier, Claire-Marie; Humblot, Vincent
2015-07-01
The adsorption of chiral Gly-Pro dipeptide on Cu(110) has been characterized by combining in situ polarization modulation infrared reflection absorption spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS). The chemical state of the dipeptide, and its anchoring points and adsorption geometry, were determined at various coverage values. Gly-Pro molecules are present on Cu(110) in their anionic form (NH2 /COO(-)) and adsorb under a 3-point binding via both oxygen atoms of the carboxylate group and via the nitrogen atom of the amine group. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) have shown the presence of an extended 2D chiral array, sustained via intermolecular H-bonds interactions. Furthermore, due to the particular shape of the molecule, only one homochiral domain is formed, creating thus a truly chiral surface. © 2015 Wiley Periodicals, Inc.
Energetics of CO2 and H2O adsorption on zinc oxide.
Gouvêa, Douglas; Ushakov, Sergey V; Navrotsky, Alexandra
2014-08-05
Adsorption of H2O and CO2 on zinc oxide surfaces was studied by gas adsorption calorimetry on nanocrystalline samples prepared by laser evaporation in oxygen to minimize surface impurities and degassed at 450 °C. Differential enthalpies of H2O and CO2 chemisorption are in the range -150 ±10 kJ/mol and -110 ±10 kJ/mol up to a coverage of 2 molecules per nm(2). Integral enthalpy of chemisorption for H2O is -96.8 ±2.5 kJ/mol at 5.6 H2O/nm(2) when enthalpy of water condensation is reached, and for CO2 is -96.6 ±2.5 kJ/mol at 2.6 CO2/nm(2) when adsorption ceases. These values are consistent with those reported for ZnO prepared by other methods after similar degas conditions. The similar energetics suggests possible competition of CO2 and H2O for binding to ZnO surfaces. Exposure of bulk and nanocrystalline ZnO with preadsorbed CO2 to water vapor results in partial displacement of CO2 by H2O. In contrast, temperature-programmed desorption (TPD) indicates that a small fraction of CO2 is retained on ZnO surfaces up to 800 °C, under conditions where all H2O is desorbed, with adsorption energies near -200 kJ/mol. Although molecular mechanisms of adsorption were not studied, the thermodynamic data are consistent with dissociative adsorption of H2O at low coverage and with several different modes of CO2 binding.
High Coverages of Hydrogen on a (10,0) Carbon Nanotube
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)
2001-01-01
The binding energy of H to a (10,0) carbon nanotube is calculated at 24, 50, and 100% coverage. Several different bonding configurations are considered for the 50% coverage case. Using the ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) approach, the average C-H bond energy for the most stable 50% coverage and for the 100% coverage are 57.3 and 38.6 kcal/mol, respectively. Considering the size of the bond energy of H2, these values suggest that it will be difficult to achieve 100% atomic H coverage on a (10,0) nanotube.
NASA Astrophysics Data System (ADS)
Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.
1994-07-01
Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.
Televising Supreme Court and Other Federal Court Proceedings: Legislation and Issues
2006-11-08
proceedings, including the possible effect on judicial proceedings, separation of powers concerns, the purported educational value of such coverage, and...for Adverse Effects on Judicial Proceedings . . . . . . . . . . . . 11 Separation of Powers Concerns...proponents and opponents on myriad issues in the electronic media coverage debate — democratic values of government transparency, separation of powers , due
NASA Astrophysics Data System (ADS)
Xiao, Jianyong; Bai, Xiaoyong; Zhou, Dequan; Qian, Qinghuan; Zeng, Cheng; Chen, Fei
2018-01-01
Vegetation coverage dynamics is affected by climatic, topography and human activities, which is an important indicator reflecting the regional ecological environment. Revealing the spatial-temporal characteristics of vegetation coverage is of great significance to the protection and management of ecological environment. Based on MODIS NDVI data and the Maximum Value Composites (MVC), we excluded soil spectrum interference to calculate Fractional Vegetation Coverage (FVC). Then the long-term FVC was used to calculate the spatial pattern and temporal variation of vegetation in Wujiang River Basin from 2000 to 2016 by using Trend analysis and Hurst index. The relationship between topography and spatial distribution of FVC was analyzed. The main conclusions are as follows: (1) The multi-annual mean vegetation coverage reveals a spatial distribution variation characteristic of low value in midstream and high level in other parts of the basin, owing a mean value of 0.6567. (2) From 2000 to 2016, the FVC of the Wujiang River Basin fluctuated between 0.6110 and 0.7380, and the overall growth rate of FVC was 0.0074/a. (3) The area of vegetation coverage tending to improve is more than that going to degrade in the future. Grass land, Arable land and Others improved significantly; karst rocky desertification comprehensive management project lead to persistent vegetation coverage improvement of Grass land, Arable land and Others. Residential land is covered with obviously degraded vegetation, resulting of urban sprawl; (4) The spatial distribution of FVC is positively correlated with TNI. Researches of spatial-temporal evolution of vegetation coverage have significant meaning for the ecological environment protection and management of the Wujiang River Basin.
Nonequilibrium Interlayer Transport in Pulsed Laser Deposition
NASA Astrophysics Data System (ADS)
Tischler, J. Z.; Eres, Gyula; Larson, B. C.; Rouleau, Christopher M.; Zschack, P.; Lowndes, Douglas H.
2006-06-01
We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.
NASA Astrophysics Data System (ADS)
Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.
2016-02-01
This is the first of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low-coverage, single-tracer limit). The present report focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials. For diffusion in two dimensions, a number of formulas are presented for complex combinations of the different hops in systems with triangular, rectangular, and square symmetry. The formulas provide values in excellent agreement with kinetic Monte Carlo simulations, concluding that the diffusion coefficient can be directly determined from the proposed expressions without performing the simulations. Based on the diffusion barriers obtained from first-principles calculations and a physically meaningful estimate of the attempt frequencies, the proposed formulas are used to analyze the diffusion of Cu, Ag, and Rb adatoms on the surface and within the van der Waals (vdW) gap of a model topological insulator, Bi2Se3 . Considering the possibility of adsorbate intercalation from the terraces to the vdW gaps at morphological steps, we infer that, at low coverage and room temperature, (i) a majority of the Rb atoms bounce back at the steps and remain on the terraces, (ii) Cu atoms mostly intercalate into the vdW gap, the remaining fraction staying at the steps, and (iii) Ag atoms essentially accumulate at the steps and gradually intercalate into the vdW gap. These conclusions are in good qualitative agreement with previous experiments. The companion report (M. A. Gosálvez et al., Phys. Rev. B, submitted] extends the present study to the description of systems that contain asymmetric hops.
Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge
Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen
2016-01-01
Abstract The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure. PMID:27877854
Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR
Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; ...
2015-11-20
DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al 2O 3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C- 13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Adsorption of dextrin on hydrophobic minerals.
Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A
2009-09-01
The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.
Electron solvation and localization at interfaces
NASA Astrophysics Data System (ADS)
Harris, Charles B.; Szymanski, Paul; Garrett-Roe, Sean; Miller, Andre D.; Gaffney, Kelly J.; Liu, Simon H.; Bezel, Ilya
2003-12-01
Two-photon photoemission of thiolate/Ag(111), nitrile/Ag(111), and alcohol/Ag(111) interfaces elucidates electron solvation and localization in two dimensions. For low coverages of thiolates on Ag(111), the occupied (HOMO) and unoccupied (LUMO) electronic states of the sulfer-silver bond are localized due to the lattice gas structure of the adsorbate. As the coverage saturates and the adsorbate-adsorbate nearest neighbor distance decreases, the HOMO and LUMO delocalize across many adsorbate molecules. Alcohol- and nitrile-covered Ag(111) surfaces solvate excess image potential state (IPS) electrons. In the case of alcohol-covered surfaces, this solvation is due to a shift in the local workfunction of the surface. For two-monolayer coverages of nitriles/Ag(111), localization accompanies solvation of the IPS. The size of the localized electron can be estimated by Fourier transformation of the wavefunction from momentum- to position-space. The IPS electron localizes to 15 +/- 4 angstroms full-width at half maximum in the plane of the surface, i.e., to a single lattice site.
Cost effectiveness of full coverage of the medical management of smoking cessation in France.
Chevreul, Karine; Cadier, Benjamin; Durand-Zaleski, Isabelle; Chan, Elis; Thomas, Daniel
2014-05-01
To estimate the incremental cost effectiveness of full coverage of the medical management of smoking cessation from the perspective of statutory health insurance (SHI) in France. Cost-effectiveness analysis based on a Markov state-transition decision analytic model was used to compare full SHI coverage of smoking cessation and actual coverage based on an annual €50 lump sum per insured person among current French smokers aged 15-75 years. We used a scenario approach to take into account the many different behaviours of smokers and the likely variability of SHI policy choices in terms of participation rate and number and frequency of attempts covered. Drug treatments for smoking cessation combined with six medical consultations including individual counselling. The cost effectiveness of full coverage was expressed by the incremental cost-effectiveness ratio (ICER) in 2009 euros per life-year gained (LYG) at the lifetime horizon. The cost effectiveness per LYG for smokers ranged from €1786 to €2012, with an average value of €1911. The minimum value was very close to the maximum value with a difference of only €226. The cost-effectiveness ratio was only minimally sensitive to the participation rate, the number of attempts covered and the cessation rate. Compared to other health measures in primary and secondary prevention of cardiovascular disease already covered by SHI, full coverage of smoking cessation is the most cost-effective approach.
NASA Astrophysics Data System (ADS)
Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent
2017-11-01
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3 to 5 years. Information on fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud-base height (CBH) data are retrieved from a ceilometer and integrated water vapour (IWV) data from GPS measurements. The longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 oktas has a median value between 59 and 72 Wm-2. For mid- and high-level clouds the LCE is significantly lower. It is shown that the fractional cloud coverage, the CBH and IWV all have an influence on the magnitude of the LCE. These observed dependences have also been modelled with the radiative transfer model MODTRAN5. The relative values of the shortwave cloud radiative effect (SCErel) for low-level clouds and a cloud coverage of 8 oktas are between -90 and -62 %. Also here the higher the cloud is, the less negative the SCErel values are. In cases in which the measured direct radiation value is below the threshold of 120 Wm-2 (occulted sun) the SCErel decreases substantially, while cases in which the measured direct radiation value is larger than 120 Wm-2 (visible sun) lead to a SCErel of around 0 %. In 14 and 10 % of the cases in Davos and Payerne respectively a cloud enhancement has been observed with a maximum in the cloud class cirrocumulus-altocumulus at both stations. The calculated median total cloud radiative effect (TCE) values are negative for almost all cloud classes and cloud coverages.
Kinetics of surfactant-mediated epitaxy of III-V semiconductors
NASA Astrophysics Data System (ADS)
Grandjean, N.; Massies, J.
1996-05-01
Surfactant-mediated epitaxy (SME) of III-V semiconductors is studied in the case of the GaAs(001) growth using Te as surfactant. To account for the strong surface segregation of Te, a phenomenological exchange mechanism is used. This process explains the reduction of the surface diffusion length evidenced by scanning tunneling microscopy (STM). However, this kinetics effect is observed only for restricted growth conditions: the As surface coverage should be sufficient to allow the exchange process. STM results as well as Monte Carlo simulations clearly show that the group-V element surface coverage plays a key role in the kinetics of SME of III-V semiconductors.
Giroire, B; Slostowski, C; Marre, S; Aymonier, C; Aida, T; Hojo, D; Aoki, N; Takami, S; Adschiri, T
2016-01-21
In this work, the solvent effect on the synthesis of CeO2 nanocrystals synthesized in near- and supercritical alcohols is discussed. The materials prepared displayed a unique morphology of small nanocrystals (<10 nm) aggregated into larger nanospheres (∼100-200 nm). In such syntheses, alcohol molecules directly interact with the nanocrystal surface through alkoxide and carboxylate bondings. The grafting density was quantified from the weight loss measured using thermogravimetric analysis. A direct correlation between the grafting density and the alcohol chain length can be established. It was demonstrated that the shorter the alcohol chain length (i.e. methanol), the higher the surface coverage is. This trend is independent of the synthesis mode (batch or continuous). Additionally, an influence of the grafting density on the resulting nanocrystal size was established. It is suggested that the surface coverage has a high influence on the early stages of the nucleation and growth. Indeed, when high surface coverages are reached, all surface active sites are blocked, limiting the growth step and therefore leading to smaller particles. This effect was noticed with the materials prepared in the continuous mode where shorter reaction time was performed.
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-13
VANDENBERG AFB, Calif. – The boattail element is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuation Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2013-01-12
VANDENBERG AFB, Calif. – A technician inspects the Landsat Data Continuity Mission, or LDCM, spacecraft in the Astrotech processing facility at Vandenberg Air Force Base in Calif., following fueling operations. The Landsat Data Continuity Mission is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: VAFB
2012-12-19
VANDENBERG AFB, Calif.-- Technicians check out the transport truck used to deliver NASA's Landsat Data Continuity Mission, or LDCM, satellite to Vandenberg Air Force Base, Calif. for prelaunch processing. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-09
VANDENBERG AFB, Calif. – The first stage booster of a United Launch Alliance Atlas V is raised onto the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-12-19
VANDENBERG AFB, Calif.-- The Astrotech payload processing facility at Vandenberg Air Force Base, Calif. where NASA's Landsat Data Continuity Mission, or LDCM, satellite will be processed prior to launch. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-09
VANDENBERG AFB, Calif. – The first stage booster of a United Launch Alliance Atlas V is raised onto the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-12-19
VANDENBERG AFB, Calif.-- Technicians check out the transport truck used to deliver NASA's Landsat Data Continuity Mission, or LDCM, satellite to Vandenberg Air Force Base, Calif. for prelaunch processing. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-10-09
VANDENBERG AFB, Calif. – Cranes raise the first stage booster of a United Launch Alliance Atlas V onto the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuation Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-12-19
VANDENBERG AFB, Calif.-- Technicians check out the transport truck used to deliver NASA's Landsat Data Continuity Mission, or LDCM, satellite to Vandenberg Air Force Base, Calif. for prelaunch processing. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-18
VANDENBERG AFB, Calif.-- Mechanical ground support equipment to be used in support of NASA's Landsat Data Continuity Mission, or LDCM, satellite arrives by transport truck at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-10
VANDENBERG AFB, Calif. – The interstage booster segment is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuation Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-09
VANDENBERG AFB, Calif. – The first stage booster of a United Launch Alliance Atlas V is raised onto the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuation Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-12-21
VANDENBERG AFB, Calif. -- Technicians unload and rotate NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The payload faring is seen on the left. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-12-19
VANDENBERG AFB, Calif.-- Technicians monitor activity as the transport container delivering NASA's Landsat Data Continuity Mission, or LDCM, satellite is lowered to the floor at the prelaunch processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2013-01-12
VANDENBERG AFB, Calif. – A technician inspects the Landsat Data Continuity Mission, or LDCM, spacecraft in the Astrotech processing facility at Vandenberg Air Force Base in Calif., following fueling operations. The Landsat Data Continuity Mission is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: VAFB
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is lifted onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-12-19
VANDENBERG AFB, Calif.-- The transport container with NASA's Landsat Data Continuity Mission, or LDCM, satellite has been delivered to the prelaunch processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-09
VANDENBERG AFB, Calif. – Technicians prepare to raise the first stage booster of a United Launch Alliance Atlas V onto the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-08
VANDENBERG AFB, Calif. – A truck moves the first stage booster of a United Launch Alliance Atlas V to Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuity Mission. The Landsat Data Continuity Mission, or LDCM, is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
NASA Astrophysics Data System (ADS)
Zambon, F.; De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Carli, C.; Ammanito, E.; Friggeri, A.
2011-10-01
During the first two MESSENGER flybys (14th January 2008 and 6th October 2008) the Mercury Dual Imaging System (MDIS) has extended the coverage of the Mercury surface, obtained by Mariner 10 and now we have images of about 90% of the Mercury surface [1]. MDIS is equipped with a Narrow Angle Camera (NAC) and a Wide Angle Camera (WAC). The NAC uses an off-axis reflective design with a 1.5° field of view (FOV) centered at 747 nm. The WAC has a re- fractive design with a 10.5° FOV and 12-position filters that cover a 395-1040 nm spectral range [2]. The color images can be used to infer information on the surface composition and classification meth- ods are an interesting technique for multispectral image analysis which can be applied to the study of the planetary surfaces. Classification methods are based on clustering algorithms and they can be divided in two categories: unsupervised and supervised. The unsupervised classifiers do not require the analyst feedback, and the algorithm automatically organizes pixels values into classes. In the supervised method, instead, the analyst must choose the "training area" that define the pixels value of a given class [3]. Here we will describe the classification in different compositional units of the region near the Rudaki Crater on Mercury.
Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.
2008-01-01
The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.
Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Domingue, Deborah; Verbiscer, Anne
1997-01-01
Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface roughness with hemisphere for any of the Galilean satellites.
Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST)
NASA Astrophysics Data System (ADS)
Arroyave, Jeison Manuel; Puccia, Virginia; Zanini, Graciela P.; Avena, Marcelo J.
2018-06-01
Phosphate adsorption at the metal oxide-water interface has been intensely studied, and the system phosphate-goethite in aqueous media is normally used as a model system with abundant information regarding adsorption-desorption under very different conditions. In spite of this, there is still discussion on whether the main inner-sphere surface complexes that phosphate forms on goethite are monodentate or bidentate. A new spectroscopic technique, InfraRed Surface Titration (IRST), is presented here and used to systematically explore the surface speciation of phosphate on goethite in the pH range 4.5-9.5 at different surface coverages. IRST enabled to construct distribution curves of surface species and distribution curves of dissolved phosphate species. In combination with the CD-MUSIC surface complexation model it was possible to conclude that surface complexes are monodentate. Very accurate distribution curves were obtained, showing a crossing point at pH 5.5 at a surface coverage of 2.0 μmol m-2, with a mononuclear monoprotonated species predominating at pH > 5.5 and a mononuclear diprotonated species prevailing at pH < 5.5. On the contrary, at the low surface coverage of 0.7 μmol m-2 there is no crossing point, with the mononuclear monoprotonated species prevailing at all pH. IRST can become a powerful technique to investigate structure, properties and reactions of any IR-active surface complex at the solid-water interface.
24 CFR 203.16a - Mortgagor and mortgagee requirement for maintaining flood insurance coverage.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for maintaining flood insurance coverage. 203.16a Section 203.16a Housing and Urban Development... requirement for maintaining flood insurance coverage. (a) If the mortgage is to cover property improvements (dwelling and related structures/equipment essential to the value of the property and subject to flood...
Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface.
Smith, R Scott; Kay, Bruce D
2018-01-18
The desorption kinetics for benzene and cyclohexane from a graphene covered Pt(111) surface were investigated using temperature-programmed desorption (TPD). The benzene desorption spectra show well-resolved monolayer and multilayer desorption peaks. The benzene monolayer and submonolayer TPD spectra for coverages greater than ∼0.1 ML have nearly the same desorption peak temperature and have line shapes which are consistent with first-order desorption kinetics. For benzene coverages greater than 1 ML, the TPD spectra align on a common leading edge which is consistent with zero-order desorption. An "inversion" procedure in which the prefactor is varied to find the value that best reproduces the entire set of experimental desorption spectra was used to analyze the benzene data. The inversion analysis of the benzene TPD spectra yielded a desorption activation energy of 54 ± 3 kJ/mol with a prefactor of 10 17±1 s -1 . The TPD spectra for cyclohexane also have well-resolved monolayer and multilayer desorption features. The desorption leading edges for the monolayer and the multilayer TPD spectra are aligned indicating zero-order desorption kinetics in both cases. An Arrhenius analysis of the monolayer cyclohexane TPD spectra yielded a desorption activation energy of 53.5 ± 2 kJ/mol with a prefactor of 10 16±1 ML s -1 .
Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki
2016-03-29
Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).
Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki
2016-01-01
Nuclear reaction analysis (NRA) via the resonant 1H(15N,αγ)12C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a 15N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the 1H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~1013 cm-2 (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~1018 cm-3 (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal 15N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, 1H(15N,αγ)12C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of 15N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100). PMID:27077920
Modified energetics and growth kinetics on H-terminated GaAs (110)
NASA Astrophysics Data System (ADS)
Galiana, B.; Benedicto, M.; Díez-Merino, L.; Lorbek, S.; Hlawacek, G.; Teichert, C.; Tejedor, P.
2013-10-01
Atomic hydrogen modification of the surface energy of GaAs (110) epilayers, grown at high temperatures from molecular beams of Ga and As4, has been investigated by friction force microscopy (FFM). The reduction of the friction force observed with longer exposures to the H beam has been correlated with the lowering of the surface energy originated by the progressive de-relaxation of the GaAs (110) surface occurring upon H chemisorption. Our results indicate that the H-terminated GaAs (110) epilayers are more stable than the As-stabilized ones, with the minimum surface energy value of 31 meV/Å2 measured for the fully hydrogenated surface. A significant reduction of the Ga diffusion length on the H-terminated surface irrespective of H coverage has been calculated from the FFM data, consistent with the layer-by-layer growth mode and the greater As incorporation coefficient determined from real-time reflection high-energy electron diffraction studies. Arsenic incorporation through direct dissociative chemisorption of single As4 molecules mediated by H on the GaAs (110) surface has been proposed as the most likely explanation for the changes in surface kinetics observed.
Ammonia formation from NO reaction with surface hydroxyls on rutile TiO2 (110) - 1×1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Boseong; Kay, Bruce D.; Dohnalek, Zdenek
2015-01-15
The reaction of NO with hydroxylated rutile TiO2(110)-1×1 surface (h-TiO2) was investigated as a function of NO coverage using temperature-programmed desorption. Our results show that NO reaction with h-TiO2 leads to formation of NH3 which is observed to desorb at ~ 400 K. Interestingly, the amount of NH3 produced depends nonlinearly on the coverage of NO. The yield increases up to a saturation value of ~1.3×1013 NH3/cm2 at a NO dose of 5×1013 NO/cm2, but subsequently decreases at higher NO doses. Preadsorbed H2O is found to have a negligible effect on the NH3 desorption yield. Additionally, no NH3 is formedmore » in the absence of surface hydroxyls (HOb’s) upon coadsorption of NO and H2O on a stoichiometric TiO2(110) (s-TiO2(110)). Based on these observations, we conclude that nitrogen from NO has a strong preference to react with HOb’s on the bridge-bonded oxygen rows (but not with H2O) to form NH3. The absolute NH3 yield is limited by competing reactions of HOb species with titanium-bound oxygen adatoms to form H2O. Our results provide new mechanistic insight about the interactions of NO with hydroxyl groups on TiO2(110) .« less
Marangoni Effects of a Drop in an Extensional Flow: The Role of Surfactant Physical Chemistry
NASA Technical Reports Server (NTRS)
Stebe, Kathleen J.; Balasubramaniam, R. (Technical Monitor)
2002-01-01
While the changes in stresses caused by surfactant adsorption on non-deforming interfaces have been fairly well established, prior to this work, there were few studies addressing how surfactants alter stresses on strongly deforming interfaces. We chose the model problem of a drop in a uniaxial extensional flow to study these stress conditions To model surfactant effects at fluid interfaces, a proper description of the dependence of the surface tension on surface concentration, the surface equation of state, is required. We have adopted a surface equation of state that accounts for the maximum coverage limit; that is, because surfactants have a finite cross sectional area, there is an upper bound to the amount of surfactant that can adsorb in a monolayer. The surface tension reduces strongly only when this maximum coverage is approached. Since the Marangoni stresses go as the derivative of the surface equation of state times the surface concentration gradient, the non-linear equation of state determines both the effect of surfactants in the normal stress jump, (which is balanced by the product of the mean curvature of the interface times the surface tension), and the tangential stress jump, which is balanced by Marangoni stresses. First, the effects of surface coverage and intermolecular interactions among surfactants which drive aggregation of surfactants in the interface were studied. (see Pawar and Stebe, Physics of Fluids).
Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.
Devi, J Meena
2017-06-01
The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.
Shuttle imaging radar views the Earth from Challenger: The SIR-B experiment
NASA Technical Reports Server (NTRS)
Ford, J. P.; Cimino, J. B.; Holt, B.; Ruzek, M. R.
1986-01-01
In October 1984, SIR-B obtained digital image data of about 6.5 million km2 of the Earth's surface. The coverage is mostly of selected experimental test sites located between latitudes 60 deg north and 60 deg south. Programmed adjustments made to the look angle of the steerable radar antenna and to the flight attitude of the shuttle during the mission permitted collection of multiple-incidence-angle coverage or extended mapping coverage as required for the experiments. The SIR-B images included here are representative of the coverage obtained for scientific studies in geology, cartography, hydrology, vegetation cover, and oceanography. The relations between radar backscatter and incidence angle for discriminating various types of surfaces, and the use of multiple-incidence-angle SIR-B images for stereo measurement and viewing, are illustrated with examples. Interpretation of the images is facilitated by corresponding images or photographs obtained by different sensors or by sketch maps or diagrams.
Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.
2008-06-10
The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displacedmore » from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.« less
NASA Astrophysics Data System (ADS)
Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter
2014-12-01
We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES.
NASA Astrophysics Data System (ADS)
Zhang, R.; Makarenko, B.; Bahrim, B.; Rabalais, J. W.
2010-07-01
Ion blocking in the low keV energy range is demonstrated to be a sensitive method for probing surface adsorption sites by means of the technique of time-of-flight scattering and recoiling spectroscopy (TOF-SARS). Adsorbed atoms can block the nearly isotropic backscattering of primary ions from surface atoms in the outmost layers of a crystal. The relative adsorption site position can be derived unambiguously by simple geometrical constructs between the adsorbed atom site and the surface atom sites. Classical ion trajectory simulations using the scattering and recoiling imaging code (SARIC) and molecular dynamics (MD) simulations provide the detailed ion trajectories. Herein we present a quantitative analysis of the blocking effects produced by sub-monolayer Na adsorbed on a Cu(111) surface at room temperature. The results show that the Na adsorption site preferences are different at different Na coverages. At a coverage θ = 0.25 monolayer, Na atoms preferentially populate the fcc threefold surface sites with a height of 2.7 ± 0.1 Å above the 1st layer Cu atoms. At a lower coverage of θ = 0.10 monolayer, there is no adsorption site preference for the Na atoms on the Cu(111) surface.
NASA Astrophysics Data System (ADS)
Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik
2017-02-01
The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.
Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery
NASA Astrophysics Data System (ADS)
Wright, Nicholas C.; Polashenski, Chris M.
2018-04-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.
NASA Astrophysics Data System (ADS)
Shrestha, Rudra K.; Arora, Vivek K.; Melton, Joe R.; Sushama, Laxmi
2017-10-01
The performance of the competition module of the CLASS-CTEM (Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° spatial resolution over North America by comparing the simulated geographical distribution of its plant functional types (PFTs) with two observation-based estimates. The model successfully reproduces the broad geographical distribution of trees, grasses and bare ground although limitations remain. In particular, compared to the two observation-based estimates, the simulated fractional vegetation coverage is lower in the arid southwest North American region and higher in the Arctic region. The lower-than-observed simulated vegetation coverage in the southwest region is attributed to lack of representation of shrubs in the model and plausible errors in the observation-based data sets. The observation-based data indicate vegetation fractional coverage of more than 60 % in this arid region, despite only 200-300 mm of precipitation that the region receives annually, and observation-based leaf area index (LAI) values in the region are lower than one. The higher-than-observed vegetation fractional coverage in the Arctic is likely due to the lack of representation of moss and lichen PFTs and also likely because of inadequate representation of permafrost in the model as a result of which the C3 grass PFT performs overly well in the region. The model generally reproduces the broad spatial distribution and the total area covered by the two primary tree PFTs (needleleaf evergreen trees, NDL-EVG; and broadleaf cold deciduous trees, BDL-DCD-CLD) reasonably well. The simulated fractional coverage of tree PFTs increases after the 1960s in response to the CO2 fertilization effect and climate warming. Differences between observed and simulated PFT coverages highlight model limitations and suggest that the inclusion of shrubs, and moss and lichen PFTs, and an adequate representation of permafrost will help improve model performance.
NASA Technical Reports Server (NTRS)
Papell, S. S.
1984-01-01
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Solvent effects on the adsorption and self-organization of Mn12 on Au(111).
Pineider, Francesco; Mannini, Matteo; Sessoli, Roberta; Caneschi, Andrea; Barreca, Davide; Armelao, Lidia; Cornia, Andrea; Tondello, Eugenio; Gatteschi, Dante
2007-11-06
A sulfur-containing single molecule magnet, [Mn12O12(O2CC6H4SCH3)16(H2O)4], was assembled from solution on a Au(111) surface affording both submonolayer and monolayer coverages. The adsorbate morphology and the degree of coverage were inspected by scanning tunneling microscopy (STM), while X-ray photoelectron spectroscopy (XPS) allowed the determination of the chemical nature of the adsorbate on a qualitative and quantitative basis. The properties of the adsorbates were found to be strongly dependent on the solvent used to dissolve the magnetic complex. In particular, systems prepared from tetrahydrofuran solutions gave arrays of isolated and partially ordered clusters on the gold substrate, while samples prepared from dichloromethane exhibited a homogeneous monolayer coverage of the whole Au(111) surface. These findings are relevant to the optimization of magnetic addressing of single molecule magnets on surfaces.
Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage
NASA Astrophysics Data System (ADS)
Papell, S. S.
The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.
Deep Space Network and Lunar Network Communication Coverage of the Moon
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2006-01-01
In this article, we describe the communication coverage analysis for the lunar network and the Earth ground stations. The first part of this article focuses on the direct communication coverage of the Moon from the Earth's ground stations. In particular, we assess the coverage performance of the Moon based on the existing Deep Space Network (DSN) antennas and the complimentary coverage of other potential stations at Hartebeesthoek, South Africa and at Santiago, Chile. We also address the coverage sensitivity based on different DSN antenna scenarios and their capability to provide single and redundant coverage of the Moon. The second part of this article focuses on the framework of the constrained optimization scheme to seek a stable constellation six relay satellites in two planes that not only can provide continuous communication coverage to any users on the Moon surface, but can also deliver data throughput in a highly efficient manner.
Effects of finite coverage on global polarization observables in heavy ion collisions
NASA Astrophysics Data System (ADS)
Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu
2018-05-01
In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | < ∼ 1 will generate a larger value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.
Scaling of the structural characteristics of nanoholes created by local droplet etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyn, Ch.; Schnüll, S.; Hansen, W.
2014-01-14
We study the tuneability of nanoholes created by local droplet etching of AlGaAs surfaces with Al droplets at varied coverage θ of the deposited droplet material and process temperature T. For the contact angle of the as-grown droplets a mean value of 66° is determined, which depends neither on θ nor on T. The experimental results on the hole structural characteristics are interpreted in terms of scaling models yielding a general form f(θ,T)∝θ{sup q}exp(E/[k{sub B}T]), with constants q and E and Boltzmann's constant k{sub B}. In detail, the hole density varies from N = 4.0 × 10{sup 6} up to 1.5 × 10{sup 8} cm{sup −2}, andmore » the scaling parameters are q = 0 and E = E{sub N} = 2.46 eV. The hole diameter varies from 50 up to 190 nm with scaling parameters q = 1/3 and E = −E{sub N}/3. Moreover, the hole depth varies from 9 up to 125 nm with q = 2/3 and E = −1.73 eV. Furthermore, a threshold coverage of at least 0.2 monolayers (ML) must be deposited before hole formation takes place. In situ electron diffraction indicates that these 0.2 ML are consumed for a surface reconstruction change from (3 × 1) to (2 × 1). For coverages above 2.0 ML holes with a bimodal depth distribution are observed.« less
Electron arc therapy for bilateral chest wall irradiation: treatment planning and dosimetric study.
Sharma, P K; Jamema, S V; Kaushik, K; Budrukkar, A; Jalali, R; Deshpande, D D; Tambe, C M; Sarin, R; Munshi, A
2011-04-01
The treatment of patients with synchronous bilateral breast cancer is a challenge. We present a report of dosimetric data of patients with bilateral chest walls as the target treated with electron arc therapy. Ten consecutive patients who had undergone electron arc therapy to the bilateral chest wall for breast cancer were analysed. After positioning and immobilisation, patients underwent computed tomography scans from the neck to the upper abdomen. Electron arc plans were generated using the PLATO RTS (V1.8.2 Nucletron) treatment planning system. Electron energy was chosen depending upon the depth and thickness of the planning target volume (PTV). For all patients, the arc angle ranged between 80 and 280° (start angle 80°, stop angle 280°). The homogeneity index, coverage index and doses to organs at risk were evaluated. The patient-specific output factor and thermoluminescence dosimetry (TLD) measurements were carried out for all patients. The total planned dose to the PTV was 50Gy/25 fractions/5 weeks. The mean PTV (± standard deviation) was 568.9 (±116)cm(3). The mean PTV coverage was 89 (±5.8)% of the prescribed dose. For the right lung, the mean values of D(1) and D(10) were 46 (±7.6) and 30 (±9)Gy, respectively. For the left lung, the mean values of D(1) and D(10) were 45 (±7) and 27 (±8)Gy, respectively. For the heart, the mean values of D(1), D(5) and D(10) were 21 (±15), 13.5 (±12) and 9 (±9)Gy, respectively. The mean values of TLD at various pre-specified locations on the chest wall surface were 1.84, 1.82, 1.82, 1.89 and 1.78Gy, respectively The electron arc technique for treating the bilateral chest wall is a feasible and pragmatic technique. This technique has the twin advantages of adequate coverage of the target volume and sparing of adjacent normal structures. However, compared with other techniques, it needs a firm quality assurance protocol for dosimetry and treatment delivery. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.
2017-06-01
Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.
NASA Astrophysics Data System (ADS)
Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.; Liriano, Melissa L.; Baber, Ashleigh E.; Lewis, Emily A.; Michaelides, Angelos; Sykes, E. Charles H.
2014-07-01
Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Affordable Care Act; and (3) A bronze, silver, gold, or platinum level of coverage as described in section....103 of this subtitle. Level of coverage means one of four standardized actuarial values as defined by...
CO adsorption on the “29” Cu xO/Cu(111) surface: An integrated DFT, STM, and TPD study
Hensley, Alyssa J. R.; Therrien, Andrew J.; Zhang, Renqin; ...
2016-10-04
The elucidation of an accurate atomistic model of surface structures is crucial for the design and understanding of effective catalysts, a process requiring a close collaboration between experimental observations and theoretical models. Any developed surface theoretical model must agree with experimental results for the surface when both clean and adsorbate covered. Here, we present a detailed study of the adsorption of CO on the “29” Cu xO/ Cu(111) surface, which is important in the understanding of ubiquitous Cubased catalysis. This study uses scanning tunneling microscopy, temperatureprogrammed desorption, and density functional theory to analyze CO adsorption on the “29” Cu xO/Cu(111)more » surface. From the experimental scanning tunneling microscopy images, CO was found to form six different ordered structures on the “29” Cu xO/Cu(111) surface depending on the surface CO coverage. By modeling the adsorption of CO on our atomistic model of the “29” Cu xO/Cu(111) surface at different coverages, we were able to match the experimentally observed CO ordered structures to specific combinations of sites on the “29” Cu xO/Cu(111) surface. Lastly, the high degree of agreement seen here between experiment and theory for the adsorption of CO on the “29” Cu xO/Cu(111) surface at various CO coverages provides further support that our atomistic model of the “29” Cu xO/Cu(111) surface is experimentally accurate.« less
Face specificity and the role of metal adatoms in molecular reorientation at surfaces
NASA Astrophysics Data System (ADS)
Perry, C. C.; Haq, S.; Frederick, B. G.; Richardson, N. V.
1998-07-01
Using reflection absorption infrared spectroscopy (RAIRS), the coverage-dependent reorientation of the benzoate species on the (110) and (111) faces of copper is compared and contrasted. Whereas on Cu(110) benzoate reorients from a flat-lying to an upright orientation with increasing coverage, on Cu(111), at all coverages, benzoate is aligned normal to the surface. The formation of periodic, flat-lying copper-benzoate structures has been attributed to the availability of metal adatoms, which differs dramatically between the (111) and (110) faces. We discuss the face specificity of molecular orientation by comparing calculated formation energies of adatom vacancies from ledges and kink sites on (100), (110) and (111) faces. Further support for this model is given by the evaporation of sodium, either by pre- or post-dosing, onto low-coverage benzoate/Cu(111), which induces benzoate to convert from a perpendicular to a parallel orientation. Likewise, coevaporation of Cu while dosing benzoic acid onto the Cu(111) surface also results in a majority of flat-lying benzoate species. Finally, for adsorption on the p(2×1)O/Cu(110) reconstruction, benzoate occurs only as the upright species, which is consistent with reducing the copper mobility and availability on the (110) face. We therefore suggest the possible role of metal adatoms as a new mechanism in controlling adsorbate orientation and therefore face specificity in surface reactions.
Nie, Yong; Wang, HaoYang; Huang, ZeYu; Shen, Bin; Kraus, Virginia Byers; Zhou, Zongke
2018-01-01
The accuracy of using 2-dimensional anteroposterior pelvic radiography to assess acetabular cup coverage among patients with developmental dysplasia of the hip after total hip arthroplasty (THA) remains unclear in retrospective clinical studies. A group of 20 patients with developmental dysplasia of the hip (20 hips) underwent cementless THA. During surgery but after acetabular reconstruction, bone wax was pressed onto the uncovered surface of the acetabular cup. A surface model of the bone wax was generated with 3-dimensional scanning. The percentage of the acetabular cup that was covered by intact host acetabular bone in vivo was calculated with modeling software. Acetabular cup coverage also was determined from a postoperative supine anteroposterior pelvic radiograph. The height of the hip center (distance from the center of the femoral head perpendicular to the inter-teardrop line) also was determined from radiographs. Radiographic cup coverage was a mean of 6.93% (SD, 2.47%) lower than in vivo cup coverage for these 20 patients with developmental dysplasia of the hip (P<.001). However, both methods yielded highly correlated measurements for cup coverage (Pearson r=0.761, P<.001). The size of the acetabular cup (P=.001) but not the position of the hip center (high vs normal) was significantly associated with the difference between radiographic and in vivo cup coverage. Two-dimensional radiographically determined cup coverage conservatively reflects in vivo cup coverage and remains an important index (taking 7% underestimation errors and the effect of greater underestimation of larger cup size into account) for assessing the stability of the cup and monitoring for adequate ingrowth of bone. [Orthopedics. 2018; 41(1):e46-e51.]. Copyright 2017, SLACK Incorporated.
Walking peptide on Au(110) surface: Origin and nature of interfacial process
NASA Astrophysics Data System (ADS)
Humblot, V.; Tejeda, A.; Landoulsi, J.; Vallée, A.; Naitabdi, A.; Taleb, A.; Pradier, C.-M.
2014-10-01
IGF tri-peptide adsorption on Au(110)-(1 × 2) under Ultra High Vacuum (UHV) conditions has been investigated using surface science techniques such as synchrotron based Angle Resolved X-ray Photoemission Spectroscopy (AR-PES or AR-XPS), Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM). The behaviour of IGF molecules has been revealed to be coverage dependent; at low coverage, there is formation of islands presenting a chiral self-organised molecular network with a (4 2, - 3 2) symmetry as shown by Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM) on the unaltered Au(110)-(1 × 2) reconstruction, suggesting significant intermolecular interactions. When the coverage is increased, the islands grow bigger, and one can observe the disappearance of the self-organised network, along with a remarkable destruction of the (1 × 2) substrate reconstruction, as shown by STM. The effect of IGF on the surface gold atoms has been further confirmed by angle-resolved photoemission measurements which suggest a modification of the electronic states with the (1 × 2) symmetry. The resulting molecular organisation, and overall the gold surface disorganisation, prove a strong surface-molecule interaction, which may be probably be explained by a covalent bonding.
Elasticity of the hair cover in air-retaining Salvinia surfaces
NASA Astrophysics Data System (ADS)
Ditsche, Petra; Gorb, Elena; Mayser, Matthias; Gorb, Stanislav; Schimmel, Thomas; Barthlott, Wilhelm
2015-11-01
Immersed in water superhydrophobic surfaces (e.g., lotus) maintain thin temporary air films. In certain aquatic plants and animals, these films are thicker and more persistent. Floating ferns of the genus Salvinia show elaborated hierarchical superhydrophobic surface structures: a hairy cover of complex trichomes. In the case of S. molesta, they are eggbeater shaped and topped by hydrophilic tips, which pin the air-water interface and prevent rupture of contact. It has been proposed that these trichomes can oscillate with the air-water interface, when turbulences occur and thereby stabilize the air film. The deformability of such arrays of trichomes requires a certain elasticity of the structures. In this study, we determined the stiffness of the trichome coverage of S. molesta and three other Salvinia species. Our results confirm the elasticity of the trichome coverage in all investigated Salvinia species. We did not reveal a clear relationship between the time of air retention and stiffness of the trichome coverage, which means that the air retention function is additionally dependent on different parameters, e.g., the trichome shape and surface free energy. These data are not only interesting for Salvinia biology, but also important for the development of biomimetic air-retaining surfaces.
NASA Astrophysics Data System (ADS)
Wei, Shiqian; Wang, Fang; Dan, Meng; Zeng, Kaiyue; Zhou, Ying
2017-11-01
In this work, spin-polarized DFT + U method has been employed to investigate adsorption properties of H2S on the rutile TiO2 (110) surface with a high coverage of bridging oxygen vacancies (BOVs). The influence of different BOV coverage (θ-BOVs) on the surface electronic structure is examined. Defected states increase within the band gap with θ-BOVs increasing from 1/8 to 4/8 monolayer (ML). The high defected surface with θ-BOVs = 4/8 ML is determined to have a desired band structure and noticeable visible light response. In addition, H2S adsorption behaviors are noticeably affected by different H2S coverage (θ-H2S). Particularly, it is found molecular adsorption at θ-H2S ≤ 1/8 ML and dissociative adsorption at the higher θ-H2S. The maximization of spontaneous dissociation of H2S can be realized when the BOVs are all covered by H2S molecules. This work gains mechanistic insights into BOVs in tuning the surface properties and provides a guide for the effective utilization of the active surface sites on the rutile TiO2 (110) in the field of H2S splitting.
Thermal effects on electronic properties of CO/Pt(111) in water.
Duan, Sai; Xu, Xin; Luo, Yi; Hermansson, Kersti; Tian, Zhong-Qun
2013-08-28
Structure and adsorption energy of carbon monoxide molecules adsorbed on the Pt(111) surfaces with various CO coverages in water as well as work function of the whole systems at room temperature of 298 K were studied by means of a hybrid method that combines classical molecular dynamics and density functional theory. We found that when the coverage of CO is around half monolayer, i.e. 50%, there is no obvious peak of the oxygen density profile appearing in the first water layer. This result reveals that, in this case, the external force applied to water molecules from the CO/Pt(111) surface almost vanishes as a result of the competitive adsorption between CO and water molecules on the Pt(111) surface. This coverage is also the critical point of the wetting/non-wetting conditions for the CO/Pt(111) surface. Averaged work function and adsorption energy from current simulations are consistent with those of previous studies, which show that thermal average is required for direct comparisons between theoretical predictions and experimental measurements. Meanwhile, the statistical behaviors of work function and adsorption energy at room temperature have also been calculated. The standard errors of the calculated work function for the water-CO/Pt(111) interfaces are around 0.6 eV at all CO coverages, while the standard error decreases from 1.29 to 0.05 eV as the CO coverage increases from 4% to 100% for the calculated adsorption energy. Moreover, the critical points for these electronic properties are the same as those for the wetting/non-wetting conditions. These findings provide a better understanding about the interfacial structure under specific adsorption conditions, which can have important applications on the structure of electric double layers and therefore offer a useful perspective for the design of the electrochemical catalysts.
Snezhkova, Olesia; Bischoff, Felix; He, Yuanqin; Wiengarten, Alissa; Chaudhary, Shilpi; Johansson, Niclas; Schulte, Karina; Knudsen, Jan; Barth, Johannes V; Seufert, Knud; Auwärter, Willi; Schnadt, Joachim
2016-03-07
We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.
Feature Modeling of HfO2 Atomic Layer Deposition Using HfCl4/H2O
NASA Astrophysics Data System (ADS)
Stout, Phillip J.; Adams, Vance; Ventzek, Peter L. G.
2003-03-01
A Monte Carlo based feature scale model (Papaya) has been applied to atomic layer deposition (ALD) of HfO2 using HfCl_4/H_20. The model includes physical effects of transport to surface, specular and diffusive reflection within feature, adsorption, surface diffusion, deposition and etching. Discussed will be the 3D feature modeling of HfO2 deposition in assorted features (vias and trenches). The effect of feature aspect ratios, pulse times, cycle number, and temperature on film thickness, feature coverage, and film Cl fraction (surface/bulk) will be discussed. Differences between HfO2 ALD on blanket wafers and in features will be highlighted. For instance, the minimum pulse times sufficient for surface reaction saturation on blanket wafers needs to be increased when depositing on features. Also, HCl products created during the HfCl4 and H_20 pulses are more likely to react within a feature than at the field, reducing OH coverage within the feature (vs blanket wafer) thus limiting the maximum coverage attainable for a pulse over a feature.
NASA Astrophysics Data System (ADS)
Hellberg, Lars; Kasemo, Bengt
Some strongly exothermic and non-adiabatic surface adsorption events, especially those where electronegative molecules adsorb on very electropositive (low work function) surfaces, are accompanied by emission of (exo)electrons, photons, excited atoms and negative ions. The reaction of halogen molecules with halogen surfaces constitute an efficient model system for such studies. We have previously reported data for the emission of negative particles and photons in the zero coverage limit for a range of velocities of Cl2 molecules impinging on cold potassium surfaces as well as the mechanism behind these emission processes. In the present work, we focus on measurements of the kinetics, i.e. the exposure/coverage dependence, of these processes for the same system. Specifically, we present data for, (i) the separated contributions from electrons and Cl- ions of the emitted negative particles, (ii) the photon emission stemming both from excited Potassium atoms and from the equivalent process causing electron emission, (iii) the change of the work function during the initial exposure and, finally, (iv) the sticking coefficient for different Cl2 velocities and exposures.
