Sample records for surface critical phenomena

  1. Surface critical behavior of thin Ising films at the ‘special point’

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Bekhechi, Smaine

    2003-03-01

    The critical surface phenomena of a magnetic thin Ising film is studied using numerical Monte-Carlo method based on Wolff cluster algorithm. With varying the surface coupling, js= Js/ J, the phase diagram exhibits a special surface coupling jsp at which all the films have a unique critical temperature Tc for an arbitrary thickness n. In spite of this, the critical exponent of the surface magnetization at the special point is found to increase with n. Moreover, non-universal features as well as dimensionality crossover from two- to three-dimensional behavior are found at this point.

  2. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo

    Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less

  3. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    DOE PAGES

    Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; ...

    2018-02-23

    Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less

  4. Investigation of surface tension phenomena using the KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Alter, W. S.

    1982-01-01

    The microgravity environment of the KC-135 aircraft was utilized in three experiments designed to determine the following: (1) the feasibility of measuring critical wetting temperatures; (2) the effectiveness of surface tension as a means of keeping the cushioning heat transfer liquid in the furnace during ampoule translation; and (3) whether a non-wetting fluid would separate from the ampoule wall under low gravity conditions. This trio of investigations concerning surface phenomena demonstrates the effectiveness of the KC-135 as a microgravity research environment for small-scale, hand-held experiments.

  5. Melting of the Dipalmitoylphosphatidylcholine Monolayer.

    PubMed

    Xu, Lu; Bosiljevac, Gordon; Yu, Kyle; Zuo, Yi Y

    2018-04-17

    Langmuir monolayer self-assembled at the air-water interface represents an excellent model for studying phase transition and lipid polymorphism in two dimensions. Compared with numerous studies of phospholipid phase transitions induced by isothermal compression, there are very scarce reports on two-dimensional phase transitions induced by isobaric heating. This is mainly due to technical difficulties of continuously regulating temperature variations while maintaining a constant surface pressure in a classical Langmuir-type film balance. Here, with technological advances in constrained drop surfactometry and closed-loop axisymmetric drop shape analysis, we studied the isobaric heating process of the dipalmitoylphosphatidylcholine (DPPC) monolayer. It is found that temperature and surface pressure are two equally important intensive properties that jointly determine the phase behavior of the phospholipid monolayer. We have determined a critical point of the DPPC monolayer at a temperature of 44 °C and a surface pressure of 57 mN/m. Beyond this critical point, no phase transition can exist in the DPPC monolayer, either by isothermal compression or by isobaric heating. The melting process of the DPPC monolayer studied here provides novel insights into the understanding of a wide range of physicochemical and biophysical phenomena, such as surface thermodynamics, critical phenomena, and biophysical study of pulmonary surfactants.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, Tayyab

    The high level objectives of the this work were to: 1) scientifically understand critical phenomena affecting the surface figure during full aperture finishing; 2) utilize these fundamentals to more deterministically control the surface figure during finishing; 3) successfully polish under rogue particle-‘free’ environments during polishing by understanding/preventing key sources of rogue particles.

  7. Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K.; Oreilly, W.; Srnka, L. J.

    1977-01-01

    The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.

  8. Nucleate boiling performance on nano/microstructures with different wetting surfaces

    PubMed Central

    2012-01-01

    A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173

  9. Surface effect on compensation and critical behaviors of a ferrimagnetic mixed-spin (1, 3/2) Ising system with two alternating layers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lv, Dan; Liu, Ying; Yang, Yi; Gao, Zhong-yue; Zhao, Xue-ru

    2017-12-01

    A Monte Carlo simulation has been used to study the magnetic properties and the critical behaviors of a ferrimagnetic mixed spin-1 and spin-3/2 Ising system with two alternating layers on a honeycomb lattice. Particular emphasis is given to the effects of the surface exchange coupling R1 = J1S/J1, R2 = J2S/J1, R3 = J3S/J1, the surface single-ion anisotropy DS/J1 and the layer thickness L on the magnetizations, phase diagrams and hysteresis loops of the system. Some characteristic phenomena have been found, depending on the competition among the surface parameters R1, R2, R3 and DS. In particular, we have also found that, for appropriate values of surface parameters, there exist three critical surface parameters R1C, R3C and DSC/J1, where the phase transition temperature Tc is independent of the layer thickness L.

  10. Dynamic order in a surface process

    NASA Astrophysics Data System (ADS)

    Eiswirth, M.; Ertl, G.

    1988-09-01

    Under certain well-defined conditions ( p co,p_{{text{O}}_{text{2}} } , T) the rate of catalytic oxidation of CO on a Pt(110) surface may exhibit sustained temporal oscillations with an autonomous frequency v 0. Small amplitude modulation ofp_{{text{O}}_{text{2}} } with frequency v p causes a variety of phenomena characteristic for systems of nonlinear dynamics which may be identified with temporal order and show formal similarities to spatial order of surface phases: Periodic behavior for certain rational numbers of v p/v0 — corresponding to commensurate surface structures; quasiperiodic behavior characterized by an irrational ratio of the periods of perturbation and response — corresponding to incommensurate structures; and critical slowing down near the boundary of a transition to quasiperiodicity which has its counterpart in the critical fluctuations near a (spatial) phase transition.

  11. Boiling Visualization and Critical Heat Flux Phenomena In Narrow Rectangular Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. J. Kim; Y. H. Kim; S. J. Kim

    2004-12-01

    An experimental study was performed to investifate the pool boling critical hear flux (CHF) on one-dimensional inclined rectangular channels with narrow gaps by changing the orientation of a copper test heater assembly. In a pool of saturated water at atmospheric pressure, the test parameters include the gap sizes of 1,2,5, and 10 mm, andthe surface orientation angles from the downward facing position (180 degrees) to the vertical position (90 degress) respectively.

  12. 2 + 1 dimensional de Sitter universe emerging from the gauge structure of a nonlinear quantum system.

    PubMed

    Kam, Chon-Fai; Liu, Ren-Bao

    2017-08-29

    Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.

  13. Theory of Liquid Film Growth and Wetting Instabilities on Graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Nichols, Nathan S.; Del Maestro, Adrian; Kotov, Valeri N.

    2018-06-01

    We investigate wetting phenomena near graphene within the Dzyaloshinskii-Lifshitz-Pitaevskii theory for light gases of hydrogen, helium, and nitrogen in three different geometries where graphene is either affixed to an insulating substrate, submerged or suspended. We find that the presence of graphene has a significant effect in all configurations. When placed on a substrate, the polarizability of graphene can increase the strength of the total van der Waals force by a factor of 2 near the surface, enhancing the propensity towards wetting. In a suspended geometry unique to two-dimensional materials, where graphene is able to wet on only one side, liquid film growth becomes arrested at a critical thickness, which may trigger surface instabilities and pattern formation analogous to spinodal dewetting. The existence of a mesoscopic critical film with a tunable thickness provides a platform for the study of a continuous wetting transition, as well as the engineering of custom liquid coatings. These phenomena are robust to some mechanical deformations and are also universally present in doped graphene and other two-dimensional materials, such as monolayer dichalcogenides.

  14. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    NASA Astrophysics Data System (ADS)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  15. Experimental study of elliptical jet from sub to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations weremore » carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.« less

  16. Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Hsieh, K. C.

    1998-01-01

    The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.

  17. Critical heat flux maxima during boiling crisis on textured surfaces

    PubMed Central

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  18. Construction of phase diagrams for nanoscaled Ising thin films on the honeycomb lattice using cellular automata simulation approach

    NASA Astrophysics Data System (ADS)

    Ghaemi, Mehrdad; Javadi, Nabi

    2017-11-01

    The phase diagrams of the three-layer Ising model on the honeycomb lattice with a diluted surface have been constructed using the probabilistic cellular automata based on Glauber algorithm. The effects of the exchange interactions on the phase diagrams have been investigated. A general mathematical expression for the critical temperature is obtained in terms of relative coupling r = J1/J and Δs = (Js/J) - 1, where J and Js represent the nearest neighbor coupling within inner- and surface-layers, respectively, and each magnetic site in the surface-layer is coupled with the nearest neighbor site in the inner-layer via the exchange coupling J1. In the case of antiferromagnetic coupling between surface-layer and inner-layer, system reveals many interesting phenomena, such as the possibility of existence of compensation line before the critical temperature.

  19. Critical heat flux phenomena depending on pre-pressurization in transient heat input

    NASA Astrophysics Data System (ADS)

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2017-07-01

    The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of various pressures and subcoolings by photographic study. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The objective of this work is to clarify the transient CHF phenomena due to HI or HSN by photographic.

  20. Classification Order of Surface-Confined Intermixing at Epitaxial Interface

    NASA Astrophysics Data System (ADS)

    Michailov, M.

    The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.

  1. Critical behavior of the order-disorder phase transition in β -brass investigated by x-ray scattering

    NASA Astrophysics Data System (ADS)

    Madsen, A.; Als-Nielsen, J.; Hallmann, J.; Roth, T.; Lu, W.

    2016-07-01

    β -brass exhibits an archetypical example of an order-disorder transition with a critical behavior that was previously investigated by neutron scattering. The data were well described by the three-dimensional (3d) Ising model but the relatively crude experimental resolution prevented an in-depth examination of the single-length scaling hypothesis, a cornerstone in the theory of critical phenomena. With the development of synchrotron x-ray experiments, high-resolution data could be recorded and surprisingly it was found that the single-length scaling did not hold in most critical systems, possibly due to strain originating from surface defects and/or impurities. In this paper we demonstrate single-length critical behavior using high-resolution x-ray scattering in β -brass. The investigations confirm that β -brass behaves like a 3d Ising system over a wide range of length scales comprising correlated clusters of millions of atoms. To vary the surface sensitivity, experiments have been performed both in Bragg reflection and Laue transmission geometries but without any substantial differences observed in the scaling and critical behavior.

  2. Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)

    2000-01-01

    A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.

  3. Loading and testing a light scattering cell with a binary fluid mixture near its critical composition

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.; Becker, James S.

    1993-01-01

    Critical phenomena has been the subject of physics research for many years. However, only in recent years has the research effort become intense. The current intensity has caused the study of critical phenomena to be grouped into a previous older era and a present contemporary era. Turbidity cell filling with methanol cyclohexane is one of the first steps toward a further understanding of critical phenomena. Work performed during the research period is outlined. During this period, research was spent developing apparatus and techniques that will make it possible to study critical phenomena through turbidity measurements on methanol cyclohexane. Topics covered range from the orientation of turbidity cell parts for assembly to the filling apparatus and procedure used when th cell is built. The last section will briefly cover some of the observations made when viewing the cell in a controlled water bath. However, before mention is made of the specifics of the summer research, a short introduction to critical phenomena and turbidity and how they relate to this experiment is provided.

  4. Gate-tuned Josephson effect on the surface of a topological insulator

    PubMed Central

    2014-01-01

    In the study, we investigate the Josephson supercurrent of a superconductor/normal metal/superconductor junction on the surface of a topological insulator, where a gate electrode is attached to the normal metal. It is shown that the Josephson supercurrent not only can be tuned largely by the temperature but also is related to the potential and the length of the weak-link region. Especially, the asymmetry excess critical supercurrent, oscillatory character, and plateau-like structure have been revealed. We except those phenomena that can be observed in the recent experiment. PMID:25249827

  5. Concepts and methods for describing critical phenomena in fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Sengers, J. M. H. L.

    1977-01-01

    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures.

  6. Fluid physics, thermodynamics, and heat transfer experiments in space

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  7. Developing Critical Thinking through the Study of Paranormal Phenomena.

    ERIC Educational Resources Information Center

    Wesp, Richard; Montgomery, Kathleen

    1998-01-01

    Argues that accounts of paranormal phenomena can serve as an ideal medium in which to encourage students to develop critical-thinking skills. Describes a cooperative-learning approach used to teach critical thinking in a course on paranormal events. Reports that critical-thinking skills increased and that the course received favorable student…

  8. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less

  9. Normal and anomalous transport phenomena in two-dimensional NaCl, MoS2 and honeycomb surfaces

    NASA Astrophysics Data System (ADS)

    Mbemmo, A. M. Fopossi; Kenmoé, G. Djuidjé; Kofané, T. C.

    2018-04-01

    Understanding the effects of anisotropy and substrate shape on the stochastic processes is critically needed for the improvement of the quality of the transport information. The effect of biharmonic force on the transport phenomena of a particle in two-dimensional is investigated in the framework of three representative substrate lattices: NaCl, MoS2 and honeycomb. We focus on the particles drift velocity, to characterize the transport properties in the system. Normal and anomalous transport are identified for a particular set of the system parameters such as the biharmonic parameter, the bias force, the phase-lag of two signals, as well as the noise amplitude. According to the direction ψ where the bias force is applied, we determine the biharmonic parameter ɛ for the presence of anomalous transport and show that for the NaCl surface, the anomalous transport is observed for 2 < ɛ < 10. For the MoS2 surface, it appears at monochromatic driven (ɛ = 0) and for 3 < ɛ < 9. In particular for the honeycomb surface anomalous transport is generated for 0 ⩽ ɛ < 6 only when ψ > 30 °.

  10. Surface roughness: A review of its measurement at micro-/nano-scale

    NASA Astrophysics Data System (ADS)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  11. Critical Issues for Producing UHTC-Brazed Joints: Wetting and Reactivity

    NASA Astrophysics Data System (ADS)

    Passerone, A.; Muolo, M. L.; Valenza, F.

    2016-08-01

    A brief survey is presented of the most important interaction phenomena occurring at the solid-liquid interfaces in metal-ceramic systems at high temperatures, with special attention to the most recent developments concerning wetting and joining transition metals diborides. These phenomena are described and discussed from both the experimental and theoretical points of view in relation to joining ceramic and metal-ceramic systems by means of processes in the presence of a liquid phase (brazing, TLPB etc.). It is shown that wetting and the formation of interfacial dissolution regions are the results of the competition between different phenomena: dissolution of the ceramic in the liquid phase, reaction and formation of new phases at the solid-liquid interface, and drop spreading along the substrate surface. We emphasize the role of phase diagrams to support both the design of the experiments and the choice of active alloying elements, and to interpret the evolution of the system in relation to temperature and composition. In this respect, the sessile-drop technique has been shown to be helpful in assessing critical points of newly calculated phase diagrams. These studies are essential for the design of joining processes, for the creation of composite materials, and are of a particular relevance when applied to UHTC materials.

  12. Infrared thermometry study of nanofluid pool boiling phenomena

    PubMed Central

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  13. Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2016-03-01

    We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.

  14. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    PubMed

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  15. Covalently bonded networks through surface-confined polymerization

    NASA Astrophysics Data System (ADS)

    El Garah, Mohamed; MacLeod, Jennifer M.; Rosei, Federico

    2013-07-01

    The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.

  16. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation lawsmore » along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.« less

  17. Understanding deviations in lithographic patterns near interfaces: Characterization of bottom anti-reflective coatings (BARC) and the BARC resist interface

    NASA Astrophysics Data System (ADS)

    Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama

    2007-02-01

    Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.

  18. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  19. Wetting Transition of Nonpolar Neutral Molecule System on a Neutral and Atomic Length Scale Roughness Substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2018-03-01

    One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.

  20. Dynamics of Liquids in Edges and Corners (DYLCO): IML-2 Experiment for the BDPU

    NASA Technical Reports Server (NTRS)

    Langbein, D.; Weislogel, M.

    1998-01-01

    Knowledge of the behavior of fluids possessing free surfaces is important to many fluid systems, particularly in space, where the normally subtle effects of surface wettability play a more dramatic and often surprising role. DYLCO for the IML-2 mission was proposed as a simple experiment to probe the particular behavior of capillary surfaces in containers of irregular cross section. Temperature control was utilized to vary the fluid-solid contact angle, a questionable thermodynamic parameter of the system, small changes in which can dramatically influence the configuration, stability, and flow of a capillary surface. Container shapes, test fluid, and temperature ranges were selected for observing both local changes in interface curvature as well as a global change in fluid orientation due to a critical wetting phenomenon. The experiment hardware performed beyond what was expected and fluid interfaces could be readily digitized post flight to show the dependence of the interface curvature on temperature. For each of the containers tested surfaces were observed which did not satisfy the classic equations for the prediction of interface shape with constant contact angle boundary condition. This is explained by the presence of contact angle hysteresis arising from expansion and contraction of the liquid during the heating and cooling steps of the test procedure. More importantly, surfaces exceeding the critical surface curvature required for critical wetting were measured, yet no wetting was observed. These findings are indeed curious and pose key questions concerning the role of hysteresis for this critical wetting phenomena. The stability of such surfaces was determined numerically and it is shown that stability is enhance (reduced) when a surface is in its 'advancing' ('receding') state, The analysis shows complete instability as the critical wetting condition is reached. The case of ideal dynamic wetting is addressed analytically in detail with results of significant flow characteristics presented in closed form. The solutions indicate a square root of T dependence of the capillary 'rise' rate which is corroborated by drop tower tests. The analysis clearly shows that infinite time is necessary for surfaces to reorient at the critical wetting transition.

  1. Crystallization of glass-forming liquids: Specific surface energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelzer, Jürn W. P., E-mail: juern-w.schmelzer@uni-rostock.de; Abyzov, Alexander S.

    2016-08-14

    A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbullmore » relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.« less

  2. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    PubMed

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  3. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  4. Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Moes, Timothy R.

    2004-01-01

    Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

  5. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.

  6. Frustration and quantum criticality

    NASA Astrophysics Data System (ADS)

    Vojta, Matthias

    2018-06-01

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality.

  7. Nonequilibrium surface growth in a hybrid inorganic-organic system

    NASA Astrophysics Data System (ADS)

    Kleppmann, Nicola; Klapp, Sabine H. L.

    2016-12-01

    Using kinetic Monte Carlo simulations, we show that molecular morphologies found in nonequilibrium growth can be strongly different from those at equilibrium. We study the prototypical hybrid inorganic-organic system 6P on ZnO (10 1 ¯0 ) during thin film adsorption, and find a wealth of phenomena, including reentrant growth, a critical adsorption rate, and observables that are nonmonotonous with the adsorption rate. We identify the transition from lying to standing molecules with a critical cluster size and discuss the competition of time scales during growth in terms of a rate-equation approach. Our results form a basis for understanding and predicting collective orientational ordering during growth in hybrid material systems.

  8. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE PAGES

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  9. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  10. Stability analysis of a pressure-solution surface

    NASA Astrophysics Data System (ADS)

    Gal, Doron; Nur, Amos; Aharonov, Einat

    We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.

  11. Capillary channel flow experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  12. Critical Slowing Down in Time-to-Extinction: An Example of Critical Phenomena in Ecology

    NASA Technical Reports Server (NTRS)

    Gandhi, Amar; Levin, Simon; Orszag, Steven

    1998-01-01

    We study a model for two competing species that explicitly accounts for effects due to discreteness, stochasticity and spatial extension of populations. The two species are equally preferred by the environment and do better when surrounded by others of the same species. We observe that the final outcome depends on the initial densities (uniformly distributed in space) of the two species. The observed phase transition is a continuous one and key macroscopic quantities like the correlation length of clusters and the time-to-extinction diverge at a critical point. Away from the critical point, the dynamics can be described by a mean-field approximation. Close to the critical point, however, there is a crossover to power-law behavior because of the gross mismatch between the largest and smallest scales in the system. We have developed a theory based on surface effects, which is in good agreement with the observed behavior. The course-grained reaction-diffusion system obtained from the mean-field dynamics agrees well with the particle system.

  13. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    PubMed Central

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-01-01

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717

  14. The physics and chemistry of graphene-on-surfaces.

    PubMed

    Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei

    2017-07-31

    Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.

  15. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    DOE PAGES

    Xu, Su -Yang; Neupane, Madhab; Belopolski, Ilya; ...

    2015-04-17

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from amore » surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results provide a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality.« less

  16. Using Compression Isotherms of Phospholipid Monolayers to Explore Critical Phenomena: A Biophysical Chemistry Experiment

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Beaman, Dan; Porter, Rhiannon

    2008-01-01

    Two experiments are described in which students explore phase transitions and critical phenomena by obtaining compression isotherms of phospholipid monolayers using a Langmuir trough. Through relatively simple analysis of their data students gain a better understanding of compression isotherms, the application of the Clapeyron equation, the…

  17. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    PubMed

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  18. Pathways to dewetting in hydrophobic confinement.

    PubMed

    Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J

    2015-07-07

    Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.

  19. FROM THE HISTORY OF PHYSICS: Electrolysis and surface phenomena. To the bicentenary of Volta's publication on the first direct-current source

    NASA Astrophysics Data System (ADS)

    Gokhshtein, Aleksandr Ya

    2000-07-01

    The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.

  20. Monte Carlo simulation of ion-material interactions in nuclear fusion devices

    NASA Astrophysics Data System (ADS)

    Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.

    2017-06-01

    One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.

  1. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  2. Wetting-dewetting films: the role of structural forces.

    PubMed

    Nikolov, Alex; Wasan, Darsh

    2014-04-01

    The liquid wetting and dewetting of solids are ubiquitous phenomena that occur in everyday life. Understanding the nature of these phenomena is beneficial for research and technological applications. However, despite their importance, the phenomena are still not well understood because of the nature of the substrate's surface energy non-ideality and dynamics. This paper illustrates the mechanisms and applications of liquid wetting and dewetting on hydrophilic and hydrophobic substrates. We discuss the classical understanding and application of wetting and film stability criteria based on the Frumkin-Derjaguin disjoining pressure model. The roles of the film critical thickness and capillary pressure on the film instability based on the disjoining pressure isotherm are elucidated, as are the criteria for stable and unstable wet films. We consider the film area in the model for the film stability and the applicable experiments. This paper also addresses the two classic film instability mechanisms for suspended liquid films based on the conditions of the free energy criteria originally proposed by de Vries (nucleation hole formation) and Vrij-Scheludko (capillary waves vs. van der Waals forces) that were later adapted to explain dewetting. We include a discussion of the mechanisms of nanofilm wetting and dewetting on a solid substrate based on nanoparticles' tendency to form a 2D layer and 2D inlayer in the film under the wetting film's surface confinement. We also present our view on the future of wetting-dewetting modeling and its applications in developing emerging technologies. We believe the review and analysis presented here will benefit the current and future understanding of the wetting-dewetting phenomena, as well as aid in the development of novel products and technologies. © 2013.

  3. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landau's Fermi liquids.

    PubMed

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M; Wang, J-F; Li, L

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  4. Rheological State Diagrams for Rough Colloids in Shear Flow.

    PubMed

    Hsiao, Lilian C; Jamali, Safa; Glynos, Emmanouil; Green, Peter F; Larson, Ronald G; Solomon, Michael J

    2017-10-13

    To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.

  5. Rheological State Diagrams for Rough Colloids in Shear Flow

    NASA Astrophysics Data System (ADS)

    Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.

    2017-10-01

    To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.

  6. Research in the Theory of Condensed Matter and Elementary Particles: Final Report, September 1, 1984 - November 30, 1987

    DOE R&D Accomplishments Database

    Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.

    1988-04-01

    Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry.

  7. Chemical state evolution in ferroelectric films during tip-induced polarization and electroresistive switching

    DOE PAGES

    Ievlev, Anton V.; Maksymovych, Petro; Trassin, Morgan; ...

    2016-10-11

    Domain formation and ferroelectric switching is fundamentally inseparable from polarization screening, which on free surfaces can be realized via band bending and ionic adsorption. In the latter case, polarization switching is intrinsically coupled to the surface electrochemical phenomena, and the electrochemical stage can control kinetics and induce long-range interactions. However, despite extensive evidence towards the critical role of surface electrochemistry, little is known about the nature of the associated processes. Here we combine SPM tip induce polarization switching and secondary ion mass spectrometry to explore the evolution of chemical state of ferroelectric during switching. Surprisingly, we find that even pristinemore » surfaces contain ions (e.g. Cl -) that are not anticipated based on chemistry of the system and processing. In the ferroelectric switching regime, we find surprising changes in surface chemistry, including redistribution of base cations. Finally, at higher voltages in the electroforming regime significant surface deformation was observed and associated with a strong ion intermixing.« less

  8. Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer.

    PubMed

    Granato, E; Ying, S C

    2000-12-18

    We study the response of an adsorbed monolayer under a driving force as a model of sliding friction phenomena between two crystalline surfaces with a boundary lubrication layer. Using Langevin-dynamics simulation, we determine the nonlinear response in the direction transverse to a high symmetry direction along which the layer is already sliding. We find that below a finite transition temperature there exist a critical depinning force and hysteresis effects in the transverse response in the dynamical state when the adlayer is sliding smoothly along the longitudinal direction.

  9. Weak links in high critical temperature superconductors

    NASA Astrophysics Data System (ADS)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence of d-wave pairing for different types of barriers.

  10. Hot streak characterization in serpentine exhaust nozzles

    NASA Astrophysics Data System (ADS)

    Crowe, Darrell S.

    Modern aircraft of the United States Air Force face increasingly demanding cost, weight, and survivability requirements. Serpentine exhaust nozzles within an embedded engine allow a weapon system to fulfill mission survivability requirements by providing denial of direct line-of-sight into the high-temperature components of the engine. Recently, aircraft have experienced material degradation and failure along the aft deck due to extreme thermal loading. Failure has occurred in specific regions along the aft deck where concentrations of hot gas have come in contact with the surface causing hot streaks. The prevention of these failures will be aided by the accurate prediction of hot streaks. Additionally, hot streak prediction will improve future designs by identifying areas of the nozzle and aft deck surfaces that require thermal management. To this end, the goal of this research is to observe and characterize the underlying flow physics of hot streak phenomena. The goal is accomplished by applying computational fluid dynamics to determine how hot streak phenomena is affected by changes in nozzle geometry. The present research first validates the computational methods using serpentine inlet experimental and computational studies. A design methodology is then established for creating six serpentine exhaust nozzles investigated in this research. A grid independent solution is obtained on a nozzle using several figures of merit and the grid-convergence index method. An investigation into the application of a second-order closure turbulence model is accomplished. Simulations are performed for all serpentine nozzles at two flow conditions. The research introduces a set of characterization and performance parameters based on the temperature distribution and flow conditions at the nozzle throat and exit. Examination of the temperature distribution on the upper and lower nozzle surfaces reveals critical information concerning changes in hot streak phenomena due to changes in nozzle geometry.

  11. Research into Surface Wave Phenomena in Sedimentary Basins.

    DTIC Science & Technology

    1981-12-31

    150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for

  12. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  13. Critical phenomena on k -booklets

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    2017-01-01

    We define a "k -booklet" to be a set of k semi-infinite planes with -∞

  14. Apparent critical phenomena in the superionic phase transition of Cu 2-xSe

    DOE PAGES

    Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...

    2016-01-11

    The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less

  15. Atomic-scale visualization of oxide thin-film surfaces.

    PubMed

    Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro

    2018-01-01

    The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.

  16. Differential renormalization-group generators for static and dynamic critical phenomena

    NASA Astrophysics Data System (ADS)

    Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F.

    1992-09-01

    The derivation of differential renormalization-group (DRG) equations for applications to static and dynamic critical phenomena is reviewed. The DRG approach provides a self-contained closed-form representation of the Wilson renormalization group (RG) and should be viewed as complementary to the Callan-Symanzik equations used in field-theoretic approaches to the RG. The various forms of DRG equations are derived to illustrate the general mathematical structure of each approach and to point out the advantages and disadvantages for performing practical calculations. Otherwise, the review focuses upon the one-particle-irreducible DRG equations derived by Nicoll and Chang and by Chang, Nicoll, and Young; no attempt is made to provide a general treatise of critical phenomena. A few specific examples are included to illustrate the utility of the DRG approach: the large- n limit of the classical n-vector model (the spherical model), multi- or higher-order critical phenomena, and crit ical dynamics far from equilibrium. The large- n limit of the n-vector model is used to introduce the application of DRG equations to a well-known example, with exact solution obtained for the nonlinear trajectories, generating functions for nonlinear scaling fields, and the equation of state. Trajectory integrals and nonlinear scaling fields within the framework of ɛ-expansions are then discussed for tricritical crossover, and briefly for certain aspects of multi- or higher-order critical points, including the derivation of the Helmholtz free energy and the equation of state. The discussion then turns to critical dynamics with a development of the path integral formulation for general dynamic processes. This is followed by an application to a model far-from-equilibrium system that undergoes a phase transformation analogous to a second-order critical point, the Schlögl model for a chemical instability.

  17. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-03-01

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).

  18. Field-Assisted Contact Line Motion in Thin Films.

    PubMed

    Ghosh, Udita Uday; DasGupta, Sunando

    2018-04-25

    The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.

  19. A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures

    NASA Astrophysics Data System (ADS)

    Nonnenmann, Stephen S.

    2016-02-01

    Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end.

  20. Scaling phenomena in the Internet: Critically examining criticality

    PubMed Central

    Willinger, Walter; Govindan, Ramesh; Jamin, Sugih; Paxson, Vern; Shenker, Scott

    2002-01-01

    Recent Internet measurements have found pervasive evidence of some surprising scaling properties. The two we focus on in this paper are self-similar scaling in the burst patterns of Internet traffic and, in some contexts, scale-free structure in the network's interconnection topology. These findings have led to a number of proposed models or “explanations” of such “emergent” phenomena. Many of these explanations invoke concepts such as fractals, chaos, or self-organized criticality, mainly because these concepts are closely associated with scale invariance and power laws. We examine these criticality-based explanations of self-similar scaling behavior—of both traffic flows through the Internet and the Internet's topology—to see whether they indeed explain the observed phenomena. To do so, we bring to bear a simple validation framework that aims at testing whether a proposed model is merely evocative, in that it can reproduce the phenomenon of interest but does not necessarily capture and incorporate the true underlying cause, or indeed explanatory, in that it also captures the causal mechanisms (why and how, in addition to what). We argue that the framework can provide a basis for developing a useful, consistent, and verifiable theory of large networks such as the Internet. Applying the framework, we find that, whereas the proposed criticality-based models are able to produce the observed “emergent” phenomena, they unfortunately fail as sound explanations of why such scaling behavior arises in the Internet. PMID:11875212

  1. QCM-D study of nanoparticle interactions.

    PubMed

    Chen, Qian; Xu, Shengming; Liu, Qingxia; Masliyah, Jacob; Xu, Zhenghe

    2016-07-01

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has been proven to be a powerful research tool to investigate in situ interactions between nanoparticles and different functionalized surfaces in liquids. QCM-D can also be used to quantitatively determine adsorption kinetics of polymers, DNA and proteins from solutions on various substrate surfaces while providing insights into conformations of adsorbed molecules. This review aims to provide a comprehensive overview on various important applications of QCM-D, focusing on deposition of nanoparticles and attachment-detachment of nanoparticles on model membranes in complex fluid systems. We will first describe the working principle of QCM-D and DLVO theory pertinent to understanding nanoparticle deposition phenomena. The interactions between different nanoparticles and functionalized surfaces for different application areas are then critically reviewed. Finally, the potential applications of QCM-D in other important fields are proposed and knowledge gaps are identified. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  3. Capillary Phenomena: Investigations in Compressed Bubble Migration, Geometric Wetting, and Blade-Bound Droplet Stability

    NASA Astrophysics Data System (ADS)

    Blackmore, William Henry

    Capillary flows continue to be important in numerous spacecraft systems where the effective magnitude of the gravity vector is approximately one millionth that of normal Earth gravity. Due to the free fall state of orbiting spacecraft, the effects of capillarity on the fluid systems onboard can dominate the fluid behavior over large length scales. In this research three investigations are pursued where the unique interplay between surface tension forces, wetting characteristics, and system geometry control the fluid behavior, whether in large systems aboard spacecraft, or micro-scale systems on Earth. First, efforts in support of two International Space Station (ISS) experiments are reported. A description of the development of a new NASA ground station at Portland State University is provided along with descriptions of astronaut training activities for the proper operation of four handheld experiments currently in orbit as part of the second iteration of the Capillary Flow Experiments (CFE-2). Concerning the latter, seven more vessels are expected to be launched to the ISS shortly. Analysis of the data alongside numerical simulations shows excellent agreement with theory, and a new intuitive method of viewing critical wetting angles and fluid bulk shift phenomena is offered. Secondly, during the CFE-2 space experiments, unplanned peripheral observations revealed that, on occasion, rapidly compressed air bubbles migrate along paths with vector components common to the residual acceleration onboard the ISS. Unexpectedly however, the migration velocities could be shown to be up to three orders of magnitude greater than the appropriate Stokes flow limit! Likely mechanisms are explored analytically and experimentally while citing prior theoretical works that may have anticipated such phenomena. Once properly understood, compressed bubble migration may be used as an elegant method for phase separation in spacecraft systems or microgravity-based materials manufacturing. Lastly, the stability of drops on surfaces is important in a variety of natural and industrial processes. So called 'wall-edge-vertex bound drops' (a.k.a. drops on blade tips or drops on leaf tips which they resemble) are explored using a numerical approach which applies the Surface Evolver algorithm through implementation of a new file layer and a multi-parameter sweep function. As part of a recently open sourced SE-FIT software, thousands of critical drop configurations are efficiently computed as functions of contact angle, blade edge vertex half-angle, and g-orientation. With the support of other graduate students, simple experiments are performed to benchmark the computations which are then correlated for ease of application. It is shown that sessile, pendant, and wall-edge bound drops are only limiting cases of the more generalized blade-bound drops, and that a ubiquitous 'dry leaf tip' is observed for a range of the critical geometric and wetting parameters.

  4. Industrial waste pollution

    NASA Technical Reports Server (NTRS)

    Jensen, L. D.

    1972-01-01

    The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena

  5. Polymeric film application for phase change heat transfer

    NASA Astrophysics Data System (ADS)

    Bart, Hans-Jörg; Dreiser, Christian

    2018-06-01

    The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.

  6. Polymeric film application for phase change heat transfer

    NASA Astrophysics Data System (ADS)

    Bart, Hans-Jörg; Dreiser, Christian

    2018-01-01

    The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.

  7. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    NASA Astrophysics Data System (ADS)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  8. Solid-liquid surface tensions of critical nuclei and nucleation barriers from a phase-field-crystal study of a model binary alloy using finite system sizes.

    PubMed

    Choudhary, Muhammad Ajmal; Kundin, Julia; Emmerich, Heike; Oettel, Martin

    2014-08-01

    Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study critical nuclei and their liquid-solid phase boundaries, in particular the nucleus size dependence of the liquid-solid interface tension as well as of the nucleation barrier. Critical nuclei are stabilized in finite systems of various sizes, however, the extracted interface tension as function of the nucleus radius r is independent of system size. We suggest a phenomenological expression to describe the dependence of the extracted interface tension on the nucleus radius r for the liquid-solid system. Moreover, the numerical PFC results show that this dependency can not be fully described by the nonclassical Tolman formula.

  9. An elastic dimpling instability with Kosterlitz-Thouless character and a precursor role in creasing

    NASA Astrophysics Data System (ADS)

    Engstrom, Tyler; Paulsen, Joseph; Schwarz, Jennifer

    Creasing instability, also known as sulcification, occurs in a variety of quasi-2d elastic systems subject to compressive plane strain, and has been proposed as a mechanism of brain folding. While the dynamics of pre-existing creases can be understood in terms of crack propagation, a detailed critical phenomena picture of the instability is lacking. We show that surface dimpling is an equilibrium phase transition, and can be described in a language of quasi-particle excitations conceptualized as ``ghost fibers'' within the shear lag model. Tension-compression pairs (dipoles) of ghost fibers are energetically favorable at low strains, and the pairs unbind at a critical compressive plane strain, analogously to vortices in the Kosterlitz-Thouless transition. This dimpling transition bears strong resemblance to the creasing instability. We argue that zero-length creases are ghost fibers, which are a special case of ``ghost slabs''. Critical strain of a ghost slab increases linearly with its length, and is independent of both shear modulus and system thickness.

  10. A Course on Surface Phenomena.

    ERIC Educational Resources Information Center

    Woods, Donald R.

    1983-01-01

    Describes a graduate or senior elective course combining fundamentals of surface phenomena with practical problem-solving structured around a series of case problems. Discusses topics covered and their development through acquiring new knowledge applied to the case problem, practical calculations of solutions, and applications to additional…

  11. Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Critical-Path Analysis, and Effective Medium Approximation

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.; Sahimi, Muhammad

    2017-12-01

    We describe the most important developments in the application of three theoretical tools to modeling of the morphology of porous media and flow and transport processes in them. One tool is percolation theory. Although it was over 40 years ago that the possibility of using percolation theory to describe flow and transport processes in porous media was first raised, new models and concepts, as well as new variants of the original percolation model are still being developed for various applications to flow phenomena in porous media. The other two approaches, closely related to percolation theory, are the critical-path analysis, which is applicable when porous media are highly heterogeneous, and the effective medium approximation—poor man's percolation—that provide a simple and, under certain conditions, quantitatively correct description of transport in porous media in which percolation-type disorder is relevant. Applications to topics in geosciences include predictions of the hydraulic conductivity and air permeability, solute and gas diffusion that are particularly important in ecohydrological applications and land-surface interactions, and multiphase flow in porous media, as well as non-Gaussian solute transport, and flow morphologies associated with imbibition into unsaturated fractures. We describe new applications of percolation theory of solute transport to chemical weathering and soil formation, geomorphology, and elemental cycling through the terrestrial Earth surface. Wherever quantitatively accurate predictions of such quantities are relevant, so are the techniques presented here. Whenever possible, the theoretical predictions are compared with the relevant experimental data. In practically all the cases, the agreement between the theoretical predictions and the data is excellent. Also discussed are possible future directions in the application of such concepts to many other phenomena in geosciences.

  12. Surface phenomena and the evolution of radiating fluid spheres in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, L.; Jimenez, J.; Esculpi, M.

    1989-10-01

    A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs.

  13. Free-Surface Fluid-Object Interaction for the Large-Scale Computation of Ship Hydrodynamics Phenomena

    DTIC Science & Technology

    2014-05-21

    simulating air-water free -surface flow, fluid-object interaction (FOI), and fluid-structure interaction (FSI) phenomena for complex geometries, and...with no limitations on the motion of the free surface, and with particular emphasis on ship hydrodynamics. The following specific research objectives...were identified for this project: 1) Development of a theoretical framework for free -surface flow, FOI and FSI that is a suitable starting point

  14. Pathways to dewetting in hydrophobic confinement

    PubMed Central

    Remsing, Richard C.; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G.; Garde, Shekhar; Patel, Amish J.

    2015-01-01

    Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces—tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces—namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics—facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie–Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly. PMID:26100866

  15. A Second-Order Phase Transition as a Limit of the First-Order Phase Transitions —Coherent Anomalies and Critical Phenomena in the Potts Models—

    NASA Astrophysics Data System (ADS)

    Katori, Makoto

    1988-12-01

    A new scheme of the coherent-anomaly method (CAM) is proposed to study critical phenomena in the models for which a mean-field description gives spurious first-order phase transition. A canonical series of mean-field-type approximations are constructed so that the spurious discontinuity should vanish asymptotically as the approximate critical temperature approachs the true value. The true value of the critical exponents β and γ are related to the coherent-anomaly exponents defined among the classical approximations. The formulation is demonstrated in the two-dimensional q-state Potts models for q{=}3 and 4. The result shows that the present method enables us to estimate the critical exponents with high accuracy by using the date of the cluster-mean-field approximations.

  16. Hessdalen Light Phenomena and the Inconsistency of the "Car-Headlight" Interpretation

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    Some gratuitous criticism attempted to attack research concerning the scientific study of anomalous light phenomena in Hessdalen, Norway, by artfully constructing a castle in the air based on the arbitrary assumption that the "EMBLA 2002" field-study was dedicated to car headlights. This paper summarizes and analyzes in a few essential details the reasons why this "criticism" hasn't any reason to be considered such, as it is only a well-constructed fake. Some epistemological aspects are treated as well.

  17. The Critical Period Concept: Research, Methodology, and Theoretical Issues.

    ERIC Educational Resources Information Center

    Colombo, John

    1982-01-01

    Considers evidence on the criteria and characteristics of critical period phenomena with respect to endogenous and exogenous influences. Describes and evaluates methodology of critical period research and discusses past attempts at subclassification of the field and "recovery of function" as a refutation of the critical period…

  18. Ocean Processes Revealing by Seasonal Dynamics of Surface Chlorophyll Concentration (by Satellite Data)

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, Anatoly; Vysotskaya, Galina

    Continuous monitoring of phytopigment concentrations in the ocean by space-borne methods makes possible to estimate ecological condition of biocenoses in critical areas. Unlike land vege-tation, hydrological processes largely determine phytoplankton dynamics, which may be either recurrent or random. The types of chlorophyll concentration dynamics can manifest as zones quasistationary by seasonal chlorophyll dynamics, perennial variations of phytopigment con-centrations, anomalous variations, etc., that makes possible revealing of hydrological structure of the ocean. While large-scale and frequently occurring phenomena have been much studied, the seldom-occurring changes of small size may be of interest for analysis of long-term processes and rare natural variations. Along with this, the ability to reflect consequences of anthropoge-nous impact or natural ecological disasters on the ocean biota makes the anomalous variations ecologically essential. Civilization aspiring for steady development and preservation of the bio-sphere, must have the knowledge of spatial distribution, seasonal dynamics and anomalies of the primary production process on the planet. In the papers of the authors (Shevyrnogov A.P., Vysotskaya G.S., Gitelzon J.I. Quasistationary areas of chlorophyll concentration in the world ocean as observed satellite data. Adv. Space Res. Vol. 18, No. 7, pp. 129-132, 1996) existence of zones, which are quasi-stationary with similar seasonal dynamics of chlorophyll concentration at surface layer of ocean, was shown. Results were obtained on the base of pro-cessing of time series of satellite images SeaWiFS. It was shown that fronts and frontal zones coincide with dividing lines between quasi-stationary areas, especially in areas of large oceanic streams. Biota of surface oceanic layer is more stable in comparison with quickly changing sur-face temperature. It gives a possibility to circumvent influence of high-frequency component (for example, a diurnal cycle) in investigation of dynamics of spatial distribution of surface streams. In addition, an analyses of nonstable ocean productivity phenomena, stood out time series of satellite images, showed existence of areas with different types of instability in the all Global ocean. They are observed as adjacent nonstationary zones of different size, which are associated by different ways with known oceanic phenomena. It is evident that dynamics of a spatial distribution of biological productivity can give an additional knowledge of complicated picture of surface oceanic layer hydrology.

  19. Evolution of the SrTiO3 surface electronic state as a function of LaAlO3 overlayer thickness

    NASA Astrophysics Data System (ADS)

    Plumb, N. C.; Kobayashi, M.; Salluzzo, M.; Razzoli, E.; Matt, C. E.; Strocov, V. N.; Zhou, K. J.; Shi, M.; Mesot, J.; Schmitt, T.; Patthey, L.; Radović, M.

    2017-08-01

    The novel electronic properties emerging at interfaces between transition metal oxides, and in particular the discovery of conductivity in heterostructures composed of LaAlO3 (LAO) and SrTiO3 (STO) band insulators, have generated new challenges and opportunities in condensed matter physics. Although the interface conductivity is stabilized when LAO matches or exceeds a critical thickness of 4 unit cells (uc), other phenomena such as a universal metallic state found on the bare surface of STO single crystals and persistent photon-triggered conductivity in otherwise insulating STO-based interfaces raise important questions about the role of the LAO overlayer and the possible relations between vacuum/STO and LAO/STO interfaces. Here, using angle-resolved photoemission spectroscopy (ARPES) on in situ prepared samples complemented by resonant inelastic X-ray scattering (RIXS), we study how the metallic STO surface state evolves during the growth of a crystalline LAO overlayer. In all the studied samples, the character of the conduction bands, their carrier densities, the Ti3+ crystal field, and the response to photon irradiation bear strong similarities. Nevertheless, we report here that studied LAO/STO interfaces exhibit an instability toward an apparent 2 × 1 folding of the Fermi surface at and above a 4 uc thickness threshold, which distinguishes these heterostructures from bare STO and sub-critical-thickness LAO/STO.

  20. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam

    PubMed Central

    Mirsaidov, Utkur M.; Zheng, Haimei; Bhattacharya, Dipanjan; Casana, Yosune; Matsudaira, Paul

    2012-01-01

    Dynamics of the first few nanometers of water at the interface are encountered in a wide range of physical, chemical, and biological phenomena. A simple but critical question is whether interfacial forces at these nanoscale dimensions affect an externally induced movement of a water droplet on a surface. At the bulk-scale water droplets spread on a hydrophilic surface and slip on a nonwetting, hydrophobic surface. Here we report the experimental description of the electron beam-induced dynamics of nanoscale water droplets by direct imaging the translocation of 10- to 80-nm-diameter water nanodroplets by transmission electron microscopy. These nanodroplets move on a hydrophilic surface not by a smooth flow but by a series of stick-slip steps. We observe that each step is preceded by a unique characteristic deformation of the nanodroplet into a toroidal shape induced by the electron beam. We propose that this beam-induced change in shape increases the surface free energy of the nanodroplet that drives its transition from stick to slip state. PMID:22517747

  1. Bringing the Coastal Zone into Finer Focus

    NASA Astrophysics Data System (ADS)

    Guild, L. S.; Hooker, S. B.; Kudela, R. M.; Morrow, J. H.; Torres-Perez, J. L.; Palacios, S. L.; Negrey, K.; Dungan, J. L.

    2015-12-01

    Measurements over extents from submeter to 10s of meters are critical science requirements for the design and integration of remote sensing instruments for coastal zone research. Various coastal ocean phenomena operate at different scales (e.g. meters to kilometers). For example, river plumes and algal blooms have typical extents of 10s of meters and therefore can be resolved with satellite data, however, shallow benthic ecosystem (e.g., coral, seagrass, and kelp) biodiversity and change are best studied at resolutions of submeter to meter, below the pixel size of typical satellite products. The delineation of natural phenomena do not fit nicely into gridded pixels and the coastal zone is complicated by mixed pixels at the land-sea interface with a range of bio-optical signals from terrestrial and water components. In many standard satellite products, these coastal mixed pixels are masked out because they confound algorithms for the ocean color parameter suite. In order to obtain data at the land/sea interface, finer spatial resolution satellite data can be achieved yet spectral resolution is sacrificed. This remote sensing resolution challenge thwarts the advancement of research in the coastal zone. Further, remote sensing of benthic ecosystems and shallow sub-surface phenomena are challenged by the requirements to sense through the sea surface and through a water column with varying light conditions from the open ocean to the water's edge. For coastal waters, >80% of the remote sensing signal is scattered/absorbed due to the atmospheric constituents, sun glint from the sea surface, and water column components. In addition to in-water measurements from various platforms (e.g., ship, glider, mooring, and divers), low altitude aircraft outfitted with high quality bio-optical radiometer sensors and targeted channels matched with in-water sensors and higher altitude platform sensors for ocean color products, bridge the sea-truth measurements to the pixels acquired from satellite and high altitude platforms. We highlight a novel NASA airborne calibration, validation, and research capability for addressing the coastal remote sensing resolution challenge.

  2. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Li, Changwen; Yang, Huachao; Ostrikov, Kostya; Yan, Jianhua; Cen, Kefa

    2018-06-01

    Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode-electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.[Figure not available: see fulltext.

  3. Why don't biologists use SIMS?. A critical evaluation of imaging MS

    NASA Astrophysics Data System (ADS)

    Heeren, R. M. A.; McDonnell, L. A.; Amstalden, E.; Luxembourg, S. L.; Altelaar, A. F. M.; Piersma, S. R.

    2006-07-01

    Secondary ion mass spectrometry is commonly used to study many different types of complex surfaces. Yet, compared with MALDI and ESI-MS, SIMS has not made a significant impact in biological or biomedical research. The key features of the technique, namely high spatial resolution, high detection efficiency of ions spanning a wide m/ z range, surface sensitivity and the high scan rates seem to match ideally with several questions posed at the cellular level. To this date, SIMS has had only limited success in the biological arena. Why is this and what is needed to change this? This discussion paper will critically review the advances and the usefulness of SIMS in biomedical research and compare it to other approaches that offer spatially resolved molecular information available to a researcher with a biological interest. We will demonstrate that the type of information generated by the various incarnations of SIMS is strongly dependent on sample preparation and surface condition and these phenomena are only poorly understood. Modern approaches such as the cluster gun developments, ME-SIMS, gold coating and MALDI stigmatic imaging on a SIMS instrument might change the perception of SIMS being a tool for semiconductor manufacturers and physicists, and might persuade biologists to use these innovative mass spectrometric imaging tools.

  4. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  5. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    PubMed

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrical potential modulation of dynamic film properties of aqueous surfactant solutions through a nanogap

    NASA Astrophysics Data System (ADS)

    Xie, Guoxin; Luo, Jianbin; Liu, Shuhai; Guo, Dan

    2011-01-01

    The effect of external electrical potentials (EEPs) on aqueous surfactant films nanoconfined in a ball-plate configuration has been investigated by measuring the dynamic film thickness with an interferometer. Experimental results indicate that the film formation properties of the surfactant solutions in the nanogap under applied EEPs are strongly dependent on the interfacial adsorbed surfactant structure. Effective control over the film formation properties by applying EEPs depends on the signs of the charges on the solid surface and the surfactant headgroups, the surfactant concentration, and the magnitude of EEPs. Remarkable alterations of the film formation properties in the nanogap by EEPs can be observed except when the surface charge is the same in sign as the headgroups and the surfactant concentration is above the critical micelle concentration. Mechanisms of these phenomena have been discussed in this work.

  7. Physics through the 1990s: Condensed-matter physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations.

  8. Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.

    2018-03-01

    A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

  9. Stability of a dragged viscous thread: Onset of ``stitching'' in a fluid-mechanical ``sewing machine''

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny

    2006-12-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  10. Onset of `stitching' in the fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Ribe, Neil; Lister, John; Chiu-Webster, Sunny

    2006-11-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  11. Kondo destruction in a quantum paramagnet with magnetic frustration

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahao; Zhao, Hengcan; Lv, Meng; Hu, Sile; Isikawa, Yosikazu; Yang, Yi-feng; Si, Qimiao; Steglich, Frank; Sun, Peijie

    2018-06-01

    We report results of isothermal magnetotransport and susceptibility measurements at elevated magnetic fields B down to very low temperatures T on single crystals of the frustrated Kondo-lattice system CePdAl. They reveal a B*(T ) line within the paramagnetic part of the phase diagram. This line denotes a thermally broadened "small"-to-"large" Fermi-surface crossover which substantially narrows upon cooling. At B0 *=B*(T =0 ) =(4.6 ±0.1 ) T , this B*(T ) line merges with two other crossover lines, viz. Tp(B ) below and TFL(B ) above B0 *. Tp characterizes a frustration-dominated spin-liquid state, while TFL is the Fermi-liquid temperature associated with the lattice Kondo effect. Non-Fermi-liquid phenomena which are commonly observed near a "Kondo-destruction" quantum-critical point cannot be resolved in CePdAl. Our observations reveal a rare case where Kondo coupling, frustration, and quantum criticality are closely intertwined.

  12. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia

    2016-07-01

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.

  13. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: ludovico.minati@ifj.edu; Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków; Candia, Antonio de

    2016-07-15

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-ordermore » one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.« less

  14. Predictive model for ice formation on superhydrophobic surfaces.

    PubMed

    Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom

    2011-12-06

    The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society

  15. Data collapse and critical dynamics in neuronal avalanche data

    NASA Astrophysics Data System (ADS)

    Butler, Thomas; Friedman, Nir; Dahmen, Karin; Beggs, John; Deville, Lee; Ito, Shinya

    2012-02-01

    The tasks of information processing, computation, and response to stimuli require neural computation to be remarkably flexible and diverse. To optimally satisfy the demands of neural computation, neuronal networks have been hypothesized to operate near a non-equilibrium critical point. In spite of their importance for neural dynamics, experimental evidence for critical dynamics has been primarily limited to power law statistics that can also emerge from non-critical mechanisms. By tracking the firing of large numbers of synaptically connected cortical neurons and comparing the resulting data to the predictions of critical phenomena, we show that cortical tissues in vitro can function near criticality. Among the most striking predictions of critical dynamics is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function (data collapse). We show for the first time that this prediction is confirmed in neuronal networks. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

  16. The Microscopic Representation of Complex Oscopic Phenomena Critical Slowing Down - a Blessing in Disguise

    NASA Astrophysics Data System (ADS)

    Solomon, S.

    The following sections are included: * The Microscopic Representation Paradigm * CSD Appearance and Measurement * Elimination of CSD as Understanding of oscopic Dynamics * MicRep Use in Multiscale Phenomena * Conclusions * Acknowledgements * References * Notes Added in Proof: Visualization Experiments * References Added in Proof

  17. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates

    PubMed Central

    Ikari, Matt J.; Kopf, Achim J.

    2017-01-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected. PMID:29202027

  18. Liquid gallium-lead mixture phase diagram, surface tension near the critical mixing point, and prewetting transition.

    PubMed

    Osman, S M; Grosdidier, B; Ali, I; Abdellah, A Ben

    2013-06-01

    Quite recently, we reported a semianalytical equation of state (EOS) for the Ga-Pb alloy [Phys. Rev. B 78, 024205 (2008)], which was based on the first-order perturbation theory of fluid mixtures, within the simplified random phase approximation, in conjunction with the Grosdidier et al. model pair potentials for Ga-Ga and Pb-Pb with a suitable nonadditive pair potential between Ga-Pb unlike pairs. In the present work, we employ the present EOS to calculate the Ga-Pb phase diagram along the immiscibility gap region. The accuracy of the EOS is tested by consulting the empirical binodal curve. A statistical-mechanical-based theory for the surface tension is employed to obtain an analytical expression for the alloy surface tension. We calculated the surface tension along the bimodal curve and at extreme conditions of temperatures and pressures. The surface tension exhibits reasonably well the prewetting transition of Pb atoms at the surface of the Ga-rich liquid alloy and could qualitatively explain the prewetting phenomena occurring in the Ga-rich side of the phase diagram. The predicted prewetting line and wetting temperature qualitatively agree with the empirical measurements.

  19. The Role of Family Phenomena in Posttraumatic Stress in Youth

    PubMed Central

    Deatrick, Janet A.

    2010-01-01

    Topic Youth face trauma that can cause posttraumatic stress (PTS). Purpose 1). To identify the family phenomena used in youth PTS research; and 2). Critically examine the research findings regarding the relationship between family phenomena and youth PTS. Sources Systematic literature review in PsycInfo, PILOTS, CINAHL, and MEDLINE. Twenty-six empirical articles met inclusion criteria. Conclusion Measurement of family phenomena included family functioning, support, environment, expressiveness, relationships, cohesion, communication, satisfaction, life events related to family, parental style of influence, and parental bonding. Few studies gave clear conceptualization of family or family phenomena. Empirical findings from the 26 studies indicate inconsistent empirical relationships between family phenomena and youth PTS, though a majority of the prospective studies support a relationship between family phenomena and youth PTS. Future directions for leadership by psychiatric nurses in this area of research and practice are recommended. PMID:21344778

  20. Tuning the Reversibility of Mg Anodes via Controlled Surface Passivation by H 2O/Cl – in Organic Electrolytes

    DOE PAGES

    Connell, Justin G.; Genorio, Bostjan; Lopes, Pietro Papa; ...

    2016-10-17

    Developing a new generation of battery chemistries is a critical challenge to moving beyond current Li-ion technologies. In this work, we introduce a surface-science-based approach for understanding the complex phenomena controlling the reversibility of Mg anodes for Mg-ion batteries. In addition, we identify the profound impact of trace levels of H 2O (≤3 ppm) on the kinetics of Mg deposition and determine that passive films of MgO and Mg(OH) 2 are formed only after Mg deposition ceases, rather than continuously during Mg reduction. We also find that Cl – inhibits passivation through the formation of adsorbed Cl – (Mg–Cl(ad)) and/ormore » MgCl 2 on the surface, as well as through a dynamic competition with H 2O in the double layer. In conclusion, this surface-science-based approach goes well beyond Mg anodes, highlighting the need for more in-depth understanding of electrolyte chemistries before a new generation of efficient and reversible battery technologies can be realized.« less

  1. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    NASA Astrophysics Data System (ADS)

    Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.

    2016-06-01

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  2. Satellite Observations of Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jacob, Daniel J.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The troposphere is an essential component of the earth's life support system as well as the gateway for the exchange of chemicals between different geochemical reservoirs of the earth. The chemistry of the troposphere is sensitive to perturbation from a wide range of natural phenomena and human activities. The societal concern has been greatly enhanced in recent decades due to ever increasing pressures of population growth and industrialization. Chemical changes within the troposphere control a vast array of processes that impact human health, the biosphere, and climate. A main goal of tropospheric chemistry research is to measure and understand the response of atmospheric composition to natural and anthropogenic perturbations, and to develop the capability to predict future change. Atmospheric chemistry measurements are extremely challenging due to the low concentrations of critical species and the vast scales over which the observations must be made. Available tropospheric data are mainly from surface sites and aircraft missions. Because of the limited temporal extent of aircraft observations, we have very limited information on tropospheric composition above the surface. This situation can be contrasted to the stratosphere, where satellites have provided critical and detailed chemical data on the global distribution of key trace gases.

  3. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  4. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  5. Proposal for New Experimental Tests of the Bose-Einstein Condensation Mechanism for Low-Energy Nuclear Reaction and Transmutation Processes in Deuterium Loaded - and Nano-Scale Cavities

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.

    2006-02-01

    Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.

  6. Critical Cosmopolitan Educational Research: Grounded and Potentially Transformational

    ERIC Educational Resources Information Center

    Oikonomidoy, Eleni

    2016-01-01

    Drawing insights from scholarship in social sciences and education and the author's reflective research accounts, this paper aims to illustrate how a critical cosmopolitan framework can provide an alternative way of looking at educational phenomena. More specifically, the goal is to explore the why, where, who, and how of Critical Cosmopolitan…

  7. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates

    NASA Astrophysics Data System (ADS)

    Afferrante, L.; Carbone, G.

    2018-01-01

    In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid-solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid-solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie-Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.

  8. Surface Passivation for Single-molecule Protein Studies

    PubMed Central

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  9. Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-12-01

    Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.

  10. Typhoid fever as cellular microbiological model.

    PubMed

    de Andrade, Dahir Ramos; de Andrade Júnior, Dahir Ramos

    2003-01-01

    The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a) Bacterial type III protein secretion system; b) The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein) A, B, C, D and E, which are capable of induce apoptosis in macrophages; c) The function of Toll R2 and Toll R4 receptors present in the macrophage surface (discovered in the Drosophila). The Toll family receptors are critical in the signalizing mediated by LPS in macrophages in association with LBP and CD14; d) The lines of immune defense between intestinal lumen and internal organs; e) The fundamental role of the endothelial cells in the inflammatory deviation from bloodstream into infected tissues by bacteria. In addition to above subjects, the authors comment the correlation between the clinical features of typhoid fever and the cellular and molecular phenomena of this disease, as well as the therapeutic consequences of this knowledge.

  11. Introduction to monitoring dynamic environmental phenomena of the world using satellite data collection systems, 1978

    USGS Publications Warehouse

    Carter, William Douglas; Paulson, Richard W.

    1979-01-01

    The rapid development of satellite technology, especially in the area of radio transmission and imaging systems, makes it possible to monitor dynamic surface phenomena of the Earth in considerable detail. The monitoring systems that have been developed are compatible with standard monitoring systems such as snow, stream, and rain gages; wind, temperature and humidity measuring instruments; tiltmeters and seismic event counters. Supported by appropriate power, radios and antennae, remote stations can be left unattended for at least 1 year and consistently relay local information via polar orbiting or geostationary satellites. These data, in conjunction with timely Landsat images, can provide a basis for more accurate estimates on snowfall, water runoff, reservoir level changes, flooding, drought effects, and vegetation trends and may be of help in forecasting volcanic eruptions. These types of information are critical for resource inventory and development, especially in developing countries where remote regions are commonly difficult to access. This paper introduces the reader to the systems available, describes their features and limitations, and provides suggestions on how to employ them. An extensive bibliography is provided for those who wish more information.

  12. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution

    NASA Astrophysics Data System (ADS)

    Neagu, Dragos; Oh, Tae-Sik; Miller, David N.; Ménard, Hervé; Bukhari, Syed M.; Gamble, Stephen R.; Gorte, Raymond J.; Vohs, John M.; Irvine, John T. S.

    2015-09-01

    Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic applications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal-oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimension for tailoring particle-substrate interactions in the context of increasing interest for emergent interfacial phenomena.

  13. Large-area ordered Ge-Si compound quantum dot molecules on dot-patterned Si (001) substrates

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Zhou, Tong; Wang, Shuguang; Fan, Yongliang; Zhong, Zhenyang

    2014-08-01

    We report on the formation of large-area ordered Ge-Si compound quantum dot molecules (CQDMs) in a combination of nanosphere lithography and self-assembly. Truncated-pyramid-like Si dots with {11n} facets are readily formed, which are spatially ordered in a large area with controlled period and size. Each Si dot induces four self-assembled Ge-rich dots at its base edges that can be fourfold symmetric along <110> directions. A model based on surface chemical potential accounts well for these phenomena. Our results disclose the critical effect of surface curvature on the diffusion and the aggregation of Ge adatoms and shed new light on the unique features and the inherent mechanism of self-assembled QDs on patterned substrates. Such a configuration of one Si QD surrounded by fourfold symmetric Ge-rich QDs can be seen as a CQDM with unique features, which will have potential applications in novel devices.

  14. Domain Growth Kinetics in Stratifying Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.

  15. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-01

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  16. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics.

    PubMed

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-24

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  17. Role of uncrosslinked chains in droplets dynamics on silicone elastomers.

    PubMed

    Hourlier-Fargette, Aurélie; Antkowiak, Arnaud; Chateauminois, Antoine; Neukirch, Sébastien

    2017-05-21

    We report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet. The sharp speed change is shown to coincide with an abrupt transition in surface tension of the droplets, when a critical surface concentration in uncrosslinked oligomer chains is reached. We infer that a droplet shifts to a second regime with a faster speed when it is completely covered with a homogeneous oil film.

  18. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomenamore » in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.« less

  19. Evidence for a critical Earth: the New Geophysics

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This new understanding of fluid-rock deformation unifies much of the behaviour and has currently-relevant applications: 1) The times, magnitudes, and in some circumstances locations, of impending earthquakes can be stress-forecast (predicted); 2) The times of impending volcanic eruptions can be stress-forecast (predicted); 3) The production of hydrocarbon reservoirs can be, in principle, calculated; 4) Recovery from hydrocarbon reservoirs will be increased if production is slower; 5) Time-lapse of SWS single-well imaging can monitor movement of oil/water contacts; 6) Time-lapse of SWS can monitor behaviour of fluids in fracking reservoirs; 7) Time-lapse SWS can monitor leakage in underground nuclear-waste repositories. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Gao & Crampin (SM3.1), Liu & Crampin (NH2.5), and Crampin & Gao (GD.1).

  20. Peak effect versus skating in high-temperature nanofriction

    NASA Astrophysics Data System (ADS)

    Zykova-Timan, T.; Ceresoli, D.; Tosatti, E.

    2007-03-01

    The physics of sliding nanofriction at high temperature near the substrate melting point, TM, is so far unexplored. We conducted simulations of hard tips sliding on a prototype non-melting surface, NaCl(100), revealing two distinct and opposite phenomena for ploughing and for grazing friction in this regime. We found a frictional drop close to TM for deep ploughing and wear, but on the contrary a frictional rise for grazing, wearless sliding. For both phenomena, we obtain a fresh microscopic understanding, relating the former to `skating' through a local liquid cloud, and the latter to linear response properties of the free substrate surface. We argue that both phenomena occur more generally on surfaces other than NaCl and should be pursued experimentally. Most metals, in particular those possessing one or more close-packed non-melting surfaces, such as Pb, Al or Au(111), are likely to behave similarly.

  1. A review of finite size effects in quasi-zero dimensional superconductors.

    PubMed

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.

  2. The space shuttle payload planning working groups. Volume 8: Earth and ocean physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings and recommendations of the Earth and Ocean Physics working group of the space shuttle payload planning activity are presented. The requirements for the space shuttle mission are defined as: (1) precision measurement for earth and ocean physics experiments, (2) development and demonstration of new and improved sensors and analytical techniques, (3) acquisition of surface truth data for evaluation of new measurement techniques, (4) conduct of critical experiments to validate geophysical phenomena and instrumental results, and (5) development and validation of analytical/experimental models for global ocean dynamics and solid earth dynamics/earthquake prediction. Tables of data are presented to show the flight schedule estimated costs, and the mission model.

  3. Dual-phase evolution in complex adaptive systems

    PubMed Central

    Paperin, Greg; Green, David G.; Sadedin, Suzanne

    2011-01-01

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle. PMID:21247947

  4. Dual-phase evolution in complex adaptive systems.

    PubMed

    Paperin, Greg; Green, David G; Sadedin, Suzanne

    2011-05-06

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle.

  5. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  6. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less

  7. Simple Apparatus for Measuring the Critical Properties of Gases

    ERIC Educational Resources Information Center

    Donaldson, G. B.

    1973-01-01

    Describes the construction and operational procedures of a simple setup which enables undergraduate students to conduct experiments on critical phenomena in gases. Indicates that the experimental features are proved comparable to those of the Reamer and Sage apparatus. (CC)

  8. Multiscaling Edge Effects in an Agent-based Money Emergence Model

    NASA Astrophysics Data System (ADS)

    Oświęcimka, P.; Drożdż, S.; Gębarowski, R.; Górski, A. Z.; Kwapień, J.

    An agent-based computational economical toy model for the emergence of money from the initial barter trading, inspired by Menger's postulate that money can spontaneously emerge in a commodity exchange economy, is extensively studied. The model considered, while manageable, is significantly complex, however. It is already able to reveal phenomena that can be interpreted as emergence and collapse of money as well as the related competition effects. In particular, it is shown that - as an extra emerging effect - the money lifetimes near the critical threshold value develop multiscaling, which allow one to set parallels to critical phenomena and, thus, to the real financial markets.