Tsilomelekis, George; Boghosian, Soghomon
2012-02-21
Supported molybdenum oxide catalysts on TiO(2) (anatase) with surface densities in the range of 1.8-17.0 Mo per nm(2) were studied at temperatures of 410-480 °C for unraveling the configuration and molecular structure of the deposited (MoO(x))(n) species and examining their behavior for the ethane oxidative dehydrogenation (ODH). In situ Raman and in situ FTIR spectra under oxidizing conditions combined with (18)O/(16)O isotope exchange studies provide the first sound evidence for mono-oxo configuration for the deposited (MoO(x))(n) species on anatase. Isolated O=Mo(-O-)(3) tetra-coordinated species in C(3v)-like symmetry prevail at all surface coverages with a low presence of associated (polymeric) species (probably penta-coordinated) evidenced at high coverages, below the approximate monolayer of 6 Mo per nm(2). A mechanistic scenario for (18)O/(16)O isotope exchange and next-nearest-neighbor vibrational isotope effect is proposed at the molecular level to account for the pertinent spectral observations. Catalytic measurements for ethane ODH with simultaneous monitoring of operando Raman spectra were performed. The selectivity to ethylene increases with increasing surface density up to the monolayer coverage, where primary steps of ethane activation follow selective reaction pathways leading to ∼100% C(2)H(4) selectivity. The operando Raman spectra and a quantitative exploitation of the relative normalized Mo=O band intensities for surface densities of 1.8-5.9 Mo per nm(2) and various residence times show that the terminal Mo=O sites are involved in non-selective reaction turnovers. Reaction routes follow primarily non-selective pathways at low coverage and selective pathways at high coverage. Trends in the initial rates of ethane consumption (apparent reactivity per Mo) as a function of Mo surface density are discussed on the basis of several factors.
2013-01-12
VANDENBERG AFB, Calif. – A technician performs thermal blanket closeouts on the fuel servicing valves on the Landsat Data Continuity Mission, or LDCM, spacecraft in the Astrotech processing facility at Vandenberg Air Force Base in Calif., following fueling operations. The Landsat Data Continuity Mission is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: VAFB
2013-01-12
VANDENBERG AFB, Calif. – A technician performs thermal blanket closeouts on the fuel servicing valves of the Landsat Data Continuity Mission, or LDCM, spacecraft in the Astrotech processing facility at Vandenberg Air Force Base in Calif., following fueling operations. The Landsat Data Continuity Mission is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: VAFB
2013-01-12
VANDENBERG AFB, Calif. – A technician performs thermal blanket closeouts on the fuel servicing valves on the Landsat Data Continuity Mission, or LDCM, spacecraft in the Astrotech processing facility at Vandenberg Air Force Base in Calif., following fueling operations. The Landsat Data Continuity Mission is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: VAFB
2012-12-21
VANDENBERG AFB, Calif. -- A Technician photographs a component on NASA's Landsat Data Continuity Mission, or LDCM, satellite during inspection at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The solar arrays are in the foreground. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA
2013-01-12
VANDENBERG AFB, Calif. – Technicians perform thermal blanket closeouts on the fuel servicing valves on the Landsat Data Continuity Mission, or LDCM, spacecraft in the Astrotech processing facility at Vandenberg Air Force Base in Calif., following fueling operations. The Landsat Data Continuity Mission is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: VAFB
Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S.
The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B}more » of less than 1 mm was observed at temperatures lower than 500 °C.« less
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is prepared for lifting onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuation Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
2012-10-12
VANDENBERG AFB, Calif. – A Centaur upper stage is prepared for lifting onto the first stage booster of a United Launch Alliance Atlas V at the launch pad at Space Launch Complex-3E at Vandenberg Air Force Base, Calif. in preparation for the launch of the Landsat Data Continuation Mission. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 2013. Photo credit: NASA/Roy Allison
Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Li, Zhenjun; Smith, R. Scott
2014-10-09
The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapesmore » and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.« less
Fronstin, Paul
2009-09-01
This Issue Brief provides historical data through 2008 on the number and percentage of nonelderly individuals with and without health insurance. Based on EBRI estimates from the U.S. Census Bureau's March 2009 Current Population Survey (CPS), it reflects 2008 data. It also discusses trends in coverage for the 1994-2008 period and highlights characteristics that typically indicate whether an individual is insured. HEALTH COVERAGE RATE CONTINUES TO DECREASE: The percentage of the nonelderly population (under age 65) with health insurance coverage decreased to 82.6 percent in 2008. Increases in health insurance coverage have been recorded in only four years since 1994, when 36.5 million nonelderly individuals were uninsured; in 2008, the uninsured population was 45.7 million. EMPLOYMENT-BASED COVERAGE REMAINS DOMINANT SOURCE OF HEALTH COVERAGE, BUT CONTINUES TO SLOWLY ERODE: Employment-based health benefits remain the most common form of health coverage in the United States. In 2008, 61.1 percent of the nonelderly population had employment-based health benefits, down from 68.4 percent in 2000. Between 1994 and 2000, the percentage of the nonelderly population with employment-based coverage expanded. PUBLIC PROGRAM COVERAGE IS GROWING: Public program health coverage expanded as a percentage of the population in 2008, accounting for 19.4 percent of the nonelderly population. Enrollment in Medicaid and the State Children's Health Insurance Program increased, reaching a combined 39.2 million in 2008, and covering 14.9 percent of the nonelderly population, significantly above the 10.5 percent level of 1999. INDIVIDUAL COVERAGE STABLE: Individually purchased health coverage was unchanged in 2008 and has basically hovered in the 6-7 percent range since 1994. MOST/LEAST LIKELY TO HAVE HEALTH INSURANCE: Full-time, full-year workers, public-sector workers, workers employed in manufacturing, managerial and professional workers, and individuals living in high-income families are most likely to have employment-based health benefits. Poor families are most likely to be covered by public coverage programs such as Medicaid or S-CHIP. RETHINKING THE VALUE OF OFFERING HEALTH INSURANCE: Research illustrates the advantages to consumers of having health insurance and the benefits to employers of offering it. In general, the availability of health insurance allows consumers to avoid unnecessary pain and suffering and improves the quality of life, and employers report that offering benefits has a positive impact on worker recruitment, retention, health status, and productivity. Employers may believe in the business case for providing health benefits today, but in the future they may rethink the value that offering coverage provides, especially if health costs continue to escalate sharply or if health reform changes the value proposition.
Miles, Melody; Ryman, Tove K; Dietz, Vance; Zell, Elizabeth; Luman, Elizabeth T
2013-03-15
Immunization programs frequently rely on household vaccination cards, parental recall, or both to calculate vaccination coverage. This information is used at both the global and national level for planning and allocating performance-based funds. However, the validity of household-derived coverage sources has not yet been widely assessed or discussed. To advance knowledge on the validity of different sources of immunization coverage, we undertook a global review of literature. We assessed concordance, sensitivity, specificity, positive and negative predictive value, and coverage percentage point difference when subtracting household vaccination source from a medical provider source. Median coverage difference per paper ranged from -61 to +1 percentage points between card versus provider sources and -58 to +45 percentage points between recall versus provider source. When card and recall sources were combined, median coverage difference ranged from -40 to +56 percentage points. Overall, concordance, sensitivity, specificity, positive and negative predictive value showed poor agreement, providing evidence that household vaccination information may not be reliable, and should be interpreted with care. While only 5 papers (11%) included in this review were from low-middle income countries, low-middle income countries often rely more heavily on household vaccination information for decision making. Recommended actions include strengthening quality of child-level data and increasing investments to improve vaccination card availability and card marking. There is also an urgent need for additional validation studies of vaccine coverage in low and middle income countries. Copyright © 2013. Published by Elsevier Ltd.
Molecular diagnostics using magnetic nanobeads
NASA Astrophysics Data System (ADS)
Zardán Gómez de la Torre, Teresa; Strömberg, Mattias; Göransson, Jenny; Gunnarsson, Klas; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria
2010-01-01
In this paper, we investigate the volume-amplified magnetic nanobead detection assay with respect to bead size, bead concentration and bead oligonucleotide surface coverage in order to improve the understanding of the underlying microscopic mechanisms. It has been shown that: (i) the immobilization efficiency of the beads depends on the surface coverage of oligonucleotides, (ii) by using lower amounts of probe-tagged beads, detection sensitivity can be improved and (iii) using small enough beads enables both turn-off and turn-on detection. Finally, biplex detection was demonstrated.
Surface Properties of PEMFC Gas Diffusion Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
WoodIII, David L; Rulison, Christopher; Borup, Rodney
2010-01-01
The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 highermore » than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.« less
Xian, George; Crane, Mike
2006-01-01
Remote sensing data from both Landsat 5 and Landsat 7 systems were utilized to assess urban area thermal characteristics in Tampa Bay watershed of west-central Florida, and the Las Vegas valley of southern Nevada. To quantitatively determine urban land use extents and development densities, sub-pixel impervious surface areas were mapped for both areas. The urban–rural boundaries and urban development densities were defined by selecting certain imperviousness threshold values and Landsat thermal bands were used to investigate urban surface thermal patterns. Analysis results suggest that urban surface thermal characteristics and patterns can be identified through qualitatively based urban land use and development density data. Results show the urban area of the Tampa Bay watershed has a daytime heating effect (heat-source), whereas the urban surface in Las Vegas has a daytime cooling effect (heat-sink). These thermal effects strongly correlated with urban development densities where higher percent imperviousness is usually associated with higher surface temperature. Using vegetation canopy coverage information, the spatial and temporal distributions of urban impervious surface and associated thermal characteristics are demonstrated to be very useful sources in quantifying urban land use, development intensity, and urban thermal patterns.
Adsorption and Structure of Chiral Epoxides on Pd(111): Propylene Oxide and Glycidol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahapatra, Mausumi; Tysoe, Wilfred T.
Here, the adsorption of enantiopure versus racemic propylene oxide (PO) on Pd(111) is studied by temperature-programmed desorption (TPD) to explore possible differences in their saturation coverage. It is found that that the saturation coverage of enantiopure PO on Pd(111) is identical to that of racemic PO, in contrast to results on Pt(111) where significant coverage differences were found. The surface structures of enantiopure PO on Pd(111) were characterized by scanning tunneling microscopy (STM), which shows the formation of linear chains and hexagonal structures proposed to be due to freely rotating PO, in contrast to the relatively disordered PO overlayers foundmore » on Pt(111). STM experiments were carried out for enantiopure glycidol, which contains the same epoxy ring as PO, but where the methyl group of propylene oxide is replaced by a -CH 2OH group to provide a hydrogen-bonding sites. Glycidol STM images show the formation of completely different surface structures; at low coverages, glycidol forms pseudohexagonal structures which assemble from glycidol dimers, while at high coverages the surface shows extensive hydrogen-bonded networks. Density functional theory (DFT) calculations were carried out to model the enantiopure PO linear chain and the glycidol dimers that are observed by STM. Similar calculations were carried out for racemic PO and glycidol structures. The calculated interaction energies for the enantiopure and the racemic pairs reveal that there is no difference for homochiral versus heterochiral structures for both PO and glycidol on Pd(111).« less
Adsorption and Structure of Chiral Epoxides on Pd(111): Propylene Oxide and Glycidol
Mahapatra, Mausumi; Tysoe, Wilfred T.
2018-01-03
Here, the adsorption of enantiopure versus racemic propylene oxide (PO) on Pd(111) is studied by temperature-programmed desorption (TPD) to explore possible differences in their saturation coverage. It is found that that the saturation coverage of enantiopure PO on Pd(111) is identical to that of racemic PO, in contrast to results on Pt(111) where significant coverage differences were found. The surface structures of enantiopure PO on Pd(111) were characterized by scanning tunneling microscopy (STM), which shows the formation of linear chains and hexagonal structures proposed to be due to freely rotating PO, in contrast to the relatively disordered PO overlayers foundmore » on Pt(111). STM experiments were carried out for enantiopure glycidol, which contains the same epoxy ring as PO, but where the methyl group of propylene oxide is replaced by a -CH 2OH group to provide a hydrogen-bonding sites. Glycidol STM images show the formation of completely different surface structures; at low coverages, glycidol forms pseudohexagonal structures which assemble from glycidol dimers, while at high coverages the surface shows extensive hydrogen-bonded networks. Density functional theory (DFT) calculations were carried out to model the enantiopure PO linear chain and the glycidol dimers that are observed by STM. Similar calculations were carried out for racemic PO and glycidol structures. The calculated interaction energies for the enantiopure and the racemic pairs reveal that there is no difference for homochiral versus heterochiral structures for both PO and glycidol on Pd(111).« less
Pezzoli, L; Tchio, R; Dzossa, A D; Ndjomo, S; Takeu, A; Anya, B; Ticha, J; Ronveaux, O; Lewis, R F
2012-01-01
We used the clustered lot quality assurance sampling (clustered-LQAS) technique to identify districts with low immunization coverage and guide mop-up actions during the last 4 days of a combined oral polio vaccine (OPV) and yellow fever (YF) vaccination campaign conducted in Cameroon in May 2009. We monitored 17 pre-selected districts at risk for low coverage. We designed LQAS plans to reject districts with YF vaccination coverage <90% and with OPV coverage <95%. In each lot the sample size was 50 (five clusters of 10) with decision values of 3 for assessing OPV and 7 for YF coverage. We 'rejected' 10 districts for low YF coverage and 14 for low OPV coverage. Hence we recommended a 2-day extension of the campaign. Clustered-LQAS proved to be useful in guiding the campaign vaccination strategy before the completion of the operations.
NASA Astrophysics Data System (ADS)
Magand, O.; Genthon, C.; Fily, M.; Krinner, G.; Picard, G.; Frezzotti, M.; Ekaykin, A. A.
2007-06-01
On the basis of thousands of surface mass balance (SMB) field measurements over the entire Antarctic ice sheet it is currently estimated that more than 2 Gt of ice accumulate each year at the surface of Antarctica. However, these estimates suffer from large uncertainties. Various problems affect Antarctic SMB measurements, in particular, limited or unwarranted spatial and temporal representativeness, measurement inaccuracy, and lack of quality control. We define quality criteria on the basis of (1) an up-to-date review and quality rating of the various SMB measurement methods and (2) essential information (location, dates of measurements, time period covered by the SMB values, and primary data sources) related to each SMB data. We apply these criteria to available SMB values from Queen Mary to Victoria lands (90°-180°E Antarctic sector) from the early 1950s to present. This results in a new set of observed SMB values for the 1950-2005 time period with strong reduction in density and coverage but also expectedly reduced inaccuracies and uncertainties compared to other compilations. The quality-controlled SMB data set also contains new results from recent field campaigns (International Trans-Antarctic Scientific Expedition (ITASE), Russian Antarctic Expedition (RAE), and Australian National Antarctic Research Expeditions (ANARE) projects) which comply with the defined quality criteria. A comparative evaluation of climate model results against the quality-controlled updated SMB data set and other widely used ones illustrates that such Antarctic SMB studies are significantly affected by the quality of field SMB values used as reference.
Adsorption differences between low coverage enantiomers of alanine on the chiral Cu{421}R surface.
Gladys, Michael J; Han, Jeong Woo; Pedersen, Therese S; Tadich, Anton; O'Donnell, Kane M; Thomsen, Lars
2017-05-31
Chiral separation using heterogeneous methods has long been sought after. Chiral metal surfaces have the potential to make it possible to model these systems using small amino acids, the building blocks for proteins. A comparison of submonolayer concentrations of alanine enantiomers adsorbed onto Cu{421} R has revealed a large geometrical differences between the two molecules as compared to the saturated coverage. Large differences were observed in HR-XPS and NEXAFS and complemented by theoretical DFT calculations. At approximately one third of a monolayer a comparison of the C1s XPS signal showed a shift in the methyl group of more than 300 meV indicating that the two enantiomers are in different chemical environments. NEXAFS spectroscopy confirmed the XPS variations and showed large differences in the orientation of the adsorbed molecules. Our DFT results show that the l-enantiomer is energetically the most stable in the {311} microfacet configuration. In contrast to the full monolayer coverage, these lower coverages showed enhanced selectivity.
Coverage dependent non-adiabaticity of CO on a copper surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omiya, Takuma; Surface and Interface Science Laboratory, RIKEN, Wako 351-0198; Arnolds, Heike
2014-12-07
We have studied the coverage-dependent energy transfer dynamics between hot electrons and CO on Cu(110) with femtosecond visible pump, sum frequency probe spectroscopy. We find that transients of the C–O stretch frequency display a red shift, which increases from 3 cm{sup −1} at 0.1 ML to 9 cm{sup −1} at 0.77 ML. Analysis of the transients reveals that the non-adiabatic coupling between the adsorbate vibrational motion and the electrons becomes stronger with increasing coverage. This trend requires the frustrated rotational mode to be the cause of the non-adiabatic behavior, even for relatively weak laser excitation of the adsorbate. We attributemore » the coverage dependence to both an increase in the adsorbate electronic density of states and an increasingly anharmonic potential energy surface caused by repulsive interactions between neighboring CO adsorbates. This work thus reveals adsorbate-adsorbate interactions as a new way to control adsorbate non-adiabaticity.« less
Ansar, Siyam M.; Chakraborty, Saptarshi
2018-01-01
Mercaptoundecanoic acid (MUA) functionalized gold nanoparticles (AuNP-MUA) were synthesized and demonstrated to possess pH-triggered aggregation and re-dispersion, as well as the capability of phase transfer between aqueous and organic phases in response to changes in pH. The pH of aggregation for AuNP-MUA is consistent with the pKa of MUA (pH ~4) in solution, while AuNP-MUA phase transition between aqueous and organic phases occurs at pH ~9. The ion pair formation between the amine group in octadecylamine (ODA), the carboxylate group in MUA, and the hydrophobic alkyl chain of ODA facilitates the phase transfer of AuNP-MUA into an organic medium. The AuNP-MUA were investigated as a reusable catalyst in the catalytic reduction of 4-nitrophenol by borohydride—a model reaction for AuNPs. It was determined that 100% MUA surface coverage completely inhibits the catalytic activity of AuNPs. Decreasing the surface coverage was shown to increase catalytic activity, but this decrease also leads to decreased colloidal stability, recoverability, and reusability in subsequent reactions. At 60% MUA surface coverage, colloidal stability and catalytic activity were achieved, but the surface coverage was insufficient to enable redispersion following pH-induced recovery. A balance between AuNP colloidal stability, recoverability, and catalytic activity with reusability was achieved at 90% MUA surface coverage. The AuNP-MUA catalyst can also be recovered at different pH ranges depending on the recovery method employed. At pH ~4, protonation of the MUA results in reduced surface charge and aggregation. At pH ~9, ODA will form an ion-pair with the MUA and induce phase transfer into an immiscible organic phase. Both the pH-triggered aggregation/re-dispersion and aqueous/organic phase transfer methods were employed for catalyst recovery and reuse in subsequent reactions. The ability to recover and reuse the AuNP-MUA catalyst by two different methods and different pH regimes is significant, based on the fact that nanoparticle-catalyzed reactions may occur under different pH conditions. PMID:29772775
Digital geologic map database of the Nevada Test Site area, Nevada
Wahl, R.R.; Sawyer, D.A.; Minor, S.A.; Carr, M.D.; Cole, J.C.; Swadley, W.C.; Laczniak, R.J.; Warren, R.G.; Green, K.S.; Engle, C.M.
1997-01-01
Forty years of geologic investigations at the Nevada Test Site (NTS) have been digitized. These data include all geologic information that: (1) has been collected, and (2) can be represented on a map within the map borders at the map scale is included in the map digital coverages. The following coverages are included with this dataset: Coverage Type Description geolpoly Polygon Geologic outcrops geolflts line Fault traces geolatts Point Bedding attitudes, etc. geolcald line Caldera boundaries geollins line Interpreted lineaments geolmeta line Metamorphic gradients The above coverages are attributed with numeric values and interpreted information. The entity files documented below show the data associated with each coverage.
NASA Technical Reports Server (NTRS)
Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.
2007-01-01
Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.
NASA Astrophysics Data System (ADS)
Majumdar, Paulami; Greeley, Jeffrey
2018-04-01
Linear scaling relations of adsorbate energies across a range of catalytic surfaces have emerged as a central interpretive paradigm in heterogeneous catalysis. They are, however, typically developed for low adsorbate coverages which are not always representative of realistic heterogeneous catalytic environments. Herein, we present generalized linear scaling relations on transition metals that explicitly consider adsorbate-coadsorbate interactions at variable coverages. The slopes of these scaling relations do not follow the simple bond counting principles that govern scaling on transition metals at lower coverages. The deviations from bond counting are explained using a pairwise interaction model wherein the interaction parameter determines the slope of the scaling relationship on a given metal at variable coadsorbate coverages, and the slope across different metals at fixed coadsorbate coverage is approximated by adding a coverage-dependent correction to the standard bond counting contribution. The analysis provides a compact explanation for coverage-dependent deviations from bond counting in scaling relationships and suggests a useful strategy for incorporation of coverage effects into catalytic trends studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Pan; Liu, Shizhong; Hong, Sung -Young
Here, we describe a previously unreported ordered phase of carbon monoxide adsorbed on the (111) facet of single crystal palladium at near-saturation coverage. The adlayer superstructure is identified from low energy electron diffraction to be c(16×2) with respect to the underlying Pd(111) surface net. The ideal coverage is determined to be 0.6875 ML, approximately 92% of the 0.75–ML saturation coverage. Density functional theory calculations support a model for the molecular packing characterized by strips of locally-saturated (2×2) regions, with the CO bound near high-symmetry surface sites, separated by antiphase domain boundaries. The structure exists in a narrow coverage range andmore » is prepared by heating the saturated adlayer to desorb a small fraction of the CO. Comparison of the c(16×2) domain-boundary structure with structural motifs at lower coverages suggests that between 0.6 and 0.6875 ML the adlayer order may be more strongly influenced by interadsorbate repulsion than by adsorption-site-specific interactions. The system is an example of the structural complexity that results from the compromise between adsorbate–substrate and adsorbate–adsorbate interactions.« less
Xu, Pan; Liu, Shizhong; Hong, Sung -Young; ...
2016-12-31
Here, we describe a previously unreported ordered phase of carbon monoxide adsorbed on the (111) facet of single crystal palladium at near-saturation coverage. The adlayer superstructure is identified from low energy electron diffraction to be c(16×2) with respect to the underlying Pd(111) surface net. The ideal coverage is determined to be 0.6875 ML, approximately 92% of the 0.75–ML saturation coverage. Density functional theory calculations support a model for the molecular packing characterized by strips of locally-saturated (2×2) regions, with the CO bound near high-symmetry surface sites, separated by antiphase domain boundaries. The structure exists in a narrow coverage range andmore » is prepared by heating the saturated adlayer to desorb a small fraction of the CO. Comparison of the c(16×2) domain-boundary structure with structural motifs at lower coverages suggests that between 0.6 and 0.6875 ML the adlayer order may be more strongly influenced by interadsorbate repulsion than by adsorption-site-specific interactions. The system is an example of the structural complexity that results from the compromise between adsorbate–substrate and adsorbate–adsorbate interactions.« less
Biewick, L.H.; Green, G.A.
1999-01-01
This Arc/Info coverage contains land status and Federal and State mineral ownership for approximately 25,900 square miles in northeastern Utah. The polygon coverage (which is also provided here as a shapefile) contains three attributes of ownership information for each polygon. One attribute indicates whether the surface is State owned, privately owned, consists of Tribal and Indian lands, or, if Federally owned, which Federal agency manages the land surface. Another attribute indicates where the Utah School and Institutional Trust Lands Administration (SITLA) maintains full or partial subsurface mineral rights. The third attribute indicates which energy minerals, if any, are owned by the Federal govenment. This coverage is based on land management status and Federal and State mineral ownership data compiled by the U.S. Geological Survey (USGS), the former U.S. Bureau of Mines (USBM), and the Utah School and Institutional Trust Lands Administration at a scale of 1:100,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.
H(D) → D(H) + Cu(111) collision system: Molecular dynamics study of surface temperature effects
Vurdu, Can D.; Güvenç, Ziya B.
2011-01-01
All the channels of the reaction dynamics of gas-phase H (or D) atoms with D (or H) atoms adsorbed onto a Cu(111) surface have been studied by quasiclassical constant energy molecular dynamics simulations. The surface is flexible and is prepared at different temperature values, such as 30 K, 94 K, and 160 K. The adsorbates were distributed randomly on the surface to create 0.18 ML, 0.28 ML, and 0.50 ML of coverages. The multi-layer slab is mimicked by a many-body embedded-atom potential energy function. The slab atoms can move according to the exerted external forces. Treating the slab atoms non-rigid has an important effect on the dynamics of the projectile atom and adsorbates. Significant energy transfer from the projectile atom to the surface lattice atoms takes place especially during the first impact that modifies significantly the details of the dynamics of the collisions. Effects of the different temperatures of the slab are investigated in this study. Interaction between the surface atoms and the adsorbates is modeled by a modified London–Eyring–Polanyi–Sato (LEPS) function. The LEPS parameters are determined by using the total energy values which were calculated by a density functional theory and a generalized gradient approximation for an exchange-correlation energy for many different orientations, and locations of one- and two-hydrogen atoms on the Cu(111) surface. The rms value of the fitting procedure is about 0.16 eV. Many different channels of the processes on the surface have been examined, such as inelastic reflection of the incident hydrogen, subsurface penetration of the incident projectile and adsorbates, sticking of the incident atom on the surface. In addition, hot-atom and Eley-Rideal direct processes are investigated. The hot-atom process is found to be more significant than the Eley-Rideal process. Furthermore, the rate of subsurface penetration is larger than the sticking rate on the surface. In addition, these results are compared and analyzed as a function of the surface temperatures. PMID:21528959
H(D) → D(H) + Cu(111) collision system: molecular dynamics study of surface temperature effects.
Vurdu, Can D; Güvenç, Ziya B
2011-04-28
All the channels of the reaction dynamics of gas-phase H (or D) atoms with D (or H) atoms adsorbed onto a Cu(111) surface have been studied by quasiclassical constant energy molecular dynamics simulations. The surface is flexible and is prepared at different temperature values, such as 30 K, 94 K, and 160 K. The adsorbates were distributed randomly on the surface to create 0.18 ML, 0.28 ML, and 0.50 ML of coverages. The multi-layer slab is mimicked by a many-body embedded-atom potential energy function. The slab atoms can move according to the exerted external forces. Treating the slab atoms non-rigid has an important effect on the dynamics of the projectile atom and adsorbates. Significant energy transfer from the projectile atom to the surface lattice atoms takes place especially during the first impact that modifies significantly the details of the dynamics of the collisions. Effects of the different temperatures of the slab are investigated in this study. Interaction between the surface atoms and the adsorbates is modeled by a modified London-Eyring-Polanyi-Sato (LEPS) function. The LEPS parameters are determined by using the total energy values which were calculated by a density functional theory and a generalized gradient approximation for an exchange-correlation energy for many different orientations, and locations of one- and two-hydrogen atoms on the Cu(111) surface. The rms value of the fitting procedure is about 0.16 eV. Many different channels of the processes on the surface have been examined, such as inelastic reflection of the incident hydrogen, subsurface penetration of the incident projectile and adsorbates, sticking of the incident atom on the surface. In addition, hot-atom and Eley-Rideal direct processes are investigated. The hot-atom process is found to be more significant than the Eley-Rideal process. Furthermore, the rate of subsurface penetration is larger than the sticking rate on the surface. In addition, these results are compared and analyzed as a function of the surface temperatures.
Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics
Pant, Lalit M.; Weber, Adam Z.
2017-04-14
A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.
Results of TV imaging of Phobos - Experiment VSK-Fregat
NASA Technical Reports Server (NTRS)
Avanesov, G.; Zhukov, B.; Ziman, IA.; Kostenko, V.; Kuz'min, A.; Duxbury, T.
1991-01-01
From February to March 1989 the Phobos 2 spacecraft took 37 TV images of Phobos at a distance of 190-1100 km. These images complement Mariner-9 and Viking data by providing higher-resolution coverage of a laarge region west of the crater Stickney (40-160 deg W) and by providing disk-resolved measurements of surface brightness at a greater range of wavelengths and additional phase angles. These images have supported updated mapping and characterization of large craters and grooves, and have provided additional observations of craters' and grooves' bright rims. Variations in surface visible/near-infrared color ratio of almost a factor of 2 have been recognized; these variations appear to be associated with the ejecta of specific large impact craters. Updated determinations of satellite mass and volume allow calculation of a more accurate value of bulk density, 1.90 + or - 0.1 g/cu cm. This is sigificantly lower than the density of meteoritic analogs to Phobos' surface, suggesting a porous interior perhaps containing interstitial ice.
Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.
Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza
2016-02-08
Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Rise of GNSS Reflectometry for Earth Remote Sensing
NASA Technical Reports Server (NTRS)
Zuffada, Cinzia; Li, Zhijin; Nghiem, Son V.; Lowe, Steve; Shah, Rashmi; Clarizia, Maria Paola; Cardellach, Estel
2015-01-01
The Global Navigation Satellite System (GNSS) reflectometry, i.e. GNSS-R, is a novel remote-sensing technique first published in that uses GNSS signals reflected from the Earth's surface to infer its surface properties such as sea surface height (SSH), ocean winds, sea-ice coverage, vegetation, wetlands and soil moisture, to name a few. This communication discusses the scientific value of GNSS-R to (a) furthering our understanding of ocean mesoscale circulation toward scales finer than those that existing nadir altimeters can resolve, and (b) mapping vegetated wetlands, an emerging application that might open up new avenues to map and monitor the planet's wetlands for methane emission assessments. Such applications are expected to be demonstrated by the availability of data from GEROS-ISS, an ESA experiment currently in phase A, and CyGNSS [3], a NASA mission currently in development. In particular, the paper details the expected error characteristics and the role of filtering played in the assimilation of these data to reduce the altimetric error (when averaging many measurements).
Radar monitoring of oil pollution
NASA Technical Reports Server (NTRS)
Guinard, N. W.
1970-01-01
Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.
Schram, Caitlin J; Taylor, Lynne S; Beaudoin, Stephen P
2015-10-20
The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.
Stokley, Shannon; Cullen, Karen A; Kennedy, Allison; Bardenheier, Barbara H
2008-02-22
While many Complementary/Alternative Medicine (CAM) practitioners do not object to immunization, some discourage or even actively oppose vaccination among their patients. However, previous studies in this area have focused on childhood immunizations, and it is unknown whether and to what extent CAM practitioners may influence the vaccination behavior of their adult patients. The purpose of this study was to describe vaccination coverage levels of adults aged > or = 18 years according to their CAM use status and determine if there is an association between CAM use and adult vaccination coverage. Data from the 2002 National Health Interview Survey, limited to 30,617 adults that provided at least one valid answer to the CAM supplement, were analyzed. Receipt of influenza vaccine during the past 12 months, pneumococcal vaccine (ever), and > or = 1 dose of hepatitis B vaccine was self-reported. Coverage levels for each vaccine by CAM use status were determined for adults who were considered high priority for vaccination because of the presence of a high risk condition and for non-priority adults. Multivariable analyses were conducted to evaluate the association between CAM users and vaccination status, adjusting for demographic and healthcare utilization characteristics. Overall, 36% were recent CAM users. Among priority adults, adjusted vaccination coverage levels were significantly different between recent and non-CAM users for influenza (44% vs 38%; p-value < 0.001) and pneumococcal (40% vs 33%; p-value < 0.001) vaccines but were not significantly different for hepatitis B (60% vs 56%; p-value = 0.36). Among non-priority adults, recent CAM users had significantly higher unadjusted and adjusted vaccination coverage levels compared to non-CAM users for all three vaccines (p-values < 0.001). Vaccination coverage levels among recent CAM users were found to be higher than non-CAM users. Because CAM use has been increasing over time in the U.S., it is important to continue monitoring CAM use and its possible influence on receipt of immunizations among adults. Since adult vaccination coverage levels remain below Healthy People 2010 goals, it may be beneficial to work with CAM practitioners to promote adult vaccines as preventive services in keeping with their commitment to maintaining good health.
Ab Initio Surface Phase Diagrams for Coadsorption of Aromatics and Hydrogen on the Pt(111) Surface
Ferguson, Glen Allen; Vorotnikov, Vassili; Wunder, Nicholas; ...
2016-11-02
Supported metal catalysts are commonly used for the hydrogenation and deoxygenation of biomass-derived aromatic compounds in catalytic fast pyrolysis. To date, the substrate-adsorbate interactions under reaction conditions crucial to these processes remain poorly understood, yet understanding this is critical to constructing detailed mechanistic models of the reactions important to catalytic fast pyrolysis. Density functional theory (DFT) has been used in identifying mechanistic details, but many of these works assume surface models that are not representative of realistic conditions, for example, under which the surface is covered with some concentration of hydrogen and aromatic compounds. In this study, we investigate hydrogen-guaiacolmore » coadsorption on Pt(111) using van der Waals-corrected DFT and ab initio thermodynamics over a range of temperatures and pressures relevant to bio-oil upgrading. We find that relative coverage of hydrogen and guaiacol is strongly dependent on the temperature and pressure of the system. Under conditions relevant to ex situ catalytic fast pyrolysis (CFP; 620-730 K, 1-10 bar), guaiacol and hydrogen chemisorb to the surface with a submonolayer hydrogen (~0.44 ML H), while under conditions relevant to hydrotreating (470-580 K, 10-200 bar), the surface exhibits a full-monolayer hydrogen coverage with guaiacol physisorbed to the surface. These results correlate with experimentally observed selectivities, which show ring saturation to methoxycyclohexanol at hydrotreating conditions and deoxygenation to phenol at CFP-relevant conditions. Additionally, the vibrational energy of the adsorbates on the surface significantly contributes to surface energy at higher coverage. Ignoring this contribution results in not only quantitatively, but also qualitatively incorrect interpretation of coadsorption, shifting the phase boundaries by more than 200 K and ~10-20 bar and predicting no guaiacol adsorption under CFP and hydrotreating conditions. We discuss the implications of this work in the context of modeling hydrogenation and deoxygenation reactions on Pt(111), and we find that only the models representative of equilibrium surface coverage can capture the hydrogenation kinetics correctly. Lastly, as a major outcome of this work, we introduce a freely available web-based tool, dubbed the Surface Phase Explorer (SPE), which allows researchers to conveniently determine surface composition for any one- or two-component system at thermodynamic equilibrium over a wide range of temperatures and pressures on any crystalline surface using standard DFT output.« less
Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok
2016-10-01
Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.
COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN'S MOON TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Li; Zheng Weijun; Kaiser, Ralf I.
2010-08-01
The aromatic benzene molecule (C{sub 6}H{sub 6})-a central building block of polycyclic aromatic hydrocarbon molecules-is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C{sub 2}H{sub 2}) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two ordersmore » of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.« less
NASA Astrophysics Data System (ADS)
Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn
2017-04-01
Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ. In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage.
Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.
Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan
2013-10-21
Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging from -64 to -12 mV at pH's of 10.5 and 3, respectively. The zeta potentials for the PVA/PVAc microspheres on the glass fiber surface and within the silane film significantly decrease and range from -25 to -5 mV. The shapes of the pH-dependent zeta potentials are different in the cases of silane groups over a pH range from 7 to 4. A triple-layer model is used to fit the non-silanized glass surface and the silane film. The value of the surface-site density for Γ(Xglass) and Γ(Xsilane), in which X denotes the Al-O-Si group, differs by a factor of 10(-4), which suggests an effective coupling of the silane film. A soft-layer model is used to fit the silane-PVA/PVAc complex film, which is approximated as four layers. Such a simplification and compensation of the microsphere shape gives an approximation of the relevant widths of the layers as the follows: 1) the layer of the silane groups makes up 10% of the total length (27 nm), 2) the layer of the first PVA shell contributes 30% to the total length (81 nm), 3) the layer of the PVAc core contributes 30% to the total length (81 nm), and finally 4) the layer of the second PVA shell provides 30% of the total length (81 nm). The coverage simulation resulted in a value of 0.4, which corresponds with the assumption of low-order coverage, and is supported by the AFM scans. Correlating the results of the AFM scans, and the zeta potentials sheds some light on the formation mechanism of the silane-PVA/PVAc complex film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conductive aluminum line formation on aluminum nitride surface by infrared nanosecond laser
NASA Astrophysics Data System (ADS)
Kozioł, Paweł E.; Antończak, Arkadiusz J.; Szymczyk, Patrycja; Stępak, Bogusz; Abramski, Krzysztof M.
2013-12-01
In this paper the fabrication of conductive aluminum paths on AlN ceramic's surface due to the interaction of laser radiation Nd:YAG (1.064 μm) is presented. The metallization process produces an appropriate power value on the ceramics surface to ensure the correct temperature (2200 °C) for which aluminum and nitrogen bonds are broken. Studies have been undertaken on creating low-ohmic structures depending on the parameters such as radiation power, scanning speed, the coverage of subsequent pulses and the environmental impact of the process (air, nitrogen, argon). Furthermore, with regards to the application of this method, it was significant to determine the thickness of the functional layer. A structure of the resistivity of ρ = 0.64 × 10-6 Ω m and aluminum layer thickness of 10 μm was achieved for the process carried out on the inert gas, argon. In addition, a quantitative analysis of nitrogen and aluminum for laser-treated structures was conducted. The performed tests confirmed that the highest amount of aluminum was produced on the surface treated by laser radiation in the environment of the process gas, argon.
Enhanced Ge/Si(001) island areal density and self-organization due to P predeposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, B.; Bareno, J.; Petrov, I.
The predeposition of P, with coverages {theta}{sub P} ranging from 0 to 1 ML, on Si(001) significantly increases both the areal density and spatial self-organization of Ge islands grown by gas-source molecular beam epitaxy from hydride precursors. The Ge island density {rho}{sub Ge} initially increases with {theta}{sub P}, reaching a maximum of 1.4 x 10{sup 10} cm{sup -2} at {theta}{sub P} = 0.7 ML, a factor of four times higher than on bare Si(001) under the same deposition conditions, before decreasing at higher P coverages. The increase in {rho}{sub Ge}({theta}{sub P}) is due to a corresponding decrease in Ge adatommore » mean free paths resulting from passivation of surface dangling bonds by adsorbed pentavalent P atoms which, in addition, leads to surface roughening and, therefore, higher Ge coverages at constant Ge{sub 2}H{sub 6} dose. As {theta}{sub P} (and hence, {rho}{sub Ge}) increases, so does the degree of Ge island ordering along <100> directions due to the anisotropic strain field surrounding individual islands. Similar results are obtained for Ge island growth on P-doped Si(001) layers where strong P surface segregation provides partial monolayer coverage prior to Ge deposition.« less
NASA Astrophysics Data System (ADS)
Malafsky, Geoffrey P.
1994-04-01
The temperature dependence of vacancy coalescence on an ion bombarded Ni(111) surface is measured by photoemission of adsorbed xenon (PAX). The Ni(111) crystal is sputtered by a low fluence (0.06 ML incident ions) Ar + ion beam with incident kinetic energies of 500-3000 eV. The Xe coverage decreases rapidly with increasing temperature between 88 and 375 K with little additional change from 375 to 775 K. The PAX spectra are acquired with a Xe chamber pressure of 8 × 10 -10 Torr and at a temperature of 88 K. Under these conditions, the Xe is selectively adsorbed at defect sites which would make the Xe coverage proportional to the surface defect density on simple defect structures but the large size of the Xe atom relative to the Ni atom prevents the direct relationship of Xe coverage to the defect density when complex and varying defect structures are present. The decrease in Xe coverage is not attributed to the loss of defect sites by adatom-vacancy recombination but the changing vacancy island shape and size with temperature which alters the ratio of adsorbed Xe atoms to surface vacancy sites. This ratio decreases with increasing temperature as the vacancy islands progress from small and irregularly shaped islands to larger and hexagonally shaped islands. This transition is seen in Monte Carlo simulations of the kinetically driven atomic diffusion on the sputtered surface.
Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces
Kaghazchi, Payam; Jacob, Timo; Chen, Wenhua; ...
2013-06-03
Here, we report adsorption and desorption of hydrogen on planar Ir(210) and faceted Ir(210), consisting of nanoscale {311} and (110) facets, by means of temperature programmed desorption (TPD) and density functional theory (DFT) in combination with the ab initio atomistic thermodynamics approach. TPD spectra show that only one H 2 peak is seen from planar Ir(210) at all coverages whereas a single H 2 peak is observed at around 440 K (F1) at fractional monolayer (ML) coverage and an additional H 2 peak appears at around 360 K (F2) at 1 ML coverage on faceted Ir(210), implying structure sensitivity inmore » recombination and desorption of hydrogen on faceted Ir(210) versus planar Ir(210), but no evidence is found for size effects in recombination and desorption of hydrogen on faceted Ir(210) for average facet sizes of 5-14 nm. Calculations indicate that H prefers to bind at the two-fold short-bridge sites of the Ir surfaces. In addition, we studied the stability of the Ir surfaces in the presence of hydrogen at different H coverages through surface free energy plots as a function of the chemical potential, which is also converted to a temperature scale. Moreover, the calculations revealed the origin of the two TPD peaks of H 2 from faceted Ir(210): F1 from desorption of H 2 on {311} facets while F2 from desorption of H 2 on (110) facets.« less
2005-01-11
This map illustrates the planned imaging coverage for the Descent Imager/Spectral Radiometer, onboard the European Space Agency's Huygens probe during the probe's descent toward Titan's surface on Jan. 14, 2005. The Descent Imager/Spectral Radiometer is one of two NASA instruments on the probe. The colored lines delineate regions that will be imaged at different resolutions as the probe descends. On each map, the site where Huygens is predicted to land is marked with a yellow dot. This area is in a boundary between dark and bright regions. This map was made from the images taken by the Cassini spacecraft cameras on Oct. 26, 2004, at image scales of 4 to 6 kilometers (2.5 to 3.7 miles) per pixel. The images were obtained using a narrow band filter centered at 938 nanometers -- a near-infrared wavelength (invisible to the human eye) at which light can penetrate Titan's atmosphere to reach the surface and return through the atmosphere to be detected by the camera. The images have been processed to enhance surface details. Only brightness variations on Titan's surface are seen; the illumination is such that there is no shading due to topographic variations. For about two hours, the probe will fall by parachute from an altitude of 160 kilometers (99 miles) to Titan's surface. During the descent the camera on the probe and five other science instruments will send data about the moon's atmosphere and surface back to the Cassini spacecraft for relay to Earth. The Descent Imager/Spectral Radiometer will take pictures as the probe slowly spins, and some these will be made into panoramic views of Titan's surface. This map shows the planned coverage by the medium- and high-resolution. PIA06173 shows expected coverage by the Descent Imager/Spectral Radiometer side-looking imager and two downward-looking imagers - one providing medium-resolution and the other high-resolution coverage. http://photojournal.jpl.nasa.gov/catalog/PIA06173
NASA Astrophysics Data System (ADS)
Mourya, Punita; Singh, Praveen; Rastogi, R. B.; Singh, M. M.
2016-09-01
The effect of iodide ions on inhibitive performance of 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (TODPCN) on mild steel (MS) corrosion in 0.5 M H2SO4 was studied using gravimetric and electrochemical measurements. TODPCN inhibits the corrosion of MS to the extent of 62.3% at its lowest concentration (0.5 mM) and its inhibition efficiency (η) further increases on increasing concentration at 298 K. The adsorption of TODPCN on MS was found to follow the Langmuir adsorption isotherm. The value of η increased on the addition of 2.0 mM KI. The value of synergism parameter being more than unity indicates that the enhanced η value in the presence of iodide ions is only due to synergism. Thus, a cooperative mechanism of inhibition exists between the iodide anion and TODPCN cations. The increase in surface coverage in the presence of KI indicates that iodide ions enhance the adsorption of TODPCN. The surface morphology of corroded/inhibited MS was studied by atomic force microscopy. X-ray photoelectron spectroscopy of inhibited MS surface was carried out to determine the composition of the adsorbed film. Some quantum chemical parameters and the Mulliken charge densities for TODPCN calculated by density functional theory provided further insight into the mechanism of inhibition.
Adsorption of small hydrocarbons on rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Smith, R. Scott; Kay, Bruce D.
2016-08-01
Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar tomore » previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less
Adsorption of small hydrocarbons on rutile TiO 2(110)
Chen, Long; Smith, R. Scott; Kay, Bruce D.; ...
2015-11-21
Here, temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C 1–C 4) on rutile TiO 2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti 5c sites. Similar to previous studiesmore » on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti 5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti 5c sites were also determined. The saturation coverage of CH 4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C 2–C 4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less
NASA Technical Reports Server (NTRS)
Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.
1980-01-01
The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.
Hain, Christopher R; Anderson, Martha C
2017-10-16
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.
The Sapphire (0001) Surface, Clean and with d-metal Overlayers: Density Functional - LDA Results
NASA Astrophysics Data System (ADS)
Verdozzi, C.; Jennison, D. R.; Schultz, P. A.; Sears, M. P.