  9. Continuous Droplet Removal upon Dropwise Condensation of Humid Air on a Hydrophobic Micropatterned Surface

    PubMed Central

    2015-01-01

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic–hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement. PMID:25073014

  10. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    PubMed

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  11. Some reflections on the understanding of the oxygen reduction reaction at Pt(111)

    PubMed Central

    Gómez-Marín, Ana M; Rizo, Ruben

    2013-01-01

    Summary The oxygen reduction reaction (ORR) is a pivotal process in electrochemistry. Unfortunately, after decades of intensive research, a fundamental knowledge about its reaction mechanism is still lacking. In this paper, a global and critical view on the most important experimental and theoretical results regarding the ORR on Pt(111) and its vicinal surfaces, in both acidic and alkaline media, is taken. Phenomena such as the ORR surface structure sensitivity and the lack of a reduction current at high potentials are discussed in the light of the surface oxidation and disordering processes and the possible relevance of the hydrogen peroxide reduction and oxidation reactions in the ORR mechanism. The necessity to build precise and realistic reaction models, which are deducted from reliable experimental results that need to be carefully taken under strict working conditions is shown. Therefore, progress in the understanding of this important reaction on a molecular level, and the choice of the right approach for the design of the electrocatalysts for fuel-cell cathodes is only possible through a cooperative approach between theory and experiments. PMID:24455454

  12. Some reflections on the understanding of the oxygen reduction reaction at Pt(111).

    PubMed

    Gómez-Marín, Ana M; Rizo, Ruben; Feliu, Juan M

    2013-12-27

    The oxygen reduction reaction (ORR) is a pivotal process in electrochemistry. Unfortunately, after decades of intensive research, a fundamental knowledge about its reaction mechanism is still lacking. In this paper, a global and critical view on the most important experimental and theoretical results regarding the ORR on Pt(111) and its vicinal surfaces, in both acidic and alkaline media, is taken. Phenomena such as the ORR surface structure sensitivity and the lack of a reduction current at high potentials are discussed in the light of the surface oxidation and disordering processes and the possible relevance of the hydrogen peroxide reduction and oxidation reactions in the ORR mechanism. The necessity to build precise and realistic reaction models, which are deducted from reliable experimental results that need to be carefully taken under strict working conditions is shown. Therefore, progress in the understanding of this important reaction on a molecular level, and the choice of the right approach for the design of the electrocatalysts for fuel-cell cathodes is only possible through a cooperative approach between theory and experiments.

  13. The experimental evidence for parapsychological phenomena: A review.

    PubMed

    Cardeña, Etzel

    2018-05-24

    This article presents a comprehensive integration of current experimental evidence and theories about so-called parapsychological (psi) phenomena. Throughout history, people have reported events that seem to violate the common sense view of space and time. Some psychologists have been at the forefront of investigating these phenomena with sophisticated research protocols and theory, while others have devoted much of their careers to criticizing the field. Both stances can be explained by psychologists' expertise on relevant processes such as perception, memory, belief, and conscious and nonconscious processes. This article clarifies the domain of psi, summarizes recent theories from physics and psychology that present psi phenomena as at least plausible, and then provides an overview of recent/updated meta-analyses. The evidence provides cumulative support for the reality of psi, which cannot be readily explained away by the quality of the studies, fraud, selective reporting, experimental or analytical incompetence, or other frequent criticisms. The evidence for psi is comparable to that for established phenomena in psychology and other disciplines, although there is no consensual understanding of them. The article concludes with recommendations for further progress in the field including the use of project and data repositories, conducting multidisciplinary studies with enough power, developing further nonconscious measures of psi and falsifiable theories, analyzing the characteristics of successful sessions and participants, improving the ecological validity of studies, testing how to increase effect sizes, recruiting more researchers at least open to the possibility of psi, and situating psi phenomena within larger domains such as the study of consciousness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id; Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung; Deendarlianto,

    2016-06-03

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussionmore » will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.« less

  15. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  16. An efficient and economical way to enhance the performance of present HTS Maglev systems by utilizing the anisotropy property of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    We report a simple, efficient and economical way to enhance the levitation or guidance performance of present high-temperature superconducting (HTS) Maglev systems by exploring the anisotropic properties of the critical current density in the a-b plane and along the c-axis of bulk superconductors. In the method, the bulk laying mode with different c-axis directions is designed to match with the magnetic field configuration of the applied permanent magnet guideway (PMG). Experimental results indicate that more than a factor of two improvement in the levitation force or guidance force is achieved when changing the laying mode of bulk superconductors from the traditional fashion of keeping the c-axis vertical to the PMG surface to the studied one of keeping the c-axis parallel to the PMG surface, at the maximum horizontal and vertical magnetic field positions of the PMG, respectively. These phenomena resulted from the physical nature of the generated levitation force and guidance force (electromagnetic forces) and the fact that there are different critical current densities in the a-b plane and along the c axis. Based on the experimental results, new HTS Maglev systems can be designed to meet the requirements of practical heavy-load or curved-route applications.

  17. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGES

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; ...

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  18. Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David

    2015-02-01

    Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.

  19. Cooperative growth phenomena in silicon/germanium low-temperature epitaxy

    NASA Astrophysics Data System (ADS)

    Meyerson, Bernard S.; Uram, Kevin J.; LeGoues, Francoise K.

    1988-12-01

    A series of Si:Ge alloys and structures has been prepared by ultrahigh-vacuum chemical vapor deposition. Alloys of composition 0≤Ge/Si≤0.20 are readily deposited at T=550 °C. Commensurate, defect-free strained layers are deposited up to a critical thickness, whereupon the accumulated stress in the films is accommodated by the formation of dislocation networks in the substrate wafers. A cooperative growth phenomenon is observed where the addition of 10% germane to the gaseous deposition source accelerates silane's heterogeneous reaction rate by a factor of 25. A model is proposed where Ge acts as a desorption center for mobile hydrogen adatoms on the Si[100] surface, accelerating heterogeneous silane pyrolysis by the enhanced availability of chemisorption sites.

  20. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  1. Avalanche and edge-of-chaos criticality do not necessarily co-occur in neural networks.

    PubMed

    Kanders, Karlis; Lorimer, Tom; Stoop, Ruedi

    2017-04-01

    There are indications that for optimizing neural computation, neural networks may operate at criticality. Previous approaches have used distinct fingerprints of criticality, leaving open the question whether the different notions would necessarily reflect different aspects of one and the same instance of criticality, or whether they could potentially refer to distinct instances of criticality. In this work, we choose avalanche criticality and edge-of-chaos criticality and demonstrate for a recurrent spiking neural network that avalanche criticality does not necessarily entrain dynamical edge-of-chaos criticality. This suggests that the different fingerprints may pertain to distinct phenomena.

  2. Avalanche and edge-of-chaos criticality do not necessarily co-occur in neural networks

    NASA Astrophysics Data System (ADS)

    Kanders, Karlis; Lorimer, Tom; Stoop, Ruedi

    2017-04-01

    There are indications that for optimizing neural computation, neural networks may operate at criticality. Previous approaches have used distinct fingerprints of criticality, leaving open the question whether the different notions would necessarily reflect different aspects of one and the same instance of criticality, or whether they could potentially refer to distinct instances of criticality. In this work, we choose avalanche criticality and edge-of-chaos criticality and demonstrate for a recurrent spiking neural network that avalanche criticality does not necessarily entrain dynamical edge-of-chaos criticality. This suggests that the different fingerprints may pertain to distinct phenomena.

  3. The Hydrodynamics and Odorant Transport Phenomena of Olfaction in the Hammerhead Shark

    NASA Astrophysics Data System (ADS)

    Rygg, Alex; Craven, Brent

    2013-11-01

    The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory organs, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics and odorant transport phenomena of olfaction in the hammerhead shark based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics (CFD) simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Odorant transport in the olfactory organ is investigated using a multi-scale approach, whereby molecular dynamics (MD) simulations are used to calculate odorant partition coefficients that are subsequently utilized in macro-scale CFD simulations of odorant deposition. The hydrodynamic and odorant transport results are used to elucidate several important features of olfactory function in the hammerhead shark.

  4. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  5. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  6. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    NASA Astrophysics Data System (ADS)

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-03-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.

  7. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    PubMed Central

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-01-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537

  8. Numerical simulation of quantum efficiency and surface recombination in HgCdTe IR photon-trapping structures

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-01

    We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.

  9. Towards a unified study of extreme events using universality concepts and transdisciplinary analysis methods

    NASA Astrophysics Data System (ADS)

    Balasis, George; Donner, Reik V.; Donges, Jonathan F.; Radebach, Alexander; Eftaxias, Konstantinos; Kurths, Jürgen

    2013-04-01

    The dynamics of many complex systems is characterized by the same universal principles. In particular, systems which are otherwise quite different in nature show striking similarities in their behavior near tipping points (bifurcations, phase transitions, sudden regime shifts) and associated extreme events. Such critical phenomena are frequently found in diverse fields such as climate, seismology, or financial markets. Notably, the observed similarities include a high degree of organization, persistent behavior, and accelerated energy release, which are common to (among others) phenomena related to geomagnetic variability of the terrestrial magnetosphere (intense magnetic storms), seismic activity (electromagnetic emissions prior to earthquakes), solar-terrestrial physics (solar flares), neurophysiology (epileptic seizures), and socioeconomic systems (stock market crashes). It is an open question whether the spatial and temporal complexity associated with extreme events arises from the system's structural organization (geometry) or from the chaotic behavior inherent to the nonlinear equations governing the dynamics of these phenomena. On the one hand, the presence of scaling laws associated with earthquakes and geomagnetic disturbances suggests understanding these events as generalized phase transitions similar to nucleation and critical phenomena in thermal and magnetic systems. On the other hand, because of the structural organization of the systems (e.g., as complex networks) the associated spatial geometry and/or topology of interactions plays a fundamental role in the emergence of extreme events. Here, a few aspects of the interplay between geometry and dynamics (critical phase transitions) that could result in the emergence of extreme events, which is an open problem, will be discussed.

  10. Atomisti modeling of the microstructure and transport properties of lead-free solder alloys

    NASA Astrophysics Data System (ADS)

    Sellers, Michael S.

    Damage mechanics models of lead-free solder joints in nanoelectronics continue to improve, and in doing so begin to utilize quantitative values describing processes at the atomic level, governing phenomena like electromigration and thermomigration. In particular, knowledge of the transport properties of specific microstructures helps continuum level models fully describe these larger-scale damage phenomena via multi-scale analysis. For example, diffusivities for different types of grain boundaries (fast diffusion paths for solvent and solute atoms, and vacancies), and a description of the boundary structure as a function of temperature, are critical in modeling solder microstructure evolution and, consequently, joint behavior under extreme temperature and electric current. Moreover, for damage that develops at larger length scales, surface energies and diffusivities play important roles in characterizing void stability and morphology. Unfortunately, experiments that investigate these kind of damage phenomena in the atomistic realm are often inconsistent or unable to directly quantify important parameters. One case is the particular transport and structural properties of grain boundaries in Sn (the main component in lead-free solder alloys) and their behavior in the presence of Ag and Cu impurities. This information is crucial in determining accurate diffusivity values for the common SnAgCu (SAC) type solder. Although an average grain boundary diffusivity has been reported for polycrystalline Sn in several works, the value for grain boundary width is estimated and specific diffusivities for boundaries known to occur in Sn have not been reported, to say nothing of solute effects on Sn diffusivity and grain boundary structure. Similarly, transport properties of Sn surfaces remain relatively uninvestigated as well. These gaps and inconsistencies in atomistic data must be remedied for micro- and macro-scale modeling to improve. As a complement to experimental work and possessing the ability to fill in the gaps, molecular simulation serves to reinforce experimental predictions and provide insight into the atomistic processes that govern studied phenomena. In the present body of work, we employ molecular statics and dynamics simulations in the characterization and computation of betaSn surface energies and surface diffusivities, the determination of diffusivities and structural properties of specific betaSn grain boundaries, and the investigation of Cu and Ag solute effects on betaSn grain boundaries. In our study of betaSn surfaces, energies for low number Miller index surfaces are computed and the (100) plane is found to have the lowest un-relaxed energy. We then find that two simple hopping mechanisms dominate adatom diffusion transitions on this surface. For each, we determine hopping rates of the adatom and compute its tracer diffusivity. Our work on grain boundaries investigates the self-diffusion properties and structure of several betaSn symmetric tilt grain boundaries using molecular dynamics simulations. We find that larger diffusive widths are exhibited by higher excess potential energy grain boundaries. Diffusivities in the directions parallel to the interface plane are also computed and activation energies are found with the Arrhenius relation. These are shown to agree well with experimental data. Finally, we examine the effect that solute atoms of Ag and Cu have on the microstructure of betaSn. Excess energies of the (101) symmetric tilt betaSn grain boundary are computed as a function of solute concentration at the interface, and we show that Ag lowers the energy at a greater rate than Cu. We also quantify segregation enthalpies and critical solute concentrations (where the excess energy of the boundary is reduced to zero). The effect of solute type on shear stress is also examined, and we show that solute has a strong effect on the stabilization of higher energy grain boundaries under shear stress. We then look at the self-diffusivity of Sn in the (101) symmetric tilt betaSn grain boundary and show that adding both Ag or Cu decrease the grain boundary self-diffusivity of Sn as solute amount in the interface increases. Effects of larger concentrations of Cu in particular are also investigated.

  11. Resolution of the discrepancy between the variation of the physical properties of Ce 1-xYb xCoIn 5 single crystals and thin films with Yb composition

    DOE PAGES

    Jang, S.; White, B. D.; Lum, I. K.; ...

    2014-11-18

    The extraordinary electronic phenomena including an Yb valence transition, a change in Fermi surface topology, and suppression of the heavy fermion quantum critical field at a nominal concentration x≈0.2 have been found in the Ce 1-xYb xCoIn 5 system. These phenomena have no discernable effect on the unconventional superconductivity and normal-state non-Fermi liquid behaviour that occur over a broad range of x up to ~0.8. However, the variation of the coherence temperature T* and the superconducting critical temperature T c with nominal Yb concentration x for bulk single crystals is much weaker than that of thin films. To determine whethermore » differences in the actual Yb concentration of bulk single crystals and thin film samples might be responsible for these discrepancies, we employed Vegard’s law and the spectroscopically determined values of the valences of Ce and Yb as a function of x to determine the actual composition x act of bulk single crystals. This analysis is supported by energy-dispersive X-ray spectroscopy, wavelength-dispersive X-ray spectroscopy, and transmission X-ray absorption edge spectroscopy measurements. The actual composition x act is found to be about one-third of the nominal concentration x up to x~0.5, and resolves the discrepancy between the variation of the physical properties of Ce 1-xYb xCoIn 5 single crystals and thin films with Yb concentration.« less

  12. Studies in electron phenomena in MOS structures: The pulsed C-V method. M.S. Thesis. Abstract Only

    NASA Technical Reports Server (NTRS)

    Kaplan, G.

    1983-01-01

    The pulse hysteresis capacitance voltage (C-V) provides a straight forward technique for measuring the change of various charges in MOS structures and a tool for investigating the kinetics of various electron phenomena is developed and described. The method can be used for measuring the energy distribution and kinetics of surface states with the resolution of about 1/5 x 10 to the -9 power cm eV. Some transients in an MOS structure, particularly, the thermal generation of minority charge carriers via surface states and the relaxation of minority charge carriers supplied from the inversion layer outside the MOS structure are theoretically investigated. Analytical expressions which clearly present the physics of those electron phenomena are derived.

  13. Nonlinear friction dynamics on polymer surface under accelerated movement

    NASA Astrophysics Data System (ADS)

    Aita, Yuuki; Asanuma, Natsumi; Takahashi, Akira; Mayama, Hiroyuki; Nonomura, Yoshimune

    2017-04-01

    Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE) resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction) and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  14. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    NASA Astrophysics Data System (ADS)

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.

  15. The Impact of the Qur'anic Conception of Astronomical Phenomena on Islamic Civilization

    NASA Astrophysics Data System (ADS)

    Ahmad, I. A.

    Discussions of astronomical phenomena in religious texts usually center around either their literal astronomical content or their symbolic significance. We shall instead consider the use of frequent references to astronomical phenomena in the Qur'an as exhortations to a worldview that ushered in the modern era. The Qur'anic conception of astronomical phenomena had a critical impact on Islamic civilization and the civilizations that followed because it introduced and mandated the adoption of certain attitudes. Among these were a greater respect for empirical data than was common in the preceding Greek civilization and an insistence that the Universe is ruled by a single set of laws. Both of these were rooted in the Islamic concept of tawhîd, the unity of God.

  16. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1993-01-01

    In the last two decades, there have been extensive developments in computational aerodynamics, which constitutes a major part of the general area of computational fluid dynamics. Such developments are essential to advance the understanding of the physics of complex flows, to complement expensive wind-tunnel tests, and to reduce the overall design cost of an aircraft, particularly in the area of aeroelasticity. Aeroelasticity plays an important role in the design and development of aircraft, particularly modern aircraft, which tend to be more flexible. Several phenomena that can be dangerous and limit the performance of an aircraft occur because of the interaction of the flow with flexible components. For example, an aircraft with highly swept wings may experience vortex-induced aeroelastic oscillations. Also, undesirable aeroelastic phenomena due to the presence and movement of shock waves occur in the transonic range. Aeroelastically critical phenomena, such as a low transonic flutter speed, have been known to occur through limited wind-tunnel tests and flight tests. Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At Ames a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft and it solves the Euler/Navier-Stokes equations. The purpose of this contract is to continue the algorithm enhancements of ENSAERO and to apply the code to complicated geometries. During the last year, the geometric capability of the code was extended to simulate transonic flows, a wing with oscillating control surface. Single-grid and zonal approaches were tested. For the zonal approach, a new interpolation technique was introduced. The key development of the algorithm was an interface treatment between moving zones for a control surface using the virtual-zone concept. The work performed during the period, 1 Apr. 1992 through 31 Mar. 1993 is summarized. Additional details on the various aspects of the study are given in the Appendices.

  17. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    NASA Astrophysics Data System (ADS)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a realistic PrantlPlane to understand effects induced by freeplay of mobile surfaces. Conclusive work is also performed to study the interaction between rigid body and elastic modes, assessing the occurrence of bodyfreedom flutter.

  18. Critical study of the distribution of rotational velocities of Be stars. II: Differential rotation and some hidden effects interfering with the interpretation of the V sin I parameter

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Frémat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2017-06-01

    Aims: We assume that stars may undergo surface differential rotation to study its impact on the interpretation of Vsini and on the observed distribution Φ(u) of ratios of true rotational velocities u = V/Vc (Vc is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by Vsini concerning the actual stellar rotation. Methods: We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(θ) = Ω0(1 + αcos2θ) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α on the measured Vsini parameter and on the distribution Φ(u) of ratios u = V/Vc. Results: We conclude that the inferred Vsini is smaller than implied by the actual equatorial linear rotation velocity Veq if the stars rotate with α < 0, but is larger if the stars have α > 0. For a given | α | the deviations of Vsini are larger when α < 0. If the studied Be stars have on average α < 0, the number of rotators with Veq ≃ 0.9Vc is larger than expected from the observed distribution Φ(u); if these stars have on average α > 0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by Vsini and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.

  19. A Bridge Too Far: Suppressing Frost Using an Out-of-Plane Dry Zone

    NASA Astrophysics Data System (ADS)

    Spohn, Corey; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    It has recently been shown that ice can suppress the formation of any nearby condensation or frost on a substrate. However, these in-plane dry zones require the hygroscopic ice features to be placed on the same surface they are helping to keep dry, which makes it impossible to achieve complete anti-frosting. Here, we create an out-of-plane dry zone by holding two aluminum surfaces parallel to each other, where a uniform sheet of frost was grown on one surface to keep the other surface completely dry. The critical separation required to keep the test surface dry was found to be a function of the ambient supersaturation. We also show that inter-droplet ice bridging, now known to be a primary mechanism for in-plane frost growth, can be similarly extended to an out-of-plane configuration. We freeze a droplet on a hydrophobic surface and suspend a water droplet above it, such that an ice bridge grows toward the water droplet. More generally, these findings show that the recently discovered phenomena of dry zones and ice bridging can be extended to out-of-plane scenarios, which could lead to a better understanding of the behavior of mixed-phase systems. This work was supported by the National Science Foundation (CBET-1604272) and by the 3M Company (Non-Tenured Faculty Award).

  20. Velocity Inversion In Cylindrical Couette Gas Flows

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; Barber, Robert W.; Emerson, David R.; Zhang, Yonghao; Reese, Jason M.

    2012-05-01

    We investigate a power-law probability distribution function to describe the mean free path of rarefied gas molecules in non-planar geometries. A new curvature-dependent model is derived by taking into account the boundary-limiting effects on the molecular mean free path for surfaces with both convex and concave curvatures. In comparison to a planar wall, we find that the mean free path for a convex surface is higher at the wall and exhibits a sharper gradient within the Knudsen layer. In contrast, a concave wall exhibits a lower mean free path near the surface and the gradients in the Knudsen layer are shallower. The Navier-Stokes constitutive relations and velocity-slip boundary conditions are modified based on a power-law scaling to describe the mean free path, in accordance with the kinetic theory of gases, i.e. transport properties can be described in terms of the mean free path. Velocity profiles for isothermal cylindrical Couette flow are obtained using the power-law model. We demonstrate that our model is more accurate than the classical slip solution, especially in the transition regime, and we are able to capture important non-linear trends associated with the non-equilibrium physics of the Knudsen layer. In addition, we establish a new criterion for the critical accommodation coefficient that leads to the non-intuitive phenomena of velocity-inversion. Our results are compared with conventional hydrodynamic models and direct simulation Monte Carlo data. The power-law model predicts that the critical accommodation coefficient is significantly lower than that calculated using the classical slip solution and is in good agreement with available DSMC data. Our proposed constitutive scaling for non-planar surfaces is based on simple physical arguments and can be readily implemented in conventional fluid dynamics codes for arbitrary geometric configurations.

  1. Geophysical variables and behavior: XXVI. A response to Rutkowski's critique of the tectonic strain hypothesis for UFO phenomena.

    PubMed

    Persinger, M A

    1985-04-01

    The tectonic strain hypothesis for many reports of UFOs (UFORs), primarily odd luminosities and metallic-looking phenomena, has been criticized on the basis of inadequate data. This reply begins with the distinction between the empirical basis for the association between UFORs and seismic activity, the hypothesis, and laboratory experiments. It is emphasized that criticisms of data should be based upon empirical criteria rather than value judgments about scientific credibility. Multivariate and bivariate analyses have indicated systematic relationships between UFORs and earthquake measures within several different areas and for different historical periods. However, the physical mechanisms for the generation of individual UFO events and their relationship to UFORs require closer examination.

  2. Line tension effects on the wetting of nanostructures: an energy method

    NASA Astrophysics Data System (ADS)

    Guo, Hao-Yuan; Li, Bo; Feng, Xi-Qiao

    2017-09-01

    The superhydrophobicity and self-cleaning property of micro/nano-structured solid surfaces require a stable Cassie-Baxter (CB) wetting state at the liquid-solid interface. We present an energy method to investigate how the three-phase line tension affects the CB wetting state on nanostructured materials. For some nanostructures, the line tension may engender a distinct energy barrier, which restricts the position of the three-phase contact line and affects the stability of the CB wetting state. We ascertain the upper and lower limits of the critical pressure at the CB-Wenzel transition. Our results suggest that superhydrophobicity on nanostructures can be modulated by tailoring the line tension and harnessing the curvature effect. This study also provides new insights into the sinking phenomena observed in the nanoparticle-floating experiment.

  3. Earthquake lights and the stress-activation of positive hole charge carriers in rocks

    USGS Publications Warehouse

    St-Laurent, F.; Derr, J.S.; Freund, F.T.

    2006-01-01

    Earthquake-related luminous phenomena (also known as earthquake lights) may arise from (1) the stress-activation of positive hole (p-hole) charge carriers in igneous rocks and (2) the accumulation of high charge carrier concentrations at asperities in the crust where the stress rates increase very rapidly as an earthquake approaches. It is proposed that, when a critical charge carrier concentration is reached, the p-holes form a degenerated solid state plasma that can break out of the confined rock volume and propagate as a rapidly expanding charge cloud. Upon reaching the surface the charge cloud causes dielectric breakdown at the air-rock interface, i.e. corona discharges, accompanied by the emission of light and high frequency electromagnetic radiation. ?? 2006 Elsevier Ltd. All rights reserved.

  4. Monitoring sediment transfer processes on the desert margin

    NASA Technical Reports Server (NTRS)

    Millington, Andrew C.; Arwyn, R. Jones; Quarmby, Neil; Townshend, John R. G.

    1987-01-01

    LANDSAT Thematic Mapper and Multispectral Scanner data have been used to construct change detection images for three playas in south-central Tunisia. Change detection images have been used to analyze changes in surface reflectance and absorption between wet and dry season (intra-annual change) and between different years (inter-annual change). Change detection imagery has been used to examine geomorphological changes on the playas. Changes in geomorphological phenomena are interpreted from changes in soil and foliar moisture levels, differences in reflectances between different salt and sediments and the spatial expression of geomorphological features. Intra-annual change phenomena that can be detected from multidate imagery are changes in surface moisture, texture and chemical composition, vegetation cover and the extent of aeolian activity. Inter-annual change phenomena are divisible into those restricted to marginal playa facies (sedimentation from sheetwash and alluvial fans, erosion from surface runoff and cliff retreat) and these are found in central playa facies which are related to the internal redistribution of water, salt and sediment.

  5. The double peaks and symmetric path phenomena in the catalytic activity of Pd/Al2O3-TiO2 catalysts with different TiO2 contents

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe

    2018-06-01

    Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1

  6. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…

  7. Nucleation and growth of order in Cu(3)Au (111) films

    NASA Astrophysics Data System (ADS)

    Bonham, Scott William

    The present work epitaxial investigated two types of ordering phenomena using films of Cusb3Au, the order-disorder phase transition on the (111) crystal surface, and preferential selection of one of two possible stacking domains. Cusb3Au has long been a model system for studying order-disorder phase transition. Bulk material exhibits a discontinuous transition while the surfaces exhibit continuos transitions and the long-range order parameter S is proportional to (Tsb{c}-T)sp{beta}, where Tsb{c} is the critical temperature. The transition of the (111) surface is studied with qualitative reflection high-energy electron diffraction (RHEED), which is sensitive to only the first few atomic layers. This work significantly improves on an earlier study through both improved data collection and more comprehensive data analysis. The measured value of beta =0.50± 0.02 agrees with both the earlier measurements and with predictions of mean field theory. In addition, data on surface defects during the transition and on the kinetics of ordering are presented. During epitaxial growth of (111) face-centered cubic crystal films, such as disordered Cusb3Au, there are two possible ways that successive layers can be laid down, leading to two types of stacking domains. However, a small vicinal miscut (0.5sp° {-}1sp° ) of the crystal surface introduces step edges that change nucleation preferences of the domains, resulting in one being preferred over the other by ratios up to 700:1. Fifteen samples were measured and this preference has been found to depend systematically and strongly on the magnitude and direction of the sample miscut. A qualitative RHEED study confirms that a preference for one of the stacking senses is present after deposition of a few monlolayers of Cusb3Au. The observed behavior of the film can be explained by a model in which Cu and Au atoms minimize their number of Nb nearest neighbors when growing over the Nb step edges. This represents both a discovery of a new phenomena in epitaxial nucleation and a technique for the production of improved epitaxial films.

  8. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    PubMed

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  9. Hele-Shaw scaling properties of low-contrast Saffman-Taylor flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiFrancesco, M. W.; Maher, J. V.

    1989-07-01

    We have measured variations of Saffman-Taylor flows by changingdimensionless surface tension /ital B/ alone and by changing /ital B/ inconjunction with changes in dimensionless viscosity contrast /ital A/. Ourlow-aspect-ratio cell permits close study of the linear- and earlynonlinear-flow regimes. Our critical binary-liquid sample allows study of verylow values of /ital A/. The predictions of linear stability analysis work wellfor predicting which length scales are important, but discrepancies areobserved for growth rates. We observe an empirical scaling law for growth ofthe Fourier modes of the patterns in the linear regime. The observed frontpropagation velocity for side-wall disturbances is constantly 2+-1in dimensionlessmore » units, a value consistent with the predictions of Langer andof van Saarloos. Patterns in both the linear and nonlinear regimes collapseimpressively under the scaling suggested by the Hele-Shaw equations. Violationsof scaling due to wetting phenomena are not evident here, presumably becausethe wetting properties of the two phases of the critical binary liquid are sosimilar; thus direct comparison with large-scale Hele-Shaw simulations shouldbe meaningful.« less

  10. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  11. Hierarchical organization as a diagnostic approach to volcano mechanics: Validation on Piton de la Fournaise

    NASA Astrophysics Data System (ADS)

    Grasso, J. R.; Bachèlery, P.

    Self-organized systems are often used to describe natural phenomena where power laws and scale invariant geometry are observed. The Piton de la Fournaise volcano shows power-law behavior in many aspects. These include the temporal distribution of eruptions, the frequency-size distributions of induced earthquakes, dikes, fissures, lava flows and interflow periods, all evidence of self-similarity over a finite scale range. We show that the bounds to scale-invariance can be used to derive geomechanical constraints on both the volcano structure and the volcano mechanics. We ascertain that the present magma bodies are multi-lens reservoirs in a quasi-eruptive condition, i.e. a marginally critical state. The scaling organization of dynamic fluid-induced observables on the volcano, such as fluid induced earthquakes, dikes and surface fissures, appears to be controlled by underlying static hierarchical structure (geology) similar to that proposed for fluid circulations in human physiology. The emergence of saturation lengths for the scalable volcanic observable argues for the finite scalability of complex naturally self-organized critical systems, including volcano dynamics.

  12. New Phenomena in NC Field Theory and Emergent Spacetime Geometry

    NASA Astrophysics Data System (ADS)

    Ydri, Badis

    2010-10-01

    We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar φ4 field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at θ = 0 there must exist a novel fixed point at θ = ∞ corresponding to the quartic hermitian matrix model.

  13. Wrinkling instabilities in soft bilayered systems

    PubMed Central

    Budday, Silvia; Andres, Sebastian; Walter, Bastian

    2017-01-01

    Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385

  14. Trauma of lung due to impact load.

    PubMed

    Yen, R T; Fung, Y C; Liu, S Q

    1988-01-01

    A quantitative evaluation of lung injury due to impact loading is of general interest. Hemorrhage and edema are the usual sequelae to traumatic pulmonary impact. To gain some quantitative understanding of the phenomena, we perfused excised rabbit lung with Macrodex at isogravimetric condition and monitored lung weight continuously after impact. It is shown that a factor of importance is the rigidity of the surface on which the lung rests. The rate of lung weight increase is smaller if the lung was 'freely' supported on a soft cloth, more if it was supported on a rigid plate. This suggests the influence of stress wave reflection. The critical condition correlates with the initial velocity of impact at the surface of the lung, or with the maximum deflection. For a freely supported lung, the rate of lung weight increase was 22% of the initial total lung weight per h after impact when the impact velocity was 11.5 ms-1, 30% when the velocity was 13.2 ms-1, several 100% at 13.5 ms-1, signaling massive lung injury. Since the velocity of sound in rabbit lung is 33.3 ms-1 when the inflation (transpulmonary) pressure is 10 cm H2O, the critical velocity of 13.5 ms-1 corresponds to a Mach number of 0.4. The maximum surface displacement of the lung is almost linearly proportional to the initial velocity of impact. The exact cause of edema and hemorrhage is unknown; we hypothesize that it is due to tensile stress in the alveolar wall caused by the impact.

  15. Runoff initiation from falling raindrops - comparison of smooth impervious surface and asphalt pavements. Effects of surface inclination and texture.

    NASA Astrophysics Data System (ADS)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal; Levenberg, Eyal

    2017-04-01

    The processes of runoff initiation on smooth impervious surfaces and various asphalt pavements are investigated in laboratory rain simulator experiments and outdoor sprinkling tests. Visual and FLIR observations indicate that runoff initiation is associated with coalescence of drop clusters on the surface and complex changes in micro-connectivity. Depending on surface inclination, several morphological regimes of flow initiation have been observed. In the case of very small inclination the runoff initiation is governed by critical merging of drop clusters on the surface and develops in broad flows (very abrupt, but delayed). For larger inclinations, the runoff occurs in rivulets or strongly directed flow threads. On asphalt pavements the runoff initiation is also strongly affected by pavement SVF (Surface Void Fraction), texture and even by the asphalt hydrophobicity. A simplified bi-level model of the pavement surface may explain principal differences in the runoff initiation on asphalts with small, intermediate and large SVF values. For small SVF (standard fresh asphalts) the runoff develops on the upper surface level, and filling of the surface voids is not always required (especially for the large inclinations). For intermediate SVF (considerably deteriorated asphalts) the runoff develops as well on the upper surface level, but only after considerable filling of the surface voids. Finally, on severely deteriorated asphalts (very large SVFs) the runoff develops on the "bottom" level of asphalt surface, after only partial filling of the surface voids. Other factors, such as drops splash and splitting, also affect the process of runoff initiation and explain rather considerable differences (sometimes of 2-3 mm rain depth) in the runoff thresholds on various non-porous asphalt pavements. Similar phenomena can be probably observed on certain types of rock outcrops.