1998-03-01
Previous theoretical work for the a-Al2O3(0001) surface mostly used very thin slabs, and limited theoretical information is available on the binding of metal overlayers. Also, no systematic information is available about the dependence of the metal-ceramic interaction on metal coverage. We present here results using the local density approximation for the structural and electronic properties of the a-Al2O3(0001) surface, with and without d-metal overlayers Pt, Ag, Cu, and with sufficiently thick slabs to find the bottom of the unusually large and deep surface relaxation in this material. Our thick slab site-optimized calculations are performed for 1, 2/3 and 1/3 monolayer (ML) coverage. The adhesion energy and the nature of the interfacial bond vary greatly with metal coverage and can be understood in terms of the relative roles of the surface Madelung potential and the strength of the lateral metal-metal bond. Our study should in principle succeed in bracketing the phenomenology of adhesion and wetting at least for the right-most part of the d-metal periodic table. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Corresponding author: claudio@sandia.gov.
NASA Astrophysics Data System (ADS)
Huang, X.; Chen, X.; Flanner, M.; Yang, P.; Feldman, D.; Kuo, C.
2017-12-01
Surface longwave emissivity can be less than unity and vary significantly with frequency. The emissivities of water, ice, and bare land all exhibit different spectral dependence, for both the far-IR and mid-IR bands. However, most climate models still assume blackbody surface in the longwave (LW) radiation scheme of their atmospheric modules. This study incorporates realistic surface spectral emissivity into the RRTMG_LW, the LW radiation scheme in CAM, which is the atmospheric component of the NCAR Community Earth System Model (CESM) version 1.1.1. Then we evaluate its impact on simulated climatology, especially for the polar regions. By ensuring the consistency of the broadband longwave flux across different modules of the CESM, the TOA energy balance in the simulation can be attained without additional tuning of the model. While the impact on global mean surface temperature is small, the surface temperature differences in Polar Regions are statistically significant. The mean surface temperature in Arctic in the modified CESM is 1.5K warmer than that in the standard CESM, reducing the cold bias that the standard CESM has with respect to observations. Accordingly the sea ice fraction in the modified CESM simulation is less than that in the standard CESM simulation by as much as 0.1, which significantly reduces the positive biases in the simulated sea ice coverage by the CESM. The largest sea-ice coverage difference happens in August and September, when new sea ice starts to form. The similar changes can be seen for the simulated Antarctic surface climate as well. In a nutshell, incorporating realistic surface spectral emissivity helps improving the fidelity of simulated surface energy budget in the polar region, which leads to a better simulation of the surface temperature and sea ice coverage.
Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces
NASA Astrophysics Data System (ADS)
Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan
2006-04-01
By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Rey, M.; Donostia International Physics Center; Tremblay, J. C.
2015-04-21
Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emergemore » from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.« less
5 CFR 890.302 - Coverage of family members.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 890.302 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES HEALTH BENEFITS PROGRAM Enrollment § 890.302 Coverage of family...) Evidence of goods or services which show regular and substantial contributions of considerable value; (v...
Chape, S; Harrison, J; Spalding, M; Lysenko, I
2005-01-01
There are now over 100 000 protected areas worldwide, covering over 12% of the Earth's land surface. These areas represent one of the most significant human resource use allocations on the planet. The importance of protected areas is reflected in their widely accepted role as an indicator for global targets and environmental assessments. However, measuring the number and extent of protected areas only provides a unidimensional indicator of political commitment to biodiversity conservation. Data on the geographic location and spatial extent of protected areas will not provide information on a key determinant for meeting global biodiversity targets: ‘effectiveness’ in conserving biodiversity. Although tools are being devised to assess management effectiveness, there is no globally accepted metric. Nevertheless, the numerical, spatial and geographic attributes of protected areas can be further enhanced by investigation of the biodiversity coverage of these protected areas, using species, habitats or biogeographic classifications. This paper reviews the current global extent of protected areas in terms of geopolitical and habitat coverage, and considers their value as a global indicator of conservation action or response. The paper discusses the role of the World Database on Protected Areas and collection and quality control issues, and identifies areas for improvement, including how conservation effectiveness indicators may be included in the database to improve the value of protected areas data as an indicator for meeting global biodiversity targets. PMID:15814356
Ricotta, Emily E; Boulay, Marc; Ainslie, Robert; Babalola, Stella; Fotheringham, Megan; Koenker, Hannah; Lynch, Matthew
2015-01-21
SBCC campaigns are designed to act on cognitive, social and emotional factors at the individual or community level. The combination of these factors, referred to as 'ideation', play a role in determining behaviour by reinforcing and confirming decisions about a particular health topic. This study introduces ideation theory and mediation analysis as a way to evaluate the impact of a malaria SBCC campaign in Tanzania, to determine whether exposure to a communication programme influenced universal coverage through mediating ideational variables. A household survey in three districts where community change agents (CCAs) were active was conducted to collect information on ITN use, number of ITNs in the household, and perceptions about ITN use and ownership. Variables relating to attitudes and beliefs were combined to make 'net ideation'. Using an ideational framework, a mediation analysis was conducted to see the impact exposure to a CCA only, mass media and community (M & C) messaging only, or exposure to both, had on household universal coverage, through the mediating variable net ideation. All three levels of exposure (CCA, M & C messaging, or exposure to both) were significantly associated with increased net ideation (CCA: 0.283, 95% CI: 0.136-0.429, p-value: <0.001; M & C: 0.128, 95% CI: 0.032-0.334, p-value: 0.018; both: 0.376, 95% CI: 0.170-0.580, p-value: <0.001). Net ideation also significantly increased the odds of having universal coverage (CCAOR: 1.265, 95% CI: 1.118-1.433, p-value: <0.001; M & COR: 1.264, 95% CI: 1.117-1.432, p-value: <0.001, bothOR: 1.260, 95% CI: 1.114-1.428, p-value: <0.001). There were no significant direct effects between any exposure and universal coverage when controlling for net ideation. The results of this study indicate that mediation analysis is an applicable new tool to assess SBCC campaigns. Ideation as a mediator of the effects of communication exposure on household universal coverage has implications for designing SBCC to support both mass and continuous distribution efforts, since both heavily rely on consumer participation to obtain and maintain ITNs. Such systems can be strengthened by SBCC programming, generating demand through improving social norms about net ownership and use, perceived benefits of nets, and other behavioural constructs.
Kim, Dae-Seon; Park, Min-Su; Jang, Jae-Hyung
2011-08-01
Subwavelength structures (SWSs) were fabricated on the Indium Phosphide (InP) substrate by utilizing the confined convective self-assembly (CCSA) method followed by reactive ion etching (RIE). The surface condition of the InP substrate was changed by depositing a 30-nm-thick SiO2 layer and subsequently treating the surface with O2 plasma to achieve better surface coverage. The surface coverage of nanoparticle monolayer reached 90% by using O2 plasma-treated SiO2/InP substrate among three kinds of starting substrates such as the bare InP, SiO2/InP and O2 plasma-treated SiO2/InP substrate. A nanoparticle monolayer consisting of polystyrene spheres with diameter of 300 nm was used as an etch mask for transferring a two-dimensional periodic pattern onto the InP substrate. The fabricated conical SWS with an aspect ratio of 1.25 on the O2 plasma-treated SiO2/InP substrate exhibited the lowest reflectance. The average reflectance of the conical SWS was 5.84% in a spectral range between 200 and 900 nm under the normal incident angle.
Fattore, Giovanni; Tediosi, Fabrizio
2013-01-01
In this article, we use cultural theory to investigate the nature of health systems governance and management, showing that it may be helpful in identifying key aspects of the debate about how to promote universal health coverage. Cultural theory argues that "how" we govern and manage health services depends on what we think about the nature of government organizations and the legitimacy of their scope of action. The values that are implied by universal health coverage underlie choices about "how" health systems are governed and their organizations are managed. We draw two main conclusions. First, the translation of principles and goals into practice requires exceptional efforts to design adequate decision-making arrangements (the essence of governance) and management practices. Management and governance, or "how" policies are decided and conducted, are not secondary to the selection of the best policy solutions (the "what"). Second, governance and management solutions are not independent of the values that they are expected to serve. Instead, they should be designed to be consonant with these values. Cultural theory suggests-and experience supports-the idea that "group identity" is favorable for shaping different forms of social life and public administrations. This approach should thus be a starting point for those who strive to obtain universal health coverage. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Nelson, Joey; Wasylenki, Laura; Bargar, John R.; ...
2017-08-05
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Joey; Wasylenki, Laura; Bargar, John R.
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
Validation of Satellite Retrieved Land Surface Variables
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman; Susskind, Joel
1999-01-01
The effective use of satellite observations of the land surface is limited by the lack of high spatial resolution ground data sets for validation of satellite products. Recent large scale field experiments include FIFE, HAPEX-Sahel and BOREAS which provide us with data sets that have large spatial coverage and long time coverage. It is the objective of this paper to characterize the difference between the satellite estimates and the ground observations. This study and others along similar lines will help us in utilization of satellite retrieved data in large scale modeling studies.
Nanopatterning of magnetic domains: Fe coverage of self-assembled alumina nanostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qibin; Wang, Bo -Yao; Lin, Wen -Chin
2015-08-19
Nanosized ultrathin magnetic films were prepared by controlling the deposition of Fe onto an oxidized NiAl(001) surface with an alumina nanostructure on it. Because the ultrathin ferromagnetic Fe films on the bare NiAl(001) surface are separated by paramagnetic Fe nanoparticles on the alumina stripes, as determined by scanning electron microscopy with spin analysis, they form rectangular domains with sizes ranging from tens of nanometer to larger than a micrometer. Furthermore, magnetic domain patterning can thus be achieved by controlling the Fe coverage and nanostructured template.
Stocco, Antonio; Su, Ge; Nobili, Maurizio; In, Martin; Wang, Dayang
2014-09-28
Here multiple angle of incidence ellipsometry was successfully applied to in situ assess the contact angle and surface coverage of gold nanoparticles as small as 18 nm, coated with stimuli-responsive polymers, at water-oil and water-air interfaces in the presence of NaCl and NaOH, respectively. The interfacial adsorption of the nanoparticles was found to be very slow and took days to reach a fairly low surface coverage. For water-oil interfaces, in situ nanoparticle contact angles agree with the macroscopic equilibrium contact angles of planar gold surfaces with the same polymer coatings, whilst for water-air interfaces, significant differences have been observed.
Application of τc*Pd for identifying damaging earthquakes for earthquake early warning
NASA Astrophysics Data System (ADS)
Huang, P. L.; Lin, T. L.; Wu, Y. M.
2014-12-01
Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.
Electrosorption of a modified electrode in the vicinity of phase transition: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Gavilán Arriazu, E. M.; Pinto, O. A.
2018-03-01
We present a Monte Carlo study for the electrosorption of an electroactive species on a modified electrode. The surface of the electrode is modified by the irreversible adsorption of a non-electroactive species which is able to block a percentage of the adsorption sites. This generates an electrode with variable connectivity sites. A second species, electroactive in this case, is adsorbed in surface vacancies and can interact repulsively with itself. In particular, we are interested in the analysis of the effect of the non-electroactive species near of critical regime, where the c(2 × 2) structure is formed. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of voltammograms, order parameters, isotherms, configurational entropy per site, at several values of energies and coverage degrees of the non-electroactive species.
Chen, Yanan; Vedala, Harindra; Kotchey, Gregg P.; Audfray, Aymeric; Cecioni, Samy; Imberty, Anne; Vidal, Sébastien; Star, Alexander
2012-01-01
Here we investigated the interactions between lectins and carbohydrates using field-effect transistor (FET) devices comprised of chemically converted graphene (CCG) and single-walled carbon nanotubes (SWNTs). Pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with 2 µM of nonspecific and specific lectins. In particular, three different lectins (PA-IL, PA-IIL and ConA) and three carbohydrate epitopes (galactose, fucose and mannose) were tested. The responses of 36 different devices were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Glycoconjugates surface coverage in addition to one-dimensional structures of SWNTs resulted in optimal lectin detection. Additionally, lectin titration data of SWNT- and CCG-based biosensors were used to calculate lectin dissociation constants (Kd) and compare them to the values obtained from the isothermal titration microcalorimetry (ITC) technique. PMID:22136380
2013-02-10
VANDENBERG AFB, Calif. -- At Space Launch Complex 3E at Vandenberg Air Force Base, Calif., NASA Administrator Charles Bolden, left, discusses Landsat Data Continuity Mission, or LDCM, satellite preparations with Kennedy Space Center Director Bob Cabana. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Liftoff is planned for Feb. 11, 2013 aboard a United Launch Alliance Atlas V rocket. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA/Kim Shiflett
2013-02-10
VANDENBERG AFB, Calif. -- At Space Launch Complex 3E at Vandenberg Air Force Base, Calif., Kennedy Space Center Director Bob Cabana, left, and NASA Administrator Charles Bolden discuss the Landsat Data Continuity Mission, or LDCM, satellite mission with NASA social media followers. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Liftoff is planned for Feb. 11, 2013 aboard a United Launch Alliance Atlas V rocket. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA/Kim Shiflett
2013-02-10
VANDENBERG AFB, Calif. -- At Vandenberg Air Force Base, Calif., NASA's Landsat Data Continuity Mission, or LDCM, satellite is mounted atop a United Launch Alliance Atlas V rocket in the gantry at Space Launch Complex 3E. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Liftoff is planned for Feb. 11, 2013 aboard a United Launch Alliance Atlas V rocket. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA/Kim Shiflett
Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard
2018-05-31
We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.
Effect of stone coverage on soil erosion
NASA Astrophysics Data System (ADS)
Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.
2010-12-01
Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in negligible changes in the bulk density during the erosion event. Since the main process contributing to surface sealing development is the compaction due to the raindrop kinetic energy and associated physico-chemical changes, the protection provided by the stone cover is consistent with the area-averaging approach used in applying the HR model.
NASA Astrophysics Data System (ADS)
Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.
2007-04-01
In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.
NASA Astrophysics Data System (ADS)
Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.
2017-04-01
Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the southernmost parts of EM Sea, affected by frequent Saharan dust export. The mean regional annual AODs range from 0.17±0.05 to 0.23±0.06. The corresponding regional annual DREs at surface range from -14±3 to -18±4 W/m2 (surface radiative cooling), while in the atmosphere they vary between 7±2 and 10±2 W/m2 (atmospheric heating), yielding a planetary cooling above the EM Sea between -6±1 and -8±2 W/m2. However, these AOD and DRE values vary depending on the criteria of data spatial and temporal availability applied in the AOD and DRE calculation, because of the limited availability of retrieved AVHRR AOD over specific areas and in specific days. The DREs reach larger magnitudes at pixel-level; for example the surface DREs slightly exceed -30 W/m2, whereas they take larger values (magnitudes larger than -50 W/m2 in summer) when computed on a monthly basis, and even larger values on daily basis. The model results underline the high spatial and temporal variability of aerosol DREs, and the care that must be taken when averaging over space and time. It also points to the need for availability of aerosol data with concurrent high spatial and temporal coverage and resolution, which should be sought in ongoing and future satellite missions.
Grenoble, Zlata; Baldelli, Steven
2013-08-29
The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.
Zhang, Peng; Huang, Lei; Hu, Yi-gang; Zhao, Yang; Wu, Yong-chen
2016-02-01
Nitrogen limitation is common in terrestrial ecosystems, and it is particularly severe in damaged ecosystems in arid regions. Biological soil crusts (BSCs) , as a crucial component of recovered vegetation, play a vital role in nitrogen fixation during the ecological restoration processes of damaged ecosystems in arid and semi-arid regions. In this study, two dominant types of BSCs (i.e., cyanobacterial-algal crusts and moss crusts) that are widely distributed in the re-vegetated area of Heidaigou open pit coal mine were investigated. Samples were collected in the field and their nitrogenase activities (NA) were measured in the laboratory. The responses of NA to different hydro-thermal factors and the relationships between NA and herbs in addition to crust coverage were analyzed. The results indicated that BSCs under reconstructed vegetation at different succession stages, abandoned land and natural vegetation showed values of NA ranging from 9 to 150 µmol C2H4 . m-2 . h-1, and the NA value of algae crust (77 µmol C2H4 . m-2 . h-1) was markedly higher than that of moss crust (17 µmol C2H4 . m-2 . h-1). In the re-vegetated area, cyanobacterial-algal crust and moss crust under shrub-herb had higher NA values than those of crusts under arbor-shrnb and arbor-shrub-herb. The relationship between NA of the two BSCs and soil relative water content (10% - 100%) as well as culture temperature (5-45 °C) were of quadratic function. With elevated water content and cultural temperature, the NA values increased at the initial stage and then decreased, and reached the maximum value at 25 °C of cultural temperature and 60% or 80% of relative water content. The NA of cyanobacterial-algal crust had a significant quadratic function with herb coverage, as NA declined when herb coverage was higher than 20%. A significant negative correlation was observed between the NA of moss crusts and herb coverage. The NA values of the two types of BSCs had a significant positive correlation with crust coverage, since the NA was enhanced when the crust coverage was increased. We concluded that the different NA of the two BSCs in the re-vegetated area of Heidaigou open pit coal mine were caused by the composition of cryptograms. In addition, the differences of hydrothermal conditions and the composition of herb or crust coverage at different succession stages were also the contribution factors. Therefore, BSC construction and nitrogen fixation in re-vegetated areas is an important symbol for sustainable development in ecosystems.
Lu, Peng-Jun; Byrd, Kathy K; Murphy, Trudy V
2013-05-01
Since 1996, hepatitis A vaccine (HepA) has been recommended for adults at increased risk for infection including travelers to high or intermediate hepatitis A endemic countries. In 2009, travel outside the United States and Canada was the most common exposure nationally reported for persons with hepatitis A virus (HAV) infection. To assess HepA vaccination coverage among adults 18-49 years traveling to a country of high or intermediate endemicity in the United States. We analyzed data from the 2010 National Health Interview Survey (NHIS), to determine self-reported HepA vaccination coverage (≥1 dose) and series completion (≥2 dose) among persons 18-49 years who traveled, since 1995, to a country of high or intermediate HAV endemicity. Multivariable logistic regression and predictive marginal analyses were conducted to identify factors independently associated with HepA vaccine receipt. In 2010, approximately 36.6% of adults 18-49 years reported traveling to high or intermediate hepatitis A endemic countries; among this group unadjusted HepA vaccination coverage was 26.6% compared to 12.7% among non-travelers (P-values<0.001) and series completion were 16.9% and 7.6%, respectively (P-values<0.001). On multivariable analysis among all respondents, travel status was an independent predictor of HepA coverage and series completion (both P-values<0.001). Among travelers, HepA coverage and series completion (≥2 doses) were higher for travelers 18-25 years (prevalence ratios 2.3, 2.8, respectively, P-values<0.001) and for travelers 26-39 years (prevalence ratios 1.5, 1.5, respectively, P-value<0.001, P-value=0.002, respectively) compared to travelers 40-49 years. Other characteristics independently associated with a higher likelihood of HepA receipt among travelers included Asian race/ethnicity, male sex, never having been married, having a high school or higher education, living in the western United States, having greater number of physician contacts or receipt of influenza vaccination in the previous year. HepB vaccination was excluded from the model because of the significant correlation between receipt of HepA vaccination and HepB vaccination could distort the model. Although travel to a country of high or intermediate hepatitis A endemicity was associated with higher likelihood of HepA vaccination in 2010 among adults 18-49 years, self-reported HepA vaccination coverage was low among adult travelers to these areas. Healthcare providers should ask their patients' upcoming travel plans and recommend and offer travel related vaccinations to their patients. Published by Elsevier Ltd.
Lu, Peng-jun; Byrd, Kathy K.; Murphy, Trudy V.
2018-01-01
Background Since 1996, hepatitis A vaccine (HepA) has been recommended for adults at increased risk for infection including travelers to high or intermediate hepatitis A endemic countries. In 2009, travel outside the United States and Canada was the most common exposure nationally reported for persons with hepatitis A virus (HAV) infection. Objective To assess HepA vaccination coverage among adults 18–49 years traveling to a country of high or intermediate endemicity in the United States. Methods We analyzed data from the 2010 National Health Interview Survey (NHIS), to determine self-reported HepA vaccination coverage (≥1 dose) and series completion (≥2 dose) among persons 18–49 years who traveled, since 1995, to a country of high or intermediate HAV endemicity. Multivariable logistic regression and predictive marginal analyses were conducted to identify factors independently associated with HepA vaccine receipt. Results In 2010, approximately 36.6% of adults 18–49 years reported traveling to high or intermediate hepatitis A endemic countries; among this group unadjusted HepA vaccination coverage was 26.6% compared to 12.7% among non-travelers (P-values < 0.001) and series completion were 16.9% and 7.6%, respectively (P-values < 0.001). On multivariable analysis among all respondents, travel status was an independent predictor of HepA coverage and series completion (both P-values < 0.001). Among travelers, HepA coverage and series completion (≥2 doses) were higher for travelers 18–25 years (prevalence ratios 2.3, 2.8, respectively, P-values < 0.001) and for travelers 26–39 years (prevalence ratios 1.5, 1.5, respectively, P-value < 0.001, P-value = 0.002, respectively) compared to travelers 40–49 years. Other characteristics independently associated with a higher likelihood of HepA receipt among travelers included Asian race/ethnicity, male sex, never having been married, having a high school or higher education, living in the western United States, having greater number of physician contacts or receipt of influenza vaccination in the previous year. HepB vaccination was excluded from the model because of the significant correlation between receipt of HepA vaccination and HepB vaccination could distort the model. Conclusions Although travel to a country of high or intermediate hepatitis A endemicity was associated with higher likelihood of HepA vaccination in 2010 among adults 18–49 years, self-reported HepA vaccination coverage was low among adult travelers to these areas. Healthcare providers should ask their patients’ upcoming travel plans and recommend and offer travel related vaccinations to their patients. PMID:23523408
A shared responsibility. US employers and the provision of health insurance to employees.
Collins, Sara R; Davis, Karen; Ho, Alice
2005-01-01
Employer-based health insurance is the backbone of the U.S. system of health insurance coverage. Yet it has been slowly eroding, and if these trends continue greater numbers of Americans are likely to be uninsured or without affordable coverage. Employer coverage has marked advantages, including benefits to employers and a natural risk pool that offers better benefits at lower cost than individual coverage, and is highly valued by employees. The shift of health care costs from employers who do not cover their workers to other parts of the economy is substantial. Very little attention has been given to policies that might strengthen and expand employer coverage. It will be important to shore up employer coverage both to curb its recent erosion and to build toward a more comprehensive system of health insurance.
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Huang, Yong; Pruvost, Jeremy; Legrand, Jack; Pilon, Laurent
2017-06-01
This study aims to quantify systematically the effect of non-absorbing cap-shaped droplets condensed on the backside of transparent windows on their directional-hemispherical transmittance and reflectance. Condensed water droplets have been blamed to reduce light transfer through windows in greenhouses, solar desalination plants, and photobioreactors. Here, the directional-hemispherical transmittance was predicted by Monte Carlo ray-tracing method. For the first time, both monodisperse and polydisperse droplets were considered, with contact angle between 0 and 180°, arranged either in an ordered hexagonal pattern or randomly distributed on the window backside with projected surface area coverage between 0 and 90%. The directional-hemispherical transmittance was found to be independent of the size and spatial distributions of the droplets. Instead, it depended on (i) the incident angle, (ii) the optical properties of the window and droplets, and on (iii) the droplet contact angle and (iv) projected surface area coverage. In fact, the directional-hemispherical transmittance decreased with increasing incident angle. Four optical regimes were identified in the normal-hemispherical transmittance. It was nearly constant for droplet contact angles either smaller than the critical angle θcr (predicted by Snell's law) for total internal reflection at the droplet/air interface or larger than 180°-θcr. However, between these critical contact angles, the normal-hemispherical transmittance decreased rapidly to reach a minimum at 90° and increased rapidly with increasing contact angles up to 180°-θcr. This was attributed to total internal reflection at the droplet/air interface which led to increasing reflectance. In addition, the normal-hemispherical transmittance increased slightly with increasing projected surface area coverage for contact angle was smaller than θcr. However, it decreased monotonously with increasing droplet projected surface area coverage for contact angle larger than θcr. These results can be used to select the material or surface coating with advantageous surface properties for applications when dropwise condensation may otherwise have a negative effect on light transmittance.
The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study
NASA Technical Reports Server (NTRS)
Schall, Constance A.
1998-01-01
Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.
Is labral hypotrophy correlated with increased acetabular depth?
Toft, Felix; Anliker, Elmar; Beck, Martin
2015-01-01
Labral hypertrophy is a distinct feature in hip dysplasia. Occasionally, very small, hypotrophic labra are observed. However, there is no literature concerning this pathology. We investigated if the size of the labrum correlated with any radiologic parameters reflecting the amount of acetabular coverage. It was hypothezised that there is a negative correlation between labrum size and acetabular coverage. Labra were categorized into three groups depending on the relation between length of the articular sided surface and height of bony attachment. Labra with a height:length ratio of 2 were classified as hypotrophic, with a height:length ratio of 1 as normal and with a ratio of 0.5 as hypertrophic. Labral cross-sectional areas (CSA) were measured on radial magnetic resonance imaging-arthrography slices using the measuring tool of the PACS system of 20 hips with hypotrophic labra (group 1), 20 hips with normal labral appearance (group 2) and 10 hips with hypertrophic labra (group 3). These values were then analyzed against following parameters: neck-shaft-angle (NSA), lateral center-edge angle (LCE), acetabular index (AI), femoral extrusion index (FEI) and acetabular retroversion index (ARI). Analyses of variance were used to determine differences in mean values between the three groups. Mean labral CSA differed significantly between all groups (group 1: 12.1 ± 2.9 mm2; group 2: 25.2 ± 6.2 mm2; group 3: 41.1 ± 12.3 mm2; P < 0.001). NSA, LCE, AI and FEI all showed a significant difference between group 3 and 1 or 2. The ARI showed no difference between groups. Stepwise linear regression analyses showed a significant correlation between LCE angle and labral CSA with a corrected R2-value of 0.301. Labral CSA correlates with the LCE. No statistically significant difference between groups 1 and 2 concerning the LCE, AI or FEI could be identified. Nevertheless, group 1 had the highest mean coverage of all groups, hips with hypertrophic labra the lowest. PMID:27011836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.
Angle-resolved photon stimulated desorption (PSD) combined with infrared reflection-adsorption spectroscopy and temperature programmed desorption reveal two distinct channels in the photochemistry of acetone on rutile TiO₂(110) surface. During UV irradiation of co-adsorbed oxygen and acetone molecules, methyl radicals (CH₃) are ejected in two different directions: i) normal to the surface and ii) off-normal at ~±66° to the surface normal in the azimuth (i.e. perpendicular to the rows of bridging oxygen and Ti atoms). Both components are relatively narrow and non-cosine, indicating non-thermal evolution of CH₃ radicals. The direction of the “off-normal” PSD component is consistent with orientation of the C–CH₃more » bonds in the n²-acetone diolate—a photoactive form of acetone chemisorption on the oxidized TiO₂(110) surface proposed earlier from experimental and theoretical studies. The direction of the “normal” PSD component requires an orientation of a C–CH₃ bond which is not consistent with the n²-acetone diolate structure. The angular distribution of the CH₃ PSD depends on the acetone coverage. The “off-normal” PSD component dominates at lower acetone coverage (< 0.2 ML), but does not increase at higher coverages in accord with the acetone diolate peak intensity in the infrared reflection-absorption spectra. The “normal” PSD component grows with the acetone coverage up to 0.6 ML. The newly discovered “normal” PSD channel is tentatively assigned to a photo-produced n²- acetone enolate as a potential precursor based on the H/D exchange experiments« less
Improvement of Europa's Gravity and Body Tides and Shape with a Laser Altimeter during a Flyby Tour
NASA Astrophysics Data System (ADS)
Mazarico, E.; Genova, A.; Smith, D. E.; Zuber, M. T.
2014-12-01
Laser altimeters have been primarily utilized with orbiter spacecraft. Recently, the Mercury Laser Altimeter on MESSENGER successfully operated at Mercury during two flybys and thousands of highly-elliptical orbits, and contributed greatly towards improved understanding of the innermost planet. We show that a laser altimeter instrument on a flyby tour mission such as the planned NASA Europa Clipper can constrain key geophysical parameters when supported by variable-frequency altimetric measurements over repeated ~145°-long arcs across the surface. Previous work by Park et al. (2011, GRL) showed through covariance analysis that a similar trajectory could yield the gravity tidal Love number k2 to good accuracy (0.05). Here, we conduct a full simulation of a 45-flyby trajectory in the Jupiter system with Europa as primary target. We consider reasonable tracking coverage and noise level (dominated by plasma noise), as well as gravity (degree 50) and topography (200m resolution supplemented by realistic fractal noise at shorter wavelengths), informed by relevant existing data (Galileo, Cassini). The simulation is initialized at pessimistic values, with C20, C22, k2, and h2 in error of 90%, 90%, 50%, and 50%, respectively. All other gravity coefficients up to degree 3 have zero a priori values. Assumed altimetric data sampling and noise are derived from the tour trajectory and the instrument performance described by Smith et al. (this meeting). This variable-frequency laser altimeter can greatly improve the surface coverage (for shape recovery) and the number of altimetric crossovers, the best measurement type to constrain the tidal surface deformation. We find from our simulation that the addition of altimetry data significantly improves the determination of the gravity tidal Love number k2 and enables the recovery of the body tidal Love number h2. Low-degree gravity and topography are most important to constrain the interior structure of Europa. Scientific objectives of a mission such as Europa Clipper can be made more robust and even furthered with a laser altimeter.
The reactions of thiophene on Mo(110) and Mo(110)-p(2×2)-S
NASA Astrophysics Data System (ADS)
Roberts, Jeffrey T.; Friend, C. M.
1987-07-01
The reactions of thiophene and 2,5-dideuterothiophene on Mo(110) and Mo(110)-p(2×2)-S have been investigated under ultrahigh vacuum conditions using temperature programmed reaction spectroscopy and Auger electron spectroscopy. Thiophene chemisorbed on Mo(110) decomposes during temperature programmed reaction to yield only gaseous dihydrogen, surface carbon, and surface sulfur. At low thiophene exposures, dihydrogen evolves from Mo(110) in a symmetric peak at 440 K. At saturation exposures, three dihydrogen peaks are detected at 360 K, at 420 K and at 565 K. Multilayers of thiophene desorb at 180 K. Temperature programmed reaction of 2,5-dideuterothiophene demonstrates that at high thiophene coverages, one of the α-C-H bonds (those nearest sulfur) breaks first. No bond breaking selectivity is observed at low thiophene exposures. The Mo(110)-p(2×2)-S surface is less active for thiophene decomposition. Thiophene adsorbed on Mo(110)-p(2×2)-S to low coverages decomposes to surface carbon surface sulfur, and hydrogen at 430 K. At reaction saturation, dihydrogen production is observed at 375 and 570 K. In addition, at moderate and high exposures, chemisorbed thiophene desorbs from Mo(110)-p(2×2)-S. At saturation the desorption temperature of the reversibly chemisorbed state is 215 K. Experiments with 2,5-dideuterothiophene demonstrate no surface selectivity for α-C-H bond breaking reactions on Mo(110)-p(2×2)-S. The decomposition mechanism and energetics of thiophene decomposition are proposed to be dependent on the coverage of thiophene. At low thiophene exposures, the ring is proposed to bond parallel to the surface. All C-H bonds in the parallel geometry are sterically available for activation by the surface, accounting for the lack of selectivity in C-H bond breaking. High thiophene coverages are suggested to result in perpendicularly bound thiophene which undergoes selective α-dehydrogenation to an α)-thiophenyl intermediate. The presence of sulfur leads to a high energy pathway for cleavage of C-H bonds in a thiophene derived intermediate. Carbon-hydrogen bonds survive on the surface up to temperatures of 650 K. Comparison of this study with work on Mo(100) demonstrates that the reaction of thiophene on molybdenum is relatively insensitive to the surface geometric structure.
Building multidevice pipeline constructs of favorable metal coverage: a practical guide.
Shapiro, M; Raz, E; Becske, T; Nelson, P K
2014-08-01
The advent of low-porosity endoluminal devices, also known as flow diverters, exemplified by the Pipeline in the United States, produced the greatest paradigm shift in cerebral aneurysm treatment since the introduction of detachable coils. Despite robust evidence of efficacy and safety, key questions regarding the manner of their use remain unanswered. Recent studies demonstrated that the Pipeline device geometry can dramatically affect its metal coverage, emphasizing the negative effects of oversizing the device relative to its target vessels. This follow-up investigation focuses on the geometry and coverage of multidevice constructs. A number of Pipeline devices were deployed in tubes of known diameters and photographed, and the resultant coverage was determined by image segmentation. Multidevice segmentation images were created to study the effects of telescoped devices and provide an estimate of coverages resulting from device overlap. Double overlap yields a range of metal coverage, rather than a single value, determined by the diameters of both devices, the size of the recipient artery, and the degree to which strands of the overlapped devices are coregistered with each other. The potential variation in coverage is greatest during overlap of identical-diameter devices, for example, ranging from 24% to 41% for two 3.75-mm devices deployed in a 3.5-mm vessel. Overlapping devices of progressively different diameters produce correspondingly more uniform ranges of coverage, though reducing the maximum achievable value, for example, yielding a 33%-34% range for 3.75- and 4.75-mm devices deployed in the same 3.5-mm vessel. Rational strategies for building multidevice constructs can achieve favorable geometric outcomes. © 2014 by American Journal of Neuroradiology.
Liang, Zhenxing; Ahn, Hyun S; Bard, Allen J
2017-04-05
The hydrogen evolution reaction (HER) on Ni in alkaline media was investigated by scanning electrochemical microscopy under two operating modes. First, the substrate generation/tip collection mode was employed to extract the "true" cathodic current associated with the HER from the total current in the polarization curve. Compared to metallic Ni, the electrocatalytic activity of the HER is improved in the presence of the low-valence-state oxide of Ni. This result is in agreement with a previous claim that the dissociative adsorption of water can be enhanced at the Ni/Ni oxide interface. Second, the surface-interrogation scanning electrochemical microscopy (SI-SECM) mode was used to directly measure the coverage of the adsorbed hydrogen on Ni at given potentials. Simulation indicates that the hydrogen coverage follows a Frumkin isotherm with respect to the applied potential. On the basis of the combined analysis of the Tafel slope and surface hydrogen coverage, the rate-determining step is suggested to be the adsorption of hydrogen (Volmer step) in the investigated potential window.
Pāhoehoe flow cooling, discharge, and coverage rates from thermal image chronometry
Dehn, Jonathan; Hamilton, Christopher M.; Harris, A. J. L.; Herd, Richard A.; James, M.R.; Lodato, Luigi; Steffke, Andrea
2007-01-01
Theoretically- and empirically-derived cooling rates for active pāhoehoe lava flows show that surface cooling is controlled by conductive heat loss through a crust that is thickening with the square root of time. The model is based on a linear relationship that links log(time) with surface cooling. This predictable cooling behavior can be used assess the age of recently emplaced sheet flows from their surface temperatures. Using a single thermal image, or image mosaic, this allows quantification of the variation in areal coverage rates and lava discharge rates over 48 hour periods prior to image capture. For pāhoehoe sheet flow at Kīlauea (Hawai`i) this gives coverage rates of 1–5 m2/min at discharge rates of 0.01–0.05 m3/s, increasing to ∼40 m2/min at 0.4–0.5 m3/s. Our thermal chronometry approach represents a quick and easy method of tracking flow advance over a three-day period using a single, thermal snap-shot.
Peng, Hongbo; Liang, Ni; Li, Hao; Chen, Fangyuan; Zhang, Di; Pan, Bo; Xing, Baoshan
2015-09-01
Sorption of organic contaminants on organo-mineral complexes has been investigated extensively, but the sorption contribution of mineral particles was not properly addressed before calculating KOC, especially for ionic organic contaminants. We measured the surface coverage of a humic acid (HA) on nano iron oxides (n-Fe2O3) in a series of synthesized organo-mineral complexes. The contribution of the coated HA to ofloxacin (OFL) and norfloxacin (NOR) sorption in HA-n-Fe2O3 complexes was over 80% of the total sorption with the surface coverage of 36% and fOC of 1.6%. All the coated HA showed higher sorption to NOR and OFL in comparison to the original HA, suggesting HA fractionation and/or physical re-conformation during organo-mineral complex formation. The decreased KOC with multilayer coating may suggest the importance of site-specific interactions for OFL sorption, while the increased KOC with multilayer coating may suggest the importance of partitioning in hydrophobic region for NOR sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.
2015-12-01
Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.
Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves
NASA Astrophysics Data System (ADS)
Song, Xue; Wang, Li'ao; Ma, Xu; Zeng, Yunmin
2017-02-01
Carbon molecular sieves (CMS) are widely used in the separation of dioxide carbon and methane. In this research, three commercial CMS were utilized to analyze the pore structure and chemical properties. The adsorption isotherms of CO2 and CH4 were studied at 298 K, 308 K and 318 K over the pressure range of 0-1 MPa by an Intelligent Gravimetric analysis (IGA-100B, UK). Langmuir model was adopted to fit the experimental data. The working capacity and selectivity were employed to evaluate the adsorbents. The adsorption thermodynamics were discussed. The adsorbed amounts of both CO2 and CH4 are found to be highly related with the BET specific surface area and the volume of micropores, and also are interrelated with the total pore volume and micropore surface area. The standard enthalpy change (ΔHΘ), standard Gibbs free energy (ΔGΘ) and standard entropy change (ΔSΘ) at zero surface loading are negative, manifesting the adsorption process is exothermic and spontaneous, and the system tends to be ordered. With the increasing surface coverage, the absolute values of Gibbs free energy (ΔG) decrease whereas the absolute values of enthalpy change (ΔH) and entropy change(ΔS) increase. This indicates that as the adsorbed amount increases, the degree of the spontaneity reduces, the intermolecular forces among the adsorbate molecules increase, the orderliness of the system improves and the adsorbed amount approaches the maximum adsorbed capacity.
Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.
Zhang, Yi; Hillier, Andrew C
2010-07-15
We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.
Contribution of the palate to denture base support: an in vivo study.
Ando, Takanori; Maeda, Yoshinobu; Wada, Masahiro; Gonda, Tomoya
2014-01-01
The aim of this study was to examine the contribution of the palate to denture base support. Four subjects with tooth- or implant-supported maxillary overdentures were enrolled. Recordings (strain values converted to load values) were performed using miniature strain gauges and force transducers for the following conditions: metal framework only (A), denture base with full palatal coverage (B), and denture base without palatal coverage (C). The palatal-supporting ratio (PSR) was calculated using the equation PSR = (B - C) / A. The PSR values were less than 10% in all subjects, suggesting that the palate plays a minimal role in denture base support.
Influence of surface roughness on cetyltrimethylammonium bromide adsorption from aqueous solution.
Wu, Shuqing; Shi, Liu; Garfield, Lucas B; Tabor, Rico F; Striolo, Alberto; Grady, Brian P
2011-05-17
The influence of surface roughness on surfactant adsorption was studied using a quartz crystal microbalance with dissipation (QCM-D). The sensors employed had root-mean-square (R) roughness values of 2.3, 3.1, and 5.8 nm, corresponding to fractal-calculated surface area ratios (actual/nominal) of 1.13, 1.73, and 2.53, respectively. Adsorption isotherms measured at 25 °C showed that adsorbed mass of cetyltrimethylammonium bromide per unit of actual surface area below 0.8 cmc, or above 1.2 cmc, decreases as the surface roughness increases. At the cmc, both the measured adsorbed amount and the measured dissipation increased dramatically on the rougher surfaces. These results are consistent with the presence of impurities, suggesting that roughness exacerbates well-known phenomena reported in the literature of peak impurity-related adsorption at the cmc. The magnitude of the increase, especially in dissipation, suggests that changes in adsorbed amount may not be the only reason for the observed results, as aggregates at the cmc on rougher surfaces are more flexible and likely contain larger amounts of solvent. Differences in adsorption kinetics were also found as a function of surface roughness, with data showing a second, slower adsorption rate after rapid initial adsorption. A two-rate Langmuir model was used to further examine this effect. Although adsorption completes faster on the smoother surfaces, initial adsorption at zero surface coverage is faster on the rougher surfaces, suggesting the presence of more high-energy sites on the rougher surfaces.
Growth of Au on Ni(110): A Semiempirical Modeling of Surface Alloy Phases
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John
1995-01-01
Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(110), where experiments by Pleth Nielsen el al.indicate that at low Au coverage (less than 0. 5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this paper, we present results of a theoretical modeling of this phenomenon using the recently developed Bozzolo-Ferrante-Smith method for alloys. We provide results of an extensive analysis of the growth process that strongly support the conclusions drawn from the experiment: at very low coverages, there is a tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formation as well as other alternative short-range-order patterns are discussed.
Surface roughness formation during shot peen forming
NASA Astrophysics Data System (ADS)
Koltsov, V. P.; Vinh, Le Tri; Starodubtseva, D. A.
2018-03-01
Shot peen forming (SPF) is used for forming panels and skins, and for hardening. As a rule, shot peen forming is performed after milling. Surface roughness is a complex structure, a combination of an original microrelief and shot peen forming indentations of different depths and chaotic distribution along the surface. As far as shot peen forming is a random process, surface roughness resulted from milling and shot peen forming is random too. During roughness monitoring, it is difficult to determine the basic surface area which would ensure accurate results. It can be assumed that the basic area depends on the random roughness which is characterized by the degree of shot peen forming coverage. The analysis of depth and shot peen forming indentations distribution along the surface made it possible to identify the shift of an original center profile plane and create a mathematical model for the arithmetic mean deviation of the profile. Experimental testing proved model validity and determined an inversely proportional dependency of the basic area on the degree of coverage.
Lego, Béatrice; François, Marion; Skene, W G; Giasson, Suzanne
2009-05-05
The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.
Sorenson, Corinna
2010-07-01
Comparative effectiveness research (CER) has assumed an increasing role in drug coverage and, in some cases, pricing decisions in Europe, as decision-makers seek to obtain better value for money. This issue brief comparatively examines the use of CER across six countries--Denmark, England, France, Germany, the Netherlands, and Sweden. With CER gaining traction in the United States, these international experiences offer insights and potential lessons. Investing in CER can help address the current gap in publicly available, credible, up-to-date, and scientifically based comparative information on the effectiveness of drugs and other health interventions. This information can be used to base coverage and pricing decisions on evidence of value, thereby facilitating access to and public and private investment in the most beneficial new drugs and technologies. In turn, use of CER creates incentives for more efficient, high-quality health care and encourages development of innovative products that offer measurable value to patients.
Streaming current for particle-covered surfaces: simulations and experiments
NASA Astrophysics Data System (ADS)
Blawzdziewicz, Jerzy; Adamczyk, Zbigniew; Ekiel-Jezewska, Maria L.
2017-11-01
Developing in situ methods for assessment of surface coverage by adsorbed nanoparticles is crucial for numerous technological processes, including controlling protein deposition and fabricating diverse microstructured materials (e.g., antibacterial coatings, catalytic surfaces, and particle-based optical systems). For charged surfaces and particles, promising techniques for evaluating surface coverage are based on measurements of the electrokinetic streaming current associated with ion convection in the double-layer region. We have investigated the dependence of the streaming current on the area fraction of adsorbed particles for equilibrium and random-sequential-adsorption (RSA) distributions of spherical particles, and for periodic square and hexagonal sphere arrays. The RSA results have been verified experimentally. Our numerical results indicate that the streaming current weakly depends on the microstructure of the particle monolayer. Combining simulations with the virial expansion, we provide convenient fitting formulas for the particle and surface contributions to the streaming current as functions of area fractions. For particles that have the same ζ-potential as the surface, we find that surface roughness reduces the streaming current. Supported by NSF Award No. 1603627.
A simple model for the evolution of melt pond coverage on permeable Arctic sea ice
NASA Astrophysics Data System (ADS)
Popović, Predrag; Abbot, Dorian
2017-05-01
As the melt season progresses, sea ice in the Arctic often becomes permeable enough to allow for nearly complete drainage of meltwater that has collected on the ice surface. Melt ponds that remain after drainage are hydraulically connected to the ocean and correspond to regions of sea ice whose surface is below sea level. We present a simple model for the evolution of melt pond coverage on such permeable sea ice floes in which we allow for spatially varying ice melt rates and assume the whole floe is in hydrostatic balance. The model is represented by two simple ordinary differential equations, where the rate of change of pond coverage depends on the pond coverage. All the physical parameters of the system are summarized by four strengths that control the relative importance of the terms in the equations. The model both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. Examples of insights we can gain from the model are that (1) the pond growth rate is more sensitive to changes in bare sea ice albedo than changes in pond albedo, (2) ponds grow slower on smoother ice, and (3) ponds respond strongest to freeboard sinking on first-year ice and sidewall melting on multiyear ice. We also show that under a global warming scenario, pond coverage would increase, decreasing the overall ice albedo and leading to ice thinning that is likely comparable to thinning due to direct forcing. Since melt pond coverage is one of the key parameters controlling the albedo of sea ice, understanding the mechanisms that control the distribution of pond coverage will help improve large-scale model parameterizations and sea ice forecasts in a warming climate.
NASA Astrophysics Data System (ADS)
Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.
2016-10-01
Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.