  16. Using critical realism as a framework in pharmacy education and social pharmacy research.

    PubMed

    Oltmann, Carmen; Boughey, Chrissie

    2012-01-01

    This article challenges the idea that positivism is capable of representing the complexity of social pharmacy and pharmacy education. It is argued that critical realism provides a framework that allows researchers to look at the nature of reality and at mechanisms that produce, or have the tendency to produce, events and experiences of those events. Critical realism is a framework, not a method. It allows researchers to make observations about phenomena and explain the relationships and connections involved. The researcher has to look for mechanisms and structures that could explain why the phenomena, the connections, and the relationships exist (or do not) and then try to show that these mechanisms do exist. This article first contextualizes critical realism, then briefly describes it, and lastly exemplifies the use of critical realism in a discussion of a research project conducted in pharmacy education. Critical realism may be particularly useful in interdisciplinary research, for example, where practitioners and researchers are working together in a social pharmacy or pharmacy education setting. Critical realism requires the practitioners and the researchers to question and make known their assumptions about their own realities and to think of a complex problem or phenomenon in terms of a stratified reality, generative mechanisms, and tendencies. Critical realism may make research more rigorous and also allow researchers to conceive of a greater breadth of research designs for their work. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Evaporation rate of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  18. Pressure sensitive microparticle adhesion through biomimicry of the pollen-stigma interaction.

    PubMed

    Lin, Haisheng; Qu, Zihao; Meredith, J Carson

    2016-03-21

    Many soft biomimetic synthetic adhesives, optimized to support macroscopic masses (∼kg), have been inspired by geckos, insects and other animals. Far less work has investigated bioinspired adhesion that is tuned to micro- and nano-scale sizes and forces. However, such adhesive forces are extremely important in the adhesion of micro- and nanoparticles to surfaces, relevant to a wide range of industrial and biological systems. Pollens, whose adhesion is critical to plant reproduction, are an evolutionary-optimized system for biomimicry to engineer tunable adhesion between particles and micro-patterned soft matter surfaces. In addition, the adhesion of pollen particles is relevant to topics as varied as pollinator ecology, transport of allergens, and atmospheric phenomena. We report the first observation of structurally-derived pressure-sensitive adhesion of a microparticle by using the sunflower pollen and stigma surfaces as a model. This strong, pressure-sensitive adhesion results from interlocking between the pollen's conical spines and the stigma's receptive papillae. Inspired by this behavior, we fabricated synthetic polymeric patterned surfaces that mimic the stigma surface's receptivity to pollen. These soft mimics allow the magnitude of the pressure-sensitive response to be tuned by adjusting the size and spacing of surface features. These results provide an important new insight for soft material adhesion based on bio-inspired principles, namely that ornamented microparticles and micro-patterned surfaces can be designed with complementarity that enable a tunable, pressure-sensitive adhesion on the microparticle size and length scale.

  19. Relaxation phenomena in AOT-water-decane critical and dense microemulsions

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Pru-Lestret, E.; Panizza, P.; Rouch, J.; Sciortino, F.; Tartaglia, P.; Hashimoto, C.; Ushiki, H.; Risso, D.

    2001-11-01

    We report on extensive measurements of the low and high frequencies sound velocity and sound absorption in AOT-water-decane microemulsions deduced from ultrasonic and, for the first time as far as the absorption is concerned, from Brillouin scattering experiments. New experimental results on dielectric relaxation are also reported. Our results, which include data taken for critical as well as dense microemulsions, show new interesting relaxation phenomena. The relaxation frequencies deduced from very high frequency acoustical measurements are in good agreement with new high frequency dielectric relaxation measurements. We show that along the critical isochore, sound dispersion, relaxation frequency, and static dielectric permittivity can be accurately fitted to power laws. The absolute values of the new exponents we derived from experimental data are nearly equal, and they are very close to β=0.33 characterising the shape of the coexistence curve. The exponent characterising the infinite frequency permittivity is very close to 0.04 relevant to the diverging shear viscosity. For dense microemulsions, two well defined relaxation domains have been identified and the temperature variations of the sound absorption and the zero frequency dielectric permittivity bear striking similarities. We also show that the relaxation frequency of the slow relaxation process is almost independent of temperature and volume fraction and so cannot be attributed to percolation phenomena, whereas it can more likely be attributed to an intrinsic relaxation process probably connected to membrane fluctuations.

  20. Surface Ocean-Lower Atmosphere Studies: SOLAS

    NASA Astrophysics Data System (ADS)

    Wanninkhof, R.; Dickerson, R.; Barber, R.; Capone, D. G.; Duce, R.; Erickson, D.; Keene, W. C.; Lenschow, D.; Matrai, P. A.; McGillis, W.; McGillicuddy, D.; Penner, J.; Pszenny, A.

    2002-05-01

    The US Surface Ocean - Lower Atmosphere Study (US SOLAS) is a component of an international program (SOLAS) with an overall goal: to achieve a quantitative understanding of the key biogeochemical-physical interactions between the ocean and atmosphere, and of how this coupled system affects and is affected by climateand environmental change. There is increasing evidence that the biogeochemical cycles containing the building blocks of life such as carbon, nitrogen, and sulfur have been perturbed. These changes result in appreciable impacts and feedbacks in the SOLA region. The exact nature of the impacts and feedbacks are poorly constrained because of sparse observations, in particular relating to the connectivity and interrelationships between the major biogeochemical cycles and their interaction with physical forcing. It is in these areas that the research and the interdisciplinary research approaches advocated in US SOLAS will provide high returns. The research in US SOLAS will be heavily focused on process studies of the natural variability of key processes, anthropogenic perturbation of the processes, and the positive and negative feedbacks the processes will have on the biogeochemical cycles in the SOLA region. A major objective is to integrate the process study findings with the results from large-scale observations and with small and large- scale modeling and remote sensing efforts to improve our mechanistic understanding of large scale biogeochemical and physical phenomena and feedbacks. US SOLAS held an open workshop in May 2001 to lay the groundwork for the SOLAS program in the United States. Resulting highlights and issues will be summarized around 4 major themes: (1) Boundary-layer Physics, (2) Dynamics of long-lived climate relevant compounds, (3) Dynamics of short-lived climate relevant compounds, and (4) Atmospheric effects on marine biogeochemical processes. Comprehensive reports from the working groups of U.S. SOLAS, and the international science plan which served as overall guidance, can be found at We will explore possible dedicated, interdisciplinary ocean-atmosphere projects as examples of the critical interconnectivity of atmospheric, interfacial, and upper ocean processes to study phenomena of critical importance in understanding the earth's system.

  1. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  2. Initial stage oxidation on nano-trenched Si(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Yi-Lun; Izumi, Satoshi; Chen, Xue-Feng; Zhai, Zhi; Tian, Shao-Hua

    2018-01-01

    As the size of an electronic element shrinks to nanoscale, trench design of Si strongly influences the performance of related semiconductor devices. By reactive force field molecular dynamics (ReaxFF MD) simulation, the initial stage oxidation on nano-trenched Si(1 0 0) angled 60°, 90°, 120°, 150° under temperatures from 300 K to 1200 K has been studied. Inhomogeneous oxidation at the convex-concave corners of the Si surface was observed. In general, the initial oxidation process on the Si surface was that, firstly, the O atoms ballistically transported into surface, then a high O concentration induced compressive stress at the surface layers, which prevented further oxidation. Compared to the concave corner, the convex one contacted a larger volume of oxygen at the very beginning stage, leading an anisotropic absorption of O atoms. Afterwards, a critical compression was produced at both the convex and concave corners to limit the oxidation. As a result, an inhomogeneous oxide film grew on nano-trenched Si. Meanwhile, due to enhanced O transport and compression relaxation by increasing temperature, the inhomogeneous oxidation was more obvious under 1200 K. These present results explained the observed experimental phenomena on the oxidation of non-planar Si and provided an aspect on the design of nano-trenched electronic components in the semiconductor field.

  3. Viscous theory of surface noise interaction phenomena

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1980-01-01

    A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.

  4. Shear-transformation-zone theory of yielding in athermal amorphous materials

    DOE PAGES

    Langer, J. S.

    2015-07-22

    Yielding transitions in athermal amorphous materials undergoing steady-state shear flow resemble critical phenomena. Historically, they have been described by the Herschel-Bulkley rheological formula, which implies singular behaviors at yield points. In this paper, I examine this class of phenomena using an elementary version of the thermodynamic shear-transformation-zone (STZ) theory, focusing on the role of the effective disorder temperature, and paying special attention to scaling and dimensional arguments. I find a wide variety of Herschel-Bulkley-like rheologies but, for fundamental reasons not specific to the STZ theory, conclude that the yielding transition is not truly critical. Specifically, for realistic many-body models withmore » short-range interactions, there is a correlation length that grows rapidly but ultimately saturates near the yield point.« less

  5. Critical phenomena of emergent monopoles in a chiral magnet

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Nagaosa, Naoto

    A three-dimensional cubic Skyrmion crystal in the bulk, which is simultaneously a lattice of monopole-antimonopole pairs predicted theoretically, has been recently identified experimentally in MnGe. Adopting appropriate temperature Green's function technique for optical conductivity and devising a solvable phonon-magnon interaction, we systematically developed the theory of coupling spin-waves to both itinerant electrons and mechanical degrees of freedom in this chiral magnet, describing the latest experimental observations including anomalies and critical phenomena in magnetotransport and magnetoelasticity, which are identified as hallmarks of fluctuations of the emergent monopolar fields upon the nontrivial monopole dynamics and especially a topological phase transition signifying strong correlation. As a whole, they speak for a crucial role played by the monopole defects and hence the real-space spin topology in this material.

  6. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  7. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm.

    PubMed

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-21

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO 2 /water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO 2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO 2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart's law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  8. Causal mechanisms of seismo-EM phenomena during the 1965–1967 Matsushiro earthquake swarm

    PubMed Central

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-01-01

    The 1965–1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities. PMID:28322263

  9. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-01

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  10. Surface Chemistry in Heterogeneous Catalysis: An Emerging Discipline.

    ERIC Educational Resources Information Center

    White, J. M.; Campbell, Charles T.

    1980-01-01

    Provides background data on surface chemistry as an emerging discipline. Highlights the important role which surfaces play in catalysis by focusing on the catalyzed oxidation of carbon monoxide. Provides a demonstration of how surfaces exert their influences in heterogeneous phenomena and illustrates how experimental problems in this field are…

  11. Sulfur-induced structural motifs on copper and gold surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walen, Holly

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence ofmore » metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.« less

  12. Defining and Developing "Critical Thinking" Through Devising and Testing Multiple Explanations of the Same Phenomenon

    NASA Astrophysics Data System (ADS)

    Etkina, Eugenia; Planinšič, Gorazd

    2015-10-01

    Most physics teachers would agree that one of the main reasons for her/his students to take physics is to learn to think critically. However, for years we have been assessing our students mostly on the knowledge of physics content (conceptually and quantitatively). Only recently have science educators started moving systematically towards achieving and assessing this critical thinking goal. In this paper we seek to show how guiding students to devise and test multiple explanations of observed phenomena can be used to improve their critical thinking.

  13. Self-Ignition in Porous Media: Critical Phenomena

    NASA Astrophysics Data System (ADS)

    Shchepakina, E.

    2018-01-01

    The self-ignition of flammable liquid in an inert porous medium is studied. We obtained the complete classification of the possible scenarios of the process using asymptotic and geometrical techniques. This approach allows us to reveal a critical regime which plays a role of a watershed between the safe processes and self-accelerating regimes that lead to the explosion. The realizability conditions for the critical regime are obtained as the explicit asymptotic expression for the control parameter.

  14. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  15. The impact of landslides on urban areas and infrastructure in Italy

    NASA Astrophysics Data System (ADS)

    Trigila, Alessandro; Spizzichino, Daniele; Iadanza, Carla

    2010-05-01

    Landslide risk in Italy is particularly high since in addition to the geological, geomorphological, seismic and structural settings which render it susceptible to frequent and widespread landslide phenomena, the Italian territory is also densely populated and highly urbanized. In terms of landslide hazard, 485,004 landslides occurred between A.D. 1116 and 2006 within Italy, with a landslide area of 20,721 km2 equal to 6.9% of the national territory. 5,708 municipal districts are affected by landslides (70.5% of the total), of which 2,940 with extremely high levels of criticality due to landslides affecting urban centres. This data emerges from the IFFI Project (Italian Landslide Inventory) which, set up by ISPRA - Institute for Environmental Protection and Research/Geological Survey of Italy and the Regions and self-governing Provinces, identifies landslide phenomena across Italy in accordance with standardized methods of data collection, recording and mapping. With regard to exposure and vulnerability, urban areas in Italy account for 17,929 km2, equal to 5.9% of the national territory. In the past 50 years, urban areas in Italy underwent a dramatic increase, whose surface has more than doubled. Often building areas did not benefit from any form of proper land use planning and management or detailed landslide hazard assessment. Moreover unauthorized building has reached levels as high as 60% in regions of Southern Italy. This study assesses the incidence of landslide phenomena and their impacts within urban areas of Italian provincial capitals in terms of number of landslides, surface area and type of movement. The people exposed to landslide risk at national level and critical points along highways, railways and road network has been also estimated. Landslides have been classified in two main categories: rapid and slow movements. The rapid phenomena are strictly correlated to the people safety, while the slow ones concern mainly losses and usability of buildings and infrastructures. Consequently different strategies for planning and emergency management must be adopted. The assessment has been implemented within a GIS platform by overlapping landslide data derived by the IFFI Project with urban areas, populations census data and main Italian transportation network. More in detail analyses have been performed on some of these urban centres, in reference to which it has been possible to assess the extent of urban expansion from the post war period up until now and the corresponding increase in landslide risk. Related to population, the analysis allowed to estimate the number of people exposed to landslide risk in terms of safety of human life and socio-economic consequences. In order to reduce the impact of landslides within urban areas and along transport infrastructure, different measures should be adopted. In addition to engineering works and delocalization plans, the instrumental monitoring networks and emergency plans assume a fundamental role in landslide risk management. It is within this context that the IFFI Project, due to its highly detailed landslide maps and its complete coverage of the national territory, represents a useful tool for land use planning, emergency planning and mitigations measures.

  16. Critical Considerations in Becoming Literacy Educators: Pre-Service Teachers Rehearsing Agency and Negotiating Risk

    ERIC Educational Resources Information Center

    Ticknor, Anne Swenson

    2015-01-01

    This article looks closely at the talk of two pre-service teachers over time to examine how they used language as a way of rehearsing their evolving agency as literacy educators. Drawing on critical sociocultural theory, I use Agency Tracing to highlight how pre-service teachers' agentic actions are not isolated phenomena but ones developed and…

  17. Transient chaos and crisis phenomena in butterfly valves driven by solenoid actuators

    NASA Astrophysics Data System (ADS)

    Naseradinmousavi, Peiman; Nataraj, C.

    2012-11-01

    Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called "smart valve" systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.

  18. Hybrid phase transition into an absorbing state: Percolation and avalanches

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  19. Analysis of potential urban unstable areas and landslide-induced damages on Volterra historical site through a remote sensing approach

    NASA Astrophysics Data System (ADS)

    Del Soldato, Matteo; Bianchini, Silvia; Nolesini, Teresa; Frodella, William; Casagli, Nicola

    2017-04-01

    Multisystem remote sensing techniques were exploited to provide a comprehensive overview of Volterra (Italy) site stability with regards to its landscape, urban fabric and cultural heritage. Interferometric Synthetic Aperture Radar (InSAR) techniques allow precise measurements of Earth surface displacement, as well as the detection of building deformations on large urban areas. In the field of cultural heritage conservation Infrared thermography (IRT) provides surface temperature mapping and therefore detects various potential criticalities, such as moisture, seepage areas, cracks and structural anomalies. Between winter 2014 and spring 2015 the historical center and south-western sectors of Volterra (Tuscany region, central Italy) were affected by instability phenomena. The spatial distribution, typology and effect on the urban fabrics of the landslide phenomena were investigated by analyzing the geological and geomorphological settings, traditional geotechnical monitoring and advanced remote sensing data such as Persistent Scatterers Interferometry (PSI). The ground deformation rates and the maximum settlement values derived from SAR acquisitions of historical ENVISAT and recent COSMO-SkyMed sensors, in 2003-2009 and 2010-2015 respectively, were compared with background geological data, constructive features, in situ evidences and detailed field inspections in order to classify landslide-damaged buildings. In this way, the detected movements and their potential correspondences with recognized damages were investigated in order to perform an assessment of the built-up areas deformations and damages on Volterra. The IRT technique was applied in order to survey the surface temperature of the historical Volterra wall-enclosure, and allowed highlighting thermal anomalies on this cultural heritage element of the site. The obtained results permitted to better correlate the landslide effects of the recognized deformations in the urban fabric, in order to provide useful information for future risk mitigation strategies to be planned by the local authorities and the involved technicians and conservators.

  20. Unconventional superconductivity in magic-angle graphene superlattices.

    PubMed

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-05

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

  1. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  2. Unconventional superconductivity in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

  3. ADVICE: A New Approach for Near-Real-Time Monitoring of Surface Displacements in Landslide Hazard Scenarios

    PubMed Central

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-01-01

    We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc. PMID:23807688

  4. ADVICE: a new approach for near-real-time monitoring of surface displacements in landslide hazard scenarios.

    PubMed

    Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio

    2013-06-27

    We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc.

  5. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1987-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  6. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1986-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  7. Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression.

    PubMed

    Nabeshima, Kazuki; Iwasaki, Hiroshi; Koga, Kaori; Hojo, Hironobu; Suzumiya, Junji; Kikuchi, Masahiro

    2006-07-01

    Emmprin (basigin, CD147) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily. It is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases. Moreover, it has recently been shown that emmprin also stimulates expression of vascular endothelial growth factor and hyaluronan, which leads to angiogenesis and anchorage-independent growth/multidrug resistance, respectively. These findings have made emmprin an important molecule in tumor progression and, thus, more attractive as a target for antitumor treatment. However, other functions of emmprin, including as an activator of T cells, a chaperone for monocarboxylate transporters, a receptor for cyclophilin A and a neural recognition molecule, are also being identified in physiological and pathological conditions. Therefore, it is essential to develop specific means to control particular functions of emmprin, for which elucidation of each mechanism is crucial. This review will discuss the role of emmprin in tumor progression and recent advances in the molecular mechanisms of diverse phenomena regulated by emmprin.

  8. Modeling Growth of Nanostructures in Plasmas

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    As semiconductor circuits shrink to CDs below 0.1 nm, it is becoming increasingly critical to replace and/or enhance existing technology with nanoscale structures, such as nanowires for interconnects. Nanowires grown in plasmas are strongly dependent on processing conditions, such as gas composition and substrate temperature. Growth occurs at specific sites, or step-edges, with the bulk growth rate of the nanowires determined from the equation of motion of the nucleating crystalline steps. Traditional front-tracking algorithms, such as string-based or level set methods, suffer either from numerical complications in higher spatial dimensions, or from difficulties in incorporating surface-intense physical and chemical phenomena. Phase field models have the robustness of the level set method, combined with the ability to implement surface-specific chemistry that is required to model crystal growth, although they do not necessarily directly solve for the advancing front location. We have adopted a phase field approach and will present results of the adatom density and step-growth location in time as a function of processing conditions, such as temperature and plasma gas composition.

  9. Bubble baths: just splashing around?

    NASA Astrophysics Data System (ADS)

    Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd

    2016-11-01

    Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.

  10. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  11. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  12. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  13. Heterodyne lock-in thermography of early demineralized in dental tissues

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Mohummad, Oliullah; Wang, Xiao-chun; Wang, Yang

    2017-12-01

    Heterodyne lock-in thermography (HeLIT) is a highly sensitive method to detect early demineralized in dental tissues, which is based on nonlinear photothermal phenomena of dental tissues. In this paper, the nonlinear photothermal phenomena of dental tissues was introduced, and then the system of HeLIT was developed. The relationship between laser modulated parameters (modulated frequency and laser intensity) and heterodyne lock-in thermal wave signal was investigated. The comparison between HeLIT and homodyne lock-in thermography (HoLIT) for detecting the different types of dental caries (smooth surface caries, proximal surface caries and occlusal surface caries) were carried out. Experimental results illustrate that the HeLIT has the merits of high sensitivity and high specificity in detecting different types of early caries.

  14. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  15. In the Footsteps of Irving Langmuir: Physical Chemistry in Service of Society

    NASA Astrophysics Data System (ADS)

    Carter, Emily

    The approach that Irving Langmuir took during his scientific career in industry at General Electric exemplifies the best that we chemical physicists/physical chemists can offer the world. His name is associated with very fundamental concepts and phenomena (e.g., the Langmuir isotherm, Langmuir-Blodgett films) along with practical inventions (e.g., the Langmuir probe, Langmuir trough). He worked at the interface of physics, chemistry, and engineering, with much of his important work devoted to understanding surface and interface phenomena. I have - unintentionally - followed in his footsteps, trained as a physical chemist who now leads the engineering school at Princeton. In this talk, I will give examples from my research as to how fundamental physical chemistry techniques and concepts - based largely on quantum mechanics - can be harnessed to help the world transition to a sustainable energy future. In the footsteps of Irving, surface and interfacial phenomena will figure prominently in the examples chosen.

  16. PV cells electrical parameters measurement

    NASA Astrophysics Data System (ADS)

    Cibira, Gabriel

    2017-12-01

    When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.

  17. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at midlatitude or high-latitude volcanoes; (c) safety factors during unrest, which can limit where new instrumentation can safely be installed (particularly at near-vent sites that can be critical for precursor detection and eruption forecasting); and (d) the remoteness of many U.S. volcanoes (particularly those in the Aleutians and the Marianas Islands), where access is difficult or impossible most of the year. Given these difficulties, it is reasonable to anticipate that ground-based monitoring of eruptions at U.S. volcanoes will likely be performed primarily with instruments installed before unrest begins. 2. Given a growing awareness of previously undetected 2. phenomena that may occur before an eruption begins, at present the types and (or) density of instruments in use at most U.S. volcanoes is insufficient to provide reliable early warning of volcanic eruptions. As shown by the gap analysis of Ewert and others (2005), a number of U.S. volcanoes lack even rudimentary monitoring. At those volcanic systems with monitoring instrumentation in place, only a few types of phenomena can be tracked in near-real time, principally changes in seismicity, deformation, and large-scale changes in thermal flux (through satellite-based remote sensing). Furthermore, researchers employing technologically advanced instrumentation at volcanoes around the world starting in the 1990s have shown that subtle and previously undetectable phenomena can precede or accompany eruptions. Detection of such phenomena would greatly improve the ability of U.S. volcano observatories to provide accurate early warnings of impending eruptions, and is a critical capability particularly at the very high-threat volcanoes identified by Ewert and others (2005). For these two reasons, change from a reactive to a proactive volcano-monitoring strategy is clearly needed at U.S. volcanoes. Monitoring capabilities need to be expanded at virtually every volcanic center, regardless of its current state of

  18. Beyond Critical Exponents in Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin

    2011-03-01

    Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.

  19. Freeway travel-time estimation and forecasting.

    DOT National Transportation Integrated Search

    2012-09-01

    This project presents a microsimulation-based framework for generating short-term forecasts of travel time on freeway corridors. The microsimulation model that is developed (GTsim), replicates freeway capacity drop and relaxation phenomena critical f...

  20. Modeling defect trends for iterative development

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Spanguolo, J. N.

    2003-01-01

    The Employment of Defects (EoD) approach to measuring and analyzing defects seeks to identify and capture trends and phenomena that are critical to managing software quality in the iterative software development lifecycle at JPL.

  1. Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang

    2007-12-01

    Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.

  2. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  3. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  4. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and vegetation in the measurement area. The differences of the daily cycle of air temperature and surface temperature in these four scenarios show a significant impact of urban man-made structures on the dynamics of urban thermal environment.

  5. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    PubMed

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of the New Madrid earthquake series in the Mississippi Alluvial Valley. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saucier, R.T.

    1977-02-01

    Geological effects of the New Madrid earthquake series of 1811-12 in the upper portion of the Lower Mississippi Valley include land subsidence, uplift or doming, landslides, bank caving, fissuring, and sand blow phenomena. Features resulting from the liquefaction of sand are widespread in the alluvial valley and offer the greatest potential for definitively assessing the effects of major earthquakes on thick alluvial deposits and predicting the recurrence interval of infrequent major earthquakes in the region. However, liquefaction phenomena have not been the subject of detailed geological investigations applying knowledge of alluvial morphology and earth sciences methodology. Comparative aerial photo interpretationmore » has been used to classify liquefaction phenomena according to morphology, distribution, and relationship to major depositional environments. Surface morphology and spatial distribution of sand blows and fissures indicate basic control by drainage lines, water table position, and thickness of fine-grained topstratum deposits, Research efforts have been aimed at locating field test sites where the subsurface expression of the liquefaction phenomena can be investigated through trenching and land planing. Subsurface expression is presumed to be more permanent than surface expression and may permit the recognition of such features in older formations. Evidence of fissures and related phenomena is being sought in older Quaternary deposits to permit estimates of the frequency of past major earthquakes.« less

  7. Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period

    USDA-ARS?s Scientific Manuscript database

    Weeds reduce crop yield even when there is no competition for resources. A phenomena known as the critical weed-free period (CWFP), which occurs early in the crop’s life cycle, is the essential interval when weed presence can reduce crop growth and yield. Even when weeds are removed after the CWFP, ...

  8. A statistical physics perspective on criticality in financial markets

    NASA Astrophysics Data System (ADS)

    Bury, Thomas

    2013-11-01

    Stock markets are complex systems exhibiting collective phenomena and particular features such as synchronization, fluctuations distributed as power-laws, non-random structures and similarity to neural networks. Such specific properties suggest that markets operate at a very special point. Financial markets are believed to be critical by analogy to physical systems, but little statistically founded evidence has been given. Through a data-based methodology and comparison to simulations inspired by the statistical physics of complex systems, we show that the Dow Jones and index sets are not rigorously critical. However, financial systems are closer to criticality in the crash neighborhood.

  9. Mechanism and influencing factors on critical pulse width of oil-immersed polymer insulators under short pulses

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng

    2015-04-01

    The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.

  10. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation.

    PubMed

    Lin, Shiji; Zhao, Binyu; Zou, Song; Guo, Jianwei; Wei, Zheng; Chen, Longquan

    2018-04-15

    In this paper, we experimentally investigated the impact dynamics of different viscous droplets on solid surfaces with diverse wettabilities. We show that the outcome of an impinging droplet is dependent on the physical property of the droplet and the wettability of the surface. Whereas only deposition was observed on lyophilic surfaces, more impact phenomena were identified on lyophobic and superlyophobic surfaces. It was found that none of the existing theoretical models can well describe the maximum spreading factor, revealing the complexity of the droplet impact dynamics and suggesting that more factors need to be considered in the theory. By using the modified capillary-inertial time, which considers the effects of liquid viscosity and surface wettability on droplet spreading, a universal scaling law describing the spreading time was obtained. Finally, we analyzed the post-impact droplet oscillation with the theory for damped harmonic oscillators and interpreted the effects of liquid viscosity and surface wettability on the oscillation by simple scaling analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. CubeRovers for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.

    2017-10-01

    CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.

  12. Segregation Phenomena on the Crystal Surface of Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Tomashpol'skii, Yu. Ya.

    2018-06-01

    The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.

  13. Charge-Carrier-Scattering Spectroscopy With BEEM

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, Lloyd D.; Kaiser, William J.

    1992-01-01

    Ballistic-electron-emission microscopy (BEEM) constitutes basis of new spectroscopy of scattering of electrons and holes. Pointed tip electrode scans near surface of metal about 100 angstrom thick on semiconductor. Principle similar to scanning tunneling microscope, except metal acts as third electrode. Used to investigate transport phenomena, scattering phenomena, and creation of hot charge carriers in Au/Si and Au/GaAs metal/semiconductor microstructures.

  14. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  15. Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena

    NASA Astrophysics Data System (ADS)

    Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory

    2012-02-01

    Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.

  16. Critical behavior and correlations on scale-free small-world networks: Application to network design

    NASA Astrophysics Data System (ADS)

    Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.

    2011-06-01

    We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.

  17. Critical phenomena in communication/computation networks with various topologies and suboptimal to optimal resource allocation

    NASA Astrophysics Data System (ADS)

    Cogoni, Marco; Busonera, Giovanni; Anedda, Paolo; Zanetti, Gianluigi

    2015-01-01

    We generalize previous studies on critical phenomena in communication networks [1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random origin, destination and computational structure is distributed on a computational network, modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the global latency for an optimal to suboptimal resource assignment at a given time instant. By computing the two-point correlation function for the local overload, we study the behavior of the correlation distance (both for links and nodes) while approaching the congested phase: a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature Tc. The average latency trend of the system is predicted by averaging over several network traffic realizations while maintaining a spatially detailed information for each node: a sharp decrease of performance is found over Tc independently of the workload. The globally optimized computational resource allocation and network routing defines a baseline for a future comparison of the transition behavior with respect to existing routing strategies [3,4] for different network topologies.

  18. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  19. New Phenomena in High Temperature Nanofriction on Nonmelting Surfaces: NaCl(100)

    NASA Astrophysics Data System (ADS)

    Zykova-Timan, Tatyana; Ceresoli, Davide; Tosatti, Erio

    2006-03-01

    High temperature nanofriction is a difficult and so far unexplored area whwere we made an initial attack by means of simulation. Alkali halide (100) surfaces were chosen as they would not automatically liquefy under a sliding tip, even at temperatures very close to the melting point. We conducted sliding friction molecular dynamics simulations of hard tips on NaCl(100),both in the heavy ploughing, wear-dominated regime, and in the light grazing, wearless regime. Ploughing friction shows for increasing temperature a strong frictional drop near the melting point. Here the tip can be characterized as ``skating'' over the hot solid, its apex surrounded by a local liquid halo, which moves along with the tip as it ploughs on. At the opposite extreme, we find that grazing friction of a lightly pressed flat-ended tip behaves just the other way around. Starting with an initially very weak low temperature frictional force, there is a surge of friction just near the melting point, where the surface is still solid, but not too far from a vibrational instability. This frictional rise can be envisaged as an analog of the celebrated ``peak effect'' found close to Hc2 in the mixed state critical current of type II superconductors.

  20. The chemical properties of bimetallic surfaces: Importance of ensemble and electronic effects in the adsorption of sulfur and SO 2

    NASA Astrophysics Data System (ADS)

    Rodriguez, José A.

    The understanding of the interaction of sulfur with bimetallic surfaces is a critical issue for preventing the deactivation of hydrocarbon reforming catalysts and for the design of better hydrodesulfurization catalysts. The alloying or combination of two metals can lead to materials with special chemical properties due to an interplay of “ensemble” and “electronic” effects. In recent years, several new interesting phenomena have been discovered when studying the interaction of sulfur with bimetallic surfaces using the modern techniques of surface science. Very small amounts of sulfur are able to induce dramatic changes in the morphology of bimetallic surfaces that combine noble metals (Cu, Ag, Au) and transition metals. This phenomenon can lead to big modifications in the activity and selectivity of bimetallic catalysts used for hydrocarbon reforming. In many cases, bimetallic bonding produces a significant redistribution of charge around the bonded metals. The electronic perturbations associated with the formation of a heteronuclear metal-metal bond can affect the reactivity of the bonded metals toward sulfur. This can be a very important issue to consider when trying to minimize the negative effects of sulfur poisoning (Sn/Pt versus Ag/Pt and Cu/Pt catalysts) or when trying to improve the performance of desulfurization catalysts (Co/Mo and Ni/Mo systems). Clearly much more work is necessary in this area, but new concepts are emerging that can be useful for designing more efficient bimetallic catalysts.

  1. Infrared experiments for spaceborne planetary atmospheres research. Full report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The role of infrared sensing in atmospheric science is discussed and existing infrared measurement techniques are reviewed. Proposed techniques for measuring planetary atmospheres are criticized and recommended instrument developments for spaceborne investigations are summarized for the following phenomena: global and local radiative budget; radiative flux profiles; winds; temperature; pressure; transient and marginal atmospheres; planetary rotation and global atmospheric activity; abundances of stable constituents; vertical, lateral, and temporal distribution of abundances; composition of clouds and aerosols; radiative properties of clouds and aerosols; cloud microstructure; cloud macrostructure; and non-LTE phenomena.

  2. Mill and mental phenomena: critical contributions to a science of cognition.

    PubMed

    Bistricky, Steven L

    2013-06-01

    Attempts to define cognition preceded John Stuart Mill's life and continue to this day. John Stuart Mill envisioned a science of mental phenomena informed by associationism, empirical introspection, and neurophysiology, and he advanced specific ideas that still influence modern conceptions of cognition. The present article briefly reviews Mill's personal history and the times in which he lived, and it traces the evolution of ideas that have run through him to contemporary cognitive concepts. The article also highlights contemporary problems in defining cognition and supports specific criteria regarding what constitutes cognition.

  3. VHF electromagnetic wave propagation

    NASA Astrophysics Data System (ADS)

    Gole, P.

    Theoretical and experimental study of large-scale VHF propagation characteristics is presented. Certain phenomena that are difficult to model, such as the effects of ground near the antenna, are examined from a purely experimental point of view. The characteristics of electromagnetic waves over a spherical surface and through a medium having a certain refractive index, such as is the case for waves propagated over the earth's surface, are analytically described. Two mathematical models are used, one for the case of the receiver being within the radioelectric horizon of the transmitter and the other for when it is not. Propagation phenomena likely to increase the false alarm probability of an air surveillance radar are briefly considered.