NASA Astrophysics Data System (ADS)
Kurniawan, Alfin; Wang, Meng-Jiy
2017-09-01
The application of the electrospun nanomaterials to surface-enhanced Raman spectroscopy (SERS) is a rapidly evolving field which holds potential for future developments in the generation of portable plasmonic-based detection platforms. In this study, a simple approach to fabricate electrospun poly(N-vinylpyrrolidone) (PVP) mats decorated with gold nanoparticles (AuNPs) by combining electrospinning and calcination was presented. AuNPs were decorated on the fiber mat surface through electrostatic interactions between positively charged aminosilane groups and negatively charged AuNPs. The size and coverage density of AuNPs on the fiber mats could be tuned by varying the calcination temperature. Calcination of AuNPs-decorated PVP fibers at 500 °C-700 °C resulted in the uniform decoration of high density AuNPs with very narrow gaps on every single fiber, which in turn contribute to strong electromagnetic SERS enhancement. The robust free-standing AuNPs-decorated mat which calcined at 500 °C (500/AuNPs-F) exhibited high SERS activity toward cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes in single and binary systems with a detection range from tens of nM to a few hundred μM. The fabricated SERS substrate demonstrated high reproducibility with the spot-to-spot variation in SERS signal intensities was ±10% and ±12% for single and binary dye systems, respectively. The determination of MB and MO in spiked river water and tap water with 500/AuNPs-F substrate gave satisfactory results in terms of the percent spike recoveries (ranging from 92.6%-96.6%) and reproducibility (%RSD values less than 15 for all samples).
Adsorption and Dissociation of CO2 on Ru(0001)
2017-01-01
The adsorption and dissociation of carbon dioxide on a Ru(0001) single crystal surface was investigated by reflection–absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) spectroscopy for CO2 adsorbed at 85 K. RAIRS spectroscopy shows that the adsorption of CO2 on a Ru(0001) single crystal is partially dissociative, resulting in CO2 and CO. The CO vibrational mode was also observed to split into two distinct modes, indicating two general populations of CO present at the surface. Furthermore, a time-dependent blue-shift is observed, which is characteristic of increasing CO surface coverage. TPD showed that coverages of up to 0.3 ML were obtained, and no evidence for chemisorption of oxygen on ruthenium was found. PMID:28413569
NASA Astrophysics Data System (ADS)
Wasey, A. H. M. Abdul; Das, G. P.; Majumder, C.
2017-05-01
Traditionally, h-BN is used as coating material to prevent corrosion on the metal surface. In sharp contrast to this, here we show catalytic behavior of h-BN monolayer deposited on Ni(111) surface, clearly demonstrating the influence of the support in modulation of h-BN electronic structure. Using first principles density functional theory we have studied the interaction of O2 molecules with the h-BN/Ni(111) surface. The activation of Osbnd O bond, which is the most important step for oxidative catalysis, showed dependence on the O2 coverage. Thus this study is extremely important to predict the optimum O2 pressure in reaction chamber for efficient catalysis.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of a stable and low work function Ba0.25Sc0.25O structure suggests that addition of Sc to the B-type cathode surface could form this alloy structure under operating conditions, leading to improved cathode performance and stability. Detailed comparison to previous experimental results of BaxScyOz on W surface coatings are made to both validate the modeling and aid in interpretation of experimental data. The studies presented here demonstrate that ab initio methods are powerful for understanding the fundamental physics of electron emitting materials systems and can potentially aid in the development of improved cathodes.
Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems
NASA Astrophysics Data System (ADS)
Mendez, Mariano J.; Buschiazzo, Daniel E.
2015-03-01
The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.
Quad-Tree Visual-Calculus Analysis of Satellite Coverage
NASA Technical Reports Server (NTRS)
Lo, Martin W.; Hockney, George; Kwan, Bruce
2003-01-01
An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.
NASA Technical Reports Server (NTRS)
Yavuzkurt, S.; Moffat, R. J.; Kays, W. M.
1979-01-01
Hydrodynamic measurements were made with a triaxial hot-wire in the full-coverage region and the recovery region following an array of injection holes inclined downstream, at 30 degrees to the surface. The data were taken under isothermal conditions at ambient temperature and pressure for two blowing ratios: M = 0.9 and M = 0.4. Profiles of the three main velocity components and the six Reynolds stresses were obtained at several spanwise positions at each of the five locations down the test plate. A one-equation model of turbulence (using turbulent kinetic energy with an algebraic mixing length) was used in a two-dimensional computer program to predict the mean velocity and turbulent kinetic energy profiles in the recovery region. A new real-time hotwire scheme was developed to make measurements in the three-dimensional turbulent boundary layer over the full-coverage surface.
Formation of Molecular Networks: Tailored Quantum Boxes and Behavior of Adsorbed CO in Them
NASA Astrophysics Data System (ADS)
Wyrick, Jon; Sun, Dezheng; Kim, Dae-Ho; Cheng, Zhihai; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Kim, Yong Su; Rotenberg, Eli; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig
2011-03-01
We show that the behavior of CO adsorbed into the pores of large regular networks on Cu(111) is significantly affected by their nano-scale lateral confinement and that formation of the networks themselves is directed by the Shockley surface state. Saturation coverages of CO are found to exhibit persistent dislocation lines; at lower coverages their mobility increases. Individual CO within the pores titrate the surface state, providing crucial information for understanding formation of the network as a result of optimization of the number N of electrons bound within each pore. Determination of N is based on quinone-coverage-dependent UPS data and an analysis of states of particles in a pore-shaped box (verified by CO's titration); a wide range of possible pore shapes and sizes has been considered. Work at UCR supported by NSF CHE 07-49949; at UMD by NSF CHE 07-50334 & UMD NSF-MRSEC DMR 05-20471.
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
Implications of MOLA Global Roughness, Statistics, and Topography
NASA Technical Reports Server (NTRS)
Aharonson, O.; Zuber, M. T.; Neumann, G. A.
1999-01-01
New insights are emerging as the ongoing high-quality measurements of the Martian surface topography by Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) spacecraft increase in coverage, resolution, and diversity. For the first time, a global characterization of the statistical properties of topography is possible. The data were collected during the aerobreaking hiatus, science phasing, and mapping orbits of MGS, and have a resolution of 300-400 m along track, a range resolution of 37.5 cm, a range precision of 1-10 m for surface slopes up to 30 deg., and an absolute accuracy of topography of 13 m. The spacecraft's orbit inclination dictates that nadir observations have latitude coverage of about 87.1S to 87.1N; the addition of observations obtained during a period of off-nadir pointing over the north pole extended coverage to 90N. Additional information is contained in the original extended abstract.
Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells.
Kong, Eui-Hyun; Chang, Yong-June; Lim, Jongchul; Kim, Back-Hyun; Lee, Jung-Hoon; Kwon, Do-Kyun; Park, Taiho; Jang, Hyun Myung
2013-07-28
Ion exchange using aerosol OT (AOT) offers dye adsorption twice as fast as known methods. Moreover, it suppresses the dye-agglomeration that may cause insufficient dye-coverage on the photoelectrode surface. Consequently, its dual function of fast dye-loading and higher dye-coverage significantly improves the power conversion efficiency of dye-sensitized solar cells.
NASA Technical Reports Server (NTRS)
Xie, X.; Liu, W.; Hu, H.; Tang, W.
2001-01-01
The series of joint U.S.-Japan spaceborne scatterometers missions to provide continuous measurements of ocean wind vectors is reviewed. Examples of the scientific impact of the continuous effort in improving spatial resolution and coverage are provided. The plan for the future is reviewed.
An improved rainfall disaggregation technique for GCMs
NASA Astrophysics Data System (ADS)
Onof, C.; Mackay, N. G.; Oh, L.; Wheater, H. S.
1998-08-01
Meteorological models represent rainfall as a mean value for a grid square so that when the latter is large, a disaggregation scheme is required to represent the spatial variability of rainfall. In general circulation models (GCMs) this is based on an assumption of exponentiality of rainfall intensities and a fixed value of areal rainfall coverage, dependent on rainfall type. This paper examines these two assumptions on the basis of U.K. and U.S. radar data. Firstly, the coverage of an area is strongly dependent on its size, and this dependence exhibits a scaling law over a range of sizes. Secondly, the coverage is, of course, dependent on the resolution at which it is measured, although this dependence is weak at high resolutions. Thirdly, the time series of rainfall coverages has a long-tailed autocorrelation function which is comparable to that of the mean areal rainfalls. It is therefore possible to reproduce much of the temporal dependence of coverages by using a regression of the log of the mean rainfall on the log of the coverage. The exponential assumption is satisfactory in many cases but not able to reproduce some of the long-tailed dependence of some intensity distributions. Gamma and lognormal distributions provide a better fit in these cases, but they have their shortcomings and require a second parameter. An improved disaggregation scheme for GCMs is proposed which incorporates the previous findings to allow the coverage to be obtained for any area and any mean rainfall intensity. The parameters required are given and some of their seasonal behavior is analyzed.
Lee, Bruce Y; Bartsch, Sarah M; Stone, Nathan T B; Zhang, Shufang; Brown, Shawn T; Chatterjee, Chandrani; DePasse, Jay V; Zenkov, Eli; Briët, Olivier J T; Mendis, Chandana; Viisainen, Kirsi; Candrinho, Baltazar; Colborn, James
2017-06-01
AbstractMalaria-endemic countries have to decide how much of their limited resources for vector control to allocate toward implementing long-lasting insecticidal nets (LLINs) versus indoor residual spraying (IRS). To help the Mozambique Ministry of Health use an evidence-based approach to determine funding allocation toward various malaria control strategies, the Global Fund convened the Mozambique Modeling Working Group which then used JANUS, a software platform that includes integrated computational economic, operational, and clinical outcome models that can link with different transmission models (in this case, OpenMalaria) to determine the economic value of vector control strategies. Any increase in LLINs (from 80% baseline coverage) or IRS (from 80% baseline coverage) would be cost-effective (incremental cost-effectiveness ratios ≤ $114/disability-adjusted life year averted). However, LLIN coverage increases tend to be more cost-effective than similar IRS coverage increases, except where both pyrethroid resistance is high and LLIN usage is low. In high-transmission northern regions, increasing LLIN coverage would be more cost-effective than increasing IRS coverage. In medium-transmission central regions, changing from LLINs to IRS would be more costly and less effective. In low-transmission southern regions, LLINs were more costly and less effective than IRS, due to low LLIN usage. In regions where LLINs are more cost-effective than IRS, it is worth considering prioritizing LLIN coverage and use. However, IRS may have an important role in insecticide resistance management and epidemic control. Malaria intervention campaigns are not a one-size-fits-all solution, and tailored approaches are necessary to account for the heterogeneity of malaria epidemiology.
Coverage for Gender-Affirming Care: Making Health Insurance Work for Transgender Americans.
Padula, William V; Baker, Kellan
2017-08-01
Many transgender Americans continue to remain uninsured or are underinsured because of payers' refusal to cover medically necessary, gender-affirming healthcare services-such as hormone therapy, mental health counseling, and reconstructive surgeries. Coverage refusal results in higher costs and poor health outcomes among transgender people who cannot access gender-affirming care. Research into the value of health insurance coverage for gender-affirming care for transgender individuals shows that the health benefits far outweigh the costs of insuring transition procedures. Although the Affordable Care Act explicitly protects health insurance for transgender individuals, these laws are being threatened; therefore, this article reviews their importance to transgender-inclusive healthcare coverage.
Nonphotosynthetic Pigments as Potential Biosignatures
Cockell, Charles S.; Meadows, Victoria S.
2015-01-01
Abstract Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data. Key Words: Biosignatures—Exoplanets—Halophiles—Pigmentation—Reflectance spectroscopy—Spectral models. Astrobiology 15, 341–361. PMID:25941875
Supramolecular structures of halogenated oligothiophenes on the Si(111)-√3 ×√3-Ag surface
NASA Astrophysics Data System (ADS)
Liu, R.; Fu, C.; Perepichka, D. F.; Gallagher, M. C.
2016-05-01
We have studied the adsorption of brominated tetrathienoanthracene (TBTTA) molecules onto the Si(111)-√3 × √ 3-Ag surface at room temperature. The two-dimensional √ 3 silver adlayer acts to passivate the silicon surface and provides a high-mobility template for TBTTA adsorption. Scanning tunneling microscopy (STM) images reveal that at low coverage, the molecules readily migrate to step edges and defects in the √ 3 overlayer. With increasing coverage, the molecules eventually form compact supramolecular structures. In terms of the hexagonal √ 3 lattice vectors (a√ 3 and b√ 3), the oblique unit cell of these structures can be defined by lattice vectors am = 3a√ 3 + 2b√ 3, and bm = - a√ 3 + b√ 3. The structures are quite fragile and can decompose under repeated STM imaging. This is particularly true at higher bias and suggests an electric field-induced dissociation in these instances. With increasing molecular dose, the size and stability of the structures increases. At higher coverage, the spatial extent of the supramolecular structures is often limited by defects in the underlying √ 3 layer. Our results suggest that the √ 3-Ag surface provides a relatively inert substrate for the adsorption of TBTTA molecules, and that the supramolecular structures are held together by relatively weak intermolecular forces.
Ustarroz, Jon; Geboes, Bart; Vanrompay, Hans; Sentosun, Kadir; Bals, Sara; Breugelmans, Tom; Hubin, Annick
2017-05-17
Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (R f ) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller R f , the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.
Method for lubricating contacting surfaces
Dugger, Michael T [Tijeras, NM; Ohlhausen, James A [Albuquerque, NM; Asay, David B [Boalsburg, PA; Kim, Seong H [State College, PA
2011-12-06
A method is provided for tribological lubrication of sliding contact surfaces, where two surfaces are in contact and in motion relative to each other, operating in a vapor-phase environment containing at least one alcohol compound at a concentration sufficiently high to provide one monolayer of coverage on at least one of the surfaces, where the alcohol compound continuously reacts at the surface to provide lubrication.
Gresham, G L; Groenewold, G S; Olson, J E
2000-12-01
The nitrogen blister agents HN-2 (bis(2-chloroethyl)methylamine) and HN-3 (tris(2-chloroethyl)amine) were directly analyzed on the surface of soil samples using ion trap secondary ion mass spectrometry (SIMS). In the presence of water, HN-1 (bis(2-choroethyl)ethylamine), HN-2 and HN-3 undergo hydrolysis to form N-ethyldiethanolamine, N-methyldiethanolamine and triethanolamine (TEA), respectively; these compounds can be readily detected as adsorbed species on soil particles. When soil samples spiked with HN-3 in alcohol were analyzed, 2-alkoxyethylamine derivatives were observed on the sample surfaces. This result shows that nitrogen blister agents will undergo condensation reactions with nucleophilic compounds and emphasizes the need for an analytical methodology capable of detecting a range of degradation and condensation products on environmental surfaces. The ability of ion trap SIMS to isolate and accumulate ions, and then perform tandem mass spectrometric analysis improves the detection of low-abundance surface contaminants and the selectivity of the technique. Utilizing these techniques, the limits of detection for HN-3 were studied as a function of surface coverage. It was found that HN-3 could be detected at a surface coverage of 0.01 monolayer, which corresponds to 20 ppm (mass/mass) for a soil having a surface area of 2.2 m(2) g(-1). TEA, the exhaustive hydrolysis product of HN-3, was detected at a surface coverage of 0.001 monolayer, which corresponds to 0.86 ppm. Copyright 2000 John Wiley & Sons, Ltd.
Self-assembled monolayer structures of hexadecylamine on Cu surfaces: density-functional theory.
Liu, Shih-Hsien; Balankura, Tonnam; Fichthorn, Kristen A
2016-12-07
We used dispersion-corrected density-functional theory to probe possible structures for adsorbed layers of hexadecylamine (HDA) on Cu(100) and Cu(111). HDA forms self-assembled layers on these surfaces, analogous to alkanethiols on various metal surfaces, and it binds by donating electrons in the amine group to the Cu surface atoms, consistent with experiment. van der Waals interactions between the alkyl tails of HDA molecules are stronger than the interaction between the amine group and the Cu surfaces. Strong HDA-tail interactions lead to coverage-dependent tilting of the HDA layers, such that the tilt angle is larger for lower coverages. At full monolayer coverage, the energetically preferred binding configuration for HDA on Cu(100) is a (5 × 3) pattern - although we cannot rule out incommensurate structures - while the pattern is preferred on Cu(111). A major motivation for this study is to understand the experimentally observed capability of HDA as a capping agent for producing {100}-faceted Cu nanocrystals. Consistent with experiment, we find that HDA binds more strongly to Cu(100) than to Cu(111). This strong binding stems from the capability of HDA to form more densely packed layers on Cu(100), which leads to stronger HDA-tail interactions, as well as the stronger binding of the amine group to Cu(100). We estimate the surface energies of HDA-covered Cu(100) and Cu(111) surfaces and find that these surfaces are nearly isoenergetic. By drawing analogies to previous theoretical work, it seems likely that HDA-covered Cu nanocrystals could have kinetic shapes that primarily express {100} facets, as is seen experimentally.
Density-functional theory study of the initial oxygen incorporation in Pd(111)
NASA Astrophysics Data System (ADS)
Todorova, Mira; Reuter, Karsten; Scheffler, Matthias
2005-05-01
Pd(111) has recently been shown to exhibit a propensity to form a subnanometer thin surface oxide film already well before a full monolayer coverage of adsorbed O atoms is reached on the surface. Aiming at an atomic-scale understanding of this finding, we study the initial oxygen incorporation into the Pd(111) surface using density-functional theory. We find that oxygen incorporation into the sub-surface region starts at essentially the same coverage as formation of the surface oxide. This implies that the role of sub-surface oxygen should be considered as that of a metastable precursor in the oxidation process of the surface. The mechanisms found to play a role towards the ensuing stabilization of an ordered oxidic structure with a mixed on-surface/sub-surface site occupation follow a clear trend over the late 4d transition metal series, as seen by comparing our data to previously published studies concerned with oxide formation at the basal surface of Ru, Rh, and Ag. The formation of a linearly aligned O-TM-O trilayered structure (TM=Ru,Rh,Pd,Ag) , together with an efficient coupling to the underlying substrate seem to be key ingredients in this respect.
Scattering linear polarization of late-type active stars
NASA Astrophysics Data System (ADS)
Yakobchuk, T. M.; Berdyugina, S. V.
2018-05-01
Context. Many active stars are covered in spots, much more so than the Sun, as indicated by spectroscopic and photometric observations. It has been predicted that star spots induce non-zero intrinsic linear polarization by breaking the visible stellar disk symmetry. Although small, this effect might be useful for star spot studies, and it is particularly significant for a future polarimetric atmosphere characterization of exoplanets orbiting active host stars. Aims: Using models for a center-to-limb variation of the intensity and polarization in presence of continuum scattering and adopting a simplified two-temperature photosphere model, we aim to estimate the intrinsic linear polarization for late-type stars of different gravity, effective temperature, and spottedness. Methods: We developed a code that simulates various spot configurations or uses arbitrary surface maps, performs numerical disk integration, and builds Stokes parameter phase curves for a star over a rotation period for a selected wavelength. It allows estimating minimum and maximum polarization values for a given set of stellar parameters and spot coverages. Results: Based on assumptions about photosphere-to-spot temperature contrasts and spot size distributions, we calculate the linear polarization for late-type stars with Teff = 3500 K-6000 K, log g = 1.0-5.0, using the plane-parallel and spherical atmosphere models. Employing random spot surface distribution, we analyze the relation between spot coverage and polarization and determine the influence of different input parameters on results. Furthermore, we consider spot configurations with polar spots and active latitudes and longitudes.
Cross-scale modelling of transpiration from stomata via the leaf boundary layer.
Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart
2014-09-01
Leaf transpiration is a key parameter for understanding land surface-climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2-5%). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10⁻⁵-10⁻¹ m), which implies explicitly modelling individual stomata. BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100%). Nevertheless, these conventional BLCs (CR of 100%), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic stomata, but instead assume a uniform distribution of evaporation such as found for a fully-wet leaf. The model output can be used to correct or upgrade existing BLCs or to feed into higher-scale models, for example within a multiscale framework.
Evaluation of satellite-retrieved extreme precipitation using gauge observations
NASA Astrophysics Data System (ADS)
Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.
2012-04-01
Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.
NASA Astrophysics Data System (ADS)
Priebe, Elizabeth H.; Neville, C. J.; Rudolph, D. L.
2018-03-01
The spatial coverage of hydraulic conductivity ( K) values for large-scale groundwater investigations is often poor because of the high costs associated with hydraulic testing and the large areas under investigation. Domestic water wells are ubiquitous and their well logs represent an untapped resource of information that includes mandatory specific-capacity tests, from which K can be estimated. These specific-capacity tests are routinely conducted at such low pumping rates that well losses are normally insignificant. In this study, a simple and practical approach to augmenting high-quality K values with reconnaissance-level K values from water-well specific-capacity tests is assessed. The integration of lesser quality K values from specific-capacity tests with a high-quality K data set is assessed through comparisons at two different scales: study-area-wide (a 600-km2 area in Ontario, Canada) and in a single geological formation within a portion of the broader study area (200 km2). Results of the comparisons demonstrate that reconnaissance-level K estimates from specific-capacity tests approximate the ranges and distributions of the high-quality K values. Sufficient detail about the physical basis and assumptions that are invoked in the development of the approach are presented here so that it can be applied with confidence by practitioners seeking to enhance their spatial coverage of K values with specific-capacity tests.
NASA Astrophysics Data System (ADS)
Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca
2016-04-01
We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe.
Multiple Emission Angle Surface-Atmosphere Separations of MGS Thermal Emission Spectrometer Data
NASA Technical Reports Server (NTRS)
Bandfield, J. L.; Smith, M. D.
2001-01-01
Multiple emission angle observations taken by MGS-TES have been used to derive atmospheric opacities and surface temperatures and emissivities with increased accuracy and wavelength coverage. Martian high albedo region surface spectra have now been isolated. Additional information is contained in the original extended abstract.
Single Junction InGaP/GaAs Solar Cells Grown on Si Substrates using SiGe Buffer Layers
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Carlin, J. A.; Andre, C. L.; Hudait, M. K.; Gonzalez, M.; Wilt, D. M.; Clark, E. B.; Jenkins, P.; Scheiman, D.; Allerman, A.
2002-01-01
Single junction InGaP/GaAs solar cells displaying high efficiency and record high open circuit voltage values have been grown by metalorganic chemical vapor deposition on Ge/graded SiGe/Si substrates. Open circuit voltages as high as 980 mV under AM0 conditions have been verified to result from a single GaAs junction, with no evidence of Ge-related sub-cell photoresponse. Current AM0 efficiencies of close to 16% have been measured for a large number of small area cells, whose performance is limited by non-fundamental current losses due to significant surface reflection resulting from greater than 10% front surface metal coverage and wafer handling during the growth sequence for these prototype cells. It is shown that at the material quality currently achieved for GaAs grown on Ge/SiGe/Si substrates, namely a 10 nanosecond minority carrier lifetime that results from complete elimination of anti-phase domains and maintaining a threading dislocation density of approximately 8 x 10(exp 5) per square centimeter, 19-20% AM0 single junction GaAs cells are imminent. Experiments show that the high performance is not degraded for larger area cells, with identical open circuit voltages and higher short circuit current (due to reduced front metal coverage) values being demonstrated, indicating that large area scaling is possible in the near term. Comparison to a simple model indicates that the voltage output of these GaAs on Si cells follows ideal behavior expected for lattice mismatched devices, demonstrating that unaccounted for defects and issues that have plagued other methods to epitaxially integrate III-V cells with Si are resolved using SiGe buffers and proper GaAs nucleation methods. These early results already show the enormous and realistic potential of the virtual SiGe substrate approach for generating high efficiency, lightweight and strong III-V solar cells.