  4. Can deformation of a polymer film with a rigid coating model geophysical processes?

    NASA Astrophysics Data System (ADS)

    Volynskii, A. L.; Bazhenov, S. L.

    2007-12-01

    The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.

  5. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.

    PubMed

    Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan

    2017-11-07

    Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.

  6. Report for MaRIE Drivers Workshop on needs for energetic material's studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Paul Elliott

    Energetic materials (i.e. explosives, propellants, and pyrotechnics) have complex mesoscale features that influence their dynamic response. Direct measurement of the complex mechanical, thermal, and chemical response of energetic materials is critical for improving computational models and enabling predictive capabilities. Many of the physical phenomena of interest in energetic materials cover time and length scales spanning several orders of magnitude. Examples include chemical interactions in the reaction zone, the distribution and evolution of temperature fields, mesoscale deformation in heterogeneous systems, and phase transitions. This is particularly true for spontaneous phenomena, like thermal cook-off. The ability for MaRIE to capture multiple lengthmore » scales and stochastic phenomena can significantly advance our understanding of energetic materials and yield more realistic, predictive models.« less

  7. Coping with expanding nursing practice, knowledge, and technology.

    PubMed

    Gaudinski, M A

    1979-10-01

    Nurses utilize transcultural, transactional, systems, primary, and interdisciplinary approaches to physiological and psychosocial components of patient care. Expanded roles, as well as advances in knowledge and technology have prepared nurses for critical, specialized, primary, aerospace, and independent nursing practice. Exciting as they are, nursing's expanded roles and practices frequently contribute to the burnout and distress phenomena increasingly observed in practicing health care professionals. Causes and symptoms of the burnout distress phenomena are many and varied. Selye, Shubin, Maslach, and others adeptly identified and wrote on the phenomena as it specifically relates to nurses and the many facets of nursing practice. Rather than utilizing crisis intervention coping techniques, preventive strategies and adaptations are suggested. This paper reviews and discusses: 1. Factors associated with burnout-distress phenomena identified in professional literature; 2. Identification of factors associated with expanded roles and practice which contribute to burnout stress; 3. Identification of factors in military and civilian air ambulance and aeromedical evacuation systems which contribute to burnout stress; 4. Recommendations for strategies to prevent and cope with burnout distress factors.

  8. Size does Matter

    NASA Astrophysics Data System (ADS)

    Vespignani, Alessandro

    From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...

  9. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  10. Reflections on Gibbs: From Critical Phenomena to the Amistad

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2003-03-01

    J. Willard Gibbs, the younger was the first American theorist. He was one of the inventors of statistical physics. His introduction and development of the concepts of phase space, phase transitions, and thermodynamic surfaces was remarkably correct and elegant. These three concepts form the basis of different but related areas of physics. The connection among these areas has been a subject of deep reflection from Gibbs' time to our own. I shall talk about these connections by using concepts suggested by the work of Michael Berry and explicitly put forward by the philosopher Robert Batterman. This viewpoint relates theory-connection to the applied mathematics concepts of asymptotic analysis and singular perturbations. J. Willard Gibbs, the younger, had all his achievements concentrated in science. His father, also J. Willard Gibbs, also a Professor at Yale, had one great achievement that remains unmatched in our day. I shall describe it.

  11. A study of Channeling, Volume Reflection and Volume Capture of 3.35 - 14.0 GeV Electrons in a bent Silicon Crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wistisen, T. N.; Uggerhoj, U. I.; Wienands, U.

    2015-12-03

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasi-mosaic silicon crystal. Additionally, these phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5 and 14.0 GeV with a crystal with bending radius of 0.15m, corresponding to curvatures of 0.070, 0.088, 0.13, 0.22 and 0.29 times the critical curvature respectively. We have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission and the widths of the distributionmore » of channeled particles parallel and orthogonal to the plane.« less

  12. Optics design for J-TEXT ECE imaging with field curvature adjustment lens.

    PubMed

    Zhu, Y; Zhao, Z; Liu, W D; Xie, J; Hu, X; Muscatello, C M; Domier, C W; Luhmann, N C; Chen, M; Ren, X; Tobias, B J; Zhuang, G; Yang, Z

    2014-11-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas. Of particular importance has been microwave electron cyclotron emission imaging (ECEI) for imaging Te fluctuations. Key to the success of ECEI is a large Gaussian optics system constituting a major portion of the focusing of the microwave radiation from the plasma to the detector array. Both the spatial resolution and observation range are dependent upon the imaging optics system performance. In particular, it is critical that the field curvature on the image plane is reduced to decrease crosstalk between vertical channels. The receiver optics systems for two ECEI on the J-TEXT device have been designed to ameliorate these problems and provide good performance with additional field curvature adjustment lenses with a meniscus shape to correct the aberrations from several spherical surfaces.

  13. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  14. The Fate and Impact of Internal Waves in Nearshore Ecosystems

    NASA Astrophysics Data System (ADS)

    Woodson, C. B.

    2018-01-01

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  15. Plasmonics simulations including nonlocal effects using a boundary element method approach

    NASA Astrophysics Data System (ADS)

    Trügler, Andreas; Hohenester, Ulrich; García de Abajo, F. Javier

    2017-09-01

    Spatial nonlocality in the photonic response of metallic nanoparticles is actually known to produce near-field quenching and significant plasmon frequency shifts relative to local descriptions. As the control over size and morphology of fabricated nanostructures is truly reaching the nanometer scale, understanding and accounting for nonlocal phenomena is becoming increasingly important. Recent advances clearly point out the need to go beyond the local theory. We here present a general formalism for incorporating spatial dispersion effects through the hydrodynamic model and generalizations for arbitrary surface morphologies. Our method relies on the boundary element method, which we supplement with a nonlocal interaction potential. We provide numerical examples in excellent agreement with the literature for individual and paired gold nanospheres, and critically examine the accuracy of our approach. The present method involves marginal extra computational cost relative to local descriptions and facilitates the simulation of spatial dispersion effects in the photonic response of complex nanoplasmonic structures.

  16. The Fate and Impact of Internal Waves in Nearshore Ecosystems.

    PubMed

    Woodson, C B

    2018-01-03

    Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

  17. Growth of GaAs crystals from the melt in a partially confined configuration

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1988-01-01

    The experimental approach was directed along two main goals: (1) the implementation of an approach to melt growth in a partially confined configuration; and (2) the investigation of point defect interaction and electronic characteristics as related to thermal treatment following solidification and stoichiometry. Significant progress was made along both fronts. Crystal growth of GaAs in triangular ampuls was already carried out successfully and consistent with the model. In fact, pronounced surface tension phenomena which cannot be observed in ordinary confinement system were identified and should premit the assessment of Maragoni effects prior to space processing. Regarding thermal treatment, it was discovered that the rate of cooling from elevated temperatures is primarily responsible for a whole class of defect interactions affecting the electronic characteristics of GaAs and that stoichiometry plays a critical role in the quality of GaAs.

  18. FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes.

    PubMed

    Lee, Kilbock; Song, Seok Ho; Ahn, Jinho

    2014-03-24

    We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.

  19. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.

    PubMed

    Mayor, T S; Couto, S; Psikuta, A; Rossi, R M

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and temperature fields in the microclimates were found to strongly depend on the characteristics of the external boundary layer forming along the clothing and on the distribution of temperature in the clothing. The local heat transfer rates obtained in the microclimate are in marked contrast with those found in the literature for enclosures with constant-temperature active walls. These results stress the importance of coupling the calculation of the internal and the external flows and of the heat transfer convective and radiative components, when analyzing the way heat is transported to/from the body.

  20. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction

    NASA Astrophysics Data System (ADS)

    Krywonos, Andrey

    Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.

  1. The nature of the air-cleaved mica surface

    NASA Astrophysics Data System (ADS)

    Christenson, Hugo K.; Thomson, Neil H.

    2016-06-01

    The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO2 and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K2CO3 per nm2, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K2CO3, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion, electrolyte effects on surface conductivity, and two-dimensional crystal nucleation.

  2. Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.

    1981-01-01

    The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.

  3. A Method to Calculate the Surface Tension of a Cylindrical Droplet

    ERIC Educational Resources Information Center

    Wang, Xiaosong; Zhu, Ruzeng

    2010-01-01

    The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar

    Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less

  5. Observation of ultrahigh mobility surface states in a topological crystalline insulator by infrared spectroscopy

    DOE PAGES

    Wang, Ying; Luo, Guoyu; Liu, Junwei; ...

    2017-08-28

    Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less

  6. Observation of ultrahigh mobility surface states in a topological crystalline insulator by infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Luo, Guoyu; Liu, Junwei

    Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less

  7. Is Superhydrophobicity Equal to Underwater Superaerophilicity: Regulating the Gas Behavior on Superaerophilic Surface via Hydrophilic Defects.

    PubMed

    Cao, Moyuan; Li, Zhe; Ma, Hongyu; Geng, Hui; Yu, Cunming; Jiang, Lei

    2018-06-20

    Superhydrophobic surfaces have long been considered as superaerophilic surfaces while being placed in the aqueous environment. However, versatile gas/solid interacting phenomena were reported by utilizing different superhydrophobic substrates, indicating that these two wetting states cannot be simply equated. Herein, we demonstrate how the hydrophilic defects on the superhydrophobic track manipulate the underwater gas delivery, without deteriorating the water repellency of the surface in air. The versatile gas-transporting processes can be achieved on the defected superhydrophobic surfaces; on the contrary, in air, a water droplet is able to roll on those surfaces indistinguishably. Results show that the different media pressures applied on the two wetting states determine the diversified fluid-delivering phenomena; that is, the pressure-induced hydrophilic defects act as a gas barrier to regulate the bubble motion behavior under water. Through the rational incorporation of hydrophilic defects, a series of gas-transporting behaviors are achieved purposively, for example, gas film delivery, bubble transporting, and anisotropic bubble gating, which proves the feasibility of this underwater air-controlling strategy.

  8. High resolution study of magnetic ordering at absolute zero.

    PubMed

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  9. Flow phenomena on plates and airfoils of short span

    NASA Technical Reports Server (NTRS)

    Winter, H

    1936-01-01

    Investigations on the flow phenomena at plates and cambered models were carried out with the aid of force measurements, some pressure distribution measurements, and photographic observation. The experimental methods are described and the results given. Section III of this work gives a comprehensive account of the results and enables us to see how nearly the lift line and lift surface theories agree with the experimental results.

  10. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  11. Agent-based spin model for financial markets on complex networks: Emergence of two-phase phenomena

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Kim, Hong-Joo; Yook, Soon-Hyung

    2008-09-01

    We study a microscopic model for financial markets on complex networks, motivated by the dynamics of agents and their structure of interaction. The model consists of interacting agents (spins) with local ferromagnetic coupling and global antiferromagnetic coupling. In order to incorporate more realistic situations, we also introduce an external field which changes in time. From numerical simulations, we find that the model shows two-phase phenomena. When the local ferromagnetic interaction is balanced with the global antiferromagnetic interaction, the resulting return distribution satisfies a power law having a single peak at zero values of return, which corresponds to the market equilibrium phase. On the other hand, if local ferromagnetic interaction is dominant, then the return distribution becomes double peaked at nonzero values of return, which characterizes the out-of-equilibrium phase. On random networks, the crossover between two phases comes from the competition between two different interactions. However, on scale-free networks, not only the competition between the different interactions but also the heterogeneity of underlying topology causes the two-phase phenomena. Possible relationships between the critical phenomena of spin system and the two-phase phenomena are discussed.

  12. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    NASA Astrophysics Data System (ADS)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  13. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.

    PubMed

    German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S

    2016-12-12

    In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (<100 nm radius), and weakly dependent on the nature of the gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.

  14. Epigenetics: a new bridge between nutrition and health

    USDA-ARS?s Scientific Manuscript database

    Nutrients can reverse or change epigenetic phenomena such as DNA methylation and histone modifications, thereby modifying the expression of critical genes associated with physiologic and pathologic processes, including embryonic development, aging, and carcinogenesis. It appears that nutrients and b...

  15. Quantum criticality and universal scaling of strongly attractive spin-imbalanced Fermi gases in a one-dimensional harmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Xiangguo; Chen Shu; Guan Xiwen

    2011-07-15

    We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.

  16. Development of torodial magnetic thermometry to study new phenomena associated with the superfluid transition in liquid sup 4 He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, R.V.

    1988-01-01

    A new type of paramagnetic susceptibility thermometry called toroidal magnetic thermometry (TMT) has been developed. These TMT thermometers have a thermal resolution of five nanoKelvin near the {sup 4}He superfluid transition temperature T{lambda} = 2.172K, making TMT roughly a factor of fifty times better in resolution than conventional germanium resistance thermometry which is commercially available. The dramatic improvement in thermal resolution provided by TMT has been used to observe new phenomena associated with the superfluid transition in pure liquid {sup 4}He. Such phenomena include a component of the thermal boundary (Kapitza) resistance R{sub K} which is singular at the superfluidmore » transition temperature T{lambda}. In addition to the boundary effects described above, these TMT thermometers have been used to detect the depression of T{lambda} be a heat current Q flowing through the liquid helium. When these values of {Delta}T{lambda}(Q) were used to calculate the depression of the superfluid density {Delta}{rho}{sub s}(Q) the results agreed well with a prediction based on the theory of Ginzburg and Pitaevskii. The calibration of the TMT thermometers provide high-resolution measurements of the a.c. paramagnetic susceptibility of their magnetic salt: Copper ammonium bromide (CAB). These calibration parameters, together with power dissipation data near the CAB Curie temperature {Tc} = 1.79K, provide information on the magnetic critical behavior of this nearly ideal Heisenberg ferromagnet. Throughout the detailed description of the TMT design, aspects of the CAB magnetic critical phenomena are discussed.« less

  17. Analytical investigation of critical phenomena in MHD power generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-31

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the US U-25 Experiment, are analyzed. Also analyzed are the performance of a NASA-specified 500 MW(th) flow train and computations concerning critica issues for the scale-up of MHD Generators. The HPDE is characterized by computational simulations of both the nominal conditions and the conditions during the experimental runs. The steady-state performance is discussed along with the Hall voltage overshoots during the start-up and shutdown transients. The results of simulations of the HPDE runs with codes from the Q3D and TRANSIENT code families are compared tomore » the experimental results. The results of the simulations are in good agreement with the experimental data. Additional critica phenomena analyzed in the AEDC/HPDE are the optimal load schedules, parametric variations, the parametric dependence of the electrode voltage drops, the boundary layer behavior, near electrode phenomena with finite electrode segmentation, and current distribution in the end regions. The US U-25 experiment is characterized by computational simulations of the nominal operating conditions. The steady-state performance for the nominal design of the US U-25 experiment is analyzed, as is the dependence of performance on the mass flow rate. A NASA-specified 500 MW(th) MHD flow train is characterized for computer simulation and the electrical, transport, and thermodynamic properties at the inlet plane are analyzed. Issues for the scale-up of MHD power trains are discussed. The AEDC/HPDE performance is analyzed to compare these experimental results to scale-up rules.« less

  18. Spatial structures arising along a surface wave produced plasma column: an experimental study

    NASA Astrophysics Data System (ADS)

    Atanassov, V.; Mateev, E.

    2007-04-01

    The formation of spatial structures in high-frequency and microwave discharges has been known for several decades. Nevertheless it still raises increased interest, probably due to the variety of the observed phenomena and the lack of adequate and systematic theoretical interpretation. In this paper we present preliminary results on observation of spatial structures appearing along a surface wave sustained plasma column. The experiments have been performed in noble gases (xenon and neon) at low to intermediate pressure and the surface wave has been launched by a surfatron. Under these conditions we have observed and documented: i) appearance of stationary plasma rings; ii) formation of standing-wave striationlike patterns; iii) contraction of the plasma column; iv) plasma column transition into moving plasma balls and filaments. Some of the existing theoretical considerations of these phenomena are reviewed and discussed.

  19. The power laws of nanoscale forces in ambient conditions

    NASA Astrophysics Data System (ADS)

    Chiesa, Matteo; Santos, Sergio; Lai, Chia-Yun

    Power laws are ubiquitous in the physical sciences and indispensable to qualitatively and quantitatively describe physical phenomena. A nanoscale force law that accurately describes the phenomena observed in ambient conditions at several nm or fractions of a nm above a surface however is still lacking. Here we report a power law derived from experimental data and describing the interaction between an atomic force microscope AFM tip modelled as a sphere and a surface in ambient conditions. By employing a graphite surface as a model system the resulting effective power is found to be a function of the tip radius and the distance. The data suggest a nano to mesoscale transition in the power law that results in relative agreement with the distance-dependencies predicted by the Hamaker and Lifshitz theories for van der Waals forces for the larger tip radii only

  20. Wetting and spreading behaviors of impinging microdroplets on textured surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Lee, Sang Joon; CenterBiofluid and Biomimic Reseach Team

    2012-11-01

    Textured surfaces having an array of microscale pillars have been receiving large attention because of their potential uses for robust superhydrophobic and superoleophobic surfaces. In many practical applications, the textured surfaces usually accompany impinging small-scale droplets. To better understand the impinging phenomena on the textured surfaces, the wetting and spreading behaviors of water microdroplets are investigated experimentally. Microdroplets with diameter less than 50 μm are ejected from a piezoelectric printhead with varying Weber number. The final wetting state of an impinging droplet can be estimated by comparing the wetting pressures of the droplet and the capillary pressure of the textured surface. The wetting behaviors obtained experimentally are well agreed with the estimated results. In addition, the transition from bouncing to non-bouncing behaviors in the partially penetrated wetting state is observed. This transition implies the possibility of withdrawal of the penetrated liquid from the inter-pillar space. The maximum spreading factors (ratio of the maximum spreading diameter to the initial diameter) of the impinging droplets have close correlation with the texture area fraction of the surfaces. This work was supported by Creative Research Initiatives (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of MEST/KOSEF.

  1. Control of finite critical behaviour in a small-scale social system

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan C.; Krakauer, David C.; Flack, Jessica C.

    2017-02-01

    Many adaptive systems sit near a tipping or critical point. For systems near a critical point small changes to component behaviour can induce large-scale changes in aggregate structure and function. Criticality can be adaptive when the environment is changing, but entails reduced robustness through sensitivity. This tradeoff can be resolved when criticality can be tuned. We address the control of finite measures of criticality using data on fight sizes from an animal society model system (Macaca nemestrina, n=48). We find that a heterogeneous, socially organized system, like homogeneous, spatial systems (flocks and schools), sits near a critical point; the contributions individuals make to collective phenomena can be quantified; there is heterogeneity in these contributions; and distance from the critical point (DFC) can be controlled through biologically plausible mechanisms exploiting heterogeneity. We propose two alternative hypotheses for why a system decreases the distance from the critical point.

  2. Light-induced phenomena in one-component gas: The transport phenomena

    NASA Astrophysics Data System (ADS)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  3. Social dimensions of pain. Comment on “Facing the experience of pain: A neuropsychological perspective” by Fabbro and Crescentini

    NASA Astrophysics Data System (ADS)

    Avenanti, Alessio; Vicario, Carmelo Mario; Borgomaneri, Sara

    2014-09-01

    In this issue, Fabbro and Crescentini [1] provide an integrative review of neuroscientific, psychological, cultural and philosophical aspects of pain experience and discuss some critical examples of its regulation. Here we focus on the two main social phenomena that are addressed in the review, namely the 'pain of separation' and 'empathy for pain' and further support the idea that these phenomena are intrinsically linked to physical pain, which may provide a 'proximal' physiological base to further understand them. In addition, we discuss the evolutionary 'ultimate' bases of such phenomena and suggest that they are linked to the evolution of parental care in social animals and as such support the development of social bonds. We conclude by considering the effect that positive social relationships and empathy have on the experience of pain.

  4. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  5. Preliminary Chaotic Model of Snapover on High Voltage Solar Cells

    NASA Technical Reports Server (NTRS)

    Mackey, Willie R.

    1995-01-01

    High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, Snapover, is characterized by a sudden enlargement of the electron current collection area across normally insulating surfaces. A power drain on solar array power systems will results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between bia potential and surface glow area. This paper shall explore the potential benefits of modeling the relation between current and bia potential as an aspect of bifurcation analysis in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.

  6. A consistent and unified picture for critical phenomena of f(R) AdS black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Jie-Xiong; Li, Gu-Qiang; Wu, Yu-Cheng, E-mail: mojiexiong@gmail.com, E-mail: zsgqli@hotmail.com, E-mail: wuyucheng0827@163.com

    A consistent and unified picture for critical phenomena of charged AdS black holes in f ( R ) gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of C {sub Q} . The two solutions merge into one when the condition Q {sub c} =√(−1/3 R {sub 0}) is satisfied. The curve of specific heat for Q < Q {sub c} has two divergent points and can be divided into three regions. Both the large radius region and the small radius region are thermodynamically stablemore » with positive specific heat while the medium radius region is unstable with negative specific heat. However, when Q > Q {sub c} , the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the T − r {sub +} curve and T − S curve f ( R ) AdS black holes are investigated and they exhibit Van der Vaals like behavior as the P − v curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases Q =0.2 Q {sub c} , 0.4 Q {sub c} , 0.6 Q {sub c} , 0.8 Q {sub c} . The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds for T − S curve of f ( R ) black holes. Thirdly, we establish geometrothermodynamics for f ( R ) AdS black hole to examine the phase structure. It is shown that the Legendre invariant scalar curvature R would diverge exactly where the specific heat diverges. To summarize, the above three perspectives are consistent with each other, thus providing a unified picture which deepens the understanding of critical phenomena of f ( R ) AdS black holes.« less

  7. Coherent-Anomaly Method in Critical Phenomena. III.

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Katori, Makoto; Suzuki, Masuo

    Two kinds of systematic mean-field transfer-matrix methods are formulated in the 2-dimensional Ising spin system, by introducing Weiss-like and Bethe-like approximations. All the critical exponents as well as the true critical point can be estimated in these methods following the CAM procedure. The numerical results of the above system are Tc* = 2.271 (J/kB), γ=γ' ≃ 1.749, β≃0.131 and δ ≃ 15.1. The specific heat is confirmed to be continuous and to have a logarithmic divergence at the true critical point, i.e., α=α'=0. Thus, the finite-degree-of-approximation scaling ansatz is shown to be correct and very powerful in practical estimations of the critical exponents as well as the true critical point.

  8. Mill and Mental Phenomena: Critical Contributions to a Science of Cognition

    PubMed Central

    Bistricky, Steven L.

    2013-01-01

    Attempts to define cognition preceded John Stuart Mill’s life and continue to this day. John Stuart Mill envisioned a science of mental phenomena informed by associationism, empirical introspection, and neurophysiology, and he advanced specific ideas that still influence modern conceptions of cognition. The present article briefly reviews Mill’s personal history and the times in which he lived, and it traces the evolution of ideas that have run through him to contemporary cognitive concepts. The article also highlights contemporary problems in defining cognition and supports specific criteria regarding what constitutes cognition. PMID:25379235

  9. Cryogenic-coolant He-4-superconductor interaction

    NASA Technical Reports Server (NTRS)

    Caspi, S.; Lee, J. Y.; Kim, Y. I.; Allen, R. J.; Frederking, T. H. K.

    1978-01-01

    The thermodynamic and thermal interaction between a type 2 composite alloy and cryo-coolant He4 was studied with emphasis on post quench phenomena of formvar coated conductors. The latter were investigated using a heater simulation technique. Overall heat transfer coefficients were evaluated for the quench onset point. Heat flux densities were determined for phenomena of thermal switching between a peak and a recovery value. The study covered near saturated liquid, pressurized He4, both above and below the lambda transition, and above and below the thermodynamic critical pressure. In addition, friction coefficients for relative motion between formvar insulated conductors were determined.

  10. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.

    PubMed

    Crespo-Otero, Rachel; Barbatti, Mario

    2018-05-16

    Nonadiabatic mixed quantum-classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the molecular system into two subsystems: one to be treated quantum mechanically (usually but not restricted to electrons) and another to be dealt with classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms to enforce self-consistency. A local approximation underlies the classical subsystem, implying that direct dynamics can be simulated, without needing precomputed potential energy surfaces. The NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular systems in diverse fields. Starting from the three most well-established methods-mean-field Ehrenfest, trajectory surface hopping, and multiple spawning-this review focuses on the NA-MQC dynamics methods and programs developed in the last 10 years. It stresses the relations between approaches and their domains of application. The electronic structure methods most commonly used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-MQC simulations are critically discussed, and general guidelines to choose an adequate method for each application are delivered.

  11. Electrohydrodynamic and flow induced tip-streaming

    NASA Astrophysics Data System (ADS)

    Collins, Robert

    2008-11-01

    A liquid subjected to a strong electric field emits thin fluid jets from conical structures (Taylor cones) that form at its surface. Such behavior has both practical and fundamental implications, e.g. for raindrops in thunderclouds and in electrospray mass spectrometry. Theoretical analysis of the temporal development of such electrohydrodynamic (EHD) tip- streaming phenomena has been elusive given the large disparity in length scales between the macroscopic drops/films and the microscopic (nanoscopic) jets. Here, simulation and experiment are used to investigate the mechanisms of EHD tip-streaming from a film of finite conductivity. In the simulations, the full Taylor-Melcher leaky-dielectric model, which accounts for charge relaxation, is solved. Simulations show that tip- streaming does not occur for perfectly conducting or perfectly insulating liquids. Scaling laws for sizes of drops produced from the breakup of the thin jets is developed. Further, simulations demonstrate the critical role played by electrically induced surface shear stresses in the inception of tip-streaming. This invites a comparison to flow focusing, i.e. tip-streaming induced by co-flowing two fluids. The latter phenomenon is also investigated by simulation. In collaboration with Ronald Suryo, Exxon-Mobil; and Jeremy Jones, Michael Harris, and Osman Basaran, Purdue University.

  12. The Richard T. Cox Lecture: Liquid State as an Occasional Result of Competing Interactions

    NASA Astrophysics Data System (ADS)

    Voronel, Alexander

    2006-03-01

    Now it is even strange to think that in the early 50-ies the second order transitions and the liquid -- vapor critical point were considered as different fields of physics. In the USSR this lack of understanding (as everything in the USSR) had also a political dimension. Being a graduate of Kharkov University (domain of L.Landau) I was inclined to work in a framework of Landau-theory of the critical point. Having carefully analysed the published experimental data I discovered that the scattering of the data in the vicinities of both critical points and phase transitions was much higher than the implemented equipment had allowed [1]. For me it was a true sign of wrong conditions of measurements. As a result I had adjusted my experiment to the specific condition of the critical point. We worked together with the group of students of Kharkov University who had shared my enthusiasm. When we were already on a halfway of our own measurements I was deeply impressed by the excellent result of M.J.Buckingham and W.M. Fairbank on the λ-point of Helium [2]. Their achievement had turned our own measurements into a sort of experimen-tum crucis: should one expect a singularity also in the critical point or shouldn't? Experimental data on isochoric heat capacity near the critical point looked really similar (but not identical) to the singularity near the λ-transition. Both found their common ground in lattice models of different kinds [3]. The scaling concept was suggested to explain the universal features of both phenomena originated from developing fluctuations [4]. Our work was noticed first by C.Domb and M.Fisher in England. Michael was especially persistent in his demands that the Sovjet authorities would allow us a free communication. He produced a sort of frustration in their bureaurocratic heads. But it was great to feel not to be condemned for an eternal isolation in the USSR. All this development (now international) has opened way to express the properties of all liquids (including mixtures) in the vicinities of the singular points by the universal functions of reduced coordinates [5]. But the very existence of the critical point (and the liquid state itself) is in fact not an universal property of matter [6]. The freezing is depen-dent on a symmetry of packing and on a form of a potential well. It means the lower limit of the liquid state cannot be universal. However, if the freezing is somehow avoided the metastable critical point may be achieved instead [7]. And the universal features of the critical phenomena may be observed there again. Literature: [1] A. Voronel, M. Gitterman, Zh. Exp. Teor. Fiz. 39, 1162 (1960). M.Bagatsky, A.Voronel, V.Gusak., Zh. Exp. Teor. Fiz. 43, 728 (1962). See also a review: A. Voronel ``Thermal measurements and Critical Phenomena in Liquids.'' in PHASE TRANSITIONS AND CRITICAL PHENOMENA, vol. 5B, ed. by C.DOMB & M.S.GREEN, 1976, Academic Press, London, New York, San Francisco. [2] M.J.Buckingham, W.M.Fairbank in 111,60, ``PROGRESS IN LOW TEMPERATURE PHYSICS''(ed. by C.J.Gorter) North-Holland Pub.Co., Amsterdam, 1961. [3] M.E.Fisher,''The Nature of Critical Points'', University of Colorado Press, Boulder, 1965; [4] A.Patashinsky,V.Pokrovsky, Sov.Phys.JETP,23,292,(1966); L.P.Kadanov, Physics, 2,263, (1966) [5] M.E.Fisher, Phys.Rev.,176, 257, (1968); M.A.Anisimov, A.V.Voronel, E.E.Gorodetsky, Zh.Exp.Teor.Fiz.,60,1117, (1971) [6] H.J.Hagen,D.Frenkel,H.Lekkerkerker, Nature, 365, 425, (1993); D.Frenkel, Physica, A 263, 26, (1999). G.Vliegenthardt, H.Lekkerkerker, Physica, A 263, 378, (1999). [7] O.Mishima,H.E.Stanley, Nature, 392, 164, (1998).

  13. Collective phenomena in volume and surface barrier discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  14. Investigating Cell Criticality

    NASA Astrophysics Data System (ADS)

    Serra, R.; Villani, M.; Damiani, C.; Graudenzi, A.; Ingrami, P.; Colacci, A.

    Random Boolean networks provide a way to give a precise meaning to the notion that living beings are in a critical state. Some phenomena which are observed in real biological systems (distribution of "avalanches" in gene knock-out experiments) can be modeled using random Boolean networks, and the results can be analytically proven to depend upon the Derrida parameter, which also determines whether the network is critical. By comparing observed and simulated data one can then draw inferences about the criticality of biological cells, although with some care because of the limited number of experimental observations. The relationship between the criticality of a single network and that of a set of interacting networks, which simulate a tissue or a bacterial colony, is also analyzed by computer simulations.

  15. Universal Critical Dynamics in High Resolution Neuronal Avalanche Data

    NASA Astrophysics Data System (ADS)

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; DeVille, R. E. Lee; Dahmen, Karin A.; Beggs, John M.; Butler, Thomas C.

    2012-05-01

    The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

  16. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Jesse, Stephen; Yu, Pu

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  17. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants.

    PubMed

    Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A

    2017-06-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.

  18. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants

    PubMed Central

    Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.

    2017-01-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674

  19. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina; Jesse, Stephen; Yu, Pu; ...

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  20. Statistical physics of vehicular traffic and some related systems

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Santen, Ludger; Schadschneider, Andreas

    2000-05-01

    In the so-called “microscopic” models of vehicular traffic, attention is paid explicitly to each individual vehicle each of which is represented by a “particle”; the nature of the “interactions” among these particles is determined by the way the vehicles influence each others’ movement. Therefore, vehicular traffic, modeled as a system of interacting “particles” driven far from equilibrium, offers the possibility to study various fundamental aspects of truly nonequilibrium systems which are of current interest in statistical physics. Analytical as well as numerical techniques of statistical physics are being used to study these models to understand rich variety of physical phenomena exhibited by vehicular traffic. Some of these phenomena, observed in vehicular traffic under different circumstances, include transitions from one dynamical phase to another, criticality and self-organized criticality, metastability and hysteresis, phase-segregation, etc. In this critical review, written from the perspective of statistical physics, we explain the guiding principles behind all the main theoretical approaches. But we present detailed discussions on the results obtained mainly from the so-called “particle-hopping” models, particularly emphasizing those which have been formulated in recent years using the language of cellular automata.

  1. Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems

    NASA Astrophysics Data System (ADS)

    Suwa, Hidemaro

    2013-03-01

    We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad

  2. Blur and the perception of depth at occlusions.

    PubMed

    Zannoli, Marina; Love, Gordon D; Narain, Rahul; Banks, Martin S

    2016-01-01

    The depth ordering of two surfaces, one occluding the other, can in principle be determined from the correlation between the occlusion border's blur and the blur of the two surfaces. If the border is blurred, the blurrier surface is nearer; if the border is sharp, the sharper surface is nearer. Previous research has found that observers do not use this informative cue. We reexamined this finding. Using a multiplane display, we confirmed the previous finding: Our observers did not accurately judge depth order when the blur was rendered and the stimulus presented on one plane. We then presented the same simulated scenes on multiple planes, each at a different focal distance, so the blur was created by the optics of the eye. Performance was now much better, which shows that depth order can be reliably determined from blur information but only when the optical effects are similar to those in natural viewing. We asked what the critical differences were in the single- and multiplane cases. We found that chromatic aberration provides useful information but accommodative microfluctuations do not. In addition, we examined how image formation is affected by occlusions and observed some interesting phenomena that allow the eye to see around and through occluding objects and may allow observers to estimate depth in da Vinci stereopsis, where one eye's view is blocked. Finally, we evaluated how accurately different rendering and displaying techniques reproduce the retinal images that occur in real occlusions. We discuss implications for computer graphics.

  3. Investigation of the delay time distribution of high power microwave surface flashover

    NASA Astrophysics Data System (ADS)

    Foster, J.; Krompholz, H.; Neuber, A.

    2011-01-01

    Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

  4. Students' Evaluations about Climate Change

    ERIC Educational Resources Information Center

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-01-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to…

  5. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature

    NASA Astrophysics Data System (ADS)

    Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun

    2017-12-01

    The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference in designing such systems.

  6. Preliminary results from the Viking orbiter imaging experiment

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Baum, W.A.; Blasius, K.R.; Briggs, G.A.; Cutts, J.A.; Duxbury, T.; Greeley, R.; Guest, J.E.; Smith, B.A.; Soderblom, L.A.; Veverka, J.; Wellman, J.B.

    1976-01-01

    During its first 30 orbits around Mars, the Viking orbiter took approximately 1000 photographic frames of the surface of Mars with resolutions that ranged from 100 meters to a little more than 1 kilometer. Most were of potential landing sites in Chryse Planitia and Cydonia and near Capri Chasma. Contiguous high-resolution coverage in these areas has led to an increased understanding of surface processes, particularly cratering, fluvial, and mass-wasting phenomena. Most of the surfaces examined appear relatively old, channel features abound, and a variety of features suggestive of permafrost have been identified. The ejecta patterns around large craters imply that fluid flow of ejecta occurred after ballistic deposition. Variable features in the photographed area appear to have changed little since observed 5 years ago from Mariner 9. A variety of atmospheric phenomena were observed, including diffuse morning hazes, both stationary and moving discrete white clouds, and wave clouds covering extensive areas.

  7. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  8. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    DOE PAGES

    Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; ...

    2015-06-19

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction ofmore » the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.« less

  9. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.

    2017-11-01

    Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.

  10. Dry eye syndrome: developments and lifitegrast in perspective

    PubMed Central

    Lollett, Ivonne V; Galor, Anat

    2018-01-01

    Dry eye (DE) is a chronic ocular condition with high prevalence and morbidity. It has a complex pathophysiology and is multifactorial in nature. Chronic ocular surface inflammation has emerged as a key component of DE that is capable of perpetuating ocular surface damage and leading to symptoms of ocular pain, discomfort, and visual phenomena. It begins with stress to the ocular surface leading to the production of proinflammatory mediators that induce maturation of resident antigen-presenting cells which then migrate to the lymph nodes to activate CD4 T cells. The specific antigen(s) targeted by these pathogenic CD4+ T cells remains unknown. Two emerging theories include self-antigens by autoreactive CD4 T cells or harmless exogenous antigens in the setting of mucosal immunotolerance loss. These CD4 T cells migrate to the ocular surface causing additional inflammation and damage. Lifitegrast is the second topical anti-inflammatory agent to be approved by the US Food and Drug Administration for the treatment of DE and the first to show improvement in DE symptoms. Lifitegrast works by blocking the interaction between intercellular adhesion molecule-1 and lymphocyte functional associated antigen-1, which has been shown to be critical for the migration of antigen-presenting cells to the lymph nodes as well as CD4+ T cell activation and migration to the ocular surface. In four large multicenter, randomized controlled trials, lifitegrast has proven to be effective in controlling both the signs and symptoms of DE with minimal side effects. Further research should include comparative and combination studies with other anti-inflammatory therapies used for DE. PMID:29391773

  11. Segregation Phenomena in Size-Selected Bimetallic CuNi Nanoparticle Catalysts

    DOE PAGES

    Pielsticker, Lukas; Zegkinoglou, Ioannis; Divins, Nuria J.; ...

    2017-10-25

    Surface segregation, restructuring, and sintering phenomena in size-selected copper–nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile ofmore » the elemental composition of the particles was determined under operando CO 2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. In conclusion, this leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.« less

  12. Definition and Measures of Individual and Unit Readiness and Family Phenomena Affecting It

    DTIC Science & Technology

    1991-02-01

    deployability (Army task/mission) is a new dimension that emerged from the content analysis of the critical incidents. It assesses whether deployment would be...or were brought up by only one or two workshop participants, we decided to include them anyway in the new , expanded list of dimensions. In that way...incidents. Although the 41 participants in the workshops wrote 172 individual readiness critical incidents, no new dimensions were apparent in the content

  13. On the surface trapping parameters of polytetrafluoroethylene block

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang

    2006-12-01

    Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.

  14. Introduction

    NASA Astrophysics Data System (ADS)

    2014-12-01

    This special issue of Applied Surface Science is a compilation of papers inspired by the symposium on "Surface/Interfaces Characterization and Renewable Energy" held at the 2013 MRS Fall Meeting. Practical uses of renewable energy are one of the greatest technical challenges today. The symposium explored a number of surface and interface-related questions relevant to this overarching theme. Topics from fuel cells to photovoltaics, from water splitting to fundamental and practical issues in charge generation and storage were discussed. The work presented included the use of novel experimental spectroscopic and microscopic analytical techniques, theoretical and computational understanding of interfacial phenomena, characterization of intricate behavior of charged species, as well as molecules and molecular fragments at surfaces and interfaces. It emphasized fundamental understanding of underlying processes, as well as practical devices design and applications of surface and interfacial phenomena related to renewable energy. These subjects are complicated by the transport of photons, electrons, ions, heat, and almost any other form of energy. Given the current concerns of climate change, energy independence and national security, this work is important and of interest to the field of Applied Surface Science. The sixteen papers published in this special issue have all been refereed.

  15. Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques

    NASA Astrophysics Data System (ADS)

    Romulus, Costache; Iulia, Fontanine; Ema, Corodescu

    2014-09-01

    S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.

  16. Surface-tension phenomena in organismal biology: an introduction to the symposium.

    PubMed

    Bourouiba, Lydia; Hu, David L; Levy, Rachel

    2014-12-01

    Flows driven by surface tension are both ubiquitous and diverse, involving the drinking of birds and bees, the flow of xylem in plants, the impact of raindrops on animals, respiration in humans, and the transmission of diseases in plants and animals, including humans. The fundamental physical principles underlying such flows provide a unifying framework to interpret the adaptations of the microorganisms, animals, and plants that rely upon them. The symposium on "Surface-Tension Phenomena in Organismal Biology" assembled an interdisciplinary group of researchers to address a large spectrum of topics, all articulated around the role of surface tension in shaping biology, health, and ecology. The contributions to the symposium and the papers in this issue are meant to be a starting point for novices to familiarize themselves with the fundamentals of flows driven by surface tension; to understand how they can play a governing role in many settings in organismal biology; and how such understanding of nature's use of surface tension can, in turn, inspire humans to innovate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Zhang, Long; Guo, Wenan

    2018-06-01

    Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.

  18. Multi-phase SPH model for simulation of erosion and scouring by means of the shields and Drucker-Prager criteria.

    NASA Astrophysics Data System (ADS)

    Zubeldia, Elizabeth H.; Fourtakas, Georgios; Rogers, Benedict D.; Farias, Márcio M.

    2018-07-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is developed to model the scouring of two-phase liquid-sediments flows with large deformation. The rheology of sediment scouring due to flows with slow kinematics and high shear forces presents a challenge in terms of spurious numerical fluctuations. This paper bridges the gap between the non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer mechanics which are needed to predict accurately the local erosion phenomena. A critical bed-mobility condition based on the Shields criterion is imposed to the particles located at the sediment surface. Thus, the onset of the erosion process is independent on the pressure field and eliminates the numerical problem of pressure dependant erosion at the interface. This is combined with the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been implemented in the open-source DualSPHysics code accelerated with a graphics processing unit (GPU). The multi-phase model has been compared with 2-D reference numerical models and new experimental data for scour with convergent results. Numerical results for a dry-bed dam break over an erodible bed shows improved agreement with experimental scour and water surface profiles compared to well-known SPH multi-phase models.

  19. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  20. Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics

    NASA Astrophysics Data System (ADS)

    Roden, E. E.

    2003-12-01

    Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady-state systems, e.g. subsurface environments in which Fe(III) reduction is stimulated by contamination with organics or for the purposes of metal/radionuclide bioremediation.

  1. Deconstructing Research: Paradigms Lost

    ERIC Educational Resources Information Center

    Trifonas, Peter Pericles

    2009-01-01

    In recent decades, proponents of naturalistic and/or critical modes of inquiry advocating the use of ethnographic techniques for the narrative-based study of phenomena within pedagogical contexts have challenged the central methodological paradigm of educational research: that is, the tendency among its practitioners to adhere to quantitative…

  2. The Experience of Near Death

    ERIC Educational Resources Information Center

    Sabom, M. B.; Kreutziger, S.

    1977-01-01

    Reported phenomena occurring in people encountering near-death situations have recently stimulated considerable public interest. In an informal survey, few professionals who care for critically ill patients were aware of these occurrences. Approximately 50 patients with documented near-fatal encounters were interviewed to confirm the existence and…

  3. Ion exchange phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourg, I.C.; Sposito, G.

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less

  4. Universality classes for unstable crystal growth

    NASA Astrophysics Data System (ADS)

    Biagi, Sofia; Misbah, Chaouqi; Politi, Paolo

    2014-06-01

    Universality has been a key concept for the classification of equilibrium critical phenomena, allowing associations among different physical processes and models. When dealing with nonequilibrium problems, however, the distinction in universality classes is not as clear and few are the examples, such as phase separation and kinetic roughening, for which universality has allowed to classify results in a general spirit. Here we focus on an out-of-equilibrium case, unstable crystal growth, lying in between phase ordering and pattern formation. We consider a well-established 2+1-dimensional family of continuum nonlinear equations for the local height h(x,t) of a crystal surface having the general form ∂th(x,t)=-∇.[j(∇h)+∇(∇2h)]: j (∇h) is an arbitrary function, which is linear for small ∇h, and whose structure expresses instabilities which lead to the formation of pyramidlike structures of planar size L and height H. Our task is the choice and calculation of the quantities that can operate as critical exponents, together with the discussion of what is relevant or not to the definition of our universality class. These aims are achieved by means of a perturbative, multiscale analysis of our model, leading to phase diffusion equations whose diffusion coefficients encapsulate all relevant information on dynamics. We identify two critical exponents: (i) the coarsening exponent, n, controlling the increase in time of the typical size of the pattern, L ˜tn; (ii) the exponent β, controlling the increase in time of the typical slope of the pattern, M ˜tβ, where M ≈H/L. Our study reveals that there are only two different universality classes, according to the presence (n =1/3, β =0) or the absence (n =1/4, β >0) of faceting. The symmetry of the pattern, as well as the symmetry of the surface mass current j (∇h) and its precise functional form, is irrelevant. Our analysis seems to support the idea that also space dimensionality is irrelevant.

  5. Coherent-Anomaly Method in Critical Phenomena. III. Mean-Field Transfer-Matrix Method in the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Katori, Makoto; Suzuki, Masuo

    1987-11-01

    Two kinds of systematic mean-field transfer-matrix methods are formulated in the 2-dimensional Ising spin system, by introducing Weiss-like and Bethe-like approximations. All the critical exponents as well as the true critical point can be estimated in these methods following the CAM procedure. The numerical results of the above system are Tc*≃2.271 (J/kB), γ{=}γ'≃1.749, β≃0.131 and δ≃15.1. The specific heat is confirmd to be continuous and to have a logarithmic divergence at the true critical point, i.e., α{=}α'{=}0. Thus, the finite-degree-of-approximation scaling ansatz is shown to be correct and very powerful in practical estimations of the critical exponents as well as the true critical point.

  6. Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2015-04-01

    Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this cycle system under a zero-dimensional configuration. Preliminary simulations of this cycle system over a two-dimensional domain will be presented.

  7. Thermomechanical Simulation of the Splashing of Ceramic Droplets on a Rigid Substrate

    NASA Astrophysics Data System (ADS)

    Bertagnolli, Mauro; Marchese, Maurizio; Jacucci, Gianni; St. Doltsinis, Ioannis; Noelting, Swen

    1997-05-01

    Finite element simulation techniques have been applied to the spreading process of single ceramic liquid droplets impacting on a flat cold surface under plasma-spraying conditions. The goal of the present investigation is to predict the geometrical form of the splat as a function of technological process parameters, such as initial temperature and velocity, and to follow the thermal field developing in the droplet up to solidification. A non-linear finite element programming system has been utilized in order to model the complex physical phenomena involved in the present impact process. The Lagrangean description of the motion of the viscous melt in the drops, as constrained by surface tension and the developing contact with the target, has been coupled to an analysis of transient thermal phenomena accounting also for the solidification of the material. The present study refers to a parameter spectrum as from experimental data of technological relevance. The significance of process parameters for the most pronounced physical phenomena is discussed as are also the consequences of modelling. We consider the issue of solidification as well and touch on the effect of partially unmelted material.

  8. Dynamics of Charge Transfer in DNA Wires: A Proton-Coupled Approach

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Fathizadeh, Samira; Ziaei, Javid; Akhshani, Afshin

    2017-12-01

    The advent of molecular electronics has fueled interest in studying DNA as a nanowire. The well-known Peyrard-Bishop-Dauxois (PBD) model, which was proposed for the purpose of understanding the mechanism of DNA denaturation, has a limited number of degrees of freedom. In addition, considering the Peyrard-Bishop-Holstein (PBH) model as a means of studying the charge transfer effect, in which the dynamical motion is described via the PBD model, may apply limitations on observing all the phenomena. Therefore, we have attempted to add the mutual interaction of a proton and electron in the form of proton-coupled electron transfer (PCET) to the PBH model. PCET has been implicated in a variety of oxidative processes that ultimately lead to mutations. When we have considered the PCET approach to DNA based on a proton-combined PBH model, we were able to extract the electron and proton currents independently. In this case, the reciprocal influence of electron and proton current is considered. This interaction does not affect the general form of the electronic current in DNA, but it changes the threshold of the occurrence of phenomena such as negative differential resistance. It is worth mentioning that perceiving the structural properties of the attractors in phase space via the Rényi dimension and concentrating on the critical regions through a scalogram can present a clear picture of the critical points in such phenomena.

  9. A Surface Science Perspective on TiO2 Photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2011-06-15

    The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.

  10. Multilayer adsorption of C2H4 and CF4 on graphite: Grand Canonical Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Abdelatif, H.; Drir, M.

    2016-11-01

    We study the phase transitions in adsorbed multilayers by Grand Canonical Monte Carlo simulations (GCMC) of the lattice-gas model. The focus will be on ethylene (C2H4) and tetrafluoromethane (CF4) on a homogeneous graphite surface. Earlier simulations of these systems investigated structural properties, dynamical behaviors of adsorbed films and thermodynamic quantities such as isosteric heat. The main purpose of this study is to consider the adsorbed multilayers by the evaluation of the layering behavior, the wetting phenomena and the critical temperatures. The isotherms obtained for temperature from 50 K to 170 K reproduce a number of interesting features observed experimentally: (i) we observe an important number of layers in contrast with previous simulations, (ii) a finite number of layers at saturated pressure for low temperatures are found, (iii) the isotherms present vertical steps typical of layer-by-layer growth, at higher temperatures these distinct layers tend to disappear signifying that the film thickness increases continuously, (iv) a thin film to thick film transition near the triple point temperature is noticed. In addition to this qualitative description, quantitative information are determined including temperatures and relative pressures of layers formation, layer-critical-point temperatures and phase diagrams. Comparing the two systems, ethylene/graphite and tetrafluoromethane/graphite, we observe a qualitatively similar behavior.

  11. Self-organized criticality in type I X-ray bursts

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Wang, F. Y.; Dai, Z. G.

    2017-11-01

    Type I X-ray bursts in a low-mass X-ray binary are caused by unstable nuclear burning of accreted materials. Semi-analytical and numerical studies of unstable nuclear burning have successfully reproduced the partial properties of this kind of burst. However, some other properties (e.g. the waiting time) are not well explained. In this paper, we find that the probability distributions of fluence, peak count, rise time, duration and waiting time can be described as power-law-like distributions. This indicates that type I X-ray bursts may be governed by a self-organized criticality (SOC) process. The power-law index of the waiting time distribution (WTD) is around -1, which is not predicted by any current waiting time model. We propose a physical burst rate model, in which the mean occurrence rate is inversely proportional to time: λ ∝ t-1. In this case, the WTD is explained well by a non-stationary Poisson process within the SOC theory. In this theory, the burst size is also predicted to follow a power-law distribution, which requires that the emission area covers only part of the neutron star surface. Furthermore, we find that the WTDs of some astrophysical phenomena can also be described by similar occurrence rate models.

  12. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides.

    PubMed

    Nie, Yifan; Liang, Chaoping; Cha, Pil-Ryung; Colombo, Luigi; Wallace, Robert M; Cho, Kyeongjae

    2017-06-07

    Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.

  13. Critical electric field for maximum tunability in nonlinear dielectrics

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  14. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions.

    PubMed

    Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand

    2009-11-30

    The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.

  15. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  16. Picosecond Laser Pulse Interactions with Metallic and Semiconducting Surfaces

    DTIC Science & Technology

    1990-01-31

    Few Picoseconds," Nonlinear Opics and Ultrafast Phenomena, eds. R.R. Alfano and L.J. Rothberg, (Nova Publishers, NY 1990). J.K. Wang, P. Saeta, M...Etching," Materials Science and Engineering 97:325-328 (1988). Nonlinear Opics & Ultrafast Phenomena Eds. R.R. Alfano and L.J. Rothberg Publ. Nova, NY...Progress in Materials Science, ed. by J.W. Christian , P. Haasen and T.B. Massalski, Chalmers Anniversay Volume, 269, Pergamon (1981). 13. F. Spaepen

  17. Nondestructive study of corrosion by the analysis of diffused light

    NASA Astrophysics Data System (ADS)

    Hogert, Elsa N.; Landau, Monica R.; Marengo, Jose A.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.; Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya

    1999-07-01

    This work describes the application of mean intensity diffusion analysis to detect and analyze metallic corrosion phenomena. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. Valuable information is provided about surface microrelief changes, which is also useful for numerous engineering applications. The quality of our results supports the idea that this technique can contribute to a better analysis of corrosion processes, in particular in real time.

  18. SE-FIT

    NASA Technical Reports Server (NTRS)

    Chen, Yongkang; Weislogel, Mark; Schaeffer, Ben; Semerjian, Ben; Yang, Lihong; Zimmerli, Gregory

    2012-01-01

    The mathematical theory of capillary surfaces has developed steadily over the centuries, but it was not until the last few decades that new technologies have put a more urgent demand on a substantially more qualitative and quantitative understanding of phenomena relating to capillarity in general. So far, the new theory development successfully predicts the behavior of capillary surfaces for special cases. However, an efficient quantitative mathematical prediction of capillary phenomena related to the shape and stability of geometrically complex equilibrium capillary surfaces remains a significant challenge. As one of many numerical tools, the open-source Surface Evolver (SE) algorithm has played an important role over the last two decades. The current effort was undertaken to provide a front-end to enhance the accessibility of SE for the purposes of design and analysis. Like SE, the new code is open-source and will remain under development for the foreseeable future. The ultimate goal of the current Surface Evolver Fluid Interface Tool (SEFIT) development is to build a fully integrated front-end with a set of graphical user interface (GUI) elements. Such a front-end enables the access to functionalities that are developed along with the GUIs to deal with pre-processing, convergence computation operation, and post-processing. In other words, SE-FIT is not just a GUI front-end, but an integrated environment that can perform sophisticated computational tasks, e.g. importing industry standard file formats and employing parameter sweep functions, which are both lacking in SE, and require minimal interaction by the user. These functions are created using a mixture of Visual Basic and the SE script language. These form the foundation for a high-performance front-end that substantially simplifies use without sacrificing the proven capabilities of SE. The real power of SE-FIT lies in its automated pre-processing, pre-defined geometries, convergence computation operation, computational diagnostic tools, and crash-handling capabilities to sustain extensive computations. SE-FIT performance is enabled by its so-called file-layer mechanism. During the early stages of SE-FIT development, it became necessary to modify the original SE code to enable capabilities required for an enhanced and synchronized communication. To this end, a file-layer was created that serves as a command buffer to ensure a continuous and sequential execution of commands sent from the front-end to SE. It also establishes a proper means for handling crashes. The file layer logs input commands and SE output; it also supports user interruption requests, back and forward operation (i.e. undo and redo), and others. It especially enables the batch mode computation of a series of equilibrium surfaces and the searching of critical parameter values in studying the stability of capillary surfaces. In this way, the modified SE significantly extends the capabilities of the original SE.

  19. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction

    NASA Astrophysics Data System (ADS)

    Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.

    2018-03-01

    This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.

  20. Sound Visualization and Holography

    ERIC Educational Resources Information Center

    Kock, Winston E.

    1975-01-01

    Describes liquid surface holograms including their application to medicine. Discusses interference and diffraction phenomena using sound wave scanning techniques. Compares focussing by zone plate to holographic image development. (GH)

  1. The Scientific Method - Critical and Creative Thinking

    NASA Astrophysics Data System (ADS)

    Cotton, John; Scarlise, Randall

    2011-10-01

    The ``scientific method'' is not just for scientists! Combined with critical thinking, the scientific method can enable students to distinguish credible sources of information from nonsense and become intelligent consumers of information. Professors John Cotton and Randall Scalise illustrate these principles using a series of examples and demonstrations that is enlightening, educational, and entertaining. This lecture/demonstration features highlights from their course (whose unofficial title is ``debunking pseudoscience'' ) which enables students to detect pseudoscience in its many guises: paranormal phenomena, free-energy devices, alternative medicine, and many others.

  2. Electroosmotic velocity in an array of parallel soft cylinders in a salt-free medium.

    PubMed

    Ohshima, Hiroyuki

    2004-11-15

    A theory of electroosmosis in an array of parallel soft cylinders (i.e. polyelectrolyte-coated cylinders) in a salt-free medium is presented. It is shown that there is a certain critical value of the particle charge and that if the particle charge is greater than the critical value, then the electroosmotic velocity becomes constant independent of the particle charge due to the counterion condensation effects, as in the case of other electrokinetic phenomena in salt-free media.

  3. Wetting Behavior in Colloid-Polymer Mixtures at Different Substrates.

    PubMed

    Wijting, Willem K; Besseling, Nicolaas A M; Cohen Stuart, Martien A

    2003-09-25

    We present experimental observations on wetting phenomena in depletion interaction driven, phase separated colloidal dispersions. The contact angle of the colloidal liquid-gas interface at a solid substrate was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting. The interaction with the substrate was manipulated by modifying the substrate with a polymer. In that case, a transition from partial to complete drying is observed upon approach to the critical point.

  4. Critical and compensation phenomena in a mixed-spin ternary alloy: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Žukovič, M.; Bobák, A.

    2010-10-01

    By means of standard and histogram Monte Carlo simulations, we investigate the critical and compensation behaviour of a ternary mixed spin alloy of the type ABpC1- p on a cubic lattice. We focus on the case with the parameters corresponding to the Prussian blue analog (NipIIMn1-pII)1.5[CrIII(CN)6]·nH2O and confront our findings with those obtained by some approximative approaches and the experiments.

  5. Critical phenomena and chemical potential of a charged AdS black hole

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao

    2017-12-01

    Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.

  6. The "New" Age: A Bibliographic Essay.

    ERIC Educational Resources Information Center

    Chandler, Daniel Ross

    This bibliographic essay describes and discusses important books in a variety of thematic areas associated with the New Age Movement, which is a distinctive communicative phenomenon characterized by unconventional beliefs and activities. The essay argues that the single subject pervading the peculiar phenomena and puzzling thoughtful critics is…

  7. Incorporating sociocultural phenomena into ecosystem-service valuation: The importance of critical pluralism

    USDA-ARS?s Scientific Manuscript database

    Ecosystem services (ES) scholarship has largely focused on monetary valuation and the material contributions of ecosystems to human well-being. Increasingly, research is calling for a deeper understanding of how less tangible, non-material values shape management and stakeholder decisions. Such rese...

  8. The Universe, Two by Two.

    ERIC Educational Resources Information Center

    Metz, William

    1983-01-01

    Discusses the nature of and current research related to binary stars, indicating that the knowledge that most stars come in pairs is critical to the understanding of stellar phenomena. Subjects addressed include aberrant stellar behavior, x-ray binaries, lobes/disks, close binaries, planetary nebulas, and formation/evolution of binaries. (JN)

  9. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new seasonal, global-scale model

    EPA Science Inventory

    Understanding sub-annual patterns of catchment dissolved inorganic nitrogen (DIN) export is critical for predicting and mitigating impacts of coastal eutrophication, such as algal blooms and hypoxic areas, which are often seasonal phenomena. We developed the first calibrated glob...

  10. Student Belief and Involvement in the Paranormal and Performance in Introductory Psychology.

    ERIC Educational Resources Information Center

    Messer, Wayne S.; Griggs, Richard A.

    1989-01-01

    Assesses student belief and involvement in 10 paranormal phenomena. Findings show 99 percent of the sample expressed belief in at least one. Students expressing these beliefs achieved significantly lower course grades. Discusses instructor's role in combating unfounded beliefs and fostering critical thinking. (NL)

  11. Statistical Mechanics of Temporal and Interacting Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  12. Nuclear Criticality Experimental Research Center (NCERC) Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less

  13. Surface optical vortices

    NASA Astrophysics Data System (ADS)

    Lembessis, V. E.; Babiker, M.; Andrews, D. L.

    2009-01-01

    It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.

  14. Dynamic shear strength of S2 glass fiber reinforced polymer composites under shock compression

    NASA Astrophysics Data System (ADS)

    Yuan, Fuping; Tsai, Liren; Prakash, Vikas; Dandekar, Dattatraya P.; Rajendran, A. M.

    2008-05-01

    In the present paper, a series of plate impact shock-reshock and shock-release experiments were conducted to study the critical shear strength of a S2 glass fiber reinforced polymer (GRP) composite under shock compression levels ranging from 0.8 to 1.8 GPa. The GRP was fabricated at ARL, Aberdeen, using S2 glass woven roving in a Cycom 4102 polyester resin matrix. The experiments were conducted by using an 82.5 mm bore single-stage gas gun at Case Western Reserve University. In order to conduct shock-reshock and shock-release experiments a dual flyer plate assembly was utilized. The shock-reshock experiments were conducted by using a projectile faced with GRP and backed with a relatively high shock impedance Al 6061-T6 plate; while for the shock-release experiments the GRP was backed by a relatively lower impedance polymethyl methacrylate backup flyer plate. A multibeam velocity interferometer was used to measure the particle velocity profile at the rear surface of the target plate. By using self-consistent technique procedure described by Asay and Chabbildas [Shock Waves and High-Strain-Rate Phenomena, in Metals, edited by M. M. Myers and L. E. Murr (Plenum, New York, 1981), pp. 417-431], the critical shear strength of the GRP (2τc) was determined for impact stresses in the range of 0.8 to 1.8 GPa. The results show that the critical shear strength of the GRP is increased from 0.108 GPa to 0.682 GPa when the impact stress is increased from 0.8 to 1.8 GPa. The increase in critical shear strength may be attributed to rate-dependence and/or pressure dependent yield behavior of the GRP.

  15. On the surface-to-bulk mode conversion of Rayleigh waves.

    NASA Technical Reports Server (NTRS)

    Chang, C.-P.; Tuan, H.-S.

    1973-01-01

    Surface-to-bulk wave conversion phenomena occurring at a discontinuity characterized by a surface contour deformation are shown to be usable as a means for tapping Rayleigh waves in a nonpiezoelectric solid. A boundary perturbation technique is used in the treatment of the mode conversion problem. A systematic procedure is presented for calculating not only the first-order scattered waves, which include the reflected surface wave and the converted bulk wave, but also the higher order terms.

  16. Phase Diagram of Planar Matrix Quantum Mechanics, Tensor, and Sachdev-Ye-Kitaev Models.

    PubMed

    Azeyanagi, Tatsuo; Ferrari, Frank; Massolo, Fidel I Schaposnik

    2018-02-09

    We study the Schwinger-Dyson equations of a fermionic planar matrix quantum mechanics [or tensor and Sachdev-Ye-Kitaev (SYK) models] at leading melonic order. We find two solutions describing a high entropy, SYK black-hole-like phase and a low entropy one with trivial IR behavior. There is a line of first order phase transitions that terminates at a new critical point. Critical exponents are nonmean field and differ on the two sides of the transition. Interesting phenomena are also found in unstable and stable bosonic models, including Kazakov critical points and inconsistency of SYK-like solutions of the IR limit.

  17. Let's get real (with a small 'r'): for a health psychology that prioritizes the concrete.

    PubMed

    Cornish, Flora

    2009-07-01

    Depending on which kind of philosophy of science we espouse, health psychology can be a relatively concrete or relatively abstract activity. Estacio, I suggest, prioritizes the concrete, by foregrounding real social phenomena. I argue that prioritizing the concrete has two particular benefits: it increases the social relevance of health psychology, and it increases the validity of our analyses, by ensuring that they are close to reality. To further the pursuit of the concrete, I suggest that critical health psychology is in particular need of exemplars of critical health psychology in action, rather than reflexive commentary on critical health psychology itself.

  18. Coherent-Anomaly Method in Critical Phenomena. IV.

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Suzuki, Masuo

    The systematic Weiss-like and Bethe-like approximations based on the mean-field transfer-matrix method are used to investigate the asymptotic behavior of the induced magnetization on a semi-infinite square lattice, and to investigate the wave-number dependence of the susceptibility in a nonuniform external field. The critical exponents ν, ν', ηi and η are estimated following the general CAM prescription. A new scaling relation ν·ηi=β is obtained in the framework of the finite-degree-of-approximation scaling. Together with previous papers, all the static critical exponents have been estimated by the CAM, and are shown to satisfy the well-known scaling relations.

  19. Analysis of Critical Mass in Threshold Model of Diffusion

    NASA Astrophysics Data System (ADS)

    Kim, Jeehong; Hur, Wonchang; Kang, Suk-Ho

    2012-04-01

    Why does diffusion sometimes show cascade phenomena but at other times is impeded? In addressing this question, we considered a threshold model of diffusion, focusing on the formation of a critical mass, which enables diffusion to be self-sustaining. Performing an agent-based simulation, we found that the diffusion model produces only two outcomes: Almost perfect adoption or relatively few adoptions. In order to explain the difference, we considered the various properties of network structures and found that the manner in which thresholds are arrayed over a network is the most critical factor determining the size of a cascade. On the basis of the results, we derived a threshold arrangement method effective for generation of a critical mass and calculated the size required for perfect adoption.

  20. Space and time renormalization in phase transition dynamics

    DOE PAGES

    Francuz, Anna; Dziarmaga, Jacek; Gardas, Bartłomiej; ...

    2016-02-18

    Here, when a system is driven across a quantum critical point at a constant rate, its evolution must become nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξˆ set at the time tˆ=τˆ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigatingmore » an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.« less

  1. Spontaneous De-Icing Phenomena on Extremely Cold Surfaces

    NASA Astrophysics Data System (ADS)

    Song, Dong; Choi, Chang-Hwan

    2017-11-01

    Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.

  2. Inverse liquid chromatography as a tool for characterisation of the surface layer of ceramic biomaterials.

    PubMed

    Kadlec, Karol; Adamska, Katarzyna; Okulus, Zuzanna; Voelkel, Adam

    2016-10-14

    The novel technique for ceramic biomaterials surface characterisation was proposed. The examined bone substitute materials were two orthophosphates: hydroxyapatite, β-tricalcium phosphate and the mixture of these two - biphasic calcium phosphate. The aim of this work was characterisation of the ceramic biomaterials surface expressed via the values of parameters e, s, a, b, v considered in linear free energy relationship. The values of these parameters reflect the ability of stationary phase to occur in different types of interactions. The sorption phenomena occurring on the bone substitute materials surface are responsible for the process of the multiplication of the osteoblasts. Thus the detailed description of this phenomena may contribute to the better understanding of bone loss regeneration mechanism. The data required for characterisation by using LFER model was collected by means of inverse liquid chromatography with the use of five different mobile phases: 98% ethanol, ethanol/water (50/50), water, 0.2M NaCl and SBF. The determination of the ceramic orthophosphates surface properties in SBF solution allowed to observe the behaviour of biomaterials in "natural environment" - in living organism. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Carbon Materials Research

    DTIC Science & Technology

    2005-08-01

    is an angular surface. This phenomena has important applications in areas as diverse as heat exchange and catalysis. JOURNAL PAPERS W.P...densify these composites. In addressing the oxidation protection of carbon-carbon composites, the entirely new field of microtube technology was born...nozzle; exit cone; missile nosetip; hypersonic vehicle; oxidation resistance; cost; densification; MEMs; surface tension; microtube 16. SECURITY

  4. A Laboratory Experiment on Oil Weathering under Arctic Conditions.

    DTIC Science & Technology

    1982-09-01

    water ( Fazal and Milgram, 1977), and both on the surface and underneath a smooth solid ice sheet (Cox et al., 1980). In addition, Free et al. (1981...Covered Waters of Buzzards Bay," NOAA OCSEAP Report, Boulder, Colorado, June 1977. 3. Fazal , R.A. and J.H. Milgram, "The Effects of Surface Phenomena

  5. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  6. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.

    PubMed

    Wang, Jianlong; Nguyen, Anh V

    2017-12-01

    Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10 -20 J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mechanism and influencing factors on critical pulse width of oil-immersed polymer insulators under short pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang, E-mail: zhaoliang@ninit.ac.cn; Li, Rui; Zheng, Lei

    2015-04-15

    The critical pulse width (τ{sub c}) is a pulse width at which the surface flashover threshold (E{sub f}) is equal to the bulk breakdown threshold (E{sub BD}) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854–857]. In this paper, the mechanism of τ{sub c} is interpreted in perspective of the threshold and the time delay (t{sub d}) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse widthmore » decreases which are responsible for the existence of τ{sub c}: (1) E{sub BD} is lower than E{sub f}; (2) t{sub d} of bulk breakdown is shorter than t{sub d} of surface flashover. In addition, factors which have influences on τ{sub c} are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τ{sub c} is expected to increase: (1) factors causing E{sub BD} to decrease, such as increasing the pulse number or employing a dielectric of lower E{sub BD}; (2) factors causing E{sub f} to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing E{sub BD} and E{sub f} to increase together, but E{sub f} increases faster than E{sub BD}, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τ{sub c} for solid insulation design is presented and the significance of τ{sub c} on solid insulation design and on solid demolition are discussed.« less

  8. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  9. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    NASA Astrophysics Data System (ADS)

    Alekseenko, Victor; Bagrova, Anastasia; Cui, Shuwang; He, Yayun; Li, Bingbing; Ma, Xinhua; Pozdnyakov, Egor; Shchegolev, Oleg; Stenkin, Yuri; Stepanov, Vladimir

    2017-06-01

    Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors) developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  10. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  11. Quantum phenomena in gravitational field

    NASA Astrophysics Data System (ADS)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  12. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation

    PubMed Central

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2014-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23°C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength (~4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized. PMID:19475558

  13. Exotic Phenomena in Quantum limit in nodal-line semimetal ZrSiS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin; Liu, Jinyu; Mao, Zhiqiang

    2017-03-01

    In quantum limit, all carriers condense to the lowest Landau level, leading to possible exotic quantum phenomena such as Lifshitz transition and density waves. Usually, quantum limit is not easily achieved due to relatively large Fermi surface in metals. Fortunately, the nodal-line semimetal ZrSiS possesses a very small Fermi pocket with a characteristic quantum oscillation frequency of 8.4T, which represents the 2D Dirac states protected by non-symmorphic symmetry. The quantum limit of such Dirac bands can be reached in moderate magnetic field ~25T, indicating that ZrSiS could be a nice platform to explore the novel quantum phenomena of Dirac fermionsmore » in quantum limit.« less

  14. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  15. Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.

    PubMed

    Yao, Jun; Zhong, Lin; Natelson, Douglas; Tour, James M

    2011-02-02

    Silicon oxide (SiO(x)) has been widely used in many electronic systems as a supportive and insulating medium. Here, we demonstrate various electrical phenomena such as resistive switching and related nonlinear conduction, current hysteresis, and negative differential resistance intrinsic to a thin layer of SiO(x). These behaviors can largely mimic numerous electrical phenomena observed in molecules and other nanomaterials, suggesting that substantial caution should be paid when studying conduction in electronic systems with SiO(x) as a component. The actual electrical phenomena can be the result of conduction from SiO(x) at a post soft-breakdown state and not the presumed molecular or nanomaterial component. These electrical properties and the underlying mechanisms are discussed in detail.

  16. The Brain Is both Neurocomputer and Quantum Computer

    ERIC Educational Resources Information Center

    Hameroff, Stuart R.

    2007-01-01

    In their article, "Is the Brain a Quantum Computer,?" Litt, Eliasmith, Kroon, Weinstein, and Thagard (2006) criticize the Penrose-Hameroff "Orch OR" quantum computational model of consciousness, arguing instead for neurocomputation as an explanation for mental phenomena. Here I clarify and defend Orch OR, show how Orch OR and neurocomputation are…

  17. Disrupting Qualitative Inquiry: Possibilities and Tensions in Educational Research. Critical Qualitative Research. Volume 10

    ERIC Educational Resources Information Center

    Brown, Ruth Nicole, Ed.; Carducci, Rozana, Ed.; Kuby, Candace R., Ed.

    2014-01-01

    "Disrupting Qualitative Inquiry" is an edited volume that examines the possibilities and tensions encountered by scholars who adopt disruptive qualitative approaches to the study of educational contexts, issues, and phenomena. It presents a collection of innovative and intellectually stimulating chapters which illustrate the potential…

  18. Stability in the Social Percolation Models for Two to Four Dimensions

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Feng

    The social percolation model proposed by Solomon et al. as well as its modification are studied in two to four dimensions for the phenomena of self-organized criticality. Stability in the models is obtained and the systems are shown to automatically drift towards the percolation threshold.

  19. Viruses as triggers of autoimmunity: facts and fantasies.

    PubMed

    Whitton, J L; Fujinami, R S

    1999-08-01

    Autoimmunity has been proposed as the cause of several human chronic inflammatory diseases, and recent animal studies show that viruses can induce autoimmune disease. These studies demonstrate how viruses might misdirect the immune system, and here we discuss critically the evidence that similar phenomena may lead to human disease.

  20. Thought Experiments in Teaching Free-Fall Weightlessness: A Critical Review and an Exploration of Mercury's Behavior in "Falling Elevator"

    ERIC Educational Resources Information Center

    Balukovic, Jasmina; Slisko, Josip; Cruz, Adrián Corona

    2017-01-01

    Different "thought experiments" dominate teaching approaches to weightlessness, reducing students' opportunities for active physics learning, which should include observations, descriptions, explanations and predictions of real phenomena. Besides the controversy related to conceptual definitions of weight and weightlessness, we report…

  1. A Longitudinal Study of Students' Conceptualization of Ecological Processes.

    ERIC Educational Resources Information Center

    Hellden, Gustav F.

    During the last decades, an increasing awareness has developed that humankind will have to make important decisions about the environment which will demand substantive knowledge of critical ecological phenomena such as the production and decomposition of biomass (World Commission on Environment and Development, 1987). As a biology teacher the…

  2. Gender, Discourse, and "Gender and Discourse."

    ERIC Educational Resources Information Center

    Davis, Hayley

    1997-01-01

    A critic of Deborah Tannen's book "Gender and Discourse" responds to comments made about her critique, arguing that the book's analysis of the relationship of gender and discourse tends to seek, and perhaps force, explanations only in those terms. Another linguist's analysis of similar phenomena is found to be more rigorous. (MSE)

  3. Commercial Civil Society: A Perspective on Private Higher Education in China

    ERIC Educational Resources Information Center

    Yan, Fengqiao; Lin, Jing

    2010-01-01

    Two distinctive paradigms have been used in researching higher education phenomena in China's process of social transformation. The first might be described as "critical realist," and the second as "interpretivist." The book "Portraits of 21st Century Chinese Universities: In the Move to Mass Higher Education", has…

  4. Electronic structure imperfections and chemical bonding at graphene interfaces

    NASA Astrophysics Data System (ADS)

    Schultz, Brian Joseph

    The manifestation of novel phenomena upon scaling to finite size has inspired a paradigm shift in materials science that takes advantage of the distinctive electrical and physical properties of nanomaterials. Remarkably, the simple honeycomb arrangement of carbon atoms in a single atomic layer has become renowned for exhibiting never-before-seen electronic and physical phenomena. This archetypal 2-dimensional nanomaterial is known as graphene, a single layer of graphite. Early reports in the 1950's eluded to graphene-like nanostructures that were evidenced from exfoliation of oxidized graphite followed by chemical reduction, absorbed carbon on transition metals, and thermal decomposition of SiC. Furthermore, the earliest tight binding approximation calculations in the 1950's held clues that a single-layer of graphite would behave drastically different than bulk graphite. Not until 2004, when Giem and Novoselov first synthesized graphene by mechanical exfoliation from highly-oriented pyrolytic graphite did the field of graphene-based research bloom within the scientific community. Since 2004, the availability and relatively straight forward synthesis of single-layer graphene (SLG) enabled the observation of remarkable phenomena including: massless Dirac fermions, extremely high mobilities of its charge carriers, room temperature half-integer quantum Hall effect, the Rashba effect, and the potential for ballistic conduction over macroscopic distances. These enticing electronic properties produce the drive to study graphene for use in truly nanoscale electrical interconnects, integrated circuits, transparent conducting electrodes, ultra-high frequency transistors, and spintronic devices, just to name a few. Yet, for almost all real world applications graphene will need to be interfaced with other materials, metals, dielectrics, organics, or any combination thereof that in turn are constituted from various inorganic and organic components. Interfacing graphene, a nanomaterial with lateral dimensions in the hundreds of microns if not larger, with a corresponding atomic vertical thickness poses significant difficulties. Graphene's unique structure is dominated by surface area or potentially hybridized interfaces; consequently, the true realization of this remarkable nanomaterial in device constructs relies on engineering graphene interfaces at the surface in order to controllably mold the electronic structure. Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy and the transmission mode analogue scanning transmission X-ray microscopy (STXM) are particularly useful tools to study the unoccupied states of graphene and graphene interfaces. In addition, polarized NEXAFS and STXM studies provide information on surface orientation, bond sterics, and the extent of substrate alignment before and after interfacial hybridization. The work presented in this dissertation is fundamentally informed by NEXAFS and STXM measurements on graphene/metal, graphene/dielectric, and graphene/organic interfaces. We start with a general review of the electronic structure of freestanding graphene and graphene interfaces in Chapter 1. In Chapter 2, we investigate freestanding single-layer graphene via STXM and NEXAFS demonstrating that electronic structure heterogeneities from synthesis and processing are ubiquitous in 2-dimensional graphene. We show the mapping of discrete charge transfer regions as a result of doped impurities that decorate the surfaces of graphene and that transfer processing imparts local electronic corrugations or ripples. In corroboration with density functional theory, definitive assignments to the spectral features, global steric orientations of the localized domains, and quantitative charge transfer schemes are evidenced. In the following chapters, we deliberately (Chapter 3) incorporate substitutional nitrogen into reduced graphene oxide to induce C--N charge redistribution and improve global conductivity, (Chapter 4) fabricate graphene/metal interfaces and metal/graphene/metal sandwich structures evidencing classical anisotropic umpolung chemistry from carbon pz-orbrital charge pinning, and (Chapter 5) engineer graphene/dielectric interfaces showing electron depletion from carbon atoms at the HfO2/graphene interface. The fabrication of graphene interfaces remains a critical gap for successful commercialization of graphene-based devices, yet we demonstrate that interfacial hybridization, anisotropic charge redistribution, local chemical bonding, and discrete electronic hybridization regimes play a critical role in the electronic structure at graphene interfaces.

  5. Relativistic tidal interaction of a white dwarf with a massive black hole

    NASA Technical Reports Server (NTRS)

    Frolov, V. P.; Khokhlov, A. M.; Novikov, I. D.; Pethick, C. J.

    1994-01-01

    We compute encounters of a realistic white dwarf model with a massive black hole in the regime where relativistic effects are important, using a three-dimensional, finite-difference, Eulerian, piecewise parabolic method (PPM) hydrodynamical code. Both disruptive and nondisruptive encounters are considered. We identify and discuss relativistic effects important for the problem: relativistic shift of the pericenter distance, time delay, relativistic precession, and the tensorial structure of the tidal forces. In the nondisruptive case, stripping of matter takes place. In the surface layers of the surviving core, complicated hydrodynamical phenomena are revealed. In both disruptive and nondispruptive encounters, material flows out in the form of two thin, S-shaped, supersonic jets. Our results provide realistic initial conditions for the subsequent investigation of the dynamics of the debris in the field of the black hole. We evaluate the critical conditions for complete disruption of the white dwarf, and compare our results with the corresponding results for nonrelativistic encounters.

  6. Investigation of priorities in water quality management based on correlations and variations.

    PubMed

    Boyacıoğlu, Hülya; Gündogdu, Vildan; Boyacıoğlu, Hayal

    2013-04-15

    The development of water quality assessment strategies investigating spatial and temporal changes caused by natural and anthropogenic phenomena is an important tool in management practices. This paper used cluster analysis, water quality index method, sensitivity analysis and canonical correlation analysis to investigate priorities in pollution control activities. Data sets representing 22 surface water quality parameters were subject to analysis. Results revealed that organic pollution was serious threat for overall water quality in the region. Besides, oil and grease, lead and mercury were the critical variables violating the standard. In contrast to inorganic variables, organic and physical-inorganic chemical parameters were influenced by variations in physical conditions (discharge, temperature). This study showed that information produced based on the variations and correlations in water quality data sets can be helpful to investigate priorities in water management activities. Moreover statistical techniques and index methods are useful tools in data - information transformation process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. On the Temporal Variability of Low-Mode Internal Tides in the Deep Ocean

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Zaron, E. D.

    2010-01-01

    In situ measurements of internal tides are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal tides detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal tides in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-tide signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal tide signals is critical for observing non-tidal submesoscale phenomena.

  8. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure.

    PubMed

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-15

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  9. Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing

    DOE PAGES

    Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Ditto, Jeffrey J.; ...

    2016-04-21

    Here, the rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly-dispersed discrete redox-active cluster anions (50 ng of pure ~0.7 nm size molybdenum polyoxometalate anions (POM) anions on 25 mg (≈ 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft-landingmore » (SL). For the first time, electron microscopy provides atomically-resolved images of individual POM species directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage.« less

  10. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  11. The study on deformation characterization in micro rolling for ultra-thin strip

    NASA Astrophysics Data System (ADS)

    Xie, H. B.; Manabe, K.; Furushima, T.; Jiang, Z. Y.

    2013-12-01

    The demand for miniaturized parts and miniaturized semi-finished products is increasing. Metal forming processes cannot be simply scaled down to produce miniaturized micro parts and microforming processes have the capability of improving mass production and minimizing material waste. In this study, experimental and theoretical investigations on the micro rolling process have proven that the micro rolling deformation of thin strip is influenced by size effects from specimen sizeon flow stress and friction coefficient. The analytical and finite element (FE) models for describing the size effect related phenomena for SUS 304 stainless steel, such as the change of flow stress, friction and deformation behaviour, are proposed. The material surface constraint and the material deformation mode are critical in determination of material flow stress curve. The identified deformation and mechanics behaviours provide a basis for further exploration of the material deformation behaviour in plastic deformation of micro scale and the development of micro scale products via micro rolling.

  12. Enhancement of superconductivity under pressure and the magnetic phase diagram of tantalum disulfide single crystals

    PubMed Central

    Abdel-Hafiez, M.; Zhao, X.-M.; Kordyuk, A. A.; Fang, Y.-W.; Pan, B.; He, Z.; Duan, C.-G.; Zhao, J.; Chen, X.-J.

    2016-01-01

    In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature phase diagram in 2H-TaS2 single crystals. We show that the superconducting transition temperature (Tc) increases by one order of magnitude from temperatures at 0.98 K up to 9.15 K at 8.7 GPa when the Tc becomes very sharp. Additionally, the effects of 8.7 GPa illustrate a suppression of the CDW ground state, with critically small Fermi surfaces. Below the Tc the lattice of magnetic flux lines melts from a solid-like state to a broad vortex liquid phase region. Our measurements indicate an unconventional s-wave-like picture with two energy gaps evidencing its multi-band nature. PMID:27534898

  13. Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures

    NASA Astrophysics Data System (ADS)

    Maksymov, Ivan S.; Kostylev, Mikhail

    2015-05-01

    This paper presents a comprehensive critical overview of fundamental and practical aspects of the modern stripline broadband ferromagnetic resonance (BFMR) spectroscopy largely employed for the characterisation of magnetic low-dimensional systems, such as thin ferro- and ferromagnetic, multiferroic and half-metallic films, multi-layers and nanostructures. These planar materials form the platform of the nascent fields of magnonics and spintronics. Experimental and theoretical results of research on these materials are summarised, along with systematic description of various phenomena associated with the peculiarities of the stripline BFMR, such as the geometry of stripline transducers, the orientation of the static magnetic field, the presence of microwave eddy currents, and the impacts of non-magnetic layers, interfaces and surfaces in the samples. Results from 240 articles, textbooks and technical reports are presented and many practical examples are discussed in detail. This review will be of interest to both general physical audience and specialists conducting research on various aspects of magnetisation dynamics and nanomagnetism.

  14. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil.

    PubMed

    Ouyan, Ying; Cho, Jong Soo; Mansell, Robert S

    2002-01-01

    Contamination of groundwater resources by non-aqueous phase liquids (NAPLs) has become an issue of increasing environmental concern. This study investigated the formation and flow of microemulsions during surfactant flushing of NAPL-contaminated soil using the finite difference model UTCHEM, which was verified with our laboratory experimental data. Simulation results showed that surfactant flushing of NAPLs (i.e., trichloroethylene and tetrachloroethylene) from the contaminated soils was an emulsion-driven process. Formation of NAPL-in-water microemulsions facilitated the removal of NAPLs from contaminated soils. Changes in soil saturation pressure were used to monitor the mobilization and entrapment of NAPLs during surface flushing process. In general, more NAPLs were clogged in soil pores when the soil saturation pressure increased. Effects of aquifer salinity on the formation and flow of NAPL-in-water microemulsions were significant. This study suggests that the formation and flow of NAPL-in-water microemulsions through aquifer systems are complex physical-chemical phenomena that are critical to effective surfactant flushing of contaminated soils.

  15. Assessment of lubricated contacts: Mechanisms of scuffing and scoring

    NASA Technical Reports Server (NTRS)

    Dyson, A.; Wedeven, L. D.

    1983-01-01

    Scoring and scuffing are defined as two distinct but related forms of failure of hardened ferrous components lubricated by liquids. Experimental observations of these phenomena are described, and criteria for scoring and scuffing are discussed. The mechanisms proposed by various authors to explain these observations are enumerated. The view presented here is that, under conditions yet to be defined, scoring is a gradual breakdown of the lubrication of interacting asperities, such lubrication being boundary or microelastohydrodynamic in nature, or a mixture of the two. The final scuffing stage represents a breakdown of the main elastohydrodynamic system, but this may be triggered by the deterioration in surface topography as a result of scoring. An extension of published theoretical treatment of elastohydrodynamic breakdown is proposed, and a critical experiment to assess the importance of edge effects in band contacts is suggested. The practical implications of the proposed mechanism are reviewed, and recommendations for further work are made. A possible thermal instability mechanism for the breakdown of boundary lubrication is outlined.

  16. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-01

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  17. Critical Race Theory, Race Equity, and Public Health: Toward Antiracism Praxis

    PubMed Central

    Airhihenbuwa, Collins O.

    2010-01-01

    Racial scholars argue that racism produces rates of morbidity, mortality, and overall well-being that vary depending on socially assigned race. Eliminating racism is therefore central to achieving health equity, but this requires new paradigms that are responsive to structural racism's contemporary influence on health, health inequities, and research. Critical Race Theory is an emerging transdisciplinary, race-equity methodology that originated in legal studies and is grounded in social justice. Critical Race Theory's tools for conducting research and practice are intended to elucidate contemporary racial phenomena, expand the vocabulary with which to discuss complex racial concepts, and challenge racial hierarchies. We introduce Critical Race Theory to the public health community, highlight key Critical Race Theory characteristics (race consciousness, emphases on contemporary societal dynamics and socially marginalized groups, and praxis between research and practice) and describe Critical Race Theory's contribution to a study on racism and HIV testing among African Americans. PMID:20147679

  18. ROSS: The Remotely-Operated Surface Sampler - A MediumEndurance, Precision-Navigated Platform Optimized for Uncontaminated Measurement of Upper-Ocean Velocity, Density and Turbulence

    DTIC Science & Technology

    2015-09-30

    ocean  surface.   It  is ideal for studying fronts, river plumes, near-­‐surface  phenomena like ice-­‐ melt  or rain   puddles,  air...regions  too  dangerous  for manned craft (like near glacier faces),  and for interpreting  the  undersea structure  of satellite

  19. Chemical Phenomena of Atomic Force Microscopy Scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less

  20. Chemical Phenomena of Atomic Force Microscopy Scanning

    DOE PAGES

    Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.; ...

    2018-01-30

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less

  1. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  2. Nonlinear dielectric effect in supercritical diethyl ether.

    PubMed

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J; Martinez-Garcia, Julio Cesar

    2014-09-07

    Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (T(C)) and ψ ≈ 0.6 remote from T(C). This can be linked to the emergence of the mean-field behavior in the immediate vicinity of T(C), contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.

  3. Nonlinear dielectric effect in supercritical diethyl ether

    NASA Astrophysics Data System (ADS)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Martinez-Garcia, Julio Cesar

    2014-09-01

    Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (TC) and ψ ≈ 0.6 remote from TC. This can be linked to the emergence of the mean-field behavior in the immediate vicinity of TC, contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.

  4. Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers

    NASA Technical Reports Server (NTRS)

    Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.

    1984-01-01

    A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.

  5. Tribology experiment in zero gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.

    1984-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates studies of the motion of liquid lubricants over solid surfaces as controlled by interfacial and capillary forces. Observations were made of phenomena associated with the liquid on one solid surface and also with the liquid between a pair of closely spaced surfaces. Typical photographic records obtained on Spacelab 1 are described.

  6. Shapes of embedded minimal surfaces

    PubMed Central

    Colding, Tobias H.; Minicozzi, William P.

    2006-01-01

    Surfaces that locally minimize area have been extensively used to model physical phenomena, including soap films, black holes, compound polymers, protein folding, etc. The mathematical field dates to the 1740s but has recently become an area of intense mathematical and scientific study, specifically in the areas of molecular engineering, materials science, and nanotechnology because of their many anticipated applications. In this work, we show that all minimal surfaces are built out of pieces of the surfaces in Figs. 1 and 2. PMID:16847265

  7. Characterization of Air and Ground Temperature Relationships within the CMIP5 Historical and Future Climate Simulations

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Beltrami, H.; Smerdon, J. E.

    2017-12-01

    The relationships between air and ground surface temperatures across North America are examined in the historical and future projection simulations from 32 General Circulation Models (GCMs) included in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The covariability between surface air (2 m) and ground surface temperatures (10 cm) is affected by simulated snow cover, vegetation cover and precipitation through changes in soil moisture at the surface. At high latitudes, the differences between air and ground surface temperatures, for all CMIP5 simulations, are related to the insulating effect of snow cover and soil freezing phenomena. At low latitudes, the differences between the two temperatures, for the majority of simulations, are inversely proportional to leaf area index and precipitation, likely due to induced-changes in latent and sensible heat fluxes at the ground surface. Our results show that the transport of energy across the air-ground interface differs from observations and among GCM simulations, by amounts that depend on the components of the land-surface models that they include. The large variability among GCMs and the marked dependency of the results on the choice of the land-surface model, illustrate the need for improving the representation of processes controlling the coupling of the lower atmosphere and the land surface in GCMs as a means of reducing the variability in their representation of weather and climate phenomena, with potentially important implications for positive climate feedbacks such as permafrost and soil carbon stability.

  8. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  9. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  10. Intermittent impact dynamics of a cantilever scanning a surface at high speed

    NASA Astrophysics Data System (ADS)

    Dey, S.; Kartik, V.

    2018-03-01

    In contact-mode scanning probe microscopy (SPM), the cantilever's dynamics are conventionally investigated by assuming the tip to be always in contact with the sample's surface. At high scanning speeds, however, the cantilever's inertia becomes dominant and the tip can therefore completely detach from the surface and start impacting upon it. Experiments at the macro-scale cannot emulate the complex micro-scale dynamics, as the system exhibits negligible effects due to meniscus forces and the surrounding medium's squeeze film damping; however, they can provide qualitative insight into the cantilever's dynamics at high frequencies, corresponding to those likely to be excited during video-rate SPM imaging. This paper investigates such intermittent impact dynamics for an upscaled cantilever, analytically, numerically, and experimentally. In contact-mode scanning, a critical scan speed exists beyond which the cantilever's tip loses contact with the sample's surface; a closed-form expression for this contact loss frequency is derived. At high scan speeds, impacts cause the cantilever to switch between different contact regimes: in-, off-, and grazing-contact; within each regime, the system's modal configuration is different. Experimentally-obtained Poincare maps indicate quasi-periodic behaviour at frequencies for which the response is repetitive, as is also predicted by the model. Intermittent impacts excite the sub- and super-harmonics of the excitation frequency, which are related to the natural frequencies of different system configurations based on the "effective" tip-end boundary conditions. The cantilever's response exhibits several phenomena, such as modal transition, beating, grazing, and possible chaotic behaviour, depending upon the relation between the excitation harmonics and the natural frequencies.

  11. Transport phenomena in the micropores of plug-type phase separators

    NASA Technical Reports Server (NTRS)

    Fazah, M. M.

    1995-01-01

    This study numerically investigates the transport phenomena within and across a porous-plug phase separator. The effect of temperature differential across a single pore and of the sidewall boundary conditions, i.e., isothermal or linear thermal gradient, are presented and discussed. The effects are quantified in terms of the evaporation mass flux across the boundary and the mean surface temperature. A two-dimensional finite element model is used to solve the continuity, momentum, and energy equations for the liquid. Temperature differentials across the pore interface of 1.0, and 1.5 K are examined and their effect on evaporation flux and mean surface temperature is shown. For isothermal side boundary conditions, the evaporation flux across the pore is directly proportional and linear with Delta T. For the case of an imposed linear thermal gradient on the side boundaries, Biot numbers of 0.0, 0.15, and 0.5 are examined. The most significant effect of Biot number is to lower the overall surface temperature and evaporation flux.

  12. Wetting hysteresis induced by nanodefects

    PubMed Central

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-01

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395

  13. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces

    NASA Astrophysics Data System (ADS)

    Nellist, Michael R.; Laskowski, Forrest A. L.; Qiu, Jingjing; Hajibabaei, Hamed; Sivula, Kevin; Hamann, Thomas W.; Boettcher, Shannon W.

    2018-01-01

    Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the "surface" electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.

  14. Investigation of Dynamic Oxygen Adsorption in Molten Solder Jetting Technology

    NASA Technical Reports Server (NTRS)

    Megaridis, Constantine M.; Bellizia, Giulio; McNallan, Michael; Wallace, David B.

    2003-01-01

    Surface tension forces play a critical role in fluid dynamic phenomena that are important in materials processing. The surface tension of liquid metals has been shown to be very susceptible to small amounts of adsorbed oxygen. Consequently, the kinetics of oxygen adsorption can influence the capillary breakup of liquid-metal jets targeted for use in electronics assembly applications, where low-melting-point metals (such as tin-containing solders) are utilized as an attachment material for mounting of electronic components to substrates. By interpreting values of surface tension measured at various surface ages, adsorption and diffusion rates of oxygen on the surface of the melt can be estimated. This research program investigates the adsorption kinetics of oxygen on the surface of an atomizing molten-metal jet. A novel oscillating capillary jet method has been developed for the measurement of dynamic surface tension of liquids, and in particular, metal melts which are susceptible to rapid surface degradation caused by oxygen adsorption. The experimental technique captures the evolution of jet swells and necks continuously along the jet propagation axis and is used in conjunction with an existing linear, axisymmetric, constant-property model to determine the variation of the instability growth rate, and, in turn, surface tension of the liquid as a function of surface age measured from the exit orifice. The conditions investigated so far focus on a time window of 2-4ms from the jet orifice. The surface properties of the eutectic 63%Sn-37%Pb solder alloy have been investigated in terms of their variation due to O2 adsorption from a N2 atmosphere containing controlled amounts of oxygen (from 8 ppm to 1000 ppm). The method performed well for situations where the oxygen adsorption was low in that time window. The value of surface tension for the 63Sn-37Pb solder in pure nitrogen was found to be 0.49 N/m, in good agreement with previously published work. A characteristic time of O(1ms) or less was determined for the molten-metal surface to be saturated by oxygen at 1000 ppm concentration in N2.

  15. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  16. Percolation Laws of a Fractal Fracture-Pore Double Medium

    NASA Astrophysics Data System (ADS)

    Zhao, Yangsheng; Feng, Zengchao; Lv, Zhaoxing; Zhao, Dong; Liang, Weiguo

    2016-12-01

    The fracture-pore double porosity medium is one of the most common media in nature, for example, rock mass in strata. Fracture has a more significant effect on fluid flow than a pore in a fracture-pore double porosity medium. Hence, the fracture effect on percolation should be considered when studying the percolation phenomenon in porous media. In this paper, based on the fractal distribution law, three-dimensional (3D) fracture surfaces, and two-dimensional (2D) fracture traces in rock mass, the locations of fracture surfaces or traces are determined using a random function of uniform distribution. Pores are superimposed to build a fractal fracture-pore double medium. Numerical experiments were performed to show percolation phenomena in the fracture-pore double medium. The percolation threshold can be determined from three independent variables (porosity n, fracture fractal dimension D, and initial value of fracture number N0). Once any two are determined, the percolation probability exists at a critical point with the remaining parameter changing. When the initial value of the fracture number is greater than zero, the percolation threshold in the fracture-pore medium is much smaller than that in a pore medium. When the fracture number equals zero, the fracture-pore medium degenerates to a pore medium, and both percolation thresholds are the same.

  17. Elucidating the DEP phenomena using a volumetric polarization approach with consideration of the electric double layer

    PubMed Central

    Brcka, Jozef; Faguet, Jacques; Zhang, Guigen

    2017-01-01

    Dielectrophoretic (DEP) phenomena have been explored to great success for various applications like particle sorting and separation. To elucidate the underlying mechanism and quantify the DEP force experienced by particles, the point-dipole and Maxwell Stress Tensor (MST) methods are commonly used. However, both methods exhibit their own limitations. For example, the point-dipole method is unable to fully capture the essence of particle-particle interactions and the MST method is not suitable for particles of non-homogeneous property. Moreover, both methods fare poorly when it comes to explaining DEP phenomena such as the dependence of crossover frequency on medium conductivity. To address these limitations, the authors have developed a new method, termed volumetric-integration method, with the aid of computational implementation, to reexamine the DEP phenomena, elucidate the governing mechanism, and quantify the DEP force. The effect of an electric double layer (EDL) on particles' crossover behavior is dealt with through consideration of the EDL structure along with surface ionic/molecular adsorption, unlike in other methods, where the EDL is accounted for through simply assigning a surface conductance value to the particles. For validation, by comparing with literature experimental data, the authors show that the new method can quantify the DEP force on not only homogeneous particles but also non-homogeneous ones, and predict particle-particle interactions fairly accurately. Moreover, the authors also show that the predicted dependence of crossover frequency on medium conductivity and particle size agrees very well with experimental measurements. PMID:28396710

  18. Surface Analysis and Tools

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2002-01-01

    This article is a chapter of the book entitled, "Tribology of Mechanical Systems," to be published by ASME Press, New York, NY. It describes selected analytical techniques, which are being used in understanding phenomena and mechanisms of oxidation, adhesion, bonding, friction, erosion, abrasion, and wear, and in defining the problems. The primary emphasis is on microanalytical approaches to engineering surfaces.

  19. Geostatistics: a new tool for describing spatially-varied surface conditions from timber harvested and burned hillslopes

    Treesearch

    Peter R. Robichaud

    1997-01-01

    Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...

  20. A Survey Course: The Energy and Mass Budget at the Surface of the Earth.

    ERIC Educational Resources Information Center

    Association of American Geographers, Washington, DC. Commission on College Geography.

    The objectives of this geography course for liberal arts students include the following: 1) to demonstrate cooperative action among sciences, by showing that physical and chemical phenomena occur at biological surfaces that usually exist in economic and cultural frameworks; 2) to show that laboratory principles of mass and energy exchange and…

  1. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    ERIC Educational Resources Information Center

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  2. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Treesearch

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  3. Statistical Mechanics and Applications in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  4. [Health equity: a critical analysis of concepts].

    PubMed

    Vieira-da-Silva, Ligia Maria; Almeida Filho, Naomar de

    2009-01-01

    Health inequalities have been studied mainly from an epidemiological perspective, with limited attention to conceptual issues. The terms 'equity' and 'equality' have often been used as synonyms, as have their opposites, 'inequity' and 'inequality'. The few attempts to establish their meanings have been either purely descriptive or have failed to add to an understanding of the underlying dynamics in health-disease-related phenomena. The present essay explores the semantic series that includes difference, diversity, distinction, inequality, and inequity and its relationship to health phenomena in light of Perelman's concept of equity, Bourdieu's sociology, and some arguments in Heller's theory of justice, with the aim of contributing to the development of these concepts, while discussing their implications for policymaking in health.

  5. Binaries, cluster dynamics and population studies of stars and stellar phenomena

    NASA Astrophysics Data System (ADS)

    Vanbeveren, Dany

    2005-10-01

    The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.

  6. Some flow phenomena in a constant area duct with a Borda type inlet including the critical region

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1978-01-01

    Mass limiting flow characteristics for a 55 L/D tube with a Borda type inlet were assessed over large ranges of temperature and pressure, using fluid nitrogen. Under certain conditions, separation and pressure drop at the inlet was sufficiently strong to permit partial vaporization and the remaining fluid flowed through the tube as if it were a free jet. An empirical relation was determined which defines conditions under which this type of flow can occur. A flow coefficient is presented which enables estimations of flow rates over the experimental range. A flow rate stagnation pressure map for selected stagnation isotherms and pressure profiles document these flow phenomena.

  7. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    PubMed

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  8. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass andmore » liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.« less

  9. Experimental Study of Thermal Field Evolution in the Short-Impending Stage Before Earthquakes

    NASA Astrophysics Data System (ADS)

    Ren, Yaqiong; Ma, Jin; Liu, Peixun; Chen, Shunyun

    2017-08-01

    Phenomena at critical points are vital for identifying the short-impending stage prior to earthquakes. The peak stress is a critical point when stress is converted from predominantly accumulation to predominantly release. We call the duration between the peak stress and instability "the meta-instability stage", which refers to the short-impending stage of earthquakes. The meta-instability stage consists of a steady releasing quasi-static stage and an accelerated releasing quasi-dynamic stage. The turning point of the above two stages is the remaining critical point. To identify the two critical points in the field, it is necessary to study the characteristic phenomena of various physical fields in the meta-instability stage in the laboratory, and the strain and displacement variations were studied. Considering that stress and relative displacement can be detected by thermal variations and peculiarities in the full-field observations, we employed a cooled thermal infrared imaging system to record thermal variations in the meta-instability stage of stick slip events generated along a simulated, precut planer strike slip fault in a granodiorite block on a horizontally bilateral servo-controlled press machine. The experimental results demonstrate the following: (1) a large area of decreasing temperatures in wall rocks and increasing temperatures in sporadic sections of the fault indicate entrance into the meta-instability stage. (2) The rapid expansion of regions of increasing temperatures on the fault and the enhancement of temperature increase amplitude correspond to the turning point from the quasi-static stage to the quasi-dynamic stage. Our results reveal thermal indicators for the critical points prior to earthquakes that provide clues for identifying the short-impending stage of earthquakes.

  10. A Renormalization-Group Interpretation of the Connection between Criticality and Multifractals

    NASA Astrophysics Data System (ADS)

    Chang, Tom

    2014-05-01

    Turbulent fluctuations in space plasmas beget phenomena of dynamic complexity. It is known that dynamic renormalization group (DRG) may be employed to understand the concept of forced and/or self-organized criticality (FSOC), which seems to describe certain scaling features of space plasma turbulence. But, it may be argued that dynamic complexity is not just a phenomenon of criticality. It is therefore of interest to inquire if DRG may be employed to study complexity phenomena that are distinctly more complicated than dynamic criticality. Power law scaling generally comes about when the DRG trajectory is attracted to the vicinity of a fixed point in the phase space of the relevant dynamic plasma parameters. What happens if the trajectory lies within a domain influenced by more than one single fixed point or more generally if the transformation underlying the DRG is fully nonlinear? The global invariants of the group under such situations (if they exist) are generally not power laws. Nevertheless, as we shall argue, it may still be possible to talk about local invariants that are power laws with the nonlinearity of transformation prescribing a specific phenomenon as crossovers. It is with such concept in mind that we may provide a connection between the properties of dynamic criticality and multifractals from the point of view of DRG (T. Chang, Chapter VII, "An Introduction to Space Plasma Complexity", Cambridge University Press, 2014). An example in terms of the concepts of finite-size scaling (FSS) and rank-ordered multifractal analysis (ROMA) of a toy model shall be provided. Research partially supported by the US National Science Foundation and the European Community's Seventh Framework Programme (FP7/ 2007-2013) under Grant agreement no. 313038/STORM.

  11. Seasonal-scale Observational Data Analysis and Atmospheric Phenomenology for the Cold Land Processes Experiment

    NASA Technical Reports Server (NTRS)

    Poulos, Gregory S.; Stamus, Peter A.; Snook, John S.

    2005-01-01

    The Cold Land Processes Experiment (CLPX) experiment emphasized the development of a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. Our work sought to investigate which topographically- generated atmospheric phenomena are most relevant to the CLPX MSA's for the purpose of evaluating their climatic importance to net local moisture fluxes and snow transport through the use of high-resolution data assimilation/atmospheric numerical modeling techniques. Our task was to create three long-term, scientific quality atmospheric datasets for quantitative analysis (for all CLPX researchers) and provide a summary of the meteorologically-relevant phenomena of the three MSAs (see Figure) over northern Colorado. Our efforts required the ingest of a variety of CLPX datasets and the execution an atmospheric and land surface data assimilation system based on the Navier-Stokes equations (the Local Analysis and Prediction System, LAPS, and an atmospheric numerical weather prediction model, as required) at topographically- relevant grid spacing (approx. 500 m). The resulting dataset will be analyzed by the CLPX community as a part of their larger research goals to determine the relative influence of various atmospheric phenomena on processes relevant to CLPX scientific goals.

  12. Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection

    NASA Astrophysics Data System (ADS)

    Onuki, Akira

    2007-12-01

    We present a general theory of thermoacoustic phenomena in one phase states of one-component fluids. Singular behavior is predicted in supercritical fluids near the critical point. In a one-dimensional geometry we start with linearized hydrodynamic equations taking into account the effects of heat conduction in the boundary walls and the bulk viscosity. We introduce a coefficient Z(ω) characterizing reflection of sound with frequency ω at the boundary in a rigid cell. As applications, we examine acoustic eigenmodes, response to time-dependent perturbations, and sound emission and reflection. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.

  13. ALCHEMIC: Advanced time-dependent chemical kinetics

    NASA Astrophysics Data System (ADS)

    Semenov, Dmitry A.

    2017-08-01

    ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.

  14. Diffusion on Cu surfaces

    NASA Technical Reports Server (NTRS)

    Karimi, Majid

    1993-01-01

    Understanding surface diffusion is essential in understanding surface phenomena, such as crystal growth, thin film growth, corrosion, physisorption, and chemisorption. Because of its importance, various experimental and theoretical efforts have been directed to understand this phenomena. The Field Ion Microscope (FIM) has been the major experimental tool for studying surface diffusion. FIM have been employed by various research groups to study surface diffusion of adatoms. Because of limitations of the FIM, such studies are only limited to a few surfaces: nickel, platinum, aluminum, iridium, tungsten, and rhodium. From the theoretical standpoint, various atomistic simulations are performed to study surface diffusion. In most of these calculations the Embedded Atom Method (EAM) along with the molecular static (MS) simulation are utilized. The EAM is a semi-empirical approach for modeling the interatomic interactions. The MS simulation is a technique for minimizing the total energy of a system of particles with respect to the positions of its particles. One of the objectives of this work is to develop the EAM functions for Cu and use them in conjunction with the molecular static (MS) simulation to study diffusion of a Cu atom on a perfect as well as stepped Cu(100) surfaces. This will provide a test of the validity of the EAM functions on Cu(100) surface and near the stepped environments. In particular, we construct a terrace-ledge-kink (TLK) model and calculate the migration energies of an atom on a terrace, near a ledge site, near a kink site, and going over a descending step. We have also calculated formation energies of an atom on the bare surface, a vacancy in the surface, a stepped surface, and a stepped-kink surface. Our results are compared with the available experimental and theoretical results.

  15. The circle of the soul: the role of spirituality in health care.

    PubMed

    Moss, Donald

    2002-12-01

    This paper examines the critical attitude of behavioral professionals toward spiritual phenomena, and the current growing openness toward a scientific study of spirituality and its effects on health. Health care professionals work amidst sickness and suffering, and become immersed in the struggles of suffering persons for meaning and spiritual direction. Biofeedback and neurofeedback training can facilitate relaxation, mental stillness, and the emergence of spiritual experiences. A growing body of empirical studies documents largely positive effects of religious involvement on health. The effects of religion and spirituality on health are diverse, ranging from such tangible and easily understood phenomena as a reduction of health-risk behaviors in church-goers, to more elusive phenomena such as the distant effects of prayer on health and physiology. Psychophysiological methods may prove useful in identifying specific physiological mechanisms mediating such effects. Spirituality is also a dimension in much of complementary and alternative medicine (CAM), and the CAM arena may offer a window of opportunity for biofeedback practice.

  16. Ultralong relaxation times in bistable hybrid quantum systems.

    PubMed

    Angerer, Andreas; Putz, Stefan; Krimer, Dmitry O; Astner, Thomas; Zens, Matthias; Glattauer, Ralph; Streltsov, Kirill; Munro, William J; Nemoto, Kae; Rotter, Stefan; Schmiedmayer, Jörg; Majer, Johannes

    2017-12-01

    Nonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many interesting and important phenomena that have profoundly changed our technological landscape over the last 50 years. Recently, the ability to engineer quantum metamaterials through hybridization has allowed us to explore these nonlinear effects in systems with no natural analog. We investigate amplitude bistability, which is one of the most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively coupled to an ensemble of nitrogen-vacancy centers. One of the exciting properties of this spin system is its long spin lifetime, which is many orders of magnitude longer than other relevant time scales of the hybrid system. This allows us to dynamically explore this nonlinear regime of cavity quantum electrodynamics and demonstrate a critical slowing down of the cavity population on the order of several tens of thousands of seconds-a time scale much longer than observed so far for this effect. Our results provide a foundation for future quantum technologies based on nonlinear phenomena.

  17. Response to various periods of mechanical stimuli in Physarum plasmodium

    NASA Astrophysics Data System (ADS)

    Umedachi, Takuya; Ito, Kentaro; Kobayashi, Ryo; Ishiguro, Akio; Nakagaki, Toshiyuki

    2017-06-01

    Response to mechanical stimuli is a fundamental and critical ability for living cells to survive in hazardous conditions or to form adaptive and functional structures against force(s) from the environment. Although this ability has been extensively studied by molecular biology strategies, it is also important to investigate the ability from the viewpoint of biological rhythm phenomena so as to reveal the mechanisms that underlie these phenomena. Here, we use the plasmodium of the true slime mold Physarum polycephalum as the experimental system for investigating this ability. The plasmodium was repetitively stretched for various periods during which its locomotion speed was observed. Since the plasmodium has inherent oscillation cycles of protoplasmic streaming and thickness variation, how the plasmodium responds to various periods of external stretching stimuli can shed light on the other biological rhythm phenomena. The experimental results show that the plasmodium exhibits response to periodic mechanical stimulation and changes its locomotion speed depending on the period of the stretching stimuli.

  18. A Qualitative Study of Alumni Non-Donors of Historically Black Colleges and Universities

    ERIC Educational Resources Information Center

    Foxx, Laura R.

    2013-01-01

    This qualitative research study was designed as an exploration of the phenomena of alumni non-donors of Historically Black Colleges and Universities (HBCUs). Successfully securing private voluntary support is one of the most critical challenges for higher education institutions as traditional sources of financial support diminish, and alumni…

  19. Recommendations for Using the Case Study Method in International Business Research

    ERIC Educational Resources Information Center

    Vissak, Tiia

    2010-01-01

    The case study method has not been as frequently used in international business (IB) research as quantitative methods. Moreover, it has been sometimes misused and quite often criticized. Still, it can be very useful for understanding such complex phenomena as the internationalization process or the management of multinational enterprises. Based on…

  20. Energy and the Confused Student I: Work

    ERIC Educational Resources Information Center

    Jewett, John W., Jr.

    2008-01-01

    Energy is a critical concept that is used in analyzing physical phenomena and is often an essential starting point in physics problem-solving. It is a global concept that appears throughout the physics curriculum in mechanics, thermodynamics, electromagnetism, and modern physics. Energy is also at the heart of descriptions of processes in biology,…

  1. Wetting in a Colloidal Liquid-Gas System

    NASA Astrophysics Data System (ADS)

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  2. Wetting in a colloidal liquid-gas system.

    PubMed

    Wijting, W K; Besseling, N A M; Stuart, M A Cohen

    2003-05-16

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  3. Current Behavioral Models of Client and Consultee Resistance: A Critical Review

    ERIC Educational Resources Information Center

    Cautilli, Joe; Riley-Tillman, T. Chris; Axelrod, Saul; Hineline, Phil

    2005-01-01

    Resistance is the phenomena that occurs in the therapeutic relationship when the patient refuses to complete tasks assigned by the therapist which would benefit the patient in improving their psychological situation. Resistance is also used to describe situations in the consulting relationship where the consultee does not do what the consultant…

  4. Descriptive Analysis in Education: A Guide for Researchers. NCEE 2017-4023

    ERIC Educational Resources Information Center

    Loeb, Susanna; Dynarski, Susan; McFarland, Daniel; Morris, Pamela; Reardon, Sean; Reber, Sarah

    2017-01-01

    Whether the goal is to identify and describe trends and variation in populations, create new measures of key phenomena, or describe samples in studies aimed at identifying causal effects, description plays a critical role in the scientific process in general and education research in particular. Descriptive analysis identifies patterns in data to…

  5. Computerized Simulation in the Social Sciences: A Survey and Evaluation

    ERIC Educational Resources Information Center

    Garson, G. David

    2009-01-01

    After years at the periphery of the social sciences, simulation is now emerging as an important and widely used tool for understanding social phenomena. Through simulation, researchers can identify causal effects, specify critical parameter estimates, and clarify the state of the art with respect to what is understood about how processes evolve…

  6. Using the Study of Anomalies to Enhance Critical Thinking in the Classroom.

    ERIC Educational Resources Information Center

    Swords, Michael D.

    1990-01-01

    An upper-class college seminar-style course in which students work on semester-long research papers on a variety of anomalous claims and subjects is described. A list of topics chosen in the course and a copy of an opinion survey on paranormal and anomalistic phenomena are included. (KR)

  7. Maori in the Kingdom of the Gaze: Subjects or Critics?

    ERIC Educational Resources Information Center

    Mika, Carl; Stewart, Georgina

    2016-01-01

    For Maori, a real opportunity exists to flesh out some terms and concepts that Western thinkers have adopted and that precede disciplines but necessarily inform them. In this article, we are intent on describing one of these precursory phenomena--Foucault's Gaze--within a framework that accords with a Maori philosophical framework. Our discussion…

  8. Integrating Micro-Macro Organizational Communication Research: Rationale, Issues, and Mechanisms.

    ERIC Educational Resources Information Center

    Miller, Vernon; And Others

    The integration of micro-macro variables is critical to the development of organizational communication as an academic field. Mixed-level analysis is inherent in organizational phenomena, and its neglect perpetuates the gap in and fragmentation of organizational communication theories. Three of the many ways to design mixed-level analyses are…

  9. Human Communication, Semiotics, and General Systems: Personal and Social Communication.

    ERIC Educational Resources Information Center

    Ruben, Brent D.

    Questions as to the nature of sign and symbol processes and the functions and behavioral consequences of human significant phenomena are of central concern in semiotics and communication. These matters continue to be of critical importance and are still largely unresolved. Scholars in both areas of inquiry have sought unification of scientific…

  10. Holography and the conformal window in the Veneziano limit

    NASA Astrophysics Data System (ADS)

    Järvinen, M.

    2017-12-01

    We discuss holographic QCD in the Veneziano limit (the V-QCD models), concentrating on phenomena near the “conformal” phase transition taking place at a critical value of the ratio x ≡ Nf/Nc. In particular, we review the results for the S-parameter, the technidilaton, and the masses of the mesons.

  11. Teaching Social Media Analytics: An Assessment Based on Natural Disaster Postings

    ERIC Educational Resources Information Center

    Goh, Tiong T.; Sun, Pei-Chen

    2015-01-01

    Unstructured data in social media is as part of the "big data" spectrum. Unstructured data in Social media can provide useful insights into social phenomena and citizen opinions, both of which are critical to government policy and businesses decisions. Teachers of business intelligence and analytics commonly use quantitative data from…

  12. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing

    NASA Astrophysics Data System (ADS)

    Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang

    2017-08-01

    Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

  13. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Altman, E.

    2010-10-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  14. Dynamics of a single flexible filament in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Chen, Chaonan; Feng, Shunshan; Zhou, Tong

    2016-11-01

    The interactions between flexible plates and surrounding fluids like two-dimensional flag-in-wind problems are important physical phenomena. Here we use a spandex filament with one end fixed flapping in gravity-driven soap film device which can be regarded as a quasi-two-dimensional flow tunnel. A silk filament had been used previously to demonstrate three stable dynamical states: stretched-straight, flapping, and bistable states. The similar phenomena occured for a spandex filament while the bifurcation conditions seem to be different compared with a silk filament, as the critical filament length is longer and critical inflow velocity is higher than that for a silk filament. In the experiment, we considered some representative parameters (filament length, inflow velocity, and bending stiffness of the filament) to study their effects on the stability of the filament and its bifurcation conditions. An interface-tracking ALE finite element method was then conducted to reproduce the experiment and investigate more details about effects of these parameters. which are significant to reveal the underlying mechanism of flag-in-wind problem. Corresponding Author. Email:zhoutong@bit.edu.cn.

  15. Entanglement entropy in critical phenomena and analog models of quantum gravity

    NASA Astrophysics Data System (ADS)

    Fursaev, Dmitri V.

    2006-06-01

    A general geometrical structure of the entanglement entropy for spatial partition of a relativistic QFT system is established by using methods of the effective gravity action and the spectral geometry. A special attention is payed to the subleading terms in the entropy in different dimensions and to behavior in different states. It is conjectured, on the base of relation between the entropy and the action, that in a fundamental theory the ground state entanglement entropy per unit area equals 1/(4GN), where GN is the Newton constant in the low-energy gravity sector of the theory. The conjecture opens a new avenue in analogue gravity models. For instance, in higher-dimensional condensed matter systems, which near a critical point are described by relativistic QFT’s, the entanglement entropy density defines an effective gravitational coupling. By studying the properties of this constant one can get new insights in quantum gravity phenomena, such as the universality of the low-energy physics, the renormalization group behavior of GN, the statistical meaning of the Bekenstein-Hawking entropy.

  16. Socializing the human factors analysis and classification system: incorporating social psychological phenomena into a human factors error classification system.

    PubMed

    Paletz, Susannah B F; Bearman, Christopher; Orasanu, Judith; Holbrook, Jon

    2009-08-01

    The presence of social psychological pressures on pilot decision making was assessed using qualitative analyses of critical incident interviews. Social psychological phenomena have long been known to influence attitudes and behavior but have not been highlighted in accident investigation models. Using a critical incident method, 28 pilots who flew in Alaska were interviewed. The participants were asked to describe a situation involving weather when they were pilot in command and found their skills challenged. They were asked to describe the incident in detail but were not explicitly asked to identify social pressures. Pressures were extracted from transcripts in a bottom-up manner and then clustered into themes. Of the 28 pilots, 16 described social psychological pressures on their decision making, specifically, informational social influence, the foot-in-the-door persuasion technique, normalization of deviance, and impression management and self-consistency motives. We believe accident and incident investigations can benefit from explicit inclusion of common social psychological pressures. We recommend specific ways of incorporating these pressures into theHuman Factors Analysis and Classification System.

  17. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

    DOE PAGES

    Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; ...

    2015-08-13

    The ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices are two-dimensional monolayer transition metal dichalcogenide semiconductors. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. We use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Moreover, synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disorderedmore » edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. In conclusion, the nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.« less

  18. Liquid Behavior at Critical and Supercritical Conditions

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang; Gross, Klaus W.

    1989-01-01

    At a JANNAF workshop, the issue of fluids at and above the critical point was discussed to obtain a better understanding of similar conditions in combustion chambers of rocket engines. Invited experts from academic, industrial, and government institutions presented the most recent physical, numerical, and experimental advances. During the final discussion period, it was agreed that: (1) no analytical capability exists to simulate subject conditions; (2) mechanisms reflected by opalescence, the solubility of gases, other interfacial phenomena listed, and fluorescence diagnostics are new and important; (3) multicomponent mixtures, radiation, critical fluctuation, and other recorded ones pose unknown effects; and (4) various identified analytical and experimental actions must be initiated in a mutually supporting sequence.

  19. Shape evolution of a melting nonspherical particle

    NASA Astrophysics Data System (ADS)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  20. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  1. Adaptational phenomena and mechanical responses during running: effect of surface, aging and task experience.

    PubMed

    Karamanidis, Kiros; Arampatzis, Adamantios; Brüggemann, Gert-Peter

    2006-10-01

    The goals of the study were to identify adaptational phenomena in running mechanics over a variety of surfaces due to age related changes in the muscle-tendon units (MTUs) capacities, to examine whether running experience is associated with adaptational effects on running mechanics over a variety of surfaces even at old age, and to investigate whether surface condition affects running mechanics. The investigation was executed on 30 old and 19 young including 29 runners and 20 non-active subjects. In a previous study we documented that the older had lower MTUs capacities. In the present study running mechanics were analysed as the same subjects ran at 2.7 m/s over three surfaces having different compliance. Surface condition did not affect centre of mass trajectory, duty factor or joint kinetics (P > 0.01). Older react to the reduced MTUs capacity by increasing duty factor and benefiting from a mechanical advantage for the triceps surae MTU and a lower rate of force generation on all surfaces (P < 0.01). Runners displayed lower average horizontal forces and a higher mechanical advantage for the quadriceps femoris MTU for all surfaces (P < 0.01). The results provided strong evidence on that running strategy remained essentially unchanged over a variety of surfaces. Adaptive improvements in running mechanics due to task experience were present for all surfaces and did not depend on age. We further concluded that older adults were able to recalibrate their running strategy to adjust the task effort to the reduced MTUs capacities in a feedforward control manner for a variety of mechanical environments.

  2. Low Dimensionality Effects in Complex Magnetic Oxides

    NASA Astrophysics Data System (ADS)

    Kelley, Paula J. Lampen

    Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.

  3. The Early Years: Looking at Landscapes

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2017-01-01

    This column discusses resources and science topics related to students in grades preK to 2. In this month's issue students study landscape surfaces to recognize changes due to human impacts or natural phenomena.

  4. SECO containment data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, T.; Heinle, R.

    1997-06-01

    This containment data report for the SECO event provides a description of the event, including the site, emplacement, and instrumentation. Stemming performance is reported, including radiation, pressure, collapse phenomena, and motion. Surface array measurements are provided.

  5. Meteorological satellite accomplishments

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1974-01-01

    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.

  6. Using high-resolution HiRISE digital elevation models to study early activity in polar regions

    NASA Astrophysics Data System (ADS)

    Portyankina, G.; Pommerol, A.; Aye, K.; Thomas, N.; Mattson, S.; Hansen, C. J.

    2013-12-01

    Martian polar areas are known for their very dynamic seasonal activity. It is believed that many observed seasonal phenomena here (cold CO2 jets, seasonal ice cracks, fan deposits, blotches) are produced by spring sublimation of CO2 slab ice. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has exceptional capabilities to image polar areas at times when surface processes there are most active, i.e. in early local spring. HiRISE data can be also used to create digital elevation models (DEMs) of the martian surface if two images with similar lighting but different observation geometry are available. Polar areas pose some specific problems in this because of the oblique illumination conditions and seasonally changing ice cover. Nevertheless, HiRISE DEMs with spatial resolution up to 1 meter were produced for a few polar locations with active spring sublimation. These DEMs improve our ability to directly compare observations from different local times, sols, seasons and martian years. These observations may now be orthorectified by projecting them onto the well-defined topography thus eliminating the ambiguities of different observational geometries. In addition, the DEM can serve as a link between the observations and models of seasonal activity. Observations of martian polar areas in springs of multiple martian years have led to the hypothesis that meter-scale topography is triggering the activity in early spring. Solar energy input is critical for the timing of spring activity. In this context, variations of surface inclination are important especially in early spring, when orientation towards the sun is one of critical parameters determining the level of solar energy input, the amount of CO2 sublimation, and hence the level of any activity connected to it. In the present study existing DEMs of two polar locations serve as model terrains to test the previously proposed hypothesis of early initialization of CO2 activity by solar illumination. We use the NAIF SPICE system to calculate precise energy input to each surface facet accounting for their slope and aspect orientation and shadowing by neighbor terrains. We show that the energy distribution over the surface is highly heterogeneous and maximized on the sides of the channels and other small topographical features. Our study supports the hypothesis that solar energy input in polar areas in spring is directly related to the activity observed.

  7. Surface elastic properties in silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  8. Soft Coulomb gap and asymmetric scaling towards metal-insulator quantum criticality in multilayer MoS2.

    PubMed

    Moon, Byoung Hee; Bae, Jung Jun; Joo, Min-Kyu; Choi, Homin; Han, Gang Hee; Lim, Hanjo; Lee, Young Hee

    2018-05-24

    Quantum localization-delocalization of carriers are well described by either carrier-carrier interaction or disorder. When both effects come into play, however, a comprehensive understanding is not well established mainly due to complexity and sparse experimental data. Recently developed two-dimensional layered materials are ideal in describing such mesoscopic critical phenomena as they have both strong interactions and disorder. The transport in the insulating phase is well described by the soft Coulomb gap picture, which demonstrates the contribution of both interactions and disorder. Using this picture, we demonstrate the critical power law behavior of the localization length, supporting quantum criticality. We observe asymmetric critical exponents around the metal-insulator transition through temperature scaling analysis, which originates from poor screening in insulating regime and conversely strong screening in metallic regime due to free carriers. The effect of asymmetric scaling behavior is weakened in monolayer MoS 2 due to a dominating disorder.

  9. Canards and black swans in a model of a 3-D autocatalator

    NASA Astrophysics Data System (ADS)

    Shchepakina, E.

    2005-01-01

    The mathematical model of a 3-D autocatalator is studied using the geometric theory of singular perturbations, namely, the black swan and canard techniques. Critical regimes are modeled by canards (one-dimensional stable-unstable slow integral manifolds). The meaning of criticality here is as follows. The critical regime corresponds to a chemical reaction which separates the domain of self-accelerating reactions from the domain of slow reactions. A two-dimensional stable-unstable slow integral manifold (black swan) consisting entirely of canards, which simulate the critical phenomena for different initial data of the dynamical system, is constructed. It is shown that this procedure leads to the phenomenon of auto-oscillations in the chemical system. The geometric approach combined with asymptotic and numerical methods permits us to explain the strong parametric sensitivity and to obtain asymptotic representations of the critical behavior of the chemical system.

  10. Digital speckle correlation for nondestructive testing of corrosion

    NASA Astrophysics Data System (ADS)

    Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya; Hogert, Elsa N.; Landau, Monica R.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.

    1999-07-01

    This paper describes the use of optical correlation speckle patterns to detect and analyze the metallic corrosion phenomena, and shows the experimental set-up used. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. We also provide valuable information about surface microrelief changes, which is also useful in numerous engineering applications. The results obtained are good enough for showing that our technique is very useful for giving new possibilities to the analysis of the corrosion and oxidation process, particularly in real time.

  11. Collective motion in Proteus mirabilis swarms

    NASA Astrophysics Data System (ADS)

    Haoran, Xu

    Proteus mirabilisis a Gram-negative, rod-shaped bacterium. It is widely distributed in soil and water, and it is well known for exhibiting swarming motility on nutrient agar surfaces. In our study, we focused on the collective motility of P. mirabilis and uncovered a range of interesting phenomena. Here we will present our efforts to understand these phenomena through experiments and simulation. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail:xhrphx@gmail.com.

  12. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  13. A Comparison of ARTEMIS Observations and Particle-in-cell Modeling of the Lunar Photoelectron Sheath in the Terrestrial Magnetotail

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.

    2012-01-01

    As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.

  14. Study on Controls of Fluids in Nanochannel via Hybrid Surface

    NASA Astrophysics Data System (ADS)

    Ye, Ziran

    This thesis contributes to the investigation of controls of nanofluidic fluids by utilizing hybrid surface patterns in nanochannel. Nanofluidics is a core and interdisciplinary research field which manipulates, controls and analyzes fluids in nanoscale and develop potential bio/chemical applications. This thesis studies the surface-induced phenomena in nanofluidics, we use surface decoration on nanochannel walls to investigate the influences on fluid motion and further explore the fundamental physical principle of this behavior. To begin with, we designed and fabricated the nanofluidic mixer for the first time, which comprised hybrid surface patterns with different wettabilities on both top and bottom walls of nanochannel. Although microfluidic mixers have been intensively investigated, nanofluidic mixer has never been reported. Without any inside geometric structure of nanochannel, the mixing phenomenon can be achieved by the surface patterns and the mixing length can be significantly shortened comparing with micromixer. We attribute this achievement to the chaotic flows of two fluids induced by the patterned surface. The surface-related phenomena may not be so prominent on large scale, however, it is pronounced when the scale shrinks down to nanometer due to the large surface-to-volume ratio in nanochannel. In the second part of this work, based on the technology of nanofabrication and similar principle, we built up another novel method to control the speed of capillary flow in nanochannel in a quantitative manner. Surface patterns were fabricated on the nanochannel walls to slow down the capillary flow. The flow speed can be precisely controlled by modifying hydrophobicity ratio. Under the extreme surface-to-volume ratio in nanochannel, the significant surface effect on the fluid effectively reduced the speed of capillary flow without any external energy source and equipment. Such approach may be adopted for a wide variety of nanofluidicsbased biochemical analysis systems.

  15. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia

    NASA Astrophysics Data System (ADS)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-11-01

    Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180-218 days band (~6-7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  16. Avalanching glacier instabilities: Review on processes and early warning perspectives

    NASA Astrophysics Data System (ADS)

    Faillettaz, Jérome; Funk, Martin; Vincent, Christian

    2015-06-01

    Avalanching glacier instabilities are gravity-driven rupture phenomena that might cause major disasters, especially when they are at the origin of a chain of processes. Reliably forecasting such events combined with a timely evacuation of endangered inhabited areas often constitute the most efficient action. Recently, considerable efforts in monitoring, analyzing, and modeling such phenomena have led to significant advances in destabilization process understanding, improving early warning perspectives. The purpose of this paper is to review the recent progress in this domain. Three different types of instabilities can be identified depending on the thermal properties of the ice/bed interface. If cold (1), the maturation of the rupture is associated with a typical time evolution of surface velocities and passive seismic activity. A prediction of the final break off is possible using these precursory signs. For the two other types, water plays a key role in the development of the instability. If the ice/bed interface is partly temperate (2), the presence of meltwater may reduce the basal resistance, which promotes the instability. No clear and easily detectable precursory signs are known in this case, and the only way to infer any potential instability is to monitor the temporal evolution of the thermal regime. The last type of instability (3) concerns steep temperate glacier tongues switching for several days/weeks during the melting season into a so-called "active phase" followed in rare cases by a major break-off event. Although the prediction of such events is still far from being achievable, critical conditions promoting the final instability can be identified.

  17. Investigation of thermal conduction in symmetric and asymmetric nanoporous structures

    NASA Astrophysics Data System (ADS)

    Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho

    2017-12-01

    Nanoporous structures with a critical dimension comparable to or smaller than the phonon mean free path have demonstrated significant thermal conductivity reductions that are attractive for thermoelectric applications, but the presence of various geometric parameters complicates the understanding of governing mechanisms. Here, we use a ray tracing technique to investigate phonon boundary scattering phenomena in Si nanoporous structures of varying pore shapes, pore alignments, and pore size distributions, and identify mechanisms that are primarily responsible for thermal conductivity reductions. Our simulation results show that the neck size, or the smallest distance between nearest pores, is the key parameter in understanding nanoporous structures of varying pore shapes and the same porosities. When the neck size and the porosity are both identical, asymmetric pore shapes provide a lower thermal conductivity compared with symmetric pore shapes, due to localized heat fluxes. Asymmetric nanoporous structures show possibilities of realizing thermal rectification even with fully diffuse surface boundaries, in which optimal arrangements of triangular pores show a rectification ratio up to 13 when the injection angles are optimally controlled. For symmetric nanoporous structures, hexagonal-lattice pores achieve larger thermal conductivity reductions than square-lattice pores due to the limited line of sight for phonons. We also show that nanoporous structures of alternating pore size distributions from large to small pores yield a lower thermal conductivity compared with those of uniform pore size distributions in the given porosity. These findings advance the understanding of phonon boundary scattering phenomena in complex geometries and enable optimal designs of artificial nanostructures for thermoelectric energy harvesting and solid-state cooling systems.

  18. What causes the trends in Geocenter motion estimates?

    NASA Astrophysics Data System (ADS)

    Rietbroek, Roelof; Schrama, Ernst

    2015-04-01

    Over time, the geometrical center of figure of the Earth (CF) and the center of mass of the Earth system (CM) exhibit small changes. This phenomena, generally referred to as 'geocenter motion', is mainly caused by present-day and past surface loading and (visco)-elastic deformation processes occurring near the surface of the Earth. It is now well known that the computation of surface loading variations from the GRACE product requires the application of geocenter corrections, and not doing so introduce significant errors in estimates of, for example, melt-rates of the cryosphere. But, to understand observed geocenter motion more closely, one can also ask how much the different surface loading phenomena contribute to it. In this study, we compare different estimates of the geocenter motion, and discuss the underlying causes, with a special focus on trends. Using a 'fingerprint' inversion approach, where predefined patterns are fitted to GRACE and altimetry data, we can now consistently break down the geocenter estimates into different contributions. We find that the present day melting in Antarctica and Greenland shift the CM-CF offset with 0.1 mm/yr and -0.3 mm/yr in the Z-direction respectively, while GIA additionally contributes with roughly -0.3 mm/yr.

  19. Passive Optical Technique to Measure Physical Properties of a Vibrating Surface

    DTIC Science & Technology

    2014-01-01

    it is not necessary to understand the details of a non-Lambertian BRDF to detect surface vibration phenomena, an accurate model incorporating physics...summarize the discussion of BRDF , while a physics-based BRDF model is not necessary to use scattered light as a surface vibration diagnostic, it may...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2014 2

  20. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    PubMed

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

Top