NASA Astrophysics Data System (ADS)
Möller, Rebecca; Möller, Marco; Kukla, Peter A.; Schneider, Christoph
2018-01-01
We report results from a field experiment investigating the influence of volcanic tephra coverage on glacier ablation. These influences are known to be significantly different from those of moraine debris on glaciers due to the contrasting grain size distribution and thermal conductivity. Thus far, the influences of tephra deposits on glacier ablation have rarely been studied. For the experiment, artificial plots of two different tephra types from Eyjafjallajökull and Grímsvötn volcanoes were installed on a snow-covered glacier surface of Vatnajökull ice cap, Iceland. Snow-surface lowering and atmospheric conditions were monitored in summer 2015 and compared to a tephra-free reference site. For each of the two volcanic tephra types, three plots of variable thickness ( ˜ 1.5, ˜ 8.5 and ˜ 80 mm) were monitored. After limiting the records to a period of reliable measurements, a 50-day data set of hourly records was obtained, which can be downloaded from the Pangaea data repository (https://www.pangaea.de; doi:10.1594/PANGAEA.876656). The experiment shows a substantial increase in snow-surface lowering rates under the ˜ 1.5 and ˜ 8.5 mm tephra plots when compared to uncovered conditions. Under the thick tephra cover some insulating effects could be observed. These results are in contrast to other studies which depicted insulating effects for much thinner tephra coverage on bare-ice glacier surfaces. Differences between the influences of the two different petrological types of tephra exist but are negligible compared to the effect of tephra coverage overall.
Bo, Tao; Lan, Jian-Hui; Zhang, Yu-Juan; Zhao, Yao-Lin; He, Chao-Hui; Chai, Zhi-Fang; Shi, Wei-Qun
2016-05-21
The interfacial interaction of uranium mononitride (UN) with water from the environment unavoidably leads to corrosion of nuclear fuels, which affects a lot of processes in the nuclear fuel cycle. In this work, the microscopic adsorption behaviors of water on the UN(001) surface as well as water dissociation and accompanying H2 formation mechanisms have been investigated on the basis of DFT+U calculations and ab initio atomistic thermodynamics. For adsorption of one H2O monomer, the predicted adsorption energies are -0.88, -2.07, and -2.07 eV for the most stable molecular, partially dissociative, and completely dissociative adsorption, respectively. According to our calculations, a water molecule dissociates into OH and H species via three pathways with small energy barriers of 0.78, 0.72, and 0.85 eV, respectively. With the aid of the neighboring H atom, H2 formation through the reaction of H* + OH* can easily occur via two pathways with energy barriers of 0.61 and 0.36 eV, respectively. The molecular adsorption of water shows a slight coverage dependence on the surface while this dependence becomes obvious for partially dissociative adsorption as the water coverage increases from 1/4 to 1 ML. In addition, based on the "ab initio atomistic thermodynamic" simulations, increasing H2O partial pressure will enhance the stability of the adsorbed system and water coverage, while increasing temperature will decrease the H2O coverage. We found that the UN(001) surface reacts easily with H2O at room temperature, leading to dissolution and corrosion of the UN fuel materials.
Mogul, Rakesh; Vaishampayan, Parag; Bashir, Mina; McKay, Chris P; Schubert, Keith; Bornaccorsi, Rosalba; Gomez, Ernesto; Tharayil, Sneha; Payton, Geoffrey; Capra, Juliana; Andaya, Jessica; Bacon, Leonard; Bargoma, Emily; Black, David; Boos, Katie; Brant, Michaela; Chabot, Michael; Chau, Danny; Cisneros, Jessica; Chu, Geoff; Curnutt, Jane; DiMizio, Jessica; Engelbrecht, Christian; Gott, Caroline; Harnoto, Raechel; Hovanesian, Ruben; Johnson, Shane; Lavergne, Britne; Martinez, Gabriel; Mans, Paul; Morales, Ernesto; Oei, Alex; Peplow, Gary; Piaget, Ryan; Ponce, Nicole; Renteria, Eduardo; Rodriguez, Veronica; Rodriguez, Joseph; Santander, Monica; Sarmiento, Khamille; Scheppelmann, Allison; Schroter, Gavin; Sexton, Devan; Stephenson, Jenin; Symer, Kristin; Russo-Tait, Tatiane; Weigel, Bill; Wilhelm, Mary B
2017-01-01
In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum ( p < 0.0439) and genus ( p < 0.006) levels, including multiple biochemical and geochemical trends ( p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.
Mogul, Rakesh; Vaishampayan, Parag; Bashir, Mina; McKay, Chris P.; Schubert, Keith; Bornaccorsi, Rosalba; Gomez, Ernesto; Tharayil, Sneha; Payton, Geoffrey; Capra, Juliana; Andaya, Jessica; Bacon, Leonard; Bargoma, Emily; Black, David; Boos, Katie; Brant, Michaela; Chabot, Michael; Chau, Danny; Cisneros, Jessica; Chu, Geoff; Curnutt, Jane; DiMizio, Jessica; Engelbrecht, Christian; Gott, Caroline; Harnoto, Raechel; Hovanesian, Ruben; Johnson, Shane; Lavergne, Britne; Martinez, Gabriel; Mans, Paul; Morales, Ernesto; Oei, Alex; Peplow, Gary; Piaget, Ryan; Ponce, Nicole; Renteria, Eduardo; Rodriguez, Veronica; Rodriguez, Joseph; Santander, Monica; Sarmiento, Khamille; Scheppelmann, Allison; Schroter, Gavin; Sexton, Devan; Stephenson, Jenin; Symer, Kristin; Russo-Tait, Tatiane; Weigel, Bill; Wilhelm, Mary B.
2017-01-01
In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum (p < 0.0439) and genus (p < 0.006) levels, including multiple biochemical and geochemical trends (p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb. PMID:29109701
Increasing Chemical Space Coverage by Combining Empirical and Computational Fragment Screens
2015-01-01
Most libraries for fragment-based drug discovery are restricted to 1,000–10,000 compounds, but over 500,000 fragments are commercially available and potentially accessible by virtual screening. Whether this larger set would increase chemotype coverage, and whether a computational screen can pragmatically prioritize them, is debated. To investigate this question, a 1281-fragment library was screened by nuclear magnetic resonance (NMR) against AmpC β-lactamase, and hits were confirmed by surface plasmon resonance (SPR). Nine hits with novel chemotypes were confirmed biochemically with KI values from 0.2 to low mM. We also computationally docked 290,000 purchasable fragments with chemotypes unrepresented in the empirical library, finding 10 that had KI values from 0.03 to low mM. Though less novel than those discovered by NMR, the docking-derived fragments filled chemotype holes from the empirical library. Crystal structures of nine of the fragments in complex with AmpC β-lactamase revealed new binding sites and explained the relatively high affinity of the docking-derived fragments. The existence of chemotype holes is likely a general feature of fragment libraries, as calculation suggests that to represent the fragment substructures of even known biogenic molecules would demand a library of minimally over 32,000 fragments. Combining computational and empirical fragment screens enables the discovery of unexpected chemotypes, here by the NMR screen, while capturing chemotypes missing from the empirical library and tailored to the target, with little extra cost in resources. PMID:24807704
Evaluation of the three-dimensional bony coverage before and after rotational acetabular osteotomy.
Tanaka, Takeyuki; Moro, Toru; Takatori, Yoshio; Oshima, Hirofumi; Ito, Hideya; Sugita, Naohiko; Mitsuishi, Mamoru; Tanaka, Sakae
2018-02-26
Rotational acetabular osteotomy is a type of pelvic osteotomy that involves rotation of the acetabular bone to improve the bony coverage of the femoral head for patients with acetabular dysplasia. Favourable post-operative long-term outcomes have been reported in previous studies. However, there is a paucity of published data regarding three-dimensional bony coverage. The present study investigated the three-dimensional bony coverage of the acetabulum covering the femoral head in hips before and after rotational acetabular osteotomy and in normal hips. The computed tomography data of 40 hip joints (12 joints before and after rotational acetabular osteotomy; 16 normal joints) were analyzed. The three-dimensional bony coverage of each joint was evaluated using original software. The post-operative bony coverage improved significantly compared with pre-operative values. In particular, the anterolateral aspect of the acetabulum tended to be dysplastic in patients with acetabular dysplasia compared to those with normal hip joints. However, greater bony coverage at the anterolateral aspect was obtained after rotational acetabular osteotomy. Meanwhile, the results of the present study may indicate that the bony coverage in the anterior aspect may be excessive. Three-dimensional analysis indicated that rotational acetabular osteotomy achieved favorable bony coverage. Further investigations are necessary to determine the ideal bony coverage after rotational acetabular osteotomy.
The Plasma Interaction Experiment (PIX) description and test program. [electrometers
NASA Technical Reports Server (NTRS)
Ignaczak, L. R.; Haley, F. A.; Domino, E. J.; Culp, D. H.; Shaker, F. J.
1978-01-01
The plasma interaction experiment (PIX) is a battery powered preprogrammed auxiliary payload on the LANDSAT-C launch. This experiment is part of a larger program to investigate space plasma interactions with spacecraft surfaces and components. The varying plasma densities encountered during available telemetry coverage periods are deemed sufficient to determine first order interactions between the space plasma environment and the biased experimental surfaces. The specific objectives of the PIX flight experiment are to measure the plasma coupling current and the negative voltage breakdown characteristics of a solar array segment and a gold plated steel disk. Measurements will be made over a range of surface voltages up to plus or minus kilovolt. The orbital environment will provide a range of plasma densities. The experimental surfaces will be voltage biased in a preprogrammed step sequence to optimize the data returned for each plasma region and for the available telemetry coverage.
Tringe, J. W.; Ileri, N.; Levie, H. W.; ...
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isomura, N., E-mail: isomura@mosk.tytlabs.co.jp; Kataoka, K.; Horibuchi, K.
We use hard X-ray photoelectron spectroscopy (HAXPES) to obtain the surface structure of a multilayer Au/SiO{sub 2}/Si substrate sample with an island-like overlayer. Photoelectron intensities are measured as a function of incident photon energy (PE) and take-off angle (TOA, measured from the sample surface). The Au layer coverage and Au and SiO{sub 2} layer thicknesses are obtained by the PE dependence, and are used for the following TOA analysis. The Au island lateral width in the cross section is obtained by the TOA dependence, including information about surface roughness, in consideration of the island shadowing at small TOAs. In bothmore » cases, curve-fitting analysis is conducted. The surface structure, which consists of layer thicknesses, overlayer coverage and island width, is determined nondestructively by a combination of PE and TOA dependent HAXPES measurements.« less
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.
2013-11-01
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Erikat, I A; Hamad, B A
2013-11-07
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Shu, Shi; Morrison, Glenn C
2011-05-15
Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.
Summary indices for monitoring universal coverage in maternal and child health care
Restrepo-Mendez, Maria-Clara; Franca, Giovanny VA; Victora, Cesar G; Barros, Aluisio JD
2016-01-01
Abstract Objective To compare two summary indicators for monitoring universal coverage of reproductive, maternal, newborn and child health care. Methods Using our experience of the Countdown to 2015 initiative, we describe the characteristics of the composite coverage index (a weighted average of eight preventive and curative interventions along the continuum of care) and co-coverage index (a cumulative count of eight preventive interventions that should be received by all mothers and children). For in-depth analysis and comparisons, we extracted data from 49 demographic and health surveys. We calculated percentage coverage for the two summary indices, and correlated these with each other and with outcome indicators of mortality and undernutrition. We also stratified the summary indicators by wealth quintiles for a subset of nine countries. Findings Data on the component indicators in the required age range were less often available for co-coverage than for the composite coverage index. The composite coverage index and co-coverage with 6+ indicators were strongly correlated (Pearson r = 0.73, P < 0.001). The composite coverage index was more strongly correlated with under-five mortality, neonatal mortality and prevalence of stunting (r = −0.57, −0.68 and −0.46 respectively) than was co-coverage (r = −0.49, −0.43 and −0.33 respectively). Both summary indices provided useful summaries of the degrees of inequality in the countries’ coverage. Adding more indicators did not substantially affect the composite coverage index. Conclusion The composite coverage index, based on the average value of separate coverage indicators, is easy to calculate and could be useful for monitoring progress and inequalities in universal health coverage. PMID:27994283
Summary indices for monitoring universal coverage in maternal and child health care.
Wehrmeister, Fernando C; Restrepo-Mendez, Maria-Clara; Franca, Giovanny Va; Victora, Cesar G; Barros, Aluisio Jd
2016-12-01
To compare two summary indicators for monitoring universal coverage of reproductive, maternal, newborn and child health care. Using our experience of the Countdown to 2015 initiative, we describe the characteristics of the composite coverage index (a weighted average of eight preventive and curative interventions along the continuum of care) and co-coverage index (a cumulative count of eight preventive interventions that should be received by all mothers and children). For in-depth analysis and comparisons, we extracted data from 49 demographic and health surveys. We calculated percentage coverage for the two summary indices, and correlated these with each other and with outcome indicators of mortality and undernutrition. We also stratified the summary indicators by wealth quintiles for a subset of nine countries. Data on the component indicators in the required age range were less often available for co-coverage than for the composite coverage index. The composite coverage index and co-coverage with 6+ indicators were strongly correlated (Pearson r = 0.73, P < 0.001). The composite coverage index was more strongly correlated with under-five mortality, neonatal mortality and prevalence of stunting ( r = -0.57, -0.68 and -0.46 respectively) than was co-coverage ( r = -0.49, -0.43 and -0.33 respectively). Both summary indices provided useful summaries of the degrees of inequality in the countries' coverage. Adding more indicators did not substantially affect the composite coverage index. The composite coverage index, based on the average value of separate coverage indicators, is easy to calculate and could be useful for monitoring progress and inequalities in universal health coverage.
McConnell, Marla D; Liu, Yu; Nowak, Andrew P; Pilch, Shira; Masters, James G; Composto, Russell J
2010-03-15
Bacterial adhesion to oral hard materials is dependent on various factors, for example, surface roughness and surface composition. In this study, bacteria retention on three oral hard substrates, hydroxyapatite (HAP), enamel, and polished enamel (p-enamel) were investigated. The surface morphology and roughness of the three substrates were measured by scanning probe microscopy. HAP had the roughest surface, followed by enamel and polished enamel. For each individual substrate type, the roughness was shown to increase with scan size up to 50 microm x 50 microm. For HAP and enamel, roughness decreased considerably after formation of a pellicle, while addition of polymer coating to the pellicle layer reduced roughness much less in comparison. Bacterial surface coverage was measured at 30 min, 3 h, and 24 h on both native and surface-modified substrates, which were coated with two different polycarboxylate-based polymers, Gantrez S97 and Carbopol 940. As a result, the polymer coated surfaces had reduced bacteria coverage compared with the native surfaces over all time points and substrates measured. The reduction is the combined effect of electrostatic repulsion and sequestering of Ca(2+) ions at the surface, which plays a key role in the initial adhesion of bacteria to enamel surfaces in models of plaque formation. (c) 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lamaro, Anabel Alejandra; Mariñelarena, Alejandro; Torrusio, Sandra Edith; Sala, Silvia Estela
2013-02-01
Monitoring of warm distribution in water is fundamental to understand the performance and functioning of reservoirs and lakes. Surface water temperature is a key parameter in the physics of aquatic systems processes since it is closely related to the energy fluxes through the water-atmosphere interface. Remote sensing applied to water quality studies in inland waterbodies is a powerful tool that can provide additional information difficult to achieve by other means. The combination of good real-time coverage, spatial resolution and free availability of data makes Landsat system a proper alternative. Many papers have developed algorithms to retrieve surface temperature (principally, land surface temperature) from at-sensor and surface emissivity data. The aim of this study is to apply the single-channel generalized method (SCGM) developed by Jiménez-Muñoz and Sobrino (2003) for the estimation of water surface temperature from Landsat 7 ETM+ thermal bands. We consider a constant water emissivity value (0.9885) and we compare the results with radiative transfer classic method (RTM). We choose Embalse del Río Tercero (Córdoba, Argentina) as case study because it is a reservoir affected by the outlet of the cooling system of a nuclear power plant, whose thermal plume could influence the biota's distribution and biodiversity. These characteristics and the existence of long term studies make it an adequate place to test the methodology. Values of estimated and observed water surface temperatures obtained by the two compared methods were correlated applying a simple regression model. Correlation coefficients were significant (R2: 0.9498 for SCGM method and R2: 0.9584 for RTM method) while their standard errors were acceptable in both cases (SCGM method: RMS = 1.2250 and RTM method: RMS = 1.0426). Nevertheless, SCGM could estimate rather small differences in temperature between sites consistently with the results obtained in field measurements. Besides, it has the advantage that it only uses values of atmospheric water vapor and it can be applied to different thermal sensors using the same equation and coefficients.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... employer-sponsored plan is affordable if the employee's required contribution for the lowest-cost self-only... the lowest-cost employer-sponsored self-only coverage that provides minimum value to verify the... the premium tax credit, the Exchanges will employ a verification process. Because the information...
7 CFR 760.613 - De minimis exception.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false De minimis exception. 760.613 Section 760.613....613 De minimis exception. (a) Participants seeking the de minimis exception to the risk management... coverage for a crop exceeds 10 percent of the value of that coverage. (b) To be eligible for a de minimis...
Arresting dissolution by interfacial rheology design
Beltramo, Peter J.; Gupta, Manish; Alicke, Alexandra; Liascukiene, Irma; Gunes, Deniz Z.; Baroud, Charles N.
2017-01-01
A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air–water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of ∼ 100 μm bubbles coated with ∼ 1 μm particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications. PMID:28893993
Effect of the size of silver nanoparticles on SERS signal enhancement
NASA Astrophysics Data System (ADS)
He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.
2017-08-01
The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.
Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces
Williams, Sophie E.; Davies, Philip R.; Bowen, Jenna L.; Allender, Chris J.
2013-01-01
This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects. PMID:28348330
Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; ...
2014-12-03
In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne + ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here,more » we find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less
Wong, Ten It; Wang, Hao; Wang, Fuke; Sin, Sau Leng; Quan, Cheng Gen; Wang, Shi Jie; Zhou, Xiaodong
2016-04-01
A highly transparent superamphiphobic plastic sheet was developed. The plastic sheet polymethyl methacrylate (PMMA) was spin-coated on a glass substrate. Synthesized silica nanoparticles were sprayed on PMMA, followed by fluorosilane drop-coating. The results of contact angle measurements show that the developed PMMA sheet has superamphiphobic properties with high advancing contact angles for water (154°), toluene (139°), and silicone oil (132.9°). The amphiphobicity of the plastic sheet can be tuned by the surface coverage of the silica nanoparticles distributed on the PMMA surface. The surface coverage of the nanoparticles on our PMMA sheet is about 20%, and it agrees with our contact angle calculations for the sheet with and without nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Value loss. 1437.301 Section 1437.301 Agriculture... Coverage Using Value § 1437.301 Value loss. (a) Special provisions are required to assess losses and.... Assistance for these commodities is calculated based on the loss of value at the time of disaster. The agency...
Yang, Piaoping; Zhao, Zhi-Jian; Chang, Xiaoxia; Mu, Rentao; Zha, Shenjun; Zhang, Gong; Gong, Jinlong
2018-06-25
Carbon dioxide (CO 2 ) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu 2 O) is a promising catalyst for CO 2 reduction as it can convert CO 2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu 2 O remains under debate because of the complex surface structure of Cu 2 O under reducing conditions, leading to limited guidance in designing improved Cu 2 O catalysts. This paper describes the functionality of surface-bonded hydroxy groups on partially reduced Cu 2 O(111) for the CO 2 reduction reaction (CO 2 RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO 2 RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO 2 RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination-unsaturated Cu (Cu CUS ) sites stabilizes surface-adsorbed COOH*, which is a key intermediate during the CO 2 RR. Moreover, the CO 2 RR was evaluated over Cu 2 O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu 2 O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO 2 RR and suppress the HER. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Australian discrete choice experiment to value eq-5d health states.
Viney, Rosalie; Norman, Richard; Brazier, John; Cronin, Paula; King, Madeleine T; Ratcliffe, Julie; Street, Deborah
2014-06-01
Conventionally, generic quality-of-life health states, defined within multi-attribute utility instruments, have been valued using a Standard Gamble or a Time Trade-Off. Both are grounded in expected utility theory but impose strong assumptions about the form of the utility function. Preference elicitation tasks for both are complicated, limiting the number of health states that each respondent can value and, therefore, that can be valued overall. The usual approach has been to value a set of the possible health states and impute values for the remainder. Discrete Choice Experiments (DCEs) offer an attractive alternative, allowing investigation of more flexible specifications of the utility function and greater coverage of the response surface. We designed a DCE to obtain values for EQ-5D health states and implemented it in an Australia-representative online panel (n = 1,031). A range of specifications investigating non-linear preferences with respect to time and interactions between EQ-5D levels were estimated using a random-effects probit model. The results provide empirical support for a flexible utility function, including at least some two-factor interactions. We then constructed a preference index such that full health and death were valued at 1 and 0, respectively, to provide a DCE-based algorithm for Australian cost-utility analyses. Copyright © 2013 John Wiley & Sons, Ltd.
Biolayer modeling and optimization for the SPARROW biosensor
NASA Astrophysics Data System (ADS)
Feng, Ke
2007-12-01
Biosensor direct detection of molecular binding events is of significant interest in applications from molecular screening for cancer drug design to bioagent detection for homeland security and defense. The Stacked Planar Affinity Regulated Resonant Optical Waveguide (SPARROW) structure based on coupled waveguides was recently developed to achieve increased sensitivity within a fieldable biosensor device configuration. Under ideal operating conditions, modification of the effective propagation constant of the structure's sensing waveguide through selective attachment of specific targets to probes on the waveguide surface results in a change in the coupling characteristics of the guide over a specifically designed interaction length with the analyte. Monitoring the relative power in each waveguide after interaction enables 'recognition' of those targets which have selectively bound to the surface. However, fabrication tolerances, waveguide interface roughness, biolayer surface roughness and biolayer partial coverage have an effect on biosensor behavior and achievable limit of detection (LOD). In addition to these influences which play a role in device optimization, the influence of the spatially random surface loading of molecular binding events has to be considered, especially for low surface coverage. In this dissertation an analytic model is established for the SPARROW biosensor which accounts for these nonidealities with which the design of the biosensor can be guided and optimized. For the idealized case of uniform waveguide transducer layers and biolayer, both theoretical simulation (analytical expression) and computer simulation (numerical calculation) are completed. For the nonideal case of an inhomogeneous transducer with nonideal waveguide and biolayer surfaces, device output power is affected by such physical influences as surface scattering, coupling length, absorption, and percent coverage of binding events. Using grating and perturbation techniques we explore the influence of imperfect surfaces and random surface loading on scattering loss and coupling length. Results provide a range of achievable limits of detection in the SPARROW device for a given target size, surface loading, and detectable optical power